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Abstract

Image segmentation is a fundamental part in low level computer vision processing. It

has an essential influence on the subsequent higher level visual scene interpretation

for a wide range of applications. Unsupervised image segmentation is an ill-defined

problem and thus cannot be optimally solved in general.

Several novel unsupervised multispectral image segmentation methods based on

the underlaying random field texture models (GMRF, 2D/3D CAR) were developed.

These segmenters use efficient data representations that allow an analytical solutions

and thus the segmentation algorithm is much faster in comparison to methods based

on MCMC. All segmenters were extensively compared with the alternative state-

of-the-art segmenters with very good results. The MW3AR segmenter scored as

one of the best available. The cluster validation problem was solved by a modified

EM algorithm. Two multiple resolution segmenters were designed as a combination

of a set of single segmenters. To tackle a realistic variable lighting in images, the

illumination invariant features were derived and the illumination invariant segmenter

was developed.

For the proper evaluation of segmentation results and ranking of algorithms, a

unique web-based texture segmentation benchmark was proposed and implemented.

It was used for comprehensive comparisons of results of developed algorithms with

ten different state-of-the-art segmentation methods. Finally, the proposed methods

were validated through use in various applications from a range of different fields.

In the medical imaging field, they were used for automatic segmentation of mam-

mograms into regions of interest. Proposed solutions based on the random field model
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could also be used in automated inspection systems. Developed segmenters work on

aerial images up to a size of 8000 × 8000 pixels, which are standard in the remote

sensing field. The algorithm can also be used in areas related to digital cultural her-

itage. At last, an advantage of our methods is the need to tune just a few application

dependent parameters.
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Introduction
Chapter 1

1.1 What Is Image Segmentation?

Segmentation is a fundamental process which partitions a data space into meaningful

salient regions. It is often used to partition an image into separate regions, which

ideally correspond to different real-world objects. It is a critical step [146] towards

content analysis and image understanding. Image segmentation essentially affects the

overall performance of any automated image analysis system, thus its quality is of

the utmost importance. Image regions, homogeneous with respect to some usually

textural or colour measure, which result from a segmentation algorithm are analysed

in subsequent interpretation steps. Colour and texture are the most important visual

cues for segmentation. With the progress of digital image sensors, texture can be more

precisely captured and thus texture becomes even more important. Consequently

texture-based image segmentation has been an area of intense research activity in the

past thirty years and many algorithms were published in consequence of all this effort,

starting from simple thresholding methods up to the most sophisticated random field

type methods. However many papers are published every year, image segmentation

is still far from being solved. Segmentation can be categorized into supervised and

much more difficult unsupervised categories.
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1.1.1 Supervised Segmentation

Supervised segmentation benefits from prior knowledge of all classes of trainee sets

in the classification task to be solved. It consists of two steps – learning and clas-

sification. In the learning stage it learns a classifier or set of classifiers on the local

characteristics (features) of the training set (eg. texture patches). The training set is

divided into class related subsets. During the classification phase the learned classifier

is utilized to assign class labels to image pixels.

1.1.2 Unsupervised Segmentation

On the other hand, unsupervised methods which do not assume any prior knowledge

of class related trainee sets, which can be learned to help the segmentation process,

are obviously more challenging than the supervised ones due to the unknown division

of the training set into classes. Additionally, it can be even harder without knowledge

of the number of classes in the image to be segmented.

Cluster Validation

The determination of the number of classes actually present in an image is a serious

problem. This problem, called the cluster validation problem, remains essentially

unsolved. The difficulty of this problem lies, in part, in the inability to provide

accurate sampling distributions for various classes and the lack of sufficient regularity

conditions [33]. We proposed [61] the hierarchical cluster validation approach where

clusters are merged or split as the segmentation algorithm progresses in attempting

to solve the segmentation and validation problems simultaneously.

Segmentation Verification

Unsupervised image segmentation is therefore an ill-defined problem, and, without

any semantic information from the upper level of computer vision, cannot be satisfac-

torily solved in its full generality as the human vision system can be. Although many
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methods are published every year, the problem is still far from being solved. This

is, among other reasons, due to missing reliable performance comparisons between

different techniques. Rather than advancing the most promising approaches, novel

algorithms are often satisfied just being sufficiently different and tested only on a

few selected examples. Therefore, a system for proper testing and robust learning of

performance characteristics is needed. But it requires large test sets and objective

ground truths.

1.2 Thesis Contribution

Several unsupervised multispectral image segmentation methods based on the under-

laying random field texture models (GMRF, 2D/3D CAR) are designed and devel-

oped. Descriptive models are used instead of usually applied discriminative models.

Because descriptive models allow us to reconstruct segmented data space we can

rightfully expect to obtain a better quality of the segmentation results than using the

standard discriminative approach. The segmenters do not assume any prior knowl-

edge of the number of regions in the image and try to solve cluster validation problem

by a modified EM algorithm. Several multiple resolution segmenters are proposed and

illumination invariant features are employed to tackle realistic lighting.

A web-based texture segmentation benchmark service is proposed and implemented.

Its main goals are test data generating, segmentation results evaluation and algo-

rithms ranking, comparison and development. It provides several benchmark data

sets – monospectral, multispectral, or BTF data, and sets testing scale, rotation,

and illumination invariance. It is intended for either unsupervised or supervised seg-

mentation methods validation. All developed methods were extensively tested and

verified on this benchmark which is rarely done for published alternative segmenters.

Further, these methods were also validated on various applications. In the medical

imaging field, an unsupervised segmentation method is used for automatic mammo-

gram segmentation into regions of interest. The random field model is utilized for fast

defect detection that could be used in automated inspection systems. In the remote

sensing field it has to work on images reaching a size of 8000 × 8000 pixels. And
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finally, our methods can be used in areas related to digital cultural heritage as well.

1.3 Thesis Overview

The thesis outline is as follows: the next chapter overviews the state-of-the-art meth-

ods, followed by chapter 3, which covers a description of texture representation mod-

els, clustering methods, and multiple resolution approaches. Chapter 4 concerns

segmentation validation and its main content is a developed web-based benchmark

framework. The subsequent chapter contains experimental results and comparison of

algorithms. In chapter 6 can be found various examples of applications of image seg-

mentation (mammography, defect detection, remote sensing, and cultural heritage).

The thesis is concluded in chapter 7 with conclusions and further development.
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Chapter 2

Segmentation methods are based on some pixel or region similarity measures in rela-

tion to their local neighbourhood. They are usually categorized [117] as region-based,

boundary-based, or as a hybrid of the two [13, 34]. Boundary-based methods search

for the most dissimilar pixels which represent discontinuities in the image, while

region-based methods on the contrary search for the most similar areas.

The similarity measures in texture segmentation methods use some textural spatial-

spectral-temporal features such as Markov random field statistics (MRF) [54–56],

Gabor filter features [73, 143], local binary pattern (LBP) [106, 113] and many

other features, for example [134]: autocorrelation features (ACF), co-occurrence ma-

trix (CM), edge frequency (EF), Law’s masks (LM), run length (RL), binary stack

method (BSM), texture operators (TO), and texture spectrum (TS).

2.1 Colour Models

Colour is perceived by humans as a combination of tristimuli R (red), G (green), and

B (blue) which are usually called primary colours. The RGB colour model is not

optimal for all processing tasks and therefore other colour models were developed.

Other types of colour representations can be derived from the RGB representation.

New colour spaces Y IQ, Y UV , or I1I2I3 can obtained from the RGB representation

by linear transformation.
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Y IQ resp. Y UV are used to encode colour information in TV signals for American

resp. European systems. The Y component is a measure of the luminance of the

colour, and the IQ, resp. UV components jointly describe the hue and the saturation

of the colour. These spaces can partly get rid of the correlation between components

in RGB representation. Moreover the linear transformation needs less computation

time than nonlinear ones, which makes these systems more preferable to nonlinear

systems.

Ohta et al. [104] performed experiments of region segmentation to derive a set of

effective colour features. They used recursive region splitting and calculated new

features by Karhunen-Loeve transformation and they found a set of colour features

as I1 = (R+G+B)/3, I2 = (R−B)/2, and I3 = (2G−R−B)/4. They compared I1I2I3

with seven other standard colour spaces, and claimed that I1I2I3 is more effective in

terms of the quality of segmentation and the computational complexity.

For colour image segmentation we need to make colours independent of lightning

intensity. The normalized RGB space is defined as r = R/(R+G+B), g = G/(R+

G+B), and b = B/(R+G+B). Since r+g+b = 1, we can use only two components,

determined by the percentage of the RGB components. As the third component may

be used the luminance Y = c1R + c2G + c3R. Normalization reduces the sensitivity

of the illumination changes, but it is noisy under low intensities.

The HSI (hue-saturation-intensity) system is a commonly used system in image

processing, which is more convenient to human perception. Colour information is

separated into hue and saturation, while intensity describes the brightness of the

image. Hue represents dominant basic colour, and saturation the purity of the colour.

We can use grey-level segmentation algorithms on the hue component. It is efficient

when the image contains non-uniform lighting such as highlights, shading and shadows

because hue is invariant to illumination. But hue has singularity near low saturation

values. Also, if the intensity is close to white or black, hue and saturation are not so

important in distinguishing colours. The Munsell colour system is one of the early

methods to describe colours. It is similar to the HSI system, and it use hue, value

and chroma components.
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The CIE colour system was developed to represent perceptual uniformity. The ability

to express human perceptions of colour difference by Euclidean distances is important

to colour segmentation. CIE colour spaces expressed colour and intensity information

more independently than RGB primary colours. It has three primaries denoted X,

Y , and Z, from which can be created several CIE spaces. Typical examples are

CIE (L∗a∗b∗) and CIE (L∗u∗v∗).

2.2 Texture Segmentation Methods

Texture segmentation methods can be categorized using various criteria [117], e.g.

region / boundary based, MAP / clustering methods, graph theoretic methods, etc.

The clustering approach resulted in agglomerative and divisive algorithms which were

modified for image segmentation as region-based merge and split algorithms. KMG

and KMC [36] use a common approach of clustering on low-level features using the K-

means algorithm [8], forming connected regions, and merging regions until a minimum

region size is obtained. KMG uses grey-level features, while KMC uses intensity and

colour features in the opponent colour space.

The segmenter [80] combines a bag-of-words recognition component with spatial reg-

ularization based on a random field and a Dirichlet process mixture. Bag-of-words

models predict the presence of an object within an image; random fields take into

account the spatial layout of images and provide local spatial regularization. Larger

scale structures are combined with a Dirichlet process mixture.

Different published methods are difficult to compare because of lack of a comprehen-

sive analysis together with accessible experimental data. However, available results

indicate that the ill-defined texture segmentation problem is still far from being sat-

isfactorily solved.
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2.3 Stochastic Model Based Approach

In stochastic model-based image segmentations, image classes are modelled as random

fields and the segmentation problem is posed as a statistical optimization problem

[28, 74, 98, 133, 138]. Spatial interaction models and especially Markov random fields-

based models are increasingly popular for texture representation [47, 72, 88, 117],

etc. These segmenters often employ a doubly-stochastic model to describe both the

distribution of regions and the intensity field within a region. Several researchers

dealt with the difficult problem of unsupervised segmentation using these models.

See for example [3, 48, 87, 109] or [54, 56, 58].

2.4 Region Growing

The basic approach of a region growing algorithm [26, 108] is to start from seed region

(mostly one or few pixels) that is assumed to be inside the object to be segmented.

The neighbouring pixels to every seed region are evaluated to decide if they should be

considered part of the object or not. If they are recognized as similar, they are added

to the region and the process continues as long as any undecided pixels remain. Region

growing algorithms vary depending on the similarity criteria, seed region selection,

the type connectivity used to determine neighbours, and the strategy used to visit

neighbouring pixels.

A region merging segmentation technique [112] starts from an oversegmented image

using various segmentations of the same image using the Seeded Region Growing

algorithm [90] and the merging process is based on the repulsion force between neigh-

bouring pixels criterion.

2.4.1 Blobworld

The Blobworld [12] scheme aims to automatically segment images into a small set

of regions (blobs) which are coherent in colour and texture [5]. This is achieved
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by clustering pixels in a joint colour-texture-position eight-dimensional feature space

using the EM algorithm. The feature vector is represented by a Gaussian mixture

model.

2.4.2 JSEG

The JSEG method [27] is for unsupervised segmentation of colour-texture regions in

images and video. This method consists of two independent steps: colour quantiza-

tion and spatial segmentation. In the first step, colours in the image are quantized to

several representative classes that can be used to differentiate regions in the image.

The image pixels are then replaced by their corresponding colour class labels, thus

forming a class-map of the image. The focus is on spatial segmentation, where a

criterion for good segmentation using the class-map is proposed. Applying the cri-

terion to local windows in the class–map results in the J–image, in which high and

low values correspond to possible boundaries and interiors of colour-texture regions.

A region growing method is then used to segment the image based on the multiscale

J–images.

2.4.3 TFR

TFR (Texture Fragmentation and Reconstruction) method [124] is an unsupervised

colour texture segmentation algorithm which processes independently the spectral

and spatial information. The algorithm is composed of two parts. The former pro-

vides an over-segmentation of the image, such that basic components for each of the

textures which are present are extracted. The latter is a region growing algorithm

which reduces drastically the number of regions, and provides a region-hierarchical

texture clustering. The over-segmentation is achieved by means of a colour-based

clustering (CBC) followed by a spatial-based clustering (SBC). The SBC, as well as

the subsequent growing algorithm, make use of a characterization of the regions based

on shape and context.
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2.4.4 TFR/KLD

TFR/KLD method [125] is an improved version of the TFR algorithm where the

region gain has been changed by introducing a Kullback-Leibler Divergence (KLD)

term modelling the region similarity in terms of spatial location. The image to be

segmented is first discretized and then a hierarchical finite-state region-based model

is automatically coupled with the data by means of a sequential optimization scheme,

namely TFR algorithm. Both intra- and inter-texture interactions are modelled, by

means of an underlying hierarchical finite-state model, and eventually the segmenta-

tion task is addressed in a completely unsupervised manner. The output is then a

nested segmentation, so that the user may decide the scale at which the segmenta-

tion has to be provided. TFR is composed of two steps: the former focuses on the

estimation of the states at the finest level of the hierarchy, and is associated with an

image fragmentation, or over-segmentation; the latter deals with the reconstruction

of the hierarchy representing the textural interaction at different scales.

2.5 Split and Merge

Split and merge techniques [103, 108] start with recursive splitting image into smaller

regions until they do not satisfy some homogeneity criterion. The second merging

step merges adjacent regions with similar attributes.

2.5.1 GSRM

GSRM (General Statistical Region Merging) method [11] is a statistical approach to

region merging where regions are modelled as arbitrary discrete distributions, directly

estimated from the pixel values. Under this framework, two region merging criteria

are obtained from two different perspectives, leading to information theory statistical

measures: the Kullback-Leibler divergence and the Bhattacharyya coefficient. The

methods are size-dependent, which assures the size consistency of the partitions but

reduces their size resolution. Thus, a size-independent extension of the previous
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methods, combined with a modified merging order, is also proposed. Additionally,

an automatic criterion to select the most statistically significant partitions from the

whole merging sequence is available.

2.6 Watershed

Watershed segmentation [82, 100, 111, 127] classifies pixels into regions using gradient

descent on image features and analysis of weak points along region boundaries. The

image feature space is treated, using a suitable mapping, as a topological surface

where higher values indicate the presence of boundaries in the original image data.

It uses an analogy with water gradually filling low lying landscape basins. The size

of the basins grow with increasing amounts of water until they spill into one another.

Small basins (regions) gradually merge together into larger basins. Regions are formed

by using local geometric structure to associate the image domain features with local

extremes measurement. Watershed techniques produce a hierarchy of segmentations,

thus the resulting segmentation has to be selected using either some prior knowledge

or manually. These methods are well suited for different measurements fusion and

they are less sensitive to user defined thresholds.

2.7 Level Sets

The paradigm of the level set [10, 119] is that it is a numerical method for tracking the

evolution of contours and surfaces. Instead of manipulating the contour directly, the

contour is embedded as the zero level set of a higher dimensional function called the

level-set function. The level-set function is evolved under the control of a differential

equation using some image-based features. At any time, the evolving contour can

be obtained by extracting the zero level-set from the output. Level sets allow to

model arbitrarily complex shapes and topological changes (merging and splitting)

are handled implicitly.
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2.8 Active Contours

Similar to the level set segmentation are active contour based methods [2, 34, 136],

which belong to the variational image segmentation group. This method (active

contour model (ACM) or snakes) is based on minimization of the energy functional.

This energy is usually defined as a linear combination of the internal and the external

energy terms. The internal term represents the internal energy of the contour caused

by stretching and bending. The external term is based on local image properties such

as edge strength or some region-based statistics.

2.9 Mean Shift Based

A robust clustering technique [22, 23, 46] which does not require prior knowledge of

the number of clusters, and does not constrain the shape of the clusters, is mean shift

based clustering. This is an iterative technique, as K-Means is, but instead of the

means, it estimates the modes of the multivariate distribution underlying the feature

space. The number of clusters is obtained automatically by finding the centers of the

densest regions in the space (the modes).

2.9.1 EDISON

EDISON (Edge Detection and Image SegmentatiON) segmenter [21] is a mean shift

based image segmentation with embedded edge information. To improve the trade-off

between the sensitivity of homogeneous region delineation and the oversegmentation

of the image, it incorporates an edge magnitude/confidence map into a colour image

segmenter based on the mean shift procedure. The method can recover regions with

weak but sharp boundaries and thus can provide a more accurate input for high level

interpretation modules. Its first filtering step uses the mean shift segmenter in the

combined colour L∗u∗v∗ and coordinate feature space. The mean shift weights are

derived from the edge confidence measure. The second fusion step recursively fuses

the basins of attraction of the modes.
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2.10 Graph-Theoretic Segmentation

These methods [4, 9, 35, 38, 43, 45, 132] use graph representation for image pixels

or regions where usually small neighbourhood elements are mutually connected with

weighted graph edges. These weights indicate pairwise element similarities. The

segmentation is based on finding groups of nodes that are strongly connected to each

other but weakly with the remaining nodes in the graph.

2.10.1 EGBIS

The EGBIS (Efficient Graph-Based Image Segmentation) segmenter [39] is based

on a predicate for measuring the evidence for a boundary between two regions. It

formulates segmentation as a graph cutting problem and uses dynamic programming

to form regions which are guaranteed to be neither too coarse nor fine with respect

to a colour edge strength measure within and between regions, then merges regions

to a minimum region size. The segmentation algorithm makes greedy decisions but

it produces segmentations that satisfy global properties. The algorithm runs in time

nearly linear in the number of graph edges and is also fast in practice. An important

characteristic of the method is its ability to preserve detail in low-variability image

regions while ignoring detail in high-variability regions.

2.10.2 SWA

SWA (Segmentation by Weighted Aggregation) method [45, 130] is a bottom-up

weighted aggregation framework that combines structural characteristics of texture

elements with filter responses. Each pixel in an image corresponds to a node in a

graph, coupled to each of its four neighbours according to their similarity in lumi-

nance level. The goal is to cut this graph into pieces. A salient segment in the image

is one for which the similarity across its border is small, whereas the similarity within

the segment is large. Texture elements are identified at multiple scales. It constructs

a graph in which every pixel is a node and neighbouring pixels are connected by an
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edge. A weight wi,j > 0 is associated with each edge reflecting the contrast in the

corresponding location in the image. A multiscale procedure is used to find optimal

partitions of the graph. The SWA method requires a manual selection of the best

segmentation result from the hierarchy of possible segmentation results.

2.11 Fusion of Sub-Segmentations

The underlying idea of these methods [30–32, 112] is to merge a set of different

segmentations of the input image obtained previously by standard techniques. The

segmentations can be produced using different methods or even the same method

with different initial conditions.

2.11.1 TEX-ROI-SEG

The TEX-ROI-SEG segmenter [31] is a texture extension of colour segmentation algo-

rithm ROI-SEG. It uses covariance matrices of low level features for texture descrip-

tion. These features are efficiently calculated using integral images. Furthermore, a

multi-scale extension allows to provide accurate texture segmentation results. ROI-

SEG [30] is a unsupervised colour segmentation scheme, which is based on the main

idea of combining a set of different sub-segmentation results. It uses an efficient al-

gorithm to compute subsegmentations by an integral image approach for calculating

Bhattacharyya distances and a modified version of the Maximally Stable Extremal

Region (MSER) detector. The sub-segmentation algorithm gets a region-of-interest

(ROI) as input and detects connected regions having similar colour appearance as

the ROI. Further it introduces a method to identify ROIs representing the predomi-

nant colour and texture regions of an image. Passing each of the identified ROIs to

the sub-segmentation algorithm provides a set of different segmentations, which are

then combined by analyzing a local quality criterion. The entire approach is fully

unsupervised and does not need a priori information about the image scene.
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2.12 Feature Based Approach

As is mentioned in the beginning of this chapter, feature-based texture segmentation

methods use some textural spatial-spectral-temporal features. One of frequently used

features for texture segmentation are Gabor filters.

2.12.1 HGS

The HGS unsupervised segmenter [68] is based on the integration of the Gabor fil-

ters with the measurement of colour. Single versions of the method differ in their

photometric invariance power (HGS-E no invariance, HGS-W low, HGS-C full in-

variance). The spatial frequency is measured by sampling the incoming image with

a shifted Gaussian in the spatial frequency domain, and the colour is measured by

sampling the signal with Gaussian in wavelength domain. The method implies that

the colour–texture is measured in the wavelength-Fourier domain. The measurement

filter in this domain boils down to a 3D Gaussian, representing a Gabor–Gaussian in

the spatial-colour domain.
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Chapter 3

Developed unsupervised texture segmentation methods are described in this chapter.

They are based on the underlaying random field models for texture representation

and subsequent cluster analysis in the parametric feature space. The first section is

concerned with the GMRF, 2D and 3D CAR models, respectively, and with the illu-

mination invariants derived from the 3D CAR model as well. The next section deals

with cluster analysis and provides details on the K-Means and the EM algorithms.

The rest of the chapter is dedicated to the explanation of hierarchical approaches.

