
Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Dušan Psotný

Odstraňováńı odlesk̊u z digitálńıch fotografíı

Removing lens flare from digital photographs

Department of Software and Computer Science Education

Supervisor: RNDr. Michal Šorel, Ph.D.,

Study Program: Computer Science, Software Systems

2009

Most of all I would like to thank my supervisor of this project, RNDr. Michal
Šorel, PhD., for his time, patience, feedback and for many valuable advices,
which gave me a lot of new ideas. His cooperation on this project was one
of the best I have ever experienced.

Next I would like to thank all my friends, who were always ready to help
me with every problem I have asked and for their patience with me.

I also want to thank my parents and my girlfriend for their support,
especially during last few weeks when I was not able to come home, but
their cheers made me very happy and helped me greatly in those times.

I declare that I wrote the thesis by myself and listed all used references. I
agree with making the thesis publicly available.

Prague, October 8, 2009 Dušan Psotný

ii

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Related work . 3
1.3 Contributions . 4
1.4 Structure of the text . 5

2 Lens flare 6
2.1 Physical model of lens flare 7
2.2 Manual creating lens flare 8
2.3 Manual lens flare removal 10

3 Semi-automatic segmentation of lens flare 12
3.1 Taking images . 13
3.2 Image preprocessing . 14
3.3 Semi-automatic segmentation 16
3.4 Boundary detection based on gradient 16
3.5 Segmentation by intensity thresholding 17
3.6 Color segmentation . 20

3.6.1 Predefined colors . 20
3.6.2 User specified color areas 22
3.6.3 User specified lens flare area 25

3.7 Summary . 28

4 Removing lens flare 29
4.1 Analyzing lens flare using two images 29
4.2 Removing lens flare from image 31

4.2.1 Removing surroundings of flare 31
4.2.2 Removing flare from image 34

4.3 Summary . 36

5 Work overview 37
5.1 Summary . 37
5.2 Future work . 38

iii

Bibliography 39

A Work accessories 40
A.1 Bayer filter . 40
A.2 Segmentation . 41
A.3 Edge detection . 42

B Image formats 43
B.1 RAW . 43
B.2 TIFF . 45
B.3 JPEG . 46

C Color spaces 48
C.1 RGB . 48
C.2 L*a*b* . 49

D Code 52
D.1 Creation of lens flare using simple pseudocode 52
D.2 Otsu algorithm . 55
D.3 Sobel operator . 56
D.4 Segmentation using graph cut algorithm 56

iv

Název práce: Odstraňováńı odlesk̊u z digitálńıch fotografíı
Autor: Dušan Psotný
Katedra: Kabinet software a výuky informatiky
Vedoućı diplomové práce: RNDr. Michal Šorel, Ph.D.
e-mail vedoućıho: sorel@utia.cas.cz

Abstrakt: V této práci jsme se zaměřili na poměrně častou chybu na
digitálńıch fotografíıch a to je lens flare, neboli odlesk světelného zdroje.
Hlavńım ćılem je navrhnout a implementovat algoritmy, které vedou k odstraněńı
dané chyby z obrázku a to za pomoćı jednoho, či v́ıce obrázk̊u s r̊uznou ex-
pozićı. Algoritmy jsme implementovali pomoćı programového nástroje Mat-
lab, který sprostředkovává práci s maticemi a Image processing Toolbox,
který poskytuje funkce na práci s obrázky a zjednodušuje práci s nima. Pro
naši práci jsme implementovali a porovnali několik algoritmů na segmentaci
a na odstraňováńı lens flare jsme implementovali algoritmy založené na
koṕırováńı podobných čast́ı nebo zpracováńı jednotlivých barevných kanál̊u.
Naše výsledky ukazuj́ı, že jsme alespoň částečne schopni odstranit flare.

Kĺıčové slová: barevný prostor, digitálńı fotografie, odlesk, segmentace

Title: Removing lens flare from digital photographs
Author: Dušan Psotný
Department: Department of Software and Computer Science Education
Supervisor: RNDr. Michal Šorel, Ph.D.
Supervisor’s e-mail address: sorel@utia.cas.cz

Abstract: In this work we focus on one of the most common disturbance
and that is lens flare or unwanted light scattering from light source. The
main objective is to design and implement algorithms that lead to the re-
moval of the mistakes of the image and using one or more images with
different exposure. Algorithms are implemented using Matlab, software pro-
gram using matrices, and Image Processing Toolbox, which contains various
functions for work with images. For our work, we have implemented and
compared several algorithms for segmentation and removal of lens flare, we
implemented an algorithm based on copying similar parts or processing of
individual color channels. Our results show that we are at least partially
able to delete flare.

Keywords: color space, digital photo, lens flare, segmentation, veiling glare

1

Chapter 1

Introduction

1.1 Motivation

In the 40th years of the 19th century William Hendry Fox Talbot combined
light and some chemicals with wooden box, Sir John Herschel gave this a
name and this was the early beginnings of what we call now photography.
For the next couple of years was the process of making photography devel-
oped and improved, therefore people all around the world discover the joy
of the photographing. And people started to exchange the pictures. They
started to decorate their walls and notice boards with their creations and
finally revealed what is good for the celluloid pouch in their wallets. Few
years ago, almost 160 years after Talbot’s invention, raised a strong opponent
to the classical film photo, a digital photo. The new era of photographing
started, era of the digital cameras and digital photographs, which brings new
and exciting ways how to take a photo. Success of the digital technology
enthrones new part of arts, which was so totally suggestive, that the most
popular museums are making digital photography exhibitions.

However not everything new is also good. Every new invention has its
own problems and errors. Everybody thinks, that after couple of years
photography will match what we can see. There is some progress every year
to approach final image to what we can see, but there is still long way to
accomplish this.

With every pushed button, photographer must assume that there is some
probability that there will be some disturbance in photo. Even professionals
have experience with it and must be aware of that. These mistakes can ap-
pear by wrong settings of camera (wrong filter, wrong exposure, wrong place
from which you are taking photo etc.), ”wrong” settings of environment or

2

just by wrong reflection of light in lenses in camera. The common ”mistakes”
are motion blur (apparent streaking of rapidly moving objects in a still im-
age), lens flare (unwanted light scattered in lens systems), wrong depth of
field (part of image that appears blur), wrong white balance (incorrect white
balance can create unsightly blue, orange, or even green color casts, which
are unrealistic and particularly damaging to portraits), over/under exposure
(image has loss of highlight/shadow details).

Digital photography, computer and any software for image editing offers
almost unlimited possibilities, how to repair damaged photo. Sure, there
are photos, which are so damaged, that only professionals can repair them.
However, even if you are not computer professional, you can easily repair or
modify image taken by camera to what you want, to your imaginations. You
can combine few pictures to the collage or create special effects, which cannot
be done (it can, but really hard) on classic film. Digital photographing is
also very practical, due to the fact it spares time for necessary arrangements
in the image. With just few clicks of mouse you can resolve problems with
color balance remove unwanted objects in the background, even improve
focus of the image.

But on the other hand, there are images that are taken with mistakes
on purpose. Motion blur can give image dynamics; lens flare can give some
nice colors and some nice effects. But in most cases people do not want such
a disruption in the image.

1.2 Related work

Lens flare is a commonly-acknowledged problem in photography. Author
does not know any work in presence, which is involving in the lens flare
problem, but we can mention a work that is trying to remove similar prob-
lem. That is veiling glare. There is a work, which tries to reduce or possibly
remove glare from the image [8]. Most methods for reducing veiling glare
focus on improvements in the optical elements of the system. Better lens
coatings, for example, greatly reduce the reflections from lens surfaces. In
the work they have developed a method for removing veiling glare from HDR
images, using multiple captures with a high-frequency occlusion mask to es-
timate and remove glare. The most significant limitation of their method is
that it requires a large number of photographs to record a scene, so it can
be only applied to static scenes.

3

1.3 Contributions

Frequent problems in the image are motion blur and lens flare. There are
commercial (Photoshop R©, CorelDRAW R© etc.) or free (GIMP) software that
can create such a thing, but for the author there is not known at present
software which can detect and repair or just repair these mistakes, by point-
ing at them. It is possible to repair manually these mistakes, but it takes
lots of time and some skills to achieve clean image without disturbance. Au-
thor knows this problem, because he tried several times to repair ’damaged’
image.

The main aim of our work is to find and help to understand, what is lens
flare, how it is created and how it can be removed from the image. In the
presence, author does not know a work, that is interested in removing lens
flare or how it can be detected. So we will approach the problem of lens
flare and describe as close as possible what we find out. It helps us to gain
information if it is possible to remove lens flare without losing information
or if it is needed to remove small information to obtain image without lens
flare. We will try to develop a practical algorithm that can detect and
possibly remove flare from image. The procedure we want to apply consists
of two steps. The first one is to prepare image and find lens flare in it. This
step includes finding the most suitable algorithms for segmentation of the
flare from image. The second step is to find or create algorithm how we
will remove the flare. We will focus on algorithms which are using color or
illumination intensity, because of the flare physical properties. We hope, that
this procedure will help us to remove lens flare, due to the fact, that flare is
just color abnormality, which can be removed from pixel’s color information.

As mentioned earlier, there are software (Photoshop R©, CorelDRAW R©,
Gimp etc.) that can create lens flare, but at presence author does not
know software which can detect and repair or just repair these mistakes, by
pointing at them.

The main aim of the work is to find and implement algorithms, which
can remove lens flare from the image without introducing visible artifacts.

To achieve that, author sets the following targets:

1. Get to know the main characteristic of lens flare

2. Understand how it is created and how to avoid it

3. Get some images with lens flare, which will be used to test

4. Find a suitable algorithm for segmentation of lens flare

4

5. Remove lens flare from image without introducing visible artifacts

1.4 Structure of the text

The thesis is divided into six chapters and appendix, each one being shortly
described in this section.

Chapter 1 provides motivation for this topic. There is a little overview of
our work what is our aim and what we want to achieve. It also contains an
introduction to the problem of the thesis, structure of the thesis and short
explanations of some of the used terms.

