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Introduction

The topic of flows through porous media is encountered in many areas of engineering
and science, e.g. ground water hydrology, reservoir engineering or chemical engineering.
It is a subject of intense interest and over time it has emerged as a distinct field of
study. But what is a porous medium, actually?

When talking about a porous medium, we mean a material consisting of a solid
matrix with interconnected void – the pores. It is the interconnectedness of the pores that
allows one or more fluids to flow through the material. Depending on how many fluids
saturate the void, we can classify these flows as single-phase (the simplest situation),
two-phase (e.g. a liquid and a gas), multi-phase, etc.

Examples of porous media are manifold and can be found at virtually every step —
just consider materials like sand, wood, concrete, pastry or even human lungs — and for
this sake, their analysis is naturally very attractive. However, from their very definition
and variability of examples, one becomes immediately wary. Since the individual pores
are expected to be highly irregular, so will be on the pore scale (the microscopic scale) the
flow quantities such as velocity or pressure. But these quantities are typically measured
over areas spanning many pores and thus space-averaged (macroscopic) quantities then
tend to change regularly in time and space, and they are therefore conformable to
theoretical treatment.

The balance equations governing macroscopic variables, e.g. the celebrated Darcy’s
law, are derived similarly – one begins with standard laws abided by the fluid and by
means of averaging over volumes containing many pores, the macroscopic equations are
acquired. There is a couple of ways how to proceed with the averaging, such as spatial,
statistical or, in case of materials with periodic structure, homogenization; see [13] for
an elaborate and richly referenced exposition.

A key feature of porous media is their porosity – the fraction of the total volume of
the medium that is filled with the void space. We tacitly assume that all the void space is
connected (otherwise a different kind of porosity, the so-called effective porosity, is to be
defined [13]). As a point of interest, porosity of natural media does not normally exceed
0.6, while in artificial materials it can approach the value of 1, as seen in reticulated
metal foams. The porosity is an important consideration in a rock or sedimentary layer
in cases when one tries to evaluate the potential volume of water (or hydrocarbons) it
may contain.

From a different point of view, time and again it has been evidenced that viscosity
of many liquids depends on the pressure. Recognition of this feature dates back to
G. G. Stokes [12] according to whom viscosity could be assumed to be constant only for a
certain class of flows, e.g. for pipe flows with moderate pressures and pressure gradients.
However, there are technologically important processes based on flows through porous
media, such as enhanced oil recovery or geological carbon dioxide sequestration, which
do not belong into this class of flows. The reason is that one has to deal with a high
pressure range [12], in which viscosity of a fluid in question may change dramatically.
According to Barus’ experiments [2], dependence of viscosity on the pressure may be
even exponential, which hints at suitability of including the pressure-dependence into
our consideration when analysing pertinent models.

Dissertation summary

This thesis consists of three original articles completed during my third and fourth
year of doctoral studies in 2013–2015. Due to the fact that all three have already been
published or are to be published soon, with full bibliographic details readily available,
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Introduction

they are presented exactly as in their accepted versions, changing the text format only
for the sake of unity.

Each of the papers investigates one specific model for fluids with a pressure-dependent
viscosity in the context of existence of weak solutions. Interestingly enough, the proofs
might seem very similar to each other, at least principally. More concretely, in the
background one always finds an approximation scheme based on Galerkin’s method and
the quasi-compressible approximation, replacing the incompressibility condition with an
elliptic problem for the pressure (for more information see any of the papers further on).
After that, certain uniform bounds on the approximate solutions are derived and, by
standard compactness arguments, presence of (usually) weakly convergent subsequences
is justified; the weak limit being a candidate for the final solution. However, as the
studied problems are highly nonlinear, passing to limit in the equations and justification
that the weak limit really is a solution tends to represent an arduous task. It is the
identification of weak limits of nonlinear terms that makes each of our papers stand
out rather uniquely in its own light, in ways that cannot be carried over between the
individual works.

Specifically, this thesis incorporates the following articles:

1. Miroslav Buĺıček, Josef Málek and Josef Žabenský. A generalization of the Darcy-
Forchheimer equation involving an implicit, pressure-dependent relation between
the drag force and the velocity, J. Math. Anal. Appl. IF1(1.120), 424: 785–801,
2015.

This work marks the deepest excursion into the implicit constitutive theory from
the paper triplet. We investigate a generalized Darcy’s law, where the drag term
depends on the velocity as well as on the pressure in a non-explicit, implicit way.
Quite curiously, it wasn’t the existential proof that was the most challenging part,
but rather finding optimal, the most general while still manageable conditions for
the relation between the drag, the velocity and the pressure so that the proof,
afterwards not so thought-provoking yet quite technical, would work.

Potency of the existence result is significantly amplified by the minimum and
maximum principle for the pressure, also formulated and proved in the article.
As a particular, interesting and surprising result, we show that under certain
conditions on data, there is a solution to the generalized Darcy equation with the
drag depending on the pressure exponentially.

2. Miroslav Buĺıček, Josef Málek and Josef Žabenský. On generalized Stokes’ and
Brinkman’s equations with a pressure- and shear-dependent viscosity and drag
coefficient, Nonlinear Anal. Real World Appl. IF(2.519), 26: 109–132, 2015.

Looking from the perspective of the previous article, in the second paper we
abandoned the requirement for an implicit relation between the drag coefficient,
the velocity and the pressure, leaving the drag a function of the latter two quantities
(and the shear rate, however). On the other hand, we also added a nonlinear
diffusion term, hence the name of the work.

We established a large-data existence theory for this generalized Brinkman problem
with the viscosity and drag coefficients depending on the pressure and the shear
rate. To the best of our knowledge, a PDE analysis for similar problems with a
pressure- and shear-rate dependent drag had not been investigated before. Within

1Impact Factor as of 2014.
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the setting considered, even for a generalized Stokes problem (i.e. with zero drag)
we established new results when the model parameter r (analogous to the power
exponent in the well-known power-law fluids) equals 2, thus improving [4, 7] along
the way.

As a footnote, earlier studies concerning PDE analyses of a generalized Stokes
problem with the pressure and shear-rate dependent viscosity in general bounded
domains suffered a serious drawback. A certain bounding parameter used to be
restricted by a constant depending on the geometry of the flow domain. This
severe constraint was removed here. The theory presented in this work thus holds
under the same restrictions as the theory developed for an (idealized) spatially
periodic problem in [10].

3. Miroslav Buĺıček and Josef Žabenský. Large data existence theory for unsteady
flows of fluids with pressure- and shear-dependent viscosities, Nonlinear Anal.
IF(1.327), 127: 94–127, 2015.

Still interested in the model studied in the preceding paper, in the third work
we dropped out the drag term completely. Thus we actually cheatingly left the
territory of flows through porous media purely for flows of non-Newtonian fluids.
From the analytical point of view, the drag did not add much complexity into
the problem and its retention would only make proofs unnecessarily messier;
the analysis still would have worked though. On the other hand, we added
effects of convection and stepped to the unsteady case, thus treating virtually the
evolutionary version of [4]. Compared to the previous work, visually practically
steady-state version of the problem studied here, we were able to contain the
interesting situation r = 2 again. However, where the proofs for the steady problem
were rather complicated, the time-dependent generalization of mathematical tools
and techniques led to a hefty piece of analysis.

Although the set objective was eventually met with complete success, as opposed
to the previous paper we were unable to lift the constraint stemming from the
domain geometry discussed above. To spare the reader fumbling in the dark later,
let us juxtapose the corresponding situations in the two papers, to demonstrate
at least intuitively what goes amiss. In both articles, we used sequences of certain
auxiliary functions (see the papers for notation if needed),

{un}n∈N ⊂W 2,p(Ω), un −→ 0 weakly in W 2,p(Ω),

{ϕn}n∈N ⊂ Lp(0, T ;W 2,p(Ω)), ϕn −→ 0 weakly in Lp(0, T ;W 2,p(Ω)),

respectively, for some p > 1. Assuming that Ω is Lipschitz, the Rellich-Kondrachov
theorem lets us infer strong convergence of {un} but in no way are we able to
justify an analogy thereof for {ϕn}:

un −→ 0 strongly in W 1,p(Ω),

ϕn 6−→ 0 strongly in Lp(0, T ;W 1,p(Ω)).

This loss of compactness in the Bochner setting, attributable to lack of information
about the time derivative of the pressure, spawns additional polluting terms in
our computations. In the end we are then made to bound a certain parameter
depending on Ω.
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Conclusions

Let us recall the famous Hadamard’s definition of a well-posed problem [8], according
to which a mathematical model describing physical phenomena is well-posed, if each of
the following conditions holds:

1. There exists at least one solution to the problem.

2. The solution is unique.

3. The solution is stable with respect to data.

Well-posedness of a problem is a highly desirable quality in general and with the
emergence of computer simulations, its significance has increased significantly. Although
the three conditions must hold simultaneously, the first one, concerning very existence,
apparently protrudes as somewhat superior. In particular, simulations of a mathematical
model without a guaranteed solution is a very risky endeavor to say the least and results
should be handled with utmost circumspection.

This thesis deals exclusively with the first condition of Hadamard’s definition. Not
that we deemed the other two unworthy of our attention; we were simply unable to
answer them. We would like to note, nevertheless, that the individual papers should not
be narrow-mindedly shrunken into mere statements of the principal existence theorems.
Regardless of benefit that these theorems deliver themselves in helping answer the
question of well-posedness, there is also another thing to take into account—namely the
proofs.

More concretely, dissected into individual fragments, the proofs advance by means of
relatively well-known tools, such as the Biting lemma [3], the Div-Curl lemma [11, 14]
or various versions of the Lipschitz truncation of Sobolev functions [1, 5, 6]. However,
their combinations and timing of deployment may often look surprising and maybe even
inspiring for posterity; see the second paper for the best illustration thereof.

Without acknowledging it in the articles, on plentiful occasions in the proofs, we
are not aware of any alternative method of how to reach our goals, maybe quite as
one would expect. However, there are situations where it would be possible to tackle
issues differently. As a case in point serves the first article dealing with an implicit
dependence between three quantities. In order to construct approximate solutions,
we turn to mollification of the graph given by the implicit relation, thus stepping
into the purview of ordinary functions. Another path could be to rotate the graph
instead, making it a graph of a (completely different) function as well. Perhaps the most
interesting alternative approach would be based on Kakutani’s fixed-point theorem [9] –
a generalization of Brouwer’s fixed-point theorem accommodated for set-valued functions.
This tool, quite surprising to invoke in this context, would let us retain the implicit
nature of the problem throughout.

Let us conclude with reiterating what is the key feature of this thesis. We were able
to mathematically prove existence of (weak) solutions to three very general models,
which results are completely new. Each of the studied models pertains to reality and
observed phenomena (e.g. Barus’ law or Bingham fluids in the first paper), thus not
serving purely our own self-indulgence. Morevover, it is quite foolhardy or even senseless
to numerically compute something not proved to exist in the first place. It is therefore
author’s hope that our findings might find practical use in the foreseeable future.
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Chapter 1 A generalization of the Darcy-Forchheimer equation

Abstract

We study mathematical properties of steady flows described by the system of equations
generalizing the classical porous media models of Darcy’s and Forchheimer’s. The
considered generalizations are outlined by implicit relations between the drag force and
the velocity, that are in addition parametrized by the pressure. We analyze such drag
force–velocity relations which are described through a maximal monotone graph varying
continuously with the pressure. Large-data existence of a solution to this system is
established, whereupon we show that under certain assumptions on data, the pressure
satisfies a maximum or minimum principle, even if the drag coefficient depends on the
pressure exponentially.

Keywords

Darcy-Forchheimer equation, pressure dependent material coefficient, implicit constitu-
tive theory, maximal monotone graph, existence theory, maximum/minimum principle
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1.1 Introduction

1.1.1 Setting

Our aim is to develop a mathematical theory for steady, isochoric flows through a
saturated porous medium described as the problem of finding a triplet

(m,v, p) : Ω→ Rd × Rd × R

solving

∇p+m = f in Ω,

div v = 0 in Ω,

h(m,v, p) = 0 in Ω,

(v − v0) · n = 0 on Γ1,

p− p0 = 0 on Γ2.


(1.1)

Here, Ω ⊂ Rd is supposed to be a Lipschitz domain with an outer normal n and Γ1,2 ⊂ ∂Ω
are relatively open parts of the boundary such that Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = ∂Ω. The
reader may know Γ1 as the exterior boundary and Γ2 as the accessible boundary, see [2].
A velocity field v0 : Ω→ Rd is given to dictate the normal component of v on Γ1, as
well as p0 : Ω → R, prescribing the boundary pressure on Γ2. Known external body
forces are contained in f : Ω → Rd. Throughout the paper there will often appear a
real number r, always satisfying 1 < r <∞, and we define r′ := r/(r − 1). Traces and

8



Chapter 1 A generalization of the Darcy-Forchheimer equation

normal traces are not denoted differently from the original functions, i.e. we write, for
example, p0 ∈W 1,r′(Ω) as well as p0 ∈ L∞(Γ2).

The quantity h : Rd × Rd × R→ Rd in (1.1)3 is a given continuous function and we
will make the following identification:

h(m,v, p) = 0 ⇐⇒ (m,v, p) ∈ A,

where A denotes a maximal monotone r-graph with respect to m and v that is in
addition parametrized by p. This means A ⊂ Rd×Rd×R satisfies each of the conditions
listed below:

(A1) inclusion of the origin
∀p ∈ R : (0,0, p) ∈ A,

(A2) monotonicity

∀(m1,v1, p), (m2,v2, p) ∈ A : (m1 −m2) · (v1 − v2) ≥ 0,

(A3) maximality
(m′,v′, p) ∈ Rd × Rd × R,

∀(m,v, p) ∈ A : (m′ −m) · (v′ − v) ≥ 0⇒ (m′,v′, p) ∈ A,

(A4) (r, r′)-coercivity for v and m

∃ c1 > 0, c2 ≥ 0 ∀(m,v, p) ∈ A : m · v ≥ c1(|v|r + |m|r′)− c2,

(A5) existence of a Carathéodory selection, i.e. m∗ : Rd × R→ Rd such that

(i) m∗(·, p) : Rd → Rd is measurable for every p ∈ R,

(ii) m∗(v, ·) : R→ Rd is continuous for a.e. v ∈ Rd,
(iii) ∀(v, p) ∈ Rd × R : (m∗(v, p),v, p) ∈ A,

(iv) ∃ c > 0 ∀(v, p) ∈ Rd × R : |m∗(v, p)| ≤ c(1 + |v|r−1).

1.1.2 Motivation and examples

The problem (1.1) describes steady (slow) flows of fluids through porous media (see for
example Nield and Bejan [25]). It can be also viewed as a special case in the hierarchical
development of the theory of interacting continua (as presented in Rajagopal [28]),
where we ignore the viscous effects within the fluid but take into account only the drag
due to the flow which is a consequence of the friction at the solid pores as the fluid
flows. This leads to the relation between m, representing the interaction force (linear
momentum) between a fluid and a rigid solid, and the velocity of the fluid v. Since v is
also the relative velocity between the solid and the liquid, it is frame-indifferent. Taking
the simplest case m = αv for certain α > 0, one obtains a well known Darcy’s law for
an isotropic medium. Its linearity in the seeping velocity v does not relate well to reality
for other than sufficiently small velocities [25, 31] and one is driven to a non-linear
extension of the form m = α(|v|)v, known as (Darcy-)Forchheimer’s equation if α is an
affine function. Moving on to m = α(p, |v|)v as a means of capturing a pressure-related
viscosity [18, 32] yields a generalized Darcy-Forchheimer’s model. As Rajagopal [27]
argued, it turns out that not even such setting is always satisfactory in mathematical
modelling and one is driven to relate m, v and p implicitly, hence (1.1)3.

9



Chapter 1 A generalization of the Darcy-Forchheimer equation

Apart from Darcy’s or Darcy-Forchheimer’s models, which are somewhat uninter-
esting in regard to our setting emphasizing p-dependent interactions, a prime example
satisfying (A1)–(A5) that the reader might have in mind is A with m given as e.g.

m = m(v, p) = α(p)|v|r−2v, (1.2)

with r > 1 and α ∈ C(R), satisfying also 0 < infR α ≤ supR α < ∞. Another simple
example falling within this category is

|m| ≤ σ(p)⇔ v = 0 and |m| > σ(p)⇔m = σ(p)
v

|v|
+ γ(p)|v|r−2v, (1.3)

with σ(p) and γ(p) having the same properties as α(p) above. This situation resembles
Herschel-Bulkley responses between the Cauchy stress and the velocity gradient in the
constitutive theory of non-Newtonian fluids, or Bingham responses in the special case
r = 2. Note that the relation (1.3) can be rewritten equivalently as(

γ(p)
) 1
r−1v =

(
(m− σ(p))+

) 1
r−1

m

|m|
,

which corresponds to h(m,v, p) = 0 with

h(m,v, p) =
(
γ(p)

) 1
r−1v −

(
(m− σ(p))+

) 1
r−1

m

|m|
.

Here, for z ∈ R we use z+ := max{z, 0} to denote its positive part. See Buĺıček et
al. [27] for an analogon thereof in the case of Bingham fluids.

The two given examples, with α, σ and γ bounded from above, pale into insignificance
in the face of interactions of the form

m(v, p) = α1 exp(α2p)v, α1,2 > 0, (1.4)

that actually lie at the centre of our attention here. Let us recall that even for simple
incompressible fluids, it is known that the viscosity changes significantly at high pressures.
In fact, Barus’ experimental study (see [3]) led him to the conclusion that the viscosity
changes with the pressure exponentially (similarly as the coefficient relating m and v
in (1.4)). For flows of fluid through rigid media, the internal fluid friction is frequently
neglected as the friction between the fluid and solid is dominant. If such flows take
place at high pressures, then one needs to involve the (exponential) dependence of the
coefficient relating m and v on the pressure; see Nakshatrala and Rajagopal [24] for
more details. Even if the coefficient α2 in (1.4) is very small (α2 ∼ 10−5; see [3]), it is
evident that a choice like (1.4) is beyond the purview of (A4) and (A5)(iv). Luckily
enough, this case and those akin can also be included under certain circumstances into
the existence theory developed in this paper; see Sect. 1.5.

We may also take a perturbation of (1.4) in a form

m(v, p) = max{α1, α1 exp(α2p)}v, (1.5)

for existence theory of which we will be able to slightly slacken our hypotheses, see
Remark 1.5.2. The reason is that inserting this choice into (1.2) with r = 2, the condition
infR α > 0 is met trivially.

10



Chapter 1 A generalization of the Darcy-Forchheimer equation

1.1.3 Results

Within the setting of (A1)–(A5) we are able to establish the existence of a solution
to the problem (1.1) fulfilling the first three equations pointwise (almost everywhere)
in Ω; see Theorem 1.3.1 below. Although this theorem does not include the models of
our main interest such as (1.4), it provides a tool how (1.4) can be analyzed, together
with a maximum/minimum principle that is well-known for Darcy’s model but is newly
discovered for cases like (1.4) in this paper. The maximum/minimum principle is
presented in Theorem 1.4.1 and its combination with Theorem 1.3.1 then culminates in
Theorem 1.5, where the existence of a solution to situations such as (1.4) or, under less
stringent hypotheses (1.5), is established.

It is worth pointing out a remarkable difference between the results presented here
and the results concerning those generalizations of incompressible Stokes and Navier-
Stokes equations, stationary and evolutionary, in which the viscosity grows more than
linearly with the pressure. While here for (1.1) with (1.4) we develop, under certain
assumptions, large data existence theory, no such mathematical theory is available for
the systems such as

∇p− div[2ν(p, ·)Dv] + div(v ⊗ v) = f , D :=
1

2
(∇+∇T ), (1.6)

if ν depends on p exponentially. With exception of studies concerning flows in special
geometries (see [16], [17], [26], [29], [33], [34], [36]), we are aware of merely a few,
rather preliminary studies concerning flows in general domains (see [14, 15] and [30]).
We remark that in [21] and subsequent studies [12], [7], [8], [6] (that also includes a
detailed summary of the available theory), the authors have been able to identify the
class of the viscosities depending on the pressure and |Dv|2 and to develop large data
mathematical theory for relevant boundary and initial boundary value problems. This
subclass, however, does not allow to include (1.4). Remarkably enough, there is no
maximum principle to eq. (1.6), not even if the equation were stripped of the inertial
term div(v ⊗ v).

There is abundance of available literature on qualitative analysis of Darcy-Forchhei-
mer’s equations, or their generalizations like Brinkman-Forchheimer’s equations when a
diffusive term is added. With the exception of investigating regularity, authors address
the evolutionary case right away, see e.g. [2] for the compressible case and [37] for
the incompressible one, and papers cited therein. In [35] existence of an attractor for
these equations is studied. Regularity of the (unique) solution to Darcy-Forchheimer’s
equations is examined in [10].

In defiance of a cornucopia of sources, they are all confined to the case where h
in (1.1)1 does not depend on the pressure. The p-dependent and implicitly related
situation of Darcy-Forchheimer equations analyzed within the current paper seems to
have remained, at least to the best of authors’ knowledge, almost a terra incognita so
far.

1.1.4 Further comments

Behold even at this early phase that (A4) hints at setting the stage for working in
Lebesgue spaces. It is therefore natural to ask why not plunge ourselves directly into
general Orlicz spaces in the vein of Buĺıček et al. [4, 5] instead. Even though such an
extension should not require much additional effort, we chose the Lebesgue setting for

11



Chapter 1 A generalization of the Darcy-Forchheimer equation

the sake of simplicity, as it allows us to accentuate the ideas concerning p-dependence
of the graph A and the maximum and minimum principles.

As far as (A5) is concerned, a general question of existence of a measurable selection
for the case of h being independent of p is confirmed e.g. in Chiado’ Piat et al. [9,
Theorem 1.4]. In our setting, we want in addition the selection being continuous with
respect to p and also bounded in that variable in the sense of (A5)(iv). Note that
similarly tame behavior is expected in (A4) by requiring uniformity in p.

It is not particularly difficult to show that a maximal monotone graph (independent
of p) can be rotated so as to form a graph of a 1-Lipschitz function (see [1, 11, 23]).
This observation is likely to lead to another feasible way of approaching the existence
theory for (1.1), devoid of any need for selections. The path is not followed in our paper
save this remark.

Drawing this introduction to its end, in the following brief Sect. 1.2 we deal with a
couple of useful mathematical properties to be invoked later on. We then devote an
entire Sect. 1.3 to formulate and prove an existence theorem of solutions to the problem
(1.1) provided (A1)–(A5) are all satisfied. The penultimate Sect. 1.4 is somewhat
autonomous and serves to state and justify a maximum and a minimum principle for
the pressure in (1.1). It will prove invaluable in the last Sect. 1.5, where it authorizes us
to somewhat weaken (A4) and (A5)(iv), wherein effect it shows existence for situations
like (1.4), supposing certain other hypotheses are satisfied indeed.

1.2 Preliminaries

For δ > 0 denote

ωδ(x, t) := δ−(d+1)ω

(
x

δ
,
t

δ

)
,

where ω is the usual mollification kernel on Rd+1. With its help we define the regularized
selection

mδ(x, t) :=

∫
Rd×R

m∗(x− y, t− s)ωδ(y, s) dy ds.

Lemma 1.2.1 The selection m∗ and its regularization mδ enjoy the following properties,
which will be made use of later:

(i) (r, r′)-coercivity (A4) holds for mδ. The constants may be different but indepen-
dent of 0 < δ < 1.

(ii) The property (A3) is actually tantamount to apparently a weaker one

(m′ −m∗(v, p)) · (v′ − v) ≥ 0 for a.e. v ∈ Rd ⇒ (m′,v′, p) ∈ A.

Proof. For a proof of (i), we see that m∗ is evidently (r, r′)-coercive and hence we

12



Chapter 1 A generalization of the Darcy-Forchheimer equation

compute:

mδ(x, t) · x =

∫
Rd×R

m∗(x− y, t− s) · (x− y)ωδ(y, s) dy ds

+

∫
Rd×R

m∗(x− y, t− s) · y ωδ(y, s) dy ds

≥
∫
Rd×R

[
c1

(
|x− y|r + |m∗(x− y, t− s)|r′

)
− c2

]
ωδ(y, s) dy ds

−
∫
Rd×R

(c1

2
|m∗(x− y, t− s)|r′ + c3|y|r

)
ωδ(y, s) dy ds

≥ c4(|x|r + |mδ(x, t)|r
′
)− c5.

First we employed Young’s inequality and then Jensen’s inequality was invoked. Note
that neither c4 nor c5 depend on δ > 0 as long as δ is bounded.

Towards showing (ii), let

Ap = {(m,v) ∈ Rd × Rd | (m,v, p) ∈ A}

and (m′,v′, p) ∈ Rd × Rd × R such that we have

(m′ −m∗(v, p)) · (v′ − v) ≥ 0 for a.e. v ∈ Rd. (1.7)

The aim is to attest (m′ −m) · (v′ − v) ≥ 0 for every (m,v) ∈ Ap: Let (m,v) ∈ Ap

be arbitrary. It is trivial to show that the set

Mv = {m̂ ∈ Rd | (m̂,v) ∈ Ap}

is convex and closed. Note that Mv is also non-empty and bounded, for else one
could find u ∈ Rd such that m∗(u, p) = ∞, contradicting (A5)(iv) (but see Remark
1.2.2). Therefore we may express m = λm1 + (1 − λ)m2 for some 0 ≤ λ ≤ 1 and
m1,m2 ∈ ∂Mv.

Now, Ap can be seen as a d-dimensional Lipschitz manifold in Rd × Rd without
a boundary [1], whence if m̃ ∈ ∂Mv, there exists {(mn,vn)} ⊂ Ap, vn 6= v, such
that (mn,vn)→ (m̃,v), as n→∞. Of course, otherwise the point (m̃,v) would be a
boundary point ofAp. Finally, let vn be chosen so that the set {m̂ ∈ Rd | (m̂,vn) ∈ Ap}
is a singleton for every n, i.e. m∗(vn, p) = mn, and (1.7) holds for all vn. It is achievable,
since the set of all v̂ ∈ Rd such that Mv̂ contains more than one element has Hausdorff
dimension equal to d− 1 [1, Remark 2.3].

Thus we find {vn1}, {vn2} ⊂ Rd, for which vni → v and m∗(vni , p)→mi as n→∞,
for i = 1, 2. Given that both {vn1} and {vn2} satisfy (1.7), the goal (m′−m) ·(v′−v) ≥ 0
follows from passing to limit n → ∞, multiplying by λ and 1 − λ, respectively, and
finally summing up.

Remark 1.2.2 A third useful property of m∗ is its local boundedness in the sense
that |m∗(·, p)| is bounded on bounded domains for every p ∈ R. This is trivial due to
(A5)(iv), yet it would hold even without this requirement. See e.g. [19, Theorem 2],
which can be applied to address the question.
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1.3 Principal existence theorem

Before formulation of the main result, notation for several function spaces that will often
be used shall be introduced. First, for Lebesgue and Sobolev spaces we use the standard
notation. To handle the Dirichlet data for the pressure, we define, for q ∈ (1,∞),

W 1,q
Γ2

(Ω) :=
{
u ∈W 1,q(Ω) | u = 0 on Γ2

}
.

In case of Γ2 = ∅, we make a natural modification

W 1,q
Γ2

(Ω) :=
{
u ∈W 1,q(Ω)

∣∣ ∫
Ω
u = 0

}
.

Note that in either instance, W 1,q
Γ2

(Ω) is a closed subspace of W 1,q(Ω). Next, since
we will deal with solenoidal functions with a prescribed normal trace on a part of the
boundary, we denote

Lqdiv(Ω) :=
{
ϕ ∈ Lq(Ω)d

∣∣ divϕ = 0
}
.

The condition on zero divergence is meant in the sense of distributions. As the zero
distribution is regular, we can legally say in particular divϕ = 0 a.e. in Ω for any
ϕ ∈ Lqdiv(Ω). It is well known (see [13, chapter III.2]) that one can talk about normal
traces (remember Ω is Lipschitz) of elements of Lqdiv(Ω), seeing them as elements of(
W

1
q
,q′

(∂Ω)
)∗

. Understanding ϕ ·n on Γ1 in this generalized sense, we can also introduce

Lqdiv,Γ1
(Ω) :=

{
ϕ ∈ Lqdiv(Ω) | ϕ · n = 0 on Γ1

}
.

