Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Diplomová práce

Vypracovala: Bc. Miroslava Vágnerová
Vedoucí práce: MUDr. Martin Jandásek

Praha 2009
Poděkování

Tuto cestou bych ráda poděkovala panu MUDr. Martinu Jandáskovi za odborné vedení a pomoc při realizaci této diplomové práce, poskytnutí konzultací, cenných rad a důležitých informací při jejím zpracování. Dále bych rovněž ráda poděkovala své rodině za veškerou podporu při studiu.
Prohlášení

Prohlašuji, že diplomovou práci na téma „Možnosti využití urodynamicckého vyšetření při inkontinenci moče u žen“ jsem vypracovala samostatně, použitou literaturu a podkladové materiály uvádím v přiloženém seznamu literatury.

V Praze, dne 29.4.2009

Bc. Miroslava Vágnerová
Obsah

1. Úvod ... 1
2. Stručná anatomie dolních cest močových ... 3
 2.1 Močový měchýř ... 3
 2.2 Močová trubice u ženy 4
 2.3 Malá pánev, pánevní dno a vazy pánevní 5
3. Fyziologie dolních cest močových 7
 3.1 Fyziologie mikce .. 7
 3.1.1 Fáze plnící .. 7
 3.1.2 Fáze vypuzovací ... 7
 3.2 Dysfunkce dolních cest močových 8
 3.2.1 Funkce detruzoru ... 8
 3.2.2 Funkce močové trubice 9
4. Klasifikace močové inkontinence u žen 10
 4.1 ICS klasifikace ... 10
 4.1.1 Extrauretrélní inkontinence 10
 4.1.2 Uretrální inkontinence 10
 4.1.2.1 Stresová inkontinence 10
 4.1.2.2 Urgentní inkontinence 11
 4.1.2.3 Reflexní inkontinence 12
 4.1.2.4 Paradoxní inkontinence 12
 4.2 Klasifikace SEAPI .. 13
 4.3 Klasifikace PUB .. 14
5. Nezbytná diagnostika předcházející úrodynamickému vyšetření ... 15
 5.1 Anamnéza .. 15
 5.2 Fyzikální vyšetření ... 17
 5.3 Laboratorní vyšetření .. 18
 5.4 Klinické testy ... 18
 5.5 Zobrazovací metody ... 19
6. Urodynamicke vyšetření 20
 6.1 Uroflowmetrie .. 21
 6.2 Cystometrie .. 23
 6.2.1 Ambulantní cystometrie 26
 6.3 Profilometrie .. 27
 6.4 Leak point pressure ... 30
 6.4.1 Statický leak point pressure 30
 6.4.2 Dynamický leak point pressure 30
 6.5 Elektromyografie .. 31
 6.6 Videourodyynamika .. 31
7. Kasuistiky pacientek .. 33
8. Vyhodnocení urodynamického vyšetření u jednotlivých pacientek ... 51
9. Diskuze ... 57
10. Závěr ... 59
11. Seznam použitých pojmů .. 61
12. Seznam použitých zkratek 63
13. Seznam použité literatury 64
14. Seznam použitých příloh 66
Abstrakt

Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Diplomová práce s názvem „Možnosti využití urodynamického vyšetření při močové inkontinenci u žen“ se zabývá problematikou diagnostiky při samovolném úniku moči u žen a uplatněním urodynamického vyšetření při této diagnóze.

Cílem práce je zjistit možnosti využití urodynamického vyšetření při diagnostice močové inkontinence u žen a na souboru pacientek, které udávají tyto obtíže, provést urodynamické vyšetření a následně zhodnotit výsledky měření. Práce obsahuje rovněž přehledné kasuistiky jednotlivých žen, u kterých bylo provedeno urodynamické vyšetření metodou uroflowmetrie a cystometrie.

Diplomová práce je rozdělena na část teoretickou a praktickou. Teoretická část práce popisuje v jednotlivých kapitolách stručnou anatomii a fyziologii dolních močových cest u ženy, jednotlivé klasifikace močové inkontinence, nezbytnou diagnostiku předcházející urodynamickému vyšetření a samotné metody urodynamického vyšetření. Tato část je vždy doplněna o informace a zkušenosti z praxe. Praktická část je zaměřena na jednotlivé kasuistiky inkontinentních žen, u kterých byla pečlivě odebrána anamnéza, provedena další nezbytná vyšetření a urodynamické vyšetření metodou uroflowmetrie a cystometrie. Naměřené výsledky těchto metod jsou pak vyhodnoceny v následující kapitole.

Diskuze je věnována ovlivnitelnosti výsledků měření a hodnocení u použitých metod. V závěru práce se pak nachází komplexní zhodnocení dosažených výsledků pomocí metod urodynamického vyšetření.

klíčová slova: močová inkontinence, urodynamické vyšetření, cystometrie, uroflowmetrie

Abstract

Scope of use of urodynamic examination in female urinary incontinence
Master thesis called „Scope of use of urodynamic examination in female urinary incontinence“ deals with the problems in diagnostic of spontaneous urine leakage in women and the application of urodynamic examination in this diagnosis.

The aim of this work is to determine the scope of use of urodynamic examination in diagnostic of urinary incontinence in women and on a set of patients who show these difficulties perform urodynamic examination and then to evaluate the results of measurement. The work also contains well-arranged casuistics of individual women in which was made urodynamic examination by method uroflowmetry and cystometry.

Thesis is divided into theoretical and practical part. The theoretical part of the work described in each chapter a brief anatomy and physiology of lower urinary tract in women, the individual classification of urinary incontinence, necessary diagnostic previous urodynamic examination and own methods of urodynamic examination. This part is supplemented by informations and practical experiences. The practical part is focused on individual casuistics of incontinent women in which were taken carefully anamnesis, further necessary examinations needed and urodynamic examination by method uroflowmetry and cystometry. Measured results of these methods are then evaluated in the following chapter.

Discussion is dedicated to influence of measurement results and evaluation of using methods. In conclusion of work there is a comprehensive evaluation of attained results by methods of urodynamic examination.

key words: urinary incontinence, urodynamic examination, cystometry, uroflowmetry
1 Úvod

Při výběru tématu diplomové práce jsem se rozhodla věnovat se problematice močové inkontinence u žen, o kterou se zajímám již od svého bakalářského studia. V této práci jsem se zaměřila na vyšetřovací metody při této diagnóze a to především na uplatnění urodynamického vyšetření ve vztahu k určení diagnózy močové inkontinence.

Správně provedená diagnostika je základem pro určení diagnózy, která je výchozím bodem pro zvolení vhodné léčby. Aby bylo možné určit správnou diagnózu, je nutné mít k dispozici dostatek informací a právě urodynamické vyšetření představuje jejich významný zdroj.

Cílem diplomové práce je zjistit možnosti využití urodynamického vyšetření při diagnostice močové inkontinence u žen a na souboru pacientek, které užívají tyto obtíže, provést urodynamické vyšetření a následně zhodnotit výsledky měření.

Diplomová práce je rozdělena do dvou částí, a to na teoretickou část a praktickou část. Práce začíná teoretickou částí, která v úvodu stručně popisuje anatomii a fyziologii dolních močových cest u ženy, představuje jednotlivé klasifikace močové inkontinence a jejich charakteristiky. Dále jsou představeny vyšetřovací metody, které je nutné vykonat u pacientky před urodynamickým vyšetřením a které se velkou částí podílejí na stanovení diagnózy močové inkontinence společně s urodynamickým vyšetřením. Stěžejní je závěr teoretické části věnovaný urodynamickému vyšetření, u kterého jsou podrobně uvedeny jednotlivé vyšetřovací metody. Teoretická část práce je doplněna v daných kapitolách o poznatky a zkušenosti z praxe. Následně v praktické části práce jsou získané teoretické poznatky aplikovány přímo na jednotlivé pacientky, které udávají obtíže s inkontinencí. U tohoto souboru žen je podrobně vypracována kasuistika s pečlivě odebranou anamnézou, dalšími nezbytnými vyšetřeními a zaznamenané hodnoty urodynamického měření metodou uroflowmetrie a cystometrie, které bylo provedeno v Ústeckém urocentru. Poslední kapitola je zaměřena na vyhodnocení výsledků měření prostřednictvím těchto metod u jednotlivých pacientek.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Diskuze se zabývá ovlivnitelností výsledků a hodnocení u metod, které budou použity při měření, tedy při cystometrii a uroflowmetrii.

Závěr diplomové práce bude věnován kompletnímu zhodnocení získaných výsledků na základě použitých metod urodynamického vyšetření.
2 Stručná anatomie dolních cest močových

Pro správné pochopení celého textu diplomové práce uvádím stručnou anatomii dolních močových cest, která se zabývá anatomii močového měchýře, močové trubice, svalů a vazů malé pánve.

2.1 Močový měchýř

Sliznice močového měchýře, tunica mucosa, je složena z vícevrstevného přechodného epitelu, podložena řídkým podslizničním vazivem a poskládána v řasy. Na spodině vesica urinaria se nachází trigonum vesicae, což je trójúhelníkové pole s hladkou sliznicí, vymezené ústím močovodů, ostia ureterum, a odstupem močové trubice, orificium urethrae internum.

Stěnu močového měchýře tvoří tři vrstvy hladkého svalu. Funkčně tvoří svalovina tzv. detrusor, který je vytvořen pro vypuzování moči. Zevní a vnitřní vrstva přecházející na močovou trubici je longitudinální, střední vrstva je cirkulární a končí
při vnitřním ústí uretry. Při odstupu močové trubice se nachází cirkulární svalovina m. sphincter vesicae.

Tepny jsou k močovému měchýři přivedeny z art. iliaca interna, horní polovina měchýře je zásobena z art. vesicales superiores, část dolní a baze z art. vesicales inferiores.

Nerovová vlákna tvoří po stranách spodiny močového měchýře plexus vesicalis. Sympatická vlákna z míšních segmentů Th11-L3 se k vesica urinaria dostávají cestou plexus hypogastricus superior a inferior. Parasympatická vlákna pocházejí z pánevního parasympatiku a přicházejí cestou S2-S4. Do pl. vesicalis se vlákna dostávají přes pl. hypogastricus inferior a inervují musculus detrusor vesicae. Senzitivní vlákna jdou v průběhu autonomních nervů a zaznamenávají napětí stěny měchýře a bolestivé vjemy.

2.2 Močová trubice u ženy

Ženská močová trubice, urethra feminina, vychází z močového měchýře a končí na papilla urethralis mezi přední stěnou pochvy a glans clitoridis ve vestibulum vaginae. Délka močové trubice u ženy je asi 3-5 cm.

Dle průběhu močové trubice je možné uretru rozdělit na čtyři části. Intramurální část nacházející se ve stěně měchýře tvoří cca 15 % celkové délky trubice o délce méně než centimetr a hlavní účinek zde uplatňuje především m. sphincter vesicae. Střední pelvická část tvoří asi 15-60 % celkové délky a je spojena s účinkem m. sphincter urethrae. Pánevním diafragmatem prochází diafragmatická část uretry činící 60-70 % délky a distálně je umístěna část perineální.

Stěnu uretry tvoří vazivo, hladká svalovina a sliznice, která je složena v podélné řasy. Na počátku močové trubice se nachází ještě přechodní epitel močového měchýře, dále pak přechází v mnohovrstevný epitel dlaždicový.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Silná vrstva hladké svaloviny navazuje na svalovinu detruzoru močového měchýře a její svazky mají převážně podélný průběh. Jsou mohutnější v předu.Aktivují se během mikce a vyvolávají zkrácení a rozšíření uretry. Vnitřní svěrač z hladké svaloviny není u ženy vytvořen.

Příčně pruhovalný svěrač, m. sphincter urethrae externus, obklapuje pánevní a membranózní úsek uretry až po diaphragma urogenitale, jak uvádí Grim, Druga (7, str. 113)

Tepny zásobí močovou trubici z art. vesicales inferiores a art. vag inalis, zevní část uretry zásobí art. pudenda interna.

Nervy přicházejí do uretry z pl. pelvicus. Inervace příčně pruhovalného svalu (m. sphincter urethrae) je zprostředkována pánevním parasympatikem. Nervus pudendus pak zajišťuje inervaci části vláken jdoucích z diafragmatu a m. pubococcygeu.

2.3 Malá pánev, pánevní dno a vazy pánevní

Dutina pánevní je uzavřena zespodu díky souboru svalů a facií. Pánevní dno je složeno ze dvou částí:

- diaphragma pelvis, které tvoří m.levator ani a m. coccygeus
- diaphragma urogenitale, jenž je tenká svalová deska trojúhelníkového tvaru rozprostírající se mezi rameny kostí stydké a sedací a je tvořena m. transversus perinei profundus a superficialis, m. bulbocavernosus a m. ischiocevarnosus

Na diaphragma pelvis lze rozlišit dvě zakřivení, kde jedno se nachází v rovině sagitální, druhé pak v rovině transversální. Toto zakřivení se mění v závislosti na kontrakci a relaxaci svalstva. Funkčně nejdůležitější částí je pars pubica m. levator ani, především její části m. pococcygeus a m. puborectalis, které se snaží podporovat orgány procházející diaphragmatem přes hiatus urogenitalis.

Jak uvádí Zikmund a Hanuš (16, str. 6), z abdominalní strany levátor ani kryje fascia diafragmatis pelvis superior s vazivovým zesílením ve středu, kde se spojuje s viscerální facií. Tato kondenzace se nazývá arcus tendineus fasciace pelvis. Laterální stěny pánve kryje fascia pelvis parietalis spojující se s fascia pelvis visceralis, která kryje povrch pánevních orgánů.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Velmi důležitou roli při inkontinenci moče hraje závěs uretry. Část endopelvické fascie zajišťuje závěs proximální části močové trubice a společně s přední částí stěny poševní vytváří tzv. hammoc, lůžko pod močovou trubicí. Pokud dojde ke zvýšení intraabdominálního tlaku, močová trubice je tlačena svojí zadní stěnou proti podpůrnému lůžku. Tím je způsobeno uzavírání lumenu trubice, dojde ke zvýšení intrauretrálního tlaku a zajistí se tak udržení (kontinence) moče. Z toho vyplývá, že pro zachování kontinence je nutné nutné zachování fixace k leťtoru ani a rovněž k arcus tendineus. Naopak fixace ke svalům pánevním je důležitá pro volní relaxaci, pokles uretrovezikálního spojení na začátku mikce a pro uzavírání močové trubice na jejím konci. Při distální části uretry se nachází pevné spojení se stěnou poševní a pánevním diaphragmatem ke kostem pubickým.

Důležitou součástí všech vazů v pánevní oblasti jsou ligg. pubourethralia. Rozdeznávají se u nich tři části. K podkožním oblastem vulvy a klitorisu patří pars anterior, od uretry k fascii levátorů se táhne prostřední část a poslední funkčně nejdůležitější část tvoří pars posterior táhnoucí se laterálně od hrdla měchýře k arcus tendineus a pars pubica m. levatoris ani. Tato ligamenta hrají velice důležitou roli při uzávěrovém mechanizmu, neboť mají schopnost kontrahovat se a pomáhají tak otevření hrdla. Zjistilo se, že u žen se stresovou inkontinencí jsou tyto vazy extrémně ochablé.

