VAZEBNÉ STUDIE PEPTIDŮ JAKO POTENCIÁLNÍCH LÁTEK PRO LÉČBU OBEZITY

Bakalářská práce
studijního programu Klinická a toxikologická analýza

Andrea Špolcová

Školitelka: RNDr. Lenka Maletínská, CSc.
Garant: RNDr. Radomír Čabala, Ph.D.

Praha 2009
Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně pod vedením školitelky RNDr. Lenky Maletínské, CSc. (ÚOCHB, v.v.i., AV ČR, Praha) a garanta RNDr. Radomíra Čabaly, Ph.D. (PfF UK, Praha), a že jsem všechny použité prameny řádně citovala.

Jsem si vědoma toho, že případné využití výsledků, získaných v této práci, mimo Univerzitu Karlovu v Praze je možné pouze po písemném souhlasu této univerzity.

V Praze dne 25. 5. 2009

podpis

Andrea Špelčová
V úvodu své práce bych ráda poděkovala své školitelce, RNDr. Lence Maletínské, CSc. (ÚOCHB, v.v.i., AV ČR Praha), za její obětavou pomoc a konzultace při psaní mé bakalářské práce i za čas, který mi věnovala při experimentální činnosti.

V neposlední řadě bych ráda poděkovala celé své rodině a příteli za trpělivost a podporu při mých studiích.
Klíčové předměty

Biochemie
Farmakologie

Klíčová slova

Peptid uvolňující prolaktin (PrRP)
Hypofyzární buněčné linie RC-4B/C, GH3, AtT-20
Vazba k receptoru
Receptor GPR10
OBSAH

... 5

SEZNAM POUŽITÝCH ZKRATEK 7

1. ÚVOD ... 9

2. TEORETICKÁ ČÁST .. 11

2.1 Peptid uvolňující prolaktin (Prolactin-releasing peptide - PrRP) 11

2.1.1 Objev .. 11

2.1.2 Struktura .. 11

2.1.3 Výskyt PrRP a jeho receptorů 12

2.1.4 Fyziologický význam .. 13

2.1.4.1 Úloha PrRP pro přijem potravy 13

2.1.4.2 Úloha PrRP v HPA (hypotalamo-hypofýzo-adrenální) osce 15

2.1.4.3 Úloha PrRP při vnímání bolestivých podnětů 16

2.1.5 Vztah mezi strukturou a aktivitou analogu PrRP 16

2.2 Hypofyzární buněčné linie ... 17

2.2.1 RC-4B/C .. 17

2.2.2 GH3 .. 17

2.2.3 AtT-20 .. 17

2.3 Vazebné experimenty .. 18

2.3.1 Teorie vazebných experimentů 18

2.3.2 Totální, specifická a nespecifická vazba 18

2.3.3 Saturační vazebné experimenty 19

2.3.4 Kompetitivní vazebné experimenty 19

3. EXPERIMENTÁLNÍ ČÁST .. 21

3.1 Materiál .. 21

3.1.1 Chemikálie .. 21

3.1.2 Růstová média .. 22

3.1.3 Pufry ... 22

3.1.4 Přístroje ... 23

3.1.5 Peptidy ... 23

3.1.5.1 Jodace PrRP 31 .. 23

3.2 Pěstování buněčných linii ... 23

3.3 Provedení vazebných experimentů 24

3.3.1 Optimalizace podmínek vazebných experimentů 24
3.3.2 Provedení saturačních vazebních experimentů 25
3.3.3 Provedení kompetitivních vazebních experimentů 25
3.3.4 Analýza dat získaných z vazebních pokusů a statistika 26

4. VÝSLEDKY A DISKUZE ... 27

4.1 Peptidy ... 27
 4.1.1 Jodace PrRP31 ... 27

4.2 Pěstování hypofyzárních buněčných linií ... 28

4.3 Optimalizace podmínek vazebních pokusů k hypofyzárním buněčným
 liniím ... 29
 4.3.1 Závislost vazby 125I-PrRP31 na teplotě a době inkubace 29
 4.3.2 Závislost vazby 125I-PrRP31 na počtu buněk 30
 4.3.3 Vliv EDTA či EGTA na vazbu 125I-PrRP31 31
 4.3.4 Vliv Ca$^{2+}$ na vazbu 125I-PrRP31 ... 31
 4.3.5 Vliv BPTI na vazbu 125I-PrRP31 ... 32
 4.3.6 Optimální podmínky vazby PrRP k hypofyzárním buněčným liniím 33

4.4 Saturační vazebné experimenty ... 34

4.5 Kompetitivní vazebné experimenty .. 36

5. ZÁVĚR ... 38

6. SEZNAM POUŽITÉ LITERATURY .. 39
SEZNAM POUŽITÝCH ZKRATKŮ

ACTH – Adrenokortikotropní hormon
B_{max} – Počet vazebných míst
B_{nsp} [cpm] – Nespecifická vazba
B_{sp} [cpm] – Specifická vazba
B_{t} [cpm] – Totální vazba
BPTI – Hovězí pankreatický inhibitor trypsinu (Bovine Pancreatic Trypsin Inhibitor)
BSA – Hovězí sérový albumin (Bovine Serum Albumin)
CART – Cocaine and Amphetamine Regulated Transcript
CCK - Cholecystokinin
CRH – Cortikoliberin (Corticotropin Releasing Hormone)
DMN – Dorsomediální jádro
EDTA – Ethylendiamin tetraoctová kyselina (Ethylene Diamine Tetraacetic Acid)
EGF – Epidermální růstový faktor (Epidermal Growth Factor)
EGTA – Ethylenglykol tetraoctová kyselina (Ethylene Glykol Tetraacetic Acid)
FBS – Fetální hovězí sérum (Fetal Bovine Serum)
EC_{50} [mol/l] – Efektivní koncentrace 50
FSH – Folikolustimulační hormon
GH – Růstový hormon (Growth hormone)
GnRH – Gonadotropiny uvolňující hormon (Gonadotropin-Releasing Hormone)
hGR3, GPR10 – Lidský receptor pro PrRP (human G-protein coupled receptor)
HIS – Koňské inaktivované sérum (Horse Inactivated Serum)
HEPES – N-(2-hydroxyethyl)piperazin-N-(2-ethansulfonová kyselina)
HPA – hypotalamo-hypofýzo-adrenální osa (Hypothalamic-Pituitary-Adrenal axis)
LH – Luteinizační hormon
K_{d} [mol/l] – Rovnovážná disociační konstanta
K_{i} [mol/l] – Rovnovážná disociační konstanta neznačeného ligandu
MAPK – kaskáda kináz (Mitogen-Activated Protein Kinase)
NA - Noradrenalin
NTS – Nukleus tractus solitarius
PEI - Polyethylenimin
PRL – Prolaktin
PrRP – Peptid uvolňující prolaktin
PVH – Paraventrikulární jádro
TSH – Tyreotropin (*Thyroid Stimulating Hormone*)
UHR-1 – Potkání receptor pro PrRP (*Unknown Hypothalamic Receptor- I*)
VLRN – Ventrální a laterální retikulární jádro
VMN – Ventromediální jádro
1. ÚVOD

Obezita přestavuje v dnešní době závažný zdravotní problém a množství obězních lidí celosvětově stoupá nesmírně rychlým tempem. S obezitou souvisí zvýšené riziko celé řady dalších chorob jako je diabetes mellitus 2. typu, hypertenze, kardiovaskulární choroby, nádorová onemocnění a jiné. Navzdory velkému úsilí odhalit mechanizmy regulace příjmu potravy a navrhnut nové antiobezitní léky jsou v současné době k dispozici pouze dva léky pro léčbu obezity a několik dalších je v klinické fázi výzkumu.