To conclude, for K > 0 we define a cutoff function TK : R→ R as

TK(x) :=


−K for x ≤ −K,
x for −K < x < K,

K for x ≥ K.
(1.8)

Here and there we will silently use trivial |TK(x)| ≤ |x| for every x ∈ R. When
applying the truncator TK to vectors, we consider the component-wise truncation, i.e.
for x = (x1, . . . , xd) ∈ Rd we set TK(x) := (TK(x1), . . . , TK(xd)).

Having finalized indispensable preparations, the promised existence theorem can be
formulated:

Theorem 1.3.1 Let Ω be a Lipschitz domain and r ∈ (1,∞) be given. Assume
f ∈ Lr′(Ω)d, v0 ∈ Lrdiv(Ω) and p0 ∈W 1,r′(Ω). Moreover, assume that A is a maximal
monotone r-graph in the sense of (A1)–(A5). Then there exists a triplet

(m,v, p) ∈ Lr′(Ω)d × Lrdiv(Ω)×W 1,r′(Ω)

solving (1.1), i.e. (1.1)1– (1.1)3 are satisfied a.e. in Ω and

v − v0 ∈ Lrdiv,Γ1
(Ω),

p− p0 ∈W 1,r′

Γ2
(Ω).
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Proof. The proof of the theorem makes up the remainder of this section. Let {wi}i∈N ⊂
Lr(Ω)d ∩ L∞(Ω)d and {qi}i∈N ⊂ W 1,r′

Γ2
(Ω) be linearly independent, with linear spans

dense in Lr(Ω)d and W 1,r′

Γ2
(Ω), respectively.

To begin with, we deduce existence of solutions to an approximate problem, i.e. for
n ∈ N and ε, δ > 0 to find

vε,δn (x) = Tn(v0)(x) +
n∑
i=1

aε,δ,in wi(x), (1.9)

pε,δn (x) = p0(x) +
n∑
i=1

bε,δ,in qi(x), (1.10)

satisfying∫
Ω
∇pε,δn ·wi +

∫
Ω
mδ(v

ε,δ
n , pε,δn ) ·wi =

∫
Ω
f ·wi, i = 1, . . . , n, (1.11)

ε

∫
Ω
|∇(pε,δn − p0)|r′−2∇(pε,δn − p0) · ∇qi =

∫
Ω

(vε,δn − Tn(v0)) · ∇qi, i = 1, . . . , n.

(1.12)

Replacing solenoidality of the velocity field with the eq. (1.12) is a so-called quasi-
compressible approximation (see [12] and [22, p. 416]), which facilitates construction
of the pressure. Note that, at this point at least informally, the limit ε → 0+ should
produce a divergence-free velocity.

The aim of δ-regularization is to obtain a solution to (1.11) and (1.12). This is
actually the first approximation parameter to be dropped due to a limiting process.
Since it will require boundedness of {vε,δn }δ in L∞(Ω)d, we need to truncate v0 as seen
in (1.9).

Towards showing existence of {aε,δ,in }ni=1 and {bε,δ,in }ni=1, we employ the following
standard corollary of Brouwer’s fixed point theorem, whose justification follows from
lines to come and will not be discussed in detail.

Lemma 1.3.2 [20, Lemme 4.3] Let F : Rd → Rd be a continuous function satisfying
F (ξ) · ξ ≥ 0 if |ξ| = % for certain % > 0. Then there exists ξ0 ∈ Rd, |ξ0| ≤ %, for which
F (ξ0) = 0.

Multiplying eq. (1.11)i by aε,δ,in and eq. (1.12)i by bε,δ,in and summing the resultant 2n
equalities, we obtain

ε‖∇(pε,δn − p0)‖r′r′ +
∫

Ω
mδ(v

ε,δ
n , pε,δn ) · (vε,δn − v0) =

∫
Ω

(f −∇p0) · (vε,δn − Tn(v0)).

(1.13)

As we may assume δ < 1, recalling Lemma 1.2.1 for (r, r′)-coercivity of mδ, Hölder’s
and Young’s inequalities, eq. (1.13) is processed into

ε‖∇(pε,δn − p0)‖r′r′ + ‖mδ(v
ε,δ
n , pε,δn )‖r′r′ + ‖vε,δn ‖rr ≤ C(‖f −∇p0‖r′ , ‖v0‖r). (1.14)

In particular, the constant C is independent of δ, n or ε. The energy inequality (1.14)
will serve us as the starting point for taking the limits δ → 0+, n→∞ and ε→ 0+, in
this order.
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1.3.1 δ-limit

In order to accomplish the first limit passage, we start with observation that (1.14)
entails

sup
{
|aε,δ,in |, |bε,δ,in |

∣∣ 0 < δ < 1, i = 1, . . . , n
}
< C(n, ε).

We may hence assume

aε,δ,in → aε,in ,

bε,δ,in → bε,in ,
(1.15)

as δ → 0+, for each i = 1, . . . , n. This result allows us to observe also the following
convergences:

vε,δn → vεn in L∞(Ω)d,

pε,δn − p0 → pεn − p0 in W 1,r′

Γ2
(Ω),

pε,δn → pεn a.e. in Ω,

|∇(pε,δn − p0)|r′−2∇(pε,δn − p0)→ |∇(pεn − p0)|r′−2∇(pεn − p0) in Lr(Ω)d,

mδ(v
ε,δ
n , pε,δn ) ⇀mε

n in Lr
′
(Ω)d.

(1.16)

For (1.16)1 and (1.16)2 we used (1.9), (1.10) and (1.15); the limits (1.16)3 and (1.16)4

are justified by (1.16)2, and the last passage utilized ineq. (1.14) and reflexivity of
Lr
′
(Ω)d. The subscript in mε

n does not correspond to mollification any longer, it is used
merely to follow the same notation as pεn and vεn.

As for what equations the limit quantities satisfy, (1.16) makes passing to limit
δ → 0+ in equations (1.11) and (1.12) easy and we obtain∫

Ω
∇pεn ·wi +

∫
Ω
mε

n ·wi =

∫
Ω
f ·wi, i = 1, . . . , n,

ε

∫
Ω
|∇(pεn − p0)|r

′−2∇(pεn − p0) · ∇qi =

∫
Ω

(vεn − Tn(v0)) · ∇qi, i = 1, . . . , n.

(1.17)

Before proceeding to the second passage, we will yet show the limit functions now lie
in the graph, i.e. (mε

n,v
ε
n, p

ε
n) ∈ A a.e. in Ω. This objective can be achieved by means

of the maximality property (A3), specifically by its version from Lemma 1.2.1. In the
given situation, we have to verify

(mε
n −m∗(u, pεn)) · (vεn − u) ≥ 0 a.e. in Ω for a.e. u ∈ Rd, (1.18)

in order of which it suffices to check

lim inf
δ→0+

(
mδ(v

ε,δ
n , pε,δn )−m∗(u, pεn)

)
· (vε,δn − u) ≥ 0 a.e. in Ω for a.e. u ∈ Rd. (1.19)

Indeed it does: Let us consider only u ∈ Rd at which m∗(u, ·) is continuous. For an
arbitrary measurable E ⊂ Rd of non-zero Lebesgue measure, (1.19) implies

lim inf
δ→0+

∫
E

(
mδ(v

ε,δ
n , pε,δn )−m∗(u, pε,δn )

)
· (vε,δn − u) ≥ 0.

Due to convergences (1.16) and properties of m∗, we pass to the limit∫
E

(mε
n −m∗(u, pεn)) · (vεn − u) ≥ 0.
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The arbitrary nature of E yields (1.18). Moving on to the proof of (1.19), monotonicity
implies ∫

Rd×R
(m∗(û, t)−m∗(u, t)) · (û− u)ωδ(v

ε,δ
n − û, pε,δn − t) dû dt ≥ 0,

which holds a.e. in Ω. We reshuffle the relation into∫
Rd×R

(m∗(û, t)−m∗(u, t)) · (vε,δn − u)ωδ(v
ε,δ
n − û, pε,δn − t) dû dt

≥
∫
Rd×R

(m∗(û, t)−m∗(u, t)) · (vε,δn − û)ωδ(v
ε,δ
n − û, pε,δn − t) dû dt. (1.20)

Limit passage in (1.20) is manageable, for firstly we have

lim
δ→0+

∫
Rd×R

m∗(u, t)ωδ(v
ε,δ
n − û, pε,δn − t) dû dt = m∗(u, pεn), (1.21)

due to continuity and boundedness of m∗(u, ·) and pointwise convergence of {pε,δn }δ.
Secondly, {vε,δn }δ is bounded in L∞(Ω)d, and in conjunction with (A5)(iv) we observe∣∣∣∫

Rd×R
(m∗(û, t)−m∗(u, t)) · (vε,δn − û)ωδ(v

ε,δ
n − û, pε,δn − t) dû dt

∣∣∣
≤ C(u, ‖vε,δn ‖∞)

(∫
Rd×R

|vε,δn − û|r ωδ(vε,δn − û, pε,δn − t) dû dt
)1/r

︸ ︷︷ ︸
→ 0 a.e. in Ω as δ → 0+.

(1.22)

Applying (1.21) and (1.22) on (1.20), we obtain (1.19), i.e. (mε
n,v

ε
n, p

ε
n) ∈ A a.e. in Ω.

1.3.2 n-limit

The weak lower semicontinuity of norms applied on (1.14) produces a second level of
that energy inequality, meaning

ε ‖∇(pεn − p0)‖r
′

r′ + ‖m
ε
n‖

r′

r′ + ‖v
ε
n‖

r
r ≤ C(‖f −∇p0‖r′ , ‖v0‖r), (1.23)

whence we may pass to the limit n→∞, assuming

vεn ⇀ vε in Lr(Ω)d,

pεn − p0 ⇀ pε − p0 in W 1,r′

Γ2
(Ω),

|∇(pεn − p0)|r
′−2∇(pεn − p0) ⇀ χ in Lr(Ω)d,

mε
n ⇀mε in Lr

′
(Ω)d,

Tn(v0)→ v0 in Lr(Ω)d.

(1.24)

The last result is an easy consequence of Chebyshev’s inequality. Convergences (1.24)
let us pass to the limit in eq. (1.17). Using the density property of {wi} in Lr(Ω)d and

{qi} in W 1,r′

Γ2
(Ω), we obtain furthermore∫

Ω
∇pε ·w +

∫
Ω
mε ·w =

∫
Ω
f ·w, ∀w ∈ Lr(Ω)d,

ε

∫
Ω
χ · ∇q =

∫
Ω

(vε − v0) · ∇q, ∀q ∈W 1,r′

Γ2
(Ω).

(1.25)
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Like previously, we have to check (mε,vε, pε) ∈ A a.e. in Ω. Also, weak convergence
prevented us from inferring identity of the weak limit χ and it is necessary yet to verify
χ = |∇(pε − p0)|r

′−2∇(pε − p0). We will use the standard monotone operator theory,
namely the Minty’s method.

From (1.25) we deduce

ε

∫
Ω
χ · ∇(pε − p0) +

∫
Ω
mε · (vε − v0) =

∫
Ω

(f −∇p0) · (vε − v0), (1.26)

while (1.17) implies similarly

ε

∫
Ω
|∇(pεn − p0)|r

′
+

∫
Ω
mε

n · (vεn − Tn(v0)) =

∫
Ω

(f −∇p0) · (vεn − Tn(v0)), (1.27)

for every n ∈ N. Using (1.24), comparing (1.26) with (1.27) yields

lim
n→∞

ε

∫
Ω
|∇(pεn − p0)|r

′
+

∫
Ω
mε

n · vεn = ε

∫
Ω
χ · ∇(pε − p0) +

∫
Ω
mε · vε.

(1.28)

This will be our first foothold. Next, recall monotonicity of the p-Laplace operator and

(mε
n,v

ε
n, p

ε
n) ∈ A a.e. in Ω. Hence we know that for all q ∈W 1,r′

Γ2
(Ω),

0 ≤ ε
∫

Ω

(
|∇(pεn − p0)|r

′−2∇(pεn − p0)− |∇q|r
′−2∇q

)
· ∇(pεn − p0 − q)

+

∫
Ω

(
mε

n −m∗(vε, pεn)
)
· (vεn − vε). (1.29)

As we are allowed to assume pεn → pε from (1.24)2, properties (A5) yield

m∗(vε, pεn)→m∗(vε, pε) in Lr
′
(Ω) as n→∞,

which we on top of that mingle with (1.24)1 and observe

m∗(vε, pεn) · (vεn − vε)→ 0 in L1(Ω) as n→∞. (1.30)

Combining (1.24), (1.28), (1.30) and taking the limit n → ∞ in the monotonicity
relation (1.29) gives rise to

0 ≤
∫

Ω

(
χ− |∇q|r

′−2∇q
)
· ∇(pε − p0 − q), ∀q ∈W 1,r′

Γ2
(Ω). (1.31)

Setting q = pε − p0 ± tϕ with t > 0 and ϕ ∈W 1,r′

Γ2
(Ω), we divide (1.31) by t and then

perform t→ 0+. Arbitrary nature of ϕ yields

χ = |∇(pε − p0)|r
′−2∇(pε − p0). (1.32)

Identity (1.28) can now be rewritten

lim
n→∞

ε

∫
Ω
|∇(pεn − p0)|r

′
+

∫
Ω
mε

n · vεn = ε

∫
Ω
|∇(pε − p0)|r

′
+

∫
Ω
mε · vε. (1.33)
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By weak lower semicontinutity of a norm, (1.33) indicates

‖∇(pε − p0)‖r′ ≤ lim inf
n→∞

‖∇(pεn − p0)‖r′ ⇒
∫

Ω
mε · vε ≥ lim sup

n→∞

∫
Ω
mε

n · vεn. (1.34)

This is actually sufficient for (mε,vε, pε) ∈ A a.e. in Ω. We will derive it again from
the maximality property reformulated in Lemma 1.2.1.

On the one hand, we have
(
mε

n −m∗(vε, pεn)
)
· (vεn − vε) ≥ 0 a.e. in Ω. However,

(1.34) leads us to

0 ≤ lim sup
n→∞

∫
Ω

(
mε

n −m∗(vε, pεn)
)
· (vεn − vε)

= lim sup
n→∞

∫
Ω
mε

n · vεn −mε
n · vε −m∗(vε, pεn) · (vεn − vε) ≤ 0,

due to (1.30) and (1.34). Therefore
(
mε

n −m∗(vε, pεn)
)
· (vεn − vε) → 0 in L1(Ω) for

n→∞. Since a strong convergence implies the weak one, for all ϕ ∈ L∞(Ω), ϕ ≥ 0 a.e.
in Ω, we have

lim
n→∞

∫
Ω
mε

n · vεn ϕdx = lim
n→∞

∫
Ω
mε

n · vε ϕ+m∗(vε, pεn) · (vεn − vε)ϕdx

=

∫
Ω
mε · vε ϕdx.

(1.35)

The last equality made again use of (1.30). Now, we take an arbitrary u ∈ Rd and use
monotonicity to write∫

Ω

(
mε

n −m∗(u, pεn)
)
· (vεn − u)ϕdx ≥ 0, ∀n ∈ N.

Owing to (A5), (1.24) and (1.35), it is possible to take the limit n→∞ and infer∫
Ω

(
mε −m∗(u, pε)

)
· (vε − u)ϕdx ≥ 0,

yielding (mε−m∗(u, pε)) · (vε−u) ≥ 0 a.e. in Ω, which further begets (mε,vε, pε) ∈ A
a.e. in Ω by Lemma 1.2.1.

1.3.3 ε-limit

In the spirit of the previous limit, (1.24) and the weak lower semicontinuity of a norm
applied on (1.23) produce the third energy inequality

ε ‖∇(pε − p0)‖r
′

r′ + ‖m
ε‖r
′

r′ + ‖v
ε‖rr ≤ C(‖f −∇p0‖r′ , ‖v0‖r). (1.36)

The first term actually does not pose much of a problem, for eq. (1.25)1 implies a
pointwise identity

∇pε = f −mε a.e. in Ω,

whence there follows optimization of (1.36), namely

‖∇(pε − p0)‖r′ + ‖m
ε‖r′ + ‖v

ε‖r ≤ C(‖f −∇p0‖r′ , ‖v0‖r).
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Like twice before already, we can find subsequences

vε ⇀ v in Lr(Ω)d,

pε − p0 ⇀ p− p0 in W 1,r′

Γ2
(Ω),

ε |∇(pεn − p0)|r
′−2∇(pεn − p0) ⇀ 0 in Lr(Ω)d,

mε ⇀m in Lr
′
(Ω)d,

(1.37)

for ε→ 0+. The limit quantities satisfy∫
Ω
∇p ·w +

∫
Ω
m ·w =

∫
Ω
f ·w, ∀w ∈ Lr(Ω)d,

0 =

∫
Ω

(v − v0) · ∇q, ∀q ∈W 1,r′

Γ2
(Ω),

(1.38)

that is

∇p+m = f in Ω,

div v = 0 in Ω,

(v − v0) · n = 0 on Γ1,

p− p0 = 0 on Γ2.

In order to reach (1.1), the sole remaining step is showing (m,v, p) ∈ A a.e. in Ω. Let

us first take (1.26) with χ already identified from (1.32), recall |∇(pε − p0)|r
′

is bounded
in L1(Ω) and pass to the limit ε→ 0+:

lim
ε→0+

∫
Ω
mε · vε −

∫
Ω
m · v0 =

∫
Ω

(f −∇p0) · (v − v0).

The limit equation (1.38) yields, on the other hand∫
Ω
m · (v − v0) =

∫
Ω

(f −∇p0) · (v − v0),

whereby we infer

lim
ε→0+

∫
Ω
mε · vε =

∫
Ω
m · v.

The rest would follow along the same lines as what came after (1.34). Of course, by
(1.37) we may again tacitly assume pε → p a.e. in Ω. Thus justification of (m,v, p) ∈ A
a.e. in Ω is complete and with it, the proof of Theorem 1.3.1.

1.4 Maximum and minimum principle

What ensues is an observation that in the case of conservative forces and pure inflow, or
pure outflow over Γ1, one obtains a minimum or a maximum principle, respectively, for
the pressure. Note that this result can be relatively easily obtained for the primordial
Darcy’s model, i.e. m = αv, for some α > 0 where, after formal application of the
divergence operator, one ends up with an elliptic problem ∆p = div f . The property of
maximum and minimum principle thus endured extensions at least up to ours.

We start with introducing an additional assumption on the graph, namely
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(A6) strict monotonicity at the origin

∀(m,v, p) ∈ A : m · v = 0⇒m = 0.

Note that this condition follows trivially from (A4) provided c2 = 0.

Theorem 1.4.1 Let assumptions of Theorem 1.3.1 be in force and Ω be additionally
connected. Let (A6) hold and f = ∇g for some g ∈W 1,r′(Ω). Then

(i) v0 · n ≥ 0 on Γ1 implies p− g ≤ ess sup
Γ2

(p0 − g) a.e. in Ω.

(ii) v0 · n ≤ 0 on Γ1 implies p− g ≥ ess inf
Γ2

(p0 − g) a.e. in Ω.

In particular, if v0 ·n = 0 on Γ1, Γ2 is non-trivial in the sense |Γ2|d−1 > 0, p0 ∈ L∞(Γ2)
and g ∈ L∞(Ω) ∩W 1,r′(Ω), then p ∈ L∞(Ω).

Proof. We will concentrate on the maximum principle only, its minimum counterpart
would be verified completely analogously.

Without loss of generality assume ess supΓ2
(p0 − g) < ∞. The proof hinges on a

proper choice of a test function in the weak formulation (1.38) of the problem (1.1).
Define a truncation operator

T (x) =


0 for x ≤ 0,

x for 0 < x ≤ 1,

1 for x > 1,

and a test function

w = T (p− g − ess sup
Γ2

(p0 − g))v.

Abbreviating T := T (p− g − ess supΓ2
(p0 − g)) when necessary, we arrive at∫

Ω
m · v T dx = −

∫
Ω
∇(p− g) · v T dx. (1.39)

On the one hand, the right-hand side of (1.39) can be rewritten as

−
∫

Ω
∇(p− g) · v T dx = −

∫
Ω
∇(p− g − ess sup

Γ2

(p0 − g)) · v T dx

= −
∫

Ω
∇H(p− g − ess sup

Γ2

(p0 − g)) · v dx,

where H(x) =
∫ x

0 T (s) ds ≥ 0. Then the integration by parts and v0 ·n ≥ 0 on Γ1 yield

−
∫

Ω
∇H(p− g − ess sup

Γ2

(p0 − g)) · v dx = −
∫

Γ1∪Γ2

H(p− g − ess sup
Γ2

(p0 − g))v · n dS

≤ 0.

Eq. (1.39) hence gives
∫

Ωm · v T dx ≤ 0. On the other hand, (A1) and (A2) imply
m · v ≥ 0 a.e. in Ω and therefore

m · v T (p− g − ess sup
Γ2

(p0 − g)) = 0 a.e. in Ω.
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Denoting V = {x ∈ Ω | (p− g)(x) > ess supΓ2
(p0 + g)}, (A6) entails m = 0 a.e. in V .

Fom (1.1)1 we deduce ∇(p− g) = 0 a.e. in V , so that

∇
[(
p− g − ess sup

Γ2

(p0 + g)
)

+

]
= 0 a.e. in Ω.

Therefore
(
p− g − ess supΓ2

(p0 + g)
)

+
≡ C for some constant C due to connectedness

of Ω. However, this constant must be zero, since p− g is a Sobolev function. Therefore
p− g ≤ ess supΓ2

(p0 − g) a.e. in Ω.

1.5 Extended existence theorem

The primal benefit of Theorem 1.4.1 is that, at certain price, we can significantly
slacken the draconian restrictions imposed by (A5)(iv), as well as (A4), by allowing the
constants c and c1 to be actually functions of the pressure. Thus we can vastly extend
the class of admissible interactions m and cover some physically relevant cases. More
precisely, let us consider there exist α, β ∈ C(R) strictly positive everywhere on R, such
that

(A4∗) ∃c2 ≥ 0 ∀(m,v, p) ∈ A : m · v ≥ α(p)(|v|r + |m|r′)− c2,

(A5)(iv∗) ∀(v, p) ∈ Rd × R : |m∗(v, p)| ≤ β(p)(1 + |v|r−1).

Theorem 1.5.1 Let Ω be a connected Lipschitz domain and r ∈ (1,∞). Assume f = ∇g
for some g ∈ L∞(Ω) ∩W 1,r′(Ω), v0 ≡ 0, |Γ2|d−1 > 0 and p0 ∈ W 1,r′(Ω) ∩ L∞(Γ2).
Moreover, assume that A is a maximal monotone r-graph in the sense of (A1)–(A6),
with (A4) and (A5)(iv) replaced by (A4∗) and (A5)(iv∗), respectively. Then the
existence result of Theorem 1.3.1 still holds.

Proof. Take K := ‖g‖∞,Ω + ‖p0 − g‖∞,Γ2 and recall (1.8) for the definition of TK . The
truncated problem

∇p+m = ∇g in Ω,

div v = 0 in Ω,

h(m,v, TK(p)) = 0 in Ω,

(v − v0) · n = 0 on Γ1,

p− p0 = 0 on Γ2,

(1.40)

is amenable to Theorem 1.3.1. Indeed, setting c1 := min[−K,K] α and c := max[−K,K] β,
we have c1 > 0 and 0 < c < ∞. Taking m̂∗(v, p) := m∗(v, TK(p)) as a selection to
be used, invoking the above mentioned theorem is just. Now Theorem 1.4.1 yields
‖p‖∞ ≤ K, which implies p = TK(p) a.e. in Ω and we are done, as problems (1.1) and
(1.40) coincide.

Remark 1.5.2 We conclude this paper with an easy observation stemming from the
foregoing proof. Namely, if infR+ α > 0 and supR+

β < ∞, there is no need for the
maximum principle anymore and instead of v0 · n = 0 on Γ1, mere v0 · n ≤ 0 on Γ1

would suffice to ensure validity of the still indispensable minimum principle. Indeed, in
(1.40)3 we could just as well take

h(m,v,max{TK(p), p}) = 0
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Chapter 1 A generalization of the Darcy-Forchheimer equation

and m̂∗(v, p) := m∗(v,max{TK(p), p}) for the selection. Vice versa, we need only the
maximum principle, i.e. v0 · n ≥ 0 on Γ1, provided infR− α > 0 and supR− β <∞. The
drag coefficient (1.5) is a prime example of such a situation.
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[8] M. Buĺıček, J. Málek, and K.R. Rajagopal. Mathematical analysis of unsteady flows of
fluids with pressure, shear-rate, and temperature dependent material moduli that slip at
solid boundaries. SIAM J. Math. Anal., 41(2):665–707, 2009.
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Abstract

We study generalizations of the Darcy, Forchheimer, Brinkman and Stokes problem in
which the viscosity and the drag coefficient depend on the shear rate and the pressure.
We focus on existence of weak solutions to the problem, with the chief aim to capture
as wide a group of viscosities and drag coefficients as mathematically feasible and to
provide a theory that holds under minimal, not very restrictive conditions. Even in the
case of generalized Stokes system, the established result answers a question on existence
of weak solutions that has been open so far.

Keywords

Existence theory, incompressible fluid, pressure-dependent viscosity, shear-dependent
viscosity, Lipschitz truncation of Sobolev functions, flow through porous media.
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2.1 Introduction

In this work we study a boundary value problem associated with a system of nonlinear
partial differential equations (PDEs) that generalize the classical fluid flow models of
Stokes, Darcy, Forchheimer and Brinkman. The problem considered takes the form

−div[2ν(p, |Dv|2)Dv] + β(p, |v|, |Dv|2)v +∇p = f in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω,

1

|Ω|

∫
Ω
p dx = p0.


(2.1)

We focus on existence of its (generalized) solutions, pursuing the goal to cover as large
a class of functions ν and β as possible and to provide a theory that holds under
minimal, not very restrictive conditions. In the PDE problem (2.1) the set Ω ⊂ Rd is
an open, bounded, connected domain with a Lipschitz boundary and the sought-after
quantities v : Ω→ Rd and p : Ω→ R correspond to the velocity and the pressure fields,
respectively. The symbol D = 1

2(∇+∇T ) stands for the symmetric part of the gradient.
The external body forces f are for the sake of convenience supposed to be of the form

f = −divF ,

where F is a given tensor-valued function. A prescribed value of the integral average of
the pressure is given by p0 ∈ R. The PDE system (2.1) arises in the field of flows through
porous media and non-Newtonian fluid mechanics. We provide more information below.
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Linear examples Consider first one of the primitive cases β ≡ 0 and ν being a
positive constant called viscosity. Then the problem (2.1) reduces to the classical
Stokes equation, describing a steady (slow) flow of an incompressible fluid adhering
to the boundary (by the no-slip boundary condition (2.1)3) and where the pressure
p is determined up to a constant specified by (2.1)4. Conversely, if ν ≡ 0 and β is a
positive constant, the PDE system (2.1) simplifies to the standard Darcy’s equation [17].
This is virtually the simplest PDE system capable of describing the flow of a single
fluid through a rigid porous solid due to the pressure gradient. The number β is then
the drag coefficient. Thirdly, if both ν and β are positive constants, (2.1) simplifies to
Brinkman’s equation [10, 11], representing another popular model capable of describing
certain flows through porous media.

Note that each of the three aforementioned PDE systems is linear. Still, there
is also an ample supply of nonlinear models belonging to the setting of (2.1), that
are technologically important as they exhibit experimentally confirmed features, not
captured by the said linear models. For instance, taking pressure-dependent viscosity
and drag coefficient in (2.1) leads to a ceiling flux (a saturation phenomenon; see [43]),
while approaches based on classical Darcy’s and Brinkman’s models result in a flux that
is linearly increasing with the pressure.

Our principal interest in the present study is to analyse flows in which the material
moduli—the generalized drag coefficient and viscosity—depend on the pressure and
the shear rate, where dependence on the latter quantity is usually confined to |Dv|2 =
Dv ·Dv = Tr(Dv)2.

Dependence on the shear rate and the pressure It has been convincingly docu-
mented in multiple studies (see e.g. [2, 9, 26, 34, 40, 45]) that the viscosity of a fluid
can vary by several orders of magnitude with the pressure. Since the friction due
to fluid–(rigid) solid interaction usually dominates the friction between layers of the
fluid itself, the relation between the drag coefficient and the pressure is even more
substantial. Likewise, the viscosity of many fluids varies with the shear rate. See
for example [6] and [31] for illustrative lists of areas where incompressible fluids with
shear (rate)-dependent viscosity are extensively used, ranging from geophysics, chemical
engineering and bio-material science up to the food industry. Both phenomena can also
play an important role in understanding the problems of enhanced oil recovery, carbon
dioxide sequestration or extraction of unconventional oil deposits.