3.1 Texture Representation

The adequate representation of general static Lambertian multispectral textures re-

quires three dimensional models. Although full 3D models allow unrestricted spatial-

spectral correlation description its main drawback is a large amount of parameters to

be estimated and in the case of Markov random field based models (MRF) also the

necessity to estimate all these parameters simultaneously. Alternatively, it is possible

to factorize the 3D static texture space into several (equal to the number d of spectral

bands) 2D subspaces. A combination of several simpler 2D data models with less pa-

rameters per model allows more compact texture representation and faster estimation

algorithms.

Natural measured texture data space can be decorrelated only approximately thus the
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independent spectral component representation suffers with some loss of image infor-

mation. However, because the segmentation is a less demanding application than the

texture synthesis, it is sufficient if such a representation maintains the discriminative

power of the full model even if its visual modelling strength is slightly compromised.

The Gaussian Markov random field model (GMRF) is described in section 3.1.2,

while spectral factorization is explained in section 3.1.1. The alternative to a non-

causal GMRF model can be the simultaneous causal autoregressive random field

model (CAR). It can be used in the form of the 2D model (see 3.1.3), using spec-

tral decorrelation similarly as the GMRF model, or in the full 3D form (see 3.1.4)

employing unrestricted information between spectral planes.

Realistic remote sensing, outdoor, security, and many others applications of these seg-

menters often have to deal with variable illumination of the segmented scene. There-

fore it is important to have illumination invariant texture representation (see 3.1.5).

3.1.1 Spectral Factorization

Spectral factorization using the Karhunen-Loeve expansion transforms the original

centred data space θ defined on the rectangular N1×N2 finite lattice I into a new

data space with K-L coordinate axes Ȳ . These new basis vectors are the eigenvectors

of the second-order statistical moments matrix

Φ = E{ỸrỸ T
r } (3.1)

where the multiindex r has two components r = [r1, r2], the first component is row

and the second one column index, respectively. The projection of the centred random

vector Ỹr onto the K-L coordinate system uses the transformation matrix

T = [uT1 , u
T
2 , . . . u

T
d ]T (3.2)

which has single rows uj that are eigenvectors of the matrix Φ.

Ȳr = T Ỹr (3.3)
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Components of the transformed vector Ȳr (3.3) are mutually uncorrelated. If we

assume further on Gaussian vectors Ȳr then they are also independent, i.e.,

p(Ȳr) =
d∏
i=1

p(Ȳr,i) (3.4)

and single monospectral random fields can be modelled independently.

3.1.2 GMRF Model

We assume that single monospectral texture factors (Yr = Ȳr,i) can be modelled

using a Gaussian Markov random field model (GMRF). This model is obtained if the

local conditional density of the MRF model (3.5) is Gaussian:

p(Yr |Yr−s ∀s ∈ Ir) =
1√

2πσ2
exp{−1

2
σ−2 (Yr − µ̃r)2} , (3.5)

where the mean value is

E{Yr |Yr−s ∀s ∈ Ir} = µ̃r

= µr +
∑
s∈Ir

as(Yr−s − µr−s) (3.6)

and σ, as ∀s ∈ Ir are unknown parameters.

The 2D GMRF model can be expressed as a stationary non-causal correlated noise-

driven 2D autoregressive process:

Yr =
∑
s∈Ir

asYr−s + er (3.7)

where the noise er is random variable with zero mean E{er} = 0 .

The er noise variables are mutually correlated

Re = E{erer−s} =


σ2 if s = (0, 0),

−σ2as if s ∈ Ir,

0 otherwise.

(3.8)
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Correlation functions have the symmetry property

E{erer+s} = E{erer−s} (3.9)

hence the neighbourhood support set Ir and its associated coefficients have to be

symmetric, i.e.,

s ∈ Ir ⇒ −s ∈ Ir & as = a−s . (3.10)

The selection of an appropriate GMRF model support is important to obtain good

results in modelling of a given random field. If the contextual neighbourhood is too

small it can not capture all details of the random field. Inclusion of the unnecessary

neighbours on the other hand adds to the computational burden and can potentially

degrade the performance of the model as an additional source of noise. We use the

hierarchical neighbourhood system Ir , e.g., the first-order neighbourhood is

Ir = {(0,−1), (0,+1), (−1, 0), (+1, 0)} , etc. (3.11)

An optimal neighbourhood is detected using the correlation method [51] favouring

neighbours locations corresponding to large correlations over those with small corre-

lations.

The parameter estimation of a MRF model is complicated by the difficulty associated

with computing the normalization constant. Fortunately, the GMRF model is an

exception where the normalization constant is easily obtainable. However, either the

Bayesian or ML estimate requires the iterative minimization of a nonlinear function.

Therefore we use the pseudo-likelihood estimator which is computationally simple

although not efficient.

The pseudo-likelihood estimate for as parameters evaluated for a sublattice

Jr ⊂ I and Jr = {t : |r1 − t1| ≤ δ1 ∧ |r2 − t2| ≤ δ2} (3.12)

centred on the r index.

The pseudo-likelihood estimate for as parameters has the form

γr = [ as : ∀s ∈ Ir ] =

[∑
∀t∈Jr

XT
t Xt

]−1 ∑
∀t∈Jr

XT
t Yt , (3.13)

20



Texture Representation 3.1

where

Xt = [Yt−s : ∀s ∈ It ] (3.14)

and

σ2
r =

1

|Jr|
∑
∀t∈Jr

(
Yt,i − γr,iXT

t,i

)2
. (3.15)

3.1.3 CAR2D Model

We assume that single monospectral texture factors (Yr = Ȳr,i) can be locally

modelled using a 2D simultaneous causal autoregressive random field model (CAR).

This model can be expressed as a stationary causal uncorrelated noise driven 2D

autoregressive process [64]:

Yr = γXr + er , (3.16)

where γ = [A1, . . . , Aη] is the 1× η parameter matrix, er is a white Gaussian noise

with zero mean and a constant but unknown variance σ2, Xr is a corresponding

vector of the contextual neighbours Yr−s and r, r − 1, . . . is a chosen direction of

movement on the image index lattice I. Further η = card(Icr) where Icr is a causal

neighbourhood index set ( e.g. Icr = {(0,+1), (+1, 0)} ).

This texture model uses the 2D simultaneous causal autoregressive random field model

and thus it requires the spectral decorrelation (sect. 3.1.1). If we stack single decorre-

lated mono spectral pixel components into d× 1 vectors Yr, the model can be formal-

ized using the same equations as the CAR3D model, i.e. (3.19)–(3.29). The CAR2D

models differ in having diagonal parameter matrices As (3.18) and a diagonal white

noise covariance matrix.

3.1.4 CAR3D Model

If we do not want to lose spectral information due to the spectral decorrelation step,

we have to use three dimensional models for adequate representation. One of few

3D models which does not require any approximation and can be treated analytically
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3 Texture Segmentation

is the 3D simultaneous causal autoregressive random field model (CAR) used in the

AR3D+EM segmenter [56].

Static smooth multispectral (or pseudo-colour mammogram) textures require three

dimensional models for adequate representation. We assume that single multispec-

tral textures can be locally modelled using a 3D simultaneous causal autoregressive

random field model. This model can be expressed as a stationary causal uncorrelated

noise driven 3D autoregressive process [64]:

Yr =
∑
s∈Icr

AsYr−s + er , (3.17)

where er is a white Gaussian noise vector with zero mean and a constant but unknown

covariance matrix Σ and r, s are multiindices. The noise vector is uncorrelated with

data from a causal neighbourhood index set Icr ,

As1,s2 =


as1,s21,1 . . . as1,s21,d

...
. . .

...

as1,s2d,1 . . . as1,s2d,d

 (3.18)

are d×d parameter matrices where d is the number of spectral bands. r, r−1, . . . is

a chosen direction of movement on the image lattice I (e.g. scanning lines rightward

and top to down). This model can be analytically estimated using numerically robust

recursive statistics hence it is exceptionally well suited for possible real-time texture

defect detection applications. The model adaptation is introduced using the standard

exponential forgetting factor technique.

Parameter Learning

The model can be written in the matrix form

Yr = γXr + er , (3.19)

where γ = [A1, . . . , Aη] is a d×dη parameter matrix, η = card(Icr) and Xr is a cor-

responding vector of contextual neighbours Yr−s . To evaluate the conditional mean

values E{Yr|Y (r−1)}, the one-step-ahead prediction posterior density p(Yr |Y (r−1))
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is needed. If we assume the normal-gamma parameter prior for parameters in (3.17)

(alternatively we can assume the Jeffrey’s parameter prior) this posterior density has

the form of Student’s probability density

p(Yr|Y (r−1)) =
Γ(β(r)−dη+3

2
) π−

1
2 λ
− 1

2

(r−1)

Γ(β(r)−dη+2
2

) (1 +XT
r V

−1
xx(r−1)Xr)

1
2

(
1 +

(Yr − γ̂r−1Xr)
Tλ−1

(r−1)(Yr − γ̂r−1Xr)

1 +XT
r V

−1
xx(r−1)Xr

)−β(r)−dη+3
2

, (3.20)

with β(r)− dη + 2 degrees of freedom, where the following notation is used:

β(r) = β(0) + r − 1 , (3.21)

γ̂Tr−1 = V −1
xx(r−1) Vxy(r−1) , (3.22)

Vr−1 =

(
Ṽyy(r−1) Ṽ T

xy(r−1)

Ṽxy(r−1) Ṽxx(r−1)

)
+ I , (3.23)

Ṽuw(r−1) =
r−1∑
k=1

UkW
T
k , (3.24)

λ(r) = Vy(r) − V T
xy(r) V

−1
x(r) Vxy(r) . (3.25)

where β(0) > 1 and U,W denote either Y or X vector, respectively. If

β(r − 1) > η then the conditional mean value is

E{Yr|Y (r−1)} = γ̂r−1Xr (3.26)

and it can be efficiently computed using the following recursion

γ̂Tr = γ̂Tr−1 +
V −1
x(r−1)Xr(Yr − γ̂r−1Xr)

T

1 +XT
r V

−1
x(r−1)Xr

, (3.27)

where Vx(r−1) =
∑r−1

k=1XkX
T
k + Vx(0) .

The selection of the appropriate model support (Icr) is important to obtain good tex-

ture representation but less important for segmentation. The optimal Bayesian deci-

sion rule for minimizing the average probability of decision error chooses the maximum
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3 Texture Segmentation

posterior probability model, i.e., a model Mi corresponding to maxj {p(Mj|Y (r−1))} .

If we assume uniform prior for all tested support sets (models) the solution for the

optimal model support (Icr) can be found analytically. The most probable model

given past data is the model Mi (Icr,i) for which i = arg maxj{Dj} .

Dj = −1

2
ln |Vx(r−1)| −

α(r)

2
ln |λ(r−1)|+

+
dη

2
lnπ

[
ln Γ(

α(r)

2
)− ln Γ(

β(0)− dη + 2

2
)

]
, (3.28)

where α(r) = β(r)− dη + 2.

Final Parametric Space

Local texture for each pixel is represented by four parametric vectors. Each vector

contains local estimations of the CAR model parameters. These models have identical

contextual neighbourhood Icr but they differ in their major movement direction (top-

down, bottom-up, rightward, leftward), i.e.,

γ̃Tr = {γ̂tr, γ̂br, γ̂rr , γ̂lr}T . (3.29)

The parametric space γ̃ is subsequently smoothed out, rearranged into a vector and its

dimensionality is reduced using the Karhunen-Loeve feature extraction (γ̄). Finally

we add the average local spectral values ζr to the resulting feature vector

Θr = [γ̄r, ζr]
T . (3.30)

3.1.5 CAR3D Illumination Invariants

In previous models we assume constant illumination and viewing angles for all scene

textures, or alternatively that the Lambert law holds for all scene surfaces. If this

assumption cannot be assumed, then all textures have to be treated either as Bidi-

rectional Texture Functions (BTFs) or some illumination invariant features [65, 141]

have to be used.
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We assume that the two images Ẏ , Ÿ acquired with different illumination can be

linearly transformed to each other: Ẏr = B Ÿr , where Ẏr, Ÿr are multispectral pixel

values at position r and B is a d× d transformation matrix. This linear relation

holds for changes in brightness and illumination spectrum with Lambertian surface

reflectance, or for a model which includes specular reflectance component. Using the

above assumption we can derive [141] the illumination invariance of

1. trace: trAs, s = 1, . . . , η ,

2. eigenvalues: ξs,j of As, s = 1, . . . , η , j = 1, . . . , d ,

where As are the parameter matrices (3.18).

The parametric space γ̃ (3.29) is subsequently transformed into the illumination

invariant parametric space γ̆:

γ̆Tr =
[
tψ, bψ, rψ, lψ

]T
, (3.31)

αψ = [αξ1,1, . . . ,
αξη,d, tr αA1, . . . , tr

αAη] , α ∈ {t, b, r, l} .

Finally we add the local ar, br components of the Lab colour coordinates to the re-

sulting feature vector (Θr).

3.2 Cluster Analysis

Clustering or cluster analysis is an important method in unsupervised image seg-

mentation. Its objective is the grouping of image pixels into the subsets in order

to be similar in some sense. Data clustering algorithms can be divided into several

types. Hierarchical clustering methods create a hierarchy tree which can be done

either bottom–up (agglomerative) or top–down (divisive). Another type of clustering

algorithms are graph-theoretic methods including spectral clustering which deals with

finding a cut in a graph [40, 86, 92, 132]. The K–means and the EM algorithm which

are described in this section belong to a partitional clustering type. The EM algorithm

and its modifications are quite popular in clustering problems [69, 110, 118, 139, 144].
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3 Texture Segmentation

One of the major issues of data clustering is the question of cluster validation, i.e.

how many clusters should be found by cluster analysis. Some methods require this

number to be given explicitly while others try to find it automatically [18, 24, 99, 137].

3.2.1 K-Means

The input of the algorithm is a set of feature vectors Θ1,Θ2, . . .ΘN1×N2 and the

number K is the desired number of clusters into which input vectors are divided.

The centers of the clusters νj, i = 1, . . . K are initialized at the beginning. It can

be done either by random choice of the input vectors or using some heuristic, for

instance a priori information about distribution of input vectors. After initialization,

two steps are repeated – assigning vectors to clusters and the recomputing of the

clusters’ centers. The algorithm is finished when no more vectors are reassigned to

another cluster or the maximum iteration number threshold is reached.

The vectors are assigned to the clusters according to the L2 distance between the

vector and the center of the cluster. The vector is assigned to the cluster whose center

is the nearest, i.e.

ϑr = argmin
i=1,...K

‖Θr − νi‖, r = 1, . . . N1 ×N2 . (3.32)

The centers of the clusters are computed as the arithmetic mean of the vectors be-

longing to the cluster, i.e.

νi =
1

|Ii|
∑
r∈Ii

Θr, Ii = {r : ϑr = i}, i = 1, . . . K . (3.33)

3.2.2 Mixture Model Based – EM algorithm

Multispectral or monospectral texture segmentation is done by clustering in the pa-

rameter space Θ (∈ Rh) defined on the lattice I where

Θr = [γ̄r, ζr]
T (3.34)

is the CAR3D parameter vector (3.30) computed for the lattice location r , or
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Cluster Analysis 3.2

Θr = [γr,1, ζr,1, γr,2, ζr,2, . . . γr,d, ζr,d]
T , (3.35)

where γr,i is the GMRF parameter vector (3.13) computed for the i-th transformed

spectral band for the lattice location r and ζr,i is the average local spectral value.

We assume that this parametric space can be represented using the Gaussian mixture

model (GM) with diagonal covariance matrices due to the previous CAR (GMRF)

parametric space decorrelation (using the Karhunen-Loeve transformation). The

Gaussian mixture model for CAR (GMRF) parametric representation is as follows:

p(Θr) =
K∑
i=1

pi p(Θr | νi,Σi) , (3.36)

p(Θr | νi,Σi) =
|Σi|−

1
2

(2π)
h
2

e −
(Θr−νi)

TΣ−1
i

(Θr−νi)
2 . (3.37)

The mixture model equations (3.36), (3.37) are solved using a modified EM algorithm.

The algorithm is initialized using νi,Σi statistics estimated from the corresponding

rectangular subimages obtained by regular division of the input image. An alternative

initialization can be a random choice of these statistics. For each possible couple of

regions the Kullback Leibler divergence

D (p(Θr | νi,Σi) || p(Θr | νj,Σj)) =

=

∫
Ω

p(Θr | νi,Σi) log

(
p(Θr | νi,Σi)

p(Θr | νj,Σj)

)
dΘr (3.38)

is evaluated and the most similar regions, i.e.,

{i, j} = argmin
k,l

D (p(Θr | νl,Σl) || p(Θr | νk,Σk))

are merged together in each step. This initialization results in Kini regions and

recomputed statistics νi,Σi . Kini > Kopt where Kopt is the optimal number of

textured segments to be found by the algorithm. Two steps of the EM algorithm are

repeated after initialization:
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E : p(t)(ωi |Θr) =
pi p(Θr | νi,Σi)∑K
j=1 pj p(Θr | νj,Σj)

M : j = 1, . . . , K

p
(t+1)
j =

1

|I|
∑
∀Θr

p(t)(ωj |Θr)

ν
(t+1)
j =

∑
∀Θr Θr p

(t)(ωj |Θr)∑
∀Θr p

(t)(ωj |Θr)

Σ
(t+1)
j =

∑
∀Θr p(ωj |Θr)

(
Θr − ν(t+1)

j

)(
Θr − ν(t+1)

j

)T∑
∀Θr p

(t)(ωj |Θr)
. (3.39)

Cluster Validation

The optimal number of clusters is determined by the elimination and merging of Gaus-

sian mixture components during the EM algorithm computation. The components

with smaller weights than a fixed threshold pj < φ (e.g. φ = 0.01
Kini

) are eliminated.

For every pair of components we estimate their Kullback Leibler divergence (3.38).

From the most similar pair, the component with the weight smaller than the thresh-

old is merged with its stronger partner and all statistics are actualized using the EM

algorithm. The algorithm stops when either the likelihood function has a negligible

increase (Lt − Lt−1 < 0.05) or the maximum iteration number threshold is reached.

Postprocessing

The parametric vectors representing image (texture mosaic) pixels are assigned to the

clusters according to the highest component probabilities, i.e., Yr is assigned to the

cluster ωj∗ if

πr,j∗ = maxj
∑
s∈Ir

ws p(Θr−s | νj,Σj) , (3.40)

where ws are fixed distance-based weights, Ir is a rectangular neighbourhood

and πr,j∗ > πthre (otherwise the pixel is unclassified). The area of single cluster

blobs is evaluated in the post-processing thematic map filtration step. Regions with
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similar statistics are merged. Thematic map blobs with an area smaller than a given

threshold are attached to their neighbour with the highest similarity value.

3.3 Combination of Multiple Segmenters

The concept of decision fusion [76] for high-performance pattern recognition is well

known and widely accepted in the area of supervised classification where (often very

diverse) classification technologies, each providing complementary sources of infor-

mation about class membership, can be integrated to provide more accurate, robust

and reliable classification decisions than single classifier applications. It should also

be noted [116] that a single classifier with a single feature set and a single general-

ized classification strategy often does not comprehensively capture the large degree

of variability and complexity encountered in many application domains while multi-

ple decision combinations can help to alleviate many of these problems encountered

from large data variability by acquiring multiple-source information through multiple

features extracted from multiple processes.

Similar advantages can also be expected for the unsupervised segmentation applica-

tions [57] as is demonstrated further in section 6.1. However, a direct unsupervised

application of the supervised classifiers fusion idea is complicated by an unknown

number of data hidden classes and consequently a different number of segmented re-

gions in segmentation results to be fused. However, a direct unsupervised application

of the supervised classifiers fusion idea is complicated with an unknown number of

hidden data classes and consequently a different number of segmented regions in seg-

mentation results to be fused. This method exploits above advantages by combining

several unsupervised segmenters of the same type but with different feature sets.

This method combines segmentation results from different resolutions. We assume

to down-sample input image Y into M different resolutions Y (m) = ↓ιm Y with

sampling factors ιm m = 1, . . . ,M identical for both directions and Y (1) = Y .

The local texture for each pixel Y
(m)
r is represented by the 2/3D simultaneous causal

autoregressive random field model (CAR) parameter space Θ
(m)
r (3.34) and modelled
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by the Gaussian mixture model (3.36), (3.37). The detailed description can be found

in sections 3.1.4 and 3.2.2.

The resulting mixture model probabilities are mapped to the original fine resolution

image space for all m = 1, . . . ,M mixture submodels, i.e.,

p(Θ(m)
r ) =

K(m)∑
i=1

p
(m)
i p(Θ(m)

r | ν(m)
i ,Σ

(m)
i ) , (3.41)

p(Θ(m)
r | ν(m)

i ,Σ
(m)
i ) =

|Σ(m)
i |−

1
2

(2π)
h
2

e −
(Θ

(m)
r −ν(m)

i
)T (Σ

(m)
i

)−1(Θ
(m)
r −ν(m)

i
)

2 . (3.42)

The M cooperating segmenters deliver their class response in the form of conditional

probabilities. Each segmenter produces a preference list based on the mixture compo-

nent probabilities of a particular pixel belonging a particular class, together with a set

of confidence measurement values generated in the original decision-making process.

3.3.1 Single Segmenters Correspondence

Single-resolution segmentation results cannot be combined without knowledge of the

mutual correspondence between regions in all M different-resolution segmentation

probabilistic mixture component maps (K1 ×
∑M

m=2K
m combinations). Mutual

assignments of two probabilistic maps are solved by using the Munkre’s assignment

algorithm [102] which finds the minimal cost assignment

g : A 7→ B,
∑
α∈A

f(α, g(α))

between sets A, B, |A| = |B| = κ given the cost function f(α, β), α ∈ A, β ∈ B,

see Fig. 3.1. α corresponds to the fine resolution probabilistic maps, β corresponds

to downsampled probabilistic maps and f(α, β) is the Kullback Leibler divergence

between probabilistic maps. The algorithm has polynomial complexity instead of

exponential for the exhaustive search. Rectangular modification is also known as the

Hungarian Algorithm.
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f(α, β) :

a1 a2 a3 a4

b1

b2

b3

b4

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16A = {a1, a2, a3, a4}

B = {b1, b2, b3, b4}

g = {(a1, b4), (a2, b1), (a3, b3), (a4, b2)}

total cost:
∑

α∈A f(α, g(α)) = 23

Figure 3.1: Munkres’s assignment algorithm.