V posledních letech objevené neuropeptidy regulující příjem potravy představují nové možnosti ve vývoji budoucí antiobezitní terapie. Jednou z takových látek je i peptid uvolňující prolaktin (prolactin-releasing peptide, PrRP). Tento centrálně působící neuropeptid byl v r. 1998 objeven jako endogenní ligand sirotčího receptoru spřaženého s G proteinem vyskytujícího se zejména v hypofyše a hypotalamu.1 Nedávno byla popsána jeho účast na regulaci energetického metabolismu a jiných fyziologických procesů, ale jeho přesná funkce a vztah s jinými neuropeptidy jsou prozatím málo známé.2

V organismu se přirozeně vyskytují dva peptidy PrRP se shodnou C-koncovou sekvencí: PrRP31 obsahující 31 aminokyselin a PrRP20 obsahující 20 aminokyselin, které mají srovnatelnou biologickou aktivitu.2 Zatím bylo popsáno jen velmi málo analogů PrRP. Hledání minimální biologicky aktivní části peptidu a její následné modifikace by mohlo vést k vývoji agonistů peptidu se selektivním anorektickým (příjem potravy snižujícím) účinkem. Dosud nebyl nalezen žádný antagonistu PrRP. Právě ten by však mohl pomoci k objasnění fyziologické funkce PrRP v organismu a mohl by dopomoci k nalezení účinného mechanizmu k léčbě obezity. Agonista PrRP by mohl být účinným antiobezitikem.

Cílem této práce je optimalizace metody vazby analogů PrRP k jeho receptoru u tří stabilních hypořízatvárních buněčných linií. Tato metoda by pak měla sloužit k dalšímu studiu biologické aktivity analogů PrRP, tedy k testování jejich afinity k receptoru a výběru vhodných látek pro in vivo testy.
Cíle práce:

1. Optimalizovat podmínky pro studium vazby analogů PrRP k hypofyzárním buněčným liniiim RC-4B/C, GH3 a AtT-20.
2. Pomocí saturační vazby $^{125}\text{I}-\text{PrRP31}$ k buňkám určit základní vazebné konstanty, tj. rovnovážnou disociační konstantu K_d a počet vazebných míst na buňku B_{max}.
3. Změřit afinitu analogů PrRP31, PrRP20, PrRP13 a I-PrRP31 k receptoru v hypofyzárních buňkách, tedy inhibiční konstantu K_i.
2. TEORETICKÁ ČÁST

2.1 Peptid uvolňující prolaktin (*Prolactin-releasing peptide* - PrRP)

2.1.1 Objev

PrRP byl objeven v roce 1998 při hledání endogenního ligandu pro sirotčí receptor (receptor, pro který není známý žádný ligand) hGR3 (*human G-protein-coupled* receptor; jiné označení GPR10, potkaní analog UHR-1), který se nachází v hypofýze a v menši míře i v mozku, měse a dřeni nadledvin. Ligand byl objeven pomocí metody „obrácné farmakologie“, kdy se izolovala komplementární DNA kódující receptor hGR3 a následně se hledal příslušný endogenní ligand v hovězím extraktu z hypotalamu. Byl nalezen peptid s dosud neznámou strukturou, jehož studie ukázaly, že působí jako specifický faktor pro sekreci hormonu prolaktin (PRL). Odtud tedy pochází pojmenování peptid uvolňující prolaktin.¹

2.1.2 Struktura

PrRP vzniká z preprohormonu, který je u různých živočišných druhů tvořen různým počtem aminokyselin (98 aminokyselin u krav, 87 u člověka, 83 u kys a 82 u myší). Preprohormon obsahuje signální peptid a 2 štěpné místa, díky kterým mohou potenciálně vznikat při posttranslačních úpravách 2 peptidy. Jeden se skládá z 31 aminokyselin (PrRP31) a druhý z 20 aminokyselin (PrRP20). Struktura peptidu je uvedena na Obr. 1.

Sekvence lidského a potkaního PrRP31 se liší ve 4 aminokyselinách.³ Odlišný je i hovězí PrRP31, který se od lidského PrRP odlišuje ve 3 aminokyselinách.⁴ Struktura potkaního a hovězího PrRP31 je uvedena na Obr. 2.
2.1.3 Výskyt PrRP a jeho receptorů

PrRP byl nalezen v prodloužené mísce, v hypotalamu a v hypofyzě.\(^3\) mRNA pro PrRP se nachází v mozkovém kmeni v neuronech v *nucleus tractus solitarius* (NTS) a ve ventrálním a laterálním retikulárním jádru (VLRN). V hypotalamu se mRNA pro PrRP vyskytuje v kaudální části ve ventromediálním jádru (VMN) a dorsomediálním jádru (DMN).\(^5\) mRNA pro PrRP byla také nalezena v periferních tkáních, a to v nadledvinách, ve slinivce břišní a ve varlatech.\(^6\)

Receptory pro PrRP byly objeveny v mozkou i v periferních tkáních. V mozkou se vyskytují v talamu, hypotalamu, NTS a také v hypofyzě. Vyšší počet receptorů v periferní tkání byl zjištěn ve dřeni nadledvin.\(^7\)
2.1.4 Fyziologický význam

PrRP má v organismu více úloh. Původně bylo zjištěno, že PrRP ovlivňuje vylučování prolaktinu z buněk potkaní hypofyzární linie RC-4B/C.\(^1\) Avšak přímé působení PrRP na sekreci prolaktinu bylo zpochybněno, jelikož se nenašla žádná imunitní odpověď na protilátku proti PrRP na *eminencia mediana*, tj. dolní stěně třetí mozkové komory, což je místo, které zajišťuje spojení mezi třetí mozkovou komorou a hypofýzou, a odkud jsou vylučovány ostatní hormony regulující činnost hormonů hypofýzy.\(^8\) Ukázalo se, že PrRP zvyšuje vylučování prolaktinu pouze v přítomnosti tyreotropního hormonu (TSH).\(^9\) Proto se předpokládá, že vylučování prolaktinu není hlavní úloha PrRP v organismu.\(^2\)

Jelikož PrRP i jeho receptory byly objeveny v DMN,\(^5\) které hraje důležitou roli při regulaci energetické bilance, zdá se, že PrRP se účastní regulace příjmu potravy a tělesné hmotnosti.\(^10\) PrRP má také význam při aktivaci hypotalamo-hypofýzo-adrenální osy,\(^11\) při regulaci stresu, krevního tlaku, při vnímání bolestivých podnětů apod.\(^12\)

2.1.4.1 Úloha PrRP pro příjem potravy

K přesvědčení, že PrRP by mohl mít vliv na snížení příjmu potravy, vedl fakt, že mRNA pro PrRP byla u potkanů redukována i v situaci, kdy byl energetický příjem nižší než energetický výdej\(^10\) (např. při kojení, či při hladovění\(^13\)). Stejně je tomu i u anorexigénich peptidů (peptidy snižující příjem potravy), jako jsou pro-opiomelanocortin či peptid CART (*cocaine-and amphetamine-regulated transcript*).\(^10\)

Bylo prokázáno, že injektové PrRP do centrální nervové soustavy způsobí snížení příjmu potravy, a to nejen u sytých potkanů, ale i u hladových jedinců.\(^14\) Zároveň dochází ke zvýšení tělesné teplohy a k vyšší spotřebě kyslíku. Zvýšená tělesná teplohy je ukazatelem zvýšeného energetického výdeje.\(^15\) Ačkoliv PrRP snižuje příjem potravy, neovlivňuje příjem vody, nezpůsobuje nechutenství, ani nenarušuje obvyklé stravovací návyky.\(^14\)

Při současném podání PrRP a leptinu, adipocytárního hormonu, který reguluje energetickou bilanci, dochází u potkanů k větší redukci příjmu potravy během noci, k většímu úbytku hmotnosti a k vyššímu výdeji energie.\(^13\) Také bylo zjištěno, že neurony v oblastech mozku, ze kterých je vylučován PrRP, obsahují leptinové receptory.\(^13\)
2.1.4.1.1 Jedinci s modifikovaným genem pro PrRP či GPR10

Geneticky modifikovaní jedinci (anglicky - knock-out, KO) jsou takoví jedinci, kterým byla zámeřně pozměněna oblast DNA kódující gen např. pro PrRP či GPR10 receptor. Ke změnám dochází pomocí cílených vektorů, které jsou zavedeny do DNA na místo původních genů kódujících peptid nebo receptor.16,17

Myší s modifikovaným genem pro GPR10 receptor (GPR10 KO) tedy nemají funkční receptor pro PrRP. V porovnání s normálními jedinci mají GPR10 KO vyšší hmotnost, více tuku, nižší energetický výdej a vyšší hladinu celkového cholesterolu. Překvapivě však mají nižší příjem potravy.16