Compatibility with the second law of thermodynamics A thermodynamic
basis for the derivation of the Darcy, Forchheimer and Brinkman models and their
generalizations falling within the class given by (2.1)1,2 was developed in a recent work
by Srinivasan and Rajagopal [44]. The authors of that study set out from the theory
of interacting continua as developed in [36, 38, 47]. Following a systematic derivation
based on clearly articulated simplifications (as presented earlier in [35]), they arrive at
a general reduced thermodynamical system describing steady (slow) flows of a single
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liquid through a rigid porous solid that takes form1

−divS +m = −∇p+ ρf ,

div v = 0,

ξ = S ·Dv +m · v.

 (2.2)

Here S stands for the deviatoric part of the Cauchy stress T and p for the mean normal
stress, i.e. the pressure. In other words

S = T − 1

d
Tr(T )I and p = −1

d
Tr(T ),

so that T = S − pI with I being the identity tensor. The symbol m signifies the force
acting on the fluid due to its interaction with the rigid solid and ξ stands for the rate of
dissipation, which should be non-negative by the second law of thermodynamics. Note
that the choice

S = 2ν(p, |Dv|2)Dv with ν ≥ 0, (2.3)

m = β(p, |v|, |Dv|2)v with β ≥ 0 (2.4)

entails ξ ≥ 0. Consequently, the model considered in our study is thermodynamically
compatible. Srinivasan and Rajagopal were actually interested in more delicate issues,
namely how to derive (2.3) and (2.4) purely from the knowledge of appropriately chosen
constitutive equations for ξ. Towards this objective they apply the criterion of maximal
rate of entropy production; see [44] for details.

More involved examples The constitutive equations (2.3) and (2.4) (and subse-
quently also the PDE problem (2.1)) include the following nonlinear models as particular
cases2:

(i) ν(p, |Dv|2) ≡ 0 and β(p, |v|, |Dv|2) = β0 + β1|v| begets the so called Darcy-
Forchheimer model [21]. Variants can be obtained by considering β(p, |v|, |Dv|2) =
β0 + β1|v|q for q > 0.

(ii) ν(p, |Dv|2) = ν0 exp(ν1p) and β(p, |v|, |Dv|2) ≡ 0 leads to the Barus model [5].

(iii) ν(p, |Dv|2) = ν0(ε+ |Dv|2)
r−2
2 and β(p, |v|, |Dv|2) ≡ 0 with ε ≥ 0 produces the

power-law fluid models (see e.g. [41, 42] and many further references listed in [14]).

(iv) ν(p, |Dv|2) = ν0(ε+ (1 + exp(ν1p))
−q + |Dv|2)

r−2
2 and β(p, |v|, |Dv|2) ≡ 0 with

r ∈ (1, 2), ε > 0 and q ∈ (0, r−1
2ν1(2−r)ε

2−r
2 ) exemplifies a model for which the

global-in-time existence of weak solutions was established in [29].

(v) ν(p, |Dv|2) =
2ν0p

|Dv|
and β(p, |v|, |Dv|2) ≡ 0 leads to the Schaeffer model [39],

proposed to describe flowing granular materials.

1The velocity v in the product m · v in (2.2)3 should be understood as the difference of the velocity
of the fluid (which is v) and the velocity of the rigid solid (which is zero).

2The constants ν0, ν1, β0, β1, β2 are always assumed to be greater than zero.
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(vi) ν(p, |Dv|2) ≡ 0 and β(p, |v|, |Dv|2) = β(p, |v|) brings a generalized Darcy-
Forchheimer model that in the special case β(p, |v|) = β0 exp(β1p)(1 + β2|v|q)v
has recently been successfully analysed by the authors of this work. The original
references concerning the physical context, solutions of semi-inverse problems and
some computational results may be found in [33].

The list is meant for illustrative purposes only with no aim to be exhaustive.

Structure of the paper In Section 2.2, having got acquainted with the employed
notation, we formulate assumptions specifying the admissible structure of the functions
ν(p, |Dv|2) and β(p, |v|, |Dv|2). Then in Section 2.3 we state the main result, set it
within earlier works and highlight the novel features. Section 2.4 surveys auxiliary
mathematical tools used in the proof of the main result. The complete proof is then to
be found in Section 2.5.

2.2 Preliminaries

Notation We utilize the standard symbolism with a few perhaps non-obvious excep-
tions: If X(Ω) is a Lebesgue or Sobolev space, we denote

X̊(Ω) :=
{
f ∈ X(Ω)

∣∣∣ ∫
Ω
f(x) dx = 0

}
.

No explicit distinction between spaces of scalar- and vector-valued functions will be
made. Confusion should never come to pass as we employ small boldfaced letters to
denote vectors and bolded capitals for tensors. Accordingly, for r > 1 we set

W 1,r
0,div(Ω) :=

{
f ∈W 1,r

0 (Ω)
∣∣ div f = 0 in Ω

}
,

W−1,r′(Ω) :=
(
W 1,r

0 (Ω)
)∗
,

C∞c (Ω) :=
{
f ∈ C∞(Ω)

∣∣ f is compactly supported in Ω
}
.

For f ∈ L1(Ω) we denote

fΩ :=
1

|Ω|

∫
Ω
f(x) dx.

For any K > 0 we introduce the cut-off function TK : R→ R as

TK(x) :=

x for |x| < K,

K
x

|x|
for |x| ≥ K.

Completely analogously we define the cut-off function TK : Rd → Rd. If U, V ⊂ Rd,
we say V is compactly contained in U , symbolically V b U , if V is bounded and V ⊂ U .
The symbol · stands for the dot product and ⊗ signifies the tensor product. When
an integral norm misses the set over which the integral is being taken, always Ω is
implicitly considered. For r ∈ (1,∞) we denote r′ = r/(r − 1) and r∗ = dr/(d − r),
provided further r < d. If r = d, let r∗ be an arbitrary number from [1,∞). The generic
constants are denoted simply by C.
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Assumptions on nonlinearities For the purpose of brevity, we introduce

S(p,Dv) := 2ν(p, |Dv|2)Dv, (2.5)

which will be used widely throughout the paper. Let r ∈ (1, 2] be a fixed number and
d ≥ 2. Inspired by [30], below we reproduce assumptions on the smooth nonlinearity
ν(p, |Dv|2).

Assumption 2.2.1 Let there be positive constants C1 and C2 such that for all B,D ∈
Rd×dsym and all p ∈ R

C1(1 + |D|2)(r−2)/2|B|2 ≤ ∂S(p,D)

∂D
· (B ⊗B) ≤ C2(1 + |D|2)(r−2)/2|B|2.

Assumption 2.2.2 Let for all D ∈ Rd×dsym and p ∈ R∣∣∣∣∂S(p,D)

∂p

∣∣∣∣ ≤ γ0(1 + |D|2)(r−2)/4, with 0 < γ0 <
C1

C1 + C2
.

As for the drag term β(p, |v|, |Dv|2), not considered in [29], we will assume it meets
the following requirements:

Assumption 2.2.3 Let β : R × [0,∞) × [0,∞) −→ [0,∞) be a continuous function
for which there exist c > 0, q0 ∈ [1, d′), q1 ∈ [1, r∗) and q2 ∈ [1, r) such that for all
(p,v,D) ∈ R× Rd × Rd×d

0 ≤ β(p, |v|, |D|2) ≤ c(1 + |p|q0 + |v|q1 + |D|q2).

2.3 Main result

Without loss of generality we will suppose that p0 = 0 in (2.1)4, thus getting rid of an
expendable symbol and making the presentation neater overall. Our paper is devoted
to the justification of the following assertion:

Theorem 2.3.1 Let d ≥ 2 and Ω ⊂ Rd be an open, bounded, connected set with a
Lipschitz boundary. Consider F ∈ Lr′(Ω), r ∈ (1, 2] and suppose that Assumptions 2.2.1–
2.2.3 hold. Then there exists a weak solution to the equation (2.1), i.e. a pair

(v, p) ∈W 1,r
0,div(Ω)× L̊d′(Ω)

satisfying β(p,v, |Dv|2)v ∈ L1(Ω) and∫
Ω

[
S(p,Dv) ·Dϕ+ β(p, |v|, |Dv|2)v ·ϕ− pdivϕ

]
dx =

∫
Ω
F · ∇ϕ dx

for every ϕ ∈W 1,∞
0 (Ω).

Importance of and comparison to past results The present paper may be deemed
a spiritual descendant of Buĺıček and Fǐserová [13] who practically further developed
the work of Franta et al. [22]. These researchers investigated the model of ours, but
without the drag β. On the other hand, their model contains an additional convective
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term div(v ⊗ v), which imposes a restriction on the exponent r to be strictly greater
than 2d/(d+ 2) at best. In [22], the case r > 3d/(d+ 2) was investigated and the proof
hinged on the fact that the solution velocity field v was an admissible test function.
When r > 2d/(d + 2), as improved in [13], this is no longer the case and one has to
resort to certain additional measures, namely the Lipschitz approximation of Sobolev
functions. This powerful tool has since its inception in the paper of Acerbi and Fusco [1]
been built upon and applied in numerous works (see its evolution e.g. [18], [19] and [8]).

Here we abstain purposefully from incorporating the convective term (but see
Theorem 2.6.1). The point is that handling it requires a slightly stronger tool than
the drag β alone, namely the Lipschitz approximation lemma from [18] instead of the
primordial [1]. Thus we would have obfuscated the procedure needed for β alone. Bear
in mind that only due to dropping the convective term are we able to take the generous
r > 1, otherwise r > 2d/(d+ 2) would have been necessary. Had we kept the convective
term, for r ∈ (2d/(d+ 2), 2) it would have been sufficient to copy the proof from [13], yet
again at the cost of obscuring issues related to the β-term. Another reason for avoiding
the convective term is usability of the PDE system (2.1), as it stands, to real world
applications.

Under our assumptions, the solution v is still generally an inadmissible test function.
However, as gradients of the test functions do not need to possess a very high integrability
(unlike the case with the convective term present), the Lipschitz truncation method
might be for r < 2 replaced with the L∞-truncation (see [7], [23] or [37]), which may
be regarded technically simpler than the Lipschitz truncation. The approach based on
the L∞-truncation method turns out insufficient when trying to cover the case r = 2.
Interestingly enough, such a situation has been uniformly avoided in the past works
ever since the inspiring [29] and [30]. In [15] the case r = 2 was treated only due to
additional assumptions on the viscosity ν.

In this paper, we are able to contain the case r = 2 as a bonus, using a combination
of the primeval version of the Lipschitz truncation from [1] with the well known Chacon’s
biting lemma [12] and the Div-Curl lemma [32, 46]. These tools are summarized in
Lemmas 2.4.5–2.4.7. It is worth noting that when ν(p, |Dv|2) ≡ ν0 for some ν0 > 0, the
proof of Theorem 2.3.1 could be simplified considerably, although even there we would
need certain nontrivial bits, specifically local regularity results (2.11) from Lemma 2.4.2.
As an illustration of what specific model the case r = 2 covers, consider for example

ν(p, |Dv|2) = ν0 +
α(p)

1 + |Dv|
,

where ν0 > 0 is a constant and α(·) is a smooth function satisfying

0 ≤ α(·) ≤ α0 for some α0 > 0 and |α′(·)| ≤ ν0

2ν0 + α0
.

It is not difficult to observe that such a situation, similar to Schaeffer’s model [39]
mentioned in the introductory part, falls within the framework of Theorem 2.3.1.

A natural question arises and that is whether the case r = 2 would admit the
reintroduction of the convective term back into the equation. Without going much
into details, the answer is positive. One would only have to combine our approach
(based on the Biting and Div-Curl lemmas) with the procedure from [13]. We state the
corresponding assertion in Theorem 2.6.1 at the end of the paper even though we do
not delve into its proof.

As intimated a few lines above, the principal aim of this paper is the inclusion of
the drag term β into the PDE analysis, the first such an attempt as far as we can tell.
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This term allows for a super-linear growth in the pressure, while add to that, possesses
almost critical growth. More precisely, under Assumption 2.2.3 with r ∈ (1, 2], we have
β(p,v, |Dv|2) ∈ L1+δ(Ω) for some δ > 0, provided (v, p) ∈ W 1,r(Ω) × Ld′(Ω). Note
then β(p,v, |Dv|2)v a priori need not even be integrable, making our investigation of
particular interest.

Incidentally, we might replace the requirement on β to be non-negative with

β(p, |v|, |D|2)v · v ≥ β0|v|2 + β1|v|q in R× Rd × Rd×dsym (2.6)

for certain q > 2, β0 ∈ R and β1 > 0. This would be quite useful to embrace drag
coefficients of the form

β(p, |v|, |Dv|2) = β(|v|) = β0 + β1|v|q−2.

The number β0 is then called the Darcy coefficient and β1 the Forchheimer coefficient
(see [25]). We will not investigate such a digression for the difference from Assump-
tion 2.2.3 is minimal, at least in terms of the existence theory analysis. The point is that
coercivity (2.6) guarantees v to belong in Lq(Ω), which in turn may allow to slacken
the growth conditions on the drag coefficient in Assumption 2.2.3.

Unlike, for instance, the classical Navier-Stokes equations, some kind of a pressure
anchorage in (2.1) is necessary, hence (2.1)4. The reason is that in our model, not only
the pressure gradient is present but there is dependence also on the pressure itself. From
the practical viewpoint it would make more sense to prescribe values of the pressure
pointwise, for example along a part of the boundary (the so called accessible boundary [3]).
Unfortunately, the pressure constructed here is only an integrable function so we cannot
refer to its point values. In this case one could take for instance the integral average over
a (possibly small) set Ω0 ⊂ Ω, thus approximating the pointwise prescription (see [16]).
In this paper we chose fixing pΩ in the spirit of [22], as the generalization pΩ0 could
easily be made but it is not the gist of this paper. A reader requiring more information
on this topic should address for example [13] and the references given there. A similar
argument applies to our choice of the boundary condition. We are aware of the fact that
for problems connected with flows through porous media, the boundary condition (2.1)3

is rather crude as one usually prescribes e.g. the inflow/outflow velocity along parts of
the boundary. The no-slip condition could well be generalized but we picked this one as
it makes the analysis most translucent. For more information concerning alternative
boundary conditions for the velocity and the pressure alike consult e.g. [27].

Lastly, it is worth remarking that the upper bound on the value of γ0 in Assump-
tion 2.2.2 has since [13, 22] been improved. In other words, our viscosity ν allows a faster
growth rate in the pressure variable, albeit still a sublinear one. Aside from C1 and
C2, the bound γ0 also used to detrimentally depend on geometry of the set Ω through
the Bogovskĭı operator on Ω (for more information about the constant see [24, Lemma
III.3.1]). The idea behind the enhancement in our work is to replace the Bogovskĭı
operator with the Newtonian potential at some point. We recall the key properties of
the Newtonian potential in Lemma 2.4.4.

Highlights We want to conclude this part listing the principal contributions of this
paper:

1. We establish large-data existence theory for a generalized Brinkman problem with
the viscosity and drag coefficients depending on the pressure and the shear rate;
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see Theorem 2.3.1. To the best of our knowledge, a PDE analysis for similar
problems with a pressure- and shear-dependent drag satisfying Assumption 2.2.3
has not been carried out yet.

2. Within the setting considered, even for a generalized Stokes problem (i.e. β = 0)
we establish new results when r = 2, thus improving the works [13] and [22]; see
Theorem 2.6.1.

3. The earlier studies concerning the PDE analysis of a generalized Stokes’ problem
with ν(p, |Dv|2) in general bounded domains suffered a serious drawback. The
parameter γ0 appearing in Assumption 2.2.2 used to be restricted by a constant
depending on the geometry of the set Ω. This severe constraint has been removed
here. The theory presented in this work thus holds under the same restrictions as
the theory developed for an (idealized) spatially periodic problem in [29].

2.4 Auxiliary tools

In this section we survey a couple of results exploited in the proof of Theorem 2.3.1.
First off, we state what one might call a compensated monotonicity of the nonlinearity
S, as well as coercivity and boundedness thereof.

Lemma 2.4.1 ([22], Lemmas 3.3, 3.4) Let Assumptions 2.2.1 and 2.2.2 hold. For
arbitrary D1,D2 ∈ Rd×dsym and p1, p2 ∈ R we set

I1,2 :=

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D1 −D2|2 ds,

with D(s) = D2 + s(D1 −D2). Then

1

2
C1I

1,2 ≤ (S(p1,D1)− S(p2,D2)) · (D1 −D2) +
γ2

0

2C1
|p1 − p2|2. (2.7)

Furthermore

|(S(p1,D1)− S(p2,D2))| ≤ γ0|p1 − p2|+ C2

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D1 −D2| ds.

(2.8)

Finally, for all p ∈ R, r ∈ (1, 2] and D ∈ Rd×dsym

S(p,D) ·D ≥ C1

2r
(|D|r − 1) (2.9)

and

|S(p,D)| ≤ C2

r − 1
(1 + |D|)r−1. (2.10)

The corresponding statement in [22] does not include (2.8). However, it is only an
easy observation stemming from

S(p1,D1)− S(p2,D2) =

∫ 1

0

d

ds
S(p2 + s(p1 − p2),D2 + s(D1 −D2)) ds
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and Assumptions 2.2.1 and 2.2.2.
On occasion, we will use the theory for the Stokes problem. All necessary ingredients

are compiled in the lemma below. Beware of our extracting only what is to be needed
for purposes of this paper, as we deem stating these theorems in their full form rather
distracting.

Lemma 2.4.2 ([24], Theorems IV.1.1, IV.4.1, IV.4.4) Let Ω ⊂ Rd be a Lipschitz
domain, d ≥ 2. There exists a continuous linear operator

H : W−1,2(Ω) −→W 1,2
0,div(Ω)× L̊2(Ω)

assigning to any f ∈W−1,2(Ω) the unique weak solution (v, p) of the Stokes problem

−∆v +∇p = f in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω,

pΩ = 0.

Moreover, if f ∈ W−1,2(Ω) ∩ W k,q
loc (Ω) for certain 1 < q < ∞ and k ≥ −1, then

H(f) ∈W k+2,q
loc (Ω)×W k+1,q

loc (Ω) and one has the estimate∥∥∇k+2v
∥∥
q;Ω′′

+
∥∥∇k+1p

∥∥
q;Ω′′
≤ c
(
‖f‖k,q;Ω′ + ‖v‖k+1,q;Ω′ + ‖p‖k,q;Ω′

)
. (2.11)

for any Ω′′ b Ω′ b Ω, where c = c(d, q, k,Ω′,Ω′′).

Aside from the Stokes problem, we will have to be capable of dealing effectively
with the divergence equation. The following statement about the Bogovskĭı operator
provides us with a necessary tool.

Lemma 2.4.3 ([24], Theorem III.3.3) Let Ω ⊂ Rd be a Lipschitz domain, d ≥ 2 and
1 < q <∞. There is a continuous linear operator

B : L̊q(Ω) −→W 1,q
0 (Ω)

assigning to any f ∈ L̊q(Ω) a weak solution v of the divergence equation

div v = f in Ω,

v = 0 on ∂Ω.

The Bogovskĭı operator will at times be replaced with the Newtonian potential.
Then the following result will be used:

Lemma 2.4.4 Let Ω ⊂ Rd be open and bounded and f ∈ Lq(Ω), q ∈ (1,∞). Denote f̃
the zero extension of f on the whole space Rd and Γ the Newtonian kernel in Rd, i.e.

Γ(x) =


− 1

2π
log |x| for d = 2,

1

d(d− 2)ωd
|x|2−d for d > 2,
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where ωd is the volume of the unit ball in Rd. Define

N (f) := (f̃ ∗ Γ)
∣∣
Ω
.

Then N is continuous from Lq(Ω) into W 2,q(Ω) and for q = 2 one has∥∥∇2N (f)
∥∥

2
≤ ‖f‖2 .

Proof. We only sketch out the proof as the result is standard. Continuity from Lq(Ω)
into W 1,q(Ω) follows from Young’s inequality for convolutions and boundedness of Ω. In
order to bound the second gradients, employ the Calderón-Zygmund theory for singular
operators; see [20, Theorem 10.10].

As for the last inequality, we have −∆(f̃∗Γ) = f̃ a.e. in Rd and ‖∇2g‖2;Rd = ‖∆g‖2;Rd

holding for any g ∈W 2,2(Rd). Hence∥∥∇2N (f)
∥∥

2
≤
∥∥∇2(f̃ ∗ Γ)

∥∥
2;Rd =

∥∥∆(f̃ ∗ Γ)
∥∥

2;Rd =
∥∥f̃∥∥

2;Rd =
∥∥f∥∥

2
.

For the sake of completeness, we explicitly formulate yet three classical results here,
namely Chacon’s biting lemma [12], Murat’s and Tartar’s Div-Curl lemma [32, 46] and
Acerbi’s and Fusco’s Lipschitz approximation of Sobolev functions [1]:

Lemma 2.4.5 (Biting lemma, [4]) Let Ω ⊂ Rd have a finite Lebesgue measure and
{fk} be a bounded sequence in L1(Ω). Then there exist a function f ∈ L1(Ω), a
subsequence {f j} of {fk} and a nonincreasing sequence of measurable sets En ⊂ Ω with
limn→∞ |En| = 0, such that f j ⇀ f in L1(Ω \ En) for every fixed n.

Lemma 2.4.6 (Div-Curl lemma, [20], Theorem 10.21) Let Ω ⊂ Rd be open. Assume
un ⇀ u in Lp(Ω) and vn ⇀ v in Lq(Ω), where 1/p + 1/q = 1/r < 1. In addition,
let {divun} be relatively compact in W−1,s(Ω) and {curlvn}3 be relatively compact in
W−1,s(Ω) for a certain s > 1. Then un · vn ⇀ u · v in Lr(Ω).

Lemma 2.4.7 (Lipschitz approximation of Sobolev functions, [1]) Let Ω ⊂ Rd be a
Lipschitz open set and p ≥ 1. There exists a constant c such that, for every u ∈W 1,p(Ω)
and every λ > 0 there exists uλ ∈W 1,∞(Ω) satisfying

‖uλ‖1,∞ ≤ λ, (2.12)

|{u 6= uλ}| ≤ c
‖u‖p1,p
λp

, (2.13)

‖uλ‖1,p ≤ c ‖u‖1,p . (2.14)

Strictly speaking, the bound (2.14) does not appear in [1]. It is, however, a trivial
consequence of (2.12) and (2.13). Secondly, the original result [1] mentions only a
regular set Ω. Since this regularity is required for a W 1,p-continuous extension operator,
Lipschitz sets are perfectly acceptable.

3curl = 1
2
(∇−∇T )
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2.5 Proof of the existence theorem

Solutions asserted by Theorem 2.3.1 will be found as a weak limit of a twofold approxi-
mation scheme: One is the so called quasicompressible approximation (see [22]), which
serves to construct at least some kind of a pressure as a solution to an elliptic problem
featuring divergence of the velocity field. The term quasicompressible is motivated
by the fact that the resultant velocity is only almost solenoidal (see below). In our
exposition we identify this modification with the parameter ε and the goal is to perform
ε→ 0+. The second level is an L∞-truncation of the β-term, the necessity of which is
attributable to quite draconian growth conditions in Assumption 2.2.3. This level is
associated with the parameter K and our plan is to justify K →∞. Nonetheless, we
have to show any such an approximation exists for each ε and K in the first place.

Lemma 2.5.1 Under the assumptions of Theorem 2.3.1, for every ε,K > 0 there exist
(vε,K , pε,K) ∈W 1,r

0 (Ω)×
(
W̊ 1,2(Ω) ∩ L̊r′(Ω)

)
satisfying

ε

∫
Ω
∇pε,K · ∇ϕdx+

∫
Ω
ϕdiv vε,K dx = 0 for all ϕ ∈W 1,2(Ω) ∩ Lr′(Ω) (2.15)

and∫
Ω

[
S(pε,K ,Dvε,K) ·Dϕ+ TKβ(pε,K , |vε,K |, |Dvε,K |2)TKv

ε ·ϕ− pε,K divϕ
]
dx

=

∫
Ω
F · ∇ϕ dx for all ϕ ∈W 1,r

0 (Ω). (2.16)

Proof. We will drop the ε,K-indices for the sake of a neater notation. Let {wi}i∈N ⊂
W 1,2

0 (Ω) and {zi}i∈N ⊂ W̊ 1,2(Ω) ∩ L̊r′(Ω) be linearly independent, with linear spans
dense in the respective spaces. To begin with, we will deduce existence of solutions to
an approximate problem, i.e. for n ∈ N we seek

vn(x) =

n∑
i=1

ani wi(x),

pn(x) =

n∑
i=1

bni zi(x),

satisfying

ε

∫
Ω
∇pn · ∇zi dx+

∫
Ω
zi div vn dx = 0, (2.17)∫

Ω
S(pn,Dvn) ·Dwi dx+

∫
Ω
βnTKv

n ·wi dx−
∫

Ω
pn divwi dx =

∫
Ω
F · ∇wi dx

(2.18)

L∞-truncation for i = 1, . . . , n, recalling (2.5) and setting βn := TKβ(pn, |vn|, |Dvn|2).
Towards showing the existence of {ani }ni=1 and {bni }ni=1, we employ the standard

corollary of Brouwer’s fixed point theorem [28, Lemme 4.3]. Its applicability follows
from the oncoming lines and will not be discussed in detail. Our undivided attention is
zoomed in on the limit passage n→∞.

36



Chapter 2 On generalized Stokes’ and Brinkman’s equations

Multiplying eq. (2.17) by bni and eq. (2.18) by ani and summing the resultant 2n
equalities, we obtain

ε ‖∇pn‖22 +

∫
Ω
S(pn,Dvn) ·Dvn dx+

∫
Ω
βnTKv

n · vn dx =

∫
Ω
F · ∇vn dx.

Now we recall the coercivity condition (2.9), Korn’s, Young’s and Hölder’s inequalities,
non-negativity of βn and the fact that TKv

n · vn ≥ 0, deducing

sup
n

(
ε ‖∇pn‖22 +

∥∥Dvn∥∥r
r

)
<∞.

By Korn’s and Poincaré’s inequalities and the bound (2.10), we may select a subsequence
(labelled again (pn,vn)) such that for n→∞4

vn → v weakly in W 1,r
0 (Ω),

vn → v a.e. in Ω,

pn → p weakly in W̊ 1,2(Ω),

pn → p strongly in L2(Ω),

pn → p a.e. in Ω,

S(pn,Dvn)→ S weakly in Lr
′
(Ω),

βnTKv
n → βv weakly in Lq(Ω) for any q ∈ [1,∞).

(2.19)

Letting n→∞ in the approximate eq. (2.17) and the density of zi in W̊ 1,2(Ω) guarantee
(2.15). Similarly, letting n→∞ in the approximation (2.18) implies∫

Ω
S ·Dϕ dx+

∫
Ω
βv ·ϕ dx−

∫
Ω
pdivϕ dx =

∫
Ω
F · ∇ϕ dx for all ϕ ∈W 1,2

0 (Ω).

(2.20)

Now we need to show p ∈ Lr′(Ω). To this end, let L > 0 and define ξL as the indicator
function of {|p| < L}. Recalling Lemma 2.4.3 on the Bogovskĭı operator, we set

ϕ := B
(
|p|r′−2pξL − (|p|r′−2pξL)Ω

)
.

In particular, such a ϕ can be used in (2.20) and by the continuity of B

‖ϕ‖1,r ≤ C
∥∥|p|r′−1ξL

∥∥
r

= C ‖pξL‖r
′−1
r′ .

As pΩ = 0, plugging ϕ into eq. (2.20) and recalling (2.19) leads to

‖pξL‖r
′

r′ =

∫
Ω
S ·Dϕ dx+

∫
Ω
βv ·ϕ dx−

∫
Ω
F · ∇ϕ dx ≤ C ‖ϕ‖1,r ≤ C ‖pξL‖

r′−1
r′ .

Since C is independent of L, we obtain p ∈ Lr
′
(Ω). Thus Eq. (2.20) holds for any

ϕ ∈W 1,r
0 (Ω).

What remains is the identification of the nonlinear terms S and βv. Considering
the continuity of ν and β and the convergences (2.19)2 and (2.19)5, it is sufficient
to verify the pointwise convergence of Dvn a.e. in Ω. Then S = S(p,Dv) and
βv = TKβ

(
p, |v|, |Dv|2

)
TKv by Vitali’s theorem. We will, however, take these identities

for granted and skip the derivation of the pointwise convergence of Dvn, as it will once
again be reiterated in the following section under more inimical conditions, that time in
detail.