3 Fyziologie dolních cest močových

3.1 Fyziologie mikce

Močový měchýř zastává z fyziologického hlediska mikce dvě základní funkce. Je to jednak moč zadržovat a shromažďovat, a následně ji pak vyprazdňovat. Tyto procesy však močový měchýř nezastává sám, neboť močová trubice má na nich svůj podíl také.

3.1.1 Fáze plnící

Jak se postupně močový měchýř plní tekutinou a zvětšuje se jeho objem, dochází ke zvyšování intravezikálního tlaku. Nejčastěji stoupá intravezikální tlak jen asi o 1-2 cm H₂O na 100 ml náplně, při maximální náplně dosahuje již hodnot 10 – 15 cm H₂O. Se zvýšujícím se objemem dochází ke stoupání napětí svalových vláken. To má vliv na zvýšení napětí protisměrných klíček v hrdle měchýře, jenž způsobí zvýšení odporu v močové trubici, a tedy i tlaku intrauretrálního. Do pudendálního jádra umístěného v sakrální míše jdou proprioceptivní podněty ze stěny močového měchýře. Z tohoto jádra jsou pak vysílány podněty k příčně pruhovanému zevnímu sfinkteru uretry.

Pokud dojde ke zvýšení intravezikálního tlaku, nebo náhlému zvýšení tlaku intraabdominálního, zvýší se napětí zevního svěrače cestou n. pudendalis, a to zapříčiní i zvýšení tlaku intrauretrálního.

3.1.2 Fáze vypuzovací

Močový měchýř vysílá podněty vedené nn. pelvici zadními kořeny do zadních provazců měsíčných a jimi do mozku. Díky tomu pak dojde ke způsobění mikčního reflexu. Pokud nastane vhodná doba pro mikci, ukončí se inhibiční vlivy mozkových center na sakrální cetrum. Asi 5 – 12 sekund před začátkem mikce dochází k relaxaci pánevního dna a zevního svěrače. Tím dojde k poklesu uretrovezikálního spojení, báze močového měchýře dostává nálevkovitý tvar, zkrcat se močová trubice a rozšiřuje se její vnitřní ústí. K kontrakci detruzoru dochází zvýšení vnitřního tlaku u mlýne, což způsobí ještě větší otevření vnitřního ústí uretry. Kontrakce detruzoru způsobí v měchýři mikční tlak kolem 4 – 6 kPa a maximální průtok moče je cca 15 – 25 ml/sec. Tato kontrakce trvá až do chvíle, kdy se močový měchýř zcela vyprázdní. Následně se stáhne zevní svěrač,
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen
dojde k vyprázdnění posledních zbytků moči zpátky do močového měchýře, uzavře se jeho hrdlo a detruzor se stane opět relaxovaným.

Volný přerušení mikce je způsobeno díky kontrakci příčně pruhovaného zevního svěrače. Tak dojde ke značnému zvýšení odporu ve středu uretry a přeruší se proud moče. Uvolnění detruzoru přichází poté za malou chvíli.

3.2 Dysfunkce dolních cest močových

Dysfunkce dolních cest močových se týkají jak zadržování a shromažďování moči, tak i jejího vyprázdnování. Klinicky se tyto poruchy funkce projevují jako retence, či inkontinence. Příčinou může být narušená nervová kontrolní činnost, onemocnění detruzoru, nebo i psychogenní potíže. Etiologicky to může být zapříčiněno např. infekcí, trauma, tumor nebo jiné.

Pro správnou funkci mikce je zapotřebí dobrá koordinační funkce detruzoru a močové trubice. Díky urodynamickým vyšetření lze objektivně zjistit postižení a určit tak správný druh terapie.

3.2.1 Funkce detruzoru

Normální činnost detruzoru je taková, kdy v plnící fázi povoluje detruzor zvětšování objemu aniž by docházelo k výraznému vzestupu tlaku. Při močení je kontrakce detruzoru vyvolána vůlí a tou ji lze rovněž potlačit, jedná se tedy o tzv. stabilní detruzor.

Dojde-li však ve fázi plnění kontrakci detruzoru, kterou není možno vůlí potlačit, jedná se o hyperaktivní (nadměrně aktivní, overactive bladder) detruzor. Kontrakce může být způsobena samovolně, či vyprovokujícím podnětem jako je káchnutí, kašel, chůze aj. V tomto případě se jedná o tzv. nestabilní detruzor.

Označení detruzorová hyperreflexie se používá pro patologické neurologické stavoviny, u kterých dochází ke ztrátám inhibice. Způsobí-li to únik moče, označuje se tato inkontinence jako urgentní a její motorická funkce.

Pokud je detruzor hypoaktivní, jeho snížená funkce se projeví při močení. Stažení detruzoru nenastane ani během plnění, ani při mikci.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Jako areflexie detruzoru se označují stavy, u kterých je chybějící aktivita koordinované kontrakce zapříčiněna abnormalitou nervové kontroly v CNS. K močení tedy dochází bez přítomnosti stahu detruzoru, nebo jsou jeho kontrakce velmi slabé.

3.2.2 Funkce močové trubice

Jak uvádí Zikmund (15, str. 31), za normální uzávěrací mechanismus se považuje, jestliže během plnění odpor uretry (intrauretrální tlak) stále převyšuje tlak intravezikální, i při zvýšeném tlaku intraabdominálním. Může být překonán jen zvýšenou aktivitou detruzoru. Normální uzávěrový mechanismus dokáže přerušit proud moče při mikcii.

Je-li uzávěrový mechanismus hyperaktivní, jeho nadměrnou aktivitou dochází k nechtěným stahům uretrálních svalů při současné kontrakci detruzoru. Pro současnou kontrakci uretry a detruzoru se používá termín detruzor-uretrální dyssynergie. Podle toho, jaký sval se v močové trubici kontrahuje, je možné označit dyssynergii jako detruzor-lissosfinkterickou a detruzor-rhabdosfinkterickou.

Uzávěrový mechanismus se sníženou funkcí umožňuje únik moče. Dochází-li v uretře k trvale nižšímu tlaku než je tlak v močovém měchýři, nastává tak trvalý odtok moče. Pokud k úniku dochází při náhlém zvýšení intraabdominálního tlaku, jedná se genuinní, stresovou inkontinenci. V dalších případech je pokles intrauretrálního tlaku způsoben přechodné a tento stav se nazývá tzv. nestabilní uretra. Uretrální nestabilita je často spojována se senzorickou formou urgentní inkontinence. Žena v tomto případě pociťuje nutkání na močení vždy, pokud dochází k poklesu tlaku v močové trubici.
4 Klasifikace močové inkontinence u žen

Symptom inkontinence moči je nově definován podle International Continence Society (ICS), Mezinárodní společnosti pro kontinenci, jako stížnost na jakýkoliv vůlí neovladatelný únik moči. Podle starší definice se za inkontinenci moči považoval každý nechtěný únik moči z uretry, který je objektivně prokazatelný a způsobuje ženě sociální, či hygienický problém.

Podle ICS se rozlišuje inkontinence extrauretrální a uretrální - stresová, urgentní, reflexní a paradoxní. Kromě této nejpoužívanější klasifikace močové inkontinence se užívá i další klasifikace jako např. SEAPI, nebo PUB.

4.1 ICS klasifikace

Dle Mezinárodní společnosti pro kontinenci se rozlišují následující typy močové inkontinence a jejich formy:

4.1.1 Extrauretrální inkontinence

4.1.2 Uretrální inkontinence

Pojem uretrální inkontinence označuje únik moči přirozenou cestou, tedy přes močovou trubici.

Uretrální inkontinence se dále rozlišuje na tyto druhy:

4.1.2.1 Stresová inkontinence

Stresová inkontinence se někdy také nazývá jako genuinní, či pravá inkontinence. Jedná se o vůlí neovladatelný únik moči přes neporušenou uretru, kdy se
při stresové situaci zvýší nitrobrušní tlak, kterému uzávěrový systém již není schopen čelit. Za stresové situace je možno považovat kašel, kýchnutí, smích, chůze, poskok, zvedání těžkých věcí, leknutí, změna polohy a mnoho dalších. Dochází při nich k zadržování dechu, bránice klesá a zvyšuje se tak intraabdominální tlak, který se přenáší na močový měchýř a způsobí, že zvýšený intravezikální tlak překoná odpor močové trubice. Stahem svalů dna pánevního však žena obvykle dokáže proud moči zastavit.

Jak uvádí Dvořáček (2, str. 1347), v klinické praxi se ujala klasifikace podle Ingelmanna-Sundberga. Podle této klasifikace se stresová inkontinence rozděluje podle závažnosti do tří stupňů:

<table>
<thead>
<tr>
<th>Tab. 1: Klasifikace závažnosti stresové inkontinence dle Ingelmanna-Sundberga</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. stupeň</td>
</tr>
<tr>
<td>II. stupeň</td>
</tr>
<tr>
<td>III. stupeň</td>
</tr>
</tbody>
</table>

zdroj: vlastní tvorba

4.1.2.2 Urgentní inkontinence

Při urgentní inkontinenci je náhlý únik moči spojen s typickým velmi silným nucením na močení. To může jednak způsobit nedostatečnost motorické inhibice mikčního reflexu, nebo velmi silný podnět přicházející z receptorů, které registrují tenzi stěny močového měchýře.

Podle příčiny je možné tedy rozdělit dvě formy urgentní močové inkontinence:

Motorická forma urgentní inkontinence

K motorické formě urgentní inkontinence dochází nekontrolovanými kontrakcemi svalů močového měchýře, tedy detrusoru. Uzávěrový systém je při této formě urgence zcela funkční. Tato porucha je tedy zapříčiněna nedostatečnou kontrolou
mikčního reflexu z mozku. Ke kontrakčním detruzoru může dojít již při velmi slabých podnětech z proprioceptivních receptorů, avšak potlačit mikční reflex žena nemůže. Příčina tkví nejčastěji v poruše CNS, jenž způsobuje vymizení inhibičního působení, a proto se také někdy označuje tato forma urgence jako neinhibovaný měchýř. Termínu nestabilní měchýř se přiřazují netlumené kontrakce způsobené provokačními manévry při stresových situacích, které již byly jmenovány v předchozím textu. Tyto situace však nepředstavují vždy inkontinenci. Rozhodující je, zda při kontrakci detruzoru intravezikální tlak přesáhne odpor močové trubice, nebo ne.

Senzorická forma urgentní inkontinence

U senzorické formy urgentní inkontinence je inhibiční kontrola z centrální nervové soustavy zcela v pořádku. K mikčnímu reflexu dochází pomocí zesílených aferentních impulsů z receptorů, jež registrují napětí močového měchýře. Podněty ke kontrakcím měchýře jsou vyvolány z nervových vláken nejčastěji proto, že zde dochází ke dráždění cizím tělesem, které se za normálního stavu v měchýři nevyskytuje (např. nádor, kaménky aj.) a nebo zde dochází k určité pěrcitlivosti, která nastává např. po zánětech. Dalším případem může být zůžená uretra, u které nastává problém s vyprázdňováním měchýře a budí ho tak ke zvýšené činnosti. V tomto případě často vzniká tzv. močové reziduum, tedy určitý zbytkový obsah v měchýři, který irituje nervová vlákna.

4.1.2.3 Reflexní inkontinence

U reflexní inkontinence je nechtěný únik moči zaviněn abnormální reflexní aktivitou, která jak uvádí Zikmund (15, str. 51) má příčinu v míšní lézi, např. horního motorického neuronu, která nastává při frakturách obratlů, myelodysplásiích, různých neuropatích zánětlivého nebo degenerativního původu apod.

4.1.2.4 Paradoxní inkontinence

Paradoxní inkontinence je označována v literatuře mnoha dalšími jmény jako inkontinence přebytková, přetlaková, přepadová, či overflow. Jak píše Martan (9, str. 39), paradoxní inkontinence je nechtěný únik moči, kdy intravezikální tlak převyší maximální intrauretrální tlak, přičemž při tomto úniku chybí detruzorová aktivita a únik je způsoben pouze pasivním přepětím stěny močového měchýře.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Tato inkontinence je způsobena v důsledku naprosté blokace vývodných cest močových nebo jejich zúžení. Zablokování může způsobit mechanická, nebo funkční překážka (kámen, nádor, jizva). Dochází tak k hromadění moči v měchýři, a když už je překročena kapacita, moč musí odejít po kapkách zbytkovým průsvitem uretry.

Paradoxní inkontinenci může přivodit poškození horního či dolního motorického neuronu. Dochází k němu při diabetické neuropatii, po traumatu, po rozšířené hysterectomii, amputaci rekta aj.

4.2 Klasifikace SEAPI

Klasifikační systém inkontinence SEAPI byl vyvinut v roce 1990 Razem a Eriksonem jako systém, který by mohl kvantitativně určit močovou inkontinenci bez speciálního zařízení, či časově náročných procedur.

S – Stress-related leakage (únik moči při stresových situacích):
0 – žádný prokázaný únik moči
1 – únik větší jak 80 ml
2 – únik mezi 30 – 80 ml
3 – únik menší než 30 ml

E – Emptying ability (evakuační schopnost močového měchýře; měří se velikost rezidua):
0 – reziduum 0 – 60 ml
1 – reziduum 61 – 100 ml
2 – reziduum 101 – 200 ml
3 – reziduum více jak 200 ml

A – Anatomy (zde se měří pozice uretrovezikálního spojení):
0 – pozice spojení méně než 2 cm pod symfýzou při zatlačení
1 – pozice více jak 2 cm pod symfýzou při zatlačení
2 – pozice více jak 2 cm pod symfýzou v klidu
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

P – Protection (použití hygienických pomůcek – vložek):
 0 – vložky nejsou používány
 1 – používání zřídka
 2 – používání každodenně při stresových situacích
 3 – neustálé používání

I – Inhibition (schopnost inhibice nekontrolovaných kontrakcí měchýře; měření se provádí při cystometrii):
 0 – mimovolní kontrakce se nevyskytují
 1 – kontrakce při náplni více jak 500 ml
 2 – kontrakce při náplni 150 – 500 ml
 3 – kontrakce při náplni menší jak 150 ml

Díky moderním vyšetřovacím metodám se dnes již tento klasifikační systém používá spíše ojediněle.

