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Figure 1: Empedocles (cca. 495-435 BC) in his philosophical poem On the Nature infers
that the attractive and repulsive forces of Love and Strife cause our world, Cosmos, to
oscillate between the state of ultimate order and beauty, called Sphairos (the sphere),
and a totally disordered state, for which he adopted the mythological name Chaos.
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mětem studia byly rovněž souvislosti mezi vlastnostmi klasických a kvan-
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Abstract: The current PhD thesis presents a collection of selected articles re-
lated to the theoretical and numerical study of low-energy collective dynamics
of atomic nuclei. The articles were published or recently submitted to inter-
national physics journals and were authored or co-authored by the author of
the thesis. The effects in collective dynamics have been studied within the
framework of two common models—the interacting boson model (IBM) and
to a lesser extent the geometric collective model (GCM). The “statistical as-
pects” in the title relate predominantly to the interplay of ordered and chaotic
behavior observed in properties of quantum eigenstates as well as in the clas-
sical limits of the models. The main attention was devoted to correlations
between the measures of regularity/chaos and the presence of exact and ap-
proximate dynamical symmetries. An important subject of the studies were
also the relationships between the properties of the classical and quantum so-
lutions of the models both in the integrable regime as well as in the mixed
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Preface

An apparent disorder and the contrasting emergence of various types of order
observed in nature have attracted the attention and imagination of people perhaps
since prehistoric ages and inspired different branches of art as well as the scientific
thought. It is not very clear whether this fascination will ever fade away.

In our work, we have taken a look into the realm of quantum many body sys-
tems, studying in particular the atomic nuclei, which enabled us to observe and
in some cases understand a rich variety of dynamical phenomena on the verge of
order and disorder. We were interested predominantly in the interconnection be-
tween different forms of symmetry (and the ways of breaking it) and the interplay
of regular and chaotic features in the dynamics. Apart from studying the quantum
dynamics, we inspected also the classical dynamics derived from it, and looked for
the correspondence between classical and quantum signatures of the phenomena.

As an analytical specimen, we have adopted the interacting boson model (IBM)
of nuclear collective motion [Iach87], which had been widely used to describe
the dynamics of low-energy nuclear quadrupole vibrations and rotations1 since
its formulation by Arima and Iachello in 1975 [Arim75]. The IBM is expressed
entirely in the language of the group theory, which greatly facilitates the study of
symmetries. Further, since it is in general non-integrable, attaining the complete
integrability (hence fully regular behavior) only in some particular domains2 of the
control parameter values, it shows both the regular and chaotic dynamics [Alha90,
Whel93].

The current PhD thesis summarizes the scientific results of the author ob-
tained during the last five years in the field of order and chaos and their relation
to dynamical symmetries studied in the collective nuclear dynamics. Since the
main results have been already described in detail in several articles published in
international refereed journals [J1]–[J8*] or within conference proceedings [P1*]–
[P8], the current thesis is built-up substantially of the reprints of selected articles
included in Appendix A. As the articles are in each case a common achievement
of several collaborators, we endow each reprint with a brief review of the contents
containing also a specification of the author’s direct contribution. The reviews are
inserted in front of each reprinted article. The reprints are preceded by Chapter 1,
which provides a brief general introduction3 into the topics of classical and quan-
tum chaos and into the algebraic models and (generalized) dynamical symmetries,

1We have used here the original form of IBM, which neither includes the excitations of higher mul-
tipolarity, nor distinguishes the neutron and proton degrees of freedom, nor incorporates the fermionic
degrees of freedom. Numerous extensions of the model however exist up to date, as discussed in Sec. 1.2.

2These correspond to various (mutually incompatible) dynamical symmetries of the model.
3Specific introductions are always found in the concrete articles in Appendix A.
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the Chapter 2, which provides a structured synopsis of the results obtained and
the Chapter 3 which contains the full list of author’s publications.

