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Chapter 1

Introduction

The idea of using computers for mathematical computations arises when long and
complicated calculations should be done. Using computers as tools for solving
mathematical problems is not a new conception. In fact, this was the primary
reason for constructing computers in the past. This intention is often forgotten
in the times of computer games, chats, social networks etc.

There are many mathematical problems and also numerous methods for solv-
ing them by computers. Every particular part of Mathematics has its own soft-
ware tools that are often depended on each other. Numerical mathematics is
probably the most frequently used branch of mathematics in the computer world.
Numerical methods provide a wide background for many other fields of mathe-
matics. Methods that are based on iterations and approximations frequently have
a polynomial complexity and the precision of results is adjustable.

However, there are two sides to each coin. Approximate results are not always
acceptable. Also cooperation of the methods is necessary to solve difficult prob-
lems, but partial outcomes can become too long and complicated for following
computations. These difficulties are solved by symbolic manipulations. Knowl-
edge of mathematical expression structures and modification of the structures can
sometimes simplify problems and it can also help in finding to a way to the exact
results. Very good performance is achieved by software that uses the symbolic
manipulations as the first automatic step of computation.

It is evident that correct, quick and clever symbolic manipulations are the
fundamentals for powerful mathematical software. I have implemented basics
of a symbolic manipulation library for my academic year project. This project
is ensued and extended by this bachelor thesis. The library has been written
in C++ and named sympy–cpp. The name was chosen by Sympy [1] (other
symbolic manipulation package), because the easy and efficient scheme of this
package has been an inspiration for the design of sympy–cpp.

The contents of the chapters are introduced in the following part:

2 Symbolic manipulation
This chapter provides an introduction to symbolic manipulation. The main
goal is to describe basic capabilities and utilities of symbolic manipula-
tion packages and specifically a subset of them that has been implemented
in sympy–cpp. The second part of the section contains discussion about
technical realization of the symbolic manipulation packages.

6



CHAPTER 1. INTRODUCTION 7

3 Usage of sympy–cpp
This chapter contains a quick and easy user’s guide and some instructions
about the compilation and installation of the library. The chapter also
includes some examples of using sympy–cpp.

4 Inside sympy–cpp
This chapter concentrates on inner principles operating within the library.
The chapter is not a summary of all classes, functions and structures, but
it contains a detailed description of the important classes, their mutual
relations, used algorithms and reasons for their usage.

5 What is next
This section contains a discussion about plans of future development of
sympy–cpp. Also, elements that are missing in the library or should be
done better are outlined.

6 Summary
The goal of the chapter is the presentation of sympy–cpp as a working
symbolic library. The chapter contains performed demonstration of the
library’s performance and comparison with the other packages.



Chapter 2

Symbolic manipulation

Symbolic manipulations are modifications within structures of mathematical ex-
pressions. Replacing and reordering of expressions belong among the transfor-
mations that are used to change expressions or subexpressions from one form to
another. Sequences of the transformations create symbolic manipulations.

2.1 Capabilities of symbolic manipulation

packages

The symbolic manipulation packages keep hold of a set of symbolic manipulations.
This set defines capabilities and performance of this package. The abilities can
be distributed into three groups.

The first group is created from fundamental automatic actions of the symbolic
system. These actions should be embedded in a core of every system. For ex-
ample, there are automatic simplifications, arithmetic operations and operations
with long or rational numbers.

The second group contains important functionality which does not work au-
tomatically. Substitutions, differentiation, integration, factorization, progressive
simplification, etc are located here.

Finally, the last group will be the biggest division, as it contains facilities
for anything. There are special mathematical tools for particular problems, some
transformation tools for neat printing of math and so on. Many of these functions
are not symbolic manipulations anymore.

Sympy–cpp is the mini library which covers the first group of fundamental
functions and a part of the second group. Sympy–cpp has implemented automatic
simplification of expressions, substitution, expansion, differentiation, Taylor series
and arithmetic is solved by an external library. The description and disquisition
of fundamental functions abilities and additional functions follows.

2.2 Automatic fundamental functionality

The automatic abilities are essential components of each symbolic package. They
work after and during the process of computation. Their implementation is nec-
essary and should be fast.

8



CHAPTER 2. SYMBOLIC MANIPULATION 9

2.2.1 Automatic simplification

The automatic simplification is the transformation of mathematical expressions
by any rules to simpler forms. The selection of utilized rules is very impor-
tant. The rules have to ensure adequate simplification and they should be simple
enough for easy and fast implementation.

1. Addition and subtraction of identical subexpressions or their multiples.

2 + x + Sin(x) + Sin(x) − 3 − 5x ≈ −1 − 4x + 2Sin(x)

2. Multiplication and division of identical subexpressions or their powers.

2x3(−x) + (y+3)z(3+y)w

z3 ≈ −6x2 + (3+y)1+w

z2

3. Evaluation function in opportune cases.

2 + Cos(Sin(0)) ≈ 3

4. Elimination of zero and expressions equal to zero.

3 − x − 3 + (x + z)(23 + y)Sin(0) ≈ −x

5. Simplification of powers.

x5−x−3+x + (x2 + 2)x/x + 2 + (3x)0 ≈ 5 + 2x2

6. Addition of exponents of powers that have the same bases.

x4+a(−y3)xby−2 ≈ x4+a+b(−y)

7. Multiplication of exponents in power of power.

(x3)c + ((y + 2)2)
b+1

≈ x3c + (2 + y)2(1+b)

Enumeration of simplifying transformations is not complete. Expansion, factor-
ization or any other modifications can achieve a better simplifying effect, but
worse results are also possible. Automatic simplification is always applied and
a possibility to switch off or hand manage this process does not exist. Such com-
plex manipulations are not suitable for automatic simplification. All unapplied
simplification methods should be available in the extension of the fundamental
functions.

2.2.2 Arithmetic and numbers

Numbers and arithmetic are inherent ingredients of all mathematical software
and such also symbolic manipulation software.

Execution of arithmetic is included in simplification and therefore it needs to
be really fast. Representation of numbers by computers should be as close to the
exact mathematical numbers as possible. Long numbers, real numbers, rational
numbers and integers have to be designed for fast and precise computation. Also,
they have to be compatible with each other.

Satisfaction of these requirements needs some sophisticated techniques. This
dilemma of arithmetic is relevant for all symbolic packages. Some of the packages
utilize benefits from the language of its implementation. On the other hand,
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using these benefits often appears to be problematic, as these features are often
too general and therefore they do not have satisfactory performance.

For small projects like sympy–cpp it is customary to use an external library
for fast arithmetic.

2.3 Next functionality

Functions in this section are also important but not necessary for operation of
the symbolic packages. They increase power and usability of the systems.

2.3.1 Substitution

Substitution replaces an expression by another expression. Combination of au-
tomatic simplification and substitution is a really strong instrument. The idea
of substitution is general and thus there are more types of substitution.

1. A variable replaced by a number.

2. A variable replaced by a variable.

3. A variable replaced by an expression.

4. An expression replaced by a variable.

5. An expression replaced by an expression.

Each of these types of substitution has different capabilities and limitations. The
first substitution is plain and safe. An increase in substitution abilities implies
also an increase in hazardous usage. The construction of infinite recursion is en-
abled by simple substitution x by −x into 1 + x that creates infinite expressions
series 1−x, 1+x, 1−x, . . . where this substitution is repeatedly acceptable. Cases
of such elementary recursions are easily detectable and fixable, but there are com-
plex expressions and substitution which can invoke massive cyclic modification
that are hardly detectable.

2.3.2 Expression expansion

This symbolic manipulation modifies multiplication of summation to summation
of multiplication. The expression expansion can simplify or complicate expres-
sions. For example:

1. (x(y − 1
x
) + y − y(x− 1

y
) − x)(−x − y)(−1) ≈ y2 − x2

2. (x+y)2(3+x5)(yx +xy) ≈ 3x2+y +x7+y +3y2+x +6xy1+x +3x2yx +x7yx +
3xyy2 + 6x1+yy + 2x6+yy + x5y2+x + 2x6y1+x + x5+yy2

It is evident, where the expansion is simplifying and where not from these ex-
amples. But it is not always so clear. Consequently, the expansion is available
as a user’s choice.

Expressions frequently contain powers, that have a sum in the base and an
integer in the exponent, in which case it is possible to make the expansion by
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binomial theorem [B.1] or multinomial theorem [B.2]. Such improvements of com-
putation are strongly depended on implementation of arithmetic and numbers.
Already an expression as simple as (3 + a + b)100 needs arithmetic that operates
with numbers that have more than a hundred digits.

2.3.3 Differentiation

Differentiation is a basic element of mathematical analysis and it is widespread
tool used in many fields of mathematics and physics. The definition using limita-
tion is not practical for symbolic systems. A better way is to use an established
conversion table for basic mathematical functions and differentiations of compos-
ite functions are calculated by few simple rules.

1. (f + g)′ = f ′ + g′

2. (fg)′ = f ′g + fg′

3. ( 1
f
)′ = −f ′

f2

4. (f ◦ g)′ = (f ′ ◦ g)g′

2.3.4 Taylor series

One of the most commonly used techniques is a approximation of a function as
a power series that contains derivatives of this functions. Taylor series of the
function f(x) in the point a is equal to sum

∞∑

k=0

f (k)(a)

k!
(x − a)k.

2.3.5 Integration

Integration is more difficult than differentiation, mainly regard to symbolic ma-
nipulation. There are more rules and integration is not as straightforward as
differentiation.