Chapter 2 is a brief overview of what lens flare is. The main content of the
thesis starts here. It introduces lens flare, what are its physical parameters,
how we can create it, how it can be manually removed and what are the
problems.

Chapter 3 is about recognition of lens flare and its segmentation from
the image. This part contains segmentation methods we tested and their
results.

Chapter 4 is the part where we remove lens flare from the image. It is
about comparison of different algorithms for removing lens flare.

Chapter 5 is the part where we summarize our work, what we achieved,
what was not achieved and make some prediction about future research.

Appendix The appendix contains some more explanations about terms
used in our work and also contains a little bit of the algorithms’ codes used
in our work.

Appendix A is an overview of used methods.

Appendix B is an overview of used image formats.

Appendix C is an overview of used color spaces.

Appendix D is an overview of source codes used for our work.

5

Chapter 2

Lens flare

Almost every shot with camera is taken with main light source - mostly it
is sun - from behind the camera, so the object or scenery is alight from the
front. However this is easy to done, but this method rarely brings some
interesting results. On the other hand there is minimal chance for creating
interference such as over-exposure or lens flare.

Taking shot with main light source from the front, even with filters,
there is high probability and you have to count with interference in the im-
age such as white balance, lens flare or over-exposure. But if you succeed
to create photo without interference, the result is awesome. There are not
such amazing phenomena, when golden sun globe approaches horizon, col-
orized sky with beaming colors and creates beautiful reflections on lakes or
rivers. Nevertheless when you realize, that with this scenery you shot some
disturbance, the pleasure from taking such an images disappears fast.

Sometimes, after taking a shot, particularly if there are strong light
sources, especially sun, there is possibility, that some weird light reluc-
tances/spots appear on your photo, which are not supposed to be there.
Most certainly, they were caused by lens flare. The appearance and position
of lens flare changes depending on the angle of the light source beaming to
the camera, on the camera and lenses itself and on the aperture setting of
the photo.

Lens flare is created when non-image forming light enters the lens and
subsequently hits the camera’s film or digital sensor. This often appears
as a characteristic polygonal shape, with sides which depend on the shape
of the lens diaphragm. It can lower the overall contrast of a photograph
significantly and is often an undesired artifact; however some types of flare
may actually enhance the artistic meaning of a photo. Understanding lens

6

flare can help us use it, or avoid it, in a way which best suits how we wish
to portray the final image.

Figure 2.1: Lens flare marked in the image.

The spatial distribution of the lens flare typically shows itself as several
star bursts, rings, or circles (e.g. like in image 2.1) in a row across the
image or view. Lens flare patterns typically spread widely across the scene
and change location with the camera’s movement relative to light sources,
tracking with the light position and fading as the camera points away from
the bright light until it causes no flare at all. The specific spatial distribu-
tion of the flare depends on shape of the aperture of an image formation
elements. For example, if the lens has a 6-bladed aperture, the flare may
have a hexagonal pattern.

Of course that, when used correctly, this property can be applied for the
photographer’s advantage. Lens flare can give a special kind of drama to
the photos and in fact there are many filters out there (physical as well as
software) that intend to mimic lens flare to introduce flare effects on the
photos.

2.1 Physical model of lens flare

To understand lens flare you need to know how light works in photography.
Basically, everything reflects light. You see an object as it is because it
absorbs some light wavelengths and reflects others. Similarly to the human
eye, a camera records the light reflected from objects and that reaches the

7

sensor. In a perfect situation only your photography subject should reflect
light directly into the front element of your lens. But this never happens
and everything that surrounds your camera is reflecting some light and some
of it will indirectly enter your lens. Lens flare is thus caused by indirect re-
flected light entering your lens and being scattered around your lens elements
(bouncing inside your lens) until it reaches the sensor, as shown on Figure
2.2.

Figure 2.2: Physical model of lens flare.

On normal conditions, the direct light is stronger than the indirect one
and lens flare will be minimal and hardly noticeable. Problems arise when
the indirect light comes from a strong source (like the sun). If it is strong
enough you will see those flare artifacts. Even when flare is not strong
enough to produce artifacts, light can be broadly distributed all over the
photo, reducing contrast and turning the photo pale. On a more extreme
situation, lens flare can create all sorts of weird aberrations and destroy the
photo completely.

2.2 Manual creating lens flare

As it is mentioned before, there are lots of software, which can create or
simulate lens flare just with few clicks of mouse. Almost every has the same
ways, how to create lens flare in the image. We pick an image where we

8

want a lens flare, find a tool that can create lens flare, probably there will
be some settings how to create it (such as color, shape, brightness etc.),
point a mouse to a place where we want to create it in the image and we
just create it.

Creating lens flare using software

The creation of such lens flare in an image is shown below. This was
created in Photoshop R©.

(a) before (b) after

Figure 2.3: Simulation of lens flare using PhotoshopR©. Image without lens flare(a)
and after using special function for creating flare(b).

It is very simple to create lens flare in any picture with just few clicks of
mouse.

Creating lens flare using special algorithm

If, on the other hand, it is not possible to afford commercial software, we
can use free source. But when we need some special one, there is another
way, how we can create our own lens flare. We just present here the final
image. Whole algorithm and images we connected together are mentioned
in Appendix D.1.

It depends on what do we want and what we want it to look like. We
can create lens flare textures, change colors and sizes to achieve picture that
we want.

Lens flare can show up in photos in a variety of forms. It often appears
as a characteristic polygonal shape, with sides which depend on the shape of
the lenses, but it can also appear as blobs, streaks, or foggy/fuzzy patches
of colored light all over the image. Lens flare can appear in daytime, as
well as night time photos. The shape of the lens flare also depends on a
combination of things, including, but not limited to, lens properties (the

9

Figure 2.4: Image with flare created as sequence of simple function connected
together in one image.

internal structure of the lens) and the camera angle to the sun or other light
sources. Due to the varies of the flare it is hard to analytically determine
how it is created and how to avoid creation of it in image.

2.3 Manual lens flare removal

As we can see in the previous chapter, the creation of lens flare is really
simple. With just few clicks of mouse or just adding some simple formulas
we can create nice lens flare in a moment. We can determine how it will
look, what colors will be there or what shape it will take. It is easy to create,
but for removing lens flare from image there is no such easy solution. In the
presence there is no such software or author does not know about any, for
automatic removing of lens flare. We can remove it manually with help of
commercial (f.e. Photoshop R©, CorelDRAW R©) or free (GIMP) software, but
it takes some time and we need some skills to remove it. Manual removal
needs active participation of user, nothing is automatic. There are few
possibilities how to remove it, unfortunately mostly it is just duplicating
some part of image matching the part with lens flare and just simple copy
and paste this part to where the lens flare is to overpaint it. Problem here is,
that we have to at first find part of image that is not disturbed by lens flare
and the difference with the flared part must be minimal. Other possibility
is to blur the lens flare, but this is only possible when it is not too big or it
is not flare covering some object. Otherwise, when trying to blur, the image
is totally destroyed. Unfortunately often it is not the right solution because
the original information of blurred pixel is destroyed.

10

If we want an image without lens flare, it requires at least good knowledge
of environment of used graphic editor and lots of tools (such as stamp, copy,
blur, opacity, corrections of contrast levels etc.) what we need to use, to
achieve the image without lens flare and without losing information. Usual
manual removal is localizing lens flare in image, seldom it is not only one
place in image. If it is symmetric image, it is enough just to ”copy” the
matching part, repaint the part where the lens flare is and maybe delete
or repair eventual debris. If not, there is attempting to ”repaint” the part
of the image with underlying colors, eventually changing contrast level etc.
With this knowledge, that it is possible to remove flare from image manually,
we can take these tools and create similar algorithms, try to simplify them
and finally remove the flare from image.

As we described few lines above, it is possible to remove flare manually.
Because there are different types of flare, each type needs different tool and
knowledge about to remove. We can mention main types of flare, which are
created in the image and these are flare from the lenses, induced color casts
and loss of contrast. Each of these flares have different properties and each
one needs to be removed differently. We could use tools like stamp, copy
and correction of contrast and color channel levels to removal. Stamping
and copying can be used to remove flare from lenses (as described in section
4.2.2), we can find similar part of image without flare and just copy it to the
part, where the flare is. Correction of contrast and color levels (as described
in sections 4.2.1 and 4.2.1) can be used for correction of color casts or loss
of contrast, due to the fact, that these are just small information added in
pixel during taking photos. However, there are few steps, where we need the
little bit of help from the user. It is just picking right areas where the flare
is, where could be the similar area without lens flare etc. We hope, that
we are able to remove mentioned flares from image and restore the parts
affected with flare.

11

Chapter 3

Semi-automatic segmentation
of lens flare

When trying to remove flare from image we can just focus on the part where
the flare is, because we don’t want to remove other information, but just
the flare. To achieve, that we will work just with the part with flare, we
used various segmentation algorithms. Problem was, which segmentation
method will be suitable for our goal, if semi-automatic, automatic or man-
ual segmentation. We decided to use semi-automatic segmentation, which
becomes very popular to alleviate the problems inherent to fully automatic
segmentation which seems to never be perfect. Manual segmentation could
be very time-consuming. Often a small amount of user input can be very
useful and helpful in some part of the algorithm.

Our goal is with the help of user to mark lens flare in the image. We
tried different algorithms (methods) how to achieve that. Some of the results
are useful in our next step, some are not. In next few pages we describe
algorithms we used, show what were the results and what is our opinion on
the specified algorithm.

In this chapter we will describe how we proceed, what were our steps.
First we need some pictures, which will be our test images. It is not easy
to find on the Internet or somewhere else same pictures with flare and with
different exposures, so we had to took our own images. The second step was
to preprocess these images and finally segment the flare.

12

3.1 Taking images

At first we need some images with lens flare. There are few possibilities
how to get that kind of picture. Some techniques, how to create them, were
mentioned above, but that are not good for our research. It is easy to create
lens flare with properties we want and then make research on them, but
that’s not our goal. It is the fact, that when we create flare, we know how
it was created and we know what information we add in particular image,
so we know what information needs to be removed. We do not want images
which are created by software either. We need images with flare which were
taken in real situations.