U myší, které neměly funkční receptory GPR10, nebyl prokázán vliv PrRP, ani vliv cholecystokininu (hormonu vylučovaného v periferii, který snižuje příjem potravy) na příjem potravy. Tento objev vedl k poznamce, že PrRP by prostřednictvím svého receptoru mohl být klíčovým prostředníkem pro funkci cholecystokininu (CCK), který navozuje pocit sytosti po jídelu.18 15 týdnů staré myši, samci i samice, bez GPR10 receptoru měly zřetelně vyšší váhu, než stejně staré myši, které receptor měly. Samice byly oběžnější než samci i díky sníženému energetickému výdeji.16

Myší s modifikovaným genem pro PrRP (PrRP KO) neprodukují PrRP. V dospělosti trpí hyperfagii (zvýšený příjem potravy, přejídání) a jsou oběžnější než jedinci s funkčním genem pro PrRP, což je patrné z Obr. 3. To je spojeno i s glukózovou intolerancí a rezistenci k inzulinu.17

\textbf{Obr. 3 Myší s modifikovaným genem pro PrRP}17

\textit{WT (wild type) – normální jedinci s genem pro PrRP
KO – myší s modifikovaným genem}
2.1.4.2 Úloha PrRP v HPA (hypotalamo-hypofýzo-adrenální) ose

Imunohistochemické analýzy prokázaly, že PrRP se nachází v NTS a v prodloužené míši, odkud vede hustá síť nervových vláken PrRP do paraventrikulárního jádra (PVH) v hypotalamu.19 PrRP vlákná se spojí se buňkami vylučujícími kortikoliberin (CRH), který reguluje odpověď na stresové situace díky zvýšenému vylučování adrenokortikotropního hormonu (ACTH),11 který dále reguluje vylučování glukokortikoidů (zejména kortizolu a kortikosteronu) z kůry nadledvin. Po injekování PrRP do tětí mozkové komory se zvýší koncentrace ACTH v krevním séru. Ke zvýšení koncentrace ACTH v séru nedojde při společném injektování PrRP a astressinu, antagonisty CRH, blokujícího receptory CRH. Toto zjištění vedlo k přesvědčení, že PrRP způsobí zvýšení koncentrace ACTH v séru díky aktivování receptorů CRH.20 Ke zvýšení koncentrace ACTH v krevní plazmě dojde i při společném podání PrRP a noradrenalinu (NA), který působí na vylučování ACTH pomocí vylučování CRH z hypofýzy.19 Schéma působení PrRP na HPA osu je uvedeno v Obr. 4.

Provedené experimenty dokazují, že PrRP zprostředkovaná odpovědi na stresové situace v HPA ose.19,20

Obr. 4 Úloha PrRP v HPA ose21

PrRP má vliv na uvolňování kortikoliberinu (CRH), adrenokortikotropního hormonu (ACTH) a na uvolňování glukokortikoidů
2.1.4.3 Úloha PrRP při vnímání bolestivých podnětů

PrRP a jeho receptory GPR10 byly objeveny v místech centrální nervové soustavy, které se účastní zpracování signálů při bolestivých podnětech. Jsou to hypotalamus, mozkový kmen a mozkové jádro amygdala. Myší se zablokovaným GPR10 receptorem měly vyšší práh vnímání bolesti a vyvolané stresové situace u nich vyvolávaly sníženou vnímavost bolesti. Tato pozorování prokazují, že systém PrRP-GPR10 by mohl působit jako antagonista opiótového systému.

2.1.5 Vztah mezi strukturou a aktivitou analogů PrRP

V těle se přirozeně vyskytují analogy PrRP31 a PrRP20, jejichž účinky jsou srovnatelné. Při zkrcování N-konče peptidu PrRP20 dochází ke snížení afinitu peptidu k receptoru, při nahrazení amidové skupiny za skupinu karboxylovou na C-konci peptidu pak došlo k úplné ztrátě schopnosti vázat se na daný receptor.

Nejkratší biologicky aktivní fragment je C koncový PrRP(25-31). Jeho účinek ve srovnání s PrRP 31 je však daleko nižší.

Bylo zjištěno, že peptid PrRP(19-31) je nejkratší fragment PrRP, který má zachovanou vazebnou afinitu (Ki = 4,49nmol/l) srovnatelnou s PrRP20. Strukturálně-aktivní studie analogů PrRP(19-31) potvrdily, že aminokyseliny důležité pro správnou funkci PrRP se vyskytují na C-konci peptidu a jsou to: -Ile\(^{25}\)-Arg\(^{26}\)-Pro\(^{27}\)-Val\(^{28}\)-Gly\(^{29}\)-Arg\(^{30}\)-Phe\(^{31}\)-NH\(_2\). Zvláště důležité jsou Arg\(^{30}\) a Phe\(^{31}\). Struktura PrRP(19-31), jiné označení PrRP13, je na Obr. 5.

![Obr. 5 Struktura PrRP(19-31)](image)

Červeně zvýrazněné aminokyseliny jsou důležité pro správnou biologickou funkci PrRP
2.2 Hypofyzární buněčné linie

2.2.1 RC-4B/C

Epiteliální buněčná linie RC-4B/C byla získána z potkaního hypofyzárního adenomu, což je nezhoubný nádor. Obsahuje diferencované buňky, které produkují luteinizační hormon (LH), růstový hormon (GH), folikulostimulační hormon (FSH), PRL, ACTH a TSH. Tato linie obsahuje oproti hypofyzárním potkaním buňkám větší počet buněk produkujících LH (19,9%) a menší počet buněk vylučujících GH (12,2%). Počet buněk vylučujících PRL, FSH, ACTH a TSH je stejný ve vypěstované linii i potkaní hypofyze. Počet receptorů pro gonadotropiny uvolňující hormon (GnRH) ve vypěstované linii je dvakrát nižší, avšak afinita zůstává nezměněna.24

2.2.2 GH3

GH3 je epiteliální buněčná linie získaná z potkaního hypofyzárního zhoubného nádoru. Linie obsahuje buňky vylučující PRL a GH.25 Hydrokortizon zvyšuje vylučování GH,26 avšak inhibuje produkci PRL.27 Přídání epidermálního růstového faktoru (EGF) do živného média ovlivňuje růst buněčné linie.28

Bylo zjištěno, že PrRP přes GPR10 receptor aktivuje v buňkách GH3 kaskádu kináz (MAPK), které provádějí fosforylace na určitých místech v buňce. Pomocí fosforylace jsou spuštěny specifické buněčné odpovědi (např. buněčný růst, diferenciace buněk či odpověď na stresové situace).29

2.2.3 AtT-20

Hypofyzární buněčná linie AtT-20 byla získána střídavým pasážováním tumorových buněk přes kultury a myši. Tímto způsobem se zvýšila hormonální aktivita a růstová kapacita buněčné linie. Buněčná linie produkuje ACTH, a i když se schopnost produkce hormonu po nějaké době ztrácí, jsou buňky AtT-20 stále schopné vyvolat nádorové bujení u zdravých myší.30 Buněčná linie AtT-20 je využívána pro zkoumání exokrinního a endokrinního vylučování ACTH a beta-endorfinů.31
2.3 Vazebné experimenty

2.3.1 Teorie vazebných experimentů

Experimenty, při nichž se zjišťuje vazba radioligandu k vazebnému místu, mají široké využití. Používají se např. k určení, zda se daná látká váže k receptoru, ke zjištění počtu receptorů a afinitu ligandu k receptoru. Pro správné provedení experimentu se musí ustanovit rovnováha mezi ligandem, receptorem a komplexem ligand-receptor: 32

\[\text{ligand} + \text{receptor} \leftrightarrow \text{ligand} - \text{receptor} \]

Rovnováhy je dosaženo, když se vyrovná rychlost, při které vzniká komplex ligand-receptor, a rychlost, při které se komplex rozpadá. Pak může být stanovena rovnovážná disociační konstanta \(K_d \): 32

\[K_d = \frac{[\text{ligand}].[\text{receptor}]}{[\text{ligand} \cdot \text{receptor}]} \quad \text{[mol/l]} \]