2.3.6 Factorization

Factorization should be a reverse function to the expansion. But factorization
often does not have a direct way to find an exact final form. One of the problems
is to find roots of polynomials with grade greater than 3.

2.3.7 Progressive simplification

Progressive simplification is a combination of expansion, factorization and some
tricks. Analysis of actions and quick deduction of complex manipulation plays a
significant role in progressive simplification.
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The list of basic functionality of the symbolic systems can be longer or the
systems can implement only a part of the mentioned abilities. The primary re-
quirement is that they should be clever, safe and fast implementations of selected
features. Sympy–cpp does not implement progressive simplification, integration
and factorization.

2.4 Technical realization of the symbolic

manipulation systems

Numerous symbolic manipulation packages provide an impressive GUI and some
programming tools. The offer of symbolic products is extensive. Commercial soft-
ware (Maple, Mathematica, Matlab, Reduce, Mupad,. . . ) and also free software
(Maxima, Sympy, Sage, yacas, GiNaC, Giac,. . . ) is available.

Users with little skills in programming can choose almost anything, but real
programmers have particular demands that need to be satisfied.

Specially commercial products utilize their own programming language. This
approach faces several problems. The first problem is the necessity of learning
a new language, which is probably the smallest problem. The other defects are the
absence of programming tools and the main restriction of this design is the fact
that scripts/programs can run only on a computer where this particular symbolic
software is installed. All this is too restrictive for standard programming.

Free symbolic manipulation packages are frequently created in languages1 with
strong background for symbolic manipulations and these languages are also pro-
vided as programming tools for users. However, small user base, relatively slow
computation or a combination of both drawbacks do not make such packages the
best alternative.

Of course, there are packages for programmers who need a fast and useful so-
lution that is compatible and combinable with modern programming languages.
Giac and GiNaC are representatives of C/C++ symbolic libraries and also Maple-
soft provides C/C++ library in conjunction with program Maple. Unfortunately,
the license of this library permits performing programs, that use this library, only
on systems with Maple installed.

The background of C++ language is not ideal for implementation of symbolic
manipulation package, but it is still feasible. The complexity of symbolic manip-
ulation in C++ was shown in GiNac, which is impressive but unfortunately too
complicated.

This project attempts to achieve an easy implementation and really smart
and effective functionality of symbolic manipulation in C++. The second aim is
to achieve sufficient speed of computation.

1most frequented are Prolog, Python and many dialects of Lisp



Chapter 3

Usage of sympy–cpp

The usage and installation of sympy–cpp is relatively simple. Some non-standard
knowledge for usual users should be assumed. But the focus group of this project
consists of programmers and people close to programming and computers. This
focus group can easily obtain the required knowledge or they usually already have
the information.

3.1 Installation

The installation consists of compilation of the source codes and the placement of
the built library in a filesystem. Although the locations of libraries in diverse sys-
tems have usually standard positions, users can prefer different locations. There-
fore the location of the created library and its header files is in the subfolder
sympy-cpp-lib of the main folder with sympy–cpp source codes. After building of
the library the users can copy the files wherever they need it.

3.1.1 Requirements

The library codes are not dependent on sources of any operating system. The
only requirement is the GNU MP library for multiple precision arithmetic. It is
a widespread library that can be installed on many systems. It is often a part of
the software that is added to standard instalations of systems. If an operating
system does not have additional software packages system or the system exists
but it does not contain GMP, the library can be compiled from the source codes.
More information about obtaining and installation of GMP can be found in [6]
and [5].

3.1.2 Makefile

If the program make1 is available then the library can be created by appended
configuration file – makefile. The makefile is located in the folder with source
codes of sympy–cpp. If the path to the GMP headers is not /usr/local/include/
or the path to the GMP library is not /usr/local/lib/, the definitions of these paths
need to be changed in the makefile. Library sympy–cpp can be constructed as
a static library by make static-lib or a dynamic library by make shared-lib.

1It is a utility that builds executable programs and libraries from source codes automatically.

13



CHAPTER 3. USAGE OF SYMPY–CPP 14

If an operating system does not have the program make, there is also the
possibility of a common compilation of the source codes and linking of the GNU
MP by a C++ compiler and linker.

The makefile also provides more possibilities for development and testing. The
information about these features is located directly in the makefile.

3.1.3 License

The source codes of library sympy–cpp and the appended testing framework are
under the terms of the New BSD License and GNU MP library is under Lesser
General Public License version 3. Both licenses are placed in the folder with
relevant source codes.

3.2 Quick and easy user’s guide

There are various possibilities about how to use sympy–cpp in other source codes.
The first way is the standard installation [Section 3.1]. In this case it is necessary
to include sympy-cpp.h in user’s codes and also the linkage of the program with
sympy–cpp and GNU MP has to be configured.

The second possibility is the common compilation of sympy–cpp source codes
and codes that use sympy–cpp. The requirement of GMP library is still in effect
and the library has to be integrated into the compilation. This manner of usage
is possible but it is not recommended. User’s codes have to use header file Expr.h
for basic work with the expressions. If new definitions of mathematical functions
[Section 3.2.3] are required then files Ex.h and Fx.h need to be included too.
Header file functions.h enables the mathematical functions that are implemented
in sympy–cpp. This approach is complicated and it does not have any advantages.
The first way is recommended.

The functionality of the library belongs to namespace sympycpp and therefore
it is necessary to specify utilized elements of sympy–cpp by this namespace.

3.2.1 Basics

Class Expr represents mathematical expressions. Working with Expr is very
intuitive and simple.

Expr a("a");

Expr b("b");

Expr c(31);

Expr d(2.756);

Expr e(1,"2345843908598538589589684096/23568348753753495839");

Expr f(2*a-b+Sin(a));

Figure 3.1: Construction of expressions by Expr’s constructors.

Expr provides some constructors for the construction of expressions. There
are simple constructors of variables, numbers and a copy constructor. All these
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constructors are demonstrated on examples in [Figure 3.1]. Variables can be con-
structed by std::string and char* that specify names of constructed math-
ematical variables. Numbers are represented by Expr when its constructors are
initialized by int and double. The construction of long rational numbers is
provided by a constructor that has two parameters. The second parameter is
the long number in text form and the first parameter is an int value that makes
this constructor incompatible with the constructor of variables.

A very frequent method of construction is the copy constructor. More specif-
ically, it is its application on combinations of mathematical operations, functions
and other expressions. The provided operations are unary (+,−) and binary
(+,−, ∗, /, )̂. Operator ˆ expresses an exponentiation, but the priority of this
operator is in C++ lower than in usual mathematics. Therefore it is better
to use a lot of parentheses around the expressions or have the operator ˆ replaced
by function Power [Figure 3.2].

Expr g(a*((2+a)^(3*b)));

Expr h(a*Power(2+a,3*b));

Figure 3.2: Equivalent representations of the expression a(2 + a)3b.

The group of implemented mathematical functions that can be used in con-
struction of expressions is small but still expandable [Section 3.2.3].

Implemented also is an operator =. The construction of expressions by this
operator is possible, but the copy constructor is faster. The operator should be
used to assign any expressions into the already existing Expr objects [Figure 3.3].

Function str transforms stored expressions into std::string and thus pre-
sentations of stored information in Expr are performed by this function [Figure3.3].

Expr a("a"), b("b"), c("c"), g("g");

g = 2*a + c*Sin(pi/2) - a*b*(c-1);

std::cout << g.str() << std::endl;

g = 3*a/2 - Power(Ln(a), 2);

std::cout << g.str() << std::endl;

Figure 3.3: Assignment and printing of expressions.

3.2.2 Services

The main task of the library is the automatic simplification of expressions. This
action is in operation during each construction and modification of expressions.
It is not possible to switch off this simplification or implement it manually.

All other tasks are controlled by users. These are substitution, expansion,
differentiation and Taylor series.

The substitution [Figure 3.4] implemented in sympy–cpp is a powerful sym-
bolic manipulation. It manages actions ranging from simple substitution of vari-
ables to complex recursive replacing of expressions.

The substitution is performed by member function sub(const Expr & exp1,

const Expr & exp2), where the first parameter exp1 is a replaced subexpression
and the second exp2 is a replacing expression. But a dangerous manipulation can
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Expr x("x"), y("y"), z("z");

Expr a(x+y+z);

a.sub(x, y);

// x + y + z −→ 2y + z
Expr a(3*x+2*z-z*x+y/(y^x));

a.sub(x, 1);

// 3x + 2z − zx + y/yx −→ 4 + z
Expr a(4*x*(x+y)*z);

a.sub(-2*x, y);

// 4xz(x + y) −→ −y2z
Expr a(4*(Cos(x-y)+(Sin(y-x)*(x-y)+z)*(y-x+z));

a.sub(x-y, pi/2);

// 4(cos(x − y) + ((sin(y − x)(x − y) + z)(y − x + z))) −→ 4(z − π/2)2

Expr a(sin(1-(Power(x,-y)*((x+y)/z));

a.sub((x+y)/z, x^y);

// sin(1 − x−y ∗ (x+y
z

)) −→ 0

Figure 3.4: Examples of substitutions.

be created by the recursive simplification and substitution operating together.
Sympy–cpp does not make any check of repeated cyclic substitution [Figure 3.5].
Prevention of these infinite loops is the responsibility of users. The simplest way
of doing this is to use different variables in the replacing and replaced expressions.

Expr x("x"), e(2+x);

e.sub(3+x, x); // 2 + x −→ −1 + x −→ −4 + x −→ . . .