It is not easy, if we want to take a picture with lens flare. One of the
Murphy’s laws is saying: ”If you want something bad enough, chances are
you will not get it and if you don’t want it, you will get it.”. To take picture
with lens flare on purpose, we need patient and good camera (more mirrors
in objective, the better lens flare will appear). Also we need some kind of
strong light source, the most often it is a sun (the best time to take a photo
with lens flare is sunny day). It could be also a lamp with strong light, but
we tried to take image with sun as source of light.

The best format for the images for our purpose is RAW (described in
Appendix B.1) file format. It is because this format contains lots of in-
formation about image and it is well to work with (change contrast, white
balance etc. without losing information). However, every camera manu-
facturer has its own format for RAW files; there is no unification for this
format. So we need to convert RAW format, to some unified format, that
will be easy to work and we will not lose information. The best for this
is TIFF (described in Appendix B.2) file format. For conversion we used
dcraw (http://www.cybercom.net/~dcoffin/dcraw/) program.

The next question is how many pictures we need to take and what should
be the camera settings, to assure proper lens flare recognition and removal.
We could take just one picture or as many as we want. The problem with
one picture is, that a camera has different settings, different values every
time you take shot, so repairing could be hard. When taking two and more,
there is a problem, which one to use. In our work we tried to use either one
or more images but as we will see in next chapters, mostly we will use only
one image.

When taking more than one image, we use AEB - automatic exposure
bracketing. Exposure bracketing is a simple technique professional pho-
tographers use to ensure they properly expose their pictures, especially in
challenging lighting situations. When you expose for a scene, camera’s light

13

http://www.cybercom.net/~dcoffin/dcraw/

meter will select an aperture / shutter speed combination that it believes
will give a properly exposed picture. Exposure bracketing means that you
take two more pictures: one slightly under-exposed (usually by dialing in
a negative exposure compensation, say -1 EV), and the second one slightly
over-exposed (usually by dialing in a positive exposure compensation, say
+1 EV), again according to camera’s light meter. The reason to do this is
because the camera might have been ’deceived’ by the light (too much or
too little) available and the main subject may be over- or under-exposed.
By taking these three shots, we are making sure that if this were ever the
case, then you would have properly compensated for it.

With these pictures it is much better to work with. Due to the fact,
that lens flare is caused by the light, we can be sure, that with different
exposure it will differs on each picture. It will be more visible with higher
exposure and almost none visible with lower exposure (sure it depends on
how the AEB is set, what is exposure compensation), but this will be good
to maintain information about how it occurs, what are the differences with
different exposure etc.

3.2 Image preprocessing

Previous chapter leads us to the fact that manually removing lens flare is
not good in terms of time involved (number of operations in the editor) and
the concentration of the user (to change the intensity of brightness in the
image, changes in the contrast, brightness in the parts they want to change,
that all need really good patient and good eye to see the differences and to
correct them). On the other hand, fully automatic removing is hard either,
due to the presence of multiple objects with similar intensity profiles (sun
rays, reflections etc.).

With different exposure, the lens flare will be different on each picture
as we can see in Figures 3.1.

The problem is, that pictures differ in contrast. First we need to correct
illumination in tested picture. We took medians of illumination in pictures
and normalized pixels in other picture. The illumination for each pixel is
easy to count:

I = 0.299R + 0.787G + 0.114B

And normalization itself:

14

(a) -1/3 EV (b) 0 EV (c) 1/3 EV

Figure 3.1: Images taken with different exposure time.

Algorithm 1 Normalization of the image

// count illuminance for each pixel in the first image
for each pixel x, y in image1
I1 = 0, 299 ∗R(x, y) + 0, 787 ∗G(x, y) + 0.114 ∗B(x, y)
// count illuminance for each pixel in the second image
for each pixel x, y in image2
I1 = 0, 299 ∗R(x, y) + 0, 787 ∗G(x, y) + 0.114 ∗B(x, y)
// get median from both images
median1 = median(I1);
median2 = median(I2);
// normalize pixels in the second image
for each pixel x, y in image2
pixel(x, y) = pixel(x, y) ∗ (median1

median2
)

We know that flare is part of light, so instead working in RGB color
space, we could use L*a*b* (described in Appendix C.2) color space. It
is better color space than RGB to work with illumination. We can visually
distinguish the colors of lens flare from background. The L*a*b* color space
(also known as CIELAB or CIE L*a*b*) enables you to quantify these visual
differences. The L*a*b* space consists of a luminosity ’L*’ or brightness
layer, chromaticity layer ’a*’ indicating where color falls along the red-green
axis, and chromaticity layer ’b*’ indicating where the color falls along the
blue-yellow axis. Our approach will be to choose a small sample region
for each color and to calculate each sample region’s average color in ’a*b*’
space. Then we can classify each pixel by calculating the Euclidean distance
between that pixel and each color marker. More on that will be explained
later.

15

3.3 Semi-automatic segmentation

In our work, we use interactivity from user in different ways. When we have
got whole picture, automatic finding for the lens flare in it could be really
hard. Here will be very handy if user points or marks area where is the lens
flare. This is the first help from the user. It could be rectangle or some
polygon. We will stay with rectangle, which is better to work with and user
will not be so accurate to mark precise shape of lens flare.

The next step with user help is used in segmentation parts, but it differs
depending on the algorithm. According to usage, the user will pick a part
of histogram (e.g. to set threshold for Otsu method) or to pick colors what
will be segmented (e.g. in color segmentation method). With this help we
can more focus on algorithm not on how to get data from pictures.

In this section we will focus more on specific algorithms. We will try
to segment lens flare with these algorithms, compare them, compare results
and explain where the main problems were each algorithm and at the end
we will come up with what is the best for our research.

3.4 Boundary detection based on gradient

Some types of lens flare actually are an objects with boundaries in image.
Its color is also different than background. On this basis, there is good
possibility that edge detection could find lens flare in image or at least its
boundaries. Edge detection refers to algorithms which aim at identifying
points in a digital image at which the image brightness changes sharply or
more formally has discontinuities.

There are several methods for edge detection, but most of them can
be grouped into two categories, search-based and zero-crossing based. The
search-based methods detect edges by first computing a measure of edge
strength and the zero-crossing based methods search for zero crossings in a
second-order derivative expression computed from the image in order to find
edges. One of the differences between edge detection methods are types of
smoothing filters that are applied and the way the measures of edge strength
are computed. As many edge detection methods rely on the computation of
image gradients, they also differ in the types of filters used for computing
gradient estimates in the x- and y-directions.

Once we have computed a measure of edge strength (typically the gra-
dient magnitude), the next stage is to apply a threshold, to decide whether

16

edges are present or not at an image point. The lower the threshold, the
more edges will be detected, and the result will be increasingly susceptible to
noise, and also to picking out irrelevant features from the image. Conversely
a high threshold may miss subtle edges, or result in fragmented edges.

In our work we used well-known Sobel operator (D.3), which uses two
3× 3 kernels, one for horizontal and one for vertical changes.

Figure 3.2: Boundary detection of flare using edge detection algorithm with Sobel
operator

Result, as we can see in Figure 3.2, is not good for our next step. Lens
flare intervenes to the parts, where is a sun, so in this part, there is no
possible way for good detection of the edge. And exactly in this picture,
there are sunblinds, which affect the edge detector. Also detecting edges on
lens flare is a bit strange due to the fact, that lens flare is mostly an oval
object and does not have sharp edges.

3.5 Segmentation by intensity thresholding

Thresholding is the simplest method of image segmentation. During the
thresholding process, individual pixels in an image are marked as ”object”
pixels if their value is greater than some threshold value (assuming an object
to be brighter than the background) and as ”background” pixels otherwise.
This convention is known as threshold above. Variants include threshold
below, which is opposite of threshold above; threshold inside, where a pixel
is labeled ”object” if its value is between two thresholds; and threshold out-
side, which is the opposite of threshold inside. Typically, an object pixel is
given a value of ”1” while a background pixel is given a value of ”0”. Finally,
a binary image is created by coloring each pixel white or black, depending
on a pixel’s label. The key in the thresholding process is the choice of the
threshold value. There are different methods for choosing a threshold value;
users can manually choose a threshold value, or a thresholding value could
be computed automatically, which is called automatic thresholding. The

17

simplest method would be to choose the median or mean value, the ratio-
nale being that if the object pixels are brighter than the background, they
should also be brighter than the average. In a noiseless image with uniform
background and object values, the mean or median will work well as the
threshold, however, this will generally not be the case. A more sophisti-
cated approach might be to create a histogram of the image pixel intensities
and use the valley point as the threshold. The histogram approach assumes
that there is some average value for the background and object pixels, but
that the actual pixel values have some variation around these average val-
ues. However, this may be computationally expensive, and image histograms
may not have clearly defined valley points, often making the selection of an
accurate threshold difficult. One method that is relatively simple, does not
require much specific knowledge of the image, and is robust against image
noise, is the following iterative method:

1. An initial threshold (T) is chosen; this can be done randomly or ac-
cording to any other method desired.

2. The image is segmented into object and background pixels as described
above, creating two sets:

(a) G1 = f(x, y) : f(x, y) > T (object pixels)

(b) G2 = f(x, y) : f(x, y) ≤ T (background pixels)

(c) (f(x, y) is the value of the pixel located in the xth column, yth
row)

3. The average of each set is computed.

(a) m1 = average value of G1

(b) m2 = average value of G2

4. A new threshold is created that is the average of m1 and m2

(a) T ′ = (m1+m2)
2

5. Go back to step two, now using the new threshold computed in step
four, keep repeating until the new threshold matches the one before it
(e.g. until convergence has been reached).

There are many different algorithms how to set a threshold. In our
research we tested two algorithms; one automatic and one manual. Both
algorithms are based on histogram values. First is well known Otsu method,

18

which automatically chooses threshold value and second is manual pick of
threshold value from histogram.

In computer vision and image processing, Otsu’s algorithm D.2 is well
known algorithm used to automatically perform image thresholding based
on image gray level histogram. Algorithm assumes that image contains
two classes of pixels and then calculates the optimum threshold separating
these two classes. It is based on idea, which is finding the threshold that
minimizes the weighted within-class variance. This turns out to be the same
as maximizing the between-class variance. More on this algorithm is in
Appendix (D.2) or [3].