Before starting the actual exposition of the topics, the author enjoys the chance
to express his deep thanks to many people without whom this work, with which
the author experienced plentiful moments of joy and inspiration, would not come
to light. First of all it comes to Pavel Cejnar, who has been an enthusiastic,
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trips abroad, to Jan Dobeš for his interest and many insightful ideas which have
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the author’s thanks belong to his parents, brother and sisters for their universal
support and inspiration, and to many friends with whom he had the joy to live
through the last years.
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Chapter 1

Introduction

1.1 Chaos and Sphairos

in Classical and Quantum Mechanics

This chapter will be devoted to general signatures of order and disorder observed in
classical and quantum mechanics, for which we have adopted the names “sphairos”
and “chaos” in the title. Both these words originate in the ancient greek culture1

and while the usage of sphairos remained limited to denote the geometrical sphere
(for ancient Greeks the most perfect geometrical body), the word chaos infiltrated
the general vocabulary of numerous languages and attained various meanings.

During the twentieth century, a mathematically defined concept of determinis-
tic chaos was introduced to describe a broad collection of phenomena encountered
in classical non-linear systems2 studied in subjects ranging from physics to social
sciences. Later the term “quantum chaos” found its application also in quantum
mechanics, although quantum mechanics is a strictly linear theory. The term
became popular in connection with effects observed in quantum systems, whose
classical counterparts are chaotic3. We shall discuss this in more detail below.

In all our further considerations, we shall limit our attention to the physics of
Hamiltonian (i.e. energy-conserving) systems with a finite number of d degrees
of freedom. We shall overview briefly some relevant phenomenology of classical
and quantum chaos (and sphairos) in combination with some methods that we
have used to obtain results underlying this thesis (see the Chapter 2 and the
Appendix A). A more detailed and general introduction into classical chaos can
be found in the monographs [Lich83, Nico95], while the Refs. [Gutz90, Stoc99,
Reic92, LesH91] similarly introduce into the topics of quantum chaos.

1According to the greek mythology (see for example Hesiod, Theogonia), the structure of the world
results from the more or less voluntary actions of the gods of Olympus, each of which is connected with
a part of the physical universe, Cosmos. The Olympian gods were born in a sequence which begins with
Chaos, a vague divine primordial entity or condition. The early greek philosophers, like Empedocles
in Fig. 1, pursued for an alternative explanation of the order and disorder in the world on the basis of
some inherent principles of nature, in contrast to the voluntary action.

2The systems governed by non-linear equations of motion.
3Some people prefer instead the name “quantum chaology” to describe the science concerned with

quantum systems with chaotic classical counterparts, see Refs. [Berr87, LesH91].
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2 CHAPTER 1. INTRODUCTION

Chaos in classical mechanics

In the Hamiltonian formulation of classical mechanics, the state of a system
is described by a set of canonical coordinates qi and their conjugate momenta pi,
i = 1, ..., d, which span the 2d-dimensional phase space of the system. The time
evolution of the system is governed by the Hamilton equations of motion

dqi
dt

=
dH

dpi

,
dpi

dt
= −dH

dqi
, (1.1)

obtained as derivatives of the Hamiltonian H(qi, pi) = E, which represents the
energy E of the system as a function of the canonical coordinates and momenta.
The equations (1.1) are a set of 2d differential equations of the first order in
time t for the quantities qi(t), pi(t) and therefore their solutions (trajectories) are
unique. This means in particular that the phase space trajectories cannot cross
(unlike trajectories in the configuration space spanned solely by qi) [Gutz90]. If
the energy is constant, the trajectories are restricted to a (2d − 1)-dimensional
energy manifold.

The term deterministic chaos relates here to the peculiar behavior of some
systems for which the equations (1.1) are non-linear and in which an arbitrarily
small initial deviation4 δ~q(t0), δ~p(t0) may grow exponentially in time t. Since in
practice, we cannot determine the initial state of the system (hence also the ac-
tual trajectory) with infinite precision, the exponential divergence5 of neighboring
trajectories makes the long-time prediction of the motion impossible. This makes
the motion seem “chaotic” although the motion equations are themselves fully
deterministic [Gutz90, Lich83, Nico95].

In contrast to the dynamical picture of chaos described above, we can obtain a
different (structural) picture, if we consider all the phase-space points lying on the
energy manifold as possible initial conditions giving rise to a simultaneous flow of
trajectories6, similarly to a hydrodynamic flow of fluids. This flow may separate
different parts of the energy manifold into distinct submanifolds of dimension
d̃ ≤ (2d − 1), so that each of these submanifolds is filled with a different class of
trajectories. The topology of these manifolds is markedly different, depending on
whether the chaotic dynamics is present or not. Two extreme cases are represented
by the integrable and the ergodic systems.

