

Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Csaba Tóth

Simulace spolupracujících dělníků s optimalizací

Simulation of cooperating workers with optimization

Department of Theoretical Computer

Science and Mathematical Logic

Supervisor: RNDr. David Kronus, Ph.D.

Department of Theoretical Computer Science and

Mathematical Logic

Study program: Computer Science,

General Computer Science (IOI)

2009

 2

I would like to give thanks to my supervisor RNDr. David Kronus, Ph.D., for

his time and advices, to Timo Bingmann, whose compiler tool integration

example I used as starting point of the script language, to my family and

friends who helped my work with great ideas.

I hereby certify that I wrote the thesis by myself, using only the referenced

sources. I agree with lending the thesis.

In Prague 2009-05-28 Csaba Tóth

 3

Contents

Chapter 1. Introduction...5

1.01 Motivation ..5

1.02 The Aim of the work ...5

Chapter 2. Multiagent systems..7

2.01 Basic definition ...7

2.02 The properties of the environment ...7

2.03 Agents and intelligence ...8

2.04 Formal definition of agents..9

2.05 Types of agents ...11

2.06 Agents interacting ...12

2.07 Communication...12

2.08 Cooperation...13

Chapter 3. Selected approach..14

3.01 The environment ...14

3.02 The workers ..15

3.03 The goals of the simulation ...16

Chapter 4. The whouse program ...17

4.01 Introduction...17

4.02 Elements of the simulation ..17

4.03 The work cycles ..19

4.04 The graphic interface...20

4.05 The dialog windows ..22

4.06 The input...24

4.07 The output...24

4.08 The built-in script language ...25

4.09 The built-in functions ..26

4.10 Main script specific functions..29

4.11 The worker specific functions..30

4.12 Setting up the program ..34

4.13 Possible improvements in the future ..35

Chapter 5. Conclusion ..37

Bibliography...39

Appendix..40

 4

Název práce: Simulace spolupracujících dělníků

s optimalizací

Autor: Csaba Tóth

Katedra (ústav): Katedra teoretické informatiky a matematické

logiky

Vedoucí bakalářské práce: RNDr. David Kronus, Ph.D.

e-mail vedoucího: david.kronus@mff.cuni.cz

Abstrakt: V předložené práci studujeme problém spolupráce dělníků pří

ukládání a vyzvedávání krabic ve skladu. Dělníci spolu komunikují,

ale mají pouze omezenou paměť na informace o mapě skladu a na

komunikaci s ostatními. Jejich úkolem je snažit se optimalizovat

některý zvolený parametr jejich práce, např. časovou odezvu při

vyzvedávání krabice ze skladu. Prostředkem optimalizace je uložení

a reorganizace krabic ve skladu a vhodná komunikace mezi dělníky.

Klíčová slova: simulace, optimalizační nástroj, multiagentní systémy,

spolupráce, komunikace

Title: Simulation of cooperating workers with

optimization

Author: Csaba Tóth

Department: Department of Theoretical Computer Science

and Mathematical Logic

Supervisor: RNDr. David Kronus, Ph.D.

Supervisor's e-mail address: david.kronus@mff.cuni.cz

Abstract: In the present work we study the problem of cooperating workers

placing and finding boxes in a storehouse. Workers communicate but

have limited memory for information about the map of storehouse

and for communication with other workers. Their task is to optimize

with respect to some criteria, e.g. response time of finding a box in a

storehouse, by means of placing and reorganizing boxes and

appropriate communication among workers.

Keywords: simulation, optimization tool, multiagent system, cooperation,

communication

 5

Chapter 1. Introduction

1.01 Motivation

Nowadays quick and efficient temporal storage is an important aspect for

many major companies from high tech parking houses to delivery firms. The

key qualities of such storage facilities are short insert and withdrawal times.

Further improvements such as space optimization (by eliminating ramps and

conventional elevators), modular design, and energy efficiency (by the

reduction of the need of lighting, air conditioning) can be reached by replacing

human work force with artificial agents.

The general approach to these automated systems is through centralization. A

main organizing entity controls all the knowledge about the warehouse

structure, its content and its workers.

- The system has to know not only the whole usable storage capacity, but also

its structure so it could assign the correct shelf, to each new item.

- The system has to know the actual content of the warehouse (and its position

in the structure). In many cases the system also has to remember the expiration

time of some types of goods and serve out the older items first, than

periodically throw out the already expired goods.

- The system has to drive its working elements.

The weak points of the above described system are its rigidity and the

dependency on its central database. To at least partially eliminate these

problems it would be possible to divide the system into several, simpler,

hierarchic subsystems.

A further improvement of a multiagent implementation is its robustness and

reliability. There are no irreplaceable elements, the system can without effort

undergo a “graceful degradation” when some of the working elements fail. A

similar central system always has a bottleneck which can be painful when an

error or necessary update of the main entity occurs.

1.02 The Aim of the work

As my bachelor thesis I chose to create an observation tool to help research in

the field of storage facilities with distributed commanding system where the

“intelligence” is moved from the central control entity to the end nodes – in

our case to the working agents.

 6

In these storage facilities the main database could be divided in a way that the

central entity has to know only what is stored in the warehouse, but the exact

positions of the items and the structure of the available storage place can be

completely left for the working agents or other hierarchic sub-elements.

These working agents should be able to communicate with each other; what

enables them to exchange information and also organize themselves into the

mentioned hierarchic workgroups.

 7

Chapter 2. Multiagent systems

2.01 Basic definition

From the definition of Michael Wooldridge [1]: multiagent system is one that

consists of a number of agents which interact with one another, typically by

exchanging messages and/or orders through some sort of infrastructure in their

environment.

Based on Michael Georgeff's definition an agent of this system is also a

computer system that is capable of autonomous actions on behalf of its or

owner. In other words an agent is an independent element of the environment

that can figure out for itself what it needs to do in order to satisfy its design

objectives, rather than having to be told explicitly what to do in any given

moment.