Figure 3.3: Segmentation of lens flare using Otsu method.

As we can see on Figure 3.3, this method picks a good threshold value,
but there are still some parts of lens flare missing, which should be also in
”foreground”. We could use more complex methods, but our purpose here
was to show if it is possible to segment flare and as we can see, it is not really
that simple even with one of the most well known and simple algorithm. So
for that we tried to pick a threshold value manually. The basis for this was
also histogram. At first we created histogram of intensities. After that we
tried to found specific value in histogram by pointing to it and look how the
picture is changing. The results are shown on Figure 3.4.

We can see, there is no such value that will segment lens flare from the
background. With low threshold the algorithm picked just the center of the
lens flare, but the part which is on the right side is lost. On the other hand
with high threshold, we just picked right side and the biggest part of lens
flare is lost. Even if we picked average, there is no success on segmenting
lens flare. The main problem here was the source of the light that interferes
in the picture and that flare contains pixels with different brightness. In the
middle there is a strong almost white pixels and on the edges there are pixels
with almost no additional brightness information. This cause the problem
picking the right value for thresholding segmentation. Small values picks
everything around the flare and high values picks just the center of flare.
We can divide flare before finding threshold value and segment each part

19

(a) Low value (b) Middle value (c) High value

Figure 3.4: Flare segmentation by setting threshold value manually.

differently, but this is not our purpose. We want to segment flare in one
step, so segmenting flare by intensity thresholding is out.

3.6 Color segmentation

In previous sections, we tried to segment lens flare from image using only
intensity information. The results were not really good due to the fact, that
there were sunlight and other shiny objects interfering.

Therefore we tried to segment the lens flare on the basis of color. The
main idea here is to segment different colors in lens flare and in background.
There are few possibilities how to achieve that. We focused on methods,
which are based on color difference and how they can segment the color.
These methods need points, which are specified by the user.

3.6.1 Predefined colors

The first method is based on predefined colors. We tried to analyze a typical
set of colors contained in a lens flare. One hypothesis was, that flare contains
mainly colors of spectrum. We needed to specify boundaries for each color
and then test, if tested pixel lies within these intervals.

These colors are violet, indigo, blue, green, orange, yellow and red. In
our implementation we specified each of these colors as separate space in

20

Figure 3.5: NASA hydrogen spectrum.

RGB space, which means, that every color is defined as three intervals of
each color of RGB space. Then we test each pixel if it suits in interval of
tested color.

Algorithm 2 Testing for red and blue part of spectrum

GL = 255
if isset(’red’) then

f1 = (GL * 1.0); f2 = (GL * 0.4); f3 = (GL * 0.5);
f4 = (GL * 0.0); f5 = (GL * 0.5); f6 = (GL * 0.0);

end if
if isset(’blue’) then

f1 = (GL * 0.5); f2 = (GL * 0.0); f3 = (GL * 0.68);
f4 = (GL * 0.0); f5 = (GL * 1.0); f6 = (GL * 0.4);

end if
//Test, if pixel lies within these intervals:
if img(i, j, 1) ≤ f1 && img(i, j, 1) ≥ f2
&& img(i, j, 2) ≤ f3 && img(i, j, 2) ≥ f4
&& img(i, j, 3) ≤ f5 && img(i, j, 3) ≥ f6
&& img(i, j, m) == max([img(i, j, 1) img(i, j, 2) img(i, j, 3)]))
then

C(i,j,1:3) = img(i,j,1:3);
else

C(i,j,1:3) = 0;
end if

We hoped that the lens flare is based on and created just by these colors.
That we could specify lens flare as a part of the spectrum. Figure 3.6 shows
us, that the lens flare is not based only on the colors of spectrum.

As we hope, some pixels were really in specified intervals, but there were
some parts of lens flare, which did not suit anywhere. We realize, that these
parts of lens flare, are not from spectrum, so it cannot be easily segmented
with this method. Also specifying spectrum as intervals in RGB space is
not really good idea, because it is hard to set precise values for each color
in spectrum.

21

Figure 3.6: Segmentation by spectrum colors. All colors where segmented sepa-
rately and then the results were united in one image.

3.6.2 User specified color areas

Using spectrum colors as a predefined template for segmentation showed us,
that there is possibility to segment flare from image, but there are still parts,
which were not segmented. The problem was, that spectrum colors are not
defining whole color space, so we need to try different method.

We tried two different methods. First is based on simple difference of
colors and nearest neighbor rule. The second one is based on differences
between foreground and background, which are defined by the user and
then computed with the help of graph model developed by Y. Boykov and
V. Kolmogorov [1]. Both methods use the mean color of specified area as
the basic parameter.

As we know the major colors in lens flare are purple, green, little bit
of blue and some red and yellow ones, but it differs a little when using
different lenses and cameras. These colors appeared the most, when we
tried to segment them. We can visually distinguish these colors from one
another. The L*a*b* color space enables to quantify these visual differences,
so we will focus on converting image to this space, try to find differences
and segment lens flare.

Our approach was to choose a small sample region for each color and
to calculate each sample region’s average color in ’a*b*’ space. We will use
these color markers to classify each pixel and to decide where it belongs.

When each color marker has an ’a*’ and a ’b*’ value we can classify each
pixel in the image by calculating the Euclidean distance between that pixel
and each color marker. The smallest distance will tell us that the pixel most
closely matches that color marker. For example, if the distance between a
pixel and the green color marker is the smallest, then the pixel would be
labeled as a green pixel.

22

Algorithm 3 Testing for red and blue part of spectrum

//selecting polygons, which will be used for mean color
for count = 1:nColors do

BW = impoly(gca, []);
api = iptgetapi(BW);
pos = api.getPosition();
recCoor(:,:,count) = pos;

end for
//converting RGB to Lab color space
cform = makecform(’srgb2lab’);
labFabric = applycform(fabric,cform);
//definition of chromaticity layers
a = labFabric(:,:,2);
b = labFabric(:,:,3);
//mean color of all selected regions
colorMarks = repmat(0, [nColors, 2]);
for count = 1:nColors do

colorMarks(count,1)= mean2(a(sampleRegions(:,:,count)));
colorMarks(count,2)= mean2(b(sampleRegions(:,:,count)));

end for
//difference of the pixel and mean color
for count = 1:nColors do

distance(:, :, count) =
√

((a− colorMarks(count, 1))2 + (b− colorMarks(count, 2))2);
end for
//segmentation
rgbLabel = repmat(label,[1 1 3]);
segmentedImages = repmat(uint8(0),[size(fabric), nColors]);
for count = 1:nColors do

color = fabric;
color(rgbLlabel = colorLabels(count)) = 0;
segmentedImages(:,:,:,count) = color;

end for

Result depends on how we choose the polygon, from which is mean color
counted. We tried different parts of lens flare. Results are presented below.

At first, we picked polygon on the edge of the lens flare. The segmented
part is what we want. When we tried to pick color nearer to the middle of
the lens flare, the results are different. We can see on Figure 3.8 that we
need to pick a color that is darker than the mid, but not as dark as the
background.

23

Figure 3.7: Segmentation by areas specified by user.

When we tried to pick a different color, in our example green, the result
is almost what we want. There is a slight part, which is no included in lens
flare, but this will hopefully not cause any problem, when we try to remove
it.

Figure 3.8: Segmentation by areas specified by user. Precisely here it was green
color.

Previous method helps us achieve that lens flare is easily segmented,
when we use proper parameters to detect it. However this method uses just
part of image to get mean color of it, so as we saw before, trying to get right
mean to get better segmented image could be really time consuming. On
the other hand it helped us to get proper view, how we can get really good
results.

24

3.6.3 User specified lens flare area

The second method we used also involves user, but here the main pick is not
to choose regions with colors we want to segment, but the user will have to
define some points in image. These points will be defined as ones including
lens flare, which are taken as foreground and other ones, besides lens flare,
which will be taken as background.

But before we show the algorithm we try to explain terms we used. In the
next algorithm we use several algorithms to achieve the best segmentation,
namely they are watershed algorithm [5], k-means clustering [4] and min-
cut/max-flow algorithm developed by Boykov and Kolmogorov [1].

The watershed algorithm [5] is an image processing segmentation algo-
rithm that splits an image into areas, based on the topology of the image.
The size of the gradients is interpreted as elevation information. As we
know, that parts of lens flare have the similar parameters, we can achieve,
that watershed will split image and exactly lens flare in parts, which can be
easily segmented. In our work we used Meyer’s watershed algorithm [6]. It
works on gray scale images, so we will first transform our image into gray
scale. We used watershed because the input pixels could be numerous. We
used these pixels to mark areas in which they belong to. It is easier to work
over the areas rather than over pixels. Areas will be than marked as nodes
for the graph.

The basic idea of k-means clustering [4] is that clusters of items with
the same target category are identified, and predictions for new data items
are made by assuming they are of the same type as the nearest cluster
center. It is an interactive method which needs an input of how many
clusters we want. It must be positive integer number. The grouping is
done by minimizing the sum of squares of distances between data and the
corresponding cluster centroid. We used this to cluster areas from watershed
algorithm into groups. Main disadvantage in the k-means is that we must
specify how many clusters we want. The second clustering parameter here
will be mean color of each region.

The last algorithm we are using is min-cut/max-flow algorithm [1]. Main
idea of this algorithm is based on Ford-Fulkerson theorem [7]: ”The maxi-
mum amount of flow is equal to the capacity of a minimum cut.” In other
words, as long as there is a path from the source (start node) to the sink
(end node), with available capacity on all edges in the path, we send flow
along one of these paths. Then we find another path, and so on. A path
with available capacity is called an augmenting path. Normally, augmenting
path-based methods start a new breadth-first search for s → t path as soon

25

as all paths of a given length are exhausted. The main differences are that
it builds two search trees instead of one (one from the source and the other
one from the sink), they reuse these trees and never start building them
from scratch. For more details see related work [1].

Now we can introduce how we use these algorithms and how we connect
them for our segmentation and compare results with the result obtained by
the algorithms mentioned earlier.