Figure 3.5: Infinite recursive substitution.

Member function expansion(const int level = -1) expresses mutliplica-
tion of sums as summation of multiplication. This process is applied to a whole
expanded expression if this level is negative. In other cases, expressions are
expanded by levels. The level means a group of multiplications that belong
to the same count of multiplications [Figure 3.6]. The number of the expanded
levels is specified by parameter level [Figure 3.7].

x(2 +

second level
︷ ︸︸ ︷

y(a + b(2 + x)
︸ ︷︷ ︸

third level

)(a − b))

︸ ︷︷ ︸

first level

+ (x + sin(cos(x

second level
︷ ︸︸ ︷

2(a − x))))2(

second level
︷ ︸︸ ︷

2(a(b + c)
︸ ︷︷ ︸

third level

+x))

︸ ︷︷ ︸

first level

Figure 3.6: Levels of the expansion.

Differentiation of mathematical expressions has also a very simple usage [Fig-
ure 3.8]. Function diff(const Expr & var) makes differentiation with respect
to var that has to be a variable2.

2expression constructed by Expr(const std::string) or Expr(const char *)
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Expr a("a"), b("b"), c("c"), d("d");

Expr e(a*(1-Power(b-c, 3*(a-d))+d*(2+a+3*(b-c))));

// −→ a(1 − (b − c)3(a−d) + d(2 + a + 3(b − c)))
Expr e1(e), e2(e), e3(e);

e1.expansion(1);// −→ a − a(b − c)3(a−d) + ad(2 + a + 3(b − c))
e2.expansion(2);// −→ a + 2ad + a2d + 3ad(b − c) − a(b − c)3a−3d

e3.expansion(3);// −→ a + 2ad + 3abd − 3acd + a2d − a(b − c)3a−3d

e.expansion();// −→ a + 2ad + 3abd − 3acd + a2d − a(b − c)3a−3d

Figure 3.7: Examples of the expansion.

Expr a("a"), b("b"), c("c"), x("x");

Expr e(a*Sin(x/2)/x-(x^3)*(x-10));

e.diff(x);

//(a
x
sin(x

2
) − x3(x − 10))′ == −x3 + 3x2(10 − x) + a

2x
cos(x

2
) − a

x2 sin(x
2
)

e = Power((x+y),(2*x+3))*2*x;

e.diff(x);

//(2x(x + y)3+2x)′ == 2((x + y)3+2x + x(x + y)3+2x(2ln(x + y) + (3+2x)
x+y

))
e = 2*x*x*y*Ln(x)+(a^x);

e.diff(x);

//(ax + 2x2yln(x))′ == axln(a) + 2(xy + 2xyln(x))

Figure 3.8: Examples of differentiation.

The last examined task of the sympy–cpp library is the Taylor series [Defini-
tion B.3]. The Taylor series is obtained as the return value of special member func-
tion taylorSeries(const Expr & exp1, const Expr & exp2, const int n).
Expressions that produce the Taylor series stay unmodified, this function may be
therefore invoked by constant expressions.

Expr x("x");

e1 = Sin(x).taylorSeries(x, 0, 10));

//x − x3

6
+ x5

120
− x7

5040
+ x9

362880

e2 = Ln(1-x).taylorSeries(x, 0, 5));

// − x − x2

2
− x3

3
− x4

4
− x5

5

e3 = (Power(x, 3)*Cos(x)/(1-x)).taylorSeries(x, 0, 8));

//x3 + x4 + x5

2
+ x6

2
+ 13x7

24
+ 13x8

24

Figure 3.9: Examples of Taylor series.

3.2.3 Mathematical functions

The sympy–cpp library includes a few mathematical functionsl, namely sinus,
cosinus, tangent, cotangent and natural logarithm, which are applicable by func-
tions Sin, Cos, Tg, Cotg, Ln [Figure 3.10].
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Expr x("x"), y("y");

Expr e(Sin(x)+Cos(x));

e.diff(x);

Expr f(Ln(Cotg(x*y)-Tg(x));

f.sub(2+y, x);

Figure 3.10: Usage of predefined mathematical functions.

Fortunately, the deficient count of the functions is solved by user defined
functions. There are two ways of doing this. Both methods require better under-
standing of sympy–cpp inner principles and the new mathematical functions are
wrapped up by C++ functions that will carry out simplification.

The first concept [Figure 3.11] is very simple, it can be used with only a lit-
tle information about the inner principles, but it has too restrictive properties.
The construction is made by class Fx that has a few constructors [Section 4.1.7].
As can be seen in the example [Figure 3.11] of the Fx constructor, the first pa-
rameter is an argument of the constructed mathematical function and the second
is the name of this function.

#include "sympy-cpp.h"

using namespace sympycpp;

Expr mySinus(const Expr & argument) {

Fx function(argument, "Sinus");

Expr expression(&function);

return expression;

}

int main() {

Expr x("x"), y("y");

Expr e(2 + 4*x*mySinus(x+y) - x*mySinus((x+2*y-y)));

e.diff(x);

e.sub(y, x);

}

Figure 3.11: Example of user defined function by predefined class Fx.

In this case, the absence of exact differentiation is a problem. Differentiation
is available only as iconic manipulation. The expression

2 + 3xSinus(x + y)

from the example [Figure 3.11], which uses added function mySinus, has differ-
entiation

3(Sinus(x + y) + xSinus′(x + y)).

Taylor series of such added functions, that do not have the exact differentiation
implemented are pointless. The other functionality works fine. Such adding of
mathematical functions is sufficient, if exact differentiation and Taylor series will
not be required.
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The second concept [Figure 3.12] of adding the mathematical functions is
based on deriving new classes from class Fx. The classes derived from Fx have
to reimplement constructor Fx(const Expr &) and three functions: an exact
differentiation as virtual Ex * diff(const Sym &), an allocation of identi-
cal objects as virtual Ex * copy()const and a special construct function as
virtual Ex * create(Ex * arg, const allocationPolicy)const. The last
reimplemented function create creates new expressions from the first parameter
by the particular wrapper construct function.

The wrapper functions present mathematical functions in users’ source codes.
These wrappers can carry out special simplification. The main feature of this
simplification is the replacement of the mathematical functions by other, simpler
expressions, if it is possible.

Expr Sinus(const Expr &);

class MySinus: public Fx {

public:

MySinus(const Expr & e) : Fx(e, "Sinus") {}

virtual Ex * diff(const Sym & x) const {

Expr e1(Cos(x));

Expr e2(e_->diff(x), STEALING);

Expr e3(e1*e2);

return e3.innerCopy();

}

virtual Ex * copy() const {

return new MySinus(e_);

}

virtual Ex * create(Ex * arg, const allocationPolicy X) const {

Ex * f = Sinus(arg).innerCopy();

delete arg;

arg = 0;

return f;

}

};

Expr Sinus(const Expr & e) {

if (e.str() == "0") {

return Expr(int(0));

}

Ex * args = new MySinus(e);

return Expr(args, 1);

}

Figure 3.12: Example of user defined function by own class.

Programming of new mathematical functions only with possibilities of class
Expr is awkward. The usage of inner sypmy-cpp methods makes the work more
comfortable and efficient. The inclusion of the header file sympy-cpp-develop.h
instead of sympy-cpp.h grants access to the whole inner functionality. Sufficient
information about the inner part of sympy–cpp will be found in chapter 4, which
should be read carefully before using any of the inner properties of the library.



Chapter 4

Inside sympy–cpp

This chapter is not a complete list of all constants, structures, classes and func-
tions from the library. This list and description of its items can be found in the li-
brary documentation. The following text describes important classes, principles
and algorithms.

Simplicity and lucidity are preferred aspects of the library, but a tardy library
would not be really usable. Speed and simplicity often stand against each other.
The library design tries to respect both requests in a reasonable ratio. Therefore
some parts of the design can be obscure, but this section will make them more
clear.

4.1 Representation of expressions

Mathematical expressions managed by the sympy–cpp library are represented as
objects of class Expr. Expr is a wrapper class that covers all inner operations.
The most essential role is played by class Ex and its descendants. Expr owns
a pointer on Ex and provides an interface to call member functions of class Ex.
Ex represents a general mathematical expression and its successors are represen-
tations of particular expressions.

It is obvious that there are two types of elementary expressions, namely vari-
ables and numbers. Complex expressions are created from other expressions
by operations and functions. Each compound expression has special properties
that are determined by the constructing operation, function.

For this reason, adepts for the classes which will represent particular expres-
sions can be found among variables, numbers, operations and functions. Some
classes can be formulated using other classes [Table 4.1].

operations alternative representations samples

unary plus,
unary minus encapsulated in every class x and −x

subtraction unary minus and addition x − y is x + (−y)
division unary minus , multiplication and power x/y is x ∗ y−1

Table 4.1: Alternative representations of particular mathematical expressions.

The representations of numbers, variables , additions, multiplications, powers

20
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are classes Number, Sym, Add, Mul and Pow. A special case is the representation
of the mathematical functions. Class Fx represents a general mathematical func-
tion and each mathematical function should be derived from Fx. One advantage
of this design is the possibility to expand the basic set of mathematical functions
by users’ defined functions. The number of classes is relatively small but it does
not cut down the flexibility of the library. The described relations among the
classes are illustrated in the schema [Figure 4.1].

Figure 4.1: The relations of the classes that represent mathematical expressions.
Arrows represent the relations: class B inherits from A (A −→ B) and class X
owns pointer on Y (X 99K Y ).