2.02 The properties of the environment

The agents act in an environment defined by the following characteristics:

• Accessible / Inaccessible

• Deterministic / Non-deterministic

• Static / Dynamic

• Discrete / Continuous

Accessible / Inaccessible:

If the selected environment is accessible, that means the agent can obtain

complete and accurate information of the environment at any given time, all

the relevant information are at it's disposal. In most real-world situations

however this would be impossible, so the commonly used environments are

inaccessible.

Deterministic / Non-deterministic:

In a deterministic environment all operations can be taken as atomic

operations. All actions the agent executes have a guaranteed effect. This

reduces the need of control and the required complexity of the agents;

however the deterministic environments are just as rare in the real world as

completely accessible ones.

An interesting remark made by Russel and Norwig in 1995 points it out that

after an environment reaches sufficient complexity it doesn't matter if it's

actually still deterministic, in practice it should be regarded as non-

 8

deterministic. Their consequence is that real world environments should

always be regarded as non-deterministic in the agent's perspective.

Static / Dynamic:

A static environment can be assumed to remain unchanged except by the

performance of actions by the agent (a single selected one). A dynamic

environment may have all sorts of entities operating in it while also changing

it in ways beyond the agent's control. The physical world is a highly dynamic

environment.

Discrete / Continuous:

In this work I use the definition of discrete environment as an environment

where there are fixed finite number of possible perceptions, actions and

consequences of those actions.

Non-deterministic, non accessible environments can be taken as if there

would be a sphere of influence around every agent where they have at leas

partial control over their surrounding. Everything out of this sphere remains

unknown and unreachable for the agent.

2.03 Agents and intelligence

Agents are required to be able to make “the right” decisions on their own. This

ability is generally called intelligence, and can be characterized by several

separate capabilities. The following list of capabilities was suggested by

Wooldridge and Jennings in 1995:

• Reactivity

• Proactiveness

• Social ability

Reactivity means

agents are be to

perceive their

environment and

respond to its

changes.

Proactiveness

means the agent’s

behavior is directed

Agent

Perception Actions

Environment

2-1: The scheme of a reactive agent

 9

by its goals. In addition to reactions; it initiates own actions in order to satisfy

its design objectives.

Social ability means agents are capable of interacting with other agents

(and possibly other elements of the environment) in order to satisfy their

design objectives.

2.04 Formal definition of agents

Abstract view of agents taken nearly by the word from the book of Michael

Wooldridge [1]:

Let us assume that the environment may be in any of a finite set E of discrete,

instantaneous states:

,...},{ 1eeE =

Whether the environment is discrete or continuous is of little importance,

because any continuous environment can be modeled by a discrete

environment to any desired degree of accuracy.

Agents are assumed to have a repertoire of possible actions available to them,

which transform the state of the environment. Let

,...},{ 1αα=Ac

Be finite set of actions. Than the basic model of agents interacting with their

environment is as follows:

The environment starts in some state, and the agent begins by choosing an

action to perform on that state. As a result of this action, the environment can

respond with a number of possible states. However, only one state will

actually result - though of course, the agent does not know in advance which it

will be. On the basis of his second state, the agent again chooses an action to

perform. The environment responds with one of a set of possible states, the

agent then chooses another action, and so on.

A run, r , of an agent in an environment is thus a sequence of interleaved

environment states and actions:

ueeeeer u→→→→→ −13210 ...: 3210

ααααα

Let

• ℜ be the set of all such possible finite sequences (over E and Ac);

 10

• Acℜ be the subset of these that end with an action; and

• Eℜ be the subset of these that end with an environment state.

We will use ,..., 1rr to stand for members of ℜ .

In order to represent the effect that an agent's actions have on an

environment, we introduce a state transformer function (from Fagin, 1995):

)(: EAc ℘→ℜτ

Thus a state transformer function maps a run to a set of possible environment

states – those that could result from performing the action.

There are two important points to note about this definition. First,

environments are assumed to be history dependent. In other words, the next

state of an environment is not solely determined by the action performed by

the agent and the current state of the environment. The actions made earlier

by the agent also play a part in determining the current state. Second, note

that this definition allows for non-determinism in the environment. There is

thus uncertainty about the result of performing an action in some state.

If () Ø=rτ (where r is assumed to end with an action), then there are

no possible successor states to r. In this case, we say that the system has ended

its run. We will also assume that all runs eventually terminate.

Formally, we say an environment Env is a triple >=< τ,, 0eEEnv where E

is a set of environment states, Ee ∈0 is an initial state, and T is a state

transformer function.

We now need to introduce a model of the agents that inhabit systems. We

model agents as functions which map rims (assumed to end with an

environment state) to actions (from Russell and Subramanian):

Ac→ℜE:Ag

Thus an agent makes a decision about what action to perform based on the

history of the system that it has witnessed to date.

While environments are implicitly non-deterministic, agents are assumed to be

deterministic.

Let Ag be the set of all agents. We say a system is a pair containing an agent

and an environment. Any system will have associated with it a set of possible

runs; we denote the set of runs of agent Ag in environment Env by

()EnvAg,ℜ . For simplicity, we will assume that ()EnvAg,ℜ contains only

terminated runs, i.e. runs r such that r has no possible successor states:

() Ø=rτ . (We will thus not consider infinite runs.) Formally, a sequence

 11

,...),,,,(21100 eee αα

represents a run of an agent Ag in environment Env if

1. 0e is the initial state of Env ;

2.)(00 eAg=α ; and

3. for 0>u ,

)),....,((100 −∈ uu ee αατ , where)),....,((100 −∈ uu eAg ααα .

Two agents 1Ag and 2Ag are said to be behaviorally equivalent with respect

to environment Env if and only if

),(),(21 EnvAgEnvAg ℜ=ℜ ,

And simply behaviorally equivalent with respect to all environments.

2.05 Types of agents

Purely reactive agents:

One of the most basic agent designs is the purely reactive agent – These

agents make decisions purely on the basis of the actual state of the

environment. They make no reference at all to the past. This way of acting is

called tropism; it was formulated by Genesereth and Nilsson in 1987.