Rovnovážná disociační konstanta udává, s jakou afinitou se váže ligand k danému receptoru. Je-li \(K_d \) nízká, pak je afinita vysoká a je potřeba pouze malá koncentrace ligandu k navázání na receptor. Vysoká hodnota \(K_d \) značí nízkou afinitu ligandu k receptoru. 32

2.3.2 Totální, specifická a nespecifická vazba

Váže-li se radioligand k receptoru, který je předmětem našeho zájmu, jedná se o specifickou vazbu (\(B_{sp} \)). Vazba na ostatní místa na buňce, jako jsou např. membrány či jiné receptory se označuje jako vazba nespecifická (\(B_{np} \)). 32 Stanoví se jako vazba radioligandu na buňku po zablokování téměř všech specifických vazebných míst neznačeným ligandem. Radioligand se pak váže pouze na nespecifická vazebná místa. Totální vazba (\(B_t \)) udává celkové množství navázaného radioligandu bez přítomnosti kompetitoru. 32

\[B_t = B_{sp} + B_{np} \]

\[B_{sp} = B_t - B_{np} \]
2.3.3 Saturační vazebné experimenty

Pomocí saturačních vazebných experimentů je určován počet receptorů (B_{max}) a afinita ligandu k danému receptoru, která je vyjádřena rovnovážnou disociační konstantou K_{d}. Tyto údaje jsou určeny z grafu B_{sp}.

Saturační experimenty se provádějí při jednotné koncentraci neznačeného ligandu a vrůstající koncentraci radioligandu. Pro vypočítání B_{sp} je nutné spočítat B_{exp} pro každou koncentraci radioligandu. To lze udělat dvěma způsoby.

První způsob je experimentální stanovení B_{exp} pro každou koncentraci radioligandu a následné vypočítání B_{sp}. K tomu je však zapotřebí velké množství radioligandu.

Druhý způsob je založen na předpokladu, že B_{exp} je úměrná koncentraci radioligandu, a že tato závislost je lineární. Pomocí toho může být B_{l} měřena např. při osmi koncentracích radioligandu a B_{exp} jen při čtyřech koncentracích. Naměřené hodnoty B_{exp} se vynesou do grafu a proloží regresní přímku, a tak je možné stanovit hodnoty B_{exp} pro každou koncentraci radioligandu a vypočítat hodnotu B_{sp}.

B_{exp} by neměla činit více než 50 % B_{l}.

2.3.4 Kompetitivní vazebné experimenty

Při kompetitivních vazebných pokusech je měřena vazba radioligandu, který má jednotnou koncentraci, v přítomnosti zvyšujících se koncentrací neznačeného ligandu, kompetitoru. B_{exp} by neměla činit více než 20 % B_{l}. Je-li B_{exp} vyšší než 20 % B_{l}, je třeba upravit podmínky experimentu.

Pomocí kompetitivních vazebných pokusů je stanovena hodnota EC$_{50}$ (efektivní koncentrace 50, označovaná také jako IC$_{50}$), což je taková koncentrace neznačeného ligandu, při které se neznačený ligand váže právě na polovinu receptorů v přítomnosti radioligandu. Její hodnota je odečtena z grafů.
\[K_i = \frac{EC_{50}}{1 + \frac{\text{radioligand}}{K_d}} \text{ [mol/l]} \]

Hodnotu EC_{50} je známa z provedeného kompetitivního vazebného experimentu a hodnota K_d byla zjištěna při saturačních vazebných pokusech, které byly provedeny za podobných podmínek jako kompetitivní vazebné experimenty.32
3. EXPERIMENTÁLNÍ ČÁST

3.1 Materiál

3.1.1 Chemikálie

<table>
<thead>
<tr>
<th>Chemikálie</th>
<th>Výrobce</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPTI</td>
<td>Sigma, St. Louis, MO, USA</td>
</tr>
<tr>
<td>BSA</td>
<td>Serva GmbH, Heidelberg, Německo</td>
</tr>
<tr>
<td>CaCl(_2) dihydrát (99 %)</td>
<td>LACHEMA, Brno, ČR</td>
</tr>
<tr>
<td>DMEM – high glukose (4,5 g/l)</td>
<td>PAA Laboratories GmbH, Pasching, Rakousko</td>
</tr>
<tr>
<td>EDTA (99 %)</td>
<td>LACHEMA, Brno, ČR</td>
</tr>
<tr>
<td>EGF</td>
<td>Sigma, St. Louis, MO, USA</td>
</tr>
<tr>
<td>EGTA (p.a.)</td>
<td>Serva GmbH, Heidelberg, Německo</td>
</tr>
<tr>
<td>FBS Standard quality</td>
<td>PAA Laboratories GmbH, Pasching, Rakousko</td>
</tr>
<tr>
<td>D-glukosa bezvodá (p.a.)</td>
<td>PENTA, Chrudim, ČR</td>
</tr>
<tr>
<td>L-glutamin 200mM</td>
<td>PAA Laboratories GmbH, Pasching, Rakousko</td>
</tr>
<tr>
<td>HAM’S F-10</td>
<td>PAA Laboratories GmbH, Pasching, Rakousko</td>
</tr>
<tr>
<td>HIS Donor horse serum</td>
<td>PAA Laboratories GmbH, Pasching, Rakousko</td>
</tr>
<tr>
<td>HEPES (99,5 %)</td>
<td>Sigma, St. Louis, MO, USA</td>
</tr>
<tr>
<td>Iodo-Gen</td>
<td>Pierce Chemicals Co., Rockford, IL, USA</td>
</tr>
<tr>
<td>KCl (99 – 100,5 %)</td>
<td>Sigma, St. Louis, MO, USA</td>
</tr>
<tr>
<td>NaCl (p.a.)</td>
<td>LACHEMA, Brno, ČR</td>
</tr>
<tr>
<td>Na(^{125})I</td>
<td>MP Biomedicals, Illkirch, Francie</td>
</tr>
<tr>
<td>NaOH (98 %)</td>
<td>PENTA, Chrudim, ČR</td>
</tr>
<tr>
<td>MgCl(_2) hexahydrát (99 – 102%)</td>
<td>LACHEMA, Brno, ČR</td>
</tr>
<tr>
<td>PEI</td>
<td>Sigma, St. Louis, MO, USA</td>
</tr>
<tr>
<td>Penicilin/streptomycin</td>
<td>PAA Laboratories GmbH, Pasching, Rakousko</td>
</tr>
</tbody>
</table>
3.1.2 Růstová média

Použitá růstová média jsou uvedena v tabulce (Tab. 1).

<table>
<thead>
<tr>
<th>Buněčná linie</th>
<th>Základní médium</th>
<th>Přidané látky</th>
<th>Množství přidané látky</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC-4B/C</td>
<td>DMEM</td>
<td>FBS</td>
<td>10 obj. %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-glutamin</td>
<td>2 obj. %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>penicilín/streptomycin</td>
<td>1 obj %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EGF</td>
<td>2,5 µg/l</td>
</tr>
<tr>
<td>GH3</td>
<td>HAM’S F-10</td>
<td>HIS</td>
<td>15 obj. %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FBS</td>
<td>2,5 obj. %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-glutamin</td>
<td>2 obj %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>penicilín/streptomycin</td>
<td>1 obj %</td>
</tr>
<tr>
<td>AtT-20</td>
<td>DMEM</td>
<td>FBS</td>
<td>10 obj. %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-glutamin</td>
<td>2 obj. %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>penicilín/streptomycin</td>
<td>1 obj %</td>
</tr>
</tbody>
</table>

3.1.3 Pufrů

Pufrů byly připravovány v deionizované vodě. Přidávané chemikálie jsou uvedeny v tabulce (Tab. 2).