3.3.2 Final Parametric Space

The parametric vectors representing image pixels are assigned to the clusters based

on our modification of the sum rule according to the highest component probabilities,

i.e., Yr is assigned to the cluster ωj∗ if

πr,j∗ = maxj
∑
s∈Ir

ws

(
M∑
m=1

p(Θ
(m)
r−s | ν

(m)
j ,Σ

(m)
j )

)
, (3.43)

where ws are fixed distance-based weights, Ir is a rectangular neighbourhood

and πr,j∗ > πthre (otherwise the pixel is unclassified). The postprocessing step is

performed similarly as in section 3.2.2.

3.4 Combination of Multiple Texture Models

The proposed method circumvents the problem of combining multiple unsupervised

segmenters [57] by fusing multiple-processed measurements into a single segmenter

feature vector. We assume to down-sample input image Y into M different

resolutions Y (m) = ↓ιm Y with sampling factors ιm m = 1, . . . ,M identical for

both directions and Y (1) = Y . Local texture for each pixel Y
(m)
r is represented

using the 3D CAR model parameter space.
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For each resolution Y (m) there are four CAR models with the identical contex-

tual neighbourhood Icr but they differ in their major movement direction (top-down,

bottom-up, rightward, leftward). The local texture for each pixel and M resolu-

tions α1, . . . , αM is represented by four parametric matrices t, b, r, l , e.g. γ̂
i,αj
r for

i ∈ {t, b, r, l}, j = 1, . . . ,M which are subsequently compressed by using the local

PCA (for computational efficiency) into γ̃
i,αj
r . Single resolution compressed parame-

ters are composed into M parametric matrices:

γ̃αj Tr = {γ̃t,αjr , γ̃b,αjr , γ̃r,αjr , γ̃l,αjr }T j = 1, . . . ,M .

The parametric space γ̃αj is subsequently smoothed out, rearranged into a vector and

its dimensionality is reduced using the PCA feature extraction (γ̄αj). Finally we add

the average local spectral values ζ
αj
r to the resulting feature vector:

Θr = [γ̄α1
r , ζ

α1
r , . . . , γ̄αMr , ζαMr ]T . (3.44)

Rough scale pixel parameters are simply mapped to the corresponding fine scale

locations.

Multispectral, multi-resolution texture segmentation is done by clustering in the com-

bined CAR models parameter space Θ defined on the lattice I where Θr is the

modified parameter vector (3.44) computed for the lattice location r . The clustering

is performed by the EM algorithm (sect. 3.2.2).

3.5 Hierarchy Segmentation

This method (MW3AR) [61] is an extension of the combination of the multiple seg-

menters method from section 3.3. It also combines segmentation results from different

resolutions. We assume to down-sample input image Y into M different resolutions

Y (m) =↓ιm Y with sampling factors ιm m = 1, . . . ,M identical in both horizontal

and vertical directions and Y (1) = Y . Local texture for each pixel Y
(m)
r is represented

by the 3D simultaneous causal autoregressive random field model (CAR) parameter

space Θr (3.30) and modelled by the Gaussian mixture model (3.41), (3.42).
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3.5.1 Initialization

The algorithm is initialized using ν
(m)
i ,Σ

(m)
i statistics for each resolution m esti-

mated from the corresponding thematic maps in two subsequent steps:

1. refining direction

ν
(m−1)
i

(
∀Θ(m−1)

r : r ∈↑ Ξ
(m)
i

)
, Σ

(m−1)
i

(
∀Θ(m−1)

r : r ∈↑ Ξ
(m)
i

)
,

m = M + 1,M, . . . , 2 , i = 1, . . . , K(m) ,

2. coarsening direction

ν
(m)
i

(
∀Θ(m)

r : r ∈↓ Ξ
(m−1)
i

)
, Σ

(m)
i

(
∀Θ(m)

r : r ∈↓ Ξ
(m−1)
i

)
,

m = 2, 3, . . . ,M , i = 1, . . . , K(m) ,

where Ξ
(m)
i ⊂ I ∀m, i , and the first initialization thematic map Ξ

(M+1)
i is approx-

imated by the rectangular subimages obtained by the regular division of the input

texture mosaic. All the subsequent refining steps are initialized from the preceding

coarser resolution upsampled thematic maps. The final initialization results are from

the second coarsening direction where the gradually coarsening segmentations are

initialized using the preceding downsampled thematic maps.

3.5.2 Resulting Mixture Probabilities

The Gaussian mixture models are solved by the EM algorithm (section 3.2.2). Result-

ing mixture model probabilities are then mapped to the original fine resolution image

space for all m = 1, . . . ,M mixture submodels (3.41), (3.42). The M cooperating

segmenters deliver their class response in the form of conditional probabilities. The

mutual assignments of two mixture components of different segmenters are solved by

Munkre’s algorithm (section 3.3.1).
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image GT MW3AR

Figure 3.2: Natural image from the BSDS [89], ground truth, and the segmentation

result by MW3AR method [61].

3.5.3 Final Parametric Space

The parametric vectors representing texture mosaic pixels are assigned to the clus-

ters based on our modification of the sum rule according to the highest component

probabilities, i.e., Yr is assigned to the cluster ωj∗ if

πr,j∗ = maxj
∑
s∈Ir

ws

(
M∑
m=1

p2(Θ
(m)
r−s | ν

(m)
j ,Σ

(m)
j )∑M

i=1 p(Θ
(i)
r−s | ν

(i)
j ,Σ

(i)
j )

)
, (3.45)

where ws are fixed distance-based weights, Ir is a rectangular neighbourhood

and πr,j∗ > πthre (otherwise the pixel is unclassified). The postprocessing step is

performed similarly as in section 3.2.2.

Figure 3.2 shows the result of the segmentation on natural image (481×321) selected

from the Berkeley Segmentation Dataset and Benchmark [89].
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Chapter 4

The Prague texture segmentation data-generator and benchmark is a web based ser-

vice (http://mosaic.utia.cas.cz) designed to mutually compare and rank different

texture segmenters, and to support the development of new segmentation and clas-

sification method. The benchmark verifies their performance characteristics on po-

tentially unlimited monospectral, multispectral, bidirectional texture function (BTF)

data using an extensive set of prevalent criteria and enables their noise robustness,

scale, and rotation or illumination invariance to be tested. It can easily be used for

other applications such as feature selection, image compression, and query by picto-

rial example, etc. The benchmark functionality is demonstrated in the next chapter

by evaluation on fourteen previously published image segmentation algorithms.

4.1 Introduction

Unsupervised or supervised texture segmentation is a prerequisite for successful content-

based image retrieval, scene analysis, automatic acquisition of virtual models, quality

control, security, medical applications and many others. Although more than 1000

different methods were already published [16, 41, 42, 45, 84, 108, 132, 148], this ill-

defined problem is still far from being solved and even cannot be solved fully in its

generality. In addition to that, very little is known about properties and behaviour

of already published segmentation methods and their potential user is left to ran-
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domly select one due to the absence of any guidance. This is, among other reasons,

due to the lack of a reliable performance comparisons between different techniques

because very limited effort was spent to develop suitable quantitative measures of

segmentation quality that can be used to evaluate and compare segmentation algo-

rithms. Rather than advance the most promising image segmentation approaches,

novel algorithms are often satisfied just being sufficiently different from the previ-

ously published ones and tested on only a few carefully selected positive examples.

The optimal alternative, which is to check several variants of a developed method

and to carefully compare results with the state-of-the-art in this area, is practically

impossible because most methods are too complicated and insufficiently described to

be implemented in an acceptable period of time.

Although no theoretical property of a method can be proven using any experimental

test set, such a set can suggest its performance and ranking in comparison with

alternative algorithms. Because there is no available benchmark to fully support

segmentation method development, we implemented a solution in the form of a web

based data generator and benchmark software. Proper testing and robust learning of

performance characteristics require large test sets and objective ground truths which

are unfeasible for natural images. Thus, inevitably all such image sets such as the

Berkeley benchmark [89] share the same drawbacks – subjectively generated ground

truth regions and a limited extent which is very difficult and expensive to enlarge.

These problems motivated our preference for random mosaics with randomly filled

textures even if they only approximate natural image scenes. The profitable feature of

this compromise is the unlimited number of different test images with corresponding

objective and free ground truth maps available for each of them.

The segmentation results can be judged [148] either by using manually segmented

images as a reference [81], or visually by comparing them to the original images [108],

or just by applying quality measures corresponding to human intuition [81, 108, 121].

However, it is difficult to avoid subjective ranking conclusions by using either of the

above approaches on limited test databases.

A prior work on the segmentation benchmark is the Berkeley benchmark presented by

Martin et al. [89]. This benchmark contains more than 1000 various natural images
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(300 in its public version) from the Corel image database, each of which is manually

processed by a group of people to get the ground-truth segmentation in the form of

partitioning of the image into a set of disjoint segments. Without any special guid-

ance, such manual segmentations reflect subjective human perceptions and therefore,

different people usually construct different ground truths on the same image. The

Berkeley benchmark suffers from several drawbacks. Besides subjective ground truth,

its performance criteria global consistency error (GCE) and local consistency error

(LCE) also tolerate unreasonable refinement of the ground truth. Over-segmented

machine segmentations have always zero consistency error, i.e., they wrongly suggest

an ideal segmentation. The benchmark comparison is based on region borders hence

different border localization from the human based drawing can handicap otherwise

correct scene segmentation.

Another segmentation benchmark Minerva [129] contains 448 colour and grey scale

images of natural scenes which are segmented using four different segmenters, seg-

mented regions are manually labelled and different textural features can be learned

from these regions and subsequently used by the kNN supervised classifier. This ap-

proach suffers from erroneous ground truth resulting from an imperfect segmenter,

manual labelling and inadequate textural feature learning from small regions.

The Outex Texture Database [105] provides a public repository for three types of

empirical texture evaluation test suites. It contains 14 classification test suites, one

unsupervised segmentation test suite which is formed by 100 texture mosaics and

finally one texture retrieval test suite. All mosaics are using the same simple regular

ground truth template. The test suites are publicly available on the website (http:

//www.outex.oulu.fi), which allows searching, browsing and downloading of the test

image databases. Outex currently provides a limited test repository but does not

allow the evaluation of results or ranking of single algorithms.

A psycho-visual evaluation of segmentation algorithms using human observers was

proposed in [128]. The test was designed to visually compare two segmentations in

each step and to answer if any consensus of the best segmentation exists. While

such human judgement certainly allows meaningful evaluation, this approach is too

demanding to be applicable in image segmentation research.
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The next section (4.2) describes the basic functionality of our benchmark, the ex-

ploited data and the benchmark generation algorithm. The following sections present

benchmark performance criteria (4.3) and conclusions (4.4). The evaluation of seg-

mentation methods examples can be found in the next chapter (5.2).

4.2 Prague Texture Segmentation Benchmark

The Prague texture segmentation data-generator and benchmark [59, 96] is a web-

based service (http://mosaic.utia.cas.cz) developed as a part of the EU NoE

no. 507752 MUSCLE project. The goal of the benchmark is to produce score, perfor-

mance, and quality measures for an algorithm’s performance for two main reasons:

So that different algorithms can be compared to each other, and so that progress to-

ward human-level segmentation performance can be tracked and measured over time.

A good experimental evaluation should allow comparison of the current algorithm

to several leading alternative algorithms, using as many test images as possible and

employing several evaluation measures for comparison (in the absence of one clearly

optimal measure). Our benchmark possesses all these features.

Single textures as well as the mosaics generation approach were chosen on purpose

to produce unusually difficult tests to allow space for improvement and the creation

of better segmentation algorithms in the future.

The benchmark allows one an evaluation of many performance characteristics of a

segmenter on a virtually unlimited extent of data. However, the number of tested

features requires careful consideration to include only the most important ones. Oth-

erwise the evaluation tables would split to many specialized sub-tables with few com-

parative results and the benchmark would lose its chief value.

All test regions are created from natural measured textures (stochastic, regular, near-

regular) hence they obey the basic texture property – homogeneity at least to certain

degree. This may limit evaluation results validity on completely different (textureless)

visual data types, for example segmentation of drawings, cartoons, cartographic maps,

documents, range maps, characters or 3D scenes with significant geometric distortion.
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Luckily, most existing images such as outdoor or indoor photographs, aerial or satellite

images [126], material samples [50] or medical images [57] are well approximated by

these mosaics and the benchmark ascertainments are informative also for them.

The benchmark operates either in full mode for registered users (unrestricted mode

– U) or in a restricted mode. The major differences between both working modes are

that the restricted operational mode does not permanently store visitor’s data (results,

algorithm details, etc.) into its online database and does not allow the creation of

custom mosaics. To be able to use fully unrestricted benchmark functionalities the

user is required to be registered (registration page).

The benchmark allows you:

• To obtain customized experimental texture mosaics and their corresponding

ground truth (U);

• To obtain the benchmark texture mosaic sets with their corresponding ground

truth;

• To evaluate visitor’s working segmentation results and compare them with state-

of-the-art algorithms;

• To update the benchmark database (U) with an algorithm (reference, abstract,

benchmark results, code) and use it for subsequent other algorithms bench-

marking;

• To grade noise, scale, rotation or illumination endurance of an algorithm;

• To check single mosaics evaluation details (criteria values and resulted thematic

maps);

• To compare evaluation details of selected results (graphs and resulted thematic

maps);

• To rank segmentation algorithms according to the most common benchmark

criteria;

• To obtain LaTeX or MATLAB coded resulting criteria tables (U).
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4.2.1 Image Database

Generated texture mosaics as well as the benchmarks are composed of the following

texture types: (1) Monospectral textures (derived from the corresponding multispec-

tral textures), (2) Multispectral textures, (3) BTF (bidirectional texture function)

textures, (4) rotation invariant texture set, (5) scale invariant texture set, (6) illu-

mination invariant texture set and several invariant combinations (rotation & scale,

rotation & illumination, scale & illumination, rotation & scale & illumination) and

(7) geometry distorted invariant texture set. Thus, it is possible to evaluate, how the

performance of a segmenter changes with texture scale, illumination or rotation.

The benchmark uses colour textures from our large (more than 1000 high resolution

colour textures categorized into 10 thematic classes) Prague colour texture database.

All these textures are natural textures or man-made material textures which are only

approximately homogeneous (i.e. local statistics for single textures are similar but not

identical). Hard natural textures were chosen on purpose rather than homogeneous

synthesized (for example using Markov random field models) ones because they are

more difficult to be correctly segmented for segmentation methods.

The benchmark uses cut-outs from the original textures (1/6 approximately) either

in the original resolution or a sub-sampled version. The remaining texture parts

are used for the separate test/training sets in the benchmark-supervised mode. The

benchmarks use 114 colour / greyscale textures from 10 classes. These textures were

selected deliberately to be difficult for the segmenters. We believe that only under

difficult conditions we can obtain useful knowledge for segmentation algorithms im-

provement. The BTF measurements [123] are provided by courtesy of Prof. Reinhard

Klein from the Bonn University.

4.2.2 Benchmark Generation

Benchmark datasets are computer generated 512× 512 random mosaics filled with

randomly selected textures. The random mosaics are generated by using the Voronoi
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Figure 4.1: Voronoi (left), modified piecewise linear (middle) and spline (right) mosaic

borders.

polygon random generator [131]. It firstly creates a Delaunay triangulation, secondly

determines the circumcircle centers of its triangles, and thirdly connects these points

according to the neighbourhood relations between the triangles. Resulting Voronoi

polygons can further be modified (see Fig. 4.1), if required by inserting additional

border points into each polygon line. Alternatively to piece-wise linear borders it is

possible to generate spline defined borders or suppressed borders using a border area

morphing. We exploit the fact that segmenting smaller and irregular objects is more

difficult than segmenting bigger and regular objects such as squares or circles.

Colour, greyscale or BTF benchmarks are generated upon request in three quan-

tities (normal = 20, large = 80, huge = 180 test mosaics). But if required, it is

easy to automatically generate any number of such mosaics (e.g. hundreds or even

thousands). The benchmark archive either in the compressed tar or in zip formats

contains images in the PNG format and the data.xml file containing detailed descrip-

tion of all mosaics (number of regions, source component textures, size, etc.). For

each texture mosaic there are also the corresponding ground truth and mask images

included. The test mosaic layouts and each cell texture membership are randomly

generated but with identical initialization of the corresponding random generators,

so the requested benchmark sets (for the same size and type) are identical for every

visitor.
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-10 dB -5 dB 0 dB 5 dB

0.5 0.324 0.037 Poisson

Figure 4.2: Noisy mosaics with different SNR for Gaussian noise (upper row) or

different noise probabilities for salt & pepper noise (bottom row).

Noise Corruption

Noise is the important attribute that affects the performance of learning or segment-

ing algorithms. In real-world applications noise is an integral part of measurements

and usually the noise level is unknown. The benchmark enables to test the noise

robustness of single segmenters. The benchmark mosaics can be corrupted during

their generation with additive Gaussian noise in several signal to noise ratio (SNR)

steps (see Fig. 4.2), Poisson or salt & pepper noise. The user can choose between ten

SNR steps for the additive Gaussian (〈−10; 35〉 dB) noise or ten steps for the salt &

pepper noise (noise probabilities 〈0.5; 0.01〉).

Custom Mosaics

Registered users can benefit from all functions of the underlying benchmark engine.

They can design their custom mosaics by specifying the image size, number of cells,
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number and type of textures to be used as well as the type of cell borders illustrated

on Fig. 4.1 (straight lines, piecewise linear, splines or attenuated borders).

Comparative Methods

For each compared algorithm there is a concise description available. Each method

contains hyperlinks to further information (author, algorithms details, BIB entry, and

WWW external page). Working versions of the segmenter can be compared in the

restricted mode. Uploaded temporal results and data in this mode are stored in the

database for one hour only and they are deleted after its expiry.

4.3 Performance Criteria

The submitted benchmark results are evaluated and stored (U) in the server database

and used for the algorithm ranking according to a chosen criterion. We have imple-

mented the twenty-seven most frequented evaluation criteria categorized into four

groups: region-based (5 criteria with the standard threshold + 5 performance curves

Fig. 4.3 and performance integrals (eq. 4.1) over all threshold settings), pixel-wise

(11+1), consistency measures (2) and clustering comparison criteria (3). The perfor-

mance criteria mutually compare ground truth image regions with the corresponding

machine segmented regions. Symbols N /H further denote the trend of the corre-

sponding criterion value for the better segmenter, i.e.N higher or H lower values than

those achieved by some inferior method. All criteria are available on two levels:

• averaged over the corresponding benchmark,

• computed for every individual test mosaics set.

The basic region-based criteria (sect. 4.3.1) available are correct, over-segmentation,

under-segmentation, missed and noise. All these criteria are available either for a

single threshold parameter setting or as the performance curves and their integrals.

Our pixel-wise criteria group (sect. 4.3.2) contains the most frequented classification

criteria such as the omission and commission errors, class accuracy, recall, precision,
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mapping score, etc. The consistency criteria group (sect. 4.3.3) incorporates the global

and local consistency errors. Finally, the last criterion set (sect. 4.3.4) contains three

clustering comparison measures. By clicking on a required criterion the evaluation

table is reordered, according to this chosen criterion.

4.3.1 Region-Based Criteria

The region-based criteria [70] mutually compare the machine segmented regions Ri ,

i = 1, . . . ,M with the correct ground truth regions R̄j , j = 1, . . . ,N where |R | is

the corresponding set cardinality. The acceptance of the regions’ overlap is controlled

by the threshold k = 0.75 . Single region-based criteria are defined as follows:

N CS (correct detection) – {Rm; R̄n} iff

1. |Rm ∩ R̄n| ≥ k |Rm| ,

2. |Rm ∩ R̄n| ≥ k |R̄n| .

The ideal segmentation has the same number of correctly detected (CS) regions with

very similar shapes and locations (for the required 75 % overlap) as the ground truth

map. Neither ground truth region should be ideally over-segmented as well as no

machine segmented region should contain more than one corresponding ground truth

region (under-segmentation).

H OS (over-segmentation) – {Rm1, . . . , Rmx; R̄n}, 2 ≤ x ≤M iff

1. ∀i ∈ 〈1;x〉, |Rmi ∩ R̄n| ≥ k |Rmi| ,

2.
∑x

i=1 |Rmi ∩ R̄n| ≥ k |R̄n| .

H US (under-segmentation) – {Rm; R̄n1, . . . , R̄nx}, 2 ≤ x ≤ N iff

1.
∑x

i=1 |Rm ∩ R̄ni| ≥ k |Rm| ,

2. ∀i ∈ 〈1;x〉, |Rm ∩ R̄ni| ≥ k |R̄ni| .
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H ME (missed error) – {R̄n} iff

R̄n /∈ correct detection, R̄n /∈ over-segmentation, R̄n /∈ under-segmentation.

Missed regions are the ground truth regions which were not detected in neither of

above categories (CS, OS, US).

H NE (noise error) – {Rm} iff

Rm /∈ correct detection, Rm /∈ over-segmentation, Rm /∈ under-segmentation.

Similarly noise regions are machine segmented regions which do not belong to any of

CS, OS or US categories.

Performance Curves

Single region-based criteria are also available as the corresponding performance curves

(Fig. 4.3) CS(k), OS(k), US(k), ME(k), NE(k). The curves allow us to compare

sensitivity of different segmenters to the changing threshold value k ∈ 〈0.5; 1〉. Finally

the last five region criteria are approximations of the performance curves integrals

f̄ =

∫ 1

0.5

f(k) dk , (4.1)

where f(k) is some curve from {CS(k), OS(k), US(k), ME(k), NE(k) }. These

integral criteria can be found in the brackets (Fig. 4.3) next to the criterion name,

but not in the results comparison tables’ page.

method ↑CS ↑CS ↓OS ↓OS ↓US ↓US ↓ME ↓ME ↓NE ↓NE

TEX-ROI-SEG 56.37 52.98 11.93 11.54 19.79 17.94 11.55 19.19 10.29 18.68

MW3AR 53.04 49.60 59.53 51.08 3.20 2.93 5.63 16.05 6.96 16.87

Table 4.1: Performance curve integrals and appropriate criteria values comparison for

MW3AR and TEX-ROI-SEG methods.
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TEX-ROI-SEG correct overseg. underseg.

MW3AR correct overseg. underseg.

TEX-ROI-SEG missed noise F-measure

MW3AR missed noise F-measure

Figure 4.3: Performance curves and the corresponding performance integrals for

MW3AR (even rows) and TEX-ROI-SEG methods.