The integrable systems are completely free of chaotic behavior and their dy-
namics is relatively simply ordered. A classical Hamiltonian system in d dimen-
sions is said to be integrable (see e.g. [Gutz90]) if:

1. there exist d independent integrals of motion Ii(~q, ~p), i = 1, .., d, for which
dIi/dt = {Ii, H} = 0.

2. Ii are constants in involution, this means precisely that {Ii, Ij} = 0, ∀i, j.
4In the following, ~q and ~p denote the d-dimensional vectors of canonical coordinates and their conju-

gate momenta, respectively.
5Usually characterized by Lyapounov exponents, see e.g. [Lich83, Gutz90].
6According to the Liouville theorem, this flow in incompressible, i.e. the volume corresponding to

an arbitrary collection of neighboring points is invariant as these points travel across the phase space in
time, see e.g. [Lich83].
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The conserved quantities Ii constrain all trajectories onto d-dimensional subman-
ifolds immersed inside the 2d-dimensional phase space. Additionally, the invo-
lution leads to a very special topology of the manifolds: they are equivalent to
d-dimensional tori7. Notice that the Hamiltonian systems in d = 1 are trivially
integrable, since the only necessary integral of motion is provided by the Hamil-
tonian itself.

Figure 1.1: An illustration of a degenerate torus being pinched at the central vacancy
(inset). The main panel displays a Poincaré section clearly revealing integrable classical
dynamics in IBM generated by the Hamiltonian (1.13) with (η, χ) = (0.6, 0). Trajectories
passing the plane of the section generate points lying on (topological) circles, which
correspond to the sections through the invariant tori. (Adapted from Ref. [J3])

In integrable systems, it is possible to introduce a special set of canonical
coordinates—the so called action-angle variables θi, Ji—in which the dynamics is
explicitly linear: the actions Ji are constants of motion with dJi/dt = 0, while the
angles θi are cyclic and change linearly with time so that dθi/dt = ωi = const.,∀i.
The values of the actions Ji or alternatively of the frequencies ωi can be used to
distinguish the individual invariant tori. In some integrable systems it is possible
however, that specific topological obstructions prevent any unique set of action-
angles θi, Ji to be defined globally within the whole phase space, as it was identified
in [Duis80]. The simplest of these obstructions is called monodromy [Duis80,
Cush80, Sado99, Sado06] and is related to some degenerate, pinched tori (which
are typically related to unstable equilibrium points of the potential energy) present
in the phase space of the system, see Refs. [J2*, J3] in Appendix A. An example
of a pinched torus is shown in Fig. 1.1.

If the integrals of motion are absent (apart from the energy), the trajectories
may explore a subset of the energy manifold with dimension higher than d. In
the extreme case of the ergodic systems, the initial conditions taken in almost all
points of the energy manifold evolve into trajectories, which in the t → ∞ limit

7Content of the Arno’ld-Liouville theorem, see e.g. [Lich83].
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approach arbitrarily close to any point of the energy manifold. The only exceptions
to this behavior are the periodic trajectories (orbits), which are isolated in a “sea”
of ergodic trajectories [Gutz90].

If the integrability is broken by a weak perturbation8, the KAM theorem9

clarifies that the tori do not disintegrate immediately. On the contrary, most tori
survive being only slightly deformed for small values of the perturbation strength.
As the perturbation strength increases, the decay starts in the vicinity of resonant
tori which contain periodic trajectories (since the frequencies ωi are in rational
proportions). What happens is that the originally continuous family of periodic
orbits forming the surface of the resonant torus disintegrates, leaving only a finite
set of isolated periodic trajectories10.