4.1.1 class Ex

Ex represents an unknown mathematical expression. This unknown mathemat-
ical expression is an abstraction that can not be used in any computation as
a stand–alone object, because it does not have enough information about the
structures. The construction of Ex is acceptable only in its descendants, Ex
being a component of them, while stand–alone objects of Ex are forbidden.

Ex provides only a few member functions that can return correct results from
data available in Ex [Figure 4.3, 4.5] and other functions define interfaces [Figure
4.4] for specific expressions. The first group of functions is created from shared
properties and expression type identifications. A unary sign is only one common
property that arises from the elimination of some operations1 [Table 4.1]. The
type identification is not necessary but the knowledge of types permits more useful
and also faster modifications than the invocation of virtual member functions.
Defined interfaces determine the abilities of the whole library, because the front-
end of the library does not induce any member functions of successors directly,
but it uses the interfaces.

1unary plus, unary minus
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Constructor
Ex(const type info)

Figure 4.2: Constructor of Ex.

Management of signs
Sign sign() const

void sign(const Sign)

Identification of types
type info type() const

bool isNum() const

bool isMul() const

bool isAdd() const

bool isSym() const

bool isPow() const

bool isFx() const

Figure 4.3: The list of Ex member functions that are implemented in Ex.

Interfaces
virtual void treeView(const int i) const

Transformation of expressions into suitable infix trees.
virtual size t rsize(const bool all = true) const

Real size (rsize) is a number of elementary subexpressions.
virtual size t asize() const

Actual size (asize) is a count of all immediate subexpressions.
virtual size t size() const

Count of subexpressions.
virtual std::string str() const

Transformation of an expression into the std::string.
virtual std::string unsigned str() const

Transformation of an expression absolute value into the std::string.
virtual Ex * diff(const Sym &t) const

Differentiation.
virtual Ex * copy ()const

Creation of a new identical expression (a clone).

Figure 4.4: The list of the interfaces that are defined in Ex.

4.1.2 class Number

This class represents numbers. It covers integers, rational and real numbers. Class
Number is using an external library2 for arbitrary precision arithmetic on integers,
rational numbers, and floating-point numbers.

Class Number works in two modes. The first is a rational mode and the second
is a real mode. Integers belong to the rational mode. Constructors [Figure 4.6]
behave accordingly to this convention. The constructors parameters N Real,

N Rational, N Real init, N Rational init are aliases for classes mpf class,

2GNU MP [5]
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Special identification of subtypes

(a) virtual bool isMultiple() const

virtual Number Multiplicity () const

(b) virtual bool isInteger() const

virtual bool isRational() const

virtual bool isReal() const

Figure 4.5: The list of Ex member functions that have partial implementation
in Ex. This means that the information in Ex is not always sufficient for correct
identification.

mpq class in the external library and C++ types double, int. This class has
automatic detection and conversion between the modes. Values of numbers are
stored in realVal 3 or ratioVal 4 by the mode, and information about the active
mode is owned by isRatio 5.

Constructors
Number(const N Real &)

Number(const N Rational &)

Number(const N Real init)

Number(const N Rational init)

Figure 4.6: Constructors of class Number

Class Number implements almost all interfaces from class Ex, the common
interface [Figure 4.4] and also the special number identification interface [Fig-
ure 4.5 (b)].

Setting-up of a new value

(a) void setToAddition(const Number &, const Number &)

void setToSubtraction(const Number &, const Number &)

void setToMultiplication(const Number &, const Number &)

void setToDivision(const Number &, const Number &)

New stored value is the result of arithmetic operation.

(b) void setValue(const Number &)

void setValue(const N Rational init)

void setValue(const N Real init)

void setValue(const N Rational &)

void setValue(const N Real &)

Simple setting up.

(c) void setTFactorial(const int x)

New stored value is factorial of an ingoing parameter.

Figure 4.7: Setting-up of a new value.

3type N Real
4type N Rational
5type Boolean
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Class Number also provides some member functions for convenient and secure
work with numbers. The results of each arithmetic operation [Figure 4.7(a)] are
tested after evaluation, and the mode is changed if necessary (since the addition
of two real numbers can create integer).

Two comparing operands < and == [Figure 4.8] are implemented. The other
comparing functions are not necessary, because they can be replaced by combi-
nations of negations, logic conjunctions, implemented comparing functions and
their parameter order.

Comparing

(a) bool eq(const N Real &) const

bool eq(const N Rational &) const

bool eq(const N Real init) const

bool eq(const N Rational init) const

bool eq(const Number &) const

(b) bool lt(const Number &) const

bool lt(const N Real &) const

bool lt(const N Rational &) const

bool lt(const N Real init) const

bool lt(const N Rational init) const

Figure 4.8: Comparative functions (a) equal (b) lower than.

The set of member functions is expanded by some useful support functions
[Figure 4.9]. A function that is especially applicable is the conversion into int

and also the control of possibility to execute this conversion.

Auxiliary functions
Number abs() const

Absolute value.
std::string str2() const

Alternative transformation to std::string, that does not use parenthe-
ses.
bool isInt() const

Is it possible convert Number into int?.
int getInt() const

Transformation to int.
void checkVal()

Verification of a Number value and a relevant mode.

Figure 4.9: Auxiliary functions.

4.1.3 class Sym

Variables are represented by class Sym. Sym implements the common inter-
face [Figure 4.4] and adds some other functions. All variables need to have
own an identifier. The identifiers make them distinguishable from each other.
This means that any two objects of Sym are the same variables when they have
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the same identifiers. The identifier of variables is stored in Sym as std::string
title . Only one constructor [Figure 4.10] is available by this identifier for class
Sym.

Constructor
Sym(const std::string &)

Figure 4.10: Constructor of Sym.

The other functions [Figure 4.11] are operating with title . The first one
enables direct identification of Sym and the others provide convenient detection
of the same variables by operators == and !=.

Identifier functions
std::string title() const

Return name/title/identifier of Sym/variable.
boolean operator==(cons Sym &) const

boolean operator!=(cons Sym &) const

Comparison of Sym by title (signs are ignored).

Figure 4.11: Functions that are operating with title .

4.1.4 class Add

The abstraction of addition is represented by the class Add. Addition is a binary
commutative mathematical operation. Add exactly represents n-ary addition
(where n ≥ 2), which means that Add can be either an addition or a sequence
of additions [Figure 4.12].

+

+ +

2 3 x w+

zy

+

2 3

x

y

z

w

(II)(I)

Figure 4.12: (I) usual tree representation of addition (II) shorter representation
used in sympy–cpp

The possibility of having more sums in one object contributes to simpler and
more efficient manipulation. The number of sums in sequence is changeable and
class Add has to reflect this fact.
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Addends are stored in a dynamic structure basic container6 that has to pro-
vide member functions begin()7, end()8 and forward iterator. Each container that
satisfies these conditions is able to replace an actually used container. There is
one more requirement for the container, as it should have the possibility of be-
ing sorted by a supplied operator < [Section 4.4.6]. All containers implemented
in STL are suitable.

The construction of addition from addends is managed by class Operations
[Section 4.2.2], because a sum of some elements is sometimes reduced and thus it
would not be an addition. This particular way of construction uses an unsuitable
constructor that works with input basic container [Figure 4.13]. The con-
structor assumes that the container is sorted9. The second parameter of this
constructor is a flag of special memory management [Section 4.4.1]. The con-
structor exploits memory from the container for its own demands. Furthermore,
the constructor does not check the validity of input data. It can create an in-
valid object and therefore individual usage may be potentially dangerous. The
definition in the private section of class Add prevents the misleading application.

Copy constructor and virtual member function copy [Figure 4.13] are the last
two possibilities in the construction of addition. They make a clone of any Add
object in separate memory.

Construction of addition
Add(basic container &v, const allocationPolicy flag)

Special private constructor.
Add(const Add &)

virtual Ex * copy() const

Copying.

Figure 4.13: Construction of Add.

Class Add further contains two added member functions [Figure 4.14],the first
function is relevant in reusing the structures of Add. The second one provides
information that is useful during construction and simplification of expressions
[Section 4.2.2] like heuristics.

Added functionality
bool omit(iterator & index)

Omits one element from addition if possible (more than 2 addends).
bool moreThan1Multiple() const

Is there more than one multiple addends?

Figure 4.14: Add member functions.

4.1.5 class Mul

Class Mul is a representative of multiplications. Mul is very similar to class
Add. The concatenation of series of multiplication, the storing of multiplicands

6defined in the file Ex.h
7returns an iterator to the beginning of the basic container
8returns an iterator just past the last element of a basic container
9[Section 4.2.1] sorting, ordering
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in the container and the way of its construction use the same approaches as class
Add in the previous section.

Naturally, it is possible to find some small differences between the two classes.
Mul does not have the member function moreThan1Multiple() [Figure 4.14],
which is pointless in this case. Some auxiliary functions have been appended
[Figure 4.15] into the class.

Mul has a special policy for the management of multiplicands signs. Central
sign administration is easier and faster than the distributed sign administration
and therefore the sign of the whole multiplication mirrors the signs of all its
multiplicands. The expression −xy2(−z)u(−w) is thus transformed to −xy2zuw,
where the sign does not belong to the first multiplicand, but it pertains to the
whole multiplication.