4.3 Klasifikace PUB

Dalším klasifikační systém byl navržen na základě komplexního vyšetření, kdy odborníci vyhodnocují funkci močového měchýře, polohu uretry a uretrální funkci. Následující rozdělení představuje tuto klasifikaci:

 P0 podpůrný aparát močové trubice je dobrý
 P1 špatná podpora uretry; uretrální hypermobilita
 U0 funkce uretry je dobrá; VLPP je vyšší jak 90 cm H₂O
 U1 funkce uretry je hraniční; VLPP činí 20 – 90 cm H₂O
 U2 funkce uretry je špatná; VLPP je nižší jak 20 cm H₂O
 B0 funkce detruzoru je normální
 B1 vysokotlaká dysfunkce močového měchýře
5 Nezbytná diagnostika předcházející urodynamicému vyšetření

5.1 Anamnéza

Pečlivě odebraná anamnéza je jednou ze základních a nejdůležitějších součástí všech vyšetření. Odborník provádí důkladný pohovor, který je zaměřen na rozbor obtíží ženy a všech souvislostí k těmto potížím vztahujících se. V některých případech již po pohovoru se ženou je možné najít velkou část příčin, ze které pramení problém inkontinence. Při odebrání anamnézy je vždy nutné zajistit vhodné prostředí, vyloučit přítomnost dalších osob a spěchání, neboť pacientka musí v lékaři najít naprostou důvěru, aby mu mohla svěřit všechny své problémy. Anamnéza se rozděluje na několik částí a to na anamnézu osobní, rodinnou, gynekologickou, sociální, urologicckou, farmakologicckou, alergickou aj. U žen s podezřením na diagnózu močové inkontinence se zpravidla provádí:

Osobní anamnéza (OA)

Osobní anamnéza obsahuje informace o onemocněních nynějších a dřívějších.

- **Nynější onemocnění** – všechna onemocnění, která pacient prodělává, druh a doba obtíží, pořádí v jakém se onemocnění dostavila, všechny souvislosti vztahující se k současným onemocněním apod.
- **Dřívější onemocnění** – zaznamenávají se postupně všechna onemocnění, operace, úrazy, které žena prodělala, jejich trvání, způsob léčby a následky.
Dále se OA doplňuje o poznatky, zda je žena kuřáčka, konzumuje alkohol, jaký je její životní styl atd.

Rodinná anamnéza (RA)

Při odberání RA se odborník táže na rodinnou zátěž, zdravotní stav rodičů, sourozenců, případně prarodičů. Časté mohou být geneticky vrozené rozštěpové vady, anomálie v sakrální oblasti míchy a uropoetického traktu, dále rovněž diabetes.

Gynekologická anamnéza (GA)

GA představuje údaje o menarche, menstruačním cyklu, těhotenství (jeho průběh a ukončení, hmotnost plodů), břišních operacích, operacích v malé pánvi, infekcích a dalších onemocněních souvisejících s ženskými orgány.

Pracovní a sociální anamnéza (SA)

SA odebírá informace o předchozích i současných povoláních, jejich postavení v zaměstnání, vzdělání, rizikových faktorech v práci. Dále zjišťuje sociální situaci, bytové poměry, finanční situaci a zájmy ženy. V současnosti má SA značný význam při začlenování ženy zpět do pracovního poměru po operaci.

Urologická anamnéza (UA)

Při UA pacientka nejprve líčí své obtíže vlastními slovy a následně teprve odborník cílenými dotazy údaje zpřesňuje. Velmi často ženy udávají problémy jako je polakisurie, nykturie, hematurie, tlak a bolest za sponou stydkou, dysurie, dyspareunie aj.

Časté močení (polakisurie) může být způsobeno zánětem močového měchýře a velmi často ukazuje na urgentní inkontinenci. Příčina polakisurie může být ale i jiná, např. velké tumory v malé pánvi zmenšují kapacitu měchýře a způsobují tak častější močení. Pokud se vyskytuje u ženy krev v moči (hematurie), je nutné vždy brát nález velmi vážně, neboť se může jednat o tumor močového měchýře, karcinom děložního hrudla, glomerulonefritidu či parenchymatózní změny na ledvinách. Nejčastěji to ovšem bývá zánět močového měchýře, a to hlavně u mladých žen. Některé ženy uvádějí ostrou bolest zvyšující se po vymočení, která je častá při cystitidách. Ostrá bolest spojená s močením nasvědčuje pro uretritidy.

Dále se odborník soustředí na všechny údaje spojené s inkontinencí. Důležité jsou tedy informace: za jakých okolností dochází k úniku moči, jaké množství uniká,
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

zda pacientka dokáže zastavit proud moči, frekvence močení ve dne a v noci, urgence atd. Velice vhodnou pomůckou je tzv. mikční deník (viz. příloha 10), jenž podává informace o příjmu tekutin a výdeji moči za 48 (24) hodin. Pacientka ho dostane domů a vyplňuje v něm jednotlivé epizody inkontinence, urgence, mikční návyky a druh tekutiny.

Farmakologická anamnéza (FA)

FA zjišťuje informace o léčicích, které žena užívá. Některá farmaka totiž mohou inkontinenci navozovat, či ji zhoršovat (např. antihyperonika, fenothiaziny aj.).

5.2 Fyzikální vyšetření

Při fyzikálním vyšetření se odborník nejprve soustředí na celkový stav ženy, pohyblivost, hmotnost a výšku, případně neurologické potíže. Dále pak provádí zevní gynékologické vyšetření, vyšetření gynäkologickými zrcadly a palpací, případně používá kalibrační sondy.

Zevní gynäkologické vyšetření

Odborník při něm hodnotí zrakem a palpací stav a vzhled rodidel, zaznamenává si pooperační změny, známky po porodu, macerace a opruženiny, zatvrdlny, napětí zevního svěrače trubice, provádí poklep na hráz, jež by měla vyvolat kontrakci konečníkového svěrače atd.

Vyšetření gynäkologickými zrcadly a palpací

Jedná se o celkové vyšetření vaginy, čípku děložního, poklesu stěn poševních, děložních adnex (vejcovodů, vaječníků), kvality sliznice, uložení orgánů, jejich pohyblivost, přítomnost přístělí aj.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Kalibrační sondy

Potíže s vymočením mohou mít někdy příčinu v zúžení uretry. Pro toto zjištění se využívají tzv. kalibrační sondy, což jsou speciální umělohmotné nebo kovové tyčinky, jejichž konce se rozšiřují v malé olivky, které mají různý průměr a lze jimi tedy měřit průsvit uretry. Největší možná olivka, jež projde uretrou tak poskytuje naměřený průměr v jednotkách Charr, kdy za normální se považuje průsvit 24 Charr.

5.3 Laboratorní vyšetření

Základem laboratorního vyšetření při močové inkontinenci je chemické bakteriologické vyšetření moči a močového sedimentu. Dále se provádí mikrobiální obraz poševní, jehož část se posílá do mikrobiologické laboratoře a další část se nechá kultivovat. Pokud se v pochvě vyskytují určité infekce, je velmi lehké, aby se dostaly do močové trubice a způsobily tak infekci močového měchýře – cystitidu.

5.4 Klinické testy

Pad-weight test

Jedná se o jednoduchý test vážení vložek, který může objektivně prokázat únik moče a zjistit její množství, což pomáhá určit závažnost inkontinence. Lze ho využít rovněž pro zhodnocení efektu terapie. Test spočívá ve vypití určitého množství tekutiny a následně žena provádí po dobu 1 – 2 hodin (příp. 40 min, někdy i 24 hod) stresové činnosti, jež vyvolávají únik moče. Vložka se váží před a po testu. Dojde-li ke zvýšení hmotnosti o více jak 2 g, test je pozitivní.

Marshall-Bonneyho test

Tento test spočívá v naplnění močového měchýře tekutinou (nejméně 200 ml) a poté žena zaujme polohu na papírové podložce ve stojí mírně rozkročném. Pacientka je vyzvána k silnému, krátkému zakašlání. Unikne-li moč na podložku, jedná se o stresovou inkontinenci. Marshall ovšem tvrdí, že pokud je u téhož žen vyzvednuta parauretrální tkáň v místě krčku měchýře, moč při kašli už neuniká a je vhodná pro ně tedy závěsnná operace.

Q-tip test

Martan, Mašata a Halaška uvádějí (10, str. 38), že Q-tip test informuje o mobilitě uretrovezikálního spojení. Do uretry se zavede navlhčená vatová štětka či pevná
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

cévka. Pacientka zatlačí a při uvolněním uretrovezikálním spojení štětička či cévka opisují polokruh směrem vzhůru. Test se hodnotí jako pozitivní při pohybu cévky o více jak 30 stupňů.

5.5 Zobrazovací metody

Nejpoužívanějšími zobrazovacími metodami jsou při diagnostice močové inkontinence u žen především monografie a magnetická rezonance. Dříve se ještě využívala cystouretrografie a kolpocystouretrografie, ale dnes jsou spíše již minulostí.

Sonografie

Diagnostika pomocí ultrazvuku je dnes nejčastější metodou, kterou provádí téměř každý odborník ve své ambulanci. Aplikuje se pomocí povrchové sondy přes podbříšek, hráz, nebo existuje vaginální sonda, jež se zavádí do pochvy. Toto vyšetření je rychlé, neinvazivní, dobře zobrazuje uložení orgánů v malé pánvi a jejich vztahy mezi sebou.

Magnetická rezonance

Magnetická rezonance je jedno z nejlepších zobrazovacích vyšetření, avšak běžně není v urodiagnostice užíváno z důvodu finanční a časové náročnosti. Je to metoda neinvazivní, neionizující a dokáže výborně zobrazovat v mnoha rovinách měkké struktury, ligamenta aj.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

6 Urodynamické vyšetření

Urodynamická vyšetření představují v současnosti jedny z nejpřesnějších metod, které pomáhají diagnostikovat dysfunkce dolních cest močových. Díky této velmi přesné diagnostice je poté možné určit vhodnou léčbu při poruše mikce. Nikdy však nelze určit terapii na základě pouze této diagnostiky, je třeba vždy brát v potaz také výsledky z dalších vyšetření. Proto je vždy nutno nejdříve zpracovat pečlivě anamnézu a pokračovat vyšetřením fyzikálním, chemickým, mikroskopickým a kultivačním rozbořem moči. Dále pak provést biochemické vyšetření séra, diagnostiku renálních funkcí a až v poslední fázi použít zobrazovací metody a endoskopická vyšetření dolních cest močových.

Močový měchýř, v případě jeho onemocnění, má v zásadě tři možnosti, jak může určitým způsobem manifestovat patologické procesy, které ho postihují. Jednak to může být pocity bolesti, nebo lze poruchu vidět v jedné z jeho dvou hlavních funkcí, a to vypuzování moči či jímání moči.

Pokud pomocí již vyjmenovaných vyšetření je možno vyloučit organické onemocnění močového měchýře, urodynamická vyšetření mohou pomocí zjistit patologickou příčinu daných příznaků a stanovit tak diagnózu poruchy dolních cest močových.

Urodynamicka zahrnuje poměrně širokou škálu diagnostiky jednodušších záznamů mikce až po složitou videourodynamicu. Výběr dané metody závisí na příznacích jedince, výsledcích ostatních vyšetření a samozřejmě zkušenosti odborníka. U některých pacientů postačují základní, jednodušší vyšetřovací metody ke stanovení
diagnózy, zatímco u jiných jedinců je nutné provést složitější a komplexnější diagnostiku.

Mezi urodynamické metody patří:

6.1 **Uroflowmetrie**

Uroflowmetrie je metoda poskytující analýzu proudu moči z hlediska kvalitativního i kvantitativního. Pomocí této metody se hodnotí množství moči, které proteče močovou trubicí za jednotku času (ml/sec). Křivku u jedince se zdravým močovým měchýřem a trubicí znázorňuje následující obrázek 1.

Obr. 1: Uroflowmetrie – normální křivka

![Obr. 1: Uroflowmetrie – normální křivka](image)

zdroj: Zikmund (16, str. 21)

Na normální křivce je vidět typický průběh, kdy počátek je prudkého vzestupu, dále pak část plateau maximálních objemů a pomalejší pokles. Průměrná délka močení se udává kolem 20 sekund. Pokud je čas mikce prodloužený a křivka je více plochá, ukazuje to na funkční i mechanickou obstrukci vývodných cest močových.

Přístroj, který se používá pro vyšetření u žen, je vzhledu podobného záchodové míse, kde v dolní části je měřicí přístroj spojený kabelem s registračním zařízením. Typická ukázka těchto uroflowmetrických přístojů je uvedena v příloze číslo 5.

V praxi se užívá hned několik měřicích principů:

- **Karusele systém** – je princip rozkládající proud moči na jednotlivé porce, ze kterých poté skládá křivku.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

- Kapacitní systém – využívá kapacity, jež se lineárně mění s výší moč v trubicovém kondenzátoru. Tento systém je dnes spíše ojedinělý.
- Gravimetrický systém – principem je měření váhy močí za jednotku času.
- Elektromagnetický systém – Moč je zde považována za elektrický vodič, který protéká magnetickým polem a vytváří elektrický proud.

Po uroflowmetrickém vyšetření je možno z příslušné křivky vyhodnotit tyto údaje:
- Doba průtoku (je to mikční čas, který je počítán od začátku močení do jeho ukončení)
- Doba do maximálního průtoku (čas měřený od počátku mikce do maximálního toku)
- Maximální průtok (nejvyšší naměřená hodnota proudu moči)
- Mikční objem (celkový objem vypuzené moči močovou trubicí)
- Průměrný proud moči (podíl celkového množství vypuzené moči ku délce močení)

U nejmodernějších přístrojů je možno rovněž zjišťovat hodnoty tlaků trpícího v průběhu močení (viz. příloha č. 6). Mezi tyto parametry patří:
- Otevírací tlak (zaznamenává se při nástupu průtoku moči)
- Otevírací doba (ukazuje čas, jenž uplyne od vzestupu detruzorového tlaku k začátku močení)
- Maximální tlak (detruzorový, vezikální, abdominální)
- Tlak při maximálním průtoku

Pro úspěšnost této metody je nutné, aby měla pacientka před vyšetřením dostatečnou odstavnou tekutin. Mikční objem by měl být alespoň 150 ml. Pro správnost vyhodnocení při uroflowmetrii byly zpracovány tzv. nomogramy, nebot se stoupajícím objemem mikce rovněž roste i hodnoty průměrného a maximálního průtoku moči.

Uroflowmetrické vyšetření je rovněž velice vhodné využívat jako screening neuromuskulárních poruch dolních cest močových. Pokud je na křivce proud moče zeslabený, snížený maximální průtok a prodloužený mikční čas, může to svědčit o stenóze uretry. Chybění fáze plateau s nepravidelností odtoku moče pak může vypovídat o detruzor-sfinkterové dysynergii.
6.2 Cystometrie

Cystometrie je dnes jednou z nejpoužívanějších urodynamických metod, která popisuje funkci detruzoru a podává informaci o poruchách senzitivity. Toto vyšetření je ovšem invazivní. Principem metody je, že během plnění močového měchýře a i během močení měříme intravezikální tlak.