4We employ bars for unidentified weak limits.
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2.5.1 Vanishing artificial compressibility (ε→ 0+)

Now we justify the limit passage ε→ 0+ for solutions yielded by Lemma 2.5.1. Let us
again drop the index K and denote the solutions at hand simply (vε, pε).

Uniform estimates Taking ϕ = pε in (2.15), ϕ = vε in (2.16) and summing up the
resultant identities, we obtain

ε
∥∥∇pε∥∥2

2
+

∫
Ω
S(pε,Dvε) ·Dvε dx+

∫
Ω
βεTKv

ε · vε dx =

∫
Ω
F · ∇vε dx,

where βε := TKβ(pε, |vε|, |Dvε|2).
Using βεTKv

ε · vε ≥ 0, the property (2.9), Poincaré’s, Young’s and Korn’s inequali-
ties, we observe

sup
ε

√
ε
∥∥∇pε∥∥

2
<∞, (2.21)

sup
ε
‖vε‖1,r <∞, (2.22)

the latter of which we further combine with (2.10), deducing

sup
ε

∥∥S(pε,Dvε)
∥∥
r′
<∞. (2.23)

As for bounds on the pressure, we can copy the procedure from the previous proof.
Setting

ϕ := B
(
|pε|r′−2pε − (|pε|r′−2pε)Ω

)
,

we observe that ϕ ∈W 1,r
0 (Ω) and furthermore

∥∥ϕ∥∥
1,r
≤ C

∥∥|pε|r′−1
∥∥
r

= C
∥∥pε∥∥r′−1

r′
due

to continuity of B, with C independent of ε. Recalling that (pε)Ω = 0, the insertion of
ϕ into (2.16) hence produces

‖pε‖r
′

r′ =

∫
Ω
S(pε,Dvε) ·Dϕ dx+

∫
Ω
βεTKv

ε ·ϕ dx−
∫

Ω
F · ∇ϕ dx ≤ C ‖ϕ‖1,r

≤ C ‖pε‖r
′−1
r′

and thus we infer

sup
ε
‖pε‖r′ <∞. (2.24)

The bounds (2.21)–(2.24) imply that we may assume the following convergences as
ε→ 0+:

vε → v weakly in W 1,r
0 (Ω),

vε → v a.e. in Ω,

pε → p weakly in Lr
′
(Ω),

ε∇pε → 0 strongly in L2(Ω),

S(pε,Dvε)→ S weakly in Lr
′
(Ω),

βεTKv
ε → βv weakly in Lq(Ω) for any q ∈ [1,∞).

(2.25)
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The limit ε→ 0+ applied to eq. (2.15) then guarantees div v = 0 a.e. in Ω and eq. (2.16)
yields∫

Ω
S ·Dϕ dx+

∫
Ω
βv ·ϕ dx−

∫
Ω
p divϕ dx =

∫
Ω
F · ∇ϕ dx for all ϕ ∈W 1,r

0 (Ω).

Furthermore, since L̊r
′
(Ω) is a weakly closed subset of Lr

′
(Ω), the property pΩ = 0 has

retained.
We have yet to identify the nonlinear terms S and βv. The objective is to

verify the pointwise convergence of pε and Dvε. Then S = S(p,Dv) and βv =
TKβ

(
p, |v|, |Dv|2

)
TKv by (2.25)5, (2.25)6 and Vitali’s theorem. It suffices to prove

these pointwise convergences in an arbitrary compactly contained subdomain Ω′ b Ω.

Convergence of pε Let η ∈ C∞c (Ω) be such that 0 ≤ η ≤ 1 and η ≡ 1 in Ω′. Recall
the operator N from Lemma 2.4.4 and set uε = N ((pε − p)η). Note

uε → 0 weakly in W 2,2(Ω), (2.26)

uε → 0 strongly in W 1,2(Ω) (2.27)

by the continuity of N and a compact embedding, respectively. Now∥∥(pε − p)η
∥∥2

2
= −

∫
Ω
pεη∆uε dx+

∫
Ω
pη∆uε dx, (2.28)

and the second integral tends to zero as ε→ 0+ by (2.26). We develop the first term:

−
∫

Ω
pεη∆uε dx = −

∫
Ω
pε div(η∇uε) dx+

∫
Ω
pε∇η · ∇uε dx.

As ε→ 0+ the second term again approaches zero by (2.27). At this moment the reason
for adding η is becoming apparent, namely to ensure the zero trace of η∇uε. Onwards,
by (2.16) we have

−
∫

Ω
pε div(η∇uε) dx = −

∫
Ω
S(pε,Dvε) · ∇(η∇uε) dx−

∫
Ω
βεTKv

ε · η∇uε dx

+

∫
Ω
F · ∇(η∇uε) dx.

The latter two terms tend to zero by (2.26) and (2.27), as {βεTKvε} is still bounded
in L∞(Ω). Further

−
∫

Ω
S(pε,Dvε) · ∇(η∇uε) dx

= −
∫

Ω
S(pε,Dvε) · η∇2uε dx−

∫
Ω
S(pε,Dvε) · (∇uε ⊗∇η) dx

and the last term converges to zero by (2.27). Lastly

−
∫

Ω
S(pε,Dvε) · η∇2uε dx

= −
∫

Ω
S(p,Dv) · η∇2uε dx+

∫
Ω

(S(p,Dv)− S(pε,Dvε)) · η∇2uε dx.
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The first integral on the right-hand side vanishes for ε→ 0+ by (2.26). The second one
will be handled by means of the pointwise estimate (2.8) as∫

Ω
(S(p,Dv)− S(pε,Dvε)) · η∇2uε dx

≤ γ0

∫
Ω
|(p− pε)η||∇2uε| dx+C2

∫
Ω

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D(v−vε)||∇2uε|η ds dx,

(2.29)

with D(s) = Dvε + s(Dv −Dvε). Denote

Iε =

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D(v − vε)|2ds.

Since (1 + |D(s)|2)(r−2)/2 ≤ (1 + |D(s)|2)(r−2)/4 and η ≤ √η, Hölder’s inequality and
Lemma 2.4.4 applied on (2.29) yield∫

Ω
(S(p,Dv)− S(pε,Dvε)) · η∇2uε dx ≤ γ0

∥∥(pε − p)η
∥∥2

2

+ C2

(∫
Ω
Iεη dx

)1/2∥∥(pε − p)η
∥∥

2

≤ 1 + γ0

2

∥∥(pε − p)η
∥∥2

2
+

C2
2

2(1− γ0)
‖Iεη‖1 .

(2.30)

It remains to estimate ‖Iεη‖1. Using (2.7), we have

C1

2
‖Iεη‖1 ≤

∫
Ω

(S(p,Dv)− S(pε,Dvε)) ·D(v − vε)η dx+
γ2

0

2C1

∥∥(pε − p)η
∥∥2

2
. (2.31)

The property (2.10) and the convergence (2.25)1 yield

lim
ε→0+

∫
Ω
S(p,Dv) ·D(v − vε)η dx = 0.

Towards handling the other integral in (2.31), we set ϕε = (v − vε)η and write∫
Ω
S(pε,Dvε) ·D(v − vε)η dx

=

∫
Ω
S(pε,Dvε) ·Dϕε dx−

∫
Ω
S(pε,Dvε) · (∇η ⊗ (v − vε)) dx.

The latter integral vanishes for ε → 0+ by (2.25). As for the former, we employ the
weak formulation (2.16) tested with ϕε = (v − vε)η:∫

Ω
S(pε,Dvε) ·Dϕε dx =

∫
Ω
pε divϕε dx−

∫
Ω
βεTKv

ε ·ϕε dx+

∫
Ω
F · ∇ϕε dx.

(2.32)

The last two terms vanish for ε→ 0+ by (2.25). As for the first one, we recall eq. (2.15)
and write∫

Ω
pε divϕε dx = −

∫
Ω
pεη div vε dx+

∫
Ω
pε(v − vε) · ∇η dx

= ε

∫
Ω
∇(pεη) · ∇pε dx+

∫
Ω
pε(v − vε) · ∇η dx

= ε

∫
Ω
|∇pε|2η dx+ ε

∫
Ω
pε∇pε · ∇η dx+

∫
Ω
pε(v − vε) · ∇η dx.
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From the convergences (2.25), we hence elicit

lim inf
ε→0+

∫
Ω
pε divϕε dx ≥ 0.

Plugging this result into (2.32), the entire first integral on the right in (2.31) therefore
satisfies

lim sup
ε→0+

∫
Ω

(S(p,Dv)− S(pε,Dvε)) ·D(v − vε)η dx ≤ 0. (2.33)

Inserting this information back into (2.30) and recalling the steps starting from (2.28),
we conclude

lim sup
ε→0+

∥∥(pε − p)η
∥∥2

2
≤
(

1 + γ0

2
+

C2
2γ

2
0

2C2
1 (1− γ0)

)
lim sup
ε→0+

∥∥(pε − p)η
∥∥2

2
.

Hence

lim
ε→0+

∥∥(pε − p)η
∥∥

2
= 0 (2.34)

as long as
1 + γ0

2
+

C2
2γ

2
0

2C2
1 (1− γ0)

< 1,

which corresponds to the condition γ0 < C1/(C1 + C2); see Assumption 2.2.2.

Convergence of Dvε What remains is to prove the strong convergence of Dvε (for
a subsequence at least). For r ∈ (1, 2] we may invoke Hölder’s inequality and calculate∥∥D(vε − v)η

∥∥r
r

=

∫
Ω

(∫ 1

0
(1 + |Dvε + sD(v − vε)|2)(r−2)/2

× (1 + |Dvε + sD(v − vε)|2)(2−r)/2|D(vε − v)|2 ds
)r/2

ηr dx

≤
∫

Ω

(∫ 1

0
(1 + |Dvε + sD(v − vε)|2)(r−2)/2|D(vε − v)|2 ds

)r/2
ηr/2

× (1 + |Dvε|2 + |Dv|2)r(2−r)/4 dx

≤
(∫

Ω
Iεη dx

)r/2(∫
Ω

(1 + |Dvε|2 + |Dv|2)r/2dx
)(2−r)/2

. (2.35)

Recalling (2.7) and (2.22), we have thus deduced a useful (though standard) estimate

C
∥∥D(vε − v)η

∥∥2

r
≤
∫

Ω
(S(p,Dv)− S(pε,Dvε)) ·D(v − vε)η dx+

γ2
0

2C1

∥∥(pε − p)η
∥∥2

2
,

which, together with (2.33) and (2.34), implies the required convergence

lim
ε→0+

∥∥D(vε − v)η
∥∥
r

= 0.

Hence we have obtained (v, p) = (vK , pK) ∈W 1,r
0,div(Ω)× L̊r′(Ω), satisfying∫

Ω
S(pK ,DvK) ·Dϕ dx+

∫
Ω
TKβ(pK , |vK |, |DvK |2)TKv

K ·ϕ dx−
∫

Ω
pK divϕ dx

=

∫
Ω
F · ∇ϕ dx for every ϕ ∈W 1,r

0 (Ω). (2.36)
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2.5.2 Truncation removal (K →∞)

The final and key part concerns the limit K →∞. The essential procedures at this phase
will lie in a decomposition of the pressures pK , followed by an interesting application of
the Div-Curl lemma.

Uniform estimates Let us pick ϕ = vK in the relation (2.36), as in the previous
step. Exactly like in (2.22) and (2.23), we obtain bounds

sup
K

(∥∥vK∥∥
1,r

+
∥∥S(pK ,DvK)

∥∥
r′

)
<∞ (2.37)

and, denoting βK := TKβ
(
pK , |vK |, |DvK |2

)
, now by non-negativity of β also

sup
K

∥∥βK |TKvK |2∥∥1
≤ sup

K

∥∥βKTKvK · vK∥∥1
<∞. (2.38)

Recall that for each K ∈ N, pK ∈ Lr′(Ω) ↪→ Ld
′
(Ω). The pressure will be uniformly

estimated in the latter space, once again by dint of the Bogovskĭı operator. This is
where we finally give reason for the growth conditions in Assumption 2.2.3. Set

ϕ = B
(
|pK |d′−2pK −

(
|pK |d′−2pK

)
Ω

)
.

Note that ϕ ∈ W 1,d
0 (Ω) ↪→ Lq(Ω) for any q ∈ [1,∞) and

∥∥ϕ∥∥
1,d
≤ C

∥∥pK∥∥d′−1

d′
due to

the continuity of B. Using ϕ as a test function in (2.36) yields∥∥pK∥∥d′
d′

=

∫
Ω
S(pK ,DvK) : Dϕ dx+

∫
Ω
βKTKv

K ·ϕ dx−
∫

Ω
F · ∇ϕ dx. (2.39)

Next, ∫
Ω

∣∣βKTKvK ·ϕ∣∣ dx ≤ (∫
Ω
βK
∣∣TKvK∣∣2dx)1/2(∫

Ω
βK |ϕ|2dx

)1/2
(2.40)

and owing to (2.38) the first term is bounded. Hence we can focus purely on the last
integral in (2.40). Recalling Assumption 2.2.3 (with q0 < d′, q1 < r∗ and q2 < r) and
the classical Sobolev embedding, we estimate it as follows:∫

Ω
βK |ϕ|2dx ≤ c

∫
Ω
|ϕ|2(1 + |pK |q0 + |vK |q1 + |DvK |q2) dx

≤ C
(
1 +

∥∥pK∥∥q0
d′

+
∥∥vK∥∥q1

r∗
+
∥∥DvK∥∥q2

r

)
‖ϕ‖21,d .

(2.41)

Combining with (2.37), the above computation amounts to∫
Ω

∣∣βKTKvK ·ϕ∣∣ dx ≤ C∥∥ϕ∥∥1,d

(
1 +

∥∥pK∥∥q0/2
d′

)
,

with C independent of K. In light of W 1,d
0 (Ω) ↪→W 1,r

0 (Ω) and (2.37), eq. (2.39) gives
rise to ∥∥pK∥∥d′

d′
≤ C

∥∥ϕ∥∥
1,d

(
1 +

∥∥pK∥∥q0/2
d′

)
≤ C

∥∥pK∥∥d′−1

d′

(
1 +

∥∥pK∥∥q0/2
d′

)
.

Since q0 < d′ ≤ 2, we have arrived at

sup
K

∥∥pK∥∥
d′
<∞. (2.42)
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We also observe that (2.40) and (2.41) would just as well work with ϕ ∈ L1+1/δ(Ω) for
some small δ > 0, whence

sup
K

∥∥βKTKvK∥∥1+δ
<∞. (2.43)

Notice that the right-open intervals for q0, q1 and q2 from Assumption 2.2.3 are indis-
pensable for such a claim. It is hence possible by the estimates (2.37), (2.42) and (2.43),
to let K →∞ and presuppose (after a pertinent relabelling of the sequence) that

vK → v weakly in W 1,r
0,div(Ω),

vK → v a.e. in Ω,

pK → p weakly in L̊d
′
(Ω),

S(pK ,D(vK))→ S weakly in Lr
′
(Ω),

βKTKv
K → βv weakly in L1+δ(Ω).

(2.44)

From (2.36) we have moved on to∫
Ω
S ·Dϕ dx+

∫
Ω
βv ·ϕ dx−

∫
Ω
p divϕ dx =

∫
Ω
F · ∇ϕ dx

for any ϕ ∈W 1,r
0 (Ω)∩L∞(Ω) such that divϕ ∈ Ld(Ω). Not unlike the limit ε→ 0+, the

identification of the weak limits S and βv can and will be performed via the pointwise
convergence of pK and DvK .

Decomposition of pK Beginning with the pressure, for which we would like to utilize
the monotonicity relation (2.7), we run into trouble as {pK} need not be bounded in
L2(Ω). This is why we decompose pK into two parts: one being pointwise convergent and
the other still converging only weakly, though now in Lr

′
(Ω), whence the monotonicity

property may be used. It is again sufficient to prove the convergence in an arbitrary
compactly contained subdomain Ω′ b Ω.

Referring back to Lemma 2.4.2 and noticing that both divS(pK ,DvK)− divF and
βKTKv

K belong to W−1,2(Ω), we may define

(vK1 , p
K
1 ) := H(divS(pK ,DvK)− divF ),

(vK2 , p
K
2 ) := H(−βKTKvK).

(2.45)

The uniqueness of solutions to the Stokes problem and (2.36) imply

vK1 + vK2 = 0,

pK1 + pK2 = pK .
(2.46)

From (2.37) and the continuity of H we observe

sup
K

(∥∥vK1 ∥∥1,2
+
∥∥pK1 ∥∥2

)
<∞. (2.47)

Further, tacitly assuming δ ≤ 1/(d− 1), we may apply (2.11) to (2.45)2 with k = 0 and
deduce∥∥∇2vK2

∥∥
1+δ;Ω′

+
∥∥∇pK2 ∥∥1+δ;Ω′

≤ c
(∥∥βKTKvK∥∥1+δ

+
∥∥vK2 ∥∥1,1+δ

+
∥∥pK2 ∥∥1+δ

)
≤ c

(∥∥βKTKvK∥∥1+δ
+
∥∥vK1 ∥∥1,2

+
∥∥pK − pK1 ∥∥d′)

≤ C,
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where C is independent of K. Now consider r < 2 and Ω′′,Ω′′′ satisfying Ω′ b Ω′′ b
Ω′′′ b Ω. Since r′ > 2 we elicit the existence of a σ > 0 such that (2.11) may be
employed again, this time with k = −1, leading to∥∥vK1 ∥∥1,2+σ;Ω′′

+
∥∥pK1 ∥∥2+σ;Ω′′

≤ c
(∥∥divS(pK ,DvK)− divF

∥∥
−1,2+σ

+
∥∥vK1 ∥∥2+σ;Ω′′′

+
∥∥pK1 ∥∥−1,2+σ;Ω′′′

)
≤ c

(∥∥divS(pK ,DvK)
∥∥
−1,r′

+
∥∥F∥∥

r′
+
∥∥vK1 ∥∥1,2;Ω′′′

+
∥∥pK1 ∥∥2;Ω′′′

)
≤ C;

the last estimate is due to (2.47). Utilizing the bootstrap argument, the above estimate
yields∥∥vK1 ∥∥1,r′;Ω′

+
∥∥pK1 ∥∥r′;Ω′ ≤ c(∥∥divS(pK ,DvK)

∥∥
−1,r′

+
∥∥F∥∥

r′
+
∥∥vK1 ∥∥1,2

+
∥∥pK1 ∥∥2

)
≤ C.

In other words, using (2.46) we observe,

sup
K

(∥∥vK1 ∥∥1,r′;Ω′
+
∥∥vK1 ∥∥2,1;Ω′

+
∥∥pK1 ∥∥r′;Ω′ + ∥∥pK2 ∥∥1,1;Ω′

)
<∞, (2.48)

for any r ∈ (1, 2], as the case r = 2 is covered directly by (2.47). Hence we may assume

pK1 → p1 weakly in L̊r
′
(Ω′),

pK2 → p2 a.e. in Ω′.
(2.49)

Note that (2.46) yields trivially p1 + p2 = p. What we are left with is thus to show the
pointwise convergence of pK1 .

Convergence of pK1 We first notice that (2.45) and (2.48) imply∥∥div
(
S(pK ,DvK)− pK1 I − F

)∥∥
1;Ω′
≤ C.

As L1(Ω′) ↪→↪→ W−1,q′(Ω′) for q > d, this estimate together with (2.44) and (2.49)
allows us to use Div-Curl lemma 2.4.6. Indeed, let s > r and

ϕK → ϕ weakly in W 1,s(Ω′). (2.50)

Then 1/r′ + 1/s < 1, curl∇ϕK = 0 and Div-Curl lemma 2.4.6 implies(
S(pK ,DvK)− pK1 I

)
· ∇ϕK →

(
S − p1I

)
· ∇ϕ weakly in L1(Ω′). (2.51)

Note we also tacitly used F · ∇ϕK → F · ∇ϕ weakly in L1(Ω′).
Let L > 0. We shall first consider (2.51) with ϕK = ∇ψKL , where (see Lemma 2.4.4

for notation)

ψKL = N (TL(pK1 − p1)). (2.52)

Note that due to the truncation, we have (for a subsequence if need be)

TL(pK1 − p1)→ TL weakly in Lq(Ω) for all q ∈ [1,∞),
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and hence by the continuity of N (see Lemma 2.4.4) also

ψKL → ψL = N (TL) weakly in W 2,q(Ω) for all q ∈ [1,∞). (2.53)

Therefore (2.51) yields(
S(pK ,DvK)− pK1 I

)
· ∇2ψKL →

(
S − p1I

)
· ∇2ψL weakly in L1(Ω′),

which, after a simple rearrangement and using the pointwise convergence of pK2 from
(2.49), leads to(
S(pK ,DvK)− S(p1 + pK2 ,Dv)− (pK1 − p1)I

)
· ∇2ψKL

→
(
S − S(p1 + p2,Dv)

)
· ∇2ψL weakly in L1(Ω′).

As a result, recalling also the definition of ψKL , we find that for an arbitrary measurable
Ω′′ ⊂ Ω′

lim sup
K→∞

∫
Ω′′
|pK1 − p1||TL(pK1 − p1)| dx = lim sup

K→∞

∫
Ω′′

(pK1 − p1) I · ∇2ψKL dx

≤ lim sup
K→∞

∫
Ω′′
|S(pK ,DvK)− S(p1 + pK2 ,Dv)||∇2ψKL | dx

+
∣∣∣∫

Ω′′

(
S − S(p,Dv)

)
· ∇2ψL dx

∣∣∣. (2.54)

Towards estimating the first term on the right-hand side, the relation (2.8) implies that∫
Ω′′
|S(pK ,DvK)− S(p1 + pK2 ,Dv)||∇2ψKL | dx

≤ γ0

∫
Ω′′
|pK1 −p1||∇2ψKL | dx+C2

∫
Ω′′

∫ 1

0
(1+|D(s)|2)(r−2)/2|D(vK−v)||∇2ψKL | ds dx,

(2.55)

where D(s) = DvK + s(Dv −DvK). Denoting

IK =

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D(vK − v)|2ds,

and using Hölder’s inequality and (1 + |D(s)|2)(r−2)/2 ≤ (1 + |D(s)|2)(r−2)/4, we turn
(2.55) into∫

Ω′′
|S(pK ,DvK)− S(p1 + pK2 ,Dv)||∇2ψKL | dx

≤ γ0

∥∥pK1 − p1

∥∥
2;Ω′′

∥∥∇2ψKL
∥∥

2;Ω′′
+ C2

∥∥IK∥∥1/2

1;Ω′′

∥∥∇2ψKL
∥∥

2;Ω′′
.

Hence we are able to develop (2.54) as

lim sup
K→∞

∫
Ω′′
|pK1 − p1||TL(pK1 − p1)| dx

≤ lim sup
K→∞

(
γ0

∥∥pK1 − p1

∥∥
2;Ω′′

∥∥∇2ψKL
∥∥

2;Ω′′
+ C2

∥∥IK∥∥1/2

1;Ω′′

∥∥∇2ψKL
∥∥

2;Ω′′

)
+
∣∣∣∫

Ω′′

(
S − S(p,Dv)

)
· ∇2ψL dx

∣∣∣.
(2.56)
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Next, due to (2.53) we may assume without loss of generality that both |∇2ψKL |2 and
|∆ψKL |2 converge weakly in Lq(Ω′) for any q ∈ [1,∞) as k → ∞. To compare these
weak limits, it suffices to investigate

lim
K→∞

∫
Ω′

(
|∇2ψKL |2 − |∆ψKL |2

)
ϕdx

for arbitrary ϕ ∈ C∞c (Ω′). Using the integration by parts, we find that

lim
K→∞

∫
Ω′

(
|∇2ψKL |2 − |∆ψKL |2

)
ϕdx

= lim
K→∞

∫
Ω′

(
∇2ψKL · ∇2ψKL ϕ− |∆ψKL |2ϕ

)
dx

= lim
K→∞

∫
Ω′

(
−∇ψKL · ∇∆ψKL ϕ− (∇ψKL ⊗∇ϕ) · ∇2ψKL − |∆ψKL |2ϕ

)
dx

= lim
K→∞

∫
Ω′

(
∇ψKL · ∇ϕ∆ψKL − (∇ψKL ⊗∇ϕ) · ∇2ψKL

)
dx

=

∫
Ω′

(
∇ψL · ∇ϕ∆ψL − (∇ψL ⊗∇ϕ) · ∇2ψL

)
dx

=

∫
Ω′

(
|∇2ψL|2 − |∆ψL|2

)
ϕdx.

By the density argument, we therefore get for all measurable Ω′′ ⊂ Ω′

lim
K→∞

∫
Ω′′

(
|∇2ψKL |2 − |∆ψKL |2

)
dx =

∫
Ω′′

(
|∇2ψL|2 − |∆ψL|2

)
dx,

in particular then

lim sup
K→∞

∫
Ω′′
|∇2ψKL |2 dx ≤ lim sup

K→∞

∫
Ω′′
|∆ψKL |2 dx+

∫
Ω′′

(
|∇2ψL|2 − |∆ψL|2

)
dx.

Hence, substituting this relation into (2.56), using the pointwise estimate

|∆ψKL |2 = |TL(pK1 − p1)|2 ≤ |pK1 − p1|2

and the a priori estimates (2.44) and (2.47), we find out

lim sup
K→∞

∫
Ω′′
|pK1 − p1||TL(pK1 − p1)| dx

≤ lim sup
K→∞

(
γ0

∥∥pK1 − p1

∥∥
2;Ω′′

+ C2

∥∥IK∥∥1/2

1;Ω′′

)
×
(∥∥pK1 − p1

∥∥2

2;Ω′′
+

∫
Ω′′

(
|∇2ψL|2 − |∆ψL|2

)
dx
)1/2

+
∣∣∣∫

Ω′′

(
S − S(p,Dv)

)
· ∇2ψL dx

∣∣∣
≤ lim sup

K→∞

(
γ0

∥∥pK1 − p1

∥∥2

2;Ω′′
+ C2

∥∥IK∥∥1/2

1;Ω′′

∥∥pK1 − p1

∥∥
2;Ω′′

)
+ C

∣∣∣∫
Ω′′

(
|∇2ψL|2 − |∆ψL|2

)
dx
∣∣∣1/2 (2.57)

+
∣∣∣∫

Ω′′

(
S − S(p,Dv)

)
· ∇2ψL dx

∣∣∣.
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Finally, we choose Ω′′ so that the truncator TL could be disregarded. For this sake recall
the Biting lemma 2.4.5 that we are going to apply to

fK = |pK1 |r
′
+ |S(pK ,DvK)|r′ . (2.58)

Note that {fK} form a bounded sequence in L1(Ω′) by (2.44) and (2.48). Hence, the
Biting lemma guarantees the existence of a nonincreasing sequence of measurable sets
En ⊂ Ω′ fulfilling limn→∞ |En| = 0 such that (modulo a subsequence) for each n ∈ N
the sequence {fK} is uniformly equi-integrable in Ωn := Ω′ \ En.

The estimate (2.57) with Ω′′ = Ωn entails for each n ∈ N

lim sup
K→∞

∥∥pK1 − p1

∥∥2

2;Ωn
≤ lim sup

K→∞

∫
Ωn

|pK1 − p1||pK1 − p1 − TL(pK1 − p1)| dx

+ lim sup
K→∞

(
γ0

∥∥pK1 − p1

∥∥2

2;Ωn
+ C2

∥∥IK∥∥1/2

1;Ωn

∥∥pK1 − p1

∥∥
2;Ωn

)
(2.59)

+ C
∣∣∣∫

Ωn

(
|∇2ψL|2 − |∆ψL|2

)
dx
∣∣∣1/2 + C

∣∣∣∫
Ωn

(
S − S(p,Dv)

)
· ∇2ψL dx

∣∣∣.
We further let L → ∞ in order to eliminate the terms depending on L. Denoting
ΩK
L = {|pK1 − p1| > L}, we observe from (2.47) that |ΩK

L | ≤ C/L2 whence, using the
uniform equi-integrability of |pK1 |r

′
in Ωn,

lim sup
L→∞

lim sup
K→∞

∫
Ωn

|pK1 − p1||pK1 − p1 − TL(pK1 − p1)| dx

≤ lim sup
L→∞

lim sup
K→∞

∫
Ωn∩ΩKL

|pK1 − p1|2 dx = 0.

At this point we wish to highlight the importance of the uniform equi-integrability of
|pK1 |2. For r < 2 it would be trivial from (2.49), whereas when r = 2, the Biting lemma
seems to be essential.