An extremely useful tool to visualize all the types of motion described above
in systems with d = 2 are the Poincaré sections. We can obtain them by cut-
ting the phase space by a plane and then registering the successive passages of
individual trajectories through this plane. The two independent directions within
the plane (often representing a canonical coordinate q and a momentum p con-
jugate to it, cf. Fig. 1.1) correspond to the remaining degrees of freedom, which
are not constrained by the two equations determining the plane position and the
energy manifold. In case of an integrable system, we observe either chains of iso-
lated points (corresponding to periodic trajectories) or lines with circular topology
(corresponding to quasiperiodic trajectories), which reveal the invariant tori be-
ing cut by the plane. In ergodic systems, we observe mostly random sequences
of points which fill the accessible domain (constrained by the fixed energy) of a
dimension higher than one, together with finite sequences of points corresponding
to isolated periodic trajectories. In mixed regular/chaotic systems, the Poincaré
sections consist of a combination of ergodic surfaces, which are separated by lines
corresponding to the surviving KAM tori and some finite sets of points generated
by the periodic trajectories.

Chaos in quantum mechanics

The notion of integrability can be transmitted into quantum mechanics natu-
rally via the canonical quantization, where the functions defined within the phase
space spanned by qi, pi are replaced by corresponding linear operators, such that
their commutation relations parallel the behavior of classical Poisson brackets. A
quantum system in d dimensions is then said to be integrable if there exists a set of
d independent operators Îi , i = 0, ..., d, which mutually commute [Îi, Îj] = 0 and

involve also the Hamiltonian Ĥ, so that dÎi/dt = − i
h̄
[Îi, Ĥ ] = 0. The eigenstates

of the Hamiltonian are then simultaneous eigenstates of the operators Îi and are
hence endowed by a set of d quantum numbers.

However, finding direct analogies for the regular and chaotic classical behavior
as described in previous paragraphs is in the quantum mechanical world diffi-
cult11, fundamentally due to the linearity of the Schrödinger equation of motion.

8This situation is in the literature known as soft chaos.
9The final form and proof is due to A. N. Kolmogorov [Kolm54], V. I. Arno’ld [Arno63] and J.

Moser [Mose62], whose names are hidden in the abbreviation.
10The Poincaré-Birkhoff theorem specifies, that the remaining periodic trajectories form an alternating

sequence of stable and unstable periodic orbits [Birk35].
11For example in systems with time dependent Hamiltonians (not considered in this work) the effect



1.1. SPHAIROS AND CHAOS IN CLASSICAL AND QUANTUM MECHANICS 5

In particular, the evolution operator exp{− i
h̄
Ĥt} acting on an arbitrary pair of

states |φ1〉, |φ2〉 conserves their overlap 〈φ1|φ2〉, so that the perhaps most intuitive
expectation about chaotic behavior—a kind of fast divergence of different states,
similar to the divergence of chaotic classical trajectories—is not realized12. There
are nevertheless significant differences between quantum systems whose classical
counterparts show regular behavior and those whose classical counterparts are
chaotic. Below, we will review briefly various aspects of this as revealed during
the last about thirty years of intensive studies, which gave some justification to
the term “quantum chaos”.

An important and nowadays standard tool of distinguishing the signatures of
chaos in quantum systems is rooted in statistical measures of correlations between
eigenenergies. In 1984, Bohigas et al. [Bohi84] came with a conjecture stating
that the spectra of quantum chaotic systems should display the same proper-
ties as ensembles of random matrices13. The appropriate ensemble depends on
the symmetry of the particular system under time reversal—Gaussian orthogonal
(GOE) matrices correspond to time-reversal-invariant systems, while the Gaussian
unitary (GUE) matrices correspond to the non-invariant systems14. The random
matrix ensembles show characteristic “level repulsion” (exactly or nearly degener-
ate levels are rare), in particular the nearest neighbor spacing (NNS) distribution
is of the Wigner form

P (s) ≈ sαe−
π
4
s2

, (1.2)

where s is the level spacing and α = 1, 2 for GOE and GUE, respectively. This
behavior is observed (and hence the Bohigas conjecture supported) in a wide vari-
ety of systems with chaotic classical counterparts (see e.g. [Stra09a] and references
therein). In contrast, the systems with regular classical counterparts were proven
to display NNS with Poisson distribution (see [Berr77])

P (s) ≈ e−s , (1.3)

which in contrast displays no level repulsion15. The spectra of mixed regular/chaotic
systems are frequently described by a one-parametric interpolation suggested by
Brody [Brod81] having the form