The performance curves, which are shown for the TEX-ROI-SEG and MW3AR meth-

ods in Fig. 4.3, and similarly their integrals in Tab. 4.1 both confirm that this single

method’s behaviour is not too sensitive about the region-based criteria threshold.
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There can be observed very similar ranking between performance curves integrals

and their appropriate criteria in the Tabs. 5.4–5.5. As expected this threshold mainly

effects the inter-region border localization. The localization error difference between

the best and the worst method has only slightly diminished over the whole threshold

range.

4.3.2 Pixel-Wise Weighted Average Criteria

The pixel-wise criteria were originally developed for the evaluation of supervised clas-

sifiers. We generalized them also for unsupervised applications, where their direct

application is prevented due to unknown mutual correspondence between segmented

and ground truth regions as well as different cardinality of both these region sets. The

mutual assignment of machine segmented and ground truth regions for the pixel-wise

criteria evaluation is solved by using the Munkre’s assignment algorithm [102] which

finds the minimal cost assignment g : A 7→ B,
∑

α∈A f(α, g(α)) between sets A, B,

|A| = |B| = κ given by the cost function f(α, β), α ∈ A, β ∈ B. The algorithm has

polynomial complexity instead of exponential for the exhaustive search.

Let us denote ni,• =
∑N

j=1 ni,j , and n•,i =
∑M

j=1 nj,i , where N ,M are the correct

number of classes and the interpreted number of classes (or regions), respectively.

K = max{M,N}, n is the number of pixels in the test set, ni,j is the number

of pixels interpreted as the i-th class but belonging into the j-th class. The error

matrix ({ni,j}) extended into K × K is obtained by padding missing entries with

zeros. ı̂ is either i for supervised tests or mapping of the i-th class ground truth

into an interpretation segment based on the Munkres algorithm (see section 3.3.1) for

unsupervised test. The following pixel-wise criteria were implemented:

H O (omission error) – the overall ratio of wrongly interpreted pixels

O = median

{
Oi

n•,i

}N
i=1

= median

{
1− nı̂,i

n•,i

}N
i=1

〈0; 1〉 ,

where Oi is the i-th class omission error.
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H C (commission error) – the overall ratio of wrongly assigned pixels

C = median

{
Ci
nı̂,•

}M
ı̂=1

= median

{
1− nı̂,i

nı̂,•

}M
ı̂=1

〈0; 1〉 ,

where Ci is the i-th class commission error.

N CA (the weighted average class accuracy)

CA =
1

n

K∑
i=1

nı̂,i n•,i
n•,i + nı̂,• − nı̂,i

〈0; 1〉 ,

N CO (recall, the weighted average correct assignment)

CO =
1

n

K∑
i=1

n•,iCOi =
1

n

K∑
i=1

nı̂,i 〈0; 1〉 ,

N CC (precision, object accuracy, overall accuracy)

CC =
1

n

K∑
i=1

n•,iCCi =
1

n

K∑
i=1

nı̂,i n•,i
nı̂,•

〈0; 1〉 ,

H I. (type I error, the weighted probability of wrong assignment of classes

pixels)

I =
1

n

K∑
i=1

(n•,i − nı̂,i) = 1− CO 〈0; 1〉 ,

H II. (type II error, the weighted probability of commission error)

II =
1

n

K∑
i=1

nı̂,• n•,i − nı̂,i n•,i
n− n•,i

〈0; 1〉 ,
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N EA (mean class accuracy estimate)

EA =
1

n

K∑
i=1

2nı̂,i n•,i
n•,i + nı̂,•

〈0; 1〉 .

N MS (mapping score) – emphasizes the error of not recognizing the test data

MS =
1

n

K∑
i=1

(1.5nı̂,i − 0.5nı̂,•) 〈−0.5; 1〉 .

H RM (root mean square proportion estimation error)

RM =

√√√√ 1

K

K∑
i=1

(
nı̂,• − n•,i

n

)2

≥ 0

indicates unbalance between the omission Oi and commission Ci errors, re-

spectively.

N CI (comparison index) – includes both these types of errors

CI =
1

n

K∑
i=1

nı̂,i

√
n•,i
nı̂,•

=
1

n

K∑
i=1

n•,i
√
CCiCOi 〈0; 1〉 ,

where CCi, COi are the object precision and recall.

CI reaches its maximum either for the ideal segmentation or for equal com-

mission and omission errors for every region (class).

N F−measure (curve) – see Performance Curves in section 4.3.1

F =
1

n

K∑
i=1

n•,i
CCiCOi

ϕCOi + (1− ϕ)CCi
〈0; 1〉 ,

where ϕ ∈ 〈0; 1〉.

For ϕ = 0.5 : F = EA, ϕ = 0 : F = CO and ϕ = 1 : F = CC.
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4.3.3 Consistency Error Criteria

Let Ṡ, S̈ be two segmentations, Ṙr is the set of pixels corresponding to a region in

the Ṡ segmentation and containing the pixel r, |R | is the set cardinality and \ is the

set difference. A refinement tolerant measure error was defined [89] at each pixel r:

εr(Ṡ, S̈) =
|Ṙr \ R̈r|
|Ṙr|

.

This non-symmetric local error measure encodes a measure of refinement in one di-

rection only. Two error measures for entire image are defined:

H GCE (Global Consistency Error)

GCE(Ṡ, S̈) =
1

n
min

{∑
r

εr(Ṡ, S̈),
∑
r

εr(S̈, Ṡ)

}

forces all local refinements to be in the same direction while

H LCE (Local Consistency Error)

LCE(Ṡ, S̈) =
1

n

∑
r

min
{
εr(Ṡ, S̈), εr(S̈, Ṡ)

}
allows refinement in both directions.

LCE, GCE ∈ 〈0; 1〉 , LCE ≤ GCE .

The major problem with these consistency measures is their tolerance for incorrect

oversegmentation of the ground truth. If the segmentation is an oversegmented ver-

sion of the ground truth, or vice versa, the segmentation error is always zero. Thus

the trivial segmentations with either all regions containing just one pixel or the whole

image being single region are the ideal segmentations LCE = GCE = 0 according

to both consistency criteria.
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4.3.4 Clustering Comparison Criteria

Finally, three clustering comparison criteria [91] are implemented:

H dVI (variation of information)

dV I(Ṡ, S̈) = H(Ṡ) +H(S̈)− 2I(Ṡ, S̈) ,

where the entropy is

H(Ṡ) = −
K̇∑
i=1

ṅi
n

log
ṅi
n
,

K̇, K̈ are the numbers of sets in segmentations Ṡ, S̈, respectively, ni,j is the

number of points in the intersection ni,j = |Ṙi ∩ R̈j |, ṅi = |Ṙi |, n̈j = |R̈j |
and the mutual information is

I(Ṡ, S̈) =
K̇∑
i=1

K̈∑
j=1

ni,j
n

log
ni,j
n

ṅi
n

n̈j
n
.

It is possible to show that the variation of information complies with symmetry, addi-

tivity w.r.t. refinement, additivity w.r.t. join, convex additivity and scale properties

(see details in [91]).

H dM (Mirkin metric)

dM(Ṡ, S̈) =
d̄M(Ṡ, S̈)

n2
,

where

d̄M(Ṡ, S̈) =
K̇∑
i=1

ṅ2
i +

K̈∑
j=1

n̈2
j − 2

K̇∑
i=1

K̈∑
j=1

n2
i,j ,
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H dD (Van Dongen metric)

dD(Ṡ, S̈) =
d̄D(Ṡ, S̈)

2n
,

with

d̄D(Ṡ, S̈) = 2n−
K̇∑
i=1

max
j
ni,j −

K̈∑
j=1

max
i
ni,j .

4.3.5 Criteria Relationship

The obvious question with the use of so many evaluation criteria by different re-

searchers is if all are really needed. An optimal criterion depends on the intended

application which is the reason for so many criteria being used. Tables 5.4 and 5.5

in the next chapter illustrate this observation, there is no segmenter scoring best for

all evaluated criteria. Applications which cannot tolerate over-segmentation cannot

use consistency measures or under-segmentation. Security applications and defect

detectors on the other hand should guarantee low under-segmentation thus the com-

mission error or Van Dongen metric are not the best criteria to consult. Region-based

criteria are robust and appropriate for the majority of applications where precise bor-

der location is not of the primary interest. For this reason, the benchmark does not

prefer any criterion. A user can click on any criterion to reorder the evaluation table

according to an intended application or a tested performance characteristic.

Figure 4.4 presents colour coded correlation analysis for twenty one segmentation

criteria computed for fourteen segmentation algorithms which were evaluated using

our benchmark in the next chapter. While strong correlation between I., CO and

EA, CA can be expected, high correlation between ME,NE or CI, MS criteria is

less obvious. In this experiment four mutually positively correlated groups of criteria

EA,CA,CI, MS; GCE,LCE,ME,NE; CO,CA; I., dD and two negatively cor-

related groups I. with EA,MS,CA,CO and dD with MS,CA,CO emerged. The

lowest mutual correlation with others has the variation of information dV I criterion.

It is sufficient to use one representative criterion per correlated criterions group for a

concise evaluation of the algorithm.

52



Performance Criteria 4.3

Figure 4.4: Correlation between 21 segmentation criteria computed on 280 segmen-

tation results.
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4.4 Conclusions

The implemented supervised / unsupervised segmentation benchmark is a fully au-

tomatic web application which enables us to mutually compare image segmentation

algorithms and to assist in developing new segmentation methods. The comparison

can be done for finalized algorithms with results, descriptions and references stored

permanently in the benchmark database and used for subsequent comparison also by

other algorithms or for a working version of a segmenter. Segmenters can be ranked

based on a chosen criterion from the set of twenty-one regions, pixel, consistency or

clustering based criteria. The test mosaics as well as the ground truths are computer

generated which guarantees the objectivity of the evaluation and allows for easy gener-

ation of extensive test sets which are otherwise infeasible to arrange. The benchmark

enables us to test single algorithms on monospectral, multispectral or BTF texture

data and to test their noise robustness. Further on, it is possible to test scale, ro-

tation and illumination algorithm invariance or any combination of these properties,

so that the researchers can quickly and effectively compare their novel algorithms

and verify their performance characteristics. Among important aspects which are not

currently tested are mainly the resilience against complex geometric distortions (e.g.

foreshortening) and segmentation speed, which cannot be tested because the bench-

mark only analyses the uploaded segmentation results. Although the benchmark is

primarily designed for texture segmenters it gives also good performance insight for

any tested image segmenter. The evaluation part of the benchmark is modified to use

also user defined ground truth, for example hand segmented natural images. But such

results are not stored in the benchmark database and hence they are not available

for comparison to other users. Other possible applications such as machine learning

methods evaluation, wrapper of filter based feature selection methods comparison,

image compression testing, query by pictorial example methods evaluation and some

others can easily benefit from the benchmark services as well.
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Results
Chapter 5

Manually created mosaics are used for the evaluation of segmentation results in the

first section. This approach was used by many authors for evaluation of segmentation

results earlier [14, 15, 75, 147]. However self-made texture mosaics suffer from the

impossibility of comparison with segmentation results obtained by different methods.

Despite this limitation, many authors still use them in articles published in recent

years [83, 85, 93, 114]. This is one of the reasons that leads to the creation of the

segmentation benchmark described in the previous chapter (see 4.2) and to using this

benchmark for subsequent results evaluation.

5.1 Manually Created Mosaics

Multispectral texture segmentation [54, 95] is done by clustering in the GMRF (see

section 3.1.2) parameter space Θ defined on the lattice I where

Θr = [Θr,1,Θr,2, . . .Θr,d]
T

Θr,i = [γr,i, σ
2
r,i] .

Θr,i is the parameter vector computed for the i-th transformed spectral band for

the lattice location r. Clustering is performed by the K-means algorithm, which is

described in section 3.2.1.
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Figure 5.1: Natural texture mosaic (left), optimal texture segmentation (middle), and

resulting texture regions (right).

The algorithm was tested on natural colour textures mosaics. The Fig. 5.1–left shows

the 256×256 experimental texture mosaic created from five natural colour textures.

The texture in the middle of Fig. 5.1–left is a food while the remaining clockwise

textures are water, metal, fabric, and stone, respectively. All these textures are

from the MIT Media Lab VisTex [1] collection. Natural textures have been chosen

rather than synthesized (for example using Markov random field models) because

they are expected to be more difficult for the underlying segmentation model. The

ideal interclass borders are on the Fig. 5.1–middle and the rough segmentation result,

without any postprocessing, is on the Fig. 5.1–right.

The contingency table Tab. 5.1 shows the segmentation performance of the algorithm

for single natural textures. The overall probability of correct segmentation for this ex-

ample is 91.9%. This result can be further improved by an appropriate postprocessing

that uses, for example, the minimum area prior information.

true \ classified water fabric stone metal food

water 8991 169 398 276 5

fabric 31 17347 458 65 18

stone 22 427 12121 120 68

metal 8 93 968 12497 24

food 700 74 1334 27 9295

Table 5.1: Contingency table of the segmentation result.
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Figure 5.2: Selected experimental texture mosaics (A,B,F,G – downward),

GMRF+K-means segmentation results, segmentation maps inserted into original

data, and Blobworld segmentation results (rightmost column), respectively.

The Fig. 5.2 shows four 256 × 256 experimental texture mosaics. The last column

demonstrates comparative results from the Blobworld algorithm [12]. The detected

interclass borders can be checked on the Fig. 5.2 (third column) where they are in-
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GMRF + K-means Blobworld [12]

pixel-wise correct overseg. underseg. pixel-wise correct overseg. underseg.

[%] [%] [%] [%] [%] [%] [%] [%]

A 97.84 97.84 0.00 0.00 79.97 59.95 0.00 30.66

B 97.09 97.09 0.00 0.00 75.35 41.92 0.00 0.00

C 97.64 97.64 0.00 0.00 74.84 0.00 0.00 79.70

D 96.33 96.33 0.00 0.00 63.87 0.00 0.00 0.00

E 96.80 70.47 26.34 0.00 90.96 64.97 0.00 0.00

F 96.29 96.29 0.00 0.00 92.95 90.48 0.00 0.00

G 94.63 94.63 0.00 0.00 76.12 16.55 0.00 31.22

avg. 96.66 92.90 3.76 0.00 79.15 39.12 0.00 20.23

Table 5.2: The segmentation results comparison for GMRF+K-means and Blobworld

for mosaics A–G.

serted into the corresponding input mosaics. The second column demonstrates the

robust behaviour of our algorithm while the mosaic E on Tab. 5.2 presents the infre-

quent algorithm failure producing an oversegmented thematic map. Such failures can

be corrected by a more elaborated postprocessing step. The Blobworld algorithm [12]

on these data performed steadily worse as can be seen in the last column of Fig. 5.2,

some areas are undersegmented while other parts of the mosaics are oversegmented.

Resulting segmentation results are promising however comparison with other algo-

rithms is difficult because of lack of sound experimental evaluation results in the field

of texture segmentation algorithms. The Berkeley segmentation dataset and bench-

mark proposed in [89] is not appropriate for texture mosaics because it is based on

precise region borders localization.

The comparison table Tab. 5.2 shows segmentation performance of the algorithm for

single natural textures using the performance metrics described in [70] (correct > 70%

GT (ground truth) region pixels are correctly assigned, oversegmentation > 70% GT

pixels are assigned to a union of regions, undersegmentation > 70% pixels from a

classified region belong to a union of GT regions). The overall probability of correct

58



Colour Benchmark Data Set 5.2

segmentation for this example is 96.66%. More elaborate postprocessing can improve

this result.

5.2 Colour Benchmark Data Set

Fourteen different algorithms – ten of the state–of–the–art methods (described in

chapter 2): Blobworld (see 2.4.1) [12], JSEG (see 2.4.2) [27], EDISON (see 2.9.1)

[21], EGBIS (see 2.10.1) [39], TFR (see 2.4.3) [124], TFR/KLD (see 2.4.4) [125],

GSRM supervised KL area-weighted (see 2.5.1) [11], SWA (see 2.10.2) [130], HGS E

(see 2.12.1) [68], TEX-ROI-SEG (see 2.11.1) [31], and our four methods (described

further in this section): GMRF+EM (see 5.2.1) [54], AR3D+EM (see 5.2.2) [56],

AR3D+EM multi (see 5.2.3) [57], MW3AR (see 5.2.4) [61] were tested on natural

colour textures mosaics from the benchmark which is described in the previous chapter

(see 4.2). The performance comparison is done using the Colour benchmark dataset

with its normal size, i.e. 20 texture mosaic images.

5.2.1 GMRF+EM

The GMRF+EM method [54] assumes that single decorrelated monospectral texture

factors can be represented by a set of local Gaussian Markov random field (GMRF)

models evaluated for each pixel centred image window and for each spectral band

(see 3.1.2). The segmentation algorithm based on the underlying Gaussian mixture

(GM) model operates in the decorrelated GMRF parametric space. The algorithm

starts with an oversegmented initial estimation which is adaptively modified until the

optimal number of homogeneous texture segments is reached (see 3.2.2).

5.2.2 AR3D+EM

The AR3D+EM method [56] locally represents multispectral texture mosaics by

four causal multispectral random field models recursively evaluated for each pixel
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(see 3.1.4). The segmentation algorithm is based on the underlying Gaussian mixture

model as in the GMRF+EM method and it works in the same way.

5.2.3 AR3D+EM multi

The AR3D+EM multi method [57] is based on a combination of several unsupervised

segmentation results, each in different resolution, using the sum rule. The represen-

tation of multispectral texture mosaics and segmentation part of the algorithm for

single-resolution is the same as in the AR3D+EM method. The details about the

combination of multiple segmenters can be found in the section 3.3. Three differ-

ent resolution segmenters are used to obtain results for comparison discussed in this

section (M = 3, ι1 = 1, ι2 = 1.5, ι3 = 2).

5.2.4 MW3AR

The MW3AR method [61] is an unsupervised multispectral, multi-resolution, multiple-

segmenter for textured images with unknown number of classes. The segmenter is

based on a weighted combination of several unsupervised segmentation results, each

in different resolution, using the modified sum rule. This algorithm is an extension of

the combination of the multiple segmenters method. It uses the previous hierarchy

level EM algorithm result for the initialization of the next level. Further details can

be found in section 3.5. Five different resolution levels of hierarchy are used to obtain

results for comparison discussed in this section (M = 5, ι1 = 1, ι2 = 1.333, ι3 =

1.6, ι4 = 2, ι5 = 4).

5.2.5 Results

Tables 5.4 and 5.5 compare the overall Colour benchmark performance. These re-

sults demonstrate very good pixel-wise, correct region segmentation, missed error,

noise error, and undersegmentation properties of MW3AR method while the over-

segmentation results are slightly worse and dVI results are only average. For all the
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method [min] method [min]

Blobworld 30 SWA 1

JSEG 1/2 HGS E 2/3

EDISON 1/5 TEX-ROI-SEG n/a

EGBIS 1/50 GMRF+EM 55

TFR n/a AR3D+EM 7

TFR/KLD n/a AR3D+EM multi 14

GSRM sup. KL a-w n/a MW3AR 7

Table 5.3: Approximate time performance of segmentation methods on Colour bench-

mark (run on 2 GHz processor).

pixel-wise criteria or the consistency measures this method is among the best ones.

The tables illustrate a significant improvement (e.g. 23 % for the correct segmen-

tation CS criterion) of the newer multi-segmenter method MW3AR over previous

multi-segmenter AR3D+EM multi and its single-segmenter version published earlier

AR3D+EM in most benchmark criteria. These results can be further improved by

sophisticated postprocessing and by the optimisation of the directional models con-

textual neighbourhoods.

In Tab. 5.3 are shown approximate run times of segmentation 512 × 512 input im-

age. Time performances for TFR, TFR/KLD, GSRM sup. KL a-w, TEX-ROI-SEG

methods are not known however TFR and TFR/KLD are most likely quite time-

consuming. The GMRF parameters estimation is slower than the estimation of CAR

parameters since the latter uses efficient recursive Bayesian estimation instead of

GMRF estimation in a sliding window. Our methods are not optimized for speed

therefore the time performances are not so good. Nevertheless CAR3D parameter

estimation can be easily parallelized using four CPU cores for single movement direc-

tions. And with more effort it could be even further speeded up by employing recent

GPUs with hundreds of cores.

Figures 5.3–5.5 show four selected 512 × 512 experimental benchmark mosaics

created from four to eleven natural colour textures. The last four or five rows on
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Benchmark – Colour

label Blobworld JSEG EDISON EGBIS GMRF+EM AR3D+EM AR3D+EM
version multi

(RANK) (11.33) (9.67) (8.52) (9.67) (7.96) (6.96) (6.30)

↑CS 21.01
13 27.47 11

12.68
14 28.78 10 31.93 8 37.42 7 43.22 6

↓OS 7.33
3 38.62 8

86.91
14 19.69 7 53.27 11 59.53 12 49.27 9

↓US 9.30 8 5.04 4 0.00 1
39.15

14 11.24 9 8.86 7 16.55 10

↓ME 59.55
14

35.00
13 2.48 1 20.42 8 14.97 6 12.54 5

10.30
3

↓NE 61.68
14

35.50
13 4.68 1 21.54 8 16.91 7 13.14 5 12.56 4

↓O 41.45 11 37.94 10
73.17

14 44.35 12 33.61 8 34.32 9 21.99 5

↓C 58.94 6
92.77

11
100.00

12 82.87 7
100.00

12
100.00

12 87.38 10

↑CA 46.23
13 55.29 9

31.19
14 51.10 11 57.91 8 59.46 7 64.51 5

↑CO 56.04
13 61.81 11

31.55
14 64.12 8 63.51 9 64.81 7 71.00 6

↑CC 73.62 11 87.70 8 98.09 1 72.73 12 89.26 6
91.79

3 90.14 4

↓ I. 43.96
13 38.19 11

68.45
14 35.88 8 36.49 9 35.19 7 29.00 6

↓ II. 6.72 11 3.66 7 0.24 1 7.59 12 3.14 5 3.39 6 3.79 8

↑EA 58.37
13 66.74 10

41.29
14 59.88 11 68.41 8 69.60 6 73.90 5

↑MS 40.36
13 55.14 9

31.13
14 49.03 11 57.42 8 58.89 7 64.47 5

↓RM 7.96 11 4.96 7 3.21 2 8.38 12 4.86 5 4.88 6 4.55 4

↑CI 61.31 12 70.27 9
50.29

14 63.11 11 71.80 7 73.15 6 76.51 5

↓GCE 31.16
14 18.45 12 3.55 1 16.64 9 16.03 8 12.13 4 15.31 6

↓LCE 23.19
14 11.64 11 3.44 1 8.97 8 7.31 6

6.69
3 7.97 7

↓ dM 20.03
13 15.19 7 16.84 10 19.72 12 15.27 8 15.43 9 13.51 5

↓ dD 31.11
13 23.38 11

35.37
14 21.29 9 20.63 8 19.76 7 16.87 4

↓ dVI 15.84 7
17.37

13
25.65

14 13.79 4 17.32 12 17.10 10 16.11 8

↑CS 19.10
13 29.13 10

12.95
14 30.69 9 31.04 8 34.68 7 40.19 6

↓OS 10.81 5 37.70 8
76.33

14 19.86 7 49.74 11
53.32

13 44.79 10

↓US 8.35 7 6.38 4 0.00 1
33.66

14 11.33 9 9.24 8 12.45 10

↓ME 58.54
14 34.72 12 13.92 1 28.07 8 21.92 6 19.90 4 22.48 7

↓NE 61.24
14 35.38 12 15.30 1 28.74 8 23.59 6 20.79 5 24.13 7

↑F 60.46
13 69.23 10

47.42
14 62.12 11 70.79 7 72.08 6 75.72 5

Table 5.4: Colour benchmark results (1. part) for the following algorithms: Blobworld,
JSEG, EDISON, EGBIS, GMRF+EM, AR3D+EM, AR3D+EM multi; (Benchmark

criteria: CS = correct segmentation; OS = over-segmentation; US = under-segmentation;

ME = missed error; NE = noise error; O = omission error; C = commission error; CA

= class accuracy; CO = recall – correct assignment; CC = precision – object accuracy; I.