Technické podmínky při měření mohou značně ovlivňovat výsledky vyšetření, a proto Mezinárodní společnost pro inkontinenci (ICS) stanovila doporučení, za jakých podmínek by bylo vhodné vyšetřovat pacienta:

- Vyšetření by mělo být prováděno v poloze na zádech, v sedě či vstoje. Hydrostatický tlak o nulové hodnotě, jenž nezávisí na poloze pacienta, odpovídá hornímu okraji spony stydké.
- Měření tlaku a plnění močového měchýře se provádí nejčastěji transuretrálně, popřípadě je možno provést transabdominální suprapubickou punkci, která se využívá při měření intravezikálního tlaku při mikcích. Do močového měchýře se zavádí dva katétry, první o velikosti 8 – 12 Charr, kterým se měchýř plní, druhý velikosti 5 – 7 Charr se měří intravzikální tlak. Rovněž lze využít katétr o dvojitém lumen, který umožňuje jak plnění, tak měření.
- Močový měchýř se plní fyziologickým roztokem či sterilní vodou o tělesné teplotě, neboť chladná tekutina může způsobit kontraktaci detruzoru. K vyšetřování v ambulanci je velice výhodně plnění oxidem uhličitým, avšak je nutno brát v ohled, že výsledné naměřené tlaky jsou o třetinu až polovinu nižší než při plnění tekutinou.
- Rychlost plnění se užívá pomalá do 10 ml/min, střední 10 – 100 ml/min, či rychlá nad 100 ml/min. Pokud není k dispozici pro přesné dávkování infuzní pumpa, použije se láhev s tekutinou zavěšená 150 cm nad úroveň spony stydké.

Cystometrie se provádí nejčastěji v poloze na zádech a močový měchýř je plněn sterilní vodou rychlostí 100 ml/min pomocí dvoucestného katétru zavedeného transuretrálně. Měřicí katétr je napojen na laboratorní skleněnou trubičku (cca 100 ml), která je připojena k měřítku. Nula se nastaví na výši horního okraje spony stydké. Tlak
se odečítá poté na měřítku a zároveň jsou zapsovány hodnoty tlaků do křivky. Tlak v močovém měchýři však při plnění nestoupá lineárně, na počátku plnění je intravezikální tlak na hodnotách 5–15 cm H₂O (vodního sloupce), poté setrvává na těchto hodnotách a až před maximální kapacitou stoupá výše. Kapacita močového měchýře u žen je maximálně asi 400 – 600 ml (u některých žen až 750 ml).

Jak se plní měchýř postupně po 100 ml, žena je vždy vyzvána k silnému zakášlání, což slouží jako provokáční manévr ke vzniku netlumeného stahu. Pacientka je požádána, aby určila moment, kdy pociťuje první náznaky nucení na močení. Poté plnění stále pokračuje a žena označí okamžik, kdy už cítí velmi silné nucení na močení, ale stále ještě dokáže mikci oddávat a posečkat. Nakonec určí moment, kdy pacientka cítí při plnění již bolest a tato urgence představuje maximální kapacitu močového měchýře.

Za patologický jev se považuje jakýkoliv vzestup tlaku v močovém měchýři, který převyšuje hranici 15 ml H₂O. Dochází k tomu např. při detruzorové hyperaktivitě, kdy intravezikální tlak rychle stoupá a maximální kapacita měchýře je jen 100 – 150 ml.

Při měření intraabdominálního tlaku je možné provést zavedení katétru přímo do břišní dutiny, nebo se měří tlak v rektu či pochvě, přičemž nejčastěji se využívá měření v rektu. Do rektu se zavede balónková cévka, balónek se naplní tekutinou a měření proběhne stejně jako u tlaku intravezikálního. Odečtem hodnot intraabdominálního tlaku od intravezikálního je získán tlak detruzorový. Dnes již moderní cystometry ukazují tuto hodnotu samy.

Zároveň se při hodnocení výsledků využívá také tzv. detruzorový koeficient (compliance). Popisuje změnu intravezikálního tlaku v závislosti na plnícím objemu a vypočítá se jako:

\[C = \frac{\Delta V}{\Delta p} \]

kde delta V značí změnu plnícího objemu, delta P je změna intravezikálního tlaku, C značí compliance, tedy poddajnost močového měchýře. U zdravého jedince je tato hodnota asi 20. Hodnoty kolem 15 a menší ukazují na hyperaktivitu detruzoru, hodnoty vyšší jak 50 na hypoaktivitu detruzoru. Jak popisuje Martan (9, str. 15), může se během cystometrického měření měnit a závisí na řadě faktorů: na tvaru a tloušťce stěny měchýře, na mechanických, kontrakčních a relaxačních vlastnostech detruzoru, na rychlosti plnění a části křivky použité k výpočtu compliance.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Vyšetřovací metoda cystometrie je dnes pro diagnostiku močové inkontinence v podstatě nezastupitelná. U zdravé ženy by se netlumené kontrakce detruzoru neměly vyskytovat, neboť jsou potlačovány vyššími centry nervstva. Pokud se netlumené kontrakce detruzoru vyskytují a jedinec nepociťuje potřebu na močení, jedná se pravděpodobně o poruchu senzitivity. V případě pocítění kontrakce a zároveň schopnosti potlačit ji je nejspíše porucha na periferní mikční reflexu, která může být způsobena nějakým konkrementem, zánětem močového měchyře, tumorem aj. Dále se mohou vyskytovat kontrakce a silný pocit nucení na močení, které žena nedokáže potlačit, tento případ ukazuje na motorickou formu urgentní inkontinence.

Obr. 2: Cystometrická křivka při hyperaktivním detruzoru

![Cystometrická křivka](image)

Jestliže se vyskytují nechtěné netlumené kontrakce už během plnění při provedení provokačního manévrů či po určitém dráždění, jedná se o nestabilní detruzor. Mezinárodní společnost pro inkontinenci považuje za nestabilní detruzor případ, kdy při cystometrii během plnění dojde ke spontánní, či provokované kontrakci, která nelze potlačit vůlí. Avšak ICS přímo nestanovuje, na jakou hodnotu se musí tlak zvýšit, ale obecně se předpokládá vzestup o 15 cm H₂O. Provokačním manévrem může být kašel, změna polohy, slyšení zvuku tekoucí vody aj.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Obr. 3: Cystometrická křivka při nestabilním detruzoru

![Cystometrická křivka](image)

zdroj: Zikmund (16, str. 66)

U některých pacientek se jako doplňkové vyšetření k cystometrii provádí ještě tzv. karbacholový test, ten se obzvláště využívá při podezření na poruchu funkce močového měchýře neurogenního původu. Ten využívá zjištění, že hladký sval, který je denervovaný, reaguje nadměrně při podání cholinergika, tj. Cannonův zákon. (Cannonův zákon – tkáň s nedostatečným autonomním zásobením je nadměrně citlivá k chemickým neurotransmírterům, což je důsledek chybění štěpících enzymů cholinesterázy či aminooxidázy.) U zdravých žen stoupá intravezikální tlak během plnění o 5 – 15 cm H$_2$O. Je-li podáno za normálních okolností 2,5 mg karbacholu subkutánně, tlak se po 20 – 30 min nezvýší více jak o 15 cm H$_2$O. U žen s jasnou denervací detruzoru intravezikální tlak výrazně stoupá a maximální kapacita močového měchýře se naopak proti kontrolnímu měření snižuje.

6.2.1 Ambulantní cystometrie

S postupem techniky byl vytvořen speciální přístroj pro ambulantní urodynamické vyšetřování. Do močového měchýře je zaven denkatétř s mikrotip senzorem, který měří intravezikální tlak, a do rekta je zaven další katétr, jenž měří tlak rektální. Poslední katétr se připojí k elektronické pleně, která má schopnost snímat unik moče. Všechny tyto katétry jsou zavedeny do speciálního zařízení, které dovoluje téměř 12 hodin vyhodnocovat a shromažďovat data. Toto vyšetřování musí trvat nejméně 3 hodiny, kdy přístroj nosí pacientka přes rameno (váží cca 0,5 kg). Žena by měla vypít před vyšetřením dostatečné množství tekutiny, aby během vyšetřování došlo několikrát k mikci.

-26-
Odborníci tvrdí, že u pacientek s inkontinencí moč, u kterých se obvyklými urodynamickými metodami nepodařilo poruchy zjistit, ambulantní cystometrie může objasnit příčinu inkontinence v nestabilitě detruzoru, uretry, či slabosti sfinkteru. Avšak množství zjištěných nestabilit bývá při ambulantní cystometrii větší než u běžné cystometrie.

6.3 Profilometrie

Cílem urodynamické metody profilometrie je zjistit tzv. uretrální tlakový profil. Podle ICS je profilometrie definována jako grafické znázornění poměrů tlaků v tretře podél celé její délky. Tlaky se v jednotlivých částech uretry mohou lišit a jsou výsledným efektem působení hladkého svalu, příčně pružovaného svalu, pružnosti tkáně a dalších faktorů.

Jak uvádí Zikmund (15, str. 69), intrauretrální tlak u ženy směrem od vnitřního ústí uretry stoupá, dosahuje maxima ve střední třetině její délky a u zevního ústí prudce klesá.

Pro profilometrické měření se užívají tři metody, které se různí z hlediska způsobu měření tlaků:

- Balónková metoda – Tato metoda využívá k měření tlaků balónek, který se naplní tekutinou a napojí se na měřicí trubici. Balónek s katérem se zavede přes močovou trubici do měchyře. Dále dochází k vysunování katétru z močové trubice konstantní rychlostí a naměřené hodnoty jsou zapisovány v grafické podobě, díky které je získáno rozložení tlaků v močové trubici.

- Perfúzní metoda – Základem tohoto vyšetření je perfúze kapaliny otvorem katétru, která má konstantní tlak a rychlost. Tlak tekutiny, jenž protéká, se mění díky protitlaku prostředí, které obklopuje měřicí otvor.

- Mikrosenzorová metoda – Při této metodě jsou měřeny biologické tlaky pomocí mikrosenzoru, což je miniaturní snímač tlaku o ploše 0,75 mm². Tato metoda je velice přesná, ovšem nevýhodou zůstává, že potřebný katétr pro provedení tohoto vyšetření je nákladný, a proto se nepoužívá příliš často.
Zjistilo se, že hodnoty naměřených tlaků závisí na mnoha faktorech:

- **Podmínky, při kterých se vyšetření provádí:**
 - se zvyšující se náplní se zvyšuje i maximální uzávěrový tlak, zkracuje se funkční délka močové trubice
 - poloha pacientky: díky tlaku břišních orgánů při stoji je intravezikální tlak vyšší než intrauretrální při leže

- **Faktory vycházející z dané použité metody:**
 - velikost katétru; silnější katétry vyvolávají větší rozšíření močové trubice a tím i hodnoty naměřeného tlaku jsou vyšší
 - materiál katétru; tvrdší a tužší katétry způsobují větší deformaci, stlačení, protitlak
 - rychlost průtoku kapaliny; především u perfúzní metody, kde čím je vyšší rychlost průtoku kapaliny, tím je vyšší intrauretrální tlak
 - plocha měření; měla by být co nejmenší, neboť větší plocha může zkreslovat měření

Pro věrohodné srovnávání vyhodnocení při měření stanovila ICS podmínky, které by vyšetřující měl při profilometrii zaznamenávat:

- typ katétru
- síla katétru
- měřicí přístroj
- rychlost průtoku
- vysouvání katétru (kontinuální, intermitentní)
- rychlost vysouvání
- poloha pacientky
- náplň močového měchýře

Nejčastěji se dnes provádí profilometrie pomocí perfúzní metody. Močový měchýř se naplní tekutinou (200 ml) a močovou trubicí se zavede katétr s dvojitým, či trojitým lumen. Na konci tohoto katétru je jeden otvor pro změření intrauretrálního tlaku a dále otvory dva, které jsou umístěny 6 cm od konce pro perfúzi tekutiny a
měření tlaku stěny trubice. Pomocí trakčního mechanismu je následně katérrt vytahován za konstantní rychlosti. Nakonec se měření zaznamenává díky XY zapisovači a na záznamu jsou zaznamenány dvě linie, které představují tlak intravezikální a intrauretrální.

Z tohoto vyšetření uretrálního profilu provedeného v klidu lze na křivce hodnotit:

- maximální uretrální tlak; představuje nejvyšší tlak na vrcholu křivky
- maximální uzavírací uretrální tlak; je odečet intravezikálního tlaku od max uretrálního tlaku
- funkční délka uretry; představuje délku močové trubice, kde uzavírací tlak převyšuje intravezikální tlak
- celková délka uretry; je anatomickou délkou močové trubice a udává vzdálenost mezi místem uretry, kde tlak intrauretrální převyšuje tlak intravezikální a místem, kde se intrauretrální tlak mění na atmosferický

Vyšetřování lze ale také provádět za určitého stresu ve smyslu vystavení se momentu, situaci, při které může dojít k nechtěnému úniku moči. Žena je požádána, aby během měření silně krátce zakašlala vždy 4 – 5 sekund. Na grafickém zobrazení by se měl objevit rychlý vzestup tlaku intravezikálního i intrauretrálního.

Na profilometrické křivce za stres je možné tedy hodnotit následující parametry stresového profilu:

- funkční délka uretry při stresu; představuje délku močové trubice, kde při stresové situaci je intravezikální tlak převyšen uzávěrovým tlakem; u žen s inkontinencí se tato délka snižuje, popřípadě dochází k převyšování intravezikálního tlaku nad intrauretrálním
- faktor přenosu; lze ho vypočítat v jakémkoli místě močové trubice, ale nejčastěji se měří ve čtvrtinách délky trubice; vypočítá se jako podíl vzestupu intrauretrálního tlaku při stresu ku vzestupu tlaku intravezikálnímu v totožném okamžiku a celý výsledek se vynásobí stovkou; u pacientek s inkontinencí faktor přenosu klesá směrem od vnitřního ústí k zevnímu
- fáze zotavení; rychlý vzestup nitrobrňšního tlaku způsobuje krátkodobé snížení tlaku intrauretrálního, ovšem u inkontinentních jedinců je pokles tlaku ještě
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

vyšší a rovněž doba zotavení se prodlužuje obvykle více jak o 50 % oproti kontinentním pacientům (10,7 sekundy: 5,3 sekundy).

Profilometrie je velice vhodná metoda pro diagnostiku dvou základních druhů stresové inkontinence, a to pravé stresové inkontinence (max uretrální tlak je vyšší) a insufficence svěrače (max uretrální tlak je nižší). Dále se využívá jako kontrola, zda byla operace úspěšná. Mnoho odborníků zjistilo, že se po úspěšné operaci prodloužila funkční délka močové trubice. Smyčkové operace uzavírací tlak zvyšují, vaginální operace snižují a závěsné operace tento tlak příliš neovlivňují. U operací, které se provádějí pro stresovou inkontinenci, je vždy cílem zlepšit tlak přenosu na močovou trubici při stresu. Dalším využitím profilometrie je pro stanovení síly závěsného stehu při operaci podle toho, jak se mění hodnota maximálního uzávěrového tlaku.