P (s) ≈ sωe−Nωsω+1

, (1.4)

with Nω = Γ(ω+2)
ω+1

)ω+1. Setting the parameter ω = 0, we obtain the Poisson
distribution, while with ω = 1 we reach the Wigner distribution corresponding
to GOE16. Let us note that before actually performing the statistical analysis

of quantum suppression of chaos has been described [Berr87, Hogg82, Eise94].
12Detailed comparison of the time evolution of classical and quantum mechanical probability distri-

butions can be found in Refs. [Ball98, Ball02].
13For an introduction to the random matrix theory see the book [Meht04].
14Another standard, but slightly less well known class are the systems with Kramers degeneracy,

whose spectra are described by Gaussian symplectic matrices (GSE), see e.g. [Haak91].
15Levels differing in their quantum numbers are not mixed by the Hamiltonian and are hence allowed

to cross. The complete set of quantum numbers—which is not guaranteed to exist in non-integrable
systems—is provided by the commuting operators Îi.

16Although frequently used in practice, the Brody distribution presents a mathematical interpolation
lacking a physical background. An alternative distribution was derived by Berry and Robnik [Berr84]
and expresses the mixed spectrum as a superposition of Poisson and Wigner types of spectra, where the
first part comes from the quantization of the remnant KAM tori, while the latter corresponds to the
chaotic dynamics.
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in particular systems, it is important to separate the spectra corresponding to
different obviously conserved quantities like the angular momentum and parity jπ.
Failing to do so would lead to level degeneracies being observed even in completely
chaotic systems and would bias the NNS distribution more towards the Poisson
distribution.

The statistical properties of semiclassical quantum spectra, in particular the
fluctuations in the level density ρ(E), were shown to depend essentially on the
properties of the classical periodic trajectories [Gutz90, Stoc99]. The contribu-
tions of the periodic orbits can be expressed in the form of so-called trace for-
mulas, whose concrete forms depend on the regular/chaotic type of the classical
dynamics. The first one of these was derived by Gutzwiller [Gutz71] and holds
for chaotic systems with isolated periodic orbits. Later, Berry and Tabor [Berr76]
formulated an expression valid in integrable systems, where the non-isolated orbits
continuously cover the surfaces of the invariant tori. The periodic orbit theory can
be conveniently applied in systems with hard wall potentials (classical/quantum
billiards) [Stoc99], where all periodic orbits can be determined simply from the
geometry of the cavity bounded by the “walls” of the potential. It becomes more
difficult in systems with a “soft” potential, where the periodic orbits have to be
usually discovered by detailed numerical exploration of the phase space. Never-
theless, the strongest level density fluctuations can be captured well considering
only the shortest periodic orbits, as was shown in Refs. [J2*, J5*] in case of the
interacting boson model of the nucleus, see Chapter 2 and Appendix A.

The spectral statistics are able to distinguish the regularity/chaoticity of the
dynamics in a certain, sufficiently broad energy interval17. The information about
the regular/chaotic character of individual levels18 is however not accessible in
these approaches. A useful alternative for this purpose is provided by the “lat-
tice method” proposed by Peres in 1984 [Pere84a]. The method is not rigorously
quantitative, but—rather in analogy to the Poincaré section method in classi-
cal mechanics [Gutz90]—it enables a qualitative distinction between regular and
chaotic motion. Regular/chaotic dynamics is inferred from the regular/chaotic
form of particular spectral lattices [Pere84a, Reic92, Ree99, Shri90].

The Peres lattices are formed by the expectation values Oi = 〈ψi|Ô|ψi〉 of an

arbitrary operator Ô plotted against the energies Ei = 〈ψi|Ĥ|ψi〉 of the Hamil-
tonian eigenstates |ψi〉, i = 1, 2, 3, ...19. Due to arguments based on semiclassical
quantization, the lattices of points (Ei, Oi), i = 1, 2, 3, ... show regular patterns
in integrable systems, cf. Fig. 1.2. In chaotic systems on the other hand, the
Peres spectral lattices are formed by visually disordered collections of points.
In partially regular systems, which are neither completely integrable nor fully
chaotic, the lattices show a combination of ordered and disordered patterns. We
extend the Peres method slightly and investigate also the variances of the opera-
tors var[Ô] = 〈ψi|Ô2|ψi〉 − 〈ψi|Ô|ψi〉2, which bring additional information on the

17Such that the number of levels contained in the interval allows for a statistical analysis.
18According to Percival conjecture [Perc73], the spectrum of a mixed regular/chaotic system should

contain statistically independent sets of levels corresponding to regular and chaotic dynamics, respec-
tively.