= type I error; II. = type II error; EA = mean class accuracy estimate; MS = mapping

score; RM = root mean square proportion estimation error; CI = comparison index; GCE =

Global Consistency Error; LCE = Local Consistency Error; dM = Mirkin metric; dD = Van

Dongen metric; dVI = variation of information; f̄ are the performance curves integrals).
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Benchmark – Colour

label TFR TFR/KLD GSRM sup. SWA HGS TEX-ROI- MW3AR
version KL a-w E -SEG

(RANK) (7.70) (6.48) (2.93) (9.07) (10.37) (4.37) (3.56)

↑CS 46.13 5 51.25 4 68.72 1 27.06 12 29.81 9 56.37 2
53.04

3

↓OS 2.37 1 5.84 2 9.00 4 50.21 10 10.69 5 11.93 6
59.53

13

↓US 23.99 12 7.16 6 6.67 5
4.53

3
33.76

13 19.79 11 3.20 2

↓ME 26.70 10 31.64 12 15.09 7 25.76 9 26.89 11 11.55 4 5.63 2

↓NE 25.23 10 31.38 12 15.16 6 27.50 11 25.04 9
10.29

3 6.96 2

↓O 28.73 6 19.65 4 7.74 1 33.01 7
48.94

13 18.21 2
19.32

3

↓C 12.50 4
9.67

3 6.79 1 85.19 8 32.39 5 9.63 2 86.19 9

↑CA 61.32 6 67.45 4 78.90 1 54.84 10 49.60 12
69.45

3 71.89 2

↑CO 73.00 5
76.40

3 84.74 1 60.67 12 63.37 10 78.26 2 74.66 4

↑CC 68.91
13 81.12 10 89.30 5 88.17 7

66.09
14 81.24 9 95.04 2

↓ I. 27.00 5
23.60

3 15.26 1 39.33 12 36.63 10 21.74 2 25.34 4

↓ II. 8.56
13 4.09 9

2.10
3 2.11 4

13.51
14 4.16 10 0.74 2

↑EA 68.62 7 75.80 4 85.01 1 66.94 9 58.74 12
76.31

3 80.43 2

↑MS 59.76 6 65.19 4 77.12 1 53.71 10 46.63 12
68.88

3 71.78 2

↓RM 8.61
13 7.21 9

4.54
3 6.11 8

13.31
14 7.37 10 3.09 1

↑CI 69.73 10 77.21 4 85.98 1 70.32 8
61.17

13
77.86

3 82.43 2

↓GCE 15.52 7
20.35

13 13.29 5 17.27 11 16.75 10
11.98

3 8.17 2

↓LCE 12.03 12
14.36

13 6.93 5 11.49 10 10.46 9 6.71 4 5.78 2

↓ dM 17.47 11 12.64 4 6.84 1 13.68 6
27.95

14
11.74

3 8.97 2

↓ dD 18.21 6 18.01 5 10.88 1 24.20 12 22.90 10 13.66 2
14.78

3

↓ dVI 13.04 2 14.06 5 14.16 6 17.16 11 12.83 1
13.74

3 16.67 9

↑CS 44.21 5 47.58 4 63.96 1 26.42 12 27.82 11 52.98 2
49.60

3

↓OS 2.32 1 5.27 2
9.08

3 44.49 9 9.70 4 11.54 6 51.08 12

↓US 24.36 12 7.11 6 6.58 5
5.26

3
31.62

13 17.94 11 2.93 2

↓ME 29.53 9
37.14

13 19.92 5 33.36 11 32.86 10
19.19

3 16.05 2

↓NE 28.91 9
37.29

13 19.86 4 33.72 11 32.47 10
18.68

3 16.87 2

↑F 69.42 8 76.81 4 85.71 1 69.35 9 60.51 12
77.41

3 81.85 2

Table 5.5: Colour benchmark results (2. part) for the following algorithms: TFR,
TFR/KLD, GSRM sup., SWA, HGS, TEX-ROI-SEG, MW3AR; (Benchmark criteria:

CS = correct segmentation; OS = over-segmentation; US = under-segmentation; ME =

missed error; NE = noise error; O = omission error; C = commission error; CA = class

accuracy; CO = recall – correct assignment; CC = precision – object accuracy; I. = type I

error; II. = type II error; EA = mean class accuracy estimate; MS = mapping score; RM

= root mean square proportion estimation error; CI = comparison index; GCE = Global

Consistency Error; LCE = Local Consistency Error; dM = Mirkin metric; dD = Van Dongen

metric; dVI = variation of information; f̄ are the performance curves integrals).

63



5 Experimental Results
m

o
sa

ic
g
ro

u
n

d
tr

u
th

B
lo

b
w

o
rl

d
[1

2
]

J
S

E
G

[2
7
]

E
D

IS
O

N
[2

1
]

E
G

B
IS

[3
9
]

Figure 5.3: Selected experimental texture mosaics, ground truth from the Colour

benchmark and the corresponding segmentation results (1.part).
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Figure 5.4: Selected ground truth from the Colour benchmark and the corresponding

segmentation results (2.part).
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Figure 5.5: Selected ground truth from the Colour benchmark and the corresponding

segmentation results (3.part).
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these figures demonstrate comparative results from the fourteen above mentioned

algorithms. The second, the fifth, and the sixth row on Fig. 5.5 show segmentation

results obtained by GSRM sup. KL a-w, TEX-ROI-SEG, and MW3AR methods,

respectively. These three algorithms are placed as the best according to the average

criteria rank. It is obvious that these methods are among the best ones in the majority

of criteria.

The fourth row on Fig. 5.4 demonstrates robust behaviour of AR3D+EM multi algo-

rithm but also infrequent algorithm failures producing the oversegmented thematic

map for some textures. The TFR/KLD, AR3D+EM, GMRF+EM, SWA, EGBIS,

JSEG, Blobworld, HGS, and EDISON, algorithms on these data performed mostly

worse as can be seen in their corresponding rows on Figs. 5.3–5.5 some areas are un-

dersegmented while other parts of the mosaics are oversegmented. The third and the

fourth row on fig. 5.4 illustrates also the improvement of the multi-segmenter version

of the algorithm at the cost of slight increase in computational complexity.

Visual comparison confirms under-segmentation tendency of EGBIS and HGS E, over-

segmentation inclination of Edison, and large missed and noise errors of Blobword.

JSEG indicates the second worst both missed and noise errors. The AR3D+EM,

GMRF+EM methods produce similar results. The last two rows on fig. 5.4 suggest

that TFR and TFR/KLD results would be improved by using an postprocessing (for

example minimal region area). The consistency criteria (GCE, LCE) confirm their

dubiousness. They prefer the Edison method not because of its good performance

but due to its high over-segmentation error.

The overall conclusion supports the superiority of GSRM sup. KL a-w, MW3AR, and

TEX-ROI-SEG methods over the tested alternatives when Blobworld, HGS E, JSEG,

EGBIS, SWA and EDISON perform consistently worse. The first place of GSRM sup.

KL a-w is most probably due to the fact that this method is not an unsupervised one

as it uses some prior information.

Complete segmentation results for all fourteen discussed methods can be found in

appendix A. All Colour benchmark texture mosaics, their ground truths, and appro-

priate segmentation results are shown in Figs. A.1–A.16 while Figs. A.17–A.30 display
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graphs with performance curves. The performance of some other methods as well as

further details (performance criteria, curves, all test mosaics segmentations, etc.) can

be found on the benchmark server.

5.3 Noise Robustness

In Tabs. B.1–B.6 (see appendix B) are shown segmentation results on texture mosaics

degraded by added Gaussian noise of several levels from the range of 〈−10; 35〉 dB.

Resulting segmentations are computed on the Colour benchmark by following six

algorithms: Blobworld [12], EDISON [21], JSEG [27], EGBIS [39], GMRF+EM [54],

and AR2D+EM [55]. Figs. B.1–B.27 show per criterion graphs for all six meth-

ods. It can be seen that methods based on random field models (GMRF+EM and

AR2D+EM) are more robust to added Gaussian noise (see CS,CA,CO,EA,MS,CI

criteria graphs). In most cases the criterion curve starts at a low/high value (depends

on the trend of criterion – upward/downward) for the most degraded images and

then the value is increasing/decreasing until it reaches a high/low value for a certain

noise level. From this level the criterion roughly keeps its value. GMRF+EM and

AR2D+EM methods have this level at −5 dB while Blobworld has it around 0 dB.

Other algorithms are more sensitive to noise and have this level at approximately

10 dB. The Gaussian noise degradation is visible on images up to the noise level of

25 dB.

5.4 Illumination Robustness

The illumination robustness of segmentation algorithms was tested on the Colour

(Illumination Invariant) benchmark data set (described in section 4.2). Tab. 5.6

compares the overall benchmark performance of two methods: AR3D+EM ii [63]

with its non illumination invariant version AR3D+EM [56] and the HGS method [68]

(see 2.12.1) in its both fully illumination invariant version C and the non illumination

invariant version E, respectively. The HGS segmenter combines the K-means clus-
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Benchmark – Colour (Illumination Invariant)

label (version) HGS (C) HGS (E) AR3D+EM (ii) AR3D+EM ()

[RANK] [3.33] [3.07] [1.70] [1.89]

↑CS 9.17 4 9.55 3 40.70 1 34.14 2

↓OS 12.80 1 19.30 2 53.02 3 53.33 4

↓US 37.48 4 30.05 3 16.76 2 13.29 1

↓ME 38.41 3 39.72 4 13.96 1 20.12 2

↓NE 35.36 3 39.64 4 14.85 1 20.57 2

↓O 68.87 4 56.44 3 35.17 2 31.53 1

↓C 51.63 1 60.20 2 91.72 3 95.34 4

↑CA 35.81 4 40.20 3 59.15 1 57.87 2

↑CO 50.70 4 53.61 3 65.72 1 64.76 2

↑CC 60.67 4 62.45 3 86.36 2 87.17 1

↓ I. 49.30 4 46.39 3 34.28 1 35.24 2

↓ II. 16.15 4 12.11 3 3.83 2 3.52 1

↑EA 46.22 4 51.44 3 68.26 1 68.15 2

↑MS 28.32 4 34.80 3 56.91 2 57.23 1

↓RM 16.63 4 12.93 3 5.89 2 4.78 1

↑CI 50.03 4 54.22 3 71.32 2 71.40 1

↓GCE 21.31 3 25.36 4 14.34 1 16.99 2

↓LCE 12.23 3 16.69 4 7.62 1 8.64 2

↓ dD 29.82 4 29.21 3 19.82 1 20.27 2

↓ dM 38.39 4 29.18 3 16.58 2 14.64 1

↓ dVI 12.61 1 13.98 2 15.80 3 16.75 4

↑CS 12.58 4 14.68 3 36.68 1 32.15 2

↓OS 12.38 1 18.67 2 49.14 4 48.30 3

↓US 32.59 4 26.16 3 14.99 2 12.29 1

↓ME 42.91 3 43.20 4 21.70 1 26.61 2

↓NE 43.55 3 43.79 4 22.67 1 27.36 2

↑F 48.94 4 53.44 3 70.40 2 70.42 1

Table 5.6: Colour (Illumination Invariant) benchmark results for HGS C, HGS E,

AR3D+EM ii, AR3D+EM; (Benchmark criteria: CS = correct segmentation; OS =

over-segmentation; US = under-segmentation; ME = missed error; NE = noise error;

O = omission error; C = commission error; CA = class accuracy; CO = recall – correct

assignment; CC = precision – object accuracy; I. = type I error; II. = type II error;

EA = mean class accuracy estimate; MS = mapping score; RM = root mean square

proportion estimation error; CI = comparison index; GCE = Global Consistency

Error; LCE = Local Consistency Error; dD = Van Dongen metric; dM = Mirkin

metric; dVI = variation of information; f̄ are the performance curves integrals).

69



5 Experimental Results

mosaic

ground truth

AR3D+EM ii

AR3D+EM

HGS E

HGS C

Figure 5.6: Colour (Illumination Invariant) benchmark – selected experimental tex-

ture mosaics, ground truth from the benchmark and the corresponding segmentation

results for AR3D+EM ii, AR3D+EM 1.0, HGS E, and HGS C algorithms.
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tering with the region merging step. It uses a Gabor-Gaussian spatial-colour texture

representation and its illumination invariant version uses features derived from the

Gabor filters applied to log-transformed images.

Results of our methods demonstrate very good performance on all criteria with the

exception of oversegmentation tendency and slightly worse variation of information

criterion. The important correct region segmentation criterion is four times better

than for the HGS method, undersegmentation is low just like missed and noise errors.

Our illumination invariant segmenter outperforms its non-invariant counterpart as

expected, however the same conclusion cannot be claimed for the HGS method.

Fig. 5.6 shows three selected 512 × 512 benchmark mosaics created from three to

eleven natural colour textures. The last four columns demonstrate comparative re-

sults from two alternative methods, both in illumination invariant and non-invariant

versions, respectively. The third column demonstrates robust behaviour of our algo-

rithm but also infrequent algorithm failures producing the oversegmented thematic

map for some textures. Such failures can be reduced by a more elaborate postpro-

cessing step. The HGS-C, HGS-E algorithms on these data performed steadily worse

as can be seen in the last two columns of Fig. 5.6. Some areas are undersegmented

while other parts of the mosaics are oversegmented. Resulting segmentation results

are promising even if we could compare only one illumination invariant alternative

method.

5.5 Benchmark Dataset Size Test

Benchmark data sets (see 4.2.2) are provided in three different quantities: normal

size (×1), large size (×4), and huge size (×9) – 20, 80, and 180 images for Colour

benchmark data set, respectively. Tab. 5.7 shows segmentation results on the Colour

benchmark for three algorithms: Blobworld (see 2.4.1), JSEG (see 2.4.2), and EGBIS

(see 2.10.1). Each method has three result columns – for normal, large, and huge

data set size. The results shows that normal size results are reasonable estimations

of criteria values while huge size results are almost the same as large size results.
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Benchmark – Colour

Blobworld JSEG EGBIS

[normal] [large] [huge] [normal] [large] [huge] [normal] [large] [huge]

↑CS 21.01 25.83 24.68 27.47 32.73 33.35 28.78 30.45 29.73

↓OS 7.33 6.86 7.08 38.62 47.24 47.26 19.69 17.08 17.03

↓US 9.30 9.55 10.79 5.04 5.66 7.50 39.15 37.25 37.53

↓ME 59.55 54.63 54.12 35.00 24.88 21.54 20.42 23.83 23.94

↓NE 61.68 57.79 57.33 35.49 25.38 22.10 21.54 23.53 23.37

↓O 41.45 40.88 40.98 37.91 36.44 34.83 44.35 43.62 47.07

↓C 58.94 55.29 53.99 92.77 92.98 93.89 82.87 77.32 78.87

↑CA 46.23 50.29 50.30 55.32 57.90 58.32 51.10 49.41 49.10

↑CO 56.04 59.77 59.93 61.85 63.73 64.32 64.12 63.08 62.77

↑CC 73.62 76.13 74.72 87.70 89.05 88.71 72.73 72.46 72.12

↓ I. 43.96 40.23 40.07 38.15 36.27 35.68 35.88 36.92 37.23

↓ II. 6.72 6.29 6.58 3.66 2.90 2.98 7.59 8.13 8.15

↑EA 58.37 62.08 61.97 66.76 68.96 69.14 59.88 57.78 57.54

↑MS 40.36 44.71 44.95 55.18 57.66 58.05 49.03 47.14 46.78

↓RM 7.96 7.36 7.54 4.95 4.67 4.76 8.38 8.87 8.86

↑CI 61.31 64.73 64.40 70.29 72.24 72.35 63.12 61.33 61.09

↓GCE 31.16 31.58 30.82 18.46 16.33 15.89 16.64 16.45 16.24

↓LCE 23.19 23.39 22.82 11.64 10.05 9.63 8.97 9.30 9.13

↓ dVI 15.84 15.75 15.66 17.36 17.44 17.35 13.79 13.71 13.78

↓ dM 20.03 18.07 18.16 15.18 13.15 13.06 19.72 20.00 20.39

↓ dD 31.11 29.71 29.18 23.36 21.76 21.27 21.29 21.85 21.92

↑CS 19.10 23.12 23.35 29.19 31.90 32.80 30.69 30.23 29.49

↓OS 10.81 8.55 9.03 37.70 43.91 43.27 19.86 17.35 17.54

↓US 8.35 8.92 10.25 6.38 6.19 7.10 33.66 32.35 32.61

↓ME 58.54 56.85 55.22 34.72 29.42 27.82 28.07 30.91 31.20

↓NE 61.24 60.24 58.73 35.38 29.95 28.29 28.74 30.95 31.19

↑F 60.46 63.96 63.70 69.25 71.28 71.40 62.12 60.23 59.99

Table 5.7: Blobworld, JSEG and EGBIS results for Colour benchmark with data set

sizes [normal], [large], [huge]; (Benchmark criteria: CS = correct segmentation; OS =

over-segmentation; US = under-segmentation; ME = missed error; NE = noise error;

O = omission error; C = commission error; CA = class accuracy; CO = recall – correct

assignment; CC = precision – object accuracy; I. = type I error; II. = type II error;

EA = mean class accuracy estimate; MS = mapping score; RM = root mean square

proportion estimation error; CI = comparison index; GCE = Global Consistency

Error; LCE = Local Consistency Error; dVI = variation of information; dM = Mirkin

metric; dD = Van Dongen metric; f̄ are the performance curves integrals).
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Benchmark – Colour

Blobworld JSEG EGBIS

[normal] [large] [huge] [normal] [large] [huge] [normal] [large] [huge]

↑CS − 14 .87% +4.66% 0.00% −17 .63% −1.86% 0.00% −3 .20% +2.42% 0.00%

↓OS +3 .53% −3.11% 0.00% −18.28% −0.04% 0 .00% +15 .62% +0.29% 0.00%

↓US −13.81% −11.49% 0 .00% −32.80% −24.53% 0 .00% +4 .32% −0.75% 0.00%

↓ME +10 .03% +0.94% 0.00% +62 .49% +15.51% 0.00% −14.70% −0.46% 0 .00%

↓NE +7 .59% +0.80% 0.00% +60 .59% +14.84% 0.00% −7.83% +0 .68% 0.00%

↓O +1 .15% −0.24% 0.00% +8 .84% +4.62% 0.00% −5.78% −7.33% 0 .00%

↓C +9 .17% +2.41% 0.00% −1.19% −0.97% 0 .00% +5 .07% −1.97% 0.00%

↑CA −8 .09% −0.02% 0.00% −5 .14% −0.72% 0.00% +4.07% +0.63% 0 .00%

↑CO −6 .49% −0.27% 0.00% −3 .84% −0.92% 0.00% +2.15% +0.49% 0 .00%

↑CC −1 .47% +1.89% 0.00% −1 .14% +0.38% 0.00% +0.85% +0.47% 0 .00%

↓ I. +9 .71% +0.40% 0.00% +6 .92% +1.65% 0.00% −3.63% −0.83% 0 .00%

↓ II. +2 .13% −4.41% 0.00% +22 .82% −2.68% 0.00% −6.87% −0.25% 0 .00%

↑EA −5 .81% +0.18% 0.00% −3 .44% −0.26% 0.00% +4.07% +0.42% 0 .00%

↑MS −10 .21% −0.53% 0.00% −4 .94% −0.67% 0.00% +4.81% +0.77% 0 .00%

↓RM +5 .57% −2.39% 0.00% +3 .99% −1.89% 0.00% −5.42% +0 .11% 0.00%

↑CI −4 .80% +0.51% 0.00% −2 .85% −0.15% 0.00% +3.32% +0.39% 0 .00%

↓GCE +1.10% +2 .47% 0.00% +16 .17% +2.77% 0.00% +2 .46% +1.29% 0.00%

↓LCE +1.62% +2 .50% 0.00% +20 .87% +4.36% 0.00% −1.75% +1 .86% 0.00%

↓ dVI +1 .15% +0.57% 0.00% +0.06% +0 .52% 0.00% +0 .07% −0.51% 0.00%

↓ dM +10 .30% −0.50% 0.00% +16 .23% +0.69% 0.00% −3.29% −1.91% 0 .00%

↓ dD +6 .61% +1.82% 0.00% +9 .83% +2.30% 0.00% −2.87% −0.32% 0 .00%

↑CS −18 .20% −0.99% 0.00% −11 .01% −2.74% 0.00% +4.07% +2.51% 0 .00%

↓OS +19 .71% −5.32% 0.00% −12.87% +1 .48% 0.00% +13 .23% −1.08% 0.00%

↓US −18.54% −12.98% 0 .00% −10.14%−12.82% 0 .00% +3 .22% −0.80% 0.00%

↓ME +6 .01% +2.95% 0.00% +24 .80% +5.75% 0.00% −10.03% −0.93% 0 .00%

↓NE +4 .27% +2.57% 0.00% +25 .06% +5.87% 0.00% −7.86% −0.77% 0 .00%

↑F −5 .09% +0.41% 0.00% −3 .01% −0.17% 0.00% +3.55% +0.40% 0 .00%

Table 5.8: Colour benchmark data set sizes relative comparison for Blobworld,

JSEG and EGBIS; (Benchmark criteria: CS = correct segmentation; OS = over-

segmentation; US = under-segmentation; ME = missed error; NE = noise error; O

= omission error; C = commission error; CA = class accuracy; CO = recall – correct

assignment; CC = precision – object accuracy; I. = type I error; II. = type II error;

EA = mean class accuracy estimate; MS = mapping score; RM = root mean square

proportion estimation error; CI = comparison index; GCE = Global Consistency Er-

ror; LCE = Local Consistency Error; dVI = variation of information; dM = Mirkin

metric; dD = Van Dongen metric; f̄ are the performance curves integrals).
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Hence it is not necessary to compute more than two times of segmentation results

for huge size. Normal size results can be used as algorithm performance overview in

just quarter of computation time however large size data set should be used for more

accurately method comparison. The differences between normal, large, and huge size

results for Blobworld method could be caused by the nature of the Blobworld random

algorithm producing different results for each run even on a single image. In Tab. 5.8

is the relative comparison of the results w. r. t. huge data size results. EGBIS method

has the most consistent results over all data set sizes. The difference between results

of large and huge size are negligible. Similar data set size dependency holds for

benchmark criteria – some criteria are more robust to data set size (EA,CC, dV I)

while others are more variant (ME,NE).
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Applications
Chapter 6

6.1 Mammography

Breast cancer is the leading cause of death [115, 140] among all cancers for middle-

aged women in most developed countries. Thus a significant effort is currently focused

on cancer prevention and early detection which can significantly reduce the mortality

rate. X-ray screening mammography is the most frequented method for breast cancer

early detection although it is not without problems [115] such as rather large minimum

detectable tumor size, higher mammogram sensitivity for older women or radiation

exposition.