6.4 Leak point pressure

Při metodě Leak point pressure (LPP) se zjišťují hodnoty intravezikálního nebo nitrobřišního tlaku, při jakých dochází k překonání odporu uretry a dochází k odtoku moči. LPP je možné rozdělit na dva druhy (statický a dynamický), přičemž každý se používá k vyšetření jiné patologie dolních cest močových.

6.4.1 Statický leak point pressure

Statické testy se využívají především při diagnostice močových měchýřů s neurogenními poruchami. Patří sem Detrusor LPP či Bladder LPP a toto vyšetření se provádí při plnící cystometrii. Provádí se měření intravezikálního tlaku v momentě, při kterém dojde k úniku moči. Zjistilo se, že pokud je leak point pressure vyšší hodnoty jak 40 cm H₂O, jedinec má větší pravděpodobnost, že se u něj rozvine vezikouretrální reflex, a tím poškození horních cest močových.

6.4.2 Dynamický leak point pressure

Mezi dynamické testy leak point pressure se řadí Valsalva LPP, Abdominal LPP a Cough LPP a jejich provádění slouží především pro diagnostiku dvou základních typů stresové inkontinence. Pacientce se naplní močový měchýř tekutinou o objemu 200 ml a pomocí Valsalova manevru, břišního lisu, nebo opakovaného kašle se stoupající
intenzitou je dosáhno zvýšení intravezikálního tlaku, který se zaznamená v momentě, kdy poprvé dojde k úniku moči. Vyšetření se provádí nejčastěji vsedě, či polosedě.

Odborníci stanovili hranici, která určuje insuficienci vnitřního svěrače, která byla stanovena na hodnotu tlaku rovnou 60 cm H2O, nebo nižší. Vyšší hodnoty svědčí pro pravou (genuinní) stresovou inkontinenci.

6.5 Elektromyografie

Elektromyografie je zařazena mezi urodynamická vyšetření z hlediska vyšetření příčné pruhovalého svalu svěrače močové turbice, jenž je součástí diaphragma urogenitale. Jedná se o záznam elektrických potenciálů, které jsou vyvolány depolarizací svalů dna pánevního.

Toto vyšetření se provádí nejčastěji pomocí nalepovacích povrchových elektrod umístěných perirektálně (případně do pochvy, či uretry). Někdy se ještě používají elektrody jehlové, ty jsou však pro jedince méně komfortní.

EMG se vždy kombinuje s dalším urodynamickým vyšetřením, především v kombinaci s uroflowmetrií. Při močení je za normálních okolností svěrač močové turbice relaxovaný. Pokud aktivita sfinkteru při mikci přetrvává, nasvědčuje to na detruzoro-sfinkterickou dyssynergii. Příčina této poruchy je především v neurogenní dysfunkci dolních cest močových a někdy je také idiopatická.

Dále se EMG využívá ve spojitosti s cystometrií, kdy se zjišťuje aktivita svěračů v plnící fázi močového měchýře, během močení a při stresových manévrech.

6.6 Videourodynamika

Většina moderních urodynamických přístrojů dnes zajišťují při jakémkoli urodynamickém vyšetření zázoreň snímat a zaznamenávat ultrasonografický obraz, popřípadě rentgenový obraz, který je přesnější. Díky tomu pak odborník může lépe posoudit anatomické poměry, morfologické změny a funkci dolních cest močových. Videourodynamika tak významně pomáhá zpřesňovat diagnostiku u patologických stavů dolních cest močových (příloha 9).
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Tato metoda je ovšem mnohem složitější pro interpretaci, neboť se zde vyskytuje celá řada artefaktů, která odborník musí nalézt již při vyšetření. Pokud je nalezena nějaká patologie, je dobré vyšetření aspoň jedenkrát opakovat, aby případné chyby byly eliminovány a vyšetření tak bylo správné pro celkové vyhodnocení.
7 Kasuistiky pacientek

Následující kasuistiky představují pacientky, u kterých bylo v Ústeckém urocentru provedeno urodynamické vyšetření. Jednotlivé kasuistiky obsahují důležité informace, které jsou nezbytné pro stanovení správné diagnózy.

Kasuistika pacientky č. 1:

věk: 65 let
datum přijetí do ambulantní péče: 3. 12. 2008
OA: onemocnění nynější - osteoporóza, hypertenze
 onemocnění dřívější - apendektomie (r. 1982), opakované infekce dolních močových cest, fraktura krčku lemuru, osteoporóza
RA: matka - osteoporóza, recidivující záněty močových cest, ICHDK
 otec - karcinom prostaty, angina pectoris
GA: menarche ve 13 letech, hormonální antikoncepce 0, těhotenství - průběh normální (dva porody - ve 22 a 24 letech), hmotnost plodů - 4000g, 3800g, potraty 0, gynekologicky zdravá – mírný pokles dělohy a stěn poševních, bez obtíží
SA: nyní v důchodu, dříve pracovala jako učitelka; špatně spí; nepravidelné stravování; zájmy - jóga
UA: polakisurie, tenesmy, urgence, nykturie - 2x, uniklé množství moči značné, proud moči dokáže přerušit; pravidelný pitný režim - cca 2 l/den
FA: Lokren
FV: pohyblivost - dobrá; hmotnost - 73kg; výška - 158 cm; BMI – 29,24 (nadváha)
ZM: provedena sonografie
UV: provedena uroflowmetrie:
 množství moči proteklé močovou trubicí za jednotku času - 16,8 ml/s
provedena cystometrie: rychlost plnění – 100 ml/min
reziduum – 0 ml

Tab. 2: Cystometrické měření u pacientky č. 1

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH2O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>90.3</td>
<td>21</td>
<td>0:54.2</td>
<td>14.2</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>140.5</td>
<td>70</td>
<td>1:24.3</td>
<td>8.0</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Kasuistika pacientky č. 2:

věk: 58 let

datum přijetí do ambulantní péče: 6. 10. 2008

OA: onemocnění nynější – DM (II. typ), hepatopatie, lumbalgie, chronická bronchitis, supraventrikulární tachykardie
onemocnění dřívější – ethylismus, meningitis, bolesti zad

RA: matka – DM (II. typ), recidivující záněty dolních močových cest, ve stáří inkontinence
otec – angina pectoris, hypertenze, obezita, hyperlipoproteinémie

GA: menarche ve 13 letech, hormonální antikoncepce 0, těhotenství – průběh normální, tři porodů ve 20, 22 a 26 letech), hmotnost plodů – 3800g, 3600g, 3900g, potraty 2, sterilizace v r. 1985, pravostranná ovarektomie v r. 1992, hysterectomie v r. 1996, plastika močového měchůře a závěsná vesicopexe v r. 2002

SA: nyní v důchodu, dříve pracovala jako skladnice, zájmy – křížovky, pletení

UA: polakisurie, nykturie – 3x, uniklé množství moči velké – již při malém zvýšení intraabdominálního tlaku (při chůzi, někdy i vleže), nutnost permanentně používat pleny, proud moči nedokáže přerušit, nepravidelný pitný režim – 1,5 l/den

FA: B-komplex forte, Esentiale forte, Flavolin, Lokren, Presid, Prothazin
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

FV: pohyblivost – snížená; hmotnost – 76 kg; výška – 165 cm; BMI – 27.91 (nadváha)

KT: pad-weight test proveden

ZM: provedena sonografie

UV: provedena uroflowmetrie:

 množství moči pro tekoucí močovou trubicí za jednotku času - 11,4 ml/s

provedena cystometrie: rychlost plnění – 100 ml/min
reziduum – 0 ml

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH$_2$O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH$_2$O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>172.2</td>
<td>5</td>
<td>1:43.3</td>
<td>84.0</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>360.5</td>
<td>7</td>
<td>3:36.0</td>
<td>72.0</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Tab. 3: Cystometrické měření u pacientky č. 2

Kasuistika pacientky č. 3:

věk: 70 let

datum přijetí do ambulantní péče: 10. 09. 2008

OA: onemocnění nynější – obezita, hypertenze, hyperliproteinémie, migrény, bolesti zad, obtížné dýchání (kuřák)

onemocnění dřívější – adenom na pravé ledvině odstraněn v r. 1994, odstranění žlučových kamenů v r. 2000

RA: matka – neinkontinentní, obezita, malignita na ledvinách, akutní renální insuficience

otec – obezita, hypertenze, hyperlipoproteinémie, silný kuřák

GA: menarche ve 14 letech, hormonální antikoncepce 0, těhotenství – první dva porody ve 24 a 26 letech, třetí porod ve 29 letech čísařským řezem, hmotnost
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

plodů – 3600g, 3500g, 3900g, potraty 0, gynekologický zdravá – výrazný pokles stěn poševních a dělohy, jinak bez obtíží

SA: nyní v důchodu, dřívě pracovala v pojišťovně, zájmy – křížovky, turistika, cestování

UA: nykturie – 3x, uniklé množství moči malé, urgence, tenesmy, proud moči dokáže přerušit, pravidelný pitný režim cca 2 l/den

FA: Tanatril, Simgal

FV: pohyblivost – dobrá, výrazné oslabení břišních svalů, hyperlordóza, hmotnost – 95 kg; výška – 166 cm; BMI – 34.47 (obezita I. stupně)

KT: Marshall – Bonneyho test: negativní

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moči protekle močovou trubicí za jednotku času - 10,4 ml/s

provedena cystometrie:

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>176.9</td>
<td>8</td>
<td>1:46.1</td>
<td>84.8</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>299.0</td>
<td>8</td>
<td>2:59.4</td>
<td>104.8</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Tab. 4: Cystometrické měření u pacientky č. 3

Kasuistika pacientky č. 4:

věk: 49 let

datum přijetí do ambulantní péče: 6. 4. 2009

OA: onemocnění nynější - bez potíží
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

... onemocnění dřívější - recidivující infekce dolních močových cest, fraktura holenní kosti, běžná onemocnění

RA: matka – úmrtí na rakovinu slinivky břišní
otec - prostatické potíže, CHOPN

GA: menarche ve 12 letech, hormonální antikoncepce 0, těhotenství - průběh normální (dva porody - ve 25 a 28 letech), hmotnost plodů - 3500g, 3800g, potraty 0, gynekologicky zdravá – mírný pokles poševních stěn a délohy

SA: pracuje jako personální referentka; nepravidelné stravování; zájmy – čtení, akvaristika, žádný sport

UA: polakisurie, urgence, nykturie - 3x, uniklé množství moči značné, proud moči dokáže přerušit; pravidelný pitný režim - cca 1,8 l/den

FA: -

FV: pohyblivost - dobrá; hmotnost - 65kg; výška - 160 cm; BMI – 25,39 (nadváha)

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moči proteklé močovou trubicí za jednotku času - 17,6 ml/s

provedena cystometrie: rychlost plnění – 100 ml/min
reziduum – 0 ml

Tab. 5: Cystometrické měření u pacientky č. 4

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂0)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>95.7</td>
<td>27</td>
<td>0:57.4</td>
<td>12.6</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>149.9</td>
<td>77</td>
<td>1:29.9</td>
<td>6.9</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Kasuistika pacientky č. 5:

věk: 52 let

datum přijetí do ambulantní péče: 14. 01. 2009

OA: onemocnění nynější – DM (II. typ), deprese
onemocnění dřívější – peptický vřed žaludku, ekzém, kandidóza

RA: matka – inkontinence ve stáří, hysterektomie, pneumonie, silná kuřačka
otec – DM (II. typ), obezita

GA: menarche ve 12 letech, hormonální antikoncepce + (užívala mezi 29. až 38. rokem), těhotenství – průběh normální, tři porody (ve 22, 27 a 29 letech), hmotnost plodů – 3500g, 4000g, 3900g, potraty 0, provedena hysterektomie v r. 2000, závěsná operace uretropexie endoscopie v r. 2006

SA: pracuje jako teleoperátorka, zájmy - čtení, vaření, neprovozuje žádný sport

UA: polakisurie, nykturie 2x, uniklé množství moči značné – především při stresu (zvedání břemene, poskoky), proud moči dokáže přerušit, nepravidelný pitný režim – 1,5 l/den (příliš tekutin obsahující kofein)

FA: Siofor 1000, Prothiaden 25

FV: pohyblivost – dobrá, hmotnost – 75 kg, výška – 166 cm, BMI – 27,2 (nadváha)

KT: Marshall – Bonneyho test: negativní

ZM: provedena sonografie

UV: provedena uroflowmetrie:

 množství moči proteklé močovou trubicí za jednotku času - 10,6 ml/s

provedena cystometrie:

 rychlost plnění – 100 ml/min
 reziduum – 0 ml

-38-
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Tab. 6: Cystometrické měření u pacientky č. 5

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>158.2</td>
<td>4</td>
<td>1:34.9</td>
<td>78.2</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>321.0</td>
<td>7</td>
<td>3:12.6</td>
<td>64.8</td>
</tr>
</tbody>
</table>

Zdroj: vlastní měření

Kasuistika pacientky č. 6:

věk: 52 let

datum přijetí do ambulantní péče: 4. 2. 2009

OA: onemocnění nynější - hypertenze, klimakterické potíže (od 48. roku hormonální substituční terapie)

onemocnění dřívější - zánět močového měchýře poprvé v 6 letech, opakované infekce močových cest, fraktura ulnárního epikondyly

RA: matka – akutní selhání ledvin (úmrtí v 57. letech)

babička z matčiny strany – stresová inkontinence (III. stupeň)

dědeček z matčiny strany – prostatické obtíže

otec – benigní tumor ledviny

babička z otcovy strany – nedomykavost srdeční chlopně

dědeček z otcovy strany – chronické selhání ledvin

sестра – recidivující infekce močových cest

GA: menarche v 11 letech, hormonální antikoncepce 0, těhotenství – průběh normální, dva porody ve 25 a 28 letech, hmotnost plodu – 3700g, 4200g, gynekologicky zdravá – mírný pokles poševních stěn a dělohy, jinak bez obtíží

SA: pracuje jako vychovatelka ve škole, zájmy – jóga, zahrádkářství, keramika

UA: polakisurie, nykturie – 1x, uniklé množství moči malé – hlavně při zvýšení nitrobřišního tlaku při kašli a poskocích, proud moči dokáže přerušit, nepravidelný pitný režim – 1,3 l/den (převážně čaj)

FA: Amprilan 5, Betaloc SR, Klimonorm

-39-
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

FV: pohyblivost - dobrá; 88 - hmotnost; výška - 170 cm; BMI - 30,44 (obezita I. stupně)

ZM: provedena sonografie

UV: provedena uroflowmetrie:

- množství moči proteklé močovou trubicí za jednotku času - 11,8 ml/s
- vysoce plněná blada (vyplněna do 100%)
- reziduum - 0 ml

provedena cystometrie:

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>171.2</td>
<td>4</td>
<td>1:42.7</td>
<td>72.2</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>372.5</td>
<td>6</td>
<td>3:43.5</td>
<td>64.6</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Tab. 7: Cystometrické měření u pacientky č. 6

Kasuistika pacientky č. 7:

věk: 49 let

datum přijetí do ambulantní péče: 17. 9. 2008

OA: onemocnění nynější – hypertenze, bolesti zad v bederní oblasti
onemocnění dřívější – recidivující infekce dolních močových cest