<table>
<thead>
<tr>
<th>Pufr</th>
<th>Základní látky</th>
<th>pH</th>
<th>Přidané látky</th>
<th>Koncentrace přidané látky [mmol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promývací</td>
<td>10 mmol/l HEPES</td>
<td>7,4</td>
<td>NaCl</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KCl</td>
<td>4,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MgCl₂</td>
<td>5</td>
</tr>
<tr>
<td>Vazebný pufr</td>
<td>20 mmol/l HEPES</td>
<td>7,4</td>
<td>NaCl</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KCl</td>
<td>4,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MgCl₂</td>
<td>5</td>
</tr>
</tbody>
</table>
3.1.4 Přístroje

Biohazardní box (EuroFlow S41, Clean Air, Woerden, Nizozemí)
Centrifuga HETTICH Univerzal 320, Tuttlingen, Německo
CO₂ inkubátor MCO 18AIC, Sanyo, Osaka, Japonsko
γ-čítač (Wizard 1470 Automatic Gamma Counter, Perkin Elmer, Wellesley, MA, USA)
Mikroskop Stand Axiovert 40 CFL, Zeiss, Oberkochen, Německo
Digitální fotoaparát Canon Powershot G9 M52, Tokio, Japonsko

3.1.5 Peptidy

Peptidy PrRP31, PrRP20 i PrRP13 byly syntetizovány v Ústavu organické chemie a biochemie AVČR, v.v.i., Praha, metodou syntézy na pevné fázi.

3.1.5.1 Jodace PrRP 31

PrRP31 byl jodován NaI či Na\(^{125}\)I s činidlem Iodogen v 0,2 mol/l fosfátovém pufru o pH 7,2 v laboratoři Radioizotopy, ÚOCHB, v.v.i., AVČR Praha, podle instrukcí výrobce. Jodace probíhala 15 minut při pokojové teplotě. Radioaktivní nebo neradioaktivní nejedovatý, mono-jodovaný a di-jodovaný PrRP31 byly separovány pomocí RP-HPLC. Jako mobilní fáze byl použit 20% až 30% gradient acetonitrilu ve vodě s 0,05 % kyselinou trifluorocetovou.\(^{34}\)

\(^{125}\)I-PrRP31 byl uchován v alikvotech při -20 °C a spotřebován v průběhu jednoho měsíce.

3.2 Pěstování buněčných linií

Buněčné linie byly kultivovány v inkubátoru při 37 °C v atmosféře 95 % vzduchu a 5 % oxidu uhličitého. Každá buněčná linie byla pěstována ve svém růstovém médiu.

Buňky rostou přichyceny na dně kultivační nádoby. Po delší době růstu se buňky začínají vrstvit a při kyselém pH, které vzniká jako důsledek zvýšeného obsahu metabolitů v růstovém médiu, se buňky uvolňují ode dna nádoby. Aby se předešlo uvolňování buněk do média, provádělo se po 2-4 dnech, v závislosti na počtu buněk, pasážování.
Pro vazebné pokusy byly buňky pěstovány v 24-jamkových destičkách (NunclowTM, NUNC, Roskilde, Dánsko), které měly průměr jamky 15 mm a dno bylo potaženo polyethyleniminem (PEI).

3.3 Provedení vazebných experimentů

Kompetitivní vazebné experimenty bylyprováděny podle principů Motulského a Neubiga.32

3.3.1 Optimalizace podmínek vazebných experimentů

Pro všechny buněčné linie byly zjišťovány optimální podmínky pro správný průběh experimentu. Byla zkoumána optimální teplota a doba inkubace, optimální počet buněk na jamku a vhodné složení vazebného pufru.

Byla vyzkoušena inkubace při 4 °C po dobu 90, 120 či 180 minut, při 25 °C po dobu 60 a 90 minut a při 37 °C po dobu 30 minut.

Byly provedeny pokusy s počty buněk v rozmezí 50 – 450 tisíc buněk na jamku.

Do vazebného pufru byly přidávány různé chemikálie a následně byl zkoumán jejich vliv na průběh vazebného experimentu. Přehled chemikálií je uveden v tabulce (Tab. 3).

Tab. 3 Látky přidávané do vazebného pufru při optimalizaci podmínek pokusu

Vazebný pufr vždy obsahoval 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl₃ s pH 7,4, 2 mg/ml glukózy a 1 mg/ml BSA.

<table>
<thead>
<tr>
<th>Přidaná látka</th>
<th>Množství</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²⁺</td>
<td>2 mmol/l</td>
</tr>
<tr>
<td>EDTA</td>
<td>2 mmol/l</td>
</tr>
<tr>
<td>EGTA</td>
<td>2 mmol/l</td>
</tr>
<tr>
<td>BPTI</td>
<td>0,1 mg/ml</td>
</tr>
</tbody>
</table>
3.3.2 Provedení saturačních vazebných experimentů

Z každé jamky bylo odsáto růstové médiu a následně byla každá jamka promyta 1 ml promývacího pufru, vytemperovaným na 25 °C. Pro stanovení B, bylo do každé jamky pipetováno 225 μl vazebného pufru a 25 μl 125I-PrRP31 s koncentracemi v rozmezí 0,5 – 8 nmol/l. Pro stanovení B_{nsp} byla do jamek pipetována příslušná koncentrace radioligandu a neznačený peptid PrRP31 s koncentrací 10^{-5} mol/l.

Po inkubaci byla jamka třikrát promyta 1 ml promývacího pufru a buňky byly solubilizovány v 400 μl 0,1 mol/l roztoku NaOH. Poté byly buňky sesbírány do plastových zkumavek. Pro odebrání maximálního počtu buněk bylo do každé jamky přidáno ještě 200 μl 0,1 mol/l roztoku NaOH, který byl přidán k roztokům ve zkumavkách. Radioaktivita navázaná na buňkách byla proměřena na γ-čítači.

Pokusy byly vždy prováděny v duplikátech a alespoň třikrát opakovány.

3.3.3 Provedení kompetitivních vazebných experimentů

Po inkubaci byla každá jamka promyta 1 ml promývacího pufru a následně byly buňky solubilizovány v 400 μl 0,1 mol/l roztoku NaOH po dobu 15 minut. Solubilizované buňky byly odebrány do plastových zkumavek. Pro odebrání maximálního počtu buněk bylo do každé jamky přidáno ještě 200 μl 0,1 mol/l roztoku NaOH, který byl přidán k roztokům ve zkumavkách. Radioaktivita navázaná na buňkách byla proměřena na γ-čítači.

Pokusy byly vždy prováděny v duplikátech a alespoň třikrát opakovány, s výjimkou pokusů pro optimalizace vazebných experimentů, které byly prováděny v duplikátech alespoň dvakrát.
3.3.4 Analýza dat získaných z vazebných pokusů a statistika

Saturační i kompetitivní vazebné křivky byly vypočteny v programu Graph-Pad Prism Software (San Diego, CA, USA). Byl použit model nelineární regrese pro vazbu na jedno vazebné místo. Pro porovnání byl použit model pro vazbu na dvě vazebné místa.

Hodnoty B_{max}, K_d i EC_{50} byly získány pomocí nelineární regrese a byly statisticky zpracovány. Hodnota K_i byla vypočítána dosazením do rovnice Chenga a Prusoffa. Získané hodnoty byly statisticky zpracovány a vyjádřeny jako průměr a střední chyba průměru (SEM).
4. VÝSLEDKY A DISKUZE

4.1 Peptidy

Molární hmotnost syntetizovaných peptidů byla ověřena na hmotnostním spektrometru (Bruker Daltonics, Billerica, MA, USA), a bylo prokázáno, že se shoduje s teoretickou hmotností. Jejich čistota byla vyšší než 95 %. Přehled syntetizovaných peptidů PrRP je uveden v tabulce (Tab. 4).

Tab. 4 Přehled testovaných analogů PrRP

Peptidy byly syntetizovány metodou syntézy na pevné fázi.

<table>
<thead>
<tr>
<th>Analog</th>
<th>Sekvence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrRP13</td>
<td>W-Y-A-S-R-G-I-R-P-V-G-R-F-NH₂</td>
</tr>
</tbody>
</table>

4.1.1 Jodace PrRP31

PrRP31 byl značen buď radioaktivně (¹²⁵I-PrRP31) či neradioaktivně (I-PrRP31). Pro oddělení mono-jodovaného PrRP31, používaného při vazebných pokusech, od nezreagovaného a di-jodovaného peptidu, byla použita RP-HPLC. Výtěžek ¹²⁵I-PrRP31 i I-PrRP31 činil 20 – 30 %.