Special cases of multiplication are multiple expressions that have only binary
representation [Figure 4.16]. This is the only exception in the concatenation
of series of multiplications. The multiplicity is the first multiplicand and the
rest of the expression is the second one. Such representation is appropriate for
more frequent manipulation with a multiplicity in contrast with other parts of
multiplicative expressions.

Added functionality
virtual Number Multiplicity() const

Multiplicity of expressions.
virtual bool isMultiple() const

Is an expression multiple?

Figure 4.15: Mul member functions.

*

+

2 3

zy

*

x

y

z

Figure 4.16: Multiple expressions always have the binary form. There is only one
exception in the concatenation of multiplications.
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Mul provides three private unsuitable constructors [Figure 4.17] and one pub-
lic copy constructor. Each of the flawed constructors assumes sorted10 multi-
plicands. The first constructor is an omitting copy constructor, which omits
one prompted multiplicand. The other constructors exploit the memory from
their input multiplicands. This behavior is specified by the last parameter of the
constructor that marks special memory management [Section 4.4.1].

All these unsuitable constructors are not safe and they can create invalid
objects, because ordering of the multiplicands is not tested and the amount of
its operands is not controlled.

Construction of Mul
Mul(const Mul &, const iterator)

Special constructor that omits one multiplicand.
Mul(Ex *& v, Ex *& x, const allocationPolicy flag)

Exploiting constructor.
Mul(basic container & v, const allocationPolicy flag)

Exploiting constructor, which makes multiplication from elements of
v.

Figure 4.17: Constructors of Mul.

4.1.6 class Pow

Pow represents powers. Powers consist of a base and an exponent, which are
two independent mathematical expressions. The concatenation of powers is not
necessary as it is already present in class Add and Mul. Series of powers are
replaced by simple mathematical formula (4.1).

xa1
a2

·
·
·
an

= xa1a2...an (4.1)

So the class does not need any dynamic container to store a variable count
of subexpressions, because the mutable expression count is reloaded in Mul. Pow
stores only two expressions for the base and exponent in member variables base
and exponent .

Of course, copy constructor and member function copy are available and also
there are the next two constructors [Figure 4.18]. The constructor which has
allocationPolicy [Section 4.4.1] as its last parameter exploits the memory from
input parameters and the second constructor manufactures copies. Pow provides
function copyInverted [Figure 4.19a] which is a special alternative to member
function copy. The difference between them is the sign of exponents, because
function copyInverted changes the sign. This is useful when an inversion of a
fraction is required.

The group of functions [Figure 4.19b] procures some actions that are applied
to exponents. These are simple detections of an integer in exponents and an ex-
ponent sign. The last action is the conversion of exponent absolute values into
the std::string.

10for more information about the sorting see section 4.2.1
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Construction of powers
Pow(const Ex * b, const Ex * e, const allocationPolicy)

Pow(Ex * &, Ex * &)

Figure 4.18: Construction of powers.

Function ganef [Figure 4.19c] deserves special attention, because it has very
strange application. The parameters of the function need to be empty before
stepping in. The function moves the base and exponent of the power into these
parameters and then the object of Pow is not a valid power, thus signifying that
this object should be deleted. Function ganef is useful when base or exponent
can be reused in new expressions and power as an entity is redundant.

Auxiliary member functions

(a) Ex * copyInverted() const

Construction of copies that have changed the sign of the expo-
nents.

(b) bool isExponentInteger() const

bool isExponentPositive() const

std::string abs Exp str() const

Functions of the exponent.

(c) void ganef(Ex * &, Ex * &, const allocationPolicy)

Exploiting of base and exponent.

Figure 4.19: Special member functions of Pow.

4.1.7 class Fx

Class Fx represents general mathematical functions. All mathematical functions
in the library should have connection with this class. Predefined sympy–cpp
mathematical functions are constructed by classes derived from Fx and also func-
tions that are added by users should use class Fx or classes derived from Fx. More
information on using predefined functions and creating new mathematical func-
tions can be found in section 3.2.3.

Functions have names and arguments. Names of functions are stored in
std::string name and expressions that represent the arguments are stored
in ex * e . Construction is made by some constructors [Figure 4.20], function
copy() and special construction member function create [Figure 4.21].

4.1.8 class Expr

Class Expr covers and unifies pointer arithmetic of classes that represent expres-
sions. This class is intended for standard work with expressions. Constructors
[Figure 4.22] and member functions [Figure 4.23] provide full functionality of the
library.

Description of Expr usage and some simple examples of creating and handling
of expressions by Expr are presented in section 3.2.
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Construction of Fx
Fx(const Fx &)

Standard copy constructor.
Fx(const Ex *, const std::string &)

Fx(const Expr &, const std::string &)

Construction of functions by arguments and names.
Fx(Ex * &, const std::string &, const allocationPolicy)

Constructor by argument and name, but memory from input expres-
sion is exploited for the argument.

Figure 4.20: Constructors of Fx.

Member functions of Fx
virtual Ex * copy() const

Construction of new identical objects in separate memory.
virtual Ex* create(Ex * & e, const allocationPolicy) const

Construction of new functions.
std::string name() const

Name of the represented function.

Figure 4.21: Member functions of Fx.

Constructors of Expr
Expr(const Expr &)

Standard copy constructor.
Expr(const Ex *)

Expr(Ex * &, const allocationPolicy)

Wrapping of pointers. (the first one makes a copy, the second con-
structor exploits ingoing memory)
Expr(const std::string &)

Expr(const char *)

Construction of elementary expressions (variables)
Expr(const int)

Expr(const double)

Expr(const int, const char *)

Construction of elementary expressions (numbers). The last construc-
tor creates rational numbers from text strings (the first parameter is only
a mark that makes this constructor distinguishable from the constructors of
variables).

Figure 4.22: Constructors of Expr.

Expr also provides some auxiliary member functions [Figure 4.24]. These
functions are important for the implementation of new mathematical functions.
They permit direct sign management and return pointers on hidden representa-
tions of expressions. The pointers allow usage of inner functions, that have better
performance and more abilities. The ”pointer” functions often manipulate with
the memory and furthermore, the user is able delete the memory manually. This
is dangerous for the validity of Expr objects and therefore the pointers, that are
returned by function innerCopy point to copies of hidden parts of the original
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Functionality of sympy–cpp
bool expansion(const int level=-1)

Transformation of multiplication of sums to summation of multiplica-
tion.
void sub(const Expr & x, const Expr & y)

Substitution of the first parameter x by the second parameter y.
Expr taylorSeries(const Expr & x, const Expr & a, const int n)

const

It returns elements, up to n-th differentiation, from Taylor series by
x in point a.
Expr & diff(const Expr & x)

Differentiation with respect to x.

Figure 4.23: Member function of Expr.

objects. However, this is not safe enough, because automatic memory release is
not present and thus users need to do it manually.

Auxiliary functions
Ex * innerCopy()const

Copying of expressions.
std::string tree()const

Transformation of expressions into std::string, that shows expressions
as n-ary trees.
void sign(const Sign &)

Sign sign()const

Sign management.

Figure 4.24: Member functions of Expr.

4.2 Construction and simplification

of expressions

Construction and simplification of expressions are very closely linked processes
that are heavily dependent on recognitions of similarities in expressions. The iden-
tification of expression types by member functions [Figure 4.3] is not satisfactory.
Consequently, sympy-cpp defines ordering of the mathematical expressions as an
alternative classification.

4.2.1 Ordering – class ComparerIx

Ordering is managed by class ComparerIx, which contains functions for com-
paring expressions [Figure 4.25] and detecting compatibility for simplification
[Figure 4.26]. The main role of the comparative functions is during creation of
new expressions, because expressions that can not be simplified are sorted by it.

The objective of ordering is faster search of particular operands in n-ary oper-
ations. Detailed description of the expression construction by merging is provided
in section 4.2.2.
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Comparison
static bool addLessThan(const Ex * L, const Ex * R,

const bool compareSignSym = true)

Special comparison for elements of additions.
static bool mulLessThan(const Ex * L, const Ex * R,

const bool compareSignSym = true)

Special comparison for elements of multiplications.
static bool auxLessThan(const Ex * L, const Ex * R,

const bool compareSignSym = true)

General comparison.

Figure 4.25: Special comparison functions.

The common comparative function for classes that represent addition and
multiplication needs some corrections of compared expressions, because their sim-
plification rules are different. Consequently, there are functions addLessThan and
mulLessThan, which regulate some specific cases and then common comparative
function auxLessThan is invoked. Each comparative function [Figure 4.25] has
a special last parameter, whose default value is true. This parameter denotes
whether signs of variables (class Sym) are included in the comparison (default
choice) or not (setup false).

Algorithm: comparison of expressions

1. The transformation of expressions by provider operations.

(a) addition
If an addend is multiple, then its multiplicity is removed and the rest
of the expression, without the removed multiplicity, is compared. This
transformation is applied on the whole addend, but not on its subex-
pressions.
Example: 6x(3 − 4y) −→ x(3 − 4y)

(b) multiplication
If a multiplicand is a power, then its exponent is removed and its base
is compared. This transformation is applied on the whole multiplicand,
but not on its subexpressions.
Example: (x + y2)3 −→ x + y2

2. Comparing the counts of elementary subexpressions (numbers and vari-
ables). If the counts are equal, the comparing continues to the next step.

3. Comparison of expression types. The order of types is defined as: numbers <
variables < powers < additions < multiplications < functions. If the
expressions are of the same type the last step follows.