At first we pick foreground and background pixels. It depends how much
accurate we want to segment the object from the picture. If we want just
core, we just mark core as foreground and the other area as background.
As we can see in the Figure 3.9, the foreground is marked with red and
background with blue spots.

Figure 3.9: Image with marked pixels, which will be used as seeds for min cut/max
flow algorithm.

When we have got marked pixels we can proceed to the next step, which is
creating a graph from these spots. The base for this is watershed algorithm.
The input for the watershed algorithm is grayscale image, so first we need
to convert our image to grayscale and then we can apply watershed.

Figure 3.10: Watersheding algorithm on lens flare image.

When the watershed (Figure 3.10) is finished, we need to find for each
region its mean color. We used special function, which can measure some of

26

the predefined properties for each labeled region (in our work we used linear
indices of pixels in the region). After that we just looped through the whole
regions and from the returned vector we counted mean color for each region.
As we know, the min-cut/max-flow algorithm needs some terminals(sources
and sinks), that represent the roots of search trees. We create this from the
seeds, which we picked at the beginning. For that we used returned array
from watershed and k-means algorithm to specify these roots. First we
create foreground and background labels, which represent the areas where
the seeds are.

If we have got labels, we can cluster mean colors of the labeled regions.
Some of the mean colors are really similar, so we can reduce roots for the
algorithm. This depends on the number of clusters we want. It could be
small number, to reach the most similar areas to be together or big number
to obtain opposite. After clustering we have got everything we need to create
graph. When we have got all edges evaluated and graph built we can now
use min-cut/max-flow algorithm to segment the image. Whole graph cut
algorithm with source code is mentioned in the appendix (D.4). The results
for this segmentation are shown on Figure 3.11.

Figure 3.11

First line in Figure 3.11 represent results, when number of clusters is
ten. Second line are results when number is 30 and the last one is, when
the number is set to sixty. Columns represents number of initial seeds(low,
medium and high). We can see, that with low number of initial seeds the

27

final segmented image is quite small. There are still parts, which are not
included in result and they should be there. When we raised number of
initial seeds, the segmented lens flare is much more precise, but still we need
a higher number of seeds to achieve some good result as seen in last column.

As we can see on results, the more initial seeds we have, the more precise
segmented picture we get. A small problem here is that using the watershed
could cause, that some parts of picture, which are not lens flare parts are
also included in the result. However this is not as big mistake, due to the
fact, that we will ignore these parts while removing.

3.7 Summary

If we compare results obtained by all these segmentation algorithms, we
can tell, that none is perfect. Every result has some areas, which should or
should not be in the result, but there are some results where segmented lens
flare is almost what we want. Edge detection algorithm could be suitable
for polygon-shaped lens flare, but mostly the lens flare has almost circular
shape. Algorithms using automatic or manual intensity threshold value are
not good due to the fact that lens flare has sometimes the same brightness or
color levels as some parts of light, so neither automatic nor manual value of
this threshold could precisely divide lens flare from the background without
interference of these objects. This algorithm could be suitable for lens flare
objects which appear on dark parts of image, which was not the case in our
tested image.

From algorithms mentioned and tested above, the most precise result
was given by the last algorithm (min-cut/max-flow) with active interaction
of the user. However this method obtains some specific parameters, which
are number of clusters and number of initial seeds for background and fore-
ground. For foreground and background seeds, user is just marking pixels in
image, when number of seeds is too small, it just asks the user to add some
more. Number of clusters is set manually, which could cause, that seeds
could be distributed in some other way and therefore the segmented image
include some parts we do not want. For our test, we had picture 290x170
pixels and after applying watershed algorithm it had 1225 areas, we could
see 3.11i, that more seed and more cluster, the better segmented picture.

The results of the last algorithm show, that this method is suitable for
segmentation of lens flare in image. When we have got segmented flare, we
can approach to our next and final step and that is removing the flare from
the image.

28

Chapter 4

Removing lens flare

When we know lens flare is able to be segmented, we could step to the next
and final part and that is removing lens flare from the image. At first, we
tried to analyze image with flare and without flare. For this we needed to
take an image one with and one without flare. After few failures we finally
took two images with and without flare. We mention our analysis in the
first section. In the next two sections we mention our next steps, which
were trying to remove flare with just one picture and with two pictures with
different exposures. Each section consists of several algorithms we were
testing and at the end of each section we made a conclusion.

We are able to segment lens flare, but as we can see, it has complex
shape. We tested removal on much more easier shape at first and this is
rectangle. If we are able to remove flare with this shape, we could then try
to remove lens flare from segmented parts.

4.1 Analyzing lens flare using two images

We have got two images, first was taken with lens flare. The second one was
taken precisely like the first one, but with covered light source using lens
hood, so lens flare is not there 4.1.

The main idea here is not to remove lens flare, but find out, what hap-
pened to the area, where the lens flare is. If we want to try remove lens flare
with help of these two images, it is really simple. It is just copying the area
from the image where is not lens flare to the part of the first image where it
is. We just mark the part which we want to replace and we replace it. We
need this to analyze a flare, try to copy from one image to another. If it is

29

Figure 4.1: The same scene with and without lens flare.

possible with this simple operation or if we need something more to remove
flare.

(a) With lens flare (b) Difference

Figure 4.2: To analyze a typical lens flare, we subtract two image. One with flare
[4.2a] and another one without flare with blocked light source.

We need to find out differences between these two images and create
some profile for the lens flare, which we can use as the basis for removing it
from the image. The idea is to subtract areas with the lens flare and count
median from the differential area and subtract area with lens flare. Results
are shown on Figure 4.3.

As we can see, it is hard to correctly mark flare on the edges of the tested
object. When we tried to subtract edge areas, the black pixels will appear,
because these pixels are from background from median of difference and not
from flare itself.

30

(a) Area picked for median (b) Difference (c) Without lens flare

Figure 4.3: Subtracting difference between image with and without flare and
taking median [4.3a]. Subtraction difference and median [4.3b] and pasting sub-
traction back to the image [4.3c].

4.2 Removing lens flare from image

We can consider, that we have got pictures as in previous section, one with
the lens flare and one without. Then we do not need to worry about removing
and take the first image without flare, but this is not what we want. If we
have pictures with flare, there are not many possibilities how to remove lens
flare from marked area. When we tried to focus on area around or behind
the lens flare, we could see that there are similar areas in the image.

There are two main steps, in which we try to remove flare. First part
covers removing flare part, flare core. There are different ways how to achieve
removal of flare, all algorithms we implemented and tested are mentioned in
Section 4.2.2. Second part covers removing just minor lens flare disturbance,
a color cast which is dispersed and creating some kind of boundaries of the
flare. This, we thought, could be easily removed by changing color levels.
There are some common steps when removing both induced color casts and
the flare itself, where the same algorithm could work. We will introduce
several algorithms here, which we used on both problems. At the end we
will compare results and see if we are able to remove flare.

4.2.1 Removing surroundings of flare

As mentioned before, flare is not only one unwanted object in the scene.
There are also frequent other types of flare and these are color casts or loss
of contrast. In this section we focus on these flares and try to remove them.
Algorithms we used could be possibly applied also on flare core itself.

Manually removing flare induced color casts At first we try to

31

remove these color casts manually with help of available image software.
We tried to remove or at least to tone down specific color, in our case it
was green. We focused on color curves and color levels. The obtained image
(Figure 4.4) with removed part of lens flare was pretty good. This result
showed us it is possible to remove color casts with changing pixel colors to
right value.

Figure 4.4: Lens flare removed manually using tools for changing color levels and
curves in Photoshop R©.

The main problems here were that it is time consuming and we need to
focus on working with different channels. The biggest problem for human
eye is to find right values for each color channel. There are people, who are
able to see these differences, but mostly it is almost impossible to achieve
and to set up the most suitable color. After working with image software
and acknowledged that it is possible to remove flare, we focused on next
algorithm. That was finding similar areas in image to replace lens flare. We
tried two different techniques. First one was median of similar area and
second one was nearest neighbor rule.

Estimation of flare color of pixels using median of similar part
We know from previous chapter, that it is possible manually remove or at
least tone down color casts, but we need to find right color for pixels. Our
idea is to take different, but similar part of the picture. We assume that
in picture there are similar parts (f.e. same texture as the one under flare,
similar brightness) and we could hope, that at least one of this part will not
be damaged by the flare. In our image, there are several parts we can use
for this purpose.

We picked two areas, one with lens flare and second one similar to the
background behind lens flare. We compute the difference between them and
from this difference we compute a median. After that we subtract lens flare
crop with median. Results are shown on Figure 4.5.

32

(a) Picked areas (b) Result (c) Corrected result

Figure 4.5: [4.5a] presenting taking part with lens flare and part, where could
be found similar pixels according to the algorithm using subtraction with me-
dian. Result [4.5b] of this algorithm. The last image [4.5c] presents correction of
illumination on result image. We used Equation 4.1 to correct illumination level.

We can see that green color is mostly removed, but there are still few
disturbances in the image. The most disturbing is the brightness of replaced
crop, which is caused by different position of cropped images in whole image
and which created, as we could see edges of tested part. We tried to correct
this with equation used in next section. The second disturbance are small
green color parts that were not removed after subtracting. This is problem
of wrong selection of median and because the colors in lens flare is not
distributed equally.

Technique using nearest neighbor rule We could saw, that algo-
rithm using median is not what we want, so we could try next possibility.
The second technique is based on nearest neighbor rule. We have got two
areas as we have as we have with median technique. The idea here is to find
nearest color value of the pixels in the second image and replace them. We
applied it in RGB and L*a*b* spaces. Results are shown in Figure 4.6.

As we can see on Figure 4.6, the results are not really good. Contrary
to what we expected, the results in L*a*b* color space were even worse
than in RGB color space. We get some strange looking area, which is not
what we were expecting. The problem here is L*a*b* space. Values which
are close in L*a*b* could be far apart in RGB space because of that fact
we get that strange looking area. L*a*b* space was not so helpful in this
section as we thought it would be. Because of these results we decided to use
this algorithm in RGB color space. Results are also better than in previous

33

(a) RGB (b) L*a*b*

Figure 4.6: Images presenting result of algorithm using nearest neighbor rule,
where found pixels are replaced.

section, where we subtracted median of difference.