The remaining L-dependent terms in (2.59) tend with L → ∞ likewise to zero,
towards which it is evidently enough to prove

ψL → 0 strongly in W 2,2(Ω). (2.60)

Due to continuity of the Newtonian potential N (see Lemma 2.4.4), the problem (2.52)
implies that (2.60) holds so long as (see (2.53))

TL → 0 strongly in L2(Ω). (2.61)

To achieve this, we first draw from (2.47) that

TL(pK1 − p1)− (pK1 − p1)→ TL weakly in L2(Ω)

and therefore from the weak lower semicontinuity of the L1-norm we find that∥∥TL∥∥1
≤ lim inf

K→∞

∥∥TL(pK1 − p1)− (pK1 − p1)
∥∥

1
≤ 2 lim sup

K→∞

∫
ΩKL

|pK1 − p1| dx ≤ C/L,

whence

TL → 0 strongly in L1(Ω).
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To strengthen the strong convergence from L1(Ω) into L2(Ω), it is enough to find a
dominating function belonging to L2(Ω). However, denoting ν ∈ L2(Ω) the weak limit

|pK1 − p1| → ν weakly in L2(Ω),

a simple estimate |TL(pK1 − p1)| ≤ |pK1 − p1| implies |TL| ≤ ν and Lebesgue’s dominated
convergence theorem finishes the proof of (2.61). As a consequence, we conclude from
(2.59) that

lim sup
K→∞

∥∥pK1 − p1

∥∥2

2;Ωn
≤ lim sup

K→∞

(
γ0

∥∥pK1 − p1

∥∥2

2;Ωn
+ C2

∥∥IK∥∥1/2

1;Ωn

∥∥pK1 − p1

∥∥
2;Ωn

)
,

ultimately implying for each n (note that γ0 < 1)

lim sup
K→∞

∥∥pK1 − p1

∥∥
2;Ωn
≤ C2

1− γ0
lim sup
K→∞

∥∥IK∥∥1/2

1;Ωn
. (2.62)

We want to develop (2.62) into

lim sup
K→∞

∥∥pK1 − p1

∥∥
2;Ωn
≤ α lim sup

K→∞

∥∥pK1 − p1

∥∥
2;Ωn

for some α ∈ (0, 1).

We are again going to utilize the observation based on the Div-Curl lemma (2.51).
To this end, take a fixed λ > 0, recall Lemma 2.4.7 about Lipschitz approximations
of Sobolev functions and set ϕK := vKλ in (2.51), where vKλ denotes the Lipschitz
approximation of vK . Note that due to (2.12), fulfilment of the condition (2.50) may
be taken for granted. Hence(

S(pK ,DvK)− pK1 I
)
· ∇vKλ →

(
S − p1I

)
· ∇vλ weakly in L1(Ω′), (2.63)

where

vKλ → vλ weakly in W 1,q(Ω) for all q ∈ [1,∞).

Note that (2.63) directly implies

lim
K→∞

∫
Ωn

(
S(pK ,DvK)− pK1 I

)
· ∇vKλ dx =

∫
Ωn

(
S − p1I

)
· ∇vλ dx (2.64)

for each n, where Ωn are still the subsets specified above, when we applied the Biting
lemma to the sequence given in (2.58). By (2.64), we have

lim
K→∞

∫
Ωn

(
S(pK ,DvK)− pK1 I

)
· ∇vK dx

= lim
K→∞

∫
Ωn

(
S(pK ,DvK)− pK1 I

)
· ∇(vK − vKλ ) dx

+ lim
K→∞

∫
Ωn

(
S(pK ,DvK)− pK1 I

)
· ∇vKλ dx

= lim
K→∞

∫
Ωn

(
S(pK ,DvK)− pK1 I

)
· ∇(vK − vKλ ) dx+

∫
Ωn

(
S − p1I

)
· ∇vλ dx,
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and consequently, as the left-hand side is independent of λ,

lim
K→∞

∫
Ωn

(
S(pK ,DvK)− pK1 I

)
· ∇vK dx

= lim
λ→∞

lim
K→∞

∫
Ωn

(
S(pK ,DvK)− pK1 I

)
·∇(vK−vKλ ) dx+ lim

λ→∞

∫
Ωn

(
S − p1I

)
·∇vλ dx.

(2.65)

First we notice the first term on the right vanishes. Indeed, thanks to (2.14) we have∫
Ωn

∣∣(S(pK ,DvK)− pK1 I
)
· ∇(vK − vKλ )

∣∣ dx
≤ C

∥∥vK∥∥
1,r

∥∥S(pK ,DvK)− pK1 I
∥∥
r′;Ωn∩{vK 6=vKλ }

and the claim follows from the uniform equi-integrability of

|pK1 |r
′
+ |S(pK ,DvK)|r′

in Ωn (see (2.58)) and (2.13), i.e. |{vK 6= vKλ }| ≤ C/λr.
The second term on the right-hand side of (2.65) can easily be identified: The weak

lower semicontinuity of a norm and (2.14) bring about

‖vλ‖1,r ≤ lim inf
K→∞

∥∥vKλ ∥∥1,r
≤ C lim sup

K→∞

∥∥vK∥∥
1,r
≤ C.

Accordingly, we may safely assume

vλ → v weakly in W 1,r(Ω).

On the other hand, it follows from the compact embedding, (2.13) and (2.14) that

‖v − vλ‖1 = lim
K→∞

∫
Ω
|vK − vKλ | dx = lim

K→∞

∫
{vK 6=vKλ }

|vK − vKλ | dx ≤ C/λr−1,

meaning

vλ → v strongly in L1(Ω),

and finally, due to uniqueness of weak limits

vλ → v weakly in W 1,r(Ω).

Thus we are able to pass λ→∞ on the right-hand side of (2.65), obtaining

lim
K→∞

∫
Ωn

(
S(pK ,DvK)− pK1 I

)
· ∇vKdx =

∫
Ωn

(
S − p1I

)
· ∇v dx.

Since vK and v are both divergence-free, this is actually tantamount to

lim
K→∞

∫
Ωn

S(pK ,DvK) ·DvKdx =

∫
Ωn

S ·Dv dx
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and thanks to the strong convergence of pK2 (see (2.49)) also

lim
K→∞

∫
Ωn

(S(pK ,DvK)− S(p1 + pK2 ,Dv)) ·D(vK − v) dx = 0. (2.66)

At long last, recalling (2.7) we see that (2.66) implies

lim sup
K→∞

∥∥IK∥∥
1;Ωn
≤ γ2

0

C2
1

lim sup
K→∞

∥∥pK1 − p1

∥∥2

2;Ωn
. (2.67)

Substituting (2.67) into (2.62), we have

lim sup
K→∞

∥∥pK1 − p1

∥∥
2;Ωn
≤ C2γ0

C1(1− γ0)
lim sup
K→∞

∥∥pK1 − p1

∥∥
2;Ωn

.

Considering
C2γ0

C1(1− γ0)
< 1⇐⇒ γ0 <

C1

C1 + C2
,

by Assumption 2.2.2 we have

lim
K→∞

∥∥pK1 − p1

∥∥
2;Ωn

= 0. (2.68)

Since limn→∞ |Ω′ \ Ωn| = 0, we may suppose pK1 → p1 a.e. in Ω′.

Convergence of DvK We have yet to affirm the strong convergence of DvK . A
simple task, in fact, for we can proceed just as in the ε-passage. Exactly like in (2.35),
we would use Hölder’s inequality to show∥∥D(vK − v)

∥∥2

r;Ωn
≤ C

∫
Ωn

IKdx,

whence by (2.7) also

C
∥∥D(vK − v)

∥∥2

r;Ωn

≤
∫

Ωn

(S(pK ,DvK)− S(p1 + pK2 ,Dv)) ·D(vK − v) dx+
γ2

0

2C1

∥∥pK1 − p1

∥∥2

2;Ωn
.

The right-hand side tends to zero as K →∞ by (2.66) and (2.68). This fact implies we
may assume DvK →Dv a.e. in Ω′ and also eventually finishes the proof.

2.6 Closing remarks

We would like to finish this paper with a theorem directly improving the results of [13]
and [22]:

Theorem 2.6.1 Let d ≥ 2 and Ω ⊂ Rd be a Lipschitz domain. Consider f ∈W−1,r′(Ω),
p0 ∈ R, r ∈ (2d/(d+2), 2] and let Assumptions 2.2.1 and 2.2.2 hold. Enforcing a slightly
strengthened Assumption 2.2.3, namely let q0 ∈

[
1,min

{
d′, dr

2(d−r)
})

, there exists a pair

(v, p) ∈W 1,r
0,div(Ω)× Lmin

{
d′, dr

2(d−r)

}
(Ω) satisfying pΩ = p0, β(p,v, |Dv|2)v ∈ L1(Ω) and∫

Ω

[
2ν(p, |Dv|2)Dv ·Dϕ− (v ⊗ v) · ∇ϕ+ β(p, |v|, |Dv|2)v ·ϕ− p divϕ

]
dx = 〈f ,ϕ〉

for every ϕ ∈W 1,∞
0 (Ω).
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As insinuated in Section 2.2, we are not going to establish this result in detail. The
proof would lie in a straightforward combination of the procedure implemented here and
steps used in [13] to control the convective term. To be more specific, one would need
a stronger version of the Lipschitz approximation lemma than Lemma 2.4.7, namely
that from [18]. The second change would be in the decomposition of the pressure (2.45).
Informally speaking, we would add one more partial pressure corresponding to the
convective term, i.e. (vK3 , p

K
3 ) := H(−div(vK ⊗vK)). The new pressure would, like pK2 ,

also converge pointwise due to estimates based on the regularity theory for the Stokes
problem. In reality however, there would have to appear an additional regularizing term
in the argument of H; see [13] for details.

As far as the possible deterioration of the pressure integrability is concerned, the
culprit is again the convective term. Note that dr

2(d−r) < d′ for r < 2d
d+1 , so that

the exponent of integrability becomes worse for low values of r. If dr
2(d−r) < d′ then

p ∈ L
dr

2(d−r) (Ω) and it is necessary to restrict growth of the drag β in the pressure
accordingly, as the original q0 < d′ from Assumption 2.2.3 requires being able to bound
the pressure in Ld

′
(Ω). It is an easy exercise to perform variants of the estimates

(2.39)–(2.42) again with the convective term present.
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Abstract

A generalization of Navier-Stokes’ model is considered, where the Cauchy stress tensor
depends on the pressure as well as on the shear rate in a power-law-like fashion, for
values of the power-law index r ∈

(
2d
d+2 , 2

]
. We develop existence of generalized (weak)

solutions for the resultant system of partial differential equations, including also the so
far uncovered cases r ∈

(
2d
d+2 ,

2d+2
d+2

]
and r = 2. By considering a maximal sensible range

of the power-law index r, the obtained theory is in effect identical to the situation of
dependence on the shear rate only.

Keywords
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3.1 Introduction

Let T > 0, Ω ∈ Rd be an open Lipschitz domain and denote Q = (0, T )× Ω. We would
like to study unsteady flows of incompressible homogeneous fluids in Ω. Setting density
to be identically one for simplicity, balance of linear momentum and balance of mass
for such fluids can be written down as

∂tv + div(v ⊗ v)− divT = f ,

div v = 0,
(3.1)

both holding in Q, where f represents the external forces acting on the fluid and T is
the Cauchy stress tensor. When the fluid is additionally supposed to be Newtonian, the
Cauchy stress is of the form

T = −pI + νDv, (3.2)

where p is the pressure (the indeterminate part of the stress),

Dv =
1

2

(
∇v +∇Tv

)
is the symmetric part of the velocity gradient and ν > 0 is the shear viscosity. When T is
of the form (3.2), Eq. (3.1) becomes the notorious Navier-Stokes model. Unfortunately,
despite all the rapt attention that this model has drawn in renown mathematicians
throughout the last century and beyond, the hitherto obtained results are still far from
satisfactory. Worse yet, it is well known that this model is incapable of capturing manifold
features manifested by non-Newtonian fluids, such as shear-thinning or -thickening,
pressure-dependent viscosity etc.
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In this paper we are interested in the situation where the Cauchy stress is of the
form

T = −pI + S(p,Dv) = −pI + ν(p, |Dv|2)Dv, (3.3)

in which the viscous stress tensor S is supposed to meet certain requirements; see
Assumptions 3.2.1 and 3.2.2. This particular model goes back to two papers by Málek et
al. [23, 24] and has been dealt with on multiple occasions ever since (see e.g. [5, 14, 17, 22]
and the discussion below Theorem 3.3.1).

It has been convincingly documented in experiments that viscosity of a fluid may
vary significantly with the pressure (exponentially or even more dramatically; see e.g.
[1, 3] or comprehensive references in [27]). Likewise, the already mentioned shear-
thinning or shear-thickening behavior can be captured through a non-constant viscosity
ν = ν(|Dv|2) like in the mathematically popular model of Ladyzhenskaya’s. By means
of the constitutive relation (3.3), we can capture both these dependences in a single
model. It comes at a price, sadly, for instance we are able to handle only shear-thinning,
not shear-thickening, behavior (see the main result, Theorem 3.3.1, and the upper bound
for the power exponent r).

The objective we set is to prove existence of weak solutions for the model. Therefore
we have to add initial and suitable boundary conditions, for which sake let us denote
Γ = (0, T )× ∂Ω. We consider an impermeable boundary, that is

v · n = 0 on Γ,

where n is the unit outer normal vector of Ω. We cannot, however, resort to the no-slip
boundary condition

v = 0 on Γ,

for in that case we would be unable to construct the pressure (see the discussion below
Theorem 3.3.1). Instead, we choose the Navier slip condition

αvτ = −(Sn)τ on Γ

for some α ≥ 0, which is the heart of the matter here due to the dependence of S on p.
For u : ∂Ω→ Rd, a vector field on the boundary, we define its tangential component as

uτ = u− (u · n)n.

Note that from an instinctive point of view, the Navier slip may be regarded as a bridge
between the no-slip condition (α→∞) and the perfect slip condition (α = 0).

On account of the pressure-dependent viscous stress, we have yet to add some kind
of pressure anchoring, which we take in the form

1

|Ω|

∫
Ω
p(t, x) dx = h(t) in (0, T ) (3.4)

for a given function h. Ideally one should like to prescribe the pressure locally (at
some point) but since our pressure will be merely an integrable function, dictating
its pointwise values is out of the question. A possible approximation could lie in the
integral average over a given subset Ω0 ⊂ Ω but in our case, corresponding attempts led
to insurmountable technical difficulties, hence (3.4) for simplicity.
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All in all, the model to be analyzed reads

∂tv + div(v ⊗ v)− divS(p,Dv) +∇p = f in Q,

div v = 0 in Q,

v · n = 0 on Γ,

αvτ = −(Sn)τ on Γ,

v(0) = v0 in Ω,

1

|Ω|

∫
Ω
p dx = h in (0, T ).


(3.5)

As far as the structure of this paper goes, next we are about to introduce our notation
and certain assumptions, in particular those on the viscous stress S, i.e. Assumptions
3.2.1 and 3.2.2. In the ensuing section, we present the result of this paper, Theorem 3.3.1
on existence of weak solutions to problem (3.5), and devote a few lines to the discussion
of its relevance to past works and to the sketch of the fundamental techniques employed
in the proof. In Section 3.4, we list various nontrivial results that are exploited in the
proof of Theorem 3.3.1, to which the entire Section 3.5 and Appendix are dedicated.

3.2 Preliminaries

For 0 < t < T we write Qt = (0, t)× Ω and Γt = (0, t)× ∂Ω. For r ∈ (1,∞) we denote
r′ = r/(r− 1). For a Lebesgue measurable set Ω we denote |Ω| its Lebesgue measure. If
X(Ω) is a Lebesgue or Sobolev space, we denote

X̊(Ω) :=
{
f ∈ X(Ω)

∣∣∣ ∫
Ω
f(x) dx = 0

}
.

For f ∈ L1(Ω) we denote

fΩ :=
1

|Ω|

∫
Ω
f(x) dx.

Usually, no explicit distinction between spaces of scalar- and vector-valued functions will
be made. Confusion should never come to pass as we employ small boldfaced letters to
denote vectors and bold capitals for tensors. The same applies also to traces of Sobolev
functions, which we denote like the original functions. Only when in need, we use Tr
for a trace. Accordingly, for r > 1 we set

W 1,r
n (Ω) :=

{
f ∈W 1,r(Ω)

∣∣ Trf · n = 0 on ∂Ω
}
,

W 1,r
n,div(Ω) :=

{
W 1,r

n (Ω)
∣∣ div f = 0 in Ω

}
,

W−1,r′
n (Ω) :=

(
W 1,r

n (Ω)
)∗
,

Xr
n := Lr(0, T ;W 1,r

n (Ω)) ∩ L2(0, T ;L2(∂Ω)),

Xr
n,div := Lr(0, T ;W 1,r

n,div(Ω)) ∩ L2(0, T ;L2(∂Ω)),

C∞c (Ω) :=
{
f ∈ C∞(Ω)

∣∣ f is compactly supported in Ω
}
.

If r > 0 and x ∈ Rd, let Br(x) = {|y − x| < r}. For f ∈ L1
loc(Rd+1) and (t, x) ∈ Rd+1,

we define the parabolic maximal operator

M∗(f)(t, x) := sup
0<%<∞

1

2%

∫ t+%

t−%
sup

0<r<∞

1

|Br(x)|

∫
Br(x)

|f(s, y)| dy ds.
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When applied to functions not defined on the whole Rd+1, we implicitly consider their
zero extension. For more details about maximal operators see [29] or, only for the
fundamental properties of M∗ needed here, Appendix A of [15].

The symbol · stands for the scalar product and ⊗ signifies the tensor product. For
open subsets A, B of Rd, we write A b B if A ⊂ A ⊂ B and A is compact. We denote
(·, ·) the inner product in L2(Ω), while (·, ·)S stands for the inner product in L2(S) for a
measurable set S other than Ω. Generic constants are denoted simply by C and, when
circumstances require it, we may also include quantities on which the constants depend,
e.g. C(‖v0‖2).

The external body forces f are for the sake of convenience supposed to be of the
form

f = −divF ,

Consider r ∈ (1, 2] a fixed number and d ≥ 2. Below we reproduce assumptions on
the viscous stress, i.e. the smooth nonlinearity S:

Assumption 3.2.1 Let there be positive constants C1 and C2 such that for all B,D ∈
Rd×dsym and p ∈ R

C1(1 + |D|2)(r−2)/2|B|2 ≤ ∂S(p,D)

∂D
· (B ⊗B) ≤ C2(1 + |D|2)(r−2)/2|B|2.

Assumption 3.2.2 Let for all D ∈ Rd×dsym and p ∈ R∣∣∣∣∂S(p,D)

∂p

∣∣∣∣ ≤ γ0(1 + |D|2)(r−2)/4, with 0 < γ0 <
C1

Creg(C1 + C2)
,

where Creg is attributed to the solution operator of Neumann’s problem on Ω; see (3.15)
and below.

Both these requirements date back to [23, 24]. The authors offer several examples
of viscosities meeting these criteria, among others

νi(p, |D|2) =
(
A+ µi(p) + |D|2

) r−2
2 , i = 1, 2, 3,

where A ∈ (0, 1] is a (typically small) number and µi(p) takes one of the following forms
(α, β > 0):

µ1(p) = (1 + α2p2)−
β
2 ,

µ2(p) = (1 + exp(αp))−β,

µ3(p) =

{
exp (−αp) if p > 0,

1 if p ≤ 0.

In [23], there can be found also examples of viscosities that do not fulfill the assumptions
above, yet they can be approximated (in a suitable manner) with such viscosities.

One should indeed generally suppose the constants C1, C2 in Assumption 3.2.1
depend on pressure. Bluntly speaking, the assumptions are chosen in such a way that
the employed techniques work and the existence theory can be developed. As for
treatment of the more realistic case where viscosity is an unbounded function of the
pressure (i.e. Ci = Ci(p), i = 1, 2), we refer to [11].
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3.3 Main result

Theorem 3.3.1 Let d ≥ 2, T > 0, α > 0, 2d/(d + 2) < r ≤ 2 and Ω ∈ C1,1 be a
bounded domain in Rd. Denote

q =
r(d+ 2)

2d
> 1 (3.6)

and consider F ∈ Lr
′
(Q), h ∈ Lq(0, T ) and v0 ∈ L2

n,div(Ω). Finally suppose that
Assumptions 3.2.1 and 3.2.2 hold. Then there exists a weak solution (v, p) to the
problem (3.5), that is

v ∈ Cw([0, T ];L2(Ω)) ∩Xr
n,div, ∂tv ∈ Lq(0, T ;W−1,q

n (Ω)),

p ∈ Lq(0, T ;Lq(Ω)) and

∫
Ω
p(t, x) dx = h(t) for a.e. t ∈ (0, T )

and the weak formulation is satisfied, i.e. for all ϕ ∈ W 1,q′
n (Ω) and a.e. t ∈ (0, T ) we

have

〈∂tv(t),ϕ〉 − ((v ⊗ v)(t),∇ϕ) + (S(t),Dϕ) + α(v(t),ϕ)∂Ω

− (p(t), divϕ) = (F (t),∇ϕ), (3.7)

with S(t) = S(p(t),Dv(t)). The initial condition is attained through

lim
t→0+

‖v(t)− v0‖L2(Ω) = 0.

With this result, we practically conclude the existence theory for the corresponding
class of models conceived by Málek et al. in [23, 24]. More precisely, with the condition
r > 2d/(d + 2) we have reached the same lower bound as in the case of pressure-
independent viscosity ν = ν(|Dv|2); see Diening et al. [15]. This bound is the best one
guaranteeing compactness of the convective term v ⊗ v in L1(Q) and in this regard it
may be considered optimal.

Although the range r ∈ (2d/(d+ 2), 2) has already been investigated in [5], it was
in the steady case and therefore the situation was considerably simpler, although the
bedrock of the proof was quite similar. As for the evolutionary system like that of ours,
the best result so far comes from [12], where existence for r ∈ ((2d+ 2)/(d+ 2), 2) was
proven. In [8], the problem has already been grappled with Ω = R3 and r ∈ (9/5, 2).
For local results (small data, short times), see [19, 20, 28]. In [13], the model of ours is
investigated, enriched additionally by the temperature dependence, in which case only
r ∈ (3d/(d+ 2), 2) can be handled, imposing a restriction d = 2, 3.

Apart from optimization from below, we have also finally incorporated the value
r = 2 among amenable values of the exponent r, which has only recently been achieved
for the steady-state problem in [14]. The work [12] also covers the value r = 2, yet
under a slightly different analogue of Assumption 3.2.2. Similarly in [10], where the
case d = 2 with the periodic boundary conditions is treated. Inclusion of the critical
value r = 2 in our paper not only makes the theory cover the Navier-Stokes model but,
more importantly, allows us to consider balance equations (3.5)1 of the form

∂tv + div(v ⊗ v)−∆v − divS(p,Dv) +∇p = f ,
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with S fulfilling Assumptions 3.2.1 and 3.2.2 with r < 2 if need be.
As for the issue of strong solutions, the authors in [7] investigated planar, steady

case of our model with periodic boundary conditions and proved existence of strong
solutions. The unsteady case in three dimensions is, however, far from clear, as the
question of regularity is unanswered even for the popular Ladyzhenskaya model for
low values of the power index (i.e. close to 2d/(d + 2)), and yet that system can be
considered a pressure-independent simplification of our model. For a nicely organized
survey of regularity results concerning these generalized Navier-Stokes’ models, see [26].

It is important to notice that we actively avoid the homogeneous Dirichlet boundary
condition, corresponding informally to α =∞. The reason is that we need a measurable
pressure for the sake of the pressure-dependent viscous stress, which in the case of zero
boundary condition remains an insurmountable task. The snag lies in incompatibility of
the Helmholtz decomposition with the Dirichlet boundary condition or, in other words,
the fact that in the Neumann problem for Poisson’s equation, the trace of the gradient
cannot be required to be zero; only its normal component can (see (3.13)). This obstacle
will be experienced in the flesh in (3.36) and below.

Even though α = ∞ is out of the question, in Theorem 3.3.1 we could take
α = 0 without scruples. This situation would correspond to the perfect-slip condition,
accounting for the fluid slipping along the boundary. From the analytical point of view,
the proof would be simplified slightly as we would be completely unflapped by the
trace of the velocity field. Navier’s condition (3.5)4 can be further generalized; see [9]
where the so called threshold slip was investigated. This condition is a very natural
approximation of the no-slip condition as it models a fluid adhering to the boundary
until a certain threshold stress is experienced, after which the fluid abides by Navier’s
condition.

Although, as stated, the result of Theorem 3.3.1 is optimal in terms of the range of
r, there are still opportunities for improvement. Firstly, the condition from Assump-
tion 3.2.2,

γ0 <
C1

Creg(C1 + C2)
,

now depends on the set Ω through the constant Creg. It is highly probable, however,
that like in the steady case (see [14]), one may relax the condition to the point

γ0 <
C1

C1 + C2
. (3.8)

It would require replacing the solving operator of the Neumann problem N (see (3.13))
with something more refined, i.e. an operator with all the properties we want from N ,
enjoying additionally Creg = 1. In [14], we were able to do so by means of the Newtonian
potential. In the time-dependent case, however, this choice is no longer viable due to
the loss of certain necessary compactness with respect to the time derivative.

Secondly, in (3.5)6 it would seem more appropriate to prescribe pΩ0(t) over some
(possibly small) measurable Ω0 ⊂ Ω, thus to approximately fix the pressure at some
point. Unluckily, not only does such a generalization lead to severe technical difficulties
in the proof but, perhaps even more importantly, Assumption 3.2.2 was then altered to

γ0 <

√
|Ω0|
|Ω|

C1

Creg(C1 + C2)
,
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see [13]. This condition is sufficiently deterring in itself as |Ω0| → 0 implies γ0 → 0.
Bear in mind that this is again not the case for the steady problem, where (3.8) would
suffice.

As far as the proof of Theorem 3.3.1 is concerned, we employ a two-level approxima-
tion scheme (see (3.128)). The inner level (limit parameter k) consists in truncation of
the convective and boundary terms so that up to that point we have a sufficiently regular
pressure and the velocity field is a legal test function. Getting rid of this approximation
level lies virtually at the heart of this paper and the entire Section 3.5 is devoted to it.
It is based on a pressure decomposition (see p. 68) into a lowly integrable but compact
part and a highly integrable part that is at first sight only weakly convergent. Besides
this decomposition, we resort to the Lipschitz truncation of functions lying in Bochner
spaces (see Lemmas 3.4.5 and 3.4.6) to deal with the issue of insufficient regularity of
the velocity field to make it an admissible test function in (3.7).

The primary objective of the outer level is to introduce the pressure. Unlike the
traditional Navier-Stokes model, we cannot invoke De Rham’s theorem in our situation,
for the viscous stress tensor itself is pressure-dependent – the resultant pressure would
be a distribution in time. Also, there would then appear two possibly distinct pressures
(one in S(p,Dv) and the other generated by De Rham’s theorem) and we might have
to resort to some fixed-point argument to equate them. Here we construct the pressure
by means of an auxiliary elliptic problem, the so called quasicompressible approximation
(see [17]), replacing the condition on solenoidality (3.5)2 by

εp = N (div v),

(see (3.13) for the definition of N ), intuitively making the velocity field only almost
divergence-free. Since this level of approximation is comparatively simpler to lift than
the truncation, we leave it for Appendix.

Moving on to the following section, we survey several nontrivial results exploited in
the proof of Theorem 3.3.1.

3.4 Auxiliary tools

To begin with, we list a couple of crucial properties exhibited by the nonlinear viscous
stress tensor S.

Lemma 3.4.1 ([17], Lemmas 3.3, 3.4) Let Assumptions 3.2.1 and 3.2.2 hold. For
arbitrary D1,D2 ∈ Rd×dsym and p1, p2 ∈ R we set

I1,2 :=

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D1 −D2|2 ds,

with D(s) = D2 + s(D1 −D2). Then

1

2
C1I

1,2 ≤ (S(p1,D1)− S(p2,D2)) · (D1 −D2) +
γ2

0

2C1
|p1 − p2|2. (3.9)

Furthermore

|(S(p1,D1)− S(p2,D2))| ≤ γ0|p1 − p2|+ C2

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D1 −D2| ds.