This kind of entities are a used in the most basic roles of our world such as

thermostats. Their main and probably only advantage is they require no

internal memory whatsoever.

Formally they can be simply described by the function:

AcEAg →:

Agents with state:

The more sophisticated agents are called agents with state. These agents have

some kind of internal data structure holding information about the

environment’s state and history. The simplest construction of such agents is

basically finite state machines.

 12

2.06 Agents interacting

A typical multiagent system, as one would expect contains a number of agents

which interact with each other through communication. Different agents have

different spheres of influence which may coincide in some cases. These

relations may give rise to dependency relationships between the agents.

2-1: Typical structure of a multiagent system based on an image from [1]

When agents get into contact with each other their behavior based on their

dependency on each other can be described by one of these categories (defined

by Sichman and Demazeau, 1995):

• Independence: There is no dependency between the agents.

• Unilateral dependence: One agent depends on the other agent, but not

vice versa.

• Mutual dependence: Both agents depend on each other with respect to

the same goal.

• Reciprocal dependence: The first agent depends on the other for some

goal, while the second also depends on the first for some other goal

(the goals can be the same, but that’s not necessary, which means that

mutual dependence is a subcategory of reciprocal dependence).

These categories can be further refined by considering the fact that these

relations may be locally believed, or mutually believed.

2.07 Communication

Communication basically means exchange of information. But in agent related

context it can be even more powerful. Agents can request others to perform

some task for them. An autonomous agent has control over both its state and

its behavior. It can not be taken granted any of the nearby entities will execute

a given action just because another agent wants it to but if their objectives

allow it they can be more successful in cooperation.

Environment
Sphere of influence

interaction agent

 13

In most environments agents can neither force other agents to perform actions,

nor directly modify data on the internal state of other agents. What they can do

is perform actions (communicate) in an attempt to influence other agents

appropriately. This fact is further explained in the speech act theory.

2.08 Cooperation

From the view of cooperation we can categorize the agents based on their

interests:

• Self interested agents

• agents working for a common goal

The self interested agents inhabit the same environment, but have their very

unique goals what in many cases makes them competitors to each other. To

description of their relations there are used dominance strategies and the Nash

Equilibriums.

But in my present work there are more interesting the agents working for a

common goal. Historically most work on cooperative problem solving has

made this benevolence assumption. This assumes that the agents can rely on

the information and requests got from each other. They will help each other

even if that means that one or more agents must “suffer” in order to do so.

This design also brings the fact that agents are simpler in design than the self

interested ones.

 14

Chapter 3. Selected approach

3.01 The environment

The program tries to be a

simulation of a real

warehouse environment. This

means, I had to go through

the properties of a real

warehouse and select the ones

that I taught to be relevant,

build them into the

simulation, while ignore, or

throw away other issues I

didn’t find relevant enough.

In general the real world systems are dynamic, non-deterministic, inaccessible,

and continuous.

Dynamic and non-deterministic, because there are most probably multiple

agents working with the same set of objects near each other. Their design

objectives may differ and in their work they are likely to interfere with each

other. There are also unforeseen errors, broke-downs that make the real world

so complex.

The inaccessibility of the environment is one of the main points of my work.

As I mentioned before the traditional approach of storage facilities is through a

central database system. This, if built and maintained properly, provides a

completely accessible environment for the decision making entity. The whole

point of this program is to decentralize the system and whit that done remove

the need of accessibility from the storage facility.

The real world is clearly a continuous environment, however in the world of

computers we are usually provided to work with a discrete environment.

Because the above facts I chose to put my simulation in a dynamic, non-

deterministic, inaccessible, but discrete environment.

3-1: Medicine distribution warehouse, Bratislava

 15

The warehouse can be extended in the runtime through the script language

inserting new container positions and waypoints to be explored by the agents –

their environment is changing beyond their power.

There are also multiple workers in the simulation, they can’t be sure what their

operations will result when interacting with the same set of containers.

The inaccessibility is represented in a way that the agents see only the single

object where they are actually standing and they know what waypoints can be

reached from their current position. All other position information they can

only remember.

3.02 The workers

The agents of my simulation on default are expected to behave as agents

working for a common goal. They should cooperate to keep up the work in the

storage facility. This fact can be easily changed by the user with overwriting

the script of one or more agents thus with that simulating the actions of a

faulty or misbehaving agent. It can be easily done by the tools of the program,

but it’s not part of the program’s original goals.

The type of agent dependency I used in my working agents is reciprocal. They

have (most probably) different sub-goals – to position or retrieve different

packets – but they share information with each other about the packet’s

whereabouts.

The agent communication I realized through a messaging system. Originally

there where two types of messages in the program – a specified message

holding information about the locations of the known packets, and a more

general text message type. Later I used only the general messages which gives

more freedom to the agents in their communication however increases the load

on their text processing abilities.

An interesting concept of the multiagent systems is the multi-layered

organization of the agents. In my simulations I expected all agents to be equal.

This means that no agent takes orders from others, neither gives any. They

simply send informational messages to each other. However the whouse

program is fully able to operate multi layered worker infrastructure – it can be

done simply through the message system.

I choose to leave out this approach from my experiments because it partially

reintroduces one of the main issues to the warehouse world I wanted to

eliminate in the first place – the existence of a bottleneck in the system. If

there are privileged elements between the workers who are organizing the

others, their loss, or their misbehavior can be nearly as crucial as the failure of

 16

the single central entity. We could solve the above issue by deciding that the

agents at their birth all will be equal than later by some way of selection do

they occupy their positions. This all could be done, and much ore but I think

this would take us quite far from the original goal of my project.

Agent learning is another aspect I choose to leave out from my simulation. I

created a program to be a simulation tool for human programmers who are

interested in testing their own ideas rather than letting the computer to think

out a suitable solution. The user has the tools to alter or replace the driving

scripts of each worker, or even the driving script of the simulation itself at any

point of his/here experiment. I think this gives the enough flexibility to the

program, in fact I think it possibly even compromises the results of the

simulation giving the possibility of human intervention.