4.2.2 Removing flare from image

In the previous section we picked two similar areas and compared pixels to
get the best value for replacing ”wrong” pixels. The main problem here is,
that human eye could be sometimes wrong when picking the right area to
compare. So we tried to find this area automatically.

First we selected a section of the image where similar object can be
found. Then we need to find a different area which is similar to the area
with lens flare. We will achieve this by comparing each possible area to
the area with flare. Lets define the difference of two areas as the sum of
euclidean distances of color values of corresponding pixels in these areas.
We are searching for the area which is most similar (least different) to the
flare area. As we can see below, the formula for difference of two areas can
be easily rewritten as difference of convolutions of these areas.

34

||hi,j − u(x + δx, y + δy)||2 =∑

δx,δy

(hi,j(i + δx, j + δy)− u(x + δx, y + δy))
2 =

∑

δx,δy

u(x + δx, y + δy)
2 +

∑

δx,δy

hi,j(i + δx, j + δy)
2

−2
∑

δx,δy

hi,j(i + δx, j + δy)u(x + δx, y + δy)

Where ||.|| is L2 norm, u is selected part of image and u(x, y) is center
pixel of that area, we are trying to replace and hi,j are parts of image,
where we are finding right part to replace. The first term is independent of
(i, j), the second is a simple square average filter that can be computed in
time linear respect to the number of pixels and the third can be computed
as convolution. The minimum in matrix of differences is the pixel we are
looking for. If f is a flare value, approximate constant in neighbor pixels could
be computed as ∇(u) = ∇(u + f). It will better show where the differences
are and it is better to count with. The last problem here remains different
exposure, which can be easily repaired by multiplying by a constant. The
way how to evaluate the correct value is to find the illumination difference
between pixels. We just took pixels from the edges of the image of flare and
the most suitable area, compute illumination of each one and compute the
difference. We look for an α in equation (4.1). This equation is just upper
row of compared areas. We also compared upper and lower row and most
right and most left columns to achieve better α.

∑
(α ∗ h(1, :)− u(i1 − 1, j1 : j2))

2 (4.1)

Where h(1, :) is the first row of part of the image with minimum value
from previous equation and u(i1 − 1, j1 : j2) is the first row of part of the
image what we picked with lens flare. We need to find minimum between
these two areas. Minimum of (4.1) can be computed using the derivation as
local minimum.

Alpha then will be

α =
∑ u(i1 − 1, j1 : j2) ∗ h(1, :)

h(1, :) ∗ h(1, :)

35

Where h is part of image to be replaced, u is part for replacing, u(i1 −
1, j1 : j2) is the first line of the area with flare and h(1, :) is the first line of
the similar area. Despite that this is what we want 4.7.

Figure 4.7: Replacing lens flare part of image with similar part multiplied with
alpha, which we need to compensate illumination difference between parts.

4.3 Summary

In this chapter we presented several algorithms for removal of lens flare. In
the first part we focused on removal of color casts and in the second part we
focused on removal of flare core in a specified rectangular area. We were able
to remove the color casts in first part. We implemented and compared two
different algorithms. The first one was based on median of difference between
areas, the second one was an algorithm based on the nearest neighbor rule.
The algorithm using the nearest neighbor rule showed the best results (4.6).
This could be used to remove color casts, loss of contrast errors and flare
core. We then tried to automatize the process of finding a similar area, using
the area with the minimal sum of euclidean distances between corresponding
pixels. Results showed that we are able to at least partially replace the area
covered by flare, but correction of illumination is also needed.

We implemented and tested our algorithms on specified rectangular ar-
eas, but we did not test on segmented flare from the previous chapter. Our
purpose was just to test if we are able to remove flare from a specified area
at which we were at least partially successful.

If we have segmented flare with a complex shape, we can cover it with
multiple rectangular areas and use our algorithms to remove the flare from
the image. This will be one of our ideas for future work.

36

Chapter 5

Work overview

5.1 Summary

In our work we tried to understand how lens flare is created, what are its
physical properties, when does it appear and finally whether it is possible to
remove it. We presented here our steps from taking images with lens flare,
trying to segment lens flare from these images and ultimately removing it.
This work started with searching literature and articles. Next step was
taking photos. Finally we took a collection of images, on which we tested
our algorithms. After taking images we proceeded to segmenting lens flare
from these images. We used several algorithms, which differ depending on
the type of the flare. We tried segmenting by the flare boundary, flare
color or flare brightness. Each algorithm had some good results, but it
was not always exactly what we wanted. Finally we found the graph cut
algorithm presented by Boykov and Kolmogorov [D.4], which was not so
fast as previous ones, but its results were much better. The final step was
to remove the flare from the image. Also here we tried different algorithms
depending on the flare type. We tried algorithms depending on color levels
of flare using the nearest neighbor rule or comparing colors within RGB
space. We also tried to find parts of image which are similar to the part
with flare and tried just copying it and results were satisfactory. Two of the
steps required the user to mark in segmentation flare and background areas
and in the removal step to pick the parts that are as close as possible to the
flare parts. Though it was difficult to pick a suitable area, the results we
achieved were good.

Our work was limited to removal of lens flare from rectangular areas. Also
a suitable area similar to the one affected by flare has to exists somewhere

37

in the image.

5.2 Future work

In follow-up work it may be possible to create application which will be able
to remove the flare without user interference. User picks one or two images
and result will be an image without the flare.

We believe we had made progress solving the problem of removing lens
flare from images. We were unable to remove flare from complex shapes,
but some of the tested algorithms can be further enhanced to make this
possible. We hope that this work will help in next research of lens flare and
developing algorithms for better segmentation and removal.

38

Bibliography

[1] Yuri Boykov and Vladimir Kolmogorov :An Experimental Com-
parison of Min-Cut/Max-Flow Algorithms for Energy Minimiza-
tion in Vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9):
1124-1137, 2004

[2] I. Sobel and G. Feldman :A 3x3 Isotropic Gradient Operator for
Image Processing, presented at a talk at the Stanford Artificial
Project in 1968, unpublished but often cited, orig. in Pattern
Classification and Scene Analysis, R. Duda and P. Hart, John
Wiley and Sons,’73, pp271-2

[3] N. Otsu :A threshold selection method from gray-level histograms
IEEE Trans. Systems, Man and Cybernetics, 9(1), p. 62-66, 1979

[4] J. A. Hartigan and M.A. Wong :Algorithm AS 136: A K-Means
Clustering Algorithm, Journal of the Royal Statistical Society,
Series C (Applied Statistics) 28 (1): p. 100–108, 1979

[5] Serge Beucher and Christian Lantuejoul. Use of watersheds in
contour detection. In Proceedings of the International Work-
shop on Image Processing, Real-Time Edge and Motion Detec-
tion/Estimation, 1979

[6] Fernand Meyer: Un algorithme optimal pour la ligne de partage
des eaux, Dans 8me congres de reconnaissance des formes et in-
telligence artificielle, Vol. 2, p. 847-857, Lyon, France, 1991

[7] L. R. Ford and D. R. Fulkerson :Maximal flow through a network,
Canadian Journal of Mathematics 8, p. 399–404, 1956

[8] E.-V. Talvala, A. Adams, M. Horowitz and M. Levoy :Veil-
ing Glare in High Dynamic Range Imaging, presented at SIG-
GRAPH 2007

39

Appendix A

Work accessories

A.1 Bayer filter

The majority of image sensor technologies are not capable of measuring color
by themselves. As such, additional components are required in order to
design cameras that can generate color images. Consider a camera that has
five megapixels. A common mistake is that you think it has a photosensor
with five millions of pixels. So that, it must have five millions micropixels
sensible on red, five millions on blue and five millions on green color. The
photosensor should have after that five multiple three is fifteen millions
micropixels. However, the reality is much more complex.

Five megapixels camera has five million pixels on sensor, but only black
and white, therefore unable to see a color. If sensor wants to see a color, there
is color mask in front of every sensor. This mask is known as Bayer filter
mosaic. A Bayer filter mosaic is a color filter array (CFA) for arranging RGB
color filters on a square grid of photosensors. Its particular arrangement of
color filters is used in most single-chip digital image sensors used in digital
cameras, camcorders, and scanners to create a color image. The filter pattern
is 50

Figure A.1: Bayer filter.

40

So in our example five megapixels camera has ”only” 1,25 millions red
pixels, 1,25 millions blue and 2,5 millions red pixels.

(a) r (b) g (c) b

Figure A.2: Bayer filter arrays.

When counting pixel color, the information from Bayer filter from 4
neighbor pixels is taken and so the RGB pixel is counted.

A.2 Segmentation

Segmentation is the process of partitioning a digital image into multiple seg-
ments (sets of pixels). The goal of segmentation is to simplify and/or change
the representation of an image into something that is more meaningful and
easier to analyze. Image segmentation is typically used to locate objects and
boundaries (lines, curves, etc.) in images. More precisely, image segmenta-
tion is the process of assigning a label to every pixel in an image such that
pixels with the same label share certain visual characteristics. The result
of image segmentation is a set of segments that collectively cover the entire
image, or a set of contours extracted from the image. Each of the pixels in
a region are similar with respect to some characteristic or computed prop-
erty, such as color, intensity, or texture. Adjacent regions are significantly
different with respect to the same characteristic(s). Some of the practical
applications of image segmentation are:

• Medical Imaging

41

• Locate objects in satellite images (roads, forests, etc.)

• Face recognition

• Machine vision, etc.

Several general-purpose algorithms and techniques have been developed
for image segmentation. Since there is no general solution to the image seg-
mentation problem, these techniques often have to be combined with domain
knowledge in order to effectively solve an image segmentation problem for
a problem domain. In our work we will need segmentation to get lens flare
form the picture. It will not be easy due to the fact, that the lens flare in
image is sometimes around very shiny object which we do not want to erase.