Automatic mammogram analysis is still a difficult task due to a wide variation of

breast anatomy, nevertheless a computer-aided diagnosis system can successfully as-

sist a radiologist, and can be used as a second opinion. The first step in a such system

is detection of suspicious potentially cancerous regions of interest. Several approaches

to detect these regions of interest (ROI) were published [122, 140] mostly based on

supervised learning. One important task for radiologists when interpreting mammo-

grams consists in evaluating the proportion of fatty and fibroglandular tissue with

respect to whole breast because the fibroglandular tissue has a higher probability of

containing a breast cancer than fatty tissue.

This study proposes an unsupervised segmentation method for fast automatic mam-

mogram segmentation into the regions of interest (ROI) using a statistical random
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field based texture representation [60, 62]. Presented methods detect the fibroglan-

dular tissue regions from either craniocaudal (CC) or mediolateral oblique (MLO)

views and thus can help focus a radiologist to this most important breast region.

The method can be enriched also by a tool to numerically evaluate the cancer risk

based on the proportion of fatty and fibroglandular tissue. Spatial interaction models

and especially Markov random fields-based models are increasingly popular for texture

representation [47, 72, 117], etc. Several researchers dealt with the difficult problem

of unsupervised segmentation using these models see for example [3, 48, 54, 87, 109].

6.1.1 Breast Detector

The unsupervised detector starts with automatic breast area detection because it can

be cheaply computed and simplifies the subsequent regions of interest detection. This

is performed using simple histogram thresholding with the automatically selected

threshold. Because all mammograms contain one or several labels, the binarized

mammogram contains several white regions. We compute their areas and all but

the largest one are discarded and merged with the background. In this stage the

algorithm also decides the breast orientation on the mammogram (left or right).

Fig. 6.1–breast mask shows resulting detected breast area (in inverted grey levels).

The following detection of regions of interest is performed only in the breast region

ignoring the background area set in the mask template.

6.1.2 Experimental Results

The algorithm was tested on mammograms from the Digital Database for Screening

Mammography (DDSM) from the University of South Florida [67]. This database

contains 2620 four view (left and right craniocaudal (CC) and mediolateral oblique

(MLO)) mammograms in different resolutions. Single mammograms cases are divided

into normal, benign, benign without callback volumes and cancer.

Two methods were tested – the first one is the combination of multiple segmenters.

Fig. 6.2 demonstrates benefits of the multiple segmenter approach (MC) over its sin-
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B–3056–1 right CC breast mask segmentation regions borders

Figure 6.1: Normal right breast mammogram (patient age 58, but with a cancerous

lesion in the left breast), the detected breast area, segmentation result and detected

regions of interest, respectively.

gle segmenter (SC) counterpart. The MC detector determined more accurately the

cancer tissue while the single segmenter found only the corresponding larger region of

interest with the cancer lesion. Smooth greyscale mammogram textures require two

dimensional models for adequate representation hence 2D CAR models were used in

this method that is described in section 3.3.

Our experiments are done with two segmenters (M = 2) using sampling factors

ι1 = 4, ι2 = 8 and the causal neighbourhood with ten neighbours (η = 10). Fig. 6.2

show right mammogram of a patient age 65 with detected irregular, ill defined lesion

type. Both segmenters (single as well as multiple) correctly found the region of interest

with the cancer lesion. The multiple segmenter found also the cancer lesion itself.

Similarly, Fig. 6.3 demonstrates region of interest containing an ill defined lobulated

cancer lesion found by the pathologist.

The second method is the combination of multiple texture models that is described in

section 3.4. Smooth pseudo-colour mammogram (original greyscale mammogram and
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C-0001-1 right CC SC segmentation MC segmentation ground truth

C-0001-1 right MLO SC segmentation MC segmentation ground truth

Figure 6.2: Cancer case mammogram (patient age 65), radiologist associated ground

truth and detected regions of interest using single segmenter (SC) and multiple seg-

menter (MC) approach, respectively.

its two nonlinear gamma transformations) textures require three dimensional models

for adequate representation hence we used 3D CAR models here. Finally, after the

segmentation, regions which have grey level mean value difference from the median

mean value (over the same type of digitised mammograms) of cancerous ground truth

regions larger than a specified threshold are eliminated.
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Figure 6.3: Cancer case mammogram (patient age 48) and its detected ROI.
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Figure 6.4: Cancerous mammograms (patients age 58 (top) and 80 (bottom)), radi-

ologist associated ground truth and detected regions of interest using the multiple

segmenter approach, respectively.
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Experiments are done with three resolutions (M = 3) using sampling factors ι1 =

2, ι2 = 4, ι3 = 8 and the causal neighbourhood with fourteen neighbours (η = 14).

Fig. 6.4–top show left MLO mammogram of a patient age 58 with detected malignant

asymmetric lesion and the right CC mammogram (Fig. 6.4–bottom) of a patient age

80 with detected irregular, spiculated malignant lesion type. The segmenter correctly

found the region of interest with the cancer lesion on both mammograms.

The detected region of interest results Figs. 6.1–6.4 demonstrate very good region

segmentation and low oversegmentation properties of our method. Resulting ROI

segmentation results are promising however comparison with other algorithms is dif-

ficult because of lack of sound experimental evaluation results in the field of screening

mammography segmentation.

6.2 Defect Detection

Traditional manual inspection of material surfaces is labour- and cost-intensive and

offers a major bottleneck in the high-speed production lines [78]. Many defects are

very difficult to detect manually; it is estimated [135] that a highly trained human

operator can detect about 60% to 70% of leather material defects. The advantages

of automated visual inspection are well known; repeatability, reliability and accu-

racy. Unfortunately very few practical automated inspection systems for automated

inspection of textile surfaces are available mainly due to their computational costs

[44]. Texture imperfections are either non-textured or different textured patches that

locally disrupt the homogeneity of a texture image [17]. Quality is a topical issue [94]

in manufacturing, designed to ensure that defective products are not allowed to reach

the customer. Since in many areas, the quality of a surface is best characterized by

its texture, texture analysis plays an important role in automatic visual inspection

of surfaces. The major textile texture defects reported by [94] were, missing threads

(causing dark lines on the image), gathered knots and oil stains (causing small dark

regions on the image), gathered threads (causing dark curves on the image), and tiny

holes on the fabrics. Due to the nature of the weaving process, the majority of the

defects on the textile web occur along two directions i.e. horizontal and vertical [78].
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Defect detection in textured materials can be very subjective task, since defects can be

a very subtle and not well localized in space, which may lead to a small modification

in the power spectrum.

The conventional approach [17] is to compute texture features in a local subwindow

and to compare them with the reference values representing a perfect pattern. The

method [94] preprocesses a grey level textile texture with histogram modification and

median filtering. The image is subsequently thresholded using the 2D CAR model

predictor and finally smoothed with another median filter run. Another approach for

detection of grey level textured defects using linear FIR filters with optimised energy

separation was proposed in [78]. Similarly the defect detection [135] is based on a set

of optimised filters applied to wavelet sub-bands and tuned for a defect type. Method

[44] uses translation invariant 2D RI-Spline wavelets for textile surface inspection.

The grey level texture is removed using the wavelet shrinkage approach and defects

are subsequently detected by simple thresholding. Contrary to above approaches the

presented method uses the multispectral information.

6.2.1 Detection Algorithm

We assume that multispectral textured image can be represented by 3D CAR model

which is described in section 3.1.4. Single multispectral pixels are classified as be-

longing to the defective area based on their corresponding prediction errors. If the

prediction error is larger than the adaptive threshold

|E{Yr |Y (r−1),(s−1)} − Yr| >
2.7

l

l∑
i=1

|E{Yr−i |Y (r−i−1),(s−i−1)} − Yr−i| (6.1)

then the pixel r is classified as a detected defect pixel. l in (6.1) is a process history

length of the adaptive threshold and the constant 2.7 was found experimentally. The

one-step-ahead predictor

E{Yr |Y (r−1),(s−1)} = γ̂s−1Xr (6.2)

differs from the corresponding predictor (3.26) in using parameters γ̂s−1 which were

learned only in the flawless texture area (s < r). The whole algorithm is extremely
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mask 1 mask 2

Figure 6.5: Defect masks used in this study for experimental texture mosaics.

fast because the adaptive threshold is updated recursively:

|εr+1| >
2.7

l

[
l−1∑
i=0

|εr−i|

]
,

where εr is the prediction error εr = E{Yr |Y (r−1),(s−1)} − Yr and γ̂s−1 is the

parametric matrix which is not changing. Hence the algorithm can be easily applied

in real time surface quality control.

The presented method was tested on the set of artificially damaged 512×512 colour

textile textures, so the ground truth (Fig. 6.5) for every pixel is well known and cannot

be influenced by a subjective evaluation. All tested images are colour (d = 3) however

it is obvious that the method allows any number of spectral bands. The performance

of the algorithm is tested using the usual recall (r), precision (p), and the type II

(II) error criteria. Let us denote the number of defect pixels nd, number of pixels

interpreted as defect pixels ni and the number of correctly interpreted defect pixels nc.

The performance criteria are then as follows:

r =
nc
nd
, p =

nc
ni
, II =

ni − nc
n− nd

.

6.2.2 Experimental Results

Recall estimates the probability that the reference pixels will be correctly assigned,

precision is the defect accuracy estimate relative to the error due to wrong assignment
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mosaic detected defect prediction error map

Figure 6.6: Defect detection on texture mosaics (a–c) using the defect mask Fig. 6.5–

left

and the type II error estimates the probability of the commission error. All these cri-

teria have range 〈0; 1〉. Single defects were simulated by replacing irregular parts of

textile textures with different but as similar as possible textile texture. All textures

are from our large (more than 1000 high resolution colour textures categorized into 10

thematic classes) colour texture database. All results presented are without any post-

processing such as isolated defect pixels filtering to demonstrate basic performance

of the presented method. Figs. 6.6, 6.7 exhibit correct defect detection which is also

clearly visible on the corresponding prediction maps. Tab. 6.1 presents robust per-
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mosaic a detected defect mosaic b detected defect

mosaic c detected defect mosaic d detected defect

mosaic e detected defect prediction error map

Figure 6.7: Defect detection on texture mosaics (a–e) using the defect mask Fig. 6.5–

right

formance with high recall values even for hardly visible defects (Fig. 6.7–b,e). Even

for lower recall values (Fig. 6.6–a,c, Fig. 6.7–d) the defect is clearly outlined. Both

precision and type II criteria are expectedly low respectively high in failure examples

(Fig. 6.8). Finally, the method was successfully evaluated on skin disease treatment

progress monitoring application. Fig. 6.9 illustrates a patient with pemphigus vulgaris

skin disease and its automatically detected regions which are subsequently compared
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mosaic detected defect prediction error map

Figure 6.8: Failures on highly structured textures.

mosaic (row) recall (r) precision (p) type II (II) error

Fig. 6.6 – a 0.22 0.01 0.09

Fig. 6.6 – b 1.00 0.70 0.00

Fig. 6.6 – c 0.11 0.62 0.00

Fig. 6.7 – a 1.00 0.70 0.00

Fig. 6.7 – b 0.93 0.10 0.02

Fig. 6.7 – c 0.92 0.19 0.01

Fig. 6.7 – d 0.34 0.11 0.01

Fig. 6.7 – e 0.93 0.71 0.00

Fig. 6.8 – a 0.06 0.00 0.45

Fig. 6.8 – b 0.13 0.00 0.21

Table 6.1: Performance criteria
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skin detected disease prediction error map

Figure 6.9: Monitoring of the pemphigus vulgaris skin disease progress.

with previous checking to monitor a disease treatment efficiency. Defects were de-

tected using simple models with causal neighbourhoods containing either 3 or 8 sites

(η ∈ {3, 8}) (Tab. 6.2) and adaptive learning on uncorrupted quarter of every texture

mosaic. Processing time in Tab. 6.2 is for unoptimized code and can be easily further

decreased.

Fig. 6.8 indicates type of highly structured textures which are out of the means of the

presented simple probabilistic model. Although even on these examples the defect

was correctly detected, the method simultaneously detects also large textile design

patterns which cannot be distinguished from the defect. A possible solution is to filter

out these design artifacts using prior information such as regularity, size or spectral

content.

η learning [s] detection [s]

3 1 7

8 12 15

Table 6.2: Time performance on the HP 9000/785 Unix machine
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Most published texture defect detection methods do not use the multispectral in-

formation. Our method takes advantage of both multispectral as well as spatial

information. The method is simple, extremely fast and robust in comparison with

these alternative methods. The presented method results are encouraging, all sim-

ulated defects on fine granularity textile textures were correctly localized as well as

sick skin patches in real dermatology application. The method will fail on highly

structured textures due to limited low frequencies modelling power of the underlying

probabilistic model. The presented method can be easily generalized for gradually

changing (e.g. illumination, colour, etc.) texture defect detection by exploiting its

adaptive learning capabilities.

6.3 Remote Sensing – Aerial Images

Segmentation of remote sensing imagery for various applications (e.g. agriculture,

geological survey, military and security, weather forecast, terrain classification, as-

tronomy, the detection of changes and anomalies, etc.) is a challenging task due to

huge amounts of data measured by satellite or airborne sensors. Large remote sens-

ing images suffer not only with geometric and radiometric distortions problems but

Figure 6.10: Aerial Lmw 4800× 4800 image (left), its detail (middle), and the corre-

sponding unsupervised segmentation (right), respectively.
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also with various challenges due to the high heterogeneity both within and across

classes. The within class heterogeneity is due to the difference of acquisition process,

orientation, and intrinsic appearance [37].

Unsupervised segmentation methods (sections 3.1.2, 3.1.4 and 3.2.2) were modified

to be able to handle large aerial images (up to 8000×8000) distributed by the British

National Space Centre (BNSC) as a CDROM called ”Window On The UK”. These

aerial images (Fig. 6.10) cover both urban and rural areas of the United Kingdom.

The parametric space Θ (3.30) build over large images from this set requires efficient

memory handling and distance based region class merging to avoid expensive memory

swapping during the segmentation. Segmentation results illustrated on Fig. 6.10–right

do not use any prior information except the minimal region area. This parameter

can be easily determined from the image resolution and the intended thematic map

application.

6.4 Cultural Heritage – Material Analysis

The image processing methods play an important role in very distant application

areas such as art restoration [6]. Painting materials research, which helps to choose

of the proper materials for restoration, is the field where the system Nephele tries

to facilitate the work of restorers. Nephele [7] is a system for processing, description

and archiving material analyses used during art restoration.

The aim of the material analyses of painting layers is to identify inorganic and or-

ganic compounds using microanalytical methods, and to describe stratigraphy and

morphology of layers. Painting materials analysis is described in the form of a report

and stored in the database, which could serve as a knowledge base for further restora-

tion cases. For such usage, it is very important to have effective tools to look-up the

relevant reports. The visual similarity between images contained in reports can imply

that the used technique/materials on the analyzed artwork is the same/similar as in

the archived report or that it can point to the same author. Thus, the image-based

data retrieval is often used nowadays besides the traditional text-based search.
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Figure 6.11: Colour layers segmentations of selected paint slices; left column – images

in the visible spectrum, middle column – images in the ultraviolet spectrum, and right

column – resulting segmentations.

Stratigraphy (learning about layers) is usually studied in the visible spectrum (VS),

in the ultraviolet spectrum (UV), and by means of the scanning electron microscopy

(SEM). Image segmentation can be used for the colour layer estimation. Input in-

formation consists of a set of three RGB channels of VS and three RGB channels of

UV specimen images. In figure 6.11 are shown input images in VS, UV spectra and

results of colour layers segmentation of selected paint slices. These segmentations are

obtained by MW3AR segmentation method (see 3.5) using five different resolutions

(M = 5, ι1 = 1, ι2 = 1.333, ι3 = 2, ι4 = 2.666, ι5 = 4). It uses a fixed number of

components of Gaussian mixture (K = 5) in the EM clustering step and the CAR3D

neighbourhood with ten neighbours (η = 10). The postprocessing steps are omitted.

More segmentation results can be found in appendix C.

6.5 Virtual Reality Modelling

Image segmentation methods can be used in another cultural heritage application. In

virtual reality, which is widely used in the field of cultural heritage nowadays, several

issues are solved by image segmentation. For reliable experience from the virtual real-

ity high quality textures are needed. Such realistic textures are very space demanding
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and in the case of BTF textures the complexity is even more higher. Regardless of

increasing internet connection speed and capacity of hard drives texture modelling

and compression are essential to solve this problem. And the image segmentation is

a significant step in dealing with it. Another issue is obtaining a three-dimensional

model. Image segmentation plays an important role in the low-level processing during

the construction of the virtual models based on a real world.

This section describes a method for automatic navigation inside a complex virtual

scene, demonstrated on a large virtual model of the Department of Modern Art of the

National Gallery in Prague. The basic navigation graph structure is constructed semi-

automatically and it is subsequently locally changed by the exhibition editor which

places new exhibition panels into the building interior and thus locally changes the

navigation route structure. The optimal navigation route is automatically generated

using graph algorithms and user defined constraints.

6.5.1 Introduction

Virtual or augmented reality systems (VR) are a natural way how to visualize, ma-

nipulate and interact with complex digitized information about real world objects in

a simple human way. Recent progress in computer technology, range cameras and

the corresponding computer graphics and computer vision methods enables to build

an ever-growing number of more and more complex VR scenes in various application

areas such as 3D games, military or civilian training simulators, architectural mod-

els, archeological applications, World Wide Web, digitized cultural heritage sites, etc.

These advances in technology allow the shift from text oriented information systems

to full 3D graphical ones.

Distributed virtual reality information systems vastly improve the access of citizens,

disadvantaged people, or professionals to culture knowledge bases collected in muse-

ums or galleries. Many cultural heritage monuments endangered by crowds of visitors

or even already closed for public can be accessed through their virtual models. Other

monuments stolen, damaged, moved from their natural environment (e.g. Elgin’s

marbles, Codex Gigas, etc.) can be completed with their original setup. Restora-
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tion plans, exhibition planning, manipulating of fragile physical objects, environment

changes and many other cultural heritage maintenance problems can be cheaply and

safely solved in simulated virtual information systems. Finally some cultural heritage

can be preserved only in digital form due to natural disasters or human ignorance.

Another obvious application is virtual information and simulation systems for envi-

ronments too dangerous, hostile, or even inaccessible for humans such as radiation

contaminated environment, body interior for microsurgery treatment, etc.

Range and vision sensors are already common and their mutual registration can be

done using either standard photogrammetric techniques or an appropriate sensor

setup. A range camera is a device which can acquire a 2D raster of depth mea-

surements, as measured from a plane (orthographic) or single point (perspective) on

the camera. Such cameras constitute the core part of any virtual model acquisition

system together with spectral cameras and the accompanying image processing and

modelling software methods.

3D graphical communication and presentation creates a natural environment for users

because such a virtual reality information environment simulates the natural sur-

rounding for human beings in which people are accustomed to orient themselves.

Single objects are presented in their mutual contextual relations in the simulated

realistic time-spatial space and hence offers far richer information than the usual

textual, still image or multimedia databases. The VR environment can not only ap-

proximate some real world experience but it can provide unique experiences which

are either impractical, dangerous or utterly impossible to achieve in real world. A

serious problem is the user friendliness of the user interface of a 3D browser. Effective

use of this interface requires some experience from the user which is not always the

case.

A solution to this problem is automatic path generation that defines a trajectory of

the virtual walk through. The parameters of the path (starting point, end point, usage

of a staircase etc.) are defined by the user. This solution helps us to solve another

critical problem: the performance of a computer to be high enough to generate the

virtual walk through in real time. Even experienced users will appreciate a reduction

in user’s fatigue because in most of the existing VR systems, the user has to input
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Figure 6.12: National Gallery in Prague virtual model.

the moving event with a mouse or keyboard continuously if he wants to travel in the

virtual environment.

While navigation in real world, i.e. travelling to a specific target location, is often a

challenging and not completely understood problem [25], especially in an unknown

environment (e.g. city, forest, sea) and many support tools were developed from

simple compass to sophisticated GPS (Global Positioning System) based navigators,

navigation in VR environment [19, 20, 77, 79, 101, 107, 120] is even more difficult due

to many missing real world cues. A major problem for users of virtual environments

is maintaining knowledge of their location and orientation while they move through

the space because perceptual judgements are biased within a virtual environment.