4. (a) compound expressions
If the expressions are compound, the comparative mechanism is ap-
plied on their subexpressions up to the point of encountering first ex-
pressions that is not equal. If there are no differences between them,
the compared expressions are equal.
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(b) plain expressions
Numbers are ordered by the usual operator < for numbers and vari-
ables are compared by text comparison that is applied on their iden-
tificators.

Compatibility
static compatibility compatibilityForAddition(const Ex * L,

const Ex * R)

Is it possible to simplify the sum of input expressions?
static compatibility compatibilityForMultiplication(

const Ex * L, const Ex * R)

Is it possible to simplify the multiplication of input expressions?

Figure 4.26: Detection of compatible expressions for simplification.

The second task of ComparerIx is checking for the compatibility of expres-
sions for simplification. These functions [Figure 4.26] identify relations between
expressions and return information about them. The information is stored in
enumeration compatibility [Figure 4.34].

The compatibility control uses the same mechanisms as comparing. The first
step is the cutoff of multiples/exponents and then the reduced expressions are
compared as text.

4.2.2 Simplification & construction – class Operations

The construction of expressions is performed by class Operations. Services of
Operations are used by operators [Figure 4.27], which are applicable in user’s
codes. The function Power, which is an alternative to operator^ is also placed
here (for more informations see [Section 4.1.6]).

Operators
Expr operator+(const Expr &, const Expr &)

Expr operator-(const Expr &, const Expr &)

Expr operator*(const Expr &, const Expr &)

Expr operator^(const Expr &, const Expr &)

Expr operator/(const Expr &, const Expr &)

Expr Power(const Expr &, const Expr &)

Figure 4.27: Operators on expressions.

These operators call particular static member functions from class Operations
[Figure 4.28] that are responsible for customization of required forms of expres-
sions to special forms. Expressions in the special forms are expressed only by
addition, multiplication and powers [Table 4.1].

Class Operations provides alternative member functions [Figure 4.29&4.30],
which work directly with the inner structures of expressions and therefore they
have better performance than ”operator” functions [Figure 4.28].

Finally, functions addition, multiplication and power have basic posi-
tions in the simplification and construction of expressions, because only opera-
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Member functions of Operations
static Expr operatorAdd(const Expr &, const Expr &)

static Expr operatorSub(const Expr &, const Expr &)

static Expr operatorMul(const Expr &, const Expr &)

static Expr operatorDiv(const Expr &, const Expr &)

static Expr operatorPow(const Expr &, const Expr &)

Figure 4.28: Functions that transform some unsupported forms of expressions to
the supported forms.

Member functions of Operations
static Ex * addition(const Ex *, const Ex *)

static Ex * subtraction(const Ex *, const Ex *)

static Ex * multiplication(const Ex *, const Ex *)

static Ex * division(const Ex *, const Ex *)

static Ex * power(const Ex *, const Ex *)

Figure 4.29: Functions, which have the same tasks as the functions from Figure
4.28, but these functions manipulate directly with the inner representations.

Member functions of Operations
static Ex * addition(Ex * &, Ex * &, const allocationPolicy)

static Ex * subtraction(Ex * &, Ex * &, const

allocationPolicy)

static Ex * multiplication(Ex * &, Ex * &, const

allocationPolicy)

static Ex * division(Ex * &, Ex * &, const allocationPolicy)

static Ex * power(Ex * &, Ex * &, const allocationPolicy)

Figure 4.30: The same as Figure 4.29 with a reuse of input memory.

tions addition, multiplication and exponentiation are represented by classes (Add,
Mul and Pow). Consequently, only these operations can be simplified.

The simplification of Pow is simpler than the simplification other classes. It is
managed by few rules [Figure 4.31] that check bases and exponents of constructed
powers.

The simplifications of Add and Mul are realized by the same algorithm. This
algorithm is based on the ordering of expressions [Section 4.2.1], merging of sorted
sequences of expressions and identification of similarities in expressions.

Algorithm: simplification of Add and Mul

1. Construction of two sequences whose elements are operands of constructed
operations.

(a) If the type of the operand is different from the type of the constructed
expression, this operand is inserted into the sequence. Such con-
structed sequence has only one this element.

(b) If an operand and a constructed expression have the same types,
operands of the operand are inserted into the sequence.
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Simplification of powers
Let A,B and C be expressions.

• A0 −→ 1

• A1 −→ A

• 1A −→ 1

• 0A −→ 0

• numberinteger −→ number

• number−integer −→ 1
number

• (−A)B −→ (−1)BAB

• (A)BC

−→ ABC

• (AB)C −→ ACBC

Figure 4.31: The simplification rules for exponentiation.

2. The sequences are compared step by step and merged into a resulting se-
quence.

(a) If the elements are compatible [Figure 4.26], they can be joined to
create a simpler new form. This joined form will contribute to the
result and the original elements are deleted.

(b) If the elements can not simplify each other, the lower one as defined
by ordering [Figure 4.25] is moved into the result and the higher one
is compared with the next element of the second sequence.

3. Construction of expression.

(a) If the resulting sequence is empty, the expression is 0.

(b) If the resulting sequence has only one element, the constructed expres-
sion is this element.

(c) In all other cases, the expression is constructed from the resulting
sequence by particular operation/expression constructor.

This algorithm has to warrant for the construction of valid objects. There
is only one place (step 2a) that could infract the ordering. Fortunately, the
construction of a simpler form is managed by rules [Figure 4.32&4.33] that are
designed to keep the ordering. Simplifying expressions can eliminate each other
or their multiplicity can be changed (simplification in addition) or modifications
can be done only in the exponents of powers (simplification in multiplication).
Such manipulations do not change the ordering.

4.3 Functionality

The abilities of the library should be provided as member functions of the classes
that represent expressions. But some manipulations reorganize the structures
of expression too much, so in these cases the solutions by other classes that
reconstruct or build new expressions are prefered.
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Simplification of addition
Let A,B and C be expressions and x, y, z numbers.

• A + A −→ 2A

• xA + yA −→ zA, where z = x + y

• A + 0 or 0 + A −→ A

Figure 4.32: The simplification rules of addition.

Simplification of multiplication
Let A,B and C be expressions and x,y,z numbers.

• 1 ∗ A or A ∗ 1 −→ A

• 0 ∗ A or A ∗ 0 −→ 0

• −1 ∗ A or A ∗ (−1) −→ −A

• AA −→ A2

• ABAC −→ AB+C

Figure 4.33: The simplification rules of multiplication.

4.3.1 Expansion

This manipulation makes fundamental changes in structures of expressions. Class
Utilities contains member function expansion(Ex * & e, const int level)

that transforms multiplication of summation to summation of multiplication in
expression e. The parameter level defines the number of expanded levels of
multiplication. The description of the levels of multiplications can be found in
section 3.2.2.

The algorithm is based on Depth First Search (DFS) and the count of found
multiplication (levels of multiplication). DFS finds and counts levels of multi-
plication. If a branch of a tree representation is examined or a required level
is achieved then the expansion is applied on the completely processed multipli-
cation and DFS continues in the ensuing branches. This approach ensures the
expansion of multiplication with already expanded subexpressions (up to defined
level). The last expanded node is the root of the tree.

Special cases are powers that have an integer in their exponents and bases
are sums. Simple sums of two elements can be expanded by Binomial theorem
(BT) [B.1] and sums with more addends are expandable by Multinomial theorem
(MT) [B.2]. Class Utilities provides function multinomialTheorem(const Add

&, const Number &) that implements MT. Function that would implement BT
is not yet available, but multinomialTheorem is able to compensate it. The
implementation of BT remains important, as it going to increase the speed of
expansion.

4.3.2 Substitution

Substitution is performed by class Substitution. The replacing of expressions by
expressions is managed by member function sub(Ex * & originalEx, const
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Ex * fromEx, const Ex * toEx), which uses special substitution functions pro-
vided by this class.

The algorithm of substitution is based on Breadth First Search (BFS) and
simple Linear Search (LS). Comparative functions from class CompareIx [Sec-
tion 4.2.1] are often used here. The search for replaced expression by BFS is
primarily performed in the subtrees. After that, equivalent nodes are searched
by LS.

If the replacement is done, the process of substitution has to start again from
the beginning again, because the original expression could have been transformed
by automatic simplifications and consequently new occurrences of subexpressions
that are eligible for replacement could have been created. The process of cyclic
substitution is ended when no more substitution is applied.

4.3.3 Differentiation

Differentiation is a member function of the classes that represent the particular
expressions. The differentiations are determined by a table of basic differentia-
tions and simple rules [Section 2.3.3].

The only complex case of differentiation occurs when an expression (power)
is differentiated with respect to a variable and this variable is located in its base
and exponent. Let this expression be f(x)g(x) then its differentiation

(
f(x)g(x)

)′
= f(x)g(x)

(

g′(x)Ln (f(x)) + g(x)
f ′(x)

f(x)

)

.

This modification is eventuated from equality

(
f(x)g(x)

)′
=

(

eLn(f(x)g(x))
)′

=
(
eg(x)Ln(f(x))

)′
.

The derived formula enables the solution of this differentiation by the already
mentioned techniques.

4.3.4 Taylor series

Taylor series can be obtained from class Utilities by function taylor(const Ex *

fun, Ex * & tay, const Sym * x, const Ex * a, const int n). This func-
tion assigns elements from the Taylor series of the mathematical function fun to
point a and into expression tay. The number of the assigned elements is implied
by parameter n that fixes maximal allowed differentiation with respect to x.

The implementation uses already mentioned functions differentiation and sub-
stitution. Construction of these series is iterative by formula [B.3].