A.3 Edge detection

There are many methods for edge detection, but most of them can be
grouped into two categories, search-based and zero-crossing based. The
search-based methods detect edges by first computing a measure of edge
strength, usually a first-order derivative expression such as the gradient
magnitude, and then searching for local directional maximal of the gradient
magnitude using a computed estimate of the local orientation of the edge,
usually the gradient direction. The zero-crossing based methods search for
zero crossings in a second-order derivative expression computed from the
image in order to find edges, usually the zero-crossings of the Laplacian
or the zero-crossings of a non-linear differential expression, as will be de-
scribed in the section on differential edge detection following below. As a
pre-processing step to edge detection, a smoothing stage, typically Gaussian
smoothing, is almost always applied (see also noise reduction).

The edge detection methods mainly differ in the types of smoothing filters
that are applied and the way the measures of edge strength are computed.
As many edge detection methods rely on the computation of image gradients,
they also differ in the types of filters used for computing gradient estimates
in the x- and y-directions.

42

Appendix B

Image formats

Image file formats are standardized means of organizing and storing images.
For our research we need a format, which is uncompressed or lossless, which
contains lots of information about the image, about every pixel, because we
need to find as much differences as it is possible in two different images to
detect the lens flare. There are three most used file formats: RAW, TIFF
and JPEG.

RAW and TIFF image formats are best for our purpose. Their potential
and need in our work will be mentioned below. Also we are going to use
JPEG image file format, which we will use just to test and compare to the
TIFF format. All three formats belong to the group of raster formats, where
images are stored as bitmaps or pixmaps (a data structure representing
a generally rectangular grid of pixels, or points of color, viewable via a
monitor).

Below, there is a picture, how these three formats are mostly created in
cameras. RAW format is the least processed format, followed by TIFF and
JPEG, which is the most processed format, but the most compressed one.
According to amount of data, the biggest are with RAW, followed by TIFF
and as mentioned before, JPEG format is the most compressed on, from
these three, so it took just small amount of data compared to the other two
formats.

B.1 RAW

Raw files are so named because they are not yet processed and therefore
are not ready to be used with a bitmap graphics editor or printed. A raw

43

Figure B.1: RAW, TIFF and JPEG creation.

image file contains minimally processed data from the image sensor of either
a digital camera, image or motion picture film scanner. Nearly all digital
cameras can process the image from the sensor into a JPEG file using settings
for white balance, color saturation, contrast, and sharpness that are either
selected automatically or entered by the photographer before taking the
picture. Many graphic programs and image editors may not accept some or
all of them, and some older ones have been effectively orphaned already.

Raw format advantages against other formats are:

• Higher image quality. Because all the calculations are performed in one
step on the base data, the resultant pixel values will be more accurate
and exhibit less posterization.

• Bypassing of undesired steps in the camera’s processing, including
sharpening and noise reduction

• Raw formats are typically either uncompressed or use lossless compres-
sion, so the maximum amount of image detail is always kept within
the raw file.

• Raw conversion software allows users to manipulate more parameters
(such as lightness, white balance, hue, saturation, etc...) and do so
with greater variability. For example, the white point can be set to any
value, not just discrete preset values like ”daylight” or ”incandescent”.

44

• The contents of raw files include more information, and potentially
higher quality.

• Large transformations of the data. Raw data leave more scope for
both corrections and artistic manipulations.

There are few disadvantages with using RAW file format:

• The size of RAW images are much larger than similar JPEG files. In
the presence there are such big memory cards and they are cheaper
then it was in past, that we can practically remove this from disad-
vantages.

• Working with them is more time consuming since they may require
manually applying each conversion step.

• RAW files cannot be given to others immediately since they require
specific software to load them, therefore it may be necessary to first
convert them into JPEG or TIFF.

• RAW file format is not very standardized. Each camera has their own
proprietary RAW file format.

When we compare advantages and disadvantages of this file format, the
conclusion is, that RAW is not so suitable for common photographing or
family photographing, where the quality is not the main priority and you
need just immediate burn to CD. RAW file format is also not very appropri-
ate in the places (e.g. sport photos or press photos), where there are need
lots of photographs to be taken and where terrible work to show them is.
RAW files give the photographer far more control. It is also a great tool
for the photographs, which you really depend on. But with this comes the
trade-off of speed, storage space and ease of use.

B.2 TIFF

Raw image file format as it was mentioned above is good for storing data.
The main problem is that each camera has their own RAW file format. We
need to change to the format that is as flexible as RAW and can store the
same information. In presence the most used format is TIFF. TIFF is a
flexible, adaptable file format for handling images and data within a single
file, by including the header tags (size, definition, image-data arrangement,

45

applied image compression) defining the image’s geometry. The ability to
store image data in a lossless format makes a TIFF file a useful image archive,
because, unlike standard JPEG files, a TIFF file using lossless compression
(or none) may be edited and re-saved without losing image quality. Of course
this is not the case when using the TIFF as a container holding compressed
JPEG.

The advantages of this format are:

• container format and tags disposes high variability of possibilities and
usage

• variable color depth and variable color space

• alternative ways of storing data: without compression, compressed
with or without using lossless compression

• transparency including alpha channel fluent transparency

• support of storing EXIF

Disadvantages are:

• considerable problems with compatibility.

• large size of files when using no compression

• TIFF does not support animation

TIFF format was mostly used by digital cameras in the past because of
the storing image with maximal quality, but in change with big size of the
file. Today it is RAW format, which is smaller and from which can be TIFF
format easily transformed from. Advantage from JPEG is high quality, due
to the absence of compression, higher depth of color, transparency and more
layers in one file.

B.3 JPEG

As mentioned above, we will use JPEG file format just for testing and com-
parison to the other formats. JPEG is the most common used format, but
it has some disadvantages compared to the RAW and TIFF file formats.
JPEG (Joint Photographic Experts Group) files are (in most cases) a lossy

46

format; the DOS filename extension is JPG (other operating systems may
use JPEG). Nearly every digital camera can save images in the JPEG for-
mat, which supports 8 bits per color (red, green, blue) for a 24-bit total,
producing relatively small files. When not too great, the compression does
not noticeably detract from the image’s quality, but JPEG files suffer gen-
erational degradation when repeatedly edited and saved.

Format JPEG is very precious and the advantage from great decreasing
size of image file is enormous. Thanks to the variable option of compression
this format can be used almost everywhere. However it has some significant
limitations:

• Format JPEG does not support higher depth of color and always works
with ”just” 24 bits (8 bits/channel).

• JPEG does not support transparency. It cannot store image on the
transparent background

• It is not good for storing graphics (drawings, graphs, icons, screen-
shots, etc.). Compression decrease visage and readability.

• JPEG does not support animations.

• JPEG does not support lossless compression. It is always loss, but it
does not matter in use.

• JPEG does not support more layers.

• JPEG does not support vector graphics. The use is just for photogra-
phies.

• Frequent storing of JPEG degrade quality of photography.

We can provide most of the demands with just changing the level of
compression (change quality, remove disturbance etc.). Real limitation of
JPEG is just unsupported transparency, just 24 bits color depth and just
support storing only one layer.

47

Appendix C

Color spaces

A color model or space is an abstract mathematical model describing the
way colors can be represented as tuples of numbers, typically as three or
four values or color components (e.g. RGB and CMYK are color models).
However, a color model with no associated mapping function to an absolute
color space is a more or less arbitrary color system with no connection to
any globally-understood system of color interpretation. We are going to use
RGB and L*a*b* color space.

Figure C.1: Color spaces.

C.1 RGB

The RGB color model is an additive (it describes what kind of light needs to
be emitted to produce a given color.) color model in which red, green, and

48

blue light are added together in various ways to reproduce a broad array of
colors. Light is added together to create form from out of the darkness. An
RGB color space can be easily understood by thinking of it as ”all possible
colors” that can be made from those colorants. RGB is a convenient color
model for computer graphics because the human visual system works in a
way that is similar - though not quite identical - to an RGB color space.
The name of the model comes from the initials of the three additive primary
colors, red, green, and blue.

RGB is the most common used color space and almost all photos are
taken in RGB color space. Working with RGB and its colors (red, green
and blue) is much simpler then working with other colors, due to the fact
mentioned before, that human vision is similar to that. Common color spaces
based on the RGB model include sRGB and Adobe RGB. The photos used
in work are using sRGB color space, that is why we introduce a little bit of
RGB here, although everybody knows how does it work.

Figure C.2: RGB color space.

C.2 L*a*b*

L*a*b* is the most complete color space specified by the International
Commission on Illumination. It is a color-opponent space with dimension
L for lightness and a and b for the color-opponent dimensions, based on
nonlinearly-compressed XYZ color space coordinates. It describes all the
colors visible to the human eye and was created to serve as a device inde-
pendent model to be used as a reference.

49

Figure C.3: Lab color space.

Unlike the RGB and CMYK color models, Lab color is designed to ap-
proximate human vision. It aspires to perceptual uniformity, and its L
component closely matches human perception of lightness. It can thus be
used to make accurate color balance corrections by modifying output curves
in the ´a´ and ´b´ components, or to adjust the lightness contrast using
the L component. It can thus be used to make accurate color balance cor-
rections by modifying output curves in the ´a´ and ´b´ components, or to
adjust the lightness contrast using the L component. The three coordinates
of CIELAB represent the lightness of the color (L* = 0 yields black and L*
= 100 indicates diffuse white; specular white may be higher), its position
between red/magenta and green (a*, negative values indicate green while
positive values indicate magenta) and its position between yellow and blue
(b*, negative values indicate blue and positive values indicate yellow). The
possible range of a* and b* coordinates depends on the color space that
one is converting from (fe.when converting from sRGB, the a* coordinate
range is [-0.86, 0.98], and the b* coordinate range is [-1.07, 0.94]). Since
the L*a*b* model is a three-dimensional model, it can only be represented
properly in a three-dimensional space. Two-dimensional depictions are chro-
maticity diagrams: sections of the color solid with a fixed lightness. Because
the red/green and yellow/blue opponent channels are computed as differ-
ences of lightness transformations of (putative) cone responses, CIELAB is
a chromatic value color space. The nonlinear relations for L*, a*, and b*
are intended to mimic the nonlinear response of the eye. Furthermore, uni-
form changes of components in the L*a*b* color space aim to correspond
to uniform changes in perceived color, so the relative perceptual differences
between any two colors in L*a*b* can be approximated by treating each
color as a point in a three dimensional space (with three components: L*,
a*, b*) and taking the Euclidean distance between them.