Several tests have shown that users wearing a head mounted display for example

underestimate dimensions of space, which might be caused by limited field of view.

Several solutions to selected virtual navigation problems were published, e.g. constant

navigation velocity [79], collision avoidance, path adjustment, gender factor support

[142] or navigation support tools [25] but this problem is still not satisfactorily solved.

The proposed solution for navigation in complex virtual information system is demon-

strated on the complex model Fig. 6.12 of the Department of Modern Art of the Na-

tional Gallery in Prague. In order to test the navigation algorithm on real data we

created an accurate and realistic virtual model of this huge gallery building [97]. The

gallery has seven exhibition floors and two large exhibition halls in the ground floor.

All seven floors of the gallery building interior can be automatically navigated using

the method detailed in the following sections and it uses the scaleable model approach

proposed in [145].
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Figure 6.13: Current position visualization.

6.5.2 Actual Position Visualization

Actual position in a complex virtual scene is depicted as the highlighted point in an

overlayed transparent map and its local detail (left overlayed map) or building floor

plan Fig. 6.13. The map window can be moved by mouse to any appropriate screen

location and the detailed map can be scaled. This point is continuously moving as the

user or an avatar moves in the virtual scene and the map detail is rotating according

to the view angle (compare both maps in Fig. 6.13). If we leave a building floor for

another one, the floor plan is switched accordingly to the actual one. Each plan is

labelled with the corresponding floor number or label (i.e. ground floor – Př́ızemı́).

6.5.3 Preset Routes

Manual creation of virtual reality models of real world scenes and navigation routes

inside them is tedious and error-prone as the scene complexity increases and automa-

tion may substantially reduce the laboriousness of the whole process. Possible routes

are determined to large extent by the building designed and this information can

be exploited for possible navigation network setting if we are prepared to compro-

mise full generality of possible routes. For example we assume that a visitor will

never walk closer than half meter from the walls, enter each exit in its center, larger

spaces are covered with walking loops with minimal diameter one meter, etc. Each
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Figure 6.14: Generated gallery ground floor preset routes (left), user generated ex-

hibition panels floor plan (middle) and the corresponding automatically generated

navigation subgraph for this exhibition (right).

floor plan is than supplemented with a preset routes graph structure given by the

basic building structure. Single corridors, lifts, staircases are represented as graph

edges, while doors, branchings or turning points are graph vertices. This prior graph

structure which represents initialization of navigation routes can be generated semi-

automatically based on the floor plans. Narrow corridors have single graph edges

while wider corridors or halls can have even several graph loops (see Fig. 6.14–left

loop booked in the middle hall). This automatically proposed graph structure (pri-

mary graph) can be interactively edited using the exhibition editor described in the

following section. Superfluous edges or vertices can be removed while new edges and

vertices can be added. Single edges or vertices can be also shifted to other positions.

Vertices can be also supplemented with additional attributes such as emergency exit,

lift, staircase, door, etc.

6.5.4 Exhibition Editor

Our Virtual National Gallery allows to interactively build virtual exhibitions using our

exhibition editor Fig. 6.15. This editor was devised for the National Gallery exhibition

architects to support and speed up their exhibitions proposals. The editor loads

requested floor plan and allows to insert single exhibition panels Fig. 6.15–right and

to specify their parameters such as single dimensions, colour, covering material, etc.
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Figure 6.15: Exhibition editor with floor map (left) and single panel editor window

(right).

Single paintings from the gallery are subsequently set out on these exhibition panels

and other supplementary data can be attached e.g. information about a painter in the

corresponding pop-up window. When the exhibition editing is ready, it is exported

into the VRML building model and can be immediately checked in the browser.

However, these newly inserted panels (Fig. 6.14–middle) change the corresponding

part of the underlying navigation graph. The first step is automatic generation of a

subgraph around these new panels Fig. 6.14–right. This new subgraph is inserted into

the preset primary graph with higher priority than has the corresponding primary

subgraph. The primary graph edges and vertices which are overlaid by this new

subgraph are temporarily disabled (Fig. 6.16–right dash-and-dot brown edge). If the

subgraph does not overlay any part of the primary graph (e.g. a new exhibition in the

previously empty hall far from default primary graph hall paths) it is automatically

connected to the nearest primary graph vertices. When the exhibition is later changed

or removed the primary subgraph can be restored to its original shape (Fig. 6.16–left).

6.5.5 Optimal Path Search

The solution to this problem is to generate a sort of movie that represents the virtual

walk-through in the scene. Such a movie can be played forwards and backwards
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Figure 6.16: Navigation route detail (left – blue edge) and its modification by the

editor (right).

thus providing necessary information about every part of the trajectory the user goes

virtually through. Generation of a path from parameters given by the user is done

automatically in a module that considers the ground plan of a 3D scene as a labelled

graph. The labels represent various kinds of information like accessibility of some

location from the point of view of handicapped persons etc. A single edge attribute

is also its physical length, thus it is possible to estimate real time needed to walk a

specified route in the real National Gallery Prague palace as well as time needed for

an exhibition sightseeing tour.

The process of the path finding is in principle finding the optimal path in a given

graph. Motion planning has been studied for several decades and many motion plan-

ning algorithms were published, however VR path planing is simpler than robot mo-

tion planning [71] in unknown dynamic environment and simple graph path methods

can be used.

The shortest path is found using the Dijkstra algorithm [29] and it represents the

required navigation route through the gallery building where we assume only static

obstacles and environment changes restricted to the exhibition editor. Such requests

can be emergency evacuation assessment, routes for handicapped visitors, educative

thematic routes, time limited gallery visit proposals or simply visitor’s information

support.
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Figure 6.17: Animated navigation route using avatars.

This navigation route is subsequently used for generation of a movie that repre-

sents the virtual walkthrough. This walkthrough can be demonstrated using avatars

Fig. 6.17 or simulating the eye view of a visitor Fig. 6.18. The user interface has only

few features. They do not require some specific knowledge (forward, backward, stop

etc.). This fact allows the use of the navigational system even for novice users. A

visitor can watch not only animated thematic visits to his or her selected artistic sub-

jects, possible from home over internet, but can also print a map with the proposed

personalized route.

6.5.6 Experimental Results

The virtual National Gallery in Prague Department of Modern Art model was partly

automatically acquired using our setup for automatic acquisition of virtual reality

models using a laser scanner Konica Minolta Vivid 9i and our modelling software.

All parts of this system [49, 66] are fully functional and were tested with satisfactory

results on gallery small real objects.

Unfortunately, this range camera is not capable to measure large building structures

and thus we were not able to acquire range data from the gallery building itself. Single

architectural shapes in the model were created instead using building blueprints and

acquired photographs. Virtual reality systems require object surfaces covered with

realistic nature-like colour textures to enhance realism in virtual scenes. The model

surface materials are represented by synthetic textures generated using our multi-
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Figure 6.18: Navigation frames (0, 5, 10, 24 top; 26, 32, 39, 43 bottom).

scale Markov random field based methods [52, 53]. The texture Markov random field

based model consists of a set of Gaussian Markov random field submodels for single

orthogonal mono-spectral single-resolution texture factors. Parameters of the Markov

random field submodels are estimated and subsequently used for given factors syn-

thesis. The resulting synthetic colour texture is composed from these mono-spectral

single-resolution factors after corresponding inverse transformations. Although these

colour texture models are slightly spectrally compromised due to this spectral decor-

relation transformation, the appearance of colour synthetic textures in the gallery

model is very good and nearly visually indiscernible from their natural counterparts.

Figs. 6.12, 6.13, 6.17, 6.18 show different images from the Virtual National Gallery

model. The gallery model is created in the VRML2 language. Single building floors

are separated VRML scenes which are automatically loaded whenever avatars or users

are moving from one scene into another using, for example, virtual lifts or model

staircases.

Fig. 6.18 presents selected eight frames from the automatically generated route to

reach a newly installed small exhibition on three panels. The given task was to find

the shortest route from the gallery entrance to the selected exhibition part (three

panels with eight paintings) for a regular visitor, survey these paintings and return
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to the exit. The system found automatically the correct route, its length in meters,

estimated sightseeing time and animated this tour in the realistic setting of the virtual

gallery model. It is also possible to print the floor plan with the highlighted suggested

route. If we require disabled person (or wheel chair) constraint, the generated route

will avoid staircases (Fig. 6.18 top row leftmost image) in exchange for the lift with a

slightly longer route.

6.5.7 Conclusion

The proposed solution for the virtual information system construction is demon-

strated on the model of the Department of Modern Art of the National Gallery. This

collection of images, drawings and statues from the period of 20th century is located

in a functionalist building in Prague. In order to test the navigation algorithm on

real data we modelled manually and semi-automatically the interior and exterior of

the whole gallery palace. Automatic acquisition of virtual models from registered

range and colour real image data and automatic generation of navigation routes in

the virtual scene is possible combining novel efficient and robust methods indicated

in the article. Very complex scenes with large non-planar faced objects, still require

human feedback and corrections. However even in this case the model acquisition

procedure significantly simplifies a virtual model building task.

Although recent technological advances already enable automatic or at least semi-

automatic construction of complex distributed virtual models, further research is still

needed to enhance the physical look and feel of resulting models together with their

performance and storage requirements. The VRML2 language has many functional

restrictions for example missing support for the most advanced material representa-

tion – the bidirectional texture function and some better distributed virtual reality

modelling language is clearly required. Current state-of-art of image analysis has its

limitations as well in reliable image and range segmentation of complex or inhomo-

geneously lighted scenes.
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Several novel unsupervised multispectral image segmentation methods based on the

underlaying random field texture models (GMRF, 2D/3D CAR) were developed.

These segmenters use efficient data representations that allow an analytical solutions

and thus the segmentation algorithm is much faster in comparison to methods based

on MCMC. All segmenters were extensively compared with the alternative state-of-

the-art segmenters with very good results. The MW3AR segmenter scored as one

of the best available. The cluster validation problem was solved by a modified EM

algorithm. Two multiple resolution segmenters were designed as a combination of a

set of single segmenters. To tackle a realistic variable lighting in images, the illumi-

nation invariant features were derived and the illumination invariant segmenter was

developed.

For the proper evaluation of segmentation results and ranking of algorithms, a unique

web-based texture segmentation benchmark was proposed and implemented. It was

used for comprehensive comparisons of results of developed algorithms with ten dif-

ferent state-of-the-art segmentation methods. Finally, the proposed methods were

validated through use in various applications from a range of different fields.

In the medical imaging field, they were used for automatic segmentation of mammo-

grams into regions of interest. Proposed solutions based on the random field model

could also be used in automated inspection systems. Developed segmenters work on
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aerial images up to a size of 8000 × 8000 pixels, which are standard in the remote

sensing field. The algorithm can also be used in areas related to digital cultural her-

itage. At last, an advantage of our methods is the need to tune just a few application

dependent parameters.

7.1 Further Research

In spite of all the results achieved in the thesis, many areas still offer space for

future development. Several suggested areas of further research, plans, and possible

applications are listed below.

(a) Improvements in texture representation can be done using more complex MRF.

Possible optimization to represent an image by using a set of competing random

field models.

(b) Advancement in the area of cluster validation leading toward more reliable

estimation of the number of regions.

(c) Developing better combination of several segmenters (multi-segmenter approach)

allowing the capture of textures with higher complexity.

(d) Incorporating semi-supervised learning for remote sensing solving incomplete

texture training set.

(e) Enhancement of the segmentation benchmark and validation of the coherence

between the benchmark and real image scene segmentation results based on

statistical comparisons.

(f) Extension of the segmentation method from still image segmentation to video

segmentation.

(g) Implementing proposed methods more efficiently using parallelization.
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Applications

(A) Content-based image retrieval

(B) Medical image analysis – retina segmentation

(C) Range images segmentation

Image segmentation is a fundamental part in low level computer vision processing.

It has a crucial influence on the subsequent higher level visual scene interpretation

for a wide range of applications. Unsupervised image segmentation is an ill-defined

problem and thus cannot be optimally solved in general. Therefore, a reasonable way

is to advance promising existing methods, use concise and better data models and

exploit all available information to develop an efficient and robust segmenter.
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Results
Appendix A

In this appendix can be found Colour benchmark (described in section 4.2) tex-

ture mosaics, ground truths, segmentation results and performance curves for four-

teen different algorithms – Blobworld [12], JSEG [27], EDISON [21], EGBIS [39],

GMRF+EM [54], AR3D+EM [56], AR3D+EM multi [57], TFR [124], TFR/KLD [125],

GSRM supervised KL area-weighted [11], SWA [130], HGS E [68], TEX-ROI-SEG [31],

MW3AR [61]. Further details can be found in section 5.2.
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Figure A.1: Colour benchmark – texture mosaics.
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Figure A.2: Colour benchmark – ground truths.
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Figure A.3: Colour benchmark – segmentation results – Blobworld.
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Figure A.4: Colour benchmark – segmentation results – JSEG.

109



A Colour Benchmark Results

Figure A.5: Colour benchmark – segmentation results – EDISON.
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Figure A.6: Colour benchmark – segmentation results – EGBIS.
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Figure A.7: Colour benchmark – segmentation results – GMRF+EM.
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Figure A.8: Colour benchmark – segmentation results – AR3D+EM.
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Figure A.9: Colour benchmark – segmentation results – AR3D+EM multi.
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Figure A.10: Colour benchmark – segmentation results – TFR.
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Figure A.11: Colour benchmark – segmentation results – TFR/KLD.
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Figure A.12: Colour benchmark – segmentation results – GSRM sup. (KL a-w).
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Figure A.13: Colour benchmark – segmentation results – SWA.

118



Colour Benchmark Results A

Figure A.14: Colour benchmark – segmentation results – HGS (E).
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Figure A.15: Colour benchmark – segmentation results – TEX-ROI-SEG.
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Figure A.16: Colour benchmark – segmentation results – MW3AR.
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Figure A.17: Colour benchmark – performance curves – Blobworld.
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Figure A.18: Colour benchmark – performance curves – JSEG.
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Figure A.19: Colour benchmark – performance curves – EDISON.
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Figure A.20: Colour benchmark – performance curves – EGBIS.
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Figure A.21: Colour benchmark – performance curves – GMRF+EM.
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Figure A.22: Colour benchmark – performance curves – AR3D+EM.
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Figure A.23: Colour benchmark – performance curves – AR3D+EM multi.
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Figure A.24: Colour benchmark – performance curves – TFR.
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Figure A.25: Colour benchmark – performance curves – TFR/KLD.
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Figure A.26: Colour benchmark – performance curves – GSRM sup. (KL a-w).
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Figure A.27: Colour benchmark – performance curves – SWA.
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Figure A.28: Colour benchmark – performance curves – HGS (E).
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Figure A.29: Colour benchmark – performance curves – TEX-ROI-SEG.
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Figure A.30: Colour benchmark – performance curves – MW3AR.
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Noise
Robustness

Results
Appendix B

In this appendix can be found Colour benchmark (described in section 4.2) segmen-

tation results (tables and graphs) of texture mosaics degraded by Gaussian noise of

different levels. Resulting segmentations are computed by six algorithms – Blob-

world [12], EDISON [21], JSEG [27], EGBIS [39], GMRF+EM [54], AR2D+EM [55].

Further details can be found in section 5.3.
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B Noise Robustness Results

Colour Benchmark – Blobworld

−10 dB −5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB no noise

↑CS 9.83 15.11 25.28 17.66 21.07 24.89 23.55 15.97 17.19 26.24 21.01

↓OS 1.17 2.71 11.79 6.19 7.07 14.19 14.23 10.58 7.35 5.27 7.33

↓US 45.39 25.65 17.38 20.72 11.87 12.89 4.86 10.16 11.69 11.44 9.30

↓ME 41.84 54.62 44.09 52.61 56.72 47.04 54.33 60.32 59.02 53.76 59.55

↓NE 43.52 55.92 45.61 55.12 58.47 49.80 57.53 63.29 62.20 55.89 61.68

↓O 74.49 63.01 43.13 49.92 44.07 41.00 44.59 44.55 44.94 37.19 41.45

↓C 55.00 60.55 53.22 48.66 56.12 56.63 65.81 64.04 74.80 65.27 58.94

↑CA 28.03 36.01 49.06 42.17 47.18 49.48 49.49 44.43 45.57 48.92 46.23

↑CO 45.06 50.09 59.39 54.72 58.10 59.86 58.13 54.68 55.13 58.40 56.04

↑CC 43.04 54.55 70.21 63.52 70.99 72.03 75.62 73.69 75.19 74.75 73.62

↓ I. 54.94 49.91 40.61 45.28 41.90 40.14 41.87 45.32 44.87 41.60 43.96

↓ II. 18.95 13.45 6.90 10.18 6.86 6.78 5.53 6.81 5.66 6.06 6.72

↑EA 37.54 46.34 60.25 53.32 58.81 61.39 61.52 56.92 57.94 60.38 58.37

↑MS 18.33 27.30 43.46 35.06 41.33 45.04 43.96 38.49 39.69 43.74 40.36

↓RM 17.30 13.29 8.27 10.13 8.14 6.98 6.98 8.04 8.35 7.74 7.96

↑CI 40.37 48.99 62.38 55.90 61.42 63.47 63.99 60.15 61.21 63.16 61.31

↓GCE 25.61 30.61 28.83 30.91 32.25 30.99 30.09 33.02 30.93 29.19 31.16

↓LCE 19.93 22.71 21.78 22.71 22.81 23.17 22.57 24.52 23.02 22.82 23.19

↓ dVI 12.36 13.58 15.13 14.54 15.36 15.62 15.92 15.95 16.08 15.80 15.84

↓ dM 41.81 33.24 19.84 24.48 18.82 18.16 18.62 20.24 20.00 19.17 20.03

↓ dD 34.53 33.49 28.82 30.99 29.58 28.81 29.84 32.59 31.97 29.59 31.11

↑CS 8.30 14.62 23.63 18.34 20.48 22.05 22.30 16.89 17.97 23.88 19.10

↓OS 2.24 5.03 9.59 6.03 8.38 13.67 13.52 12.52 11.62 10.13 10.81

↓US 40.37 23.30 14.48 20.49 14.38 11.11 7.35 9.77 10.34 10.37 8.35

↓ME 45.83 54.85 52.09 54.17 54.43 52.69 54.48 59.16 57.36 53.63 58.54

↓NE 48.35 56.24 54.00 57.38 57.17 55.12 57.93 62.51 60.92 57.01 61.24

↑F 39.53 48.21 61.78 55.14 60.66 62.87 63.28 59.21 60.26 62.35 60.46

Table B.1: Blobworld results for Colour benchmark with Gaussian noise; (Bench-

mark criteria: CS = correct segmentation; OS = over-segmentation; US = under-

segmentation; ME = missed error; NE = noise error; O = omission error; C =

commission error; CA = class accuracy; CO = recall - correct assignment; CC =

precision - object accuracy; I. = type I error; II. = type II error; EA = mean class

accuracy estimate; MS = mapping score; RM = root mean square proportion estima-

tion error; CI = comparison index; GCE = Global Consistency Error; LCE = Local

Consistency Error; dVI = variation of information; dM = Mirkin metric; dD = Van

Dongen metric; f̄ are the performance curves integrals).
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Noise Robustness Results B

Colour Benchmark – EDISON

−10 dB −5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB no noise

↑CS 0.00 0.00 0.00 2.98 10.86 12.91 12.05 12.92 12.80 10.78 12.68

↓OS 80.40 87.91 93.18 92.97 83.79 91.97 89.74 88.53 91.01 90.88 86.91

↓US 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

↓ME 10.47 4.93 1.73 1.77 9.13 0.87 2.26 1.51 1.47 0.91 2.48

↓NE 17.52 10.05 5.37 4.78 11.06 2.82 4.64 3.70 3.38 2.91 4.68

↓O 89.86 90.38 90.67 82.56 73.86 72.71 73.74 73.72 75.24 76.48 73.17

↓C 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

↑CA 8.83 8.27 7.98 17.36 28.05 30.38 30.25 31.01 30.16 30.05 31.19

↑CO 8.91 8.35 8.01 17.70 28.84 30.65 30.64 31.42 30.56 30.39 31.55

↑CC 96.71 97.14 98.66 97.68 96.37 98.42 97.89 98.30 97.84 96.74 98.09

↓ I. 91.09 91.65 91.99 82.30 71.16 69.35 69.36 68.58 69.44 69.61 68.45

↓ II. 0.07 0.06 0.02 0.26 0.52 0.14 0.30 0.22 0.33 0.35 0.24

↑EA 15.72 14.84 14.39 25.94 37.83 40.27 40.41 41.12 40.10 40.42 41.29

↑MS 8.65 8.12 7.92 17.05 27.77 30.32 30.16 31.03 30.08 29.81 31.13

↓RM 3.17 3.06 3.00 3.05 3.11 3.19 3.23 3.18 3.23 3.24 3.21

↑CI 28.03 27.19 26.97 36.84 46.97 49.38 49.55 50.17 49.22 49.37 50.29

↓GCE 9.25 6.95 4.59 4.11 5.53 3.39 3.88 3.83 3.53 3.60 3.55

↓LCE 9.25 6.95 4.59 4.03 5.44 3.33 3.78 3.69 3.43 3.55 3.44

↓ dVI 30.75 31.15 31.35 29.03 26.40 25.98 25.73 25.76 25.79 25.85 25.65

↓ dM 21.12 21.18 21.18 19.74 17.68 16.99 17.01 16.93 17.08 17.18 16.84

↓ dD 48.77 48.14 47.51 42.48 37.41 35.76 35.84 35.48 35.84 35.95 35.37

↑CS 0.03 0.03 0.00 3.28 10.32 12.51 12.01 12.80 12.30 11.11 12.95

↓OS 61.89 69.79 77.73 80.23 74.51 80.12 77.96 77.19 79.45 78.45 76.33

↓US 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

↓ME 31.92 25.32 18.65 15.86 18.67 13.30 14.96 13.84 13.84 14.14 13.92

↓NE 35.81 28.20 20.87 17.64 20.29 14.68 16.62 15.25 15.13 15.57 15.30

↑F 23.87 23.00 22.70 33.23 44.00 46.46 46.63 47.28 46.30 46.52 47.42

Table B.2: EDISON results for Colour benchmark with Gaussian noise; (Bench-

mark criteria: CS = correct segmentation; OS = over-segmentation; US = under-

segmentation; ME = missed error; NE = noise error; O = omission error; C =

commission error; CA = class accuracy; CO = recall - correct assignment; CC =

precision - object accuracy; I. = type I error; II. = type II error; EA = mean class

accuracy estimate; MS = mapping score; RM = root mean square proportion estima-

tion error; CI = comparison index; GCE = Global Consistency Error; LCE = Local

Consistency Error; dVI = variation of information; dM = Mirkin metric; dD = Van

Dongen metric; f̄ are the performance curves integrals).
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B Noise Robustness Results