RA: matka - recidivující infekce močových cest, migrény
otec - hypertenze, DM (II. typ)

GA: menarche ve 12 letech, hormonální antikoncepce 0, těhotenství - průběh normální (jeden porod - ve 24 letech), hmotnost plodu - 3900g, potraty 0, gynekologicky zdravá

SA: pracuje jako účetní, nepravidelné stravování, zájmy – cestování, aerobik

UA: polakisurie, urgence, nykturie - 2x, uniklé množství moči malé, proud moči dokáže přerušit; pravidelný pitný režim - cca 1,7 l/den

FA: Loradur, Betaloc SR
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

FV: pohyblivost - dobrá; hmotnost – 70 kg; výška - 163 cm; BMI – 26,35 (nadváha)

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moče proteklé močovou trubicí za jednotku času - 15,1 ml/s

provedena cystometrie: rychlost plnění – 100 ml/min
reziduum – 0 ml

Tab. 8: Cystometrické měření u pacientky č. 7

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH20)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>102.3</td>
<td>18</td>
<td>1:12.2</td>
<td>12.2</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>158.4</td>
<td>61</td>
<td>1:35.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Kasuistika pacientky č. 8:

věk: 54 let

datum přijetí do ambulantní péče: 2. 3. 2009

OA: onemocnění nynější - Parkinsonova choroba (od r. 2002), jinak bez obtíží
 onemocnění dřívější – karcinom pravého prsu (zcela odstraněn v r. 1998), běžná
 onemocnění

RA: matka – inkontinence v pozdním stáří, osteoporóza
 otec – hypertenze, prostatické potíže

GA: menarche ve 15 letech, hormonální antikoncepce + (mezi 29.-37. rokem),
 těhotenství - průběh normální (dva porody - ve 23 a 27 letech), hmotnost plodů -
 3700g, 3900g, potraty 0, gynekologicky zdravá

SA: nyní nezaměstnaná, dříve pracovala jako prodavačka, pravidelné stravování;
 zájmy – pletení, vaření, provádí cviky pro parkinsony

UA: polakisurie, tenesmy, urgence, nykturie - 3x, uniklé množství moči značné,
 proud moči dokáže přerušit; pravidelný pitný režim - cca 2 l/den
Možnosti využití urodynamickeho vyšetření při močové inkontinenci u žen

FA: Levodopa-Benserazide Teva

FV: pohyblivost - snížená; hmotnost - 80kg; výška - 170 cm; BMI – 27,68 (nadváha)

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moče proteklé močovou trubicí za jednotku času - 16,8 ml/s

provedena cystometrie: rychlost plnění – 100 ml/min
reziduum – 0 ml

Tab. 9: Cystometrické měření u pacientky č. 8

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH20)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>105.5</td>
<td>24</td>
<td>1:03.3</td>
<td>12.6</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>174.5</td>
<td>78</td>
<td>1:44.7</td>
<td>6.8</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Kasuistika pacientky č. 9:

věk: 66 let

OA: onemocnění nynější – DM (II. typ) od r.1998, silná kuřáčka
onemocnění dřívější – běžná onemocnění

RA: matka – DM (II. typ)
otec – kuřák, rakovina plic

GA: menarche ve 13 letech, hormonální antikoncepce 0, těhotenství – průběh normální, tři porody (ve 21, 25 a 30 letech), hmotnost plodů – 3600g, 3300g, 2800g, potraty 0, provedena hysterektomie v r. 2002

SA: nyní v důchodu, dříve pracovala jako zahradnice, zájmy - zahrádkaření, turistika
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

UA: polakisurie, nykturie 1x, uniklé množství moči značné – především při stresových situacích (chůze po schodech, zvedání tašek), proud moči dokáže přerušit, nepravidelný pitný režim – 1 l/den

FA: Siofor 1000

FV: pohyblivost – snížená, hmotnost – 85 kg, výška – 165 cm, BMI – 31,22 (obezita I. stupně)

KT: Marshall – Bonneyho test: negativní

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moči proteklé močovou trubicí za jednotku času - 11,0 ml/s

provedena cystometrie:

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>166,4</td>
<td>6</td>
<td>1:39,8</td>
<td>86,2</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>330,0</td>
<td>8</td>
<td>3:18,0</td>
<td>69,6</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Kasuistika pacientky č. 10:

věk: 72 let

datum přijetí do ambulantní péče: 3. 9. 2008

OA: onemocnění nynější – hypertenze, hyperlipoproteinémie, osteoporóza
onemocnění dřívější – zlomenina krčku lemuru v r. 2006, běžná onemocnění

RA: matka – opakované záněty dolních močových cest, inkontinence ve stáří
otec – obezita, hypertenze
Možnosti využití urodynamicckého vyšetření při močové inkontinenci u žen

GA: menarche ve 14 letech, hormonální antikoncepce 0, těhotenství – průběh normální, dva porody ve 22 a 25 letech), hmotnost plodů – 3700g, 3400g, hysterectomie v r. 1997

SA: nyní v důchodu, dříve pracovala jako prodavačka; zájmy – vnoučata, křížovky, zahrádka

UA: polakisurie, nykturie – 2x, uniklé množství moči velké – už při malém zvýšení nitrobněšního tlaku (dokonce i vleže), permanentně používá pleny, proud moči nedokáže přerušit, pravidelný pitný režim – 1,5 l/den

FA: Tanatril

FV: pohyblivost – dobrá; hmotnost – 65 kg; výška – 162 cm; BMI – 24.76

KT: pad-weight test proveden

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moči proteklé močovou trubicí za jednotku času - 10,0 ml/s

provedena cystometrie: rychlost plnění – 100 ml/min
reziduum – 0 ml

Tab. 11: Cystometrické měření u pacientky č. 10

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH2O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>184.6</td>
<td>4</td>
<td>1:50.8</td>
<td>89.2</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>381.5</td>
<td>7</td>
<td>3:48.9</td>
<td>78.4</td>
</tr>
</tbody>
</table>

zádřaj: vlastní měření

Kasuistika pacientky č.11:

věk: 55 let

datum přijetí do ambulantní péče: 23. 2. 2009

OA: onemocnění nynější - gonortróza, bolesti zad
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

onemocnění dřívější - hepatitida typu A (r. 1992), recidivující infekce dolních močových cest

RA: matka - nefrolitiáza, hypertenze
otec - akutní renální insuficience

GA: menarche ve 13 letech, hormonální antikoncepce 0, těhotenství - průběh normální (dva porody - ve 29 a 32 letech), hmotnost plodů - 3300g, 3500g, gynecologicky zdravá – mírný pokles pošvěních stěn a dělohy

SA: pracuje jako účetní; nepravidelné stravování; zájmy – cestování, čtení

UA: polakisurie, tenesmy, urgence, nykturie - 3x, uniklé množství moči značné, proud moči dokáže přerušit; pravidelný pitný režim - cca 1,5 l/den

FA: -

FV: pohyblivost - dobrá; hmotnost - 78kg; výška - 168 cm; BMI – 27,64 (nadváha)

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moči proteklé močovou trubicí za jednotku času - 15,5 ml/s

provedena cystometrie: rychlost plnění – 100 ml/min
reziduum – 0 ml

Tab. 12: Cystometrické měření u pacientky č. 11

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>95.2</td>
<td>21</td>
<td>0:57.1</td>
<td>15.6</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>149.2</td>
<td>72</td>
<td>1:29.5</td>
<td>9.0</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Kasuistika pacientky č. 12:

věk: 44 let

datum přijetí do ambulantní péče: 16. 3. 2009
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

OA: onemocnění nynější – bez obtíží
onemocnění dřívější – operace vyhřezlé ploténky v r. 1994

RA: matka – chronická pankreatitis, hypertonze
otec – hypertonze, hyperlipoproteinémie

GA: menarche v 11 letech, hormonální antikoncepce + (mezi 26.-35. rokem),
těhotenství – porod císařským řezem ve 21 letech), hmotnost plodu - 3900g,
potraty 0, gynekologicky zdravá – bez obtíží

SA: pracuje jako učitelka v mateřské škole; zájmy – hra na piano, cestování, tenis

UA: polakisurie, tenesmy, urgence, nykturie - 2x, uniklé množství moči malé, proud
moči dokáže přerušit; pravidelný pitný režim - cca 1,5 l/den

FA: -

FV: pohyblivost - dobrá; hmotnost - 67kg; výška - 169 cm; BMI – 23,45

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moči proteklé močovou trubicí za jednotku času - 15,0 ml/s

provedena cystometrie: rychlost plnění – 100 ml/min
rezíduum – 0 ml

Tab. 13: Cystometrické měření u pacientky č. 12

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂0)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>97.9</td>
<td>25</td>
<td>0:58.4</td>
<td>13.1</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>168.2</td>
<td>76</td>
<td>1:40.9</td>
<td>9.4</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Kasuistika pacientky č. 13:

věk: 61 let

datum přijetí do ambulantní péče: 24. 11. 2008
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

OA: onemocnění nynější – hypertenze, hyperlipoproteinémie
 onemocnění dřívější – urolitiáza, recidivující záněty dolních močových cest

RA: matka – inkontinence, katarakta,
 otec - ateroskleróza, hypertenze

GA: menarche ve 14 letech, hormonální antikoncepce 0 těhotenství – průběh
 normální, tři porody (v 19, 22 a 28 letech), hmotnost plodů – 3000g, 3800g,
 3200g, potraty 0, gynekologicky zdravá – výrazný pokles dělohy a poševních
 stěn

SA: pracuje jako uklízečka, zájmy - křížovky, internet, neprovozuje žádný sport

UA: polakisurie, nykturie 3x, uniklé množství moči značné – hlavně při stresu
 (zvedání břemen, chůze do schodů, poskoky), proud moči dokáže přerušit,
 pravidelný pitný režim – 1,8 l/den

FA: Amprilan

FV: pohyblivost – dobrá, hmotnost – 98 kg, výška – 170 cm, BMI – 33,91 (obezita I.
 stupně)

KT: Marshall – Bonneyho test: negativní

ZM: provedena sonografie

UV: provedena uroflowmetrie:

 množství moče proteklé močovou trubicí za jednotku času - 10,2 ml/s

 provedena cystometrie:

 rychlost plnění – 100 ml/min
 reziduum – 0 ml

Tab. 14: Cystometrické měření u pacientky č. 13

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>161.4</td>
<td>5</td>
<td>1:36.8</td>
<td>80.6</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>391.0</td>
<td>7</td>
<td>3:54.6</td>
<td>70.4</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření
Kasuistika pacientky č. 14:

věk: 69 let

datum přijetí do ambulantní péče: 19. 1. 2009

OA: onemocnění nynější – bolesti zad, DM (II. typ)
onemocnění dřívější – recidivující záněty dolních močových cest

RA: matka – obezita, inkontinence, hypertenze
otec – DM (II. typ)

GA: menarche ve 12 letech, hormonální antikoncepce 0, těhotenství – průběh normální, dva porody (ve 27 a 31 letech), hmotnost plodů – 3900g, 3800g, hysterectomie v r. 1990 - tumor

SA: nyní v důchodu, dříve pracovala v kanceláři, zájmy – čtení, cestování, pečení

UA: polakisurie, nykturie – 2x, uniklé množství moči velké – již při malém zvýšení nitrobřišního tlaku (při chůzi i vleže), nutnost permanentně nosit pleny, proud moči nedokáže přerušit, pravidelný pitný režim – 1,2 l/den

FA: Siofor

FV: pohyblivost – snížená; hmotnost – 75 kg; výška – 160 cm; BMI – 29,29 (nadváha)

KT: pad-weight test proveden

ZM: provedena sonografie

UV: provedena uroflowmetrie:

množství moči proteklé močovou trubicí za jednotku času - 10,6 ml/s

provedena cystometrie: rychlost plnění – 100 ml/min
reziduum – 0 ml
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Tab. 15: Cystometrické měření u pacientky č. 14

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>192.2</td>
<td>5</td>
<td>1:55.3</td>
<td>85.5</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>378.2</td>
<td>6</td>
<td>3:46.9</td>
<td>73.5</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Kasuistika pacientky č. 15:

věk: 65 let

OA: onemocnění nynější – angina pectoris, varixy
 onemocnění dřívější – běžná onemocnění

RA: matka – hypertenze, neinkontinentní
 otec – ICHDK, karcinom prostaty, obezita

GA: menarche ve 12 letech, hormonální antikoncepce 0, těhotenství – tři porody (v 18, 23, 27 letech), hmotnost plodů – 3400g, 3600g, 3600g, potraty 0, gynekologicky zdravá – výrazný pokles poševních stěn a dělohy

SA: nyní v důchodu, dříve pracovala jako obchodní zástupce, zájmy – cestování, jóga, internet

UA: nykturie – 2x, uniklé množství moči malé, uregence proud moči dokáže přerušit, pravidelný pitný režim cca 1,5 l/den

FA: Presid

FV: pohyblivost – dobrá, hmotnost – 85 kg; výška – 162 cm; BMI – 32.39 (obezita I. stupně)

KT: Marshall – Bonneyho test: negativní

ZM: provedena sonografie

UV: provedena uroflowmetrie:
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

množství moče proteklé močovou trubicí za jednotku času - 10,2 ml/s

provedena cystometrie:

 rychlost plnění – 100 ml/min
 reziduum – 0 ml

Tab. 16: Cystometrické měření u pacientky č. 15

<table>
<thead>
<tr>
<th>Cystometrie</th>
<th>objem (ml)</th>
<th>tlak (cmH₂O)</th>
<th>čas (min)</th>
<th>compliance (ml/cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>první nucení</td>
<td>190.5</td>
<td>6</td>
<td>1:54.3</td>
<td>74.3</td>
</tr>
<tr>
<td>maximální nucení</td>
<td>322.0</td>
<td>8</td>
<td>3:13.2</td>
<td>88.8</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření
8 Vyhodnocení urodynamického vyšetření u jednotlivých pacientek

Vyhodnocení urodynamického vyšetření patří k základním dovednostem každého specializovaného odborníka z oboru urologie a urogynekologie. V následující kapitole jsou zhodnocena měření urodynamických vyšetření, která byla provedena ve spolupráci s Ústeckým urocentrem na souboru 15 žen, u kterých předešlé vyšetření ukazovaly na diagnózu močové inkontinence. U těchto pacientek bylo provedeno urodynamické vyšetření uroflowmetrie a cystometrie. Měření byla prováděna přístrojem Solar od firmy Medical Measurement Systems B.V. (MMS), který umožňuje kompletní urodynamickou diagnostiku.