There is also another space similar to the L*a*b*, but the conversion

50

from RGB is not simpler then from L*a*b*. We picked that system because
when we forget about L* part, we can easily work in a* and b*. It is better
to work in two-dimensional space and without dependency on lightness (e.g.
get distance of pixels in two pictures etc.). Plus lens flare is shiny object and
if we convert RGB picture to L*a*b*, it will be easier as mentioned before
to count difference between picture.

51

Appendix D

Code

This section contain parts of programming code we used in our work.

D.1 Creation of lens flare using simple pseu-

docode

Here is some pseudocode how to create it (http://www.blackpawn.com/
texts/lensflare/default.html). The main idea is to create concentric
circles, with different properties and add some artificial sun rays.

First step is to create some starting textures, which will be the base of
the lens flare. It is not that hard. Some simple geometry and image creation
theory is all we need. We just create some circles with colors you want to
have in lens flare.

Here are some examples of what you can create, with different types of
”color”:

(a) (1− r)2 (b) r (c) r6 (d) ring of
width 0.2
and radius R

Figure D.1: Lens flare rings

52

http://www.blackpawn.com/texts/lensflare/default.html
http://www.blackpawn.com/texts/lensflare/default.html

Algorithm 4 Pseudo code for creating lens flare

R = min(width,height)
2

for x = 1..width do
for y = 1..height do

dx = R− x
dy = R− y
r = R−

√
dx∗dx+dy∗dy

R

color(x,y) = some of r beyond
end for

end for

Algorithm 5 Creating (1− r)2 ring

c = 1− r
c = c ∗ c
if r > 1 then

c = 0
end if

Algorithm 6 Creating r ring
c = r
if r > 1 then

c = 0
end if

Algorithm 7 Creating r6 ring
c = r ∗ r
c = c ∗ c
if r > 1 then

c = 0
end if

Algorithm 8 Creating ring of width 0.2 and radius R

c = 1− abs(r−0.9)
0.1

if c < 0 then
c = 0

end if
c = c ∗ c
c = c ∗ c

Then we need just one more texture, and this is the main source of lens

53

flare. For the last texture, what we want is a bunch of light rays emanating
from the center of the object that is causing lens flare.

Algorithm 9 Creating textures of particals

// create temporary buffer to accumulate pixel values
// initialize buffer values to 0
for each particle
// (pick a random direction)

angle = (rand()
RANDMAX

) ∗ 2 ∗ π
dx = cos(angle)
dy = sin(angle)
// (push particle along this path)
fx = width

2

fy = height
2

for each step
DrawParticle(buffer, fx, fy)
fx+ = dx
fy+ = dy
// normalize values of buffer and move to texture
function DrawParticle(buffer, fx, fy)
for y = -partRadius..partRadius do

for x = -partRadius..partRadius do
r2 = x ∗ x + y ∗ y
c = 1− r2

(partRadius∗partRadius)

c = c ∗ c
c = c ∗ c
buffer(x + fx, y + fy)+ = c

end for
end for

Figure D.2: Particals texture imitating rays of light.

54

D.2 Otsu algorithm

Otsu algorithm is well known algorithm used to automatically perform im-
age thresholding based on image histogram. Algorithm assumes that image
contains two classes of pixels and then calculates the optimum threshold
separating these two classes.

Within class variance: σ2
ω = ω1(t)σ

2
1(t) + ω2(t)σ

2
2(t)

Weights ωi are the probabilities of the two classes separated by a thresh-
old t and σ2

i variances of these classes. It shows that minimizing the intra-
class variance is the same as maximizing inter-class variance:

Between class variance: σ2
b = σ2 − σ2

ω = ω1(t)ω2(t)[µ1(t)− µ2(t)]
2

which is expressed in terms of class probabilities ωi and class means
µi which in turn can be updated iteratively. This idea yields an effective
algorithm.

Otsu algorithm:

1. Compute histogram [histData] and probabilities of each intensity level

2. Set up initial ωi(0) and µi(0)

3. Step through all possible thresholds sum = t ∗ histData[t]

4. Step through all possible thresholds t = 1..maximumintensity

(a) Update

ω1+ = histData[t]; (D.1)

ω2 = pixels− ω1; (D.2)

(b) Update

sum1+ = t ∗ histData[t]; (D.3)

µ1 = sum1/ω1; (D.4)

µ2 = (sum− sum1)/ω2; (D.5)

(c) Compute σ2
b (t)

5. Desired threshold corresponds to the maximum σ2
b (t)

55

D.3 Sobel operator

The well-known Sobel operator [2] is the operator, which uses two 3 × 3
kernels which are convolved with the original image to calculate the approx-
imations of derivatives - one for horizontal changes, and one for vertical.
If we define L as the source image, and Lx and Ly are two images which
at each point contain the horizontal and vertical derivative approximations,
the computations are as follows:

Lx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ L and Ly =

+1 +2 +1
0 0 0
−1 −2 −1

 ∗ L

Given such estimates of first order derivatives, the gradient magnitude
is then computed as:

|∇L| =
√

L2
x + L2

y

while the gradient orientation can be estimated as

θ = arctan(
Lx

Ly

)

In simple terms, the operator calculates the gradient of the image inten-
sity at each point, giving the direction of the largest possible increase from
light to dark and the rate of change in that direction. The result therefore
shows how ”smoothly” the image changes at that point, and therefore how
likely it is that that part of the image represents an edge, as well as how that
edge is likely to be oriented. In practice, the magnitude (likelihood of an
edge) calculation is more reliable and easier to interpret than the direction
calculation.

D.4 Segmentation using graph cut algorithm

Graph cut algorithm (http://vision.csd.uwo.ca/code/) consists of the
following three steps:

56

http://vision.csd.uwo.ca/code/

Making adjacency list Adjacency list is the representation of all edges
in a graph as a list. This list is next used as neighbor array in graph
construction.

/****** Making Adjacency List ******/

// 4-neighborhood

int Up = (i>0) ? (int) L[j*Rows + (i-1)]:thisLabel;

int Down = (i<(Rows-1)) ? (int) L[j*Rows + (i+1)]:thisLabel;

int Left = (j>0) ? (int) L[(j-1)*Rows + i]:thisLabel;

int Right = (j<(Cols-1)) ? (int) L[(j+1)*Rows + i]:thisLabel;

set<int>::iterator pIter, qIter;

for(pIter=surround.begin();pIter!=surround.end();pIter++)

for(qIter=surround.begin();qIter!=surround.end();qIter++)

{

neighbors[*pIter].insert(*qIter);

}

Here we create an array of neighbors for each region, not just labeled
ones.

Graph construction At first we need to set edges weights between neigh-
bors. The weight starts from the minimum distance between areas. Between
labeled areas (foreground and background independently from each other)
there is a big number.

/****** Making Terminal Edge Weights ******/

for(i=0;i<numLabels;i++)

{

if(findValVec(FLabels,i))

{

ForeEdges.push_back(K); BackEdges.push_back(0);

}

else if(findValVec(BLabels,i))

{

ForeEdges.push_back(0); BackEdges.push_back(K);

}

else

{

double minFD = minVecD(FCClusters, MeanColors[i]);

double minBD = minVecD(BCClusters, MeanColors[i]);

57

ForeEdges.push_back((minBD/(minFD+minBD)));

BackEdges.push_back((minFD/(minFD+minBD)));

}

}

findValVec - whether a given integer is present in a vector of integers
minVecD - given a 3-vector, this function finds its closest 3-vector from
among a vector of 3-vectors in the Euclidean distance norm

And making of the graph

/******* Start making the graph **************/

// Add Nodes

for(i=0;i<numLabels;i++)

nodes[i] = G -> add_node();

// Setting Terminal Edge Weights

for(i=0;i<numLabels;i++)

G -> set_tweights(nodes[i], ForeEdges[i], BackEdges[i]);

// Setting Neighboring Edge Weights

for(i=0;i<numLabels;i++)

for(pIter=neighbors[i].begin();pIter!=neighbors[i].end();pIter++)

{

int tmpN = *pIter;

double Energ=1/(1+diffVec(MeanColors[i],MeanColors[tmpN]));

G->add_edge(nodes[i],nodes[tmpN],LAMBDA*Energ,LAMBDA*Energ);

}

diffVec - this function returns Euclidean distance between two 3-vectors

G is constructed graph, Energ is and energy function used for image
segmentation and LAMBDA specifies a relative importance of the region
properties terms.

Segmentation image

Graph::flowtype flow = G -> maxflow();

for(i=0;i<numRows;i++)

for(j=0;j<numCols;j++)

58

{

int thisLabel = (int) L[j*numRows + i];

if(thisLabel>=0) // If not Boundary pixel

{

// Do the classification...

if (G->what_segment(nodes[thisLabel]) == Graph::SOURCE)

SegImage[j*numRows + i] = 1.0;

else

SegImage[j*numRows + i] = 0.0;

}

else

// Label the boundary pixels as background

SegImage[j*numRows + i] = 0.0;

}

For more see related document [1].

59

	Introduction
	Motivation
	Related work
	Contributions
	Structure of the text

	Lens flare
	Physical model of lens flare
	Manual creating lens flare
	Manual lens flare removal

	Semi-automatic segmentation of lens flare
	Taking images
	Image preprocessing
	Semi-automatic segmentation
	Boundary detection based on gradient
	Segmentation by intensity thresholding
	Color segmentation
	Predefined colors
	User specified color areas
	User specified lens flare area

	Summary

	Removing lens flare
	Analyzing lens flare using two images
	Removing lens flare from image
	Removing surroundings of flare
	Removing flare from image

	Summary

	Work overview
	Summary
	Future work

	Bibliography
	Work accessories
	Bayer filter
	Segmentation
	Edge detection

	Image formats
	RAW
	TIFF
	JPEG

	Color spaces
	RGB
	L*a*b*

	Code
	Creation of lens flare using simple pseudocode
	Otsu algorithm
	Sobel operator
	Segmentation using graph cut algorithm