(3.10)
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Finally, for all p ∈ R, r ∈ (1, 2] and D ∈ Rd×dsym

S(p,D) ·D ≥ C1

2r
(|D|r − 1) (3.11)

and

|S(p,D)| ≤ C2

r − 1
(1 + |D|)r−1. (3.12)

The corresponding statement in [17] does not include (3.10). However, it is only an
easy observation stemming from

S(p1,D1)− S(p2,D2) =

∫ 1

0

d

ds
S(p2 + s(p1 − p2),D2 + s(D1 −D2)) ds

and Assumptions 3.2.1 and 3.2.2.
We also recall the Helmholtz decomposition and the Lq-regularity theory of the

Neumann problem for Poisson’s equation: If q ∈ (1,∞) and Ω ∈ C1,1, let

N : L̊q(Ω)→ W̊ 2,q(Ω)

ascribe to z ∈ L̊q(Ω) the unique solution v of

∆v = z in Ω, ∇v · n = 0 at ∂Ω, vΩ = 0. (3.13)

The Helmholtz decomposition of the space W 1,q
n (Ω)d lets us resolve any u ∈W 1,q

n (Ω)d

as a sum

u = udiv +∇gu, (3.14)

where gu = N (divu) and udiv = u−∇gu. The Lq-continuity of u 7→ udiv [18, Remark
III.1.1] and the Lq-regularity for N with Ω ∈ C1,1 [21, Proposition 2.5.2.3] imply

‖N (z)‖W 2,q(Ω) ≤ Creg,q ‖z‖Lq(Ω) , ‖udiv‖W 1,q(Ω) ≤ (Creg,q + 1) ‖u‖W 1,q(Ω) ,

‖gu‖W 1,q(Ω) ≤ C(Ω, q) ‖u‖Lq(Ω) , ‖udiv‖Lq(Ω) ≤ C(Ω, q) ‖u‖Lq(Ω) ,
(3.15)

for any z ∈ L̊q(Ω) and u ∈ W 1,q
n (Ω)d. Later on we will need especially Creg = Creg,2

which is why we utilize different notation for these constants.

Lemma 3.4.2 (Korn’s inequality, [16], Theorem 10.15) Let Ω ∈ C0,1 and r ∈ (1,∞).
Then there exists a positive constant C = C(Ω, r) such that for all u ∈W 1,r(Ω) it holds
that

‖u‖W 1,r(Ω) ≤ C
(
‖Du‖Lr(Ω) + ‖u‖L1(Ω)

)
. (3.16)

Lemma 3.4.3 (Compactness of traces) Let r and q retain their meaning from Theorem
3.3.1 and suppose that {vi}∞i=1 is bounded in

Lr(0, T ;W 1,r
n (Ω)) ∩W 1,q(0, T ;W−1,q

n ).

Then {Trvi}∞i=1 is precompact in Lr(0, T ;Lr(∂Ω)).
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Proof. The Aubin-Lions lemma implies precompactness of {vi}∞i=1 in Lr(0, T ;Lr(Ω)).
Interpolation (see e.g. [25, Lemma 2.18]) then yields precompactness of {vi}∞i=1 in
Lr(0, T ;W 1−ε,r(Ω)) for an arbitrarily small ε > 0. There is also a continuous trace
operator from W p1,p2(Ω) into W p1−1/p2,p2(∂Ω) for any p1 ∈ R+ and p2 ≥ 1 such that
p1p2 > 1 (see [30] and the remark in [4, Lemma B.3]). Taking ε > 0 so small that

(1 − ε)r > 1, we have Lr(0, T ;W 1−ε− 1
r
,r(∂Ω)) ↪→ Lr(0, T ;Lr(∂Ω)) and thus also the

claim.

Lemma 3.4.4 (Biting lemma, [2]) Let S ⊂ Rd have a finite Lebesgue measure and
{fk} be a bounded sequence in L1(S). Then there exist a function f ∈ L1(S), a
subsequence {f j} of {fk} and a nonincreasing sequence of measurable sets Dm ⊂ S with
limm→∞ |Dm| = 0, such that f j → f weakly in L1(S \Dm) for every fixed m.

Lemma 3.4.5 (Parabolic Lipschitz approximation I, [15], Lemma 3.11, Theorem 3.21)
Let Ω ⊂ Rd be an open bounded set, u ∈ L∞(0, T ;L2(Ω)d) ∩ Lq(0, T ;W 1,q(Ω)d) (1 <
q <∞) and H ∈ Lσ(0, T ;Lσ(Ω)d×d) (1 < σ <∞) be such that

−
∫
Q
u · ∂tϕ dx dt =

∫
Q
H · ∇ϕ dx dt (3.17)

for all ϕ ∈ C∞c (Q). For Λ > 0 we define

OΛ = {M∗(|∇uk|) +M∗(|H|) > Λ}.

Let E ⊂ Rd+1 be an open set such that Q ∩ OΛ ⊂ E ⊂ Q.
Then there exists LEu ∈ L∞loc(0, T ;W 1,∞

loc (Ω)d) such that LEu = u in Q \ E and1

‖LEu‖Lp(Q) ≤ C‖u‖Lp(Q) for any 1 ≤ p ≤ ∞. (3.18)

Let K ⊂ Q be a compact set. There is a constant CK > 0 depending on K such that

‖∇LEu‖L∞(K) ≤ C
(
Λ + CK‖u‖L1(E)

)
. (3.19)

Furthermore, the function (∂tLEu) · (LEu− u) belongs to L1(K ∩ E) and we have

‖(∂tLEu) · (LEu− u)‖L1(K∩E) ≤ C|E|
(
Λ + CK‖u‖L1(E)

)2
. (3.20)

Finally, for all g ∈ C∞c (Q) holds the identity∫ T

0

〈
∂tu(t), (LEu(t))g(t)

〉
dt

=
1

2

∫
Q

(
|LEu|2 − 2u · LEu

)
∂tg dx dt+

∫
E

(∂tLEu) · (LEu− u)g dx dt. (3.21)

The original version of the stated lemma contains also a certain scaling parameter2

α > 0. For our purposes we need the case α = 1 only and we have adapted the statement
of the lemma accordingly.

1The generic constants C below depend only on the dimension d.
2This scaling parameter α is completely unrelated to that in the boundary condition (3.5)4.
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Lemma 3.4.6 (Parabolic Lipschitz approximation II, [6], Lemma 2.5) Let Ω ⊂ Rd be
an open bounded set, T > 0 and r ∈ (1,∞). For any functions H, H and arbitrary
sequences {uk} and {Hk} we set

ak = |Hk|+ |H|+ |H| and bk = |Duk|

and suppose that for certain C∗ > 1 and all k we have

‖ak‖Lr(Q) + ‖bk‖Lr′ (Q) + sup
t∈(0,T )

‖uk(t)‖L2(Ω) ≤ C∗,

uk → 0 a.e. in Q.

In addition, let {Gk} consist of symmetric Gk such that

Gk → 0 strongly in L1(Q)d×d (3.22)

and let us have the distributional identity

∂tu
k + div(Hk −H +Gk) = 0.

Then there is β > 0 such that for arbitrary Q̂ b Q, λ∗ ∈ (r
1

(r−1) ,∞) and n ∈ N there
exist sequences {λk,n}k ⊂ R, {Bk,n}k of open sets Bk,n ⊂ Q and {uk,n}k bounded in
L∞loc(0, T ;W 1,∞

loc (Ω)d) such that

{λk,n}k ⊂ [λ∗, r
1−rn
r−1 (λ∗)r

n
], (3.23)

lim sup
k→∞

|Q̂ ∩Bk,n| ≤ C(Q̂)

(λ∗)r
, (3.24)

uk,n → 0 strongly in Ls(Q̂)d as k →∞ for any 1 ≤ s <∞, (3.25)

uk,n = uk in Q̂ \Bk,n, (3.26)

‖Duk,n‖
L∞(Q̂)

≤ C(Q̂)λk,n. (3.27)

Moreover, for all τ ∈ C∞c (Q̂; [0, 1]) the following estimates hold:

lim sup
k→∞

∫
Q̂∩Bk,n

(|Hk|+ |H|+ |H|)|Duk,n| dx dt ≤ C(Q̂)(r(λ∗)1−r + n−β), (3.28)

− lim inf
k→∞

∫ T

0
〈∂tuk,uk,nτ〉 dt ≤ C(Q̂)(r(λ∗)1−r + n−1)β. (3.29)

Strictly speaking, the above lemma as we state it is not a precise reproduction of
[6]. To avoid unnecessary generality of Orlicz spaces, our theorem pertains to a special
choice of the N -function ψ(x) = xr/r, to which we adapted all parameters of the original
theorem. Dependences of constants on fixed parameters, e.g. Ω or r, were also omitted.
In (3.29), the estimate should also hang on ‖τ‖L∞(Ω) but since we restrict ourselves to
‖τ‖L∞(Ω) ≤ 1, we may assume that the bound is really independent of the truncating

function τ and that each C(Q̂) in (3.24)–(3.29) are the same.
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3.5 Proof of the existence theorem

Without loss of generality we will assume h ≡ 0, that is to say∫
Ω
p(t, x) dx = 0

for almost every time. We can think so since in the general case we would first investigate
the equation for p = p − h. Due to h ∈ Lq(0, T ), if p ∈ Lq(Q) then of course also
p ∈ Lq(Q).

There is a couple of strategies how to deal with the convective term, be it the addition
of a penalty term, its mollification, or truncation (see e.g. [6, 13, 15], respectively). Here,
we choose the truncation and for this purpose, let Φ ∈ C1([0,∞)) be a non-increasing
function such that Φ(x) = 1 if x ≤ 1, Φ(x) = 0 if x ≥ 2 and Φ(x) ∈ (0, 1) otherwise,
with |Φ′(x)| ≤ 2. For k > 0 then define

Φk(x) = Φ(k−1x).

With fixed k > 0, the original system (3.5) will be approximated by

∂tv + div(v ⊗ vΦk(|v|))− divS +∇p = −divF in Q,

div v = 0 in Q,

v · n = 0 on Γ,

αvτΦk(|vτ |) = −(Sn)τ on Γ,

v(0) = v0 in Ω,

pΩ = 0 in (0, T ).


(3.30)

The boundary conditions imply vτ = v on Γ and therefore we will not distinguish
between these two entities (see the weak formulation (3.31)).

Existence of weak solutions for thus truncated system can be shown by standard
means (see e.g. [12, 13]) and we postpone it for Appendix. To be more precise, we
suppose momentarily that the following lemma holds:

Lemma 3.5.1 Under the assumptions of Theorem 3.3.1, for every k > 0 there exists a
weak solution to the truncated problem (3.30), i.e. a couple (vk, pk) such that

vk ∈ Lr(0, T ;W 1,r
n,div(Ω)), ∂tv

k ∈ Lr′(0, T ;W−1,r′
n (Ω)), pk ∈ Lr′(0, T ; L̊r

′
(Ω)),

satisfying3 lim
t→0+

‖vk(t)− v0‖L2(Ω) = 0 and

〈∂tvk(t),ϕ〉 − (vk ⊗ vkΦk(|vk|)(t),∇ϕ) + (Sk(t),Dϕ)

+ α(vkΦk(|vk|),ϕ)∂Ω − (pk(t),divϕ) = (F (t),∇ϕ) (3.31)

with Sk(t) = S(pk(t),Dvk(t)), for every ϕ ∈W 1,r
n (Ω) and a.e. t ∈ (0, T ).

3.5.1 Truncation removal (k →∞)

The reinstatement of the full-fledged convective term is the key limit process. Our first
steps will be devoted to finding bounds independent of k > 0 in suitable function spaces.

3Note that vk ∈ C([0, T ];L2(Ω)).
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Uniform estimates Taking ϕ = vk(t) in (3.31) and exploiting integration by parts
and solenoidality of vk, we note that

(vk ⊗ vkΦk(|vk|),∇vk)Q =
(
vk,∇

∫ |vk|
0

sΦk(s) ds
)
Q

= 0,

owing to which (ensuing relations hold for a.e. t ∈ (0, T ))

1

2

d

dt
‖vk(t)‖2L2(Ω) + (Sk(t),Dvk(t)) + α‖Φ1/2

k (|vk|)vk(t)‖2L2(∂Ω) = (F (t),∇vk(t)).

Due to coercivity of the stress tensor (3.11), the fact that Φk ≤ Φ
1/2
k and Hölder’s

inequality,

1

2

d

dt
‖vk(t)‖2L2(Ω) +

C1

2r
‖Dvk(t)‖rLr(Ω) + α‖Φk(|vk|)vk(t)‖2L2(∂Ω)

≤ ‖F (t)‖Lr′ (Ω)‖∇v
k(t)‖Lr(Ω) +

C1|Ω|
2r

. (3.32)

By means of Hölder’s, Young’s and Korn’s inequality (3.16), we then obtain

sup
t∈(0,T )

‖vk(t)‖2L2(Ω) + ‖vk‖rLr(0,T ;W 1,r(Ω)) + ‖Φk(|vk|)vk‖2L2(Γ)

≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (3.33)

Using boundedness of the stress tensor (3.12), we get in addition

‖Sk‖r′
Lr′ (Q)

≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (3.34)

Combined with L∞(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,r(Ω)) ↪→ L2q(Q) with q > 1 (defined in
(3.6)), we have also

‖vn‖L2q(Q) ≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (3.35)

As for a bound on the pressure pk, due to the convective term we have to relax our
requirements from the current integrability pk ∈ Lr′(Q) – we will estimate it in Lq(Q).
Let us consider the equation (3.31) with the test function

ϕk = ∇N
(
|pk|q−2pk − (|pk|q−2pk)Ω

)
, (3.36)

which due to (3.15) satisfies

‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)) ≤ C‖|p
k|q−1‖Lq′ (Q) = C‖pk‖q−1

Lq(Q),

divϕk = |pk|q−2pk − (|pk|q−2pk)Ω a.e. in Q.

Here we want to point out that had we chosen Dirichlet’s boundary conditions
instead of Navier’s, we would now have run into serious trouble. The culprit is Trϕk –
in the Dirichlet setting we would be unable to justify it is actually zero, making the
choice of (3.36) illegal for the weak formulation corresponding to Dirichlet’s problem.
indeed, we could choose ϕk differently so that Trϕk = 0 (e.g. by means of the Bogovskĭı
operator) but then we would face new problems stemming from the time derivative ∂tv

k

(see I5 below and how it vanishes with our choice of ϕk).

66



Chapter 3 Unsteady flows with pressure- and shear-dependent viscosities

From (3.31) it holds that

‖pk‖qLq(Q) = (pk, divϕk)Q =
5∑
i=1

Ii,

where due to Hölder’s inequality and estimates (3.33), (3.34) and (3.35) (note q′ ≥ 2),

I1 = −(F ,∇ϕk)Q ≤ ‖F ‖Lr′ (Q)‖∇ϕ
k‖Lr(Q) ≤ C‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)),

I2 = (Sk,Dϕk)Q ≤ ‖Sk‖Lr′ (Q)‖∇ϕ
k‖Lr(Q) ≤ C‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)),

I3 = α(vkΦk(|vk|),ϕk)Γ ≤ α‖Φk(|vk|)vk‖2L2(Γ)‖ϕ
k‖L2(Γ) ≤ C‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)),

I4 = −(vk ⊗ vkΦk(|vk|),∇ϕk)Q ≤ ‖vk‖2L2q(Q)‖ϕ
k‖Lq′ (0,T ;W 1,q′ (Ω))

≤ C‖ϕk‖Lq′ (0,T ;W 1,q′ (Ω)),

I5 =

∫ T

0
〈∂tvk,ϕk〉 dt = −

(
∂t div vk,N

(
|pk|q−2pk − (|pk|q−2pk)Ω

))
Q

= 0.

Thus we have the desired estimate

‖pk‖Lq(Q) ≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (3.37)

Next, estimates (3.33), (3.34), (3.35) and (3.37) divulge that functionals Ψk defined on
L∞(0, T ;W 1,∞

n ) as

Ψk(ϕ) = (vk ⊗ vkΦk(|vk|),∇ϕ)Q − (Sk,Dϕ)Q − α(vkΦk(|vk|),ϕ)Γ + (pk,divϕ)Q

+ (F ,∇ϕ)Q,

satisfy ∣∣Ψk(ϕ)
∣∣ ≤ C(‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
‖ϕ‖

Lq′ (0,T ;W 1,q′
n (Ω))

uniformly in k. In other words, from eq. (3.31) it follows that

‖∂tvk‖Lq(0,T ;W−1,q
n (Ω))

≤ C
(
‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (3.38)

Limit k →∞ By the uniform bounds (3.33)–(3.38) and the compactness lemma 3.4.3,
we may select a subsequence (vk, pk) satisfying4

vk → v weakly in Lr(0, T ;W 1,r
n,div(Ω)), (3.39)

vk → v weakly∗ in L∞(0, T ;L2(Ω)), (3.40)

∂tv
k → ∂tv weakly in Lq(0, T ;W−1,q

n (Ω)), (3.41)

vk → v strongly in Ls(Q) for all s ∈ [1, 2q), (3.42)

vk → v strongly in Lr(Γ), (3.43)

Φk(|vk|)vk → v weakly in L2(Γ), (3.44)

Φk(|vk|)vk → v strongly in Ls(Γ) for all s ∈ [1, 2), (3.45)

vk → v a.e. in Q, (3.46)

pk → p weakly in Lq(0, T ; L̊q(Ω)), (3.47)

Sk → S weakly in Lr
′
(Q). (3.48)

4We employ bars for unidentified weak limits.
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We also have v ∈ Cw([0, T ];L2(Ω)) by (3.40) and (3.41). These convergences, when
applied to equation (3.31), produce∫ T

0
〈∂tv,ϕ〉 dt− (v ⊗ v,∇ϕ)Q + (S,Dϕ)Q + α(v,ϕ)Γ − (p,divϕ)Q = (F ,∇ϕ)Q

(3.49)

for every ϕ ∈ Lq′(0, T ;W 1,q′
n (Ω)).

The next step, basically the core of this paper, consists in showing S = S (i.e.
S(p,Dv)) and this will be achieved through Vitali’s theorem, since S(·, ·) is continuous.
To this end we have to show the pointwise convergence of Dvk and pk a.e. in Q.

Decomposition of pk We will overcome the problem of low5 pressure integrability
by decomposing the pressure into two parts – one keeping the low q-integrability, yet
converging pointwise, and the other r′-integrable, for which we then prove the pointwise
convergence.

According to (3.31), for any ϕ ∈ W 2,q′(Ω) such that ∇ϕ · n = 0 at ∂Ω and a.e.
t ∈ (0, T ), we have

(pk(t),∆ϕ) = −(vk ⊗ vkΦk(|vk|)(t),∇2ϕ) + (Sk(t),∇2ϕ)

+ α(vkΦk(|vk|)(t),∇ϕ)∂Ω − (F (t),∇2ϕ).
(3.50)

We will decompose the pressure as pk = pk1 + pk2, where pk2 ∈ Lr
′
(0, T ; L̊r

′
(Ω)) is the

unique solution to

(pk2(t),∆ϕ) = (Sk(t),∇2ϕ)− (F (t),∇2ϕ),

(pk2(t))Ω = 0
(3.51)

for any ϕ ∈W 2,r(Ω) such that ∇ϕ · n = 0 on ∂Ω and a.e. t ∈ (0, T ). For details about
solvability of this equation, formally corresponding to

∆pk2(t) = div div
(
Sk(t)− F (t)

)
,

see [4, (3.51)], where a procedure based on an approximation of what is here Sk(t)−F (t)
by compactly supported smooth functions is explained in more depth. Let us show {pk2}
is bounded in Lr

′
(Q). To this end take

ϕ(t) = N
(
|pk2(t)|r′−2pk2(t)− (|pk2(t)|r′−2pk2(t))Ω

)
and recall that for N we have Lq-regularity (3.15), implying

‖ϕ(t)‖W 2,r(Ω) ≤ C(Ω, r)‖|pk2(t)|r′−1‖Lr(Ω) = C(Ω, r)‖pk2(t)‖r′−1
Lr′ (Ω)

. (3.52)

Next we insert such ϕ into (3.51), obtaining

‖pk2‖r
′

Lr′ (Q)
= (pk2,∆ϕ)Q = (Sk − F ,∇2ϕ)Q

≤
(
‖Sk‖Lr′ (Q) + ‖F ‖Lr′ (Q)

)
‖ϕ‖Lr(0,T ;W 2,r(Ω))

≤ C‖pk2‖r
′−1
Lr′ (Q)

5Relative to the ε-limit, cf. Subsection 3.6.1.
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by means of Hölder’s inequality and the estimates (3.34) and (3.52). Therefore we may
assume there exists p2 ∈ Lr

′
(0, T ; L̊r

′
(Ω)) such that

pk2 → p2 weakly in Lr
′
(Q). (3.53)

By (3.50) and (3.54), the other partial pressure pk1 = pk − pk2 must satisfy

(pk1(t),∆ϕ) = −(vk ⊗ vkΦk(|vk|)(t),∇2ϕ) + α(vkΦk(|vk|)(t),∇ϕ)∂Ω, (3.54)

for any ϕ ∈W 2,q′(Ω) such that ∇ϕ ·n = 0 at ∂Ω and (pk1(t))Ω = 0 for a.e. t ∈ (0, T ). It
follows from (3.47) and (3.53) that {pk1} is bounded in Lq(0, T ; L̊q(Ω)). We will show
it also converges strongly in L1(0, T ;L1(Ω)). Let k, l ∈ N and 1 < s < q be arbitrary.
Take

ϕ(t) = N
(
|pk1 − pl1|s−2(pk1 − pl1)(t)− (|pk1 − pl1|s−2(pk1 − pl1)(t))Ω

)
and like in (3.52), observe that due to Lq-regularity (3.15),

‖ϕ(t)‖W 2,s′ (Ω) ≤ C(Ω, s)‖|pk1 − pl1|s−1(t)‖Ls′ (Ω) = C(Ω, s)‖(pk1 − pl1)(t)‖s−1
Ls(Ω). (3.55)

Plugging ϕ into (3.54) yields

‖pk1 − pl1‖sLs(Q) = (pk1 − pl1,∆ϕ)Q = I1 + I2,

where, using (3.55),

I1 = (vl ⊗ vlΦl(|vl|)(t)− vk ⊗ vkΦk(|vk|)(t),∇2ϕ)Q,

≤ ‖vl ⊗ vlΦl(|vl|)− vk ⊗ vkΦk(|vk|)‖Ls(Q)‖ϕ‖Ls′ (0,T ;W 2,s′ (Ω))

≤ C(Ω, s)‖vl ⊗ vlΦl(|vl|)− vk ⊗ vkΦk(|vk|)‖Ls(Q)‖pk1 − pl1‖s−1
Ls(Q)

and

I2 = α(vkΦk(|vk|)(t)− vlΦl(|vl|)(t),∇ϕ)Γ

≤ α‖vkΦk(|vk|)− vlΦl(|vl|)‖Ls(Γ)‖ϕ‖Ls′ (Γ)

≤ C(Ω, s)‖vkΦk(|vk|)− vlΦl(|vl|)‖Ls(Γ)‖ϕ‖Ls′ (0,T ;W 2,s′ (Ω))

≤ C(Ω, s)‖vkΦk(|vk|)− vlΦl(|vl|)‖Ls(Γ)‖pk1 − pl1‖s−1
Ls(Q).

The above computations imply that {pk1} is a Cauchy sequence in Ls(Q) since by the
estimate (3.35) and the strong convergence (3.42), we observe

lim
k,l→∞

‖vl ⊗ vlΦl(|vl|)− vk ⊗ vkΦk(|vk|)‖Ls(Q)

≤ 2 lim
k→∞

‖vk ⊗ vkΦk(|vk|)− v ⊗ v‖Ls(Q)

≤ 2 lim
k→∞

‖vk ⊗ vkΦk(|vk|)− vk ⊗ vk‖Ls(Q)

≤ 4 lim
k→∞

‖vk‖2L2s(Q∩{|vk|>k})

≤ C lim
k→∞

∣∣Q ∩ {|vk| > k}
∣∣ q−sqs

= 0
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and similarly, using and the strong convergence (3.45)

lim
k,l→∞

‖vkΦk(|vk|)− vlΦl(|vl|)‖Ls(Γ) = 0.

Hence there exists p1 ∈ Lq(0, T ; L̊q(Ω)) such that

pk1 → p1 weakly in Lq(Q),

pk1 → p1 strongly in L1(Q).
(3.56)

The first convergence was trivial by the already shown weak convergences (3.47) and
(3.53). In particular, we may assume

pk1 → p1 a.e. in Q.

From (3.56) we also infer by the dominated convergence theorem and (3.12) that

S(pk1 + p2,Dv)→ S strongly in Lr
′
(Q). (3.57)

Showing the pointwise convergence of pk2 is all that remains. We will treat the cases
r < 2 and r = 2 separately. The procedure necessitated by the former case may be
accommodated to deal also with the latter (and vice versa, actually). Nonetheless,
it would require to prove an improved version of Lemma 3.4.6, which we do not find
necessary. Even though it may not be the most elegant way of tackling the issue, we
have taken the path of least resistance and resolved to cover the case r = 2 rather by the
spiritual ancestor of the aforementioned Lemma 3.4.6, i.e. by Lemma 3.4.5. This result
could be in turn utilized to handle also the case r < 2 but it would be considerably
messier than with Lemma 3.4.6.

3.5.2 Convergence for r < 2

Let N ∈ N be fixed. Take QN b Q̂N b Q such that

|Q \QN | ≤
1

N
. (3.58)

Now we invoke the parabolic Lipschitz truncation lemma 3.4.6, set up as follows:

H = p2I − S,
Hk = pk2I − Sk,
H = |S|+ |S|,
uk = vk − v,
Gk = vk ⊗ vkΦk(|vk|)− v ⊗ v + (pk1 − p1)I.

Next we take numbers λ∗ = λ∗(N) and n = n(N) large enough so that the constant
C(Q̂N ) from (3.28) and (3.29) satisfies

C(Q̂N )(r(λ∗)1−r + n−β) ≤ 1

N
, (3.59)

C(Q̂N )(r(λ∗)1−r + n−1)β ≤ 1

N
, (3.60)
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where the number β > 0 is produced by the said Lemma 3.4.6. Note that (3.59) also
implies

C(Q̂N )

(λ∗)r
≤ 1

N
. (3.61)

To finish the setup of Lemma 3.4.6, we take

Q̂ = Q̂N .

As a result, there exist sequences {λk,n}k ⊂ R, {Bk,n}k of open sets Bk,n ⊂ Q and
{uk,n}k bounded in L∞loc(0, T ;W 1,∞

loc (Ω)d) such that (3.23)–(3.29) hold.