4.4 Auxiliary structures

4.4.1 allocationPolicy

Enumeration allocationPolicy has only one element STEALING. Its purpose is
to label the functions that do not have any traditional memory management.
Sympy–cpp does not implement any memory manager and therefore the memory
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is frequently wasted. Allocation and release of memory decrease the speed of
computation. To solve this problem, there are alternative functions that can
reuse input memory. The Labeling of these functions is required to distinguish
them from the standard functions. Marked functions have the last redundant
parameter of the allocationPolicy type.

4.4.2 Sign

The type Sign is renamed to C++ type bool. It represents the unary signs of
expressions. The two constants (macros) are redefined accordingly: true as plus
and false as minus.

This improves legibility, lucidity and comprehensibility of the source codes in
the library.

4.4.3 compatibility

Construction of expressions detects possible simplification and performs them.
These two processes are separated and communication is ensured by enumeration
compatibility.

It contains nine enumerators. The first three enumerators are common, the
next three belong to the construction of addition and the last three are intended
for the construction of multiplication.

enum {
INCOMPATIBLE, //Relationship is not detected.
NUMBER NUMBER, //Both compared expressions are numbers.
PLAIN PLAIN, //Expressions are compatible and neither is multiple.
MULTIPLE MULTIPLE, //Expressions are multiple.
PLAIN MULTIPLE, //The second expression is a multiple of the first.
MULTIPLE PLAIN, //The first expression is a multiple of the second.
BASE BASE, //Both expressions are powers and their bases are compatible.
BASE PLAIN, //The first expression is a power and its base is compatible with the
second expression.
PLAIN BASE, //The first expression is compatible with the base of the second
expression that is a power.
} compatibility;

Figure 4.34: Information about compatibility of expressions for simplification.

4.4.4 type info

The type type info is designed for identification of expression types that are the
same as types of classes that represent particular expressions.

4.4.5 Numbers

There are two aliases for number types from GNU MP and two aliases for standard
C++ number types. N Real and N Ratio are long number classes mpf class and
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enum {
EX, //general expressions – class Ex
NUM, //numbers – class Number
SYM, //variables – class Sym
POW, //powers – class Pow
ADD, //addition – class Add
MUL, //multiplications – class Mul
FX, //functions – class Fx
} type info;

Figure 4.35: Identification of expression types.

mpq class, which are used for storing numbers in sympy–cpp class Number. C++
types double and int are initial types of N Real and N Ratio. Consequently,
these types have aliases N Real init and N Ratio init.

4.4.6 basic container

The type basic container is an alias for a container that is used for storing
operands in classes Add and Mul. At the moment there is no container imple-
mented in sympy–cpp and therefore the library utilizes a container from STL.
Minimal requirements on the container are an implementation of forward iter-
ators and function containerSort. This function is a wrapper of the sorting
that is applied on the container [Figure 4.36]. Functions ComparerIx::addlt

and ComparerIx::mullt are used as an operator < in the sorting.

namespace sympycpp {

void containerSort(std::list<Ex *> & l,

bool (* lessThan)(const Ex *, const Ex *)) {

l.sort(lessThan);

}

void containerSort(std::vector<Ex *> & v,

bool (* lessThan)(const Ex *, const Ex *)) {

sort(v.begin(), v.end(), lessThan);

}

}

Figure 4.36: Examples of wrapper function containerSort.

The change of this container is a very simple act. It needs to change of
basic container definition in file Ex.h and also implementation of function
containerSort. Containers std::vector and std::list have these wrappers
already implemented.

4.4.7 Exceptions

Only two exceptions occur in Sympy–cpp because its detection of failures is not
finalized enough. There are the NotInt and ZeroDivision exceptions. NotInt

is thrown when an expression is not a convertible number with standard int and
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the conversion is required. The second exception occurs when a denominator of
a fraction is equal to zero. Both exceptions are derived from std::exception.

4.4.8 Utilities

Class Utilities provides diverse functionality. A big part of the already mentioned
functionality belongs to this class. Taylor series, expansion and Multinomial theo-
rem are among its members. The class also implements functions void set0 2Pi

(Ex *, bool &) and Expr set0 2Pi(const Expr &, bool &) that transform
expressions into interval < 0, 2π), if this is possible. This is very useful for sim-
plifications of goniometric functions.

4.4.9 Constants

The constants in sympy–cpp do not have a special implementation. There is
a chance to define them as constant variables. This way is used for the definition of
the one and only constant π, that definition being const Expr::Expr pi("pi").

4.4.10 Mathematical functions

Mathematical functions that are provided by sympy–cpp are only samples of
functional expanding. The implemented functions Sin, Cos, Tg, Cotg and Ln

are simply replaceable by others [Section 3.2.3].

4.4.11 TestX

Class TestX is not a part that executes symbolic manipulation. It is a test
framework that shall improve the work of developers. The tests have four levels
of reports [Figure 4.37] and they can show a preview of the tree representation of
expression. These properties are configurable by constructor [Figure 4.38a] and
two member functions [Figure 4.38b].

The main role is in test function [Figure 4.38c]. The first parameter is the
tested expression and the second one is an anticipated textual form of this ex-
pression. The third parameter is a line where the expression is located. It should
be configured by macro LINE . And the last parameter is a test number that
determinates the tested expression in a series of tested expressions. It enables
testing of only one incorrect expression.

The test framework provides a series of tests. There are some tests in files
Tdifferentiation.cpp, Tsubstitution.cpp and Tpower.cpp that should be compiled
[Section 3.1.2] after each alternation of the library source codes.
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Length of reports

short report
The report consists of the number of the test and the number of the
line in a file where the test is located.

long report
An actual textual form of the tested expression and a required textual
form of this expression is added to the short report.

Levels of reports

level 0
Correct expressions do not produce any message and incorrect expres-
sions produce the long report.

level 1
Both cases produce the short reports.

level 2
Correct expressions produce the short form, incorrect expressions pro-
duce the long form of the report.

level 3
Both cases produce the long reports.

Figure 4.37: Reports and levels of reports in TestX.

Abilities of TestX

(a) TestX(const int voice = 3, const bool tree = false)

Constructor that enables the setup a level of reports (voice) and
a possibility of the preview of the tree representation.

(b) void setTree(const bool)

bool setVoice(const int)

Setup of the preview of the tree representation and levels of re-
ports.

(c) void test(const Expr & e, const std::string eStr, const

int line = -1, const int nT = 0)

Test function.

Figure 4.38: Abilities of TestX.
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What is next

The library is operational but here is still a big room for improvement, as some
functionality is still missing and some traits should have been done in another
way.

5.1 Supplementation

A number of theoretical methods was not implemented and some technical prob-
lems decrease the quality of the library.

The technical problem of the memory management is probably the most con-
siderable. Frequent allocations and deallocations of objects decrease performance
of the library. A manager that would handle these routines can inhibit this short-
coming.

At the present time the Binomial theorem is managed by a function that is
designed for Multinomial theorem. However, the Binomial theorem is a special
case of Multinomial theorem and therefore it could be implemented by more
sophisticated methods.

Elimination and reduction of expressions during the automatic simplification
do not have any memory of their conditions. Unperformed supervision of con-
ditions can creates failures in upper functions, which do not check and neither
have the possibility of checking these conditions. An example of this mistake is
in Wolfram Mathematica [Figure 5.1].

Bug in Wolfram Mathematica 7
In[5]:= Solve[((x - 1)*(xˆ2 - 3*x + 2))/(x - 1) == 0, x]
Out[5]= {{x -> 1}, {x -> 2}}

Figure 5.1: The bug in Wolfram Mathematica 7 for students version 7.01.0 for

Linux. The equation (x−1)(x2−3x+2)
x−1

has only one solution x = 2, because x = 1
does not belong to the domain of the equation.

The addition of missing functionality is also required as the next step in
the development of sympy-cpp. Integration, limitation, progressive simplification
and factorization should be added into the core of the system.

42
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5.2 Improvements

Sympy-cpp has, like any other program, numerous areas in need of improvement.
A special care is required for numbers. The sympy–cpp library uses the library
GNU MP. More specifically, it is the usage of its C++ wrapper classes of C
routines. These wrappers are slower than the C routines. The first improvement
would be a direct application of those routines.

The handling of exceptions in sympy–cpp is neglected, but this topic is closely
linked with the storage of the memory of conditions that is still not implemented.

The functions that provide substitution have to be redesigned and recoded
because they are inefficient. These functions are too general and they do not use
all information about the substituted expressions. For example let 0 substitutes
x in 2xyzw . . ., which represents a very complicated and long multiplicative ex-
pression. The result of this substitution is identifiable from the second element
in the expression, because 0∗anything = 0, but the actual substitution functions
do not detect this case. Consequently, the substitution is very slow.

The group of the mathematical functions have to be extended because the
actual state is not satisfactory. This problem can be solved by users’ defined
functions, but this is not the most effective way.
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Summary

The Wolfarm Mathematica, Maple, GiNaC, Giac, Sympy, Maxima, Sage, Yacas
are symbolic manipulation programs or libraries with big differences between each
other. There are programs that have only one function – to make symbolic ma-
nipulation. Also, there are applications that have a wider functionality. Whether
it is a simple little library or a huge mathematical system, they should have com-
mon goals. Results have to be correct and computation should be ended in a
reasonable time.