3.03 The goals of the simulation

The task of the workers is to successfully receive packets from the exchange

points and position them into the free containers of the warehouse. When a

return request arrives the workers should as quickly as possible return with the

packet to an exchange points. The lengths of these complex operations are

counted in work cycles.

The simulation is guided by a main script (or directly by the user through the

graphic interface) which has control over all the important data of the

simulation:

• How many workers should be in the warehouse

• How many packets, and when should be inserted to the warehouse

• When should be the Packets returned from the warehouse

• How and when should be the warehouse extended

• How should be the control output created.

Using these options the user has the ability to simulate a wide variety of

warehouse situations, nearly everything I could think of.

The program itself in general does not support batch execution – multiple runs

of different simulations, however on a selected warehouse map the main script

of the simulation can be set in a way that it would replay the same scenario (or

any different scenarios) multiple times. The shortcomings of this “batch

execution” are that the main script has no control over the memories and in

general over the inner states and position of the workers so there is no way to

reset them to the same position and state between the different runs of a given

scenario.

 17

Chapter 4. The whouse program

4.01 Introduction

The program is a multiplatform simulation tool representing the work of

independent agents in their work environment. The selected type of

environment is a warehouse where the workers' collective goal is to make the

warehouse functional – store packets and on request retrieve them from the

warehouse.

Each agent is driven by its own driving script written in the program’s script

language that can be modified by the user. The scripts are intended to serve

one or more of the following sub-goals:

• receive outer requests

• receive packets

• find place for packets

• reorganize packets

• retrieve packets

The user sets the environment through a properly formed input file, than sets

the precise details using the windowed environment and the scripts of the

working elements.

4.02 Elements of the simulation

The warehouse structure is represented as a graph. Two types of elements

build up the graph – the corners and corridors.

The corridors also represent the storage area of the

warehouse. Each section of a corridor can be taken as

one storage place. In the program these objects are

named as ContainerLine (Cline).

The corners connect two or more corridors, or terminate

a single corridor. The agents use these positions as

waypoints to identify their position. Their name in the

program is Waypoint and all have their unique

identification number.

Specialized waypoints are the exchange points (ExchangePoint). These

positions, besides serving as ordinary waypoints, also double as connection to

4-1 Distribution

warehouse Fenix

 18

the outer world. Workers, packets, and packet requests enter the simulation

through these objects. At least one ExchangePoint is needed in each

warehouse. If there are more of them they are all expected to be equal, there

exists no main ExchangePoint.

The goods stored in the simulation are represented by packets. Packets have

their own unique identifier number, a type, weight and string content (the

content is irrelevant from the perspective of the simulation).

The weight determines which worker is able to carry it, and the type is defined

to help the agents organizing the packets.

The working agents of the program are called the Workers. The workers in

the actual version are driven by their script that is freely modifiable by the

user. Another important characteristic of the agents are their carrying ability

which determines the weight they can move. They have a backpack witch

holds the packets the worker is actually carrying. Each of these packages is put

into one of three possible pockets of the backpack or with other words is

labeled with one of three labels. These labels (packets) are meant to be

dedicated to one of the main actions the worker can have connected to the

packets:

• “in”, meaning the agent brought ti in to the warehouse,

• “out” meaning the agent is returning with the packet to an exchange

point,

• “move” meaning the agent is only relocating the position of the packet

in the warehouse.

The memory of the workers is represented in two entities. The first, simpler

one is the request memory. This is a simple collection of packet identifiers and

packet types representing the packet return requests that were received by the

worker and are under completion. These requests can be duplicated, created

and deleted by the agents themselves making it possible to exchange them

through the message system.

The other memory entity of the working agents is called the WorkerMemory.

This object is able to hold three types of information:

• The identifiers of exchange points seen so far by the worker.

• Packet information - containing the exact location, type and identifier

of a selected packet.

• Waypoint pairs representing the corridors of the warehouse.

In the WorkerMemory the old information is gradually overwritten by the new

details the worker is picking up.

The WorkerMemory is generally used to answer queries like how does the

agent get from its current position

• to a selected packet,

 19

• to a selected type of packets,

• or to a selected exchange point.

Both memories have a limited capacity that is changeable by the user.

If the agent is commanded through the script language (what is the case in the

current version of the program) there are also two built in stacks that are

expected to be used as a memory however these are not part of the agent itself.

For more details about the stacks see sections “The built-in script language”

and “The built-in functions”.

The agents communicate with each other through messages. These messages

are pieces of information – in the actual version strings – that is sent to a

selected distance. All agents closer than the defined distance will receive the

message. The length of the message is not limited in any way in the program.

4.03 The work cycles

The time in the simulation is counted in work cycles.

In a work cycle (or simulation step) the main script and each of the worker

scripts are executed in a predetermined order until they reach their last

instruction, or a function call that is defined to temporarily terminate the script

execution. Such functions are the movement commands and the next_c()

function. This behavior assures that the agent’s work is uninterrupted in each

cycle. All the information obtained about the environment stays valid until the

next function call that takes the initiation from the worker and gives it to

another one. At the next work cycle the agent is advised to refresh its

knowledge of the environment. If in the last cycle the script of the worker has

reached its last instruction, it is reset to the first one.

The user should also note that at the beginning of each work cycle the worker

is provided with the messages it received from the last simulation step. If the

agent does not process these messages before finishing the actual work cycle

they will be lost forever and replaced by new messages.

 20

4.04 The graphic interface

The Program consists of a main window and several dialog-windows. The

main window’s central part is the map screen where the actual simulation is

represented. The size of the representation depends on the size of the main

window.

The visible elements of the simulation are:

• Waypoints

• Exchange points (ExchangePoint)

• Corridors (ContainerLine)

• Workers

• Packets

The waypoints are represented as blue rectangles.