Furthermore, we take τN ∈ C∞c (Q̂N ; [0, 1]) such that

τN ≡ 1 in QN (3.62)

and

C(Q̂N )λk,n
∣∣{0 < τN < 1}

∣∣1/r ≤ 1

N
for every k, (3.63)

which is possible by (3.23).
Finally, we define bad sets Ek,n and good sets Gk,n as

Ek,n = Bk,n ∪ {τN < 1}, (3.64)

Gk,n = Q \ Ek,n. (3.65)

Informally speaking, the bad set consists of points near the boundary or those where
the Lipschitz approximation does not match the original function; see (3.26). From the
estimate (3.24), bounds (3.58) and (3.61) and the property (3.62), it follows that

lim sup
k→∞

|Ek,n| ≤ 2

N
. (3.66)

Convergence of pk2 Denote πk = pk2 − p2. We are going to show

lim
k→∞

‖πk‖L2(Q) = 0. (3.67)

Towards this goal, we set

ϕk = N (πk) (3.68)

and observe that by (3.15) and (3.53), ϕk satisfies

‖ϕk‖L2(0,T ;W 2,2(Ω)) ≤ Creg‖πk‖L2(Q), (3.69)

ϕk → 0 weakly in Lr
′
(0, T ;W 2,r′(Ω)). (3.70)

Let O(k−1) signify a quantity satisfying lim supk→∞O(k−1) ≤ 0. For quantities Ak, Bk

we write Ak
k∼ Bk if Ak ≤ Bk +O(k−1). With this notation6 we develop

‖πk‖2L2(Q) = (πk,∆ϕk)Q
k∼ (pk2,∆ϕ

k)Q
k∼ (Sk,∇2ϕk)Q

6We exploit it analogously also for other limit quantities, so for instance O(N−1) or, later on, O(ε).
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by (3.51) and the weak convergence (3.70). Since

(S(pk1 + p2,Dv),∇2ϕk)Q
k∼ 0

by (3.57) and (3.70) (note r′ ≥ 2), we may write

‖πk‖2L2(Q)
k∼ (Sk,∇2ϕk)Q

k∼ (Sk − S(pk1 + p2,Dv),∇2ϕk)Q

≤ γ0

∫
Q
|πk||∇2ϕk| dx dt+ C2

∫
Q

∫ 1

0
(1 + |D(s)|2)(r−2)/2|Duk||∇2ϕk| ds dx dt, (3.71)

by (3.10) with D(s) = Dv + s(Dvk −Dv). Denote

Ik =

∫ 1

0
(1 + |D(s)|2)(r−2)/2|Duk|2ds. (3.72)

As (1 + |D(s)|2)(r−2)/2 ≤ (1 + |D(s)|2)(r−2)/4, Hölder’s inequality and bound (3.69)
applied to (3.71) yield

‖πk‖2L2(Q)
k∼ γ0Creg‖πk‖2L2(Q) + C2Creg

(∫
Gk,n

Ik dx dt
)1/2
‖πk‖L2(Q) +O(N−1),

where we got rid of the bad set Ek,n (see its definition (3.64)) by means of the bound on
its measure (3.66), boundedness stemming from (3.39) and (3.53) and r < 2 as follows:

C2

∫
Ek,n

∫ 1

0
(1 + |D(s)|2)(r−2)/2|Duk||∇2ϕk| ds dx dt

≤ C‖Duk‖Lr(Q)‖πk‖L2(Q)|Ek,n|
2−r
2r

k∼ O(N−1). (3.73)

Consequently

‖πk‖2L2(Q)
k∼
(

C2Creg
1− γ0Creg

)2 ∫
Gk,n

Ik dx dt+O(N−1). (3.74)

The integral on the right can be estimated by means of (3.9):∫
Gk,n

Ik dx dt ≤ γ2
0

C2
1

‖πk‖2L2(Q) +
2

C1

(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

k∼ γ2
0

C2
1

‖πk‖2L2(Q) +O(N−1), (3.75)

provided

I1 = (Sk,Duk)Gk,n
k∼ O(N−1), (3.76)

I2 = −(S(pk1 + p2,Dv),Duk)Gk,n
k∼ O(N−1). (3.77)

The limit inequalities (3.74) and (3.75) would then yield

‖πk‖2L2(Q)
k∼
(

γ0C2Creg
C1(1− γ0Creg)

)2

‖πk‖2L2(Q) +O(N−1),
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implying the desired convergence (3.67), as long as

γ0C2Creg
C1(1− γ0Creg)

< 1,

which does hold, however, due to Assumption 3.2.2, namely

γ0 <
C1

Creg(C1 + C2)
.

We must therefore justify (3.76) and (3.77). Recall that in Gk,n we have uk = uk,n; see
the definition (3.65). Also note that by (3.23), (3.25) and (3.27), for any fixed N (hence
also for n = n(N) and λ∗ = λ∗(N)), we may assume

∇uk,n → 0 weakly in Lr(Q̂N ) as k →∞. (3.78)

We rewrite I1 as

I1 = (Sk,D(τNuk,n))Gk,n = (Sk,D(τNuk,n))Q − (Sk,D(τNuk,n)){τN>0}\Gk,n .

(3.79)

Since ∇τN = 0 a.e. in Gk,n and

{τN > 0} \Gk,n =
(
{τN > 0} ∩Bk,n

)
∪
(
{0 < τN < 1} \Bk,n

)
,

we recast (3.79) as

I1 = (Sk,D(τNuk,n))Q − (Sk,uk,n ⊗∇τN ){τN>0}\Gk,n

− (Sk, τNDuk,n){τN>0}∩Bk,n − (Sk, τNDuk,n){0<τN<1}\Bk,n .

According to the strong convergence (3.25), it holds that

lim
k→∞

(Sk,uk,n ⊗∇τN ){τN>0}\Gk,n = 0. (3.80)

Additionally, by the Lipschitz bound (3.27), the weak convergence of Sk from (3.48)
and then by (3.63),∣∣(Sk, τnDuk,n){0<τn<1}\Bk,n

∣∣ ≤ C(Q̂N )λk,n
∣∣{0 < τN < 1}

∣∣1/r‖Sk‖Lr′ (Q) ≤
C

N
. (3.81)

As a result of (3.80) and (3.81),

I1
k∼ (Sk,D(τNuk,n))Q − (Sk, τNDuk,n){τN>0}∩Bk,n +O(N−1)

k∼ (Sk − S,D(τNuk,n))Q − (Sk − S, τNDuk,n){τN>0}∩Bk,n +O(N−1)

by (3.25) and (3.78) in the first term and (3.28) and (3.59) in the second one. Now
we recall the weak formulations (3.31) and (3.49) and notice that τNuk,n is a legal
test function in either of them (which mere uk fails to meet). Substituting the term
(Sk − S,D(τNuk,n))Q accordingly, we obtain

I1
k∼ J1 + J2 + J3 +O(N−1),
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where

J1 = −
∫ T

0
〈∂tuk, τNuk,n〉 dt

k∼ C(Q̂N )(r(λ∗)1−r + n−1)β ≤ 1

N

by (3.29) and (3.60). Next,

J2 = (Gk, div(τNuk,n))Q
k∼ 0

by (3.22), (3.23) and (3.27). Finally,

J3 = (πk,div(τNuk,n))Q − (Sk − S, τNDuk,n){τN>0}∩Bk,n

k∼ (πk, τN divuk,n){τN>0}∩Bk,n − (Sk − S, τNDuk,n){τN>0}∩Bk,n

= (Hk −H, τNDuk,n){τN>0}∩Bk,n ≤
1

N
.

by dint of (3.25), (3.28) and (3.59) since evidently

{τN > 0} ∩Bk,n ⊂ Q̂N .

Thus (3.76) has been shown.
As far as I2 in (3.77) is concerned, we recall that uk = uk,n in Gk,n and notice

Gk,n = {τN ≡ 1} \
(
{τN ≡ 1} ∩Bk,n

)
.

Since {τN ≡ 1} ⊂ Q̂N , we recall the strong convergence (3.57) and the weak conver-
gence (3.78) to deduce

I2
k∼ −(S,Duk,n)Gk,n = (S,Duk,n){τN≡1}∩Bk,n − (S,Duk,n){τN≡1}

k∼ (S,Duk,n){τN≡1}∩Bk,n
k∼ C(Q̂N )(r(λ∗)1−r + n−β) ≤ 1

N
,

by (3.28) and (3.59), thus showing (3.77) and ultimately proving also (3.67) for r < 2.

Convergence of Duk Recalling the definition (3.72), we can infer by Hölder’s in-
equality that

∥∥Duk∥∥r
Lr(S)

≤
∫
S

(∫ 1

0
(1+|D(s)|2)(r−2)/2|Duk|2(1+|Dvk|2+|Dv|2)(2−r)/2 ds

)r/2
dx dt

≤
(∫

S
Ik
)r/2(∫

Q
(1 + |Dvk|2 + |Dv|2)r/2

)(2−r)/2
,

for any measurable S ⊂ Q, implying with help of the uniform estimate (3.33) in the end

C‖Duk‖2Lr(S) ≤
∫
S
Ik for any measurable S ⊂ Q. (3.82)

Applying Biting lemma 3.4.4 to

fk(t, x) = |Duk(t, x)|r, (t, x) ∈ Q,
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there is a nonincreasing sequence of measurable sets Dm ⊂ Q with limm→∞ |Dm| = 0,
such that (without loss of generality) fk converge weakly in L1(Q \Dm) for every m.
Our aim is to prove

‖Duk‖Lr(Q\Dm)
k∼ 0 (3.83)

for any m ∈ N. Since limm→∞ |Dm| = 0, the pointwise convergence (for a subsequence)
follows.

Let D ∈ {Dm}. Since fk converge weakly in L1(Q \D), they are uniformly equi-
integrable in Q \D. Let us take an arbitrary σ > 0 and N > σ−1, such that

S ⊂ Q \D, |S| < 2

N
⇒ ‖fk‖L1(S) < σ for every k. (3.84)

We use this N as the starting parameter for the Lipschitz approximation scheme started
at the beginning of Subsection 3.5.2. We may assume |Ek,n| < 2N−1 for all k by (3.66),
which combined with (3.82) and (3.84) yields

C‖Duk‖2Lr(Q\D) ≤
∫
Gk,n\D

Ik + C‖Duk‖2Lr(Ek,n\D) ≤
∫
Gk,n

Ik +O(σ), (3.85)

given that Ik ≥ 0. Relations (3.75) and (3.67) then imply∫
Gk,n

Ik dx dt
k∼ γ2

0

C2
1

‖πk‖2L2(Q) +O(N−1)
k∼ O(N−1) = O(σ).

If we plug this observation back into (3.85), we obtain the desired (3.83). Together with
the compactness of the partial pressures (3.56) and (3.67), we may assume both pk and
Dvk converge pointwise a.e. in Q, which yields ultimately S = S(p,Dv) for r < 2 by
Vitali’s theorem.

3.5.3 Convergence for r = 2

The above procedure, followed step by step, is rendered useless when r = 2 for we cannot
get rid of the polluting term in (3.73). On the other hand, the strong convergence in
L2(Q) is not essential for the pointwise convergence of a subsequence. Now we show
only the strong convergence in L1(Q), arriving at the same conclusion. Although we
could have skipped the case r < 2 entirely, given that the method applied to r = 2,
resting on Lemma 3.4.5, may be presented in such a way that it conquers also the former
case, we treat this situation apart for two reasons: Firstly, it is much more convenient to
use Lemma 3.4.6 when applicable (see [15] for usage of Lemma 3.4.5 for a wider range
of exponents). Secondly, dealing with the case r = 2 individually lets us balance out its
slightly increased technicality with simplification of certain terms; consider e.g. Ik in
(3.72).

Several definitions We set

gk =M∗
(
|∇uk|

)
+M∗

(
|Sk − S|

)
+M∗

(
|πk|

)
. (3.86)

By the properties of M∗ and boundedness of the individual arguments in L2(Q) (see
(3.39), (3.48) and (3.53)), the sequence {gk} is also bounded in L2(Q). Therefore7

n∑
i=0

∫{
22n+i<gk≤22n+i+1

}(gk)2 dx dt ≤ C for any n ∈ N,

7Notice that 22n+i+1

=
(
22n+i)2

, which is the reason for our choice of such numbers.
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independently of k and n, which guarantees there are

22n ≤ λk,n ≤ 222n (3.87)

such that ∫{
λk,n<gk≤(λk,n)2

}(gk)2 dx dt ≤ C

n
for any k, n ∈ N. (3.88)

Let us define level sets related to gk:

Ak,n1 =
{
gk ≤ λk,n

}
,

Ak,n2 =
{
λk,n < gk ≤

(
λk,n

)2}
,

Ak,n3 =
{(
λk,n

)2
< gk

}
.

(3.89)

By (3.88), we can bound the measure of Ak,n2 as

∣∣Ak,n2

∣∣ =

∫{
λk,n<gk≤(λk,n)2

} 1 dx dt ≤
∫{

λk,n<gk≤(λk,n)2
} (

gk
)2(

λk,n
)2 dx dt ≤ C

n
(
λk,n

)2 .
(3.90)

Chebyshev’s inequality also implies

(λk,n)4
∣∣Ak,n3

∣∣ ≤ C. (3.91)

Furthermore, we define

F k = {M∗(|vk ⊗ vkΦk(|vk|)− v ⊗ v + (pk1 − p1)I|) > 1}.

By means of the strong-type estimate for M∗ and (3.35), (3.42) and (3.56), we obtain

lim
k→∞

∣∣F k∣∣ ≤ C lim
k→∞

∥∥vk ⊗ vkΦk(|vk|)− v ⊗ v + (pk1 − p1)I
∥∥σ
Lσ(Q)

= 0 for some σ > 1.

(3.92)

For fixed n ∈ N we also find τn ∈ C∞c (Q; [0, 1]) such that∣∣{τn < 1}
∣∣ ≤ 1

222n+1n
. (3.93)

Finally we include all the adverse sets into one so that we define

Ek,n =
(
Ak,n2 ∪Ak,n3 ∪ F k ∪ {τn < 1}

)
∩Q, (3.94)

Gk,n = Q \ Ek,n. (3.95)

It follows easily from the definition of Ek,n, (3.87), (3.92) and (3.93) that(
λk,n

)2∣∣Ek,n ∩Ak,n1

∣∣ k∼ O(n−1). (3.96)

We would like to engage Lemma 3.4.5 with Ek,n playing the role of E. Setting

Hk = vk ⊗ vkΦk(|vk|)− v ⊗ v − Sk + S + (pk − p)I,
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Eq. (3.17) evidently holds with uk and Hk. The sets Ek,n are open due to the lower
semicontinuity of M∗. Finally, subadditivity of M∗ yields{

gk > λk,n
}
∪ F k ⊃

{
M∗

(
|∇uk|

)
> λk,n

}
∪
{
M∗

(
|Sk − S − πkI|

)
> λk,n

}
∪ F k

⊃
{
M∗

(
|∇uk|) > λk,n

}
∪
{
M∗

(
|Hk|

)
> λk,n + 1

}
⊃
{
M∗

(
|∇uk|

)
+M∗

(
|Hk|

)
> 3λk,n

}
,

implying the required property{
M∗

(
|∇uk|

)
+M∗

(
|Hk|

)
> 3λk,n

}
∩Q ⊂ Ek,n.

Therefore we may invoke Lemma 3.4.5 with Λ = 3λk,n. Let us denote

uk,n = LEk,nuk.

Note that due to the Lp-estimate (3.18) and the strong convergence (3.42) it holds that

uk,n → 0 strongly in L2(Q) as k →∞ for any n ∈ N. (3.97)

Accessory calculation In this part we show a result that will be useful in a while,
namely (

Sk − S(pk1 + p2,Dv),Duk
)
Gk,n

k∼ O(n−1). (3.98)

The individual steps to be taken will be(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

k∼
(
Sk − S,Duk

)
Gk,n

+O(n−1) (3.99)

k∼
(
Sk − S,D(τnuk,n)

)
Q

+O(n−1) (3.100)

k∼ O(n−1). (3.101)

As for the first relation (3.99), in view of the strong convergence (3.57), it boils down
to showing (

S − S,Duk
)
Gk,n

k∼ O(n−1). (3.102)

By Lemma 3.4.5 we have uk = uk,n in Gk,n, which set we rewrite by (3.94) as

Gk,n = {τn = 1} \
(
(F k ∩Ak,n1 ∩ {τn = 1}) ∪ ((Ak,n2 ∪Ak,n3 ) ∩ {τn = 1})

)
. (3.103)

The Lipschitz bound (3.19) combined with the strong convergence (3.97) allows us to
assume that for any n ∈ N,

∇uk,n → 0 weakly in L2
(
{τn = 1}

)
as k →∞. (3.104)

By (3.19) again and the shrinkage of F k expressed in (3.92), it follows that∣∣(S − S,Duk,n)
Fk∩Ak,n1 ∩{τn=1}

∣∣ ≤ C|F k|1/2(λk,n + C{τn=1}‖uk‖L1(Q)

) k∼ 0. (3.105)
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Lastly, we easily deduce by (3.19), bounds on |Ak,n2 ∪ Ak,n3 | given in (3.90) and (3.91)
that ∣∣(S − S,Duk,n)

(Ak,n2 ∪Ak,n3 )∩{τn=1}
∣∣ ≤ ‖S − S‖

L2(Ak,n2 ∪Ak,n3 )
‖∇uk,n‖L∞({τn=1})

× |Ak,n2 ∪Ak,n3 |
1/2

k∼ O(n−1). (3.106)

Combining (3.103)–(3.106), we obtain (3.102) and hence also the first step of (3.99).
Towards showing the second step (3.100), we start noticing that(

Sk − S,Duk,n
)
Ek,n∩{τn=1}

k∼ O(n−1). (3.107)

Indeed, treating the level sets (3.89) individually, we estimate(
Sk − S,Duk,n

)
Ek,n∩Ak,n1 ∩{τn=1} =

(
Sk − S,Duk,n

)
Fk∩Ak,n1 ∩{τn=1}

k∼ 0

as in (3.105) due to boundedness of Sk in L2(Q) (see (3.48)). Then(
Sk − S,Duk,n

)
Ak,n2 ∩{τn=1} ≤ Cn

−1/2(λk,n)−1
(
λk,n + C{τn=1}‖uk‖L1(Q)

) k∼ O(n−1)

by the bounds (3.19) and (3.90). Very similarly, using the bounds (3.19) and (3.91),(
Sk − S,Duk,n

)
Ak,n3 ∩{τn=1} ≤ C(λk,n)−2

(
λk,n + C{τn=1}‖uk‖L1(Q)

) k∼ O(n−1).

Hence (3.107) holds and therefore also(
Sk − S,Duk

)
Gk,n

=
(
Sk − S,Duk,n

)
Gk,n

k∼
(
Sk − S,Duk,n

)
{τn=1} +O(n−1).

(3.108)

Next, we would like to add another negligible term, namely the Lipschitz bound (3.19)
and properties (3.87) and (3.93) imply(
Sk − S, τnDuk,n

)
{0<τn<1}

k∼ C
∣∣{τn < 1}

∣∣1/2(λk,n + Cspt τn‖uk‖L1(Q)

) k∼ O(n−1).

As a result, we may improve (3.108) into(
Sk − S,Duk

)
Gk,n

k∼
(
Sk − S, τnDuk,n

)
Q

+O(n−1)

k∼
(
Sk − S,D(τnuk,n)

)
Q

+O(n−1),

recalling also the strong convergence of the Lipschitz approximations (3.97). The last
inequality justifies the second step (3.100) and we may jubilate, for τnuk,n is a legal
test function in both the weak formulations (3.31) and (3.49). We exploit this fact to
rewrite (

Sk − S,D(τnuk,n)
)
Q

=
(
pk − p,div(τnuk,n)

)
Q

+
(
vk ⊗ vkΦk(|vk|)− v ⊗ v,∇(τnuk,n)

)
Q

−
∫ T

0
〈∂tuk, τnuk,n〉 dt = I1 + I2 + I3. (3.109)
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We will demonstrate Ii
k∼ O(n−1) for each i = 1, 2, 3. Beginning with I1, the strong

convergence (3.56) and the bound (3.19) yield

I1
k∼
(
pk2 − p2, div(τnuk,n)

)
Q

=
(
πk,uk,n · ∇τn

)
Q

+
(
πk, τn divuk,n

)
Q

k∼
(
πk, τn divuk,n

)
Q

=
(
πk, τn divuk,n

)
Ek,n

.
(3.110)

We could ignore the term (πk,uk,n · ∇τn)Q due to the strong convergence (3.97) and
boundedness coming from (3.53). Classical properties of Sobolev functions also guarantee
divuk,n = divuk = 0 a.e. in Gk,n, which we exploited in the last equality. The rest
follows the track of (3.107). More precisely,(

πk, τn divuk,n
)
Ek,n∩Ak,n1

≤ C
∣∣Ek,n ∩Ak,n1

∣∣1/2(λk,n + Cspt τn‖uk‖L1(Q)

) k∼ O(n−1)

by the observation (3.96). Then(
πk, τn divuk,n

)
Ek,n∩Ak,n2

≤ Cn−1/2(λk,n)−1
(
λk,n + Cspt τn‖uk‖L1(Q)

) k∼ O(n−1)

by estimates stemming from (3.19), (3.53) and (3.90). And similarly, only switching

to (3.91) in order to bound |Ak,n3 |,(
πk, τn divuk,n

)
Ek,n∩Ak,n3

≤ C(λk,n)−2
(
λk,n + Cspt τn‖uk‖L1(Q)

) k∼ O(n−1).

Thus we have shown that (3.110) can be concluded as

I1
k∼ O(n−1). (3.111)

The term I2 is quite effortless to tackle. Due to the strong convergences (3.42) and
(3.97), we have

I2 =
(
vk ⊗ vkΦk(|vk|)− v ⊗ v,∇(τnuk,n)

)
Q

k∼
(
vk ⊗ vkΦk(|vk|)− v ⊗ v, τn∇uk,n

)
Q

≤ C‖vk ⊗ vkΦk(|vk|)− v ⊗ v‖L1(Q)

(
λk,n + Cspt τn‖uk‖L1(Q)

) k∼ 0. (3.112)

To process the last term I3, corresponding to the time derivative, we recall the integration
by parts formula (3.21), according to which we can rewrite I3 as

I3 =
1

2

∫
Q

(
2u · uk,n − |uk,n|2

)
∂tτ

n dx dt+

∫
Ek,n

(∂tu
k,n) · (u− uk,n)τn dx dt

k∼
∫
Ek,n

(∂tu
k,n) · (u− uk,n)τn dx dt ≤ C

∣∣Ek,n∣∣(λk,n + Cspt τn‖uk‖L1(Q)

)2
, (3.113)

first by the strong convergence (3.97) and then by the estimate (3.20). However, the
sets Ek,n by their very definition (3.94) satisfy trivially∣∣Ek,n∣∣ ≤ ∣∣Ak,n2

∣∣+
∣∣Ak,n3

∣∣+
∣∣F k∣∣+

∣∣{τn < 1}
∣∣.

Estimates for the individual summands are contained in (3.90)–(3.93) and we plug them
into (3.113) to infer

I3
k∼ C

∣∣Ek,n∣∣(λk,n + Cspt τn‖uk‖L1(Q)

)2 k∼ O(n−1).

We insert this last result into (3.109) together with (3.111) and (3.112), procuring the
third and final relation (3.101). The longed-for (3.98) has been hereby justified.
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Pressure test function For K > 0 we consider the usual truncation operator
TK : R→ R

TK(x) =

{
x for |x| ≤ K,
K sgnx for |x| > K.

In contrast to the case r < 2 (cf. (3.68)), now we take

ϕk,n = N
(
Tλk,nπ

k − (Tλk,nπ
k)Ω

)
.

For all p <∞ we may assume due to the convergence (3.53) and the boundedness of
λk,n (3.87) that

Tλk,nπ
k → T

n
weakly in Lp(Q) as k →∞, (3.114)

T
n → T weakly in L2(Q) as n→∞. (3.115)

By the weak convergences (3.53) and (3.114) evidently

Tλk,nπ
k − πk → T

n
weakly in L2(Q) as k →∞.

Due to (3.53) and the bound (3.87), we may estimate∫
Q
|Tλk,nπk − πk| ≤ 2

∫
{|πk|>λk,n}

|πk| ≤ 2

∫
{|πk|>λk,n}

|πk|2

λk,n
= O(n−1),

specifying the weak convergence (3.115) more closely as

T
n → 0 weakly in L2(Q) as n→∞.

By the same token (up to a subsequence)

Tλk,nπ
k − (Tλk,nπ

k)Ω → T
n
0 weakly in Lp(Q) as k →∞,

T
n
0 → 0 weakly in L2(Q) as n→∞. (3.116)

Back to ϕk,n, the property (3.15) entails for any 1 < p <∞ that

‖ϕk,n‖Lp(0,T ;W 2,p(Ω)) ≤ Creg,p‖Tλk,nπk − (Tλk,nπ
k)Ω‖Lp(Q) (3.117)

≤ Creg,p λk,n. (3.118)

As a result, and also owing to (3.116), we may assume that for all p <∞

ϕk,n → ϕn weakly in Lp(0, T ;W 2,p(Ω)) as k →∞, (3.119)

ϕn → 0 weakly in L2(0, T ;W 2,2(Ω)) as n→∞. (3.120)

Convergence of pk2 Let n ∈ N. We are going to show

(πk, Tλk,nπ
k)Q

k∼ O(n−1), (3.121)

implying πk → 0 strongly in L1(Q), hence πk → 0 a.e. in Q for a subsequence. We write

(πk, Tλk,nπ
k)Q = (πk, Tλk,nπ

k − (Tλk,nπ
k)Ω)Q = (πk,∆ϕk,n)Q

k∼ (Sk − S,∇2ϕk,n)Q
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by the weak formulation for pk2 (3.51), strong convergence (3.43) and weak convergences
(3.53) and (3.119). We carry on by means of the strong convergence (3.57):

(πk, Tλk,nπ
k)Q

k∼ (Sk − S,∇2ϕk,n)Q
k∼ (Sk − S(pk1 + p2,Dv),∇2ϕk,n)Q − (S − S,∇2ϕn)Q

≤ γ0

∫
Q
|πk||∇2ϕk,n| dx dt+ C2

∫
Q
|Duk||∇2ϕk,n| dx dt+O(n−1),

(3.122)

by (3.10) and (3.120). We will concentrate on the second integral, decomposing Q into
four subdomains (see (3.89), (3.94) and (3.95) for definitions):

Q = (Ek,n ∩Ak,n1 ) ∪ (Ek,n ∩Ak,n2 ) ∪ (Ek,n ∩Ak,n3 ) ∪Gk,n.

Accordingly ∫
Q
|Duk||∇2ϕk,n| dx dt = I1 + I2 + I3 + I4,

where

I1 =

∫
Ek,n∩Ak,n1

|Duk||∇2ϕk,n| dx dt ≤ ‖Duk‖
L∞(Ak,n1 )

‖∇2ϕk,n‖L2(Q)|Ek,n ∩A
k,n
1 |

1/2

≤ Cλk,n|Ek,n ∩Ak,n1 |
1/2 k∼ O(n−1),

by the observation (3.96), |Duk| ≤ λk,n a.e. in Ak,n1 and the estimate of ϕk,n (3.117).
Next

I2 =

∫
Ek,n∩Ak,n2

|Duk||∇2ϕk,n| dx dt ≤ ‖Duk‖
L2(Ak,n2 )

‖∇2ϕk,n‖L2(Q) ≤ C‖gk‖L2(Ak,n2 )

= O(n−1),

by the key property of Ak,n2 (3.88) and the estimate (3.117), and

I3 =

∫
Ek,n∩Ak,n3

|Duk||∇2ϕk,n| dx dt ≤ ‖Duk‖L2(Q)‖∇2ϕk,n‖Lp(Q)|A
k,n
3 |

p−2
2p

≤ C(λk,n)
4−p
p

k∼ O(n−1)

for any p > 4 by the bound on |Ak,n3 | (3.91) and (3.118) for a fixed p > 4. Finally,

I4 =

∫
Gk,n
|Duk||∇2ϕk,n| dx dt

≤
( γ2

0

C2
1

‖πk‖2
L2(Ak,n1 )

+
2

C1

(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

)1/2
‖∇2ϕk,n‖L2(Q)

k∼ γ0

C1
‖πk‖

L2(Ak,n1 )
‖∇2ϕk,n‖L2(Q) +O(n−1),
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by (3.9), Gk,n ⊂ Ak,n1 , the accessory calculation (3.98) and the estimate (3.117). We
see that only the last term I4 adds a palpable contribution to (3.122), which hence
simplifies into

(πk, Tλk,nπ
k)Q

k∼ γ0

(
1 +

C2

C1

)
‖πk‖

L2(Ak,n1 )
‖∇2ϕk,n‖L2(Q) +O(n−1)

≤ γ0Creg

(
C1 + C2

C1

)
‖πk‖

L2(Ak,n1 )
‖Tλk,nπk − (Tλk,nπ

k)Ω‖L2(Q)+O(n−1)

≤ γ0Creg

(
C1 + C2

C1

)
‖πk‖

L2(Ak,n1 )
‖Tλk,nπk‖L2(Q) +O(n−1), (3.123)

by (3.117) and an elementary manipulation

‖Tλk,nπk − (Tλk,nπ
k)Ω‖2L2(Q) = ‖Tλk,nπk‖2L2(Q) − |Ω|(Tλk,nπ

k)2
Ω ≤ ‖Tλk,nπk‖2L2(Q).

What remains is to relate (πk, Tλk,nπ
k)Q to the right-hand side in a better way: Recalling

the definition of gk (3.86), we have trivially

|Tλk,nπk| ≤ |πk| ≤ gk a.e. in Q.

Therefore, and by the estimates (3.88) and (3.91), we observe

‖Tλk,nπk‖2L2(Q) ≤ ‖π
k‖2
L2(Ak,n1 )

+ ‖gk‖2
L2(Ak,n2 )

+ ‖λk,n‖2
L2(Ak,n3 )

≤ ‖πk‖2
L2(Ak,n1 )

+O(n−1).