19Note that in integrable systems, the Peres lattices coincide with the “joint spectra” of different
commuting operators used to study the quantum monodromy, see [J2*, J3] and references therein.
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dynamical symmetry content of |ψi〉, see Fig. 1.2.
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Figure 1.2: The Peres lattices corresponding to various incompatible quantities (as
indicated above each column) calculated in the integrable O(6) limit of IBM with the
Hamiltonian (1.13) at (η, χ) = (0, 0) and N = 50 bosons. The Peres lattices of the
mean values are accompanied by the corresponding variance lattices in the upper row.
The regularity of all lattices is obvious, in agreement with the Peres’ proposal. The
zero values of the variance of the O(5) quantum number τ (seniority) throughout the
spectrum indicate the underlying O(5) symmetry.

Apart from distinguishing regular and chaotic dynamics20, the method pro-
vides an excellent heuristic for identification of various dynamical symmetries as
well as their generalizations like the partial dynamical symmetry and the quasi
dynamical symmetry (explained in more detail in Sec. 1.2) as was demonstrated
in Refs. [J6*, J7*, J8*]. Especially the variance lattices are very convenient for
disclosing partial dynamical symmetries, since a zero variance of a quantity in-
dicates, that there is an exact quantum number associated to it for a particular
state |ψi〉.

20Peres lattices have been used extensively for distinguishing ordered and chaotic structures in collec-
tive dynamics of nuclei in Refs. [Stra09b, P7, P5*].
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1.2 Dynamical Symmetry and its Generalizations

in Algebraic Models of Many Body Systems

Algebraic Models

The first notable applications of symmetry in physics came about in attempts
to describe the geometric arrangements of atoms in molecules and crystals and
were limited to discrete symmetries. In fact they paralleled closely the notion of
symmetries in arts, where it traditionally denotes “good proportion or order”21.
A significant development and generalization was facilitated by applications of
the theory of Lie groups and algebras (for a brief introduction with applications
to physics, see e.g.[Iach09]). The elements of a Lie group depend on a set of
continuous parameters and are generated by the elements of the corresponding
Lie group.

In the so-called algebraic models, the Hamiltonian H is constructed explicitly
as a function of generators22 of a certain Lie group G0, i.e.

H = f(g1, . . . , grank(G0)) . (1.5)

Advantage of these models in applications rests in the finite dimension of the
Hilbert space, which in principle allows for an exact solution by numerical diag-
onalisation without the necessity of truncations. Moreover, in several important
special cases, explicit analytical solutions can be obtained through the group-
theoretical tools. Many of these models proved to be extremely useful especially
in understanding the structure of complex many body systems, like atomic nuclei,
atomic clusters and molecules [Gosh59, Iach87, Iach95], as well as in the particle
physics [Baru64, Doth65].

In nuclear physics, probably the most well known examples include the El-
liot SU(3) shell model [Elli58], the Lipkin Meshkov Glick SU(2) model [Lipk65],
various versions of the Interacting Boson Model [Arim75, Iach87] and recently
the Algebraic Collective Model [Rowe04g, Rowe05g]. In the molecular physics,
different versions of the Vibron model are used [Iach95, Fran05].

The range of applications of algebraic models is very broad, certainly not lim-
ited only to their primary determination, being the description of experimen-
tally observed properties of many body systems. Here they provide an invaluable
tool for systematics of the often very complex energy spectra and other observ-
ables. Apart from that, their computational efficiency also provides a bench-
mark for testing the accuracy of various mean-field and other many body tech-
niques [Ring05, Nege82]. They also turn out to be very suitable for studying
some rather general physical phenomena like the quantum phase transitions (see
e.g. [Cejn10] for a review) and our main topic—the interplay of order and chaos,
where they directly allow to investigate the connection to exact and approximate
symmetries.

21This is approximately the meaning of the Greek word συµµǫτρια composed of συν (with, together)
and µǫτρoν (measure, proportion).