The exchange points are shown as see-through red squares, similar to the

waypoints.

The corridors connecting the waypoints and the exchange points are white

lines whit white see through rectangles. The number of rectangles shows the

length and storing capacity of the corridors.

The workers are represented as green dots. These objects can be placed only

on top of the waypoints, exchange points, or corridor containers.

4-2: Image of the running simulation

 21

The last visible elements are the packets. Those are visible only when placed

into a corridor’s container; in that case the color of the container changes

according to the packet’s type.

The main window’s menu has the following menu options:

• „File“

• „Simulation“

• „View“

• „Log“

The „File“ menu’s menu options are:

• „Open Map“ – opens a prepared simulation file, if another simulation

was already selected, closes the old one.

• „Exit“ – terminates the program.

The „Simulation“ menu:

• „Step“ – gives order to the actual simulation to provide a single

simulation step (work cycle).

• „Run“ – By checking this option the simulation executes simulation

steps until unchecked.

• „Speed“ submenu – Changes the time delays between the simulation

steps shorter or longer by a linear constant value. Affects the execution

only when Run menu option is activated.

• „Workers“ submenu – The “Workers“ menu option opens the

“Workers“ dialog window, while the “Create worker” shows the

“Create worker” dialog.

• “Packets” submenu – The “Packets” menu option opens the

“Packets” dialog window, while the “Create packet” shows the

Create packet dialog.

• “Main script” menu option – Opens the “Main script” dialog

window.

• “Guided simulation” menu option – Enables or disables the execution

of the main script at the work cycles. It makes easier to switch between

a script guided simulation and a real-time user guided one (unchecked

checkbox).

The “View” menu:

• “Visualize” menu option – Enables or disables the visual

representation of the simulation. Disabling the visualization makes the

program run faster, however, to feel any difference; the simulation

speed has to be set to minimum value.

 22

• “Grid” menu option – Turns on or off the background grid that helps

identifying the waypoints.

The “Log” menu:

• “Open Logfile” menu option – Opens a file dialog to select an xml

logfile where the simulation should write. The old content is

overwritten.

• “Write Log” menu option – Enables or disables logging.

4.05 The dialog windows

Packets dialog:

This window contains the details

of a single packet. These details

are its identifier, type, weight,

actual status, and its text content.

The identifier is unique for all

packets in the simulation; their

type is represented by an integer

value. The text content is a

standard string.

The status of the packet can be

• “outside” – not in the

simulation.

• “in the warehouse” – the

packet has been sent to the warehouse, and is in a container, in a

worker’s backpack, or waiting for a worker at an exchange point.

• “in search” – a packet request has been generated and sent to the

exchange points.

To select a packet to be shown in the dialog, the user has to select the correct

type from the types list, than the required identifier from the ID list.

The “Create Packet” button opens the Create Packet dialog.

The third button in the window changes according to the actual state of the

packet. It can be a “Send in” button, that puts the packet into the simulation,

or “Ask back” that generates a return request for the packet.

4-3: The details of the Packet "0"

 23

Create packet dialog:

In this window the user can set the type, weight and content of a new packet;

than the program creates the packet with the smallest unused identifier and

adds it to the simulation.

Workers dialog:

This window contains the

details of a single agent.

These details are its

identifier, maximal weight,

the worker is able to carry,

the actual weight load, actual

positron in the warehouse,

the driving script, and the

output.

The identifier is unique for

all workers in the simulation.

The driving script can be rewritten by the user. The button “Compile script”

recompiles and reinitializes the actual agent’s driving script and the

compilation’s result is placed into the output field.

To select a worker to be shown in the dialog, the user has to select the

identifier of the worker type from the types list, than the required identifier

from the ID list.

The “Create Worker” button opens the Create Worker dialog.

Create worker dialog:

In this window the user can set the carrying capacity, the starting waypoint

and the driving script of the new agent; than the program creates the worker

with the smallest unused identifier and adds it to the simulation.

4-4: The details of the worker "0"

 24

Main script dialog:

This dialog contains two

fields, the main script, and its

output. If the user chooses to

modify, or rewrite the main

script, he should recompile it

with the “Compile script”

button.

4.06 The input

The program’s main input is an xml file.

If the program is started from the command line, the following options are

available:

• "-l" LOGFILE Opens a logfile for overwriting after the program

has started.

• "-m" MAPFILE Opens the selected map file after the program has

started.

• "-p" Opens the Packets dialog after the program has started.

• "-s" Opens the Main script dialog after the program has started.

• "-w" Opens the Workers dialog after the program has started.

The input file is expected to be an xml file defined in the map.dtd file. There

can be set the number and driving script of workers, the types of the packets,

and the main script.

The layout of the warehouse is given by a character map, for further details see

the file input_file_format.pdf.

4.07 The output

The program may produce three types of outputs.

• xml log file

• windowed output

4-5: A running script in the Main script dialog

 25

• Text output to the standard console output.

The xml log is generated automatically and can be directed to a selected file.

Its format is defined by the log.dtd file.

The Main script – and Workers dialogs are both containing an output field

where the running scripts are writing their output.

The script language contains a function that writes directly to the standard

output for logging purposes.

4.08 The built-in script language

The syntax of the language is based on the C language with some important

differences such as:

• There are no arrays, or complex types.

• There are no pointer operations.

• Variable initialization is compulsory at declaration.

• Variable names when already defined should be preceded by a „$“

character.

The scripts can be of

two types – single step

scripts or long running

scripts.

A single step script is

used in most agent

scenarios. This means

the script describes a

single decision tree that

the worker evaluates in

each and every work step.

At the end of the work

step the evaluation reaches one of the end nodes and the script terminates. In

the next step the worker starts the script from the beginning with reinitialized

variables.

To somewhat extend the describing strength of the language in these single

step scenarios, there are two additional function groups operating with a stack.

The two stacks are an integer and a string stack. These are not overwritten

between different script runs so they are expected to be used mostly as status

information storages.