The second requirement is not so easy to accomplish. The commercial pro-
grams as Mathematica and Maple are traditionally very fast in computation, but
the group of free programs do not often have the sufficient performance. De-
spite this fact, there are libraries GiNaC and Giac, which are very fast, but their
design is too complicated. Such libraries are not practically modifiable or the pro-
grammer must spend a lot of time to make these modifications. These libraries
belong to the open sources software, but the already mentioned problem makes
it inconsequential. On the other hand, they are very useful as a background for
complex computations in some programs. The other programs are slower than
those libraries or commercial programs.

6.1 Benchmarks

The aim of the developed library was to keep the design easily comprehensible,
expandable and modifiable. The simplicity of the project is accomplished. The
number of classes that are implemented in sympy–cpp is not too extensive, but
it is sufficient to express mathematical expressions and operations with them.
The classes are not too big and unclear, although there is some long member
functions. Still, even these functions have relative simple structures.

The question that remains is whether this design is usable in a real life. Con-
sequently some comparative tests have been added to the thesis.

These benchmarks should demonstrate that sympy–cpp is useful. Programs
that have been included into the tests are Wolfram Mathematica 7 for students
(Linux version) [2], GiNaC 1.4 [3], Sympy 0.5.15 [1], Sage 3.4 [4] and sympy–cpp.
The first of the mentioned programs is the only commercial software in the tests.
It is a fairly expensive application. Despite this fact, it is a very popular tool that
is used very often. The second tool is a very fast library, that demonstrates the
speed of open source software. Sympy is delegate of simple design and Sage is an
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open source alternative to huge mathematical systems as Mathematica, Maple,
Magma and Matlab. This diversified sample of symbolic packages covers a wide
field of usage.

The benchmarks show only nominal features of those systems. Consequently,
these tests do not determine exact performance of the programs, but it is a check
whether sympy–cpp could step in the game.

All tests are performed fifteen times and average values are computed by
statistical software R.

6.1.1 Expansion

The expansion has been tested in eight tests, that are mainly aimed on Multino-
mial theorem.

test 1
(a + b + c)100

test 2
(a + b + c)278

test 3
(a + b + c)477

test 4
(a + a(b − c) + c)73

test 5
(a + a(b − c)a(b + c) + c)83

test 6
(a + ab − ac + c)77

test 7
(a + a2b2 − 2a2bc + a2c2 + c)37

test 8
(a + b + c + d + e + f + g)15

program t1 t2 t3 t4 t5 t6 t7 t8

Mathematica 0.45 2.87 10.65 3.11 4.65 3.58 1.69 2.19
GiNaC 0.08 1.3 6.19 1.89 3.3 3.28 3.29 0.63
sympy–cpp 0.5 4.22 13.14 9.88 14.71 11.56 3.93 6.87
Sympy 15.06 ∞ ∞ ∞ ∞ ∞ ∞ ∞
Sage 12.6 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 6.1: ∞ means time longer than 30s

The tests show that sympy–cpp has a good starting position. Algorithms that
are used in sympy–cpp have simple design. Optimization of these algorithms
could increase performance and thus it puts sympy–cpp near to the top.
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6.1.2 Taylor series

The programs were tested in five tests. These tests observe more features of the
symbolic packages, because the construction of Taylor series needs more function-
ality. Differentiation, substitution and construction of expressions were used.

Sympy–cpp has a performance problem with substitution in long complex
expressions. The substitution is correct but really slow. This problem was pin-
pointed as the priority for redesigning and recoding. The test samples try to
minimize complex substitution.

test 1
Taylor series of sin(a) in point 0 up to 100-th derivative by variable a.

test 2
Taylor series of sin(a) in point b − 2 up to 100-th derivative by variable a.

test 3
Taylor series of sin(a) in point 0 up to 5000-th derivative by variable a.

test 4
Taylor series of ax

cos(a)
in point 2 up to 7-th derivative by variable a.

test 5
Taylor series of sin(cos(a3)) in point 0 up to 7-th derivative by variable a.

program t1 t2 t3 t4 t5

Mathematica 0.28 0.32 9.95 0.34 0.27
GiNaC 0 0 0.14 0 0.01
sympy–cpp 0 0.01 0.38 3.37 3.47
Sympy 0.66 — ∞ — 2.47
Sage 1.46 1.55 ∞ 0.34 1.5

Table 6.2: ∞ means time longer than 30s, — means missing functionality

The tests of Taylor series demonstrate that sympy–cpp has fairly good per-
formance. The tests 1,2 and 3 confirm this fact. The last two tests are highly
affected by the slow substitution.



Chapter 7

Conclusion

The commercial symbolic manipulation packages are expensive and their source
codes are closed. The mass of open source software is relatively slow. There are
some exceptions as GiNaC and Giac, but their design is too complicated for the
usual users.

There is not one simple, understandable and modifiable symbolic open source
software that is able to compete with the commercial projects in respect of per-
formance. The plan of this project was to fill this blank space.

Sympy–cpp, the symbolic manipulation library, fulfils all original intentions.
The simplicity of design and useful functionality with acceptable time of compu-
tation was achieved. The source codes of the library have 7804 lines1 and some
more lines are situated in the test framework and benchmarks. It is still a small
library. In comparison with software that is developed by more people and also
shows longer time of development, it was proved that sympy–cpp is a hopeful
project.

There are more things that need to be done, but the library is operational
at the present time and state. It is possible to say that sympy–cpp exceeds all
expectations.

1Comments, empty lines and lines that contains only a right brace are not counted into the
sum.
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Appendix A

Attached CD

bachelor thesis.pdf

sympy-cpp.tar.gz

gmp/

gmp-4.3.1.tar.gz

gmp-man-4.2.4.pdf

sympy-cpp/

Add.cpp, Add.h, ComparerIx.cpp, ComparerIx.h, core.cpp, dep.list,
Doxyfile, Ex.cpp, Ex.h, Expr.cpp, Expr.h, functions.cpp, functions.h,
Fx.cpp, Fx.h, license, makefile, makefile.old.txt, Mul.cpp, Mul.h,
Number.cpp, Number.h, operators.cpp, operators.h, Pow.cpp, Pow.h,
Substitution.cpp, Substitution.h, Sym.cpp, Sym.h, tests.h,
Utilities.cpp, Utilities.h

sympy-cpp-lib/

tests/

lines.sh, tests.h, Tdifferentiation.cpp, Tpower.cpp,
Tsubstitute.cpp

documentation/

index.html, . . .

bench/

Expansion/

averages.r, makefile, output averages time, test1.ginac.cpp,
test1.mathematica.bench, test1.sage.bench,
test1.sympy.bench, test1.sympycpp.cpp, est2.ginac.cpp,
test2.mathematica.bench, test2.sage.bench,
test2.sympy.bench, test2.sympycpp.cpp, test3.ginac.cpp,
test3.mathematica.bench, test3.sage.bench,
test3.sympy.bench, test3.sympycpp.cpp, test4.ginac.cpp,
test4.mathematica.bench, test4.sage.bench,
test4.sympy.bench, test4.sympycpp.cpp, test5.ginac.cpp,
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test5.mathematica.bench, test5.sage.bench,
test5.sympy.bench, test5.sympycpp.cpp, test6.ginac.cpp,
test6.mathematica.bench, test6.sage.bench,
test6.sympy.bench, test6.sympycpp.cpp, test7.ginac.cpp,
test7.mathematica.bench, test7.sage.bench,
test7.sympy.bench, test7.sympycpp.cpp, test8.ginac.cpp,
test8.mathematica.bench, test8.sage.bench,
test8.sympy.bench, test8.sympycpp.cpp, times

Taylor/

averages.r, makefile, output averages time, test1.ginac.cpp,
test1.mathematica.bench, test1.sage.bench,
test1.sympy.bench, test1.sympycpp.cpp, test2.ginac.cpp,
test2.mathematica.bench, test2.sage.bench,
test2.sympy.bench, test2.sympycpp.cpp, test3.ginac.cpp,
test3.mathematica.bench, test3.sage.bench,
test3.sympy.bench, test3.sympycpp.cpp, test4.ginac.cpp,
test4.mathematica.bench, test4.sage.bench,
test4.sympy.bench, test4.sympycpp.cpp, test5.ginac.cpp,
test5.mathematica.bench, test5.sage.bench,
test5.sympy.bench, test5.sympycpp.cpp, times



Appendix B

Used mathematics

Theorem B.1 Binomial theorem :
Let k ∈ N, a, b ∈ R. Then (a + b)k =

∑k
i=0

(
k
i

)
aibk−i, where

(
k
i

)
= k!

(k−i)!i!
.

Theorem B.2 Multinomial theorem :
Let n ≥ 2, k ∈ N, a1, a2, . . . , an ∈ R. Then (a1 + a2 + . . . + an)k =
=

∑

∀k1,...,kn:k1+...+kn=k

(
k

k1,...,kn

)
a1

k1 . . . an
kn, where

(
k

k1,...,kn

)
= k!

k1!...kn!
.

Definition B.3 Taylor series :
The Taylor series of a real or complex function f(x) that is infinitely differ-
entiable in a neighbourhood of a real or complex number a, is the power series
∑

∞

k=0
f(k)(a)

k!
(x − a)k.

50



Bibliography

[1] Sympy: http://code.google.com/p/sympy/

[2] Wolfarm Mathematica: http://www.wolfram.com/

[3] GiNaC: http://www.ginac.de/

[4] Sage: http://www.sagemath.org/

[5] GNU MP – Multiple Precision Arithmetic Library: http://gmplib.org

[6] GMP team: GNU MP manual, 2008.

51