Jodace PrRP31 na Tyr²⁰ neodvínila jeho afinitu k receptoru GPR10 oproti nejodovanému PrRP31, což potvrdilo, že ¹²⁵I-PrRP31 může být používán jako vhodný značený ligand pro vazebné studie PrRP.¹
4.2 Pěstování hypofyzárních buněčných linií
Buňky hypofyzárních buněčných linií RC-4B/C, GH3 i AtT-20 dobře přisedaly na destičky potažené PEI, které zajistilo homogenní rozložení buněk na dně jamky a vyšší odolnost buněk při pokusu. Buňky byly pěstovány za sterilních podmínek, které jsou důležité pro správný průběh vazebného pokusu a pro zachování buněčných linií.

Fotografie hypofyzárních buněčných linií jsou na Obr. 6.

Obr. 6 Hypofyzární buněčné linie
Buňky byly fotografovány po 72-96 hodinách růstu se zvětšením 20x.
4.3 Optimalizace podmínek vazebných pokusů k hypofyzárním buněčným liniím

4.3.1 Závislost vazby 125I-PrRP31 na teplotě a době incubace

Z vazebných pokusů při různé teplotě (4 °C, 25 °C a 37 °C) a době incubace (30, 60, 90, 120 či 180 minut) bylo zjištěno, že pro všechny buněčné linie je optimální teplota incubace 25 °C a doba incubace 60 min, což je patrné z grafů na Obr. 7. Při těchto podmínkách tvořila B_{np} asi 9 % z celkové vazby u buněk RC-4B/C, asi 21 % z celkové vazby u buněk GH3 a asi 23 % z celkové vazby u buněk AtT-20. Tyto hodnoty B_{np} jsou dostatečně nízké vzhledem k B_v^{32}, tudíž byly tyto podmínky použity pro další saturační a kompetitivní experimenty.

Obr. 7 Grafy závislostí B_v a B_{np} na různých dobách a teplotách incubace

červená - B_v, modrá - B_{np}

Vazebné pokusy probíhaly při různé teplotě (4 °C, 25 °C, 37 °C) a době incubace (30, 60, 90, 120 či 180 minut).

Vazebný puf 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl₂, s pH 7,4 obsahoval 2 mg/ml glukózy, 1 mg/ml BSA a 0,1 mg/ml BPTI.

B_v je celková vazba za přítomnosti 10^{-10} mol/l 125I-PrRP31, B_{np} je nespecifická vazba za přítomnosti 10^{-7} mol/l PrRP31 a 10^{-10} mol/l 125I-PrRP31.
4.3.2 Závislost vazby $^{125}\text{I}}$-PrRP31 na počtu buněk

Pro vazebné pokusy bylo jako optimální zvoleno 300-450 tisíc buněk na jamku pro buňky RC-4B/C a GH3 a 200-350 tisíc buněk na jamku pro buňky AtT-20. Grafy na Obr. 8 prokazují, že při těchto počtech buněk byl signál naměřený na γ–čítači nejvyšší a B_{esp} činila maximálně 20 % B_t (9 % B_t pro buňky RC-4B/C, 8 % B_t pro buňky GH3 a 14 % B_t pro buňky AtT-20).

![Grafy závislosti B_t a B_{esp} na různém počtu buněk](image)

Obr. 8 Grafy závislosti B_t a B_{esp} na různém počtu buněk

červená – B_t, modrá – B_{esp}

Vazebné pokusy probíhaly při různém počtu buněk (50-450 tisíc buněk na jamku). Inkubace probíhala při teplotě 25 °C a době 60 minut. Vazebný pufr 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl$_2$ s pH 7,4 obsahoval 2 mg/ml glukózy, 1 mg/ml BSA a 0,1mg/ml BPTI.

B_t je celková vazba za přítomnosti 10$^{-10}$ mol/l $^{125}\text{I}_t$-PrRP31, B_{esp} je nespecifická vazba za přítomnosti 10$^{-5}$ mol/l PrRP31 a 10$^{-10}$ mol/l $^{125}\text{I}_t$-PrRP31.
4.3.3 Vliv EDTA či EGTA na vazbu 125I-PrRP31

EDTA (ethylenediamin tetraoctová kyselina) je chelatační činidlo, které váže z roztoku dvojmočné kationty, EGTA (ethylen glykol tetraoctová kyselina) váže z roztoku Ca$^{2+}$. Jak je patrné z grafů na Obr. 9, přidání EGTA do vazebného pufru snížilo B_t u buněčné linie RC-4B/C i u buněčné linie GH3. Přidání EDTA do vazebného pufru mělo za následek snížení B_t u buněčné linie RC-4B/C.

Pro další vazebné studie tudíž ve vazebném pufru nebyla používána EDTA ani EGTA. Přítomnost dvojmočných iontů v pufru se ukázala být důležitá pro vazbu PrRP k buňkám hypofyzárních liní.

![Graph showing the effect of EDTA and EGTA on binding](image)

Obr. 9 Graf závislosti B_t a B_{np} po přidání EDTA či EGTA

červená – B_t, modrá – B_{np}

Vazebné pokusy probíhaly při 60minutové inkubaci při 25 °C. Vazebný pufr 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl$_2$ s pH 7,4 obsahoval 2 mg/ml glukózy, 1 mg/ml BSA a 0,1 mg/ml BPTI +/- 2 mol/l EDTA či EGTA.

B_t je celková vazba za přítomnosti 10^{-10} mol/l 125I-PrRP31, B_{np} je nespecifická vazba za přítomnosti 10^{-5} mol/l PrRP31 a 10^{-10} mol/l 125I-PrRP31.

4.3.4 Vliv Ca$^{2+}$ na vazbu 125I-PrRP31

Přidání Ca$^{2+}$ do vazebného pufru významně neovlivnilo poměr B_{np} k B_t u buněčné linie RC-4B/C. U buněčné linie GH3 došlo po přidání Ca$^{2+}$ ke snížení B_t a ke zvýšení B_{np} na více než 20 % B_t. U buněčné linie AtT-20 mělo přidání Ca$^{2+}$ za následek zvýšení B_{np} na více než 20 % B_t. Výše uvedené poznatky jsou patrné z grafů na Obr. 10.
VÝSLEDKY A DISKUZE

**Obr. 10 Graf závislosti
B₁ a B_{nsp} po přidání \(\text{Ca}^{2+} \)**

červená – \(B₁ \), modrá – \(B_{nsp} \)

Vazebné pokusy probíhaly při 60minutové inkubaci při 25 °C. Vazebný 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl₂ s pH 7,4 obsahoval 2 mg/ml glukózy, 2 mg/ml glukózy, 1 mg/ml BSA a 0,1mg/ml BPTI +/− 2 mol/l Ca₃₂.

\(B₁ \) je celková vazba za přítomnosti \(10^{-10} \) mol/l \(^{125} \text{I-PrRP31} \), \(B_{nsp} \) je nespecifická vazba za přítomnosti \(10^{-8} \) mol/l PrRP31 a \(10^{-10} \) mol/l \(^{125} \text{I-PrRP31} \).

4.3.5 Vliv BPTI na vazbu \(^{128}\text{I-PrRP31}\)

BPTI je inhibitor proteáz, který zabraňuje štěpení peptidu na kratší fragmenty. Přídání BPTI do vazebného pufru výrazně snížilo hodnotu EC₅₀, tudíž afinita PrRP ke GPR10 receptoru byla vyšší. Hodnota \(Kᵢ \) při použití vazebného pufru bez BPTI byla 1492 nmol/l u buněk RC-4B/C a 1190 nmol/l u buněk AtT-20, zatímco při použití vazebného pufru s BPTI byla hodnota \(Kᵢ \) 1,23 nmol/l u buněk RC-4B/C a 24,34 nmol/l u buněk AtT-20. BPTI pravděpodobně zabraňuje štěpení PrRP na kratší, méně afinitní fragmenty. Vazebné křivky jsou uvedeny v grafech v Obr. 11.