4-6: A simple example script

 26

The other type of script supported by the language is a long running script.

This script is completed through multiple simulation steps, in some cases

through the entire simulation. This behavior is expected from the main script.

The language supports two types of variables: signed integer (int) and string

(string). Both types are defined by the most common operators used in similar

languages.

Additional properties of the script language:

• Expressions with no effect are cut from the evaluation tree. Typically

such operations are expressions without variable assignment, or

without functions that in some way changes the state of the simulation.

• Stacks provide virtually unlimited storage place for the convenience of

the user, but it is not expected to be “abused”.

• Worker scripts run until they reach a movement function, the main

script has to be stopped explicitly using the next_c() function.

• The main script and each of the worker owned scripts is running as a

separate entity. There is no way to change information between them

except of using the message sending systems.

For the syntax of the script language see script_diagrams.pdf.

4.09 The built-in functions

The script language provides a list of preregistered functions in the fields of

string operations, output and variable storing.

In the following context „free parameters“ means that the function accepts any

number or type of parameters.

The indexing of the following functions is always expected in the interval {0,

1, ...}.

Output functions:

Print the selected values to the program’s output.

void print(free parameters)

- The parameters can be of both string and integer type. They are concatenated

to a single string and sent to the built in output (in the whouse program to the

local worker or main script outputs).

 27

void std_out(free parameters)

- The parameters can be of both string and integer type. They are concatenated

to a single string and sent to the standard output.

String related functions:

They implement the most basic string operations. In addition to these

functions string concatenation is implemented using the “+” operator.

string substr(string input

 , int start_index

 , int substr_length)

- It returns a substring of the input string starting at index position to the

“index + substr_length” position. If the substr_length value is too big, it

returns the largest possible substring. If there is no such substring at all, or the

index is invalid (smaller than 0, or larger or equal to the size of the original

string) returns an empty string.

int strlen(string input)

- It returns the length of the input string.

string int_to_str(int value)

- Translates an integer value to string representation.

int str_to_int(string value)

- Translates a string number to integer representation if there is any. If the

string is not the representation of a valid number, it returns 0.

Pseudorandom number generator:

Uses the standard C language pseudorandom generator functions)

int rand(int minimal_value, int maximal_value)

- It returns a random integer value from the selected interval.

void srand(int seed)

-It seeds the random generator with the seed input value.

void srand()

- It seeds the random generator with the current system time.

String stack:

A stack that remains intact between distinct script runs.

 28

string str_stack(int index)

- It returns the value found on the index position from the string stack.

string str_stack_set(int index, string value)

- It sets the value in the index position on the string stack. It returns the old,

replaced value.

int str_stack_size()

- It returns the number of values on the string stack.

int str_stack_push(string value)

- It pushes a new value to the top of the string stack. It returns the index of the

new value.

string str_stack_pop()

- It removes the value from the top of the string stack. It returns the removed

value. If the stack is empty, returns an empty string.

void str_stack_clear()

- It removes all elements from the string stack.

Integer stack:

A stack that remains intact between distinct script runs.

int int_stack(int index)

- It returns the value found on the index position from the integer stack.

int int_stack_set(int index, int value)

- Sets the value in the index position on the integer stack. It returns the old

replaced value.

int int_stack_get_size()

- It returns the number of values on the integer stack.

int int_stack_push(int value)

- It pushes a new value to the top of the integer stack. It returns the index of

the new value.

int int_stack_pop()

- It removes the value from the top of the integer stack. It returns the removed

value. If the stack is empty, returns an empty string.

void int_stack_clear()

- It removes all elements from the integer stack.

 29

4.10 Main script specific functions

The following functions are only available in the main script.

void next_c()

- Breaks the script execution until the next working cycle.

Packet related:

int create_packet(int type, int weight, string content)

- Creates a new Packet outside of the warehouse with the selected type,

weight, and content. It returns the identifier of the new packet.

int get_packet_type(int id)

- It returns the type of the packet with the selected identifier. If no such packet

exists, returns -1.

int get_packet_weight(int id)

- It returns the weight of the packet with the selected identifier. If no such

packet exists, returns 0.

string get_packet_content(int id)

- It returns the content of the packet with the selected identifier. If no such

packet exists, returns an empty string.

string get_packet_status(int id)

- It returns the status of the packet with the selected identifier. If no such

packet exists, returns an empty string. Possible status values: "in" means in

storage, "outside" means not in the warehouse, "in search" means a search

request has been sent to the workers.

int get_number_of_packets()

- It returns the number of existing packets in the simulation.

int get_number_of_packets_outside()

- It returns the number of packets that are not in the warehouse or in search.

int get_number_of_packets_inside()

- It returns the number of packets that are in the warehouse and are not in

search.

int get_number_of_packets_in_search()

- It returns the number of packets that are in the warehouse and are in search.

 30

int send_packet_to_whouse(int packet_id)

- Puts the packet to one of the ExchangePoints (to the first one) which gives it

to a worker to be placed into the warehouse. Returns 1 if succeeds, or 0 if no

such packet is found outside the warehouse.

int send_packet_to_whouse(int packet_id, int epoint_id)

- Puts the packet to one of the ExchangePoints (with the selected identifier)

which gives it to a worker to be placed into the warehouse. Returns 1 if

succeeds, or 0 if no such packet is found outside the warehouse or no

ExchangePoint exists in the warehouse.

int ask_packet_from_whouse(int packet_id)

- Puts a packet request to one of the ExchangePoints which gives it to a

worker so the selected packet could be returned. Returns 1 if succeeds, or 0 if

no such packet is found in the warehouse.

ExchangePoint related:

int get_number_of_epoints()

- Returns the number of existing exchange points in the warehouse.

int get_epoint_id(int index)

- Returns the identifier of the index-th exchange point in the warehouse. If no

such point exists there, returns 0.