Then we add an obvious inequality

‖πk‖2
L2(Ak,n1 )

≤ (πk, Tλk,nπ
k)Q

and (3.123) combined with 0 < γ0 <
C1

Creg(C1 + C2)
from Assumption 3.2.2 becomes

the desired (3.121) and we may hence assume (bearing in mind the already proved result
for pk1 (3.56))

pk → p a.e. in Q. (3.124)

Convergence of Duk This time the Biting lemma will be engaged on

fk(t, x) = |πk(t, x)|2 + |Duk(t, x)|2, (t, x) ∈ Q,

with our sight set on

‖Duk‖Lr(Q\Dm)
k∼ 0

for any m ∈ N, where Dm are the sets provided by the Biting lemma, like in (3.83).
Assuming without loss of generality that fk are themselves weakly convergent in
L1(Q \Dm), in particular they are equi-integrable in Q \Dm, for any m ∈ N, Vitali’s
theorem and the pointwise convergence (3.124) imply

πk → 0 strongly in L2(Q \Dm) for every m ∈ N. (3.125)

Let m0 ∈ N be fixed. Equi-integrability of fk and the definition of Ek,n (3.94) imply

‖Duk‖2L2(Q\Dm0 )
k∼ ‖Duk‖2L2(Gk,n\Dm0 ) +O(n−1) ≤ ‖Duk‖2L2(Gk,n\Dm) +O(n−1)
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for any m ≥ m0. Take m(n) ≥ m0 fulfilling∣∣Dm(n)
∣∣ ≤ 1

222n+1n
. (3.126)

Applying the estimate (3.9) and convergence (3.125), we obtain

C‖Duk‖2
L2(Gk,n\Dm(n))

k∼ (Sk − S(pk1 + p2,Dv),Duk)Gk,n\Dm(n)

k∼ −(Sk − S(pk1 + p2,Dv),Duk,n)Gk,n∩Dm(n) +O(n−1),

where we recalled the accessory calculation (3.98), i.e.(
Sk − S(pk1 + p2,Dv),Duk

)
Gk,n

k∼ O(n−1),

for the second relation. The rest is assured by the Lipschitz bound (3.19) and (3.126):

(Sk − S(pk1 + p2,Dv),Duk,n)Gk,n∩Dm(n) ≤ C|Dm(n)|1/2
(
λk,n + C{τn=1}‖uk‖L1(Q)

)
k∼ O(n−1),

yielding

‖Duk‖2L2(Q\Dm0 )
k∼ O(n−1),

hence also the pointwise convergence (for a subsequence) of Duk. Together with the
compactness of the pressure (3.124) we obtain also S = S(p,Dv) for r = 2.

3.5.4 Initial condition

Proceeding exactly like in the Galerkin approximation (see Appendix), we could justify

(v0 − v(0),w) = 0 for all w ∈W 1,q′
n (Ω),

i.e. v(0) = v0. Next we will show

vk(t)→ v(t) weakly in L2(Ω) for all t ∈ (0, T ). (3.127)

Let t ∈ (0, T ), then {vk(t)}k is bounded in L2(Ω) and we may assume that for a
subsequence

vkm(t)→ v weakly in L2(Ω).

Recall (3.31) and take ϕ = wχ(0,t) for an arbitrary w ∈W 1,q′
n (Ω). Then

(vkm(t),w)− (v0,w) = (vkm ⊗ vkmΦkm(|vkm |),∇w)Qt − (Skm ,Dw)Qt

− α(vkmΦkm(|vkm |),w)Γt + (pkm ,divw)Qt + (F ,∇w)Qt ,

which tends for m→∞ to

(v,w)− (v0,w) = (v ⊗ v,∇w)Qt− (S,Dw)Qt− α(v,w)Γt+ (p,divw)Qt+ (F ,∇w)Qt

= (v(t),w)− (v0,w),

by the already proved weak formulation (3.7). Therefore v = v(t) and we may extend
the result beyond a mere subsequence, in other words (3.127) holds.
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Regarding the strong convergence to the initial value in L2(Ω), in the weak formula-
tion (3.31) we can take ϕ = vkχ(0,t) for any t ∈ (0, T ), obtaining

‖vk(t)‖2L2(Ω) − ‖v0‖2L2(Ω) = (F ,∇vk)Qt − (Sk,Dvk)Qt − α(vkΦk(|vk|),vk)Γt

≤ (F ,∇vk)Qt + Ct,

by means of the property (3.11) and non-negativity of the boundary term.
Adding (3.127) and the lower semicontinuity of the norm then yields

lim
t→0+

‖v(t)− v0‖2L2(Ω) = lim
t→0+

‖v(t)‖2L2(Ω) − ‖v0‖2L2(Ω)

≤ lim
t→0+

lim inf
k→∞

‖vk(t)‖2L2(Ω) − ‖v0‖2L2(Ω)

≤ lim
t→0+

(
(F ,∇v)Qt + Ct

)
= 0.

With this last fragment we have established the claim of Theorem 3.3.1.

3.6 Appendix

In this ancillary part we prove Lemma 3.5.1. Towards that aim, with fixed ε, k > 0, the
original problem (3.5) will be further approximated by the following quasicompressible
system:

∂tv + div(v ⊗ vΦk(|v|))− divS +∇p = −divF in Q,

div v = ε∆p in Q,

∇p · n = 0 on Γ,

v · n = 0 on Γ,

αvτΦk(|vτ |) = −(Sn)τ on Γ,

v(0) = v0 in Ω,

pΩ = 0 in (0, T ).


(3.128)

Like in the case of the system with only the convective term truncated, we are
interested in existence of weak solutions. In the following lemma we both particularize
this concept and affirm the existential question.

Lemma 3.6.1 Under the assumptions of Theorem 3.3.1, for every ε, k > 0 there exists
a weak solution to the approximate problem (3.128), i.e. a couple (vε,k, pε,k) satisfying

vε,k ∈ Lr(0, T ;W 1,r
n (Ω)),

∂tv
ε,k ∈ Lr′(0, T ;W−1,r′

n (Ω)),

pε,k ∈ L2(0, T ; W̊ 1,2(Ω)) ∩ Lr′(Q)

and for all ϕ ∈W 1,r
n (Ω) and a.e. t ∈ (0, T ), it holds that

〈∂tvε,k(t),ϕ〉 − (vε,k ⊗ vε,kΦk(|vε,k|)(t),∇ϕ) + (S(pε,k(t),Dvε,k(t)),Dϕ)

+ α(vε,kΦk(|vε,k|)(t),ϕ)∂Ω − (pε,k(t), divϕ) = (F (t),∇ϕ), (3.129)
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as well as for every ψ ∈W 1,2(Ω) and a.e. t ∈ (0, T ) the identity

ε (∇pε,k(t),∇ψ) = −(div vε,k(t), ψ). (3.130)

The initial condition is being attained in the form lim
t→0+

‖vε,k(t)− v0‖L2(Ω) = 0.

Proof. Let {wi}i∈N ⊂W 1,2
n (Ω) be an orthogonal basis in W 1,2

n (Ω) and an orthonormal
basis in L2(Ω). We also standardly require of the basis that L2-projections

Pnu =
n∑
i=1

(u,wi)wi, u ∈ L2(Ω), n ∈ N,

be orthogonal in W 1,2
n (Ω). Note that Pnv0 converges to v0 in L2(Ω) for n→∞.

Galerkin approximation Dropping the ε, k-indices (both parameters stay fixed),
for n ∈ N we construct Faedo-Galerkin approximations

vn(t, x) =

n∑
i=1

cni (t)wi(x),

pn(t, x) = N
(

div vn

ε

)
(t, x) =

1

ε

n∑
i=1

cni (t)N (divwi)(x). (3.131)

Recall (3.13) for the definition of N . What is to be found are absolutely continuous
functions {cni }ni=1, extensible to the whole [0, T ] and satisfying

(∂tv
n(t),wi)− (vn ⊗ vnΦk(|vn|)(t),∇wi) + (Sn(t),Dwi) + α(vnΦk(|vn|)(t),wi)∂Ω

− (pn(t),divwi) = (F (t),∇wi) for all i = 1, . . . , n, (3.132)

where Sn(t) = S(pn(t),Dvn(t)). We also set vn(0) = Pnv0.
The functions {cni }ni=1 would be found standardly with help of the Carathéodory

theory, at least for a short time interval. The extensibility onto the whole of [0, T ] will
follow from the uniform estimates derived presently.

Uniform estimates Multiplying eq. (3.132) by cni (t) and summing the n equalities
yields

1

2

d

dt
‖vn(t)‖2L2(Ω) − (vn ⊗ vnΦk(|vn|)(t),∇vn(t)) + (Sn(t),Dvn(t))

+ α‖Φ1/2
k (|vn|)vn(t)‖2L2(∂Ω) − (pn(t), div vn(t)) = (F (t),∇vn(t)).

Due to eq. (3.131), boundedness of the truncated convective term and (3.11),

1

2

d

dt
‖vn(t)‖2L2(Ω) +

C1

2r
‖Dvn(t)‖rLr(Ω) + ε ‖∇pn(t)‖2L2(Ω)

≤
(
‖F (t)‖Lr′ (Ω) + C(k)

)
‖∇vn(t)‖Lr(Ω) +

C1|Ω|
2r

. (3.133)
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Hölder’s inequality now implies

sup
t∈(0,T )

‖vn(t)‖2L2(Ω) ≤ 2
(
‖F ‖Lr′ (Q) + C(k)

)
‖∇vn‖Lr(Q) + ‖v0‖2L2(Ω) +

TC1|Ω|
r

,

which we apply in (3.133), getting

sup
t∈(0,T )

‖vn(t)‖2L2(Ω) +
C1

r
‖Dvn‖rLr(Q) + 2ε ‖∇pn‖2L2(Q)

≤ 2
(
‖F ‖Lr′ (Q) + C(k)

)
‖∇vn‖Lr(Q) + ‖v0‖2L2(Ω) +

TC1|Ω|
r

.

Now we recall Korn’s inequality (3.16) and then utilize Young’s inequality to deduce

sup
t∈(0,T )

‖vn(t)‖2L2(Ω) + ‖vn‖rLr(0,T ;W 1,r(Ω)) + ε ‖∇pn‖2L2(Q) ≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
,

finally implying, using (3.12) for the stress tensor S and Poincaré’s inequality for the
pressure,

sup
t∈(0,T )

‖vn(t)‖2L2(Ω) + ‖vn‖rLr(0,T ;W 1,r(Ω)) + ‖Sn‖r
′

Lr′ (Q)
+ ε ‖pn‖2L2(0,T ;W 1,2(Ω))

≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (3.134)

The time derivative ∂tv
n will be momentarily estimated in L2(0, T ;W−1,2

n (Ω)). Noting
that W 1,2

n (Ω) is densely and continuously embedded in L2(Ω), for ϕ ∈W 1,2
n (Ω) we may

write

〈∂tvn(t),ϕ〉 = (∂tv
n(t), Pnϕ)

≤ 4k2
∥∥∇Pnϕ∥∥

L1(Ω)
+
∥∥Sn(t)

∥∥
Lr′ (Ω)

∥∥DPnϕ∥∥
Lr(Ω)

+ 2αk
∥∥Pnϕ∥∥

L2(∂Ω)

+
∥∥pn(t)

∥∥
L2(Ω)

∥∥∇Pnϕ∥∥
L2(Ω)

+
∥∥F (t)

∥∥
Lr′ (Ω)

∥∥∇Pnϕ∥∥
Lr(Ω)

≤ C ‖∇ϕ‖L2(Ω)

(
4k2 + ‖Sn(t)‖Lr′ (Ω)+ 2αk + ‖pn(t)‖L2(Ω)+ ‖F (t)‖Lr′ (Ω)

)
.

The first inequality follows from Eq. (3.132), while the latter step made use of orthogo-
nality of Pn on W 1,2

n (Ω), as well as Hölder’s inequality (r ≤ 2) and the trace theorem
for Sobolev functions. Combining the last inequality with (3.134) yields the desired∫ T

0
‖∂tvn(t)‖2

W−1,2
n (Ω)

dt ≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
. (3.135)

Limit n→∞ With bounds (3.134)–(3.135), we may invoke the traditional compact-
ness arguments like reflexivity, the Banach-Alaoglu theorem, the Aubin-Lions lemma
with W 1,r

n (Ω) ↪→↪→ L2(Ω) ↪→ W−1,2
n (Ω) and Lemma 3.4.3, to select a subsequence
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(labeled again (pn,vn)) such that for n→∞

vn → v weakly in Lr(0, T ;W 1,r
n (Ω)), (3.136)

vn → v weakly∗ in L∞(0, T ;L2(Ω)), (3.137)

∂tv
n → ∂tv weakly in L2(0, T ;W−1,2

n (Ω)), (3.138)

vn → v strongly in L2(Q), (3.139)

vn → v strongly in Lr(Γ), (3.140)

‖vn(t)‖2 → ‖v(t)‖2 a.e. in (0, T ), (3.141)

vn → v a.e. in Q, (3.142)

pn → p strongly in L2(0, T ; W̊ 1,2(Ω)), (3.143)

pn → p a.e. in Q, (3.144)

Sn → S weakly in Lr
′
(Q). (3.145)

We were able to deduce the strong convergence of pn from (3.15) and (3.139).
Considering the continuity of N and properties of {wi}i∈N, we apply the convergence

results (3.136)–(3.145) to the equations (3.131) (3.132) to acquire

εp = N (div v) (3.146)

and∫ T

0
〈∂tv,ϕ〉 dt = (v ⊗ vΦk(|v|),∇ϕ)Q − (S,Dϕ)Q − α(vΦk(|v|),ϕ)Γ + (p,divϕ)Q

+ (F ,∇ϕ)Q
(3.147)

for every ϕ ∈ L2(0, T ;W 1,2
n (Ω)).

Improved pressure integrability The bound (3.134) is insufficient to infer p ∈
Lr
′
(Q) but we are able to deduce it all the same, even uniformly in ε. The first thing

we notice is that
p ∈ L2(0, T ;Lr

′
(Ω))

since r′ < 2d/(d− 2). This observation carries over to Eq. (3.147), where it allows us to

infer ∂tv ∈ L2(0, T ;W−1,r′
n (Ω)) and we may take ϕ ∈ L2(0, T ;W 1,r

n (Ω)).
For L > 0 denote χL the indicator function of the set {‖p(t)‖Lr′ (Ω) < L}. We will

consider

ϕ = χL∇N
(
|p|r′−2p− (|p|r′−2p)Ω

)
.

Notice from (3.15) that

‖ϕ(t)‖W 1,r(Ω) ≤ C(Ω, r)χL(t)‖|p(t)|r′−1‖Lr(Ω) = C(Ω, r)‖χL(t)p(t)‖r′−1
Lr′ (Ω)

,

‖ϕ‖Lr(0,T ;W 1,r(Ω)) ≤ C(Ω, r)‖χLp‖r
′−1
Lr′ (Q)

, (3.148)

‖ϕ‖L∞(0,T ;W 1,r(Ω)) ≤ C(Ω, r)Lr
′−1,

divϕ =
(
|p|r′−2p− (|p|r′−2p)Ω

)
χL a.e. in Q.
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In particular, we can make use of ϕ in the equation (3.147), implying

‖pχL‖r
′

Lr′ (Q)
= (p, divϕ)Q =

5∑
i=1

Ii, (3.149)

where, by (3.147) and Hölder’s inequality,

I1 = −(F ,∇ϕ)Q ≤ ‖F ‖Lr′ (Q)‖∇ϕ‖Lr(Q) ≤ C ‖ϕ‖Lr(0,T ;W 1,r(Ω)) ,

I2 = (S,Dϕ)Q ≤ ‖S‖Lr′ (Q)‖∇ϕ‖Lr(Q) ≤ C ‖ϕ‖Lr(0,T ;W 1,r(Ω)) ,

I3 = −(v ⊗ vΦk(|v|),∇ϕ)Q ≤ C(k) ‖ϕ‖Lr(0,T ;W 1,r(Ω)) ,

I4 = α(vΦk(|v|),ϕ)Γ ≤ C(k)‖ϕ‖Lr(Γ) ≤ C(k) ‖ϕ‖Lr(0,T ;W 1,r(Ω)) ,

I5 =

∫ T

0
〈∂tv,ϕ〉 dt =

∫ T

0
〈∂t∇N (div v),ϕ〉 dt = ε

∫ T

0
〈∂t∇p,ϕ〉 dt, (3.150)

by the Helmholtz decomposition (3.14) and the relation (3.146). If p were smooth, then

I5 = −ε
∫ T

0
(∂tp, |p|r

′−2p)χL dt = − ε
r′
‖p(T )‖r

′

Lr′ (Ω)
χL(T ) ≤ 0.

In the general case we could use an approximation by smooth functions to conclude
I5 ≤ 0. All in all, from (3.148), (3.149) and the estimates on I1–I5 we have

‖pχL‖r
′

Lr′ (Q)
≤ C(k).

independently of L > 0, which entails Lr
′
-integrability of the pressure

‖p‖Lr′ (Q) ≤ C(k). (3.151)

Therefore the right-hand side of Eq. (3.147) is well-defined for any ϕ ∈ Lr(0, T ;W 1,r
n (Ω))

and we conclude ∂tv ∈ Lr
′
(0, T ;W−1,r′

n (Ω)).

Initial condition Attainment of the initial condition is almost trivial: Let ζ ∈
C1
c ([0, T )), such that ζ(0) = −1. Multiply Eq. (3.132) with ζ, integrate over (0, T ) and

perform the limit n→∞. Then

(v0,wi) = lim
n→∞

(vn(0),wi) = (v, ζ ′wi)Q + (v ⊗ vΦk(|v|),∇(ζwi))Q − (S,D(ζwi))Q

− α(vΦk(|v|), (ζwi))Γ + (p,div(ζwi))Q + (F ,∇(ζwi))Q for all i ∈ N. (3.152)

If we in (3.147) take ϕ = ζwi and compare the equation with (3.152), we obtain

(v0 − v(0),wi) = 0 for all i ∈ N,

so that v(0) = v0. Since v ∈ C([0, T ];L2(Ω)), we are finished.
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Identification of S What remains is to show S = S (i.e. S(p,Dv)). Since S(·, ·) is
continuous and we already have (3.144), it suffices to verify the pointwise convergence
of Dvn a.e. in Q. Then S = S by Vitali’s theorem.

Observe that we may without loss of generality assume in (3.141) that

‖vn(T )‖L2(Ω) → ‖v(T )‖L2(Ω) for n→∞.

Indeed so; if it were otherwise, we would solve our equation from the beginning on a
larger time interval, say (0, T + 1). Then we could assume there is T ≤ τ ≤ T + 1 such
that ‖vn(τ)‖L2(Ω) → ‖v(τ)‖L2(Ω) for n→∞, and we would prove all convergences on
(0, τ), only to restrict ourselves to (0, T ) in the end.

Define

In =

∫ 1

0
(1 + |D(s)|2)(r−2)/2|Dvn −Dv|2 ds, D(s) = Dv + s(Dvn −Dv).

With the strong convergence (3.143), the relation (3.9) implies

0 ≤ C lim sup
n→∞

∫
Q
In ≤ lim sup

n→∞
(Sn − S,D(vn − v))Q

= lim sup
n→∞

(Sn,Dvn)Q − (S,Dv)Q ≤
5∑
i=1

lim sup
n→∞

Ii,

(3.153)

where, by (3.132) and (3.147), the terms Ii are are handled by convergences (3.136)–
(3.143) as follows:8

I1 = (F ,∇(vn − v))Q
n∼ 0

I2 = (pn,div vn)Q − (p,div v)Q = ε ‖∇p‖2L2(Q) − ε ‖∇p
n‖2L2(Q)

n∼ 0,

I3 = (vn ⊗ vnΦk(|vn|),∇vn)Q − (v ⊗ vΦk(|v|),∇v)Q
n∼ 0,

I4 =
1

2

∫ T

0

d

dt

(
‖v‖2L2(Ω) − ‖v

n‖2L2(Ω)

)
dt

=
1

2

(
‖v(T )‖2L2(Ω) − ‖v

n(T )‖2L2(Ω) + ‖vn(0)‖2L2(Ω) − ‖v(0)‖2L2(Ω)

) n∼ 0,

I5 = α(vΦk(|v|),v)Γ − α(vnΦk(|vn|),vn)Γ
n∼ 0.

Therefore (3.153) entails

lim
n→∞

∫
Q
In = 0 (3.154)

and now we are practically finished, for Hölder’s inequality yields∥∥D(vn − v)
∥∥r
Lr(Q)

≤
∫
Q

(∫ 1

0
(1 + |D(s)|2)(r−2)/2|D(vn − v)|2 ds

)r/2
× (1 + |Dvn|2 + |Dv|2)r(2−r)/4 dx dt

≤
(∫

Q
In
)r/2(∫

Q
(1 + |Dvn|2 + |Dv|2)r/2

)(2−r)/2
, (3.155)

which tends to zero with n→∞ by (3.154).

8The symbol
n∼ has an analogical meaning to

k∼ introduced under (3.166).
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3.6.1 Vanishing artificial compressibility (ε→ 0+)

Now we justify the limit ε → 0+ for solutions yielded by Lemma 3.6.1, proving thus
Lemma 3.5.1. Let us again drop the index k and denote the solutions at hand simply
(vε, pε).

Uniform estimates Taking ϕ = pε in (3.130), ϕ = vε in (3.129) and summing up
the resultant identities, we obtain

1

2

d

dt
‖vε(t)‖2L2(Ω) − (vε ⊗ vεΦk(|vε|)(t),∇vε(t)) + (Sε(t),Dvε(t))

+ α‖Φ1/2
k (|vε|)vε(t)‖2L2(∂Ω) + ε ‖∇pε(t)‖2L2(Ω) = (F (t),∇vε(t)),

where Sε(t) = S(pε(t),Dvε(t)). Following the same steps as in the proof of Lemma
3.6.1, we could show

sup
t∈(0,T )

‖vε(t)‖2L2(Ω) + ‖vε‖rLr(0,T ;W 1,r(Ω)) + ‖Sε‖r
′

Lr′ (Ω)
+ ε ‖pε‖2L2(0,T ;W 1,2(Ω))

≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
, (3.156)

which can be combined with the weak formulation for the pressure (3.130) to obtain∫ T

0
‖div vε‖2

W−1,2
n (Ω)

≤
√
εC
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
.

As far as an ε-uniform estimate of pε is concerned, we still have (3.151). Combining
(3.156) with (3.151) and the starting equation (3.129) also yields the last estimate

‖∂tvε‖Lr′ (0,T ;W−1,r′
n (Ω))

≤ C
(
k, ‖v0‖L2(Ω) , ‖F ‖Lr′ (Q)

)
.

Limit ε→ 0+ The uniform bounds hitherto deduced allow us to pick a subsequence
(vε, pε) satisfying

vε → v weakly in Lr(0, T ;W 1,r
n,div(Ω)), (3.157)

vε → v weakly∗ in L∞(0, T ;L2(Ω)), (3.158)

∂tv
ε → ∂tv weakly in Lr

′
(0, T ;W−1,r′

n (Ω)), (3.159)

vε → v strongly in L2(Q), (3.160)

vε → v strongly in Lr(Γ), (3.161)

vε → v a.e. in Q, (3.162)

pε → p weakly in Lr
′
(0, T ; L̊r

′
(Ω)), (3.163)

Sε → S weakly in Lr
′
(Q). (3.164)

Applying (3.157)–(3.164) to eq. (3.129), we get∫ T

0
〈∂tv,ϕ〉 dt− (v ⊗ vΦk(|v|),∇ϕ)Q + (S,Dϕ)Q + α(vΦk(|v|),ϕ)Γ

− (p,divϕ)Q = (F ,∇ϕ)Q
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for every ϕ ∈ Lr(0, T ;W 1,r
n (Ω)). As far as attainment of the initial condition is

concerned, we could proceed identically like in the Galerkin approximation (notice
vε(0) = v0 for all ε > 0) and hence we skip it.

Identification of the weak limit S is thus the only remaining issue of the ε-limit.
Yearning to invoke Vitali’s theorem again, we are in a slightly more problematic situation
at this moment as we have lost compactness of the pressure. The equality S = S (i.e.
S(p,Dv)) now therefore demands showing not only the pointwise convergence of Dvε

but also of pε a.e. in Q.

Convergence of pε We will deduce

pε → p strongly in L2(Q).

Define ϕε = N (pε − p) and observe that by (3.15) and (3.163)

‖ϕε‖L2(0,T ;W 2,2(Ω)) ≤ Creg ‖p
ε − p‖L2(Q) , (3.165)

ϕε → 0 weakly in Lr
′
(0, T ;W 2,r′(Ω)). (3.166)

Let O(ε) signify a quantity satisfying lim supε→0+ O(ε) ≤ 0. For quantities Aε, Bε we

write Aε
ε∼ Bε if Aε ≤ Bε +O(ε). Then

‖pε − p‖2L2(Q) = (pε − p,∆ϕε)Q
ε∼ (pε,∆ϕε)Q = (Sε,∇2ϕε)Q +

5∑
i=1

Ii, (3.167)

where by Eq. (3.129), convergences (3.157)–(3.162) and (3.166), the individual sum-
mands are dealt with as

I1 = −(F ,∇2ϕε)Q
ε∼ 0,

I2 = α(vεΦk(|vε|),∇ϕε)Γ
ε∼ 0,

I3 = −(vε ⊗ vεΦk(|vε|),∇2ϕε)Q
ε∼ 0,

I4 = −
∫ T

0
〈∂tvε,∇N (p)〉 dt ε∼ −

∫ T

0
〈∂tv,∇N (p)〉 dt = 0,

I5 =

∫ T

0
〈∂tvε,∇N (pε)〉 dt ε∼ 0,

being a clone of I5 in (3.150) with r′ changed to 2. Hence the sum in (3.167) can be
ignored and

‖pε − p‖2L2(Q)
ε∼ (Sε,∇2ϕε)Q

ε∼ (Sε − S,∇2ϕε)Q

≤ γ0

∫
Q
|pε−p||∇2ϕε| dx dt+C2

∫
Q

∫ 1

0
(1+|D(s)|2)(r−2)/2|D(vε−v)||∇2ϕε| ds dx dt,

(3.168)

by the property (3.10) with D(s) = Dv + s(Dvε −Dv). Denote

Iε =

∫ 1

0
(1 + |D(s)|2)(r−2)/2|D(vε − v)|2ds.
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Since (1 + |D(s)|2)(r−2)/2 ≤ (1 + |D(s)|2)(r−2)/4, Hölder’s inequality and bound (3.165)
applied to (3.168) yield

‖pε − p‖2L2(Q)
ε∼ γ0Creg ‖pε − p‖2L2(Q) + C2Creg

(∫
Q
Iε dx dt

)1/2
‖pε − p‖L2(Q)

entailing (note 1− γ0Creg > 0 by Assumption 3.2.2)

‖pε − p‖2L2(Q)
ε∼
(

C2Creg
1− γ0Creg

)2 ∫
Q
Iε dx dt. (3.169)

Using (3.9), we can estimate the integral on the right as∫
Q
Iε dx dt ≤ 2

C1

(
Sε − S,D(vε − v)

)
Q

+
γ2

0

C2
1

‖pε − p‖2L2(Q)

ε∼ 2

C1

(
Sε,D(vε − v)

)
Q

+
γ2

0

C2
1

‖pε − p‖2L2(Q)
ε∼ γ2

0

C2
1

‖pε − p‖2L2(Q) , (3.170)

as long as

(Sε,D(vε − v))Q
ε∼ 0. (3.171)

Notice that (3.169) and (3.170) would then imply

lim
ε→0+

‖pε − p‖L2(Q) = 0 (3.172)

provided also
γ0C2Creg

C1(1− γ0Creg)
< 1,

which does hold, however, due to Assumption 3.2.2, namely

γ0 <
C1

Creg(C1 + C2)
.

We must therefore justify (3.171). Set ϕε = vε − v in the weak formulation (3.129),
whence

(
Sε,D(vε − v)

)
Q

=

5∑
i=1

Ii,

where, exploiting convergences (3.157)–(3.162),

I1 = (F ,∇ϕε)Q
ε∼ 0,

I2 = −α(vεΦk(|vε|),ϕε)Γ
ε∼ 0,

I3 = (vε ⊗ vεΦk(|vε|),∇ϕε)Q
ε∼ 0,

I4 = (pε,divϕε)Q = −ε(∇pε,∇pε)Q
ε∼ 0,

I5 = −
∫ T

0
〈∂tvε,ϕε〉 dt = −1

2

∫ T

0

d

dt
‖vε − v‖2L2(Ω) dt−

∫ T

0
〈∂tv,ϕε〉 dt

ε∼ 0,

thus proving (3.171) and justifying (3.172).
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Convergence of Dvε The inequality (3.155) in the current situation takes form

∥∥D(vε − v)
∥∥r
Lr(Q)

≤
(∫

Q
Iε
)r/2(∫

Q
(1 + |Dvε|2 + |Dv|2)r/2

)(2−r)/2 ε∼ 0,

by (3.170) and (3.172). Consequently, we may assume the pointwise convergence of
both pε and Dvε a.e. in Q, which proves S = S and thus concludes the entire ε-limit.
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