22The set of generators of a Lie group form a Lie algebra, see e.g. [Iach09].
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Invariant and Dynamical Symmetries

Let us turn our attention now to a few concepts of exact symmetry followed
by some of their generalizations in a little detail. We speak about an invariant
symmetry (IS) of the Hamiltonian H with respect to a group G0 in case that H
commutes with all the generators gj of the group, with j = 1, . . . , rank(G0). This
leads to a spectral degeneracy of the states |ψj〉, which produced by an application
of the different generators on the same initial state |ψj〉 = gj|ψ〉.

In contrast to the IS situation, if H does not commute with all the generators
but only with the Casimir operators23 of G0 together with the Casimir operators
related to a chain of its subgroups

G0 ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gk , (1.6)

we speak about a dynamical symmetry24 (DS) of the Hamiltonian H with re-
spect to G0 (and its subgroups, which are however usually omitted for the sake
of brevity of notation25). Notice that often, more than one reduction chain of
the type (1.6) starting from of G0 may exist, such that different chains contain
incompatible (i.e. mutually non-commuting) subgroups Gi, G

′
i, . . . at any position

i ∈ {1, . . . , k} within the chain. An example will be given below in the discussion
of the Interacting Boson Model.

Since the generators of G0 do not commute with H , the energy of the states
|ψj〉 = gj|ψ〉 now differs and the IS with respect to G0 is broken. Nevertheless, the
eigenstates of H are still endowed by the quantum numbers corresponding to the
Casimir operators C(Gi) of the whole chain and form irreducible representations
(irreps) of the group chain (1.6). Clearly, a systematic application of the generators
on any eigenstate ofH enables to generate the spectrum ofH , therefore the algebra
of the generators gj is often called the spectrum generating algebra.

An algebraic system with a DS with respect to G0 is easily obtained if the
Hamiltonian H is constructed solely from the Casimir operators related to the
chain (1.6), so that

HDS = f̃ [C(G0), C(G1), . . . , C(Gk)] . (1.7)

The smallest group Gi, i ∈ [1, k] in the decomposition (1.6), whose Casimir op-
erator is present in the Hamiltonian (1.7) represents the largest IS group of the
Hamiltonian (1.7), while the groups larger than Gi correspond only to DS.

It is important to note that the presence of a dynamical symmetry implies
complete integrability26 of a Hamiltonian, since the Casimir operators C(G0),. . . ,
C(Gk) corresponding to the DS group chain provide a complete set of quantities
commuting mutually as well as with the Hamiltonian, hence there is a complete
set of constants in involution and a complete set of quantum numbers labeling the
eigenstates.

23A Casimir operator commutes with all elements of a given Lie algebra.
24Although the first notion of dynamical symmetries dates perhaps back to 1920’s and the paper by

Pauli [Paul26], a clearer recognition of their general significance came only much later [Gosh59, Baru64,
Doth65].

25Clearly, if H commutes with C(G0), it commutes also with C(G1), etc. . . , so the subgroups corre-
spond to DS automatically.

26The inverse implication is not true in general, cf. [Zhan88, Alha90].
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Partial and Quasi Dynamical Symmetries

While trying to apply the algebraic methods and models to realistic systems, it
is often found that the assumed symmetry is only approximate and is fulfilled by
only some of the states but not by others. A corresponding Hamiltonian describing
the above situation is not invariant under the group G0, nor does it commute with
the Casimir invariants of G0, so that various irreps are in general mixed in its
eigenstates. This empirically rather common behavior was formalized and named
the partial dynamical symmetry (PDS) in [Alha92], where a general algorithm to
construct Hamiltonians with PDS was given27.

Later the concept of PDS (corresponding to say, G0) was enriched distinguish-
ing three different forms, see [Levi07], linked to the situations when:

I. Some but not all of the eigenstates possess a complete set of quantum num-
bers corresponding to G0.

II. All of the eigenstates are endowed by quantum numbers corresponding to
some, but not all subgroups in the DS chain starting with G0.

III. The hybrid situation, when some of the eigenstates possess some of the quan-
tum numbers of the DS chain starting with G0.

An interesting observation was made in [Levi96], where the authors studied the
effect of PDS on the increase of regularity of both the classical and quantum the
dynamics of a particular PDS model. Intuitively, one would expect some “near-to-
linear” dependence between an arbitrary measure of regularity and the fraction of
symmetric states in a PDS system. It was revealed however, that the suppression
of chaos in the classical limit due to PDS may be extremely strong even in case
that the relative fraction of symmetric states in the quantum version goes to zero
in the semiclassical limit. A satisfying explanation thereof is still missing.