Worker related:

int create_worker(int weight_capacity, string script)

- Creates a worker and places it to the first exchange point with the selected

carrying capacity and script. It returns the id of the new worker.

int get_number_of_workers()

- Returns the number of workers (agents) in the warehouse.

4.11 The worker specific functions

The following functions are only available in the worker scripts.

 31

Packet related:

Picking up and putting down the packets both at container positions both at

exchange points.

int get_packet_type(int id)

- Returns the type of the packet if it's at the worker's backpack, or on the actual

position.

int get_packet_weight(int id)

- Returns the weight of the packet if it's at the worker's backpack, or on the

actual position.

string get_packet_status(int id)

- Returns the status of the packet if it's at the worker's backpack, or on the

actual position.

int get_weight_capacity()

- Returns the weight limit the worker can carry.

int get_carried_weight()

- Returns the currently carried weight.

int get_number_of_packets_in_container(int backpack_flag)

- Returns the number of packets in the selected container (in, out, move). {in

... 1, out ... 2, move ... 3}.

int script_get_packet_id(int backpack_flag, int index)

- Returns the id of the index-th packet in the worker backpack in the selected

container. {in ... 1, out ... 2, move ... 3}.

int is_shelf_empty()

- Returns true, if the shelf is empty.

int peek_packet_id()

- Returns the identifier of the packet found on the current shelf, or -1, if there

is no packet.

int peek_packet_type()

- Returns the type of the packet found on the current shelf, or -1, if there is no

packet.

int peek_packet_weight()

- Returns the weight of the packet found on the current shelf, or 0, if there is

no packet.

 32

int pick_up_packet(int backpack_flag)

- Picks up a packet from the current position if possible. Returns the identifier

of the picked up packet if successes.

int put_down_packet(int packet_id)

- Puts the packet with the selected identifier to the current container position

(or to the current exchange point).

int put_down_packet_type(int backpack_flag, int packet_type)

- Puts the packet with the selected type and worker backpack container to the

current container position (or to the current exchange point).

Position related:

int get_position_type()

- Returns the type of object where the worker is standing. Possible values { 0

means unset value, 101 means corridor, 201 means waypoint, 202 means

exchange point }

int get_position_id()

- Returns the identifier of the actual waypoint, or exchange point where the

worker is standing. If the worker is standing on a corridor, returns -1.

int get_subposition()

- Returns the sub-element's index where the worker is standing.

int get_number_of_directions()

- Returns the number of possible directions to go from the current position.

int get_direction(int index)

- Returns the identifier of the waypoint where the selected direction is leading.

int get_distance(int wp_id)

- Returns the distance of the selected waypoint.

int move_towards(int wp_id)

- The worker makes a step towards the selected waypoint. Returns the

remaining distance.

int exists_wpoint(int wpoint_id)

- Returns the existence of the waypoint with the selected identifier.

int exists_epoint(int epoint_id)

- Returns the existence of the exchange point with the selected identifier.

 33

int exists_cline(int cline_starts_id, int cline_ends_id)

- Returns the existence of the ContainerLine with the selected identifier pair.

int create_cline(int cline_starts_id, int cline_ends_id)

- Creates the required ContainerLine if it does not interfere with the graph's

structure. Returns an indicator of success.

Message related:

void send_message(int distance, string text)

- Sends the message to the selected distance with the selected text.

int get_number_of_messages()

- Returns the number of received messages.

string get_message()

- Returns the last of the received messages, or empty string.

Request related:

The requests are held by the worker in a list identified by their packet

identifier and packet type.

int get_request_limit()

- Returns the maximal number of requests.

int set_request_limit(int new_limit)

- Sets the maximal number of requests. If there are more requests in the

container than the new limit, returns with failure.

int get_number_of_requests()

- Returns the number of packets requests.

int add_packet_request(int packet_id, int packet_type)

- Adds a new request with the selected id and type. If the id and type pair is in

the list, does nothing. If there is no free place, returns 0.

int get_request_from_epoint()

- Asks a request from the current position (exchange point only). Returns

success indicator.

int remove_packet_request_by_id(int packet_id)

- Removes a packet request. Finds it by its packet identifier.

 34

int remove_packet_request_by_type(int packet_type)

- Removes a packet request. Finds it by its packet type.

int is_packet_requested(int packet_id)

- Returns true if the packet identifier is between the requests.

int is_type_requested(int packet_type)

- Returns true if the packet type is between the requests.

int get_requested_packet_type(int packet_id)

- Returns the type of the selected packet.

int get_requested_packet_id(int request_index)

- Returns the identifier of the index-th request.

4.12 Setting up the program

The program’s current version is written and tested in the operating system of

64 bit Linux. The binary of the program on the CD was also compiled for this

system; however the project was written using only tools and extensions that

are available on a wide range of operating systems.

It uses standardized C++ functions where it is possible. The outer shell of the

program - handling both the windowed environment and it’s graphics - is

written in the QT environment (the previous version used WinAPI functions

with OpenGL graphics).

It is possible to compile the program on any system that has the utilities g++,

make, and the mentioned QT environment.

If make is not available on the selected platform, but QT is, the project can be

easily set up from only the sources using the QT automated project creation

tools (qmake in Linux).

To compile the program on the 64 bit Linux the user should enter the directory

whouse/linux_64 and use the command make. (There are also supported the

other usual make options.)

To run the program on the 64 bit Linux the user should enter whouse/linux_64

/bin directory and execute the whouse binary file. For further details about the

program options see section “The input”.

To set up the program on other QT supported systems the user should create

a new dedicated directory in the whouse directory, copy the whouse.pro file

from the original Linux directory to the new one and create the project from

the copied file using the local QT tools.

 35

The project also uses the tools bison and flex to create its script language

interpreter, but the recompilation of the language files is not necessary, the

generated files are already put into the source directory. If the user wanted to

change and recompile them he should use the Parser.yac and Scanner.lex

files. For the exact commands creating the currently used generated source

files see the compiler_construction_commands.txt file in the complier sources

subdirectory.