Stabilita peptidu PrRP31 po inkubaci s buňkami RC-4B/C, GH3 a AtT-20 byla také ověřována pomocí hmotnostní spektrometrie. Výsledky prokazují, že při inkubaci ve vazebném pufru bez BPTI se PrRP31 štěpl asi z 30 % na kratší fragmenty.
Obr. 11 Graf závislosti EC₅₀ po přídavku BPTI do vazebného pufru
červená – vazebný pufr bez BPTI, modrá – vazebný pufr s BPTI
Vazebné pokusy probíhaly při 60 minutové inkubaci při 25 °C. Vazebný pufr 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl₂ s pH 7,4 obsahoval 2 mg/ml glukózy, 1 mg/ml BSA a 0,1 mg/ml BPTI.

B_i je celková vazba za přítomnosti 10⁻¹⁰ mol/l ¹²⁵I-PrRP31, B_{nsp} je nespecifická vazba za přítomnosti 10⁻⁵ mol/l PrRP31 a 10⁻¹⁰ mol/l ¹²⁵I-PrRP31.

4.3.6 Optimální podmínky vazby PrRP k hypofyzárním buněčným liniím

Vazebné pokusy byly provedeny při různých podmínkách.

Optimální podmínky pro inkubaci při vazebných experimentech byly nalezeny při 25 °C a 60 minutách. Delší inkubace, která byla používána při vazebných pokusech Langmeadem a kol. již neovlivnila rovnováhu ani nezvýšila B_i. Při inkubaci při teplotě 4 °C činila B_{nsp} více než 20 % B_i, a to po době inkubace 90, 120 i 180 minut, tudíž tato teplota není vhodná pro vazebné experimenty, jelikož poskytuje nepřesná data. Zároveň při inkubaci při 4 °C docházelo k odlepování buněk ode dna destičky. Ani inkubace při 37 °C neposkytovala přesná data, jelikož B_{nsp} byla vyšší než 20 % B_i a což bylo nejspíše způsobeno degradaci PrRP. Provedené pokusy potvrdily, že inkubace 60 minut při 25 °C je dostačující k dosažení rovnováhy a správnému provedení experimentu.

Vazebné pokusy provedené s různými počty buněk na jamku prokázaly, že optimální počet buněk na jamku je v rozmezí 350-450 tisíc buněk na jamku. Při těchto
počtech buněk je signál zachycený γ-čítačem nejvyšší a B_{nsp} je nižší než 20 % B_t, tudíž experimenty poskytují přesná, reprodukovatelná data.

Vazebné pokusy provedené s různým složením vazebného pufru ukázaly, že pro optimální průběh pokusu je vhodné složení pufru 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl, 5 mmol/l MgCl_2, 2 mg/ml glukózy, 1 mg/ml BSA a 0,1 mg/ml BPTI s pH 7,4. Přidání CaCl_2 do vazebného pufru nijak významně neovlivnilo rovnováhu ani B_t či B_{nsp} u buněčné linií RC-4B/C, zatímco u linie GH3 a AtT-20 došlo ke zvýšení B_{nsp} oproti B_t na více než 20 %. Po přidání EDTA i EGTA do vazebného pufru došlo ke snížení B_t u buněčné linie GH3 i RC-4B/C. Ve výchozích studiích s buňkami transfektovanými receptorem GPR10 byly použity vazebné pufry o složení 20 mmol/l Tris-HCl pufr s inhibitorem proteázu, 5 mmol/l EDTA, 5 mmol/l Mg-acetátem a 0,1 % BSA s pH 7,4, \(^3\) 20 mmol/l HEPES se 120 mmol/l NaCl, 1 mmol/l CaCl_2, 1 mmol/l MgSO_4 a 0,25 mmol/l K_2PO_4 s pH 7,4, \(^7\) 25 mmol/l HEPES s 0,075 mmol/l EDTA, 11,5 mmol/l KCl, 115 mmol/l NaCl, 6 mmol/l MgCl_2 a 1,8 mmol/l CaCl_2 s pH 7,4 \(^23\) či 50 mmol/l HEPES obsahující 2 mmol/l MgCl_2, 1 mmol/l EDTA, 1 µg/ml pepstatinu A a 0,1 % BSA s pH 7,4. \(^35\) V našem případě, kdy měříme vazbu k buněčným liniím obsahujícím receptor GPR10, jsme složení vazebného pufru modifikovali. Výchozí vazebné experimenty byly také prováděny na membránách, zatímco výše uvedené vazebné pokusy byly prováděny na celých buňkách.

4.4 Saturační vazebné experimenty

Saturační vazebné experimenty na buněčných liniích RC-4B/C, GH3 a AtT-20 byly prováděny při zjištěných optimálních podmínkách, které jsou popsány výše.

Z grafů odečtené hodnoty B_{max} a K_d se směrodatnými odchylkami (s) jsou uvedeny v tabulce (Tab. 5) a grafy pro jednotlivé buněčné linií jsou na Obr 10.

B_{sp} činila průměrně 90 % B_t u buněčných linií RC-4B/C a GH3, u linie AtT-20 činila B_{sp} průměrně 78 % B_t. B_{nsp} lineárně stoupala se zvyšující se koncentrací radioligandu u všech buněčných linií a nepřesáhla 50 % B_t (B_{nsp} byla průměrně 12 % celkové vazby u buněk RC-4B/C, 8 % celkové vazby u buněk GH3 a 22 % celkové vazby u buněk AtT-20), což dokazuje správné provedení saturačního experimentu. \(^32\) Zjištěné hodnoty K_d pro PrRP a GPR10 receptor jsou mírně vyšší než hodnoty K_d zjištěné Langmeadem a kol. na buněčných membránách HEK293, \(^3\) avšak stále prokazují vysokou afinitu PrRP ke GPR10 receptoru, jelikož hodnoty jsou v řádech 10^{-9} mol/l. \(^32\)
Závěrem je tedy možno shrnout, že všechny tři zkoumané hypofyzární buněčné linie obsahují receptor pro PrRP, i když se jeho množství liší u jednotlivých linii, a že 125I-PrRP31 se váže k receptoru o jednom vazebném místu s K_d řádově 10^{-9} mol/l. Tyto buněčné linie lze tedy využít k dalšímu studiu vazby analogů PrRP k receptoru.

Tab. 5 Saturační vazba 125I-PrRP31 k hypofyzárním buňkám

B_{max} je počet vazebných míst na buňce, K_d je rovnovážná disociační konstanta. Obě hodnoty pro všechny buněčné linie byly zjišťovány při saturačních vazebných experimentech, probíhajících při době inkubace 60 minut a teplotě 25 °C, s vazebným pufrem 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl$_2$ s pH 7,4, obsahujícím 2 mg/ml glukózy, 1 mg/ml BSA a 0,1 mg/ml BPTI.

<table>
<thead>
<tr>
<th>buněčná linie</th>
<th>B_{max} [vazebná místa/buňku]</th>
<th>s (B_{max})</th>
<th>K_d [nmol/l]</th>
<th>s (K_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC-4B/C</td>
<td>34500</td>
<td>5000</td>
<td>2,49</td>
<td>0,76</td>
</tr>
<tr>
<td>GH3</td>
<td>65200</td>
<td>8200</td>
<td>3,08</td>
<td>0,80</td>
</tr>
<tr>
<td>AtT-20</td>
<td>23000</td>
<td>9900</td>
<td>6,26</td>
<td>4,24</td>
</tr>
</tbody>
</table>

Obr. 10 Reprezentativní křivky saturačních vazebných experimentů

červená – B_i, modrá – B_{np}, zelená – B_{sp}

Saturační vazebné experimenty probíhaly při teplotě 25 °C po dobu 60 minut ve vazebném pufře 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl$_2$ s pH 7,4, obsahujícím 2 mg/ml glukózy, 1 mg/ml BSA a 0,1 mg/ml BPTI.

B_i je celková vazba v 125I-PrRP31 rozezní koncentrací 0,5-6 nmol/l, B_{np} je vazba příslušné koncentrace 125I-PrRP31 a 10⁻⁷ mol/l PrRP31. B_{sp} je spočítána jako rozdíl B_i a B_{np}.

35
4.5 Kompetitivní vazebné experimenty

Kompetitivní vazebné pokusy na buňkách RC-4B/C byly prováděny při zjištěných optimálních podmínkách. Počet buněk RC-4B/C byl v rozmezí 400-450 tisíc buněk na jamku.