Another way of breaking DS which seems to be realized frequently in various
models is the so-called quasi dynamical symmetry (QDS), a concept introduced
by D. Rowe et. al. [Carv86, Rowe88, Roch88]. Many systems, if observed with
a given level of accuracy, seem to carry the fingerprint of dynamical symmetries
(DS) in the spectrum of energy as well as other observables despite the fact that
their Hamiltonian H contains a perturbations expected at first sight to break the
symmetry badly. A well-known example is the SU(3)-QDS of the shell model, see
e.g. [Roch88]. Here for example, the exact Elliot SU(3) is broken by the spin-orbit
and major shell mixing interactions, which leads to a complete fragmentation of the
eigenstates into the individual SU(3) irreps. Nevertheless, the mixing amplitudes
preserve a very high degree of coherence, so that observable quantities (transition
strengths) retain the basic properties of the unbroken SU(3). Quasi dynamical
symmetries corresponding to various dynamical symmetry groups were apart from
the shell model studied for example also in the interacting boson model [Rowe04,
Rose05] or the geometric collective model [Turn05].

27A case of an approximate PDS was noticed in the problem of the hydrogen atom in a magnetic field.
A dynamical symmetry that exists for weak fields, is broken at strong fields except for the quasi-Landau
levels, see [Alha92] and references therein. Later, significant attention was dedicated to identification of
PDS in collective nuclear spectra, see e.g. [Levi96p, Isac99, Levi02].
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The presence of QDS is closely connected with the concept of embedded repre-
sentations of a particular symmetry group G0 [Rowe88, Roch88]. Loosely speak-
ing, embedded representations appear, if the eigenstates of H do not belong
to any precise representation of G0 but are in a way coherent linear combi-
nations of numerous different G0-representations. To understand this, imag-
ine a dynamical symmetry group chain G1 ⊂ G0, such that G1 is conserved
by H , while G0 is not. Further take a basis |g0, g1〉 with good G0- and G1-
labels. The eigenstates form embedded representations |QDS; ḡ0, g1〉, if there
exist such sets of g1-labeled states, that the mixing coefficients α(ḡ0,g1)

g0
in the

expansion |QDS; ḡ0, g1〉 =
∑

g0
α(ḡ0,g1)

g0
|DS; g0, g1〉 do not depend on g1 within the

individual sets ḡ0. The independence of g1 may often be considered just approxi-
mate [Rowe04, Rose05, J6*].

Interacting Boson Model

The Interacting Boson Model (IBM) of nuclear collective dynamics [Iach87]
exemplifies all the concepts described above. The original version of IBM (called
often IBM-1) traces back to 1975 when Arima and Iachello [Arim75] reformulated
some older bosonic models of nuclei entirely within the framework of group theory.
They considered two types of bosons—the first one with total angular momentum
l = 0, called the s boson and the second one with l = 2, called the d boson28. Later,
the model gained various refinements, among others the distinction of the protonic
and neutronic degrees of freedom (IBM-2), the introduction of bosons with higher
multipolarities (IBM-3, etc.) and the incorporation of fermionic degrees of freedom
(IBFM - the Interacting Boson Fermion Model)29, see [Iach87, Iach91]. The IBM
represents in a way an intermediate step between the microscopic shell model with
strong pairing residual interactions30 and the completely phenomenological collec-
tive model of Bohr and Mottelson [Bohr52, Bohr53], which describes collective
quadrupole excitations of the nucleus.

In the following, we will concentrate on IBM-1, whose Hilbert space is formed
by all possible sequences of the creation operators s† (s boson), d†µ (five components
of the d boson with µ = −2,−1, 0, 1, 2) acting on the boson vacuum |0〉. Together
with the corresponding annihilation operators, these operators can be arranged
into 36 bilinear combinations b†αbβ (introducing here α , β = 0, 1, . . . , 5 and b†0 ≡ s†,

b†1 ≡ d†−2,. . . ,b
†
5 ≡ d†2), which close the U(6) algebra. IBM restricts the possible

operators acting on the system only to the combinations of sums and products