Colour Benchmark – JSEG

−10 dB −5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB no noise

↑CS 0.00 0.21 1.95 23.29 31.68 30.39 32.07 30.44 30.97 29.02 27.47

↓OS 0.00 0.00 0.35 15.33 28.09 37.45 44.98 42.84 49.73 48.89 38.62

↓US 100.00 99.77 89.47 42.71 13.02 8.32 5.63 6.12 2.62 8.03 5.04

↓ME 0.00 0.00 7.71 24.55 31.88 33.86 25.17 29.01 27.26 22.34 35.00

↓NE 0.00 0.00 6.11 23.96 31.16 33.73 26.36 28.55 27.63 24.06 35.50

↓O 100.00 100.00 95.16 55.33 34.13 34.00 31.58 36.70 36.15 36.72 37.94

↓C 68.92 67.45 49.23 69.45 91.00 94.36 92.55 95.13 92.61 94.49 92.77

↑CA 10.55 10.78 13.63 40.70 55.34 55.11 57.66 54.02 56.01 54.63 55.29

↑CO 31.08 31.28 33.19 54.54 63.93 62.34 63.75 60.60 61.50 60.79 61.81

↑CC 10.55 10.78 22.21 63.64 82.99 85.09 88.66 88.10 88.59 89.02 87.70

↓ I. 68.92 68.72 66.81 45.46 36.07 37.66 36.25 39.40 38.50 39.21 38.19

↓ II. 31.08 30.95 27.15 13.10 5.08 4.70 3.88 3.88 3.59 3.64 3.66

↑EA 15.49 15.72 19.60 48.90 65.80 66.09 68.89 65.27 67.20 65.74 66.74

↑MS -3.38 -3.07 -0.22 34.65 53.48 53.17 56.47 53.22 55.02 53.59 55.14

↓RM 30.44 30.36 29.36 14.44 6.40 6.16 5.16 5.59 5.17 5.54 4.96

↑CI 17.91 18.13 22.97 52.81 69.08 69.46 72.11 69.25 70.67 69.64 70.27

↓GCE 0.00 0.03 4.56 16.37 22.07 21.01 18.19 18.81 15.91 17.87 18.45

↓LCE 0.00 0.03 2.11 6.54 11.20 11.30 10.54 11.06 9.81 10.50 11.64

↓ dVI 8.47 8.50 9.21 12.83 15.82 16.45 16.92 17.24 17.47 17.26 17.37

↓ dM 78.24 77.82 72.22 33.96 16.42 16.82 15.06 16.01 15.25 15.54 15.19

↓ dD 34.46 34.37 34.37 24.87 22.20 22.89 21.97 23.64 22.52 23.12 23.38

↑CS 0.58 0.77 1.72 22.97 30.53 29.36 30.99 29.58 29.91 28.93 29.13

↓OS 0.00 0.00 0.51 15.14 26.94 36.12 39.93 40.23 45.17 44.11 37.70

↓US 100.00 99.77 85.33 40.46 11.34 9.35 7.47 7.16 5.75 6.56 6.38

↓ME 0.00 0.02 11.64 27.36 36.83 36.21 31.85 32.76 29.50 30.50 34.72

↓NE 0.00 0.02 11.24 27.68 36.64 36.22 33.33 32.98 31.14 31.89 35.38

↑F 17.20 17.43 21.97 51.61 68.11 68.47 71.17 68.08 69.65 68.48 69.23

Table B.3: JSEG results for Colour benchmark with Gaussian noise; (Bench-

mark criteria: CS = correct segmentation; OS = over-segmentation; US = under-

segmentation; ME = missed error; NE = noise error; O = omission error; C =

commission error; CA = class accuracy; CO = recall - correct assignment; CC =

precision - object accuracy; I. = type I error; II. = type II error; EA = mean class

accuracy estimate; MS = mapping score; RM = root mean square proportion estima-

tion error; CI = comparison index; GCE = Global Consistency Error; LCE = Local

Consistency Error; dVI = variation of information; dM = Mirkin metric; dD = Van

Dongen metric; f̄ are the performance curves integrals).
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Noise Robustness Results B

Colour Benchmark – EGBIS

−10 dB −5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB no noise

↑CS 0.11 0.47 4.29 9.06 14.86 29.72 24.43 25.07 27.46 24.75 24.58

↓OS 63.37 39.01 20.12 20.61 31.44 54.64 61.20 73.13 77.17 73.76 75.65

↓US 0.00 4.15 29.17 36.55 22.47 11.49 7.85 1.99 6.13 4.54 8.19

↓ME 26.50 50.78 44.60 35.99 30.57 13.56 15.25 11.78 3.19 8.22 4.12

↓NE 34.54 53.67 43.01 34.99 31.54 15.21 16.73 14.33 4.73 10.03 6.19

↓O 80.63 68.26 72.22 67.98 52.95 38.67 46.47 42.66 38.11 41.96 47.26

↓C 100.00 100.00 94.91 93.92 98.29 100.00 95.17 100.00 100.00 100.00 100.00

↑CA 17.57 29.43 28.51 31.97 43.80 52.80 50.01 50.21 51.03 49.85 48.07

↑CO 18.35 34.99 42.41 45.89 54.52 58.74 54.47 53.39 54.14 53.00 51.29

↑CC 92.57 82.67 69.40 68.06 80.10 90.40 90.71 93.22 94.37 93.33 94.99

↓ I. 81.65 65.01 57.59 54.11 45.48 41.26 45.53 46.61 45.86 47.00 48.71

↓ II. 0.45 4.44 13.69 12.76 7.49 3.18 2.14 1.34 1.53 1.47 1.54

↑EA 28.94 43.52 40.33 42.45 55.32 63.81 61.31 61.92 62.24 61.45 59.69

↑MS 16.90 27.69 23.46 25.93 42.12 52.93 50.19 50.28 51.22 49.96 48.30

↓RM 3.93 4.70 9.97 11.42 6.58 4.46 4.23 4.03 4.12 4.05 4.21

↑CI 39.41 50.01 46.03 47.92 59.98 68.24 66.03 66.83 67.16 66.43 65.24

↓GCE 14.48 24.49 26.84 22.89 22.93 15.86 13.01 9.84 9.08 9.57 9.27

↓LCE 14.38 19.86 15.81 11.35 10.54 7.62 7.38 6.92 5.23 6.07 5.09

↓ dVI 27.08 21.85 15.54 14.36 16.36 18.15 19.32 20.02 19.96 20.18 20.22

↓ dM 20.55 22.24 35.84 35.36 21.58 14.65 14.83 14.37 14.58 14.59 14.85

↓ dD 45.97 39.29 34.63 31.13 26.70 23.33 25.53 25.91 24.67 25.62 26.01

↑CS 0.15 2.02 4.99 9.55 17.84 27.81 24.63 24.22 25.88 23.65 22.52

↓OS 50.35 35.05 17.69 18.08 28.78 45.92 55.82 64.57 66.89 65.25 68.69

↓US 0.00 4.28 28.04 32.07 20.91 10.52 7.75 2.23 5.62 4.53 6.92

↓ME 42.47 54.86 49.44 42.60 36.77 25.90 22.29 21.21 15.05 17.78 14.48

↓NE 46.80 56.62 48.71 43.81 37.57 27.34 23.27 22.45 15.97 19.16 16.04

↑F 36.10 48.05 44.29 46.25 58.58 66.92 64.61 65.37 65.68 64.93 63.57

Table B.4: EGBIS results for Colour benchmark with Gaussian noise; (Bench-

mark criteria: CS = correct segmentation; OS = over-segmentation; US = under-

segmentation; ME = missed error; NE = noise error; O = omission error; C =

commission error; CA = class accuracy; CO = recall - correct assignment; CC =

precision - object accuracy; I. = type I error; II. = type II error; EA = mean class

accuracy estimate; MS = mapping score; RM = root mean square proportion estima-

tion error; CI = comparison index; GCE = Global Consistency Error; LCE = Local

Consistency Error; dVI = variation of information; dM = Mirkin metric; dD = Van

Dongen metric; f̄ are the performance curves integrals).

141



B Noise Robustness Results

Colour Benchmark – GMRF+EM

−10 dB −5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB no noise

↑CS 24.77 35.25 32.71 36.82 36.18 34.47 32.37 33.38 34.32 33.18 31.93

↓OS 25.07 37.14 49.76 53.46 48.99 53.62 52.68 49.08 61.67 49.96 53.27

↓US 22.16 8.74 14.45 8.30 13.51 12.06 12.15 6.11 7.18 7.94 11.24

↓ME 38.87 25.75 17.12 19.71 19.41 15.84 17.97 21.66 12.80 16.99 14.97

↓NE 38.95 26.11 17.66 19.75 18.46 15.70 18.62 23.12 14.32 17.55 16.91

↓O 47.34 34.52 40.89 33.44 35.38 33.26 32.16 31.23 30.53 30.50 33.61

↓C 91.88 94.03 95.85 97.66 97.18 100.00 99.23 100.00 100.00 100.00 100.00

↑CA 45.72 59.13 55.67 58.90 57.37 55.78 56.07 58.84 59.08 56.55 57.91

↑CO 57.18 65.95 62.16 64.54 64.01 61.59 62.15 63.91 62.97 62.01 63.51

↑CC 73.36 87.36 87.67 89.70 86.28 88.53 89.97 90.59 92.15 90.02 89.26

↓ I. 42.82 34.05 37.84 35.46 35.99 38.41 37.85 36.09 37.03 37.99 36.49

↓ II. 9.20 3.59 4.45 3.35 4.80 3.43 3.48 3.08 1.58 3.18 3.14

↑EA 56.43 69.57 65.83 69.29 67.07 66.05 66.72 69.51 70.02 67.17 68.41

↑MS 41.05 58.21 54.08 58.57 56.30 54.81 54.99 57.93 59.24 56.24 57.42

↓RM 7.76 5.10 5.89 4.98 5.43 5.47 5.78 4.89 3.87 5.05 4.86

↑CI 59.91 72.51 69.50 72.69 70.42 69.79 70.66 72.81 73.35 70.89 71.80

↓GCE 28.51 19.82 15.08 14.72 15.67 13.63 15.35 14.56 12.42 15.36 16.03

↓LCE 19.21 11.02 7.71 7.71 7.46 7.20 7.52 8.46 8.07 7.38 7.31

↓ dVI 15.05 16.42 16.73 17.06 16.42 17.28 17.11 17.35 18.45 17.62 17.32

↓ dM 24.90 14.25 17.95 14.61 17.00 16.14 17.59 15.90 12.82 15.70 15.27

↓ dD 27.94 20.69 21.50 20.20 20.69 21.43 21.55 20.87 21.04 21.47 20.63

↑CS 22.42 34.62 30.94 35.16 34.27 32.07 30.72 33.08 32.12 31.18 31.04

↓OS 22.19 35.43 45.04 47.88 45.40 49.60 46.20 45.79 55.04 47.41 49.74

↓US 19.87 9.60 11.61 9.52 11.94 10.88 11.51 7.20 6.58 9.21 11.33

↓ME 45.38 28.84 25.77 24.31 25.95 22.67 25.66 27.30 22.77 22.88 21.92

↓NE 46.42 29.77 26.46 24.95 26.42 23.05 26.40 28.41 24.29 24.04 23.59

↑F 58.84 71.63 68.40 71.69 69.42 68.67 69.48 71.83 72.37 69.78 70.79

Table B.5: GMRF+EM results for Colour benchmark with Gaussian noise; (Bench-

mark criteria: CS = correct segmentation; OS = over-segmentation; US = under-

segmentation; ME = missed error; NE = noise error; O = omission error; C =

commission error; CA = class accuracy; CO = recall - correct assignment; CC =

precision - object accuracy; I. = type I error; II. = type II error; EA = mean class

accuracy estimate; MS = mapping score; RM = root mean square proportion estima-

tion error; CI = comparison index; GCE = Global Consistency Error; LCE = Local

Consistency Error; dVI = variation of information; dM = Mirkin metric; dD = Van

Dongen metric; f̄ are the performance curves integrals).
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Noise Robustness Results B

Colour Benchmark – AR2D+EM

−10 dB −5 dB 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB no noise

↑CS 27.54 37.67 38.18 35.53 40.77 35.24 36.16 37.39 42.49 39.84 43.88

↓OS 24.59 42.62 41.29 32.61 45.94 45.70 46.16 47.29 48.30 49.81 48.55

↓US 41.72 28.67 23.50 26.48 21.80 25.26 24.19 26.02 23.67 20.62 21.89

↓ME 17.33 10.58 13.33 17.80 16.80 18.07 14.95 13.31 10.70 16.33 13.27

↓NE 18.10 11.34 14.34 17.91 17.90 18.91 15.27 14.61 11.92 17.70 14.84

↓O 54.97 36.65 41.14 40.74 36.39 41.39 36.82 41.54 32.99 42.50 34.31

↓C 89.22 98.10 96.71 91.84 93.76 96.80 95.68 98.86 93.69 93.29 93.88

↑CA 41.81 56.31 56.51 53.69 56.87 52.91 55.36 54.08 59.02 56.60 60.27

↑CO 54.49 65.78 64.85 62.97 64.76 61.29 63.13 62.06 66.38 63.85 67.36

↑CC 71.51 82.93 84.36 81.89 83.40 81.94 82.33 80.14 85.37 85.11 83.66

↓ I. 45.51 34.22 35.15 37.03 35.24 38.71 36.87 37.94 33.62 36.15 32.64

↓ II. 12.09 6.83 6.30 7.79 6.17 8.65 8.42 8.83 6.21 7.96 7.54

↑EA 49.97 65.04 65.24 61.96 64.91 61.53 64.18 62.50 67.15 65.12 68.19

↑MS 35.57 54.48 54.32 50.71 54.13 49.09 52.44 50.94 56.50 52.88 57.40

↓RM 11.00 7.04 6.68 8.73 6.95 7.09 6.41 6.89 6.82 6.40 6.20

↑CI 54.37 68.48 68.59 65.67 68.34 65.12 67.38 65.73 70.38 68.55 70.92

↓GCE 17.94 16.07 14.83 12.79 13.44 15.98 15.27 15.46 11.67 16.83 13.54

↓LCE 9.26 6.53 5.79 5.20 5.46 6.03 6.80 6.13 5.56 6.60 6.02

↓ dVI 13.50 14.67 15.09 14.37 14.98 15.01 15.35 15.24 14.98 15.04 14.79

↓ dM 32.60 20.31 19.32 24.00 19.60 22.90 20.68 22.71 19.86 20.18 19.35

↓ dD 25.45 19.29 19.44 20.20 19.44 21.07 20.35 20.62 18.44 20.02 17.91

↑CS 24.42 34.99 35.17 34.22 36.94 31.59 33.86 33.11 38.35 35.33 40.30

↓OS 21.55 39.68 37.40 30.43 42.82 42.75 43.52 43.11 44.18 45.04 46.40

↓US 34.73 23.14 22.36 26.56 20.71 23.38 17.57 21.56 19.02 16.25 20.08

↓ME 28.70 20.83 19.07 21.17 20.06 23.36 26.12 23.36 20.53 26.64 19.50

↓NE 30.05 21.67 20.22 21.55 20.81 24.82 27.10 24.58 21.93 28.39 21.56

↑F 52.99 67.42 67.58 64.55 67.29 64.05 66.46 64.74 69.42 67.49 70.07

Table B.6: AR2D+EM results for Colour benchmark with Gaussian noise; (Bench-

mark criteria: CS = correct segmentation; OS = over-segmentation; US = under-

segmentation; ME = missed error; NE = noise error; O = omission error; C =

commission error; CA = class accuracy; CO = recall - correct assignment; CC =

precision - object accuracy; I. = type I error; II. = type II error; EA = mean class

accuracy estimate; MS = mapping score; RM = root mean square proportion estima-

tion error; CI = comparison index; GCE = Global Consistency Error; LCE = Local

Consistency Error; dVI = variation of information; dM = Mirkin metric; dD = Van

Dongen metric; f̄ are the performance curves integrals).
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B Noise Robustness Results

Figure B.1: Noise robustness graph – CS – correct segmentation.
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Noise Robustness Results B

Figure B.2: Noise robustness graph – OS – over-segmentation.

145



B Noise Robustness Results

Figure B.3: Noise robustness graph – US – under-segmentation.
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Noise Robustness Results B

Figure B.4: Noise robustness graph – ME – missed error.
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Figure B.5: Noise robustness graph – NE – noise error.
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Figure B.6: Noise robustness graph – O – omission error.
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Figure B.7: Noise robustness graph – C – commission error.
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Figure B.8: Noise robustness graph – CA – class accuracy.
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Figure B.9: Noise robustness graph – CO – recall - correct assignment.
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Figure B.10: Noise robustness graph – CC – precision - object accuracy.
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Figure B.11: Noise robustness graph – I. – type I error.
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Figure B.12: Noise robustness graph – II. – type II error.
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Figure B.13: Noise robustness graph – EA – mean class accuracy estimate.
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Figure B.14: Noise robustness graph – MS – mapping score.
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Figure B.15: Noise robustness graph – RM – root mean square proportion estimation

error.
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Figure B.16: Noise robustness graph – CI – comparison index.
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Figure B.17: Noise robustness graph – GCE – Global Consistency Error.
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Noise Robustness Results B

Figure B.18: Noise robustness graph – LCE – Local Consistency Error.
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Figure B.19: Noise robustness graph – dV I – variation of information.
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Noise Robustness Results B

Figure B.20: Noise robustness graph – dM – Mirkin metric.
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Figure B.21: Noise robustness graph – dD – Van Dongen metric.
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Noise Robustness Results B

Figure B.22: Noise robustness graph – CS – correct segmentation (curve integral).
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Figure B.23: Noise robustness graph – OS – over-segmentation (curve integral).
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Figure B.24: Noise robustness graph – US – under-segmentation (curve integral).
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Figure B.25: Noise robustness graph – ME – missed error (curve integral).
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Noise Robustness Results B

Figure B.26: Noise robustness graph – NE – noise error (curve integral).
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Figure B.27: Noise robustness graph – F – F-measure (curve integral).
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Colour Layers
Segmentation

Appendix C

In this appendix are results of segmentation of paint slices. Further details can be

found in section 6.4.
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C Colour Layers Segmentation

Figure C.1: Colour layers segmentation of paint slices – 019, 024, 025, 028; left column

– images in the visible spectrum, middle column – images in the ultraviolet spectrum,

and right column – resulting segmentations.
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Colour Layers Segmentation C

Figure C.2: Colour layers segmentation of paint slices – 030, 033, 034, 035; left column

– images in the visible spectrum, middle column – images in the ultraviolet spectrum,

and right column – resulting segmentations.
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C Colour Layers Segmentation

Figure C.3: Colour layers segmentation of paint slices – 038, 042, 043, 045; left column

– images in the visible spectrum, middle column – images in the ultraviolet spectrum,

and right column – resulting segmentations.
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[41] J. Freixenet, X. Muñoz, D. Raba, J. Mart́ı, and X. Cuf́ı. Yet another survey on

image segmentation: Region and boundary information integration. In Proceed-

ings of the 7th European Conference on Computer Vision, ECCV 2002, volume

III, pages 408–422, London, UK, 2002. Springer-Verlag.

[42] K. S. Fu and J. K. Mui. A survey on image segmentation. Pattern Recognition,

13:3–16, 1981.

[43] Z. Fu and A. Robles-Kelly. A fast hierarchical approach to image segmentation.

In B. Lovell, D. Laurendeau, and R. Duin, editors, Proceedings of the 19th

International Conference on Pattern Recognition, ICPR 2008, pages 1–4. IEEE

Computer Society, December 2008.

[44] H. Fujiwara, Z. Zhang, H. Toda, and H. Kawabata. Textile surface inspection

by using translation invariant wavelet transform. In IEEE International Sym-

posium on Computational Intelligence in Robotics and Automation, volume 3,

pages 1427–1432. IEEE, IEEE, 2003.

[45] M. Galun, E. Sharon, R. Basri, and A. Brandt. Texture segmentation by mul-

tiscale aggregation of filter responses and shape elements. In Proceedings of

the International Conference on Computer Vision, ICCV 2003, pages 716–723,

2003.

[46] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high

dimensions: A texture classification example. In Proceedings of the Ninth Inter-

national Conference on Computer Vision, ICCV 2003, volume 1, pages 456–463,

Los Alamitos, CA, USA, October 2003. IEEE Computer Society.

180



Bibliography

[47] M. Haindl. Texture synthesis. CWI Quarterly, 4(4):305–331, December 1991.

[48] M. Haindl. Texture segmentation using recursive Markov random field param-

eter estimation. In K. Bjarne and J. Peter, editors, Proceedings of the 11th

Scandinavian Conference on Image Analysis, SCIA 1999, pages 771–776, Lyn-

gby, Denmark, June 1999. Pattern Recognition Society of Denmark.

[49] M. Haindl and J. Filip. Extreme compression and modeling of bidirectional

texture function. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 29(10):1859–1865, 2007.
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[55] M. Haindl and S. Mikeš. Colour texture segmentation using modelling approach.

In S. Singh, M. Singh, and C. Apte, editors, Pattern Recognition and Image

Analysis, Third International Conference on Advances in Pattern Recognition,

181



Bibliography

ICAPR 2005, volume 3687 of Lecture Notes in Computer Science, pages 484–

491, Berlin, Aug. 2005. Springer.
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[92] M. Meilă and W. Pentney. Clustering by weighted cuts in directed graphs. In

Proceedings of the 7th SIAM International Conference on Data Mining, SDM

2007, Minneapolis, Minnesota, USA, April 2007. SIAM.

[93] J. Melendez, D. Puig, and M. A. Garćıa. Comparative evaluation of classical
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