<table>
<thead>
<tr>
<th>pacientka</th>
<th>[ml/sec]</th>
<th>aktivita detruzoru</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16,8</td>
<td>Hyperaktivita</td>
</tr>
<tr>
<td>2</td>
<td>11,4</td>
<td>Hypoaktivita</td>
</tr>
<tr>
<td>3</td>
<td>10,4</td>
<td>Hypoaktivita</td>
</tr>
<tr>
<td>4</td>
<td>17,6</td>
<td>Hyperaktivita</td>
</tr>
<tr>
<td>5</td>
<td>10,6</td>
<td>Hypoaktivita</td>
</tr>
<tr>
<td>6</td>
<td>11,8</td>
<td>Hypoaktivita</td>
</tr>
<tr>
<td>7</td>
<td>15,1</td>
<td>Hyperaktivita</td>
</tr>
<tr>
<td>8</td>
<td>16,8</td>
<td>Hyperaktivita</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>Hypoaktivita</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Hypoaktivita</td>
</tr>
<tr>
<td>11</td>
<td>15,5</td>
<td>Hyperaktivita</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>Hyperaktivita</td>
</tr>
<tr>
<td>13</td>
<td>10,2</td>
<td>Hypoaktivita</td>
</tr>
<tr>
<td>14</td>
<td>10,6</td>
<td>Hypoaktivita</td>
</tr>
<tr>
<td>15</td>
<td>10,2</td>
<td>Hypoaktivita</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření
Z naměřených hodnot bylo určeno, u kterých pacientek dochází pravděpodobně k hyperaktivitě, či hypoaktivitě detruzoru močového měchýře. Hyperaktivita se projevila u 6 pacientek s číslem 1, 4, 7, 8, 11 a 12. Hypoaktivita se projevila u 9 pacientek s číslem 2, 3, 5, 6, 9, 10, 13, 14 a 15.

Další urodynamické vyšetření, které bylo provedeno na stejném souboru žen, představovala cystometrie. Při této metodě bylo zajištěno plnění močového měchýře tekutinou o rychlosti 100 ml/sec a hodnoty jednotlivých parametrů byly zaznamenávány nejdříve při prvním pocitu nucení na močení a dále při maximálním nucení na mikci. Zaznamenanými parametry byl čas plnění, naplněný objem do měchýře, tlak v močovém měchýři a detruzorový koeficient, neboli compliance močového měchýře. Nejdůležitějším parametrem pro následující vyhodnocování představovala poddajnost měchýře, tzv. compliance činící u zdravé ženy hodnotu asi 20, hodnoty kolem 15 a méně ukazují na hyperaktivitu detruzoru, hodnoty vyšší jak 50 na hypoaktivitu detruzoru.

Při prvním pocitu nucení na močení byly u jednotlivých žen zaznamenány hodnoty parametrů a aktivita detruzoru, viz. tabulka 18. Hyperaktivita se projevila u 6 pacientek s číslem 1, 4, 7, 8, 11 a 12. Hypoaktivita se projevila u 9 pacientek s číslem 2, 3, 5, 6, 9, 10, 13, 14 a 15.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Tab. 18: Cystometrie – měření při prvním pocitu nucení na močení

<table>
<thead>
<tr>
<th>pacientka</th>
<th>čas [min]</th>
<th>objem [ml]</th>
<th>tlak [cmH₂O]</th>
<th>compliance [ml/cmH₂O]</th>
<th>aktivita detruzoru</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0:54.2</td>
<td>90,3</td>
<td>21</td>
<td>14,2</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>2</td>
<td>1:43.3</td>
<td>172,2</td>
<td>5</td>
<td>84</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>3</td>
<td>1:46.1</td>
<td>176,9</td>
<td>8</td>
<td>84,8</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>4</td>
<td>0:57.4</td>
<td>95,7</td>
<td>27</td>
<td>12,6</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>5</td>
<td>1:34.9</td>
<td>158,2</td>
<td>4</td>
<td>78,2</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>6</td>
<td>1:42.7</td>
<td>171,2</td>
<td>4</td>
<td>72,2</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>7</td>
<td>1:12.2</td>
<td>102,3</td>
<td>18</td>
<td>12,2</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>8</td>
<td>1:03.3</td>
<td>105,5</td>
<td>24</td>
<td>12,6</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>9</td>
<td>1:39.8</td>
<td>166,4</td>
<td>6</td>
<td>86,2</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>10</td>
<td>1:50.8</td>
<td>184,6</td>
<td>4</td>
<td>89,2</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>11</td>
<td>0:57.1</td>
<td>95,2</td>
<td>21</td>
<td>15,6</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>12</td>
<td>0:58.4</td>
<td>97,9</td>
<td>25</td>
<td>13,1</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>13</td>
<td>1:36.8</td>
<td>161,4</td>
<td>5</td>
<td>80,6</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>14</td>
<td>1:55.3</td>
<td>192,2</td>
<td>5</td>
<td>85,5</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>15</td>
<td>1:54.3</td>
<td>190,5</td>
<td>6</td>
<td>74,3</td>
<td>hypoaktivita</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Při pokračujícím plnění dojde po určité době k pocitu maximálního nucení na močení. V tomto okamžiku byly opět zaznamenány hodnoty stejných parametrů jako byly zaznamenávány v předchozím měření.

Tab. 19: Cystometrie – měření při pocitu maximálního nucení na močení

<table>
<thead>
<tr>
<th>pacientka</th>
<th>čas [min]</th>
<th>objem [ml]</th>
<th>tlak [cmH₂O]</th>
<th>compliance [ml/cmH₂O]</th>
<th>aktivita detruzoru</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:24.3</td>
<td>140,5</td>
<td>70</td>
<td>8</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>2</td>
<td>3:36.0</td>
<td>360,5</td>
<td>7</td>
<td>72</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>3</td>
<td>2:59.4</td>
<td>299</td>
<td>8</td>
<td>104,8</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>4</td>
<td>1:29.9</td>
<td>149,9</td>
<td>77</td>
<td>6,9</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>5</td>
<td>3:12.6</td>
<td>321</td>
<td>7</td>
<td>64,8</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>6</td>
<td>3:43.5</td>
<td>372,5</td>
<td>6</td>
<td>64,6</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>7</td>
<td>1:35.0</td>
<td>158,4</td>
<td>61</td>
<td>7</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>8</td>
<td>1:44.7</td>
<td>174,5</td>
<td>78</td>
<td>6,8</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>9</td>
<td>3:18.0</td>
<td>330</td>
<td>8</td>
<td>69,6</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>10</td>
<td>3:48.9</td>
<td>381,5</td>
<td>7</td>
<td>78,4</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>11</td>
<td>1:29.5</td>
<td>149,2</td>
<td>72</td>
<td>9</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>12</td>
<td>1:40.9</td>
<td>168,2</td>
<td>76</td>
<td>9,4</td>
<td>hyperaktivita</td>
</tr>
<tr>
<td>13</td>
<td>3:54.6</td>
<td>391</td>
<td>7</td>
<td>70,4</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>14</td>
<td>3:46.9</td>
<td>378,2</td>
<td>6</td>
<td>73,5</td>
<td>hypoaktivita</td>
</tr>
<tr>
<td>15</td>
<td>3:13.2</td>
<td>322</td>
<td>8</td>
<td>88,8</td>
<td>hypoaktivita</td>
</tr>
</tbody>
</table>

zdroj: vlastní měření

Při zhodnocení aktivity detruzoru se hyperaktivita projevila u 6 pacientek s číslem 1, 4, 7, 8, 11, 12 a hypoaktivita u 9 pacientek s číslem 2, 3, 5, 6, 9, 10, 13, 14 a 15. Obě měření tedy ukázala shodná zjištění.

-53-
Z naměřených výsledků je možné rovněž vidět, že u žen s hyperaktivitou detruzoru močového měchýře dochází k prvnímu a maximálnímu pocitu nucení na močení při mnohonásobně menším objemu než u žen s hypoaktivním detruzorem.

<table>
<thead>
<tr>
<th>pacientka</th>
<th>první nucení objem [ml]</th>
<th>maximální nucení objem [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90,3</td>
<td>140,5</td>
</tr>
<tr>
<td>2</td>
<td>95,7</td>
<td>149,9</td>
</tr>
<tr>
<td>3</td>
<td>102,3</td>
<td>158,4</td>
</tr>
<tr>
<td>4</td>
<td>105,5</td>
<td>174,5</td>
</tr>
<tr>
<td>5</td>
<td>95,2</td>
<td>149,2</td>
</tr>
<tr>
<td>6</td>
<td>97,9</td>
<td>168,2</td>
</tr>
<tr>
<td>7</td>
<td>172,2</td>
<td>360,5</td>
</tr>
<tr>
<td>8</td>
<td>176,9</td>
<td>299</td>
</tr>
<tr>
<td>9</td>
<td>158,2</td>
<td>321</td>
</tr>
<tr>
<td>10</td>
<td>171,2</td>
<td>372,5</td>
</tr>
<tr>
<td>11</td>
<td>166,4</td>
<td>330</td>
</tr>
<tr>
<td>12</td>
<td>184,6</td>
<td>381,5</td>
</tr>
<tr>
<td>13</td>
<td>161,4</td>
<td>391</td>
</tr>
<tr>
<td>14</td>
<td>192,2</td>
<td>378,2</td>
</tr>
<tr>
<td>15</td>
<td>190,5</td>
<td>322</td>
</tr>
</tbody>
</table>

V průměru docházelo při hyperaktivitě detruzoru k prvnímu nucení na mikci při hodnotě objemu 97,82 ml a k maximálnímu nucení při hodnotě 156,78 ml. U žen s hypoaktivním detruzorem docházelo k prvnímu i maximálnímu nucení na mikci...
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

většinou až při mnohem vyšším objemu. Průměrná hodnota objemu při prvním nucení byla při 174,84 ml a maximální nucení při 350,63 ml.

Rovněž hodnoty intravezikálního tlaku ukazují výrazné rozdíly při hyper a hypoaktivitě detruzoru. Při hyperaktivitě je tlak obvykle vyšších hodnot oproti hypoaktivitě, kdy tlak v měchýři dosahuje nízkých hodnot.

Při vyšetřovacích metodě cystometrii bylo zjištěno naprosto stejné procentuální rozložení aktivity detruzoru močového měchýře jako při metodě uroflowmetrie, která činila ze souboru pacientek 40% žen s hyperaktivním detruzorem a 60% hypoaktivním.

Obr. 6: Procentuální rozložení aktivity detruzoru měchýře po provedení cystometrie

V následujícím kroku byly využity všechny výsledky měření z obou urodynamických metod a společně s informacemi z odebrané anamnézy a dalších vyšetření, které jsou uvedeny v jednotlivých kasuistikách v předchozí kapitole, byl určen jednotlivý typ močové inkontinence.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Obr. 7: Procentuální rozložení typů inkontinence u souboru vyšetřovaných žen

Tab. 21: Diagnostikovaný typ inkontinence u jednotlivých pacientek

<table>
<thead>
<tr>
<th>pacientka</th>
<th>typ močové inkontinence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>urgentní</td>
</tr>
<tr>
<td>2</td>
<td>stresová - III. stupeň</td>
</tr>
<tr>
<td>3</td>
<td>smíšená</td>
</tr>
<tr>
<td>4</td>
<td>urgentní</td>
</tr>
<tr>
<td>5</td>
<td>stresová - II. stupeň</td>
</tr>
<tr>
<td>6</td>
<td>stresová - I. stupeň</td>
</tr>
<tr>
<td>7</td>
<td>urgentní</td>
</tr>
<tr>
<td>8</td>
<td>urgentní</td>
</tr>
<tr>
<td>9</td>
<td>stresová - II. stupeň</td>
</tr>
<tr>
<td>10</td>
<td>stresová - III. stupeň</td>
</tr>
<tr>
<td>11</td>
<td>urgentní</td>
</tr>
<tr>
<td>12</td>
<td>urgentní</td>
</tr>
<tr>
<td>13</td>
<td>stresová - II. stupeň</td>
</tr>
<tr>
<td>14</td>
<td>stresová - III. stupeň</td>
</tr>
<tr>
<td>15</td>
<td>smíšená</td>
</tr>
</tbody>
</table>

zdroj: vlastní tvorba

Urgentní inkontinence byla diagnostikována u pacientek s číslom 1, 4, 7, 8, 11 a 12, což představuje 40% z celého souboru žen. Stresová inkontinence byla určena u pacientek číslo 2, 5, 6, 9, 10, 13 a 14. Představuje to 47% žen ze sledovaného souboru, přičemž na základě odebrané urologické anamnézy bylo možné ještě určit stresovou inkontinenci díky klasifikaci dle Ingelmanna-Sundberga podle závažnosti do tří stupňů. Stupeň I byl diagnostikován u pacientky číslo 6 (7%), stupeň II u žen s číslem 5, 9, 13 (20%) a nejtěžší stupeň stresové inkontinence III u žen číslo 2, 5, 10 a 14 (20%). Zbývajících 13% žen ze souboru představovaly pacientky s číslom 3 a 15, u kterých byla určena smíšená inkontinence moči s velkou složkou stresovou a lehkou složkou urgentní.
9 Diskuze

V diskuzi bych se ráda zaměřila na ovlivnitelnost výsledků a hodnocení u metod, které byly použity při našem měření, tedy při cystometrii a uroflowmetrii.

Přestože urodynamická vyšetření představují dnes jednou z nejpřesnějších metod k určování dysfunkcí dolních močových cest, skýtají rovněž svá úskalí. Už jen malé leknutí, strach či změna polohy může značně ovlivnit měřené hodnoty. Při provádění metody cystometrie může zavedený katétr v pochvě či v rektu vyvolávat kontrakce, které vedou ke změnám tlaků v těchto místech. Proto se doporučuje, aby se před počátkem měření chvíli poseckalo, neboť po určité době tyto kontrakce samy vymizí.

Při urodynamickém vyšetření může mnoho měřených parametrů vykazovat velice širokou variační šíři i u zcela zdravých jedinců, kteří nepocítíjící žádné obtíže. Proto je nutné, aby naměřené hodnoty byly vždy posuzovány v komplexu s dalšími provedenými vyšetřeními a výsledky urodynamického vyšetření nebyly přeceňovány. Existují totiž ženy s naprosto normálními hodnotami měření mající potíže s inkontinencí a naopak zdraví jedinci s abnormálními hodnotami.

Rovněž rychlost plnění při cystometrii může hrát svou roli. Robertson prováděl vyšetření na zdravých ženách při konvenčním plnění rychlostí 50 ml/min a 100 ml/min. Na části žen se projevila nestabilita měchy při rychlosti plnění 50 ml/min, kdežto při 100 ml/min se nestabilita neprojevila ani u jedné ženy. Proto i při našem cystometrickém vyšetření byla použita rychlost plnění 100 ml/min, aby bylo vyvarováno jakémukoliv zkreslení naměřených hodnot z tohoto hlediska.

Další použitou metodou při našem měření bylo vyšetření pomocí uroflowmetrie. Při provádění této metody je nutné zajistit ženě soukromí, neboť mikce musí probíhat bez jakéhokoliv psychického stresu, který by mohl ovlivňovat výsledky měření. Obvykle se to provádí ve speciálně určené místnosti, či na místě odděleném zástěrou. Tato metoda je neinvazivní a bezpečná, a proto by se k ní mělo přistupovat jako jedné z prvních metod při urodynamickém vyšetřování.