To update the programmer’s documentation the user should enter the

directory whouse/doc and run the doxygen utility from there or running it with

the file whosue/doc/Doxyfile.

4.13 Possible improvements in the future

Conceptual improvements

There is a parameter named weight introduced into the simulation that

determines how much can a worker carry. If a packet is too heavy, it is

possible that some workers can’t pick it up at all. There is no way of multiple

agents carrying a single packet that would be too heavy to a single worker, but

it’s an interesting concept and I would like to realize it in the future.

In the current version of whouse batch execution is not part of the program.

The user has to open each input file by hand or terminate the program

completely and start it from the command line with the new input file. In the

future this capability should be added to the program.

Technical improvements

 The program in its present state does not recognize infinite loops in the

scripts. If such situation occurs, the program has to be terminated by the

system or by the user. There should be a control entity in the script language

implementation that stops the suspiciously behaving scripts.

The language should be extended with the possibility to define own functions

in the script files. This would make the worker scripts much shorter and easier

to read.

In the present state of the program the built-in path memory is not accessible

from the script language. It would greatly reduce the complexity and possibly

 36

lower the time requirements of the scripts if the path finding algorithms would

be definitely moved into the native C++ code.

In the QT environment (the current version) the program has no graphic

representation for its so called “active log” which follows the amount of items

such as workers, packets, messages and their actual position. The previous

version of the program was able to create a chart from these details. This

feature should be also put into the new handler structure in the future.

In the present state the warehouse extending functions (adding new

Waypoints, ExchangePoints, and ContainerLines to the warehouse) are

connected only to the script language, later these should be also connected to

the graphic user interface.

The implementation of worker communication consists of text messages. It

would improve their message processing abilities if they communicated

through an already “parsed” system that would not append together the

message string at sending to be taken apart by the receiver but rather forward

it in pieces.

 37

Chapter 5. Conclusion

The distributed database driven model of the storage facility works but as it

could be expected, it has not only benefits but also shortcomings. In this

chapter I would like to point out some of the issues I experienced.

The most severe of the shortcomings I experienced is the length of the

retrieval times. The workers have no problem quickly placing the packets to a

free place than later reorganizing it; but it needs reasonably more working

agents to provide at least similar retrieval times as the single central entity

system would require.

As I observed there are two key differences that provide the speed difference.

The production systems with the central entity sends the retrieval request (or a

command sequence equivalent of that) to the closest worker, while in my

distributed system it needs to wait until an agent without other tasks to do

returns for further instructions. The results of this issue could be at least

reduced by introducing priorities, connecting them to the possible worker

actions and giving high priority to returning to the exchange points.

The other, more interesting point is, in the centralized systems the main entity

has the power to decide which task is the most important at any point and can

alter the behavior of the workers accordingly, while in my system each agent

decides about its behavior independently based on its limited amount of

information. This inconvenience could be solved by increasing the number of

agents and differentiating them by assigning them to different types of tasks so

in each type of action there would be enough workless agents ready to

complete tasks according to the actual needs.

These type groups I realized in my program (built into the agents

AutoWorker) as agent states that would change based on the perceptions and

recent actions of the agent. These states cover only the most important task

categories:

• to search for a selected packet,

• to find the closest exchange point (used when returning with a packet),

• to find a convenient container position to drop the packet,

• To reorganize the storage place.
In small warehouses this solution is sufficient to provide the required quick

retrievals, but as the warehouse gets larger, the retrieval times does not rise

proportionally.

Another, but different issue with the autonomous agents is their tendency of

venturing away from their known territory. After they leave their charted up

 38

surrounding according to their settings they either forget the old territory in

favor of the new one, or simply get lost for a while.

As a solution of this issue I tried to limit their movement to known paths after

their memory has filled up with the first several explored waypoints and with

that bound them to their known area, where they can work efficiently. This

however disables one of the great characteristics of the autonomous agent

design; that it is able by itself exploring and putting to use parts of the

environment that to the point were unknown, or possibly didn’t even exist (In

our case newly added waypoints and corridors). To keep the good

characteristics of both behavior I think there should be introduced a system

that would from time to time allow the agents to venture away from their

known territories but keep them returning to their initial surroundings.

In my point of view the distributed agent system’s potential can be used

mainly in situations where their work environment is regularly and/or

unexpectedly changing to the point that the central entity can’t keep up with

the updates seamlessly. In these situations the slower retrieval times of the

distributed system are not an issue and their adaptability and robustness can be

a great advantage.

 39

Bibliography

[1] Michael Wooldridge: An Introduction to Multiagent Systems, John

Wiley & Sons (2002), ISBN-10:0-471-49691-X

[2] Yoav Shoham, Kevin Leyton-Brown: Multiagent Systems:

algorithmic, game-theoretic, and logical foundations, Cambridge

University Press (2009)

[3] Stanley P. Franklin: Artificial Mind, The MIT Press (1995, fifth

printing 2001)

[4] José M. Vidal: Fundamentals of Multiagent Systems (2007)

[5] J. Tweedale, N. Ichalkaranje, C. Sioutis, B. Jarvis, A. Consoli, G.

Philips-Wren: Innovations in multi-agent systems, Journal of Network

and Computer Applications (2006)

[6] Nikos Vlassis: Multiagent Systems and Distributed AI, University of

Amsterdam (2003)

 40

Appendix

• whouse/doc/input_file_format.pdf

guide to create an input file.

• whouse/doc/map.dtd

Format definition of the input xml file.

• whouse/doc/log.dtd

Format definition of the output xml file.

• whouse/doc/script_diagrams.pdf

The syntactic and lexical diagrams of the script language.

• whouse/doc/doxy/index.html

The programmer’s documentation created using Doxygen.

• whouse/linux_64/bin/whouse

The program itself (compiled for 64bit Linux systems).

• whouse/linux_64/Makefile

Automatically generated makefile of the program.

• whouse/linux_64/whouse.pro

The project file of the program.

• Source files in the whouse/src directory

• Test files in the whouse/tests/maps directory