Odečtené hodnoty EC\textsubscript{50} s příslušnou střední chybou průměru (SEM) a hodnoty K_i, vypočítané dosazením do rovnice Chenga a Prussofa33 (za K_d byla dosazena hodnota 2,49 nmol/l a koncentrace radioligandu byla 0,1 nmol/l) s příslušnými SEM pro analogy PrRP31, PrRP20, PrRP13 a I-PrRP31 jsou uvedeny v následující tabulce (Tab. 6). Graf s křivkami jednotlivých analógů PrRP je uveden na Obr. 12.

Hodnoty EC\textsubscript{50} pro PrRP31, PrRP20 a I-PrRP31 na receptory GPR10 hypofyzární buněčné linie RC-4B/C byly řádově srovnatelné s hodnotami EC\textsubscript{50} pro PrRP a GPR10 receptor stanovené F. Satohem a kol. na membránách z potkaní hypofyzární tkáně.35 EC\textsubscript{50} byly řádově v rozmezí 10-9 mol/l pro PrRP 31, PrRP20 a I-PrRP31 a pro PrRP13 byly řádově v rozmezí 10-6 mol/l.

Provedené kompetitivní experimenty potvrzují, že PrRP31 se váže ke GPR10 receptoru se srovnatelnou afinitou jako PrRP20 ($K_i = 4,67\pm 1,65$ nmol/l a 3,15\pm 1,41 nmol/l). Se srovnatelnou afinitou se váže i I-PrRP31 ($K_i = 4,69 \pm 2,35$ nmol/l). Vazebné experimenty PrRP13 prokázaly afinitu nižší než u PrRP31 a PrRP20 ($K_i = 981 \pm 439$ nmol/l), což nepotvrdilo závěry zjištěné při strukturně-aktivních studiích.23 PrRP13 má sice zachovanou afinitu ke GPR10 receptoru, avšak k navázání na tento receptor je třeba mnohem vyšší koncentrace neznačeného ligandu, než při použití PrRP31, PrRP20 či I-PrRP31.

Syntéza dalších analógů PrRP by tedy měla vycházet z analogue PrRP20 jako látky s plně zachovanou afinitou k receptoru. Také jodace PrRP na Tyr20 neovlivnila vazebnou afinitu, takže lze jedovaný analog 125I-PrRP31 použít k dalším studiím.
Tab. 6 Výsledky kompetitivních vazebných experimentů pro buněčnou linii RC-4B/C

EC$_{50}$ je efektivní koncentrace neznášeného ligandu, která je odečtená z grafu kompetitivního vazebného experimentu, K_d je rovnovážná disociační konstanta neznášeného ligandu, která byla vypočítána dosazením do rovnice Chenga a Prussofa [EC$_{50}$ byla známa z kompetitivních experimentů. K_d byla 2,49 nmol/l a koncentrace radioligandu 0,1 nmol/l]. Kompetitivní vazebné pokusy probíhaly při 60minutové inkubaci při 25°C, ve vazebném pufru 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl$_2$ s pH 7,4, obsahujícím 2 mg/ml glučozy, 1 mg/ml BSA a 0,1 mg/ml BPTI.

<table>
<thead>
<tr>
<th>Analog</th>
<th>Průměrná hodnota EC$_{50}$ [nmol/l]</th>
<th>SEM (EC50) [nmol/l]</th>
<th>K_d [nmol/l]</th>
<th>SEM (Kd) [nmol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrRP31</td>
<td>4,86</td>
<td>1,72</td>
<td>4,67</td>
<td>1,65</td>
</tr>
<tr>
<td>PrRP20</td>
<td>3,28</td>
<td>1,47</td>
<td>3,15</td>
<td>1,41</td>
</tr>
<tr>
<td>PrRP13</td>
<td>1020</td>
<td>458</td>
<td>981</td>
<td>439</td>
</tr>
<tr>
<td>I-PrRP31</td>
<td>4,88</td>
<td>2,44</td>
<td>4,69</td>
<td>2,35</td>
</tr>
</tbody>
</table>

Obr. 12 Reprezentativní křivky kompetitivních vazebných experimentů buněčné linie RC-4B/C

Kompetitivní vazebné pokusy probíhaly při 60minutové inkubaci při 25°C, ve vazebném pufru 20 mmol/l HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl$_2$ s pH 7,4, obsahujícím 2 mg/ml glučozy, 1 mg/ml BSA a 0,1 mg/ml BPTI

B_n je specifická vazba, která byla stanovena odečtěním B, (celková vazba za přítomnosti 10$^{-10}$ mmol/l 125I-PrRP31) a B_{np} (nespecifická vazba za přítomnosti 10$^{-10}$ mol/l analogu PrRP a 10$^{-10}$ mol/l 125I-PrRP31). Je vyjádřena v procentech vzhledem k B_n.

37
5. ZÁVĚR

Byly optimalizovány podmínky pro vazebné pokusy na buněčné linie RC-4B/C, GH3 a AtT-20. Optimální podmínky pro správné provedení kompetitivních i saturačních experimentů jsou při 60minutové inkubaci a teplotě 25 °C pro všechny buněčné linie následující: 300-450 tisíc buněk na jamku pro buňky RC-4B/C a GH3 a 200-350 tisíc buněk na jamku pro buňky AtT-20 a složení vazebného pufru 20 mM HEPES, 118 mmol/l NaCl, 4,7 mmol/l KCl a 5 mmol/l MgCl₂ s pH 7,4, obsahujícím 2 mg/ml glukózy, 1 mg/ml BSA a 0,1 mg/ml BPTI.

Při saturačních vazebných experimentech byla zjištěna pro vazbu 125I-PrRP31 rovnovážná disociační konstanta K_d a počet vazebných míst B_{max} pro všechny buněčné linie. K_d byla $2,49 \pm 0,76$ nmol/l pro buňky RC-4B, $3,08 \pm 0,80$ nmol/l pro buňky GH3 a $6,26 \pm 4,24$ nmol/l pro buňky AtT-20. B_{max} byl 34500 ± 5000 vazebných míst na buňku pro RC-4B/C, 65200 ± 8200 vazebných míst na buňku pro GH3 a 23000 ± 9900 vazebných míst na buňku pro AtT-20.

Při kompetitivních vazebných experimentech byla stanovena hodnota efektivní koncentrace neznáme liggondu EC₅₀ pro všechny analogy PrRP na buněčné linii RC-4B/C. Pomocí EC₅₀ pak byly vypočítány hodnoty rovnovážné disociační konstanty neznáme liggondu K_i pro jednotlivé analogy PrRP. EC₅₀ byla $4,86 \pm 1,72$ nmol/l pro PrRP31, $3,28 \pm 1,47$ nmol/l pro PrRP20, 1020 ± 458 nmol/l pro PrRP13 a $4,88 \pm 2,44$ nmol/l pro I-PrRP31. Hodnota K_i byla $4,67 \pm 1,65$ nmol/l pro PrRP31, $3,15 \pm 1,41$ nmol/l pro PrRP20, 981 ± 439 nmol/l pro PrRP13 a $4,69 \pm 2,35$ nmol/l pro I-PrRP31. Pro další modifikace PrRP bude tedy vhodné vycházet z analogu PrRP20.

Cíle práce byly splněny a poznatky vyplývající z této práce bude možno použít pro další studium analogů PrRP, tedy pro určení jejich affinity k receptoru jako základní informace o jejich biologickém účinku. Analogy s nejvyšší afinitou k receptoru mohou pak být testovány v dalších *in vitro* a *in vivo* testech a na základě toho může být vybrán vhodný analog snižující příjem potravy jako potenciální lék proti obezitě.
6. SEZNAM POUŽITÉ LITERATURY

17. The Journal of Clinical Investigation doi:10.1172/JCI34682

33. Cheng, Y.; Prusoff, W. H.: Relationship between the inhibition konstant (K_i) and the concentration of an inhibitor that cause a 50% inhibition (IC_{50}) of an enzymatic reaction. *Biochem. Pharmacol.* 22: 3099-3188 (1973)