Obecně jsou urodynamická vyšetření dnes naprosto běžná, snadná a velice spolehlivá s vysokým koeficientem shody a reproduktivity, jestliže jsou prováděna.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

kvalitně a správně v souladu s doporučeními a zásadami urodynamických praktik Mezinárodní společnosti pro kontingenci (ICS).
10 Závěr

Cílem diplomové práce bylo zjistit možnosti využití urodynamického vyšetření při diagnostice močové inkontinence u žen a na souboru pacientek, které udávají tyto obtíže, provést urodynamické vyšetření a následně zhodnotit výsledky měření.

Zásadní využití a naprosto nezastupitelná role urodynamického vyšetření v diagnostice močové inkontinence u žen je v základním rozlišení jednotlivých typů inkontinence. Díky urodynamickému vyšetření je možné tedy rozlišit inkontinenci stresovou, urgentní, smíšený typ a další méně časté typy samovolného úniku moči. U genuinní stresové inkontinence je dále ještě rovněž možné zpřesnit, zda se u ženy nevyskytuje nedostatečnost vnitřního sfinkteru, což poté hraje velkou roli pro výběr vhodné operativní metody.

Kvalitní diagnostika je zásadním předpokladem pro určení správného rozhodnutí a následného zvolení úspěšné léčby. Přestože urodynamická vyšetření poskytují odborníkovi zcela zásadní informace, je vždy nutné brát v ohled všechny informace z předem provedené anamnézy, předchozích vyšetření a subjektivních pocitů pacientky. V tomto duchu bylo přístupováno i při stanovování diagnózy u souboru 15 žen, u kterých bylo provedeno urodynamické vyšetření. U všech těchto žen byla provedena metoda uroflometrie a cystometrie. Měření bylo v obou případech úspěšné, neboť obě metody ukázaly stejnou zjištění a na základě těchto výsledků a informací z anamnézy byl stanoven typ močové inkontinence. Největší část ze souboru představovaly pacientky se stresovou inkontinencí, u kterých bylo ještě možné rozlišit díky klasifikaci dle Ingelmanna-Sundberga stresovou inkontinenci dle závaznosti do tří stupňů. Další diagnostikovanou skupinu představovaly ženy s urgentní inkontinencí a v poslední řadě pacientky, u kterých se vyskytovala jak složka stresová, tak i urgentní, jednalo se zde tedy o smíšenou inkontinenci.

Závěrem bych ráda popřála všem ženám, které pociťují některé z popsáných obtíží, aby našly odvahu k prvnímu kroku do specializovaného pracoviště, kde jim bude jistě poskytnuta odborná pomoc, která je může těchto potíží zcela zbavit nebo je alespoň částečně zmenšit. Močová inkontinence dnes již není tabu, a proto svěřit se do rukou pravého odborníka je vždy na místě, neboť jak uvádí jeden moudrý citát:
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

„Člověk je zrozen ke vzájemné pomoci.“

(„Homo in adiutorium mutuum generatus est.“)

Lucius Annaeus Seneca ml. – O hněvu (De ira)

(4 př.n.l. - 65 n.l.)
11 Seznam použitých pojmů

adnexa připojené orgány
afrentní přívodný, přinášející
artefakt uměle vzniklá struktura, nález
cystitida zánět močového měchýře
denervace přerušení nervového zásobení příslušného orgánu
detruzor sval v močovém měchýři podléhající se na jeho vyprazdňování
hyperreflexie zvýšení reflexů výpadkem jejich přirozeného tlumení
distenze roztažení, rozpětí
dyspareunie nepříjemné pocitě až bolest během pohlavního styku
dysurie obtížná, bolestivá mikce, provázená pálením a řezáním
hematurie přítomnost krve (erytrocytů) v moči
hysterektomie chirurgické odstranění dělohy cestou přes pochvu, či stěnu břišní
Charričre jednotka užívaná pro zevní průměr cévek v urologii
inhibice potlačení, útlum
insuficience nedostatečnost, selhávání
intraabdominální nitrobržní
intrauretrální uvnitř močové trubice
intraveziční uvnitř/do močového měchýře
kontraktilita stažlivost, vlastnost svalu
macerace změknutí vzniklé tekutinou
menarche první menstruační krvácení u ženy
mikce močení
n infringivní nepronikající (dovnitř organismu)
nykturie zvýšené, časté močení v noci
palpace vyšetření pohmatem
parauretrální vedle močové trubice
polakisurie zvýšené, časté močení ve dne
tenemus bolestivé nucení
tumor novotvar, nádor
ureter močovod
uretra močová trubice
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

<table>
<thead>
<tr>
<th>term</th>
<th>translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>uretritida</td>
<td>zánět močové trubice</td>
</tr>
<tr>
<td>urgece</td>
<td>nutkavá, náhlá potřeba močit</td>
</tr>
<tr>
<td>Valsalvův manévr</td>
<td>usilovný výdech při zavřené hlasové štěrbině</td>
</tr>
</tbody>
</table>
12 Seznam použitých zkratek

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>art.</td>
<td>arteria</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CMP</td>
<td>centrální mozková příhoda</td>
</tr>
<tr>
<td>CNS</td>
<td>centrální nervová soustava</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>FA</td>
<td>farmakologická anamnéza</td>
</tr>
<tr>
<td>FV</td>
<td>fyzikální vyšetření</td>
</tr>
<tr>
<td>GA</td>
<td>gynkologická anamnéza</td>
</tr>
<tr>
<td>Charr</td>
<td>Charričre</td>
</tr>
<tr>
<td>ICHDK</td>
<td>ischemická choroba dolních končetin</td>
</tr>
<tr>
<td>ICS</td>
<td>International Continence Society</td>
</tr>
<tr>
<td>KT</td>
<td>klinické testy</td>
</tr>
<tr>
<td>LPP</td>
<td>leak point pressure</td>
</tr>
<tr>
<td>ligg.</td>
<td>ligamenta</td>
</tr>
<tr>
<td>m.</td>
<td>musculus</td>
</tr>
<tr>
<td>nn.</td>
<td>nervy</td>
</tr>
<tr>
<td>OA</td>
<td>osobní anamnéza</td>
</tr>
<tr>
<td>pl.</td>
<td>plexus</td>
</tr>
<tr>
<td>RA</td>
<td>rodinná anamnéza</td>
</tr>
<tr>
<td>SA</td>
<td>sociální anamnéza</td>
</tr>
<tr>
<td>UA</td>
<td>urologická anamnéza</td>
</tr>
<tr>
<td>UV</td>
<td>urodynamická vyšetření</td>
</tr>
<tr>
<td>ZVM</td>
<td>zobrazovací vyšetřovací metody</td>
</tr>
</tbody>
</table>
13 Seznam použité literatury

14 Seznam použitých příloh

Příloha 1: diaphragma pelvis ženy (pohled shora)
Příloha 2: diaphragma pelvis
Příloha 3: svaly dna pánevního a hráze u ženy
Příloha 4: Gaudenzův dotazník
Příloha 5: uroflowmetrické přístroje
Příloha 6: měření tlaků v močovém měchýři v průběhu mikce
Příloha 7: cystometrie
Příloha 8: cystometrický katétr
Příloha 9: videourodynamicí
Příloha 10: mikční deník
Příloha 11: kalibrační sondy
Příloha 1: diaphragma pelvis ženy (pohled shora)

zdroj: Abrahams, Druga (8, str. 198)
Příloha 2: diaphragma pelvis

Obr. 14. 8 Diaphragma pelvis
1 – m. coccygeus
2 – histus analis
3 – hiatus urogenitalis
4 – m. levator ani – m. puborectalis
5 – m. levator ani – m. pubococcygeus
6 – m. levator ani – m. iliococcygeus
7 – canalis obturatorius
8 – arcus tendineus m. levatoris ani
9 – m. obturatorius int.

zdroj: Elišková, Naňka (9, str. 215)
Příloha 3 : svaly dna pánevního a hráze u ženy

Obr. 14.10 Svalovina pánevního dna a hráze u ženy
(pohled zdola)
1 – crus clitoridis
2 – diaphragma urogenitale
3 – bulbus vestibuli
4 – m. sphincter ani externus
5 – m. transversus perinei superficialis
6 – m. bulbospongiosus
7 – m. compressur urethrae
8 – m. ischiocavernosus
9 – m. sphincter urethrovaginalis

zdroj: Elišková, Naňka (9, str. 217)
Příloha 4: Gaudenzův dotazník

Příjmení: __________________________ Datum: __________________________

Jméno: __________________________ Adresa: __________________________

Věk: __________________________ Telefon: __________________________

1) Pomočujete se někdy mimovolně?
 a) Ano
 b) ne

2) Jak často se to stává?
 a) zřídka, např. při nachlazení I
 b) příležitostně I
 c) denně, několikrát za den 1
 d) prakticky neustále 1

3) Jak velké množství moči mimovolně odchází?
 a) několik kapek I
 b) malé dávky
 c) vetší množství 1

4) Jak často během dne si musíte měnit prádlo, protože je mokré?
 a) není třeba
 b) několikrát denně

5) Často použijí vložku nebo vatu:
 a) když jdu ven
 b) také doma
 c) také když jdu spát

6) Když si měním prádlo nebo vložku, jsou:
 a) suché
 b) vlhké
 c) mokré
 d) úplně mokré

7) Mimovolné pomočování pro mě znamená:
 a) není to pro mě problém I
 b) příležitostně mě obtěžuje
 c) velmi mě obtěžuje 1
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

8) Při jaké příležitosti dochází k mimovolnému pomočování?
 a) při kašli a kýchání
 b) když se směji
 c) při chůzi nebo chůzi do schodů
 d) při sestupování
 e) při skákání, cvičení, poskakování
 f) vstoje
 g) vsedě, vleže

9) Po jaké události se mimovolné pomočování oběvilo poprvé?
 a) po porodu
 b) po břišní operaci
 c) v přechodu
 d) jindy

10) Kolik dětí jste porodila?
 a) Žádné
 b) 1-3
 c) 4 a více

11) Počet dětí s porodní hmotností nad 4 kg:
 a) 0
 b) 1
 c) 2 a více

12) Menstruujete ještě?
 a) ano
 b) ne

13) Prodelala jste již břišní operaci?
 a) ano, jakou?
 b) Ne

14) Pociťujete pálení při močení?
 a) ano, během močení
 b) ano, po močení
 c) ne

15) Kolikrát během dne močíte?
 a) každé 3-6 hodin
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

16) Budíte se v noci, protože máte nucení na moč? Jak často v noci močíte?
 a) Nikdy
 b) jednou, nepravidelně
 c) 2-4x
 d) 5 a vícekrát

17) Pomočujete se v noci při spaní, aniž byste o tom věděla?
 a) ne, nikdy
 b) příležitostně, zřídka
 c) často, pravidelně

18) Máte-li nucení na moč, musíte jít ihned nebo můžete počkat?
 a) mohu čekat
 b) musím jít brzy, během 10-15 minut
 c) musím jít ihned, během 1-5 minut

19) Stane se někdy, že nestačíte dojít na záchod a již cestou se pomočíte?
 a) nikdy
 b) zřídka, např. při nachlazení
 c) příležitostně
 d) pravidelně, často

20) Stane se někdy, že máte náhle silné nucení na močení a brzy poté se zcela nečekaně pomočíte, aniž by se tomu dalо zabránit?
 a) Ne
 b) zřídka
 c) často

21) Dokážete silou vůle přerušit proud moči?
 a) Ano
 b) Ne
 c) nevím

22) Máte pocit, že váš močový měchýř je po vymočení prázdný?
 a) Ano
 b) Ne
 c) ne vždy
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

d) nevím

23) Potlačit nucení na močení je pro mě:
 a) vlastně to není problém III
 b) příležitostně mi vadí III
 c) velmi mi vadí 3
 d) nesmírně mi vadí 2

24) Kolik vážíte?
 a) méně než 50 kg
 b) 51-60 kg
 c) 61-70 kg
 d) 71-80 kg
 e) více než 80 kg I

25) Trpíte návaly?
 a) ano
 b) ne

26) Užíváte hormonální přípravky, tablety nebo injekce?
 a) ano
 b) ne

Prosím, nechat nevyplněné skóre pro nutkavou inkontinenci

 skóre pro stresovou inkontinenci

diagnóza:
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Příloha 5: uroflowmetrické přístroje

Příloha 6: měření tlaků v močovém měchýři v průběhu mikce

Abdominální tlak [cm H$_2$O]

- předmikční
- otevírací
- kontrakční při Q_{max}
- maximální

Intravezikální tlak [cm H$_2$O]

- předmikční
- otevírací
- kontrakční při Q_{max}
- maximální

Detruzorový tlak [cm H$_2$O]

- předmikční
- otevírací
- kontrakční při Q_{max}
- maximální

Rychlost proudu [ml/s]

- maximální

Otevírací čas

Čas (s)

zdroj: Martan, Mašata, Halaška (11, str. 21)
Příloha 7: cystometrie

Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Příloha 8: cystometrický katétr

Zdroj: http://www.avmc.cz
Příloha 9: videourodynamicika

zdroj: http://www.life-tech.com
Příloha 10: mikční deník

Your Daily Bladder Diary

This diary will help you and your health care team figure out the causes of your bladder control trouble. The “sample” line shows you how to use the diary.

Your name: __

Date: ____________________

<table>
<thead>
<tr>
<th>Time</th>
<th>Drinks</th>
<th>Trips to the Bathroom</th>
<th>Accidental Leaks</th>
<th>Did you feel a strong urge to go?</th>
<th>What were you doing at the time?</th>
<th>Ruming</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-7 a.m.</td>
<td>Coffee 2 cups</td>
<td>✓</td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>7-8 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>8-9 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>9-10 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>10-11 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>11-12 noon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>12-1 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>1-2 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>2-3 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>3-4 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>4-5 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>5-6 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
<tr>
<td>6-7 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes No</td>
<td></td>
</tr>
</tbody>
</table>

Use this sheet as a master for making copies that you can use as a bladder diary for as many days as you need.
Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

<table>
<thead>
<tr>
<th>Time</th>
<th>Drinks</th>
<th>Trips to the Bathroom</th>
<th>Accidental Leaks</th>
<th>Did you feel a strong urge to go?</th>
<th>What were you doing at the time?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-10 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12 midnight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5 a.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I used ______ pads today. I used ______ diapers today (write number).

Questions to ask my health care team:

Let's Talk About Bladder Control for Women is a public health awareness campaign conducted by the National Kidney and Urologic Diseases Information Clearinghouse (NKUDIC), an information dissemination service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health.

Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

![Mikční deník](http://www.ordinace.cz/centrum/hyperaktivni-mechyr/stahnete-si/)

Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Možnosti využití urodynamického vyšetření při močové inkontinenci u žen

Příloha 11: kalibrační sondy

zdroj: http://www.lekarske-nastroje.plasil.net/produkty/products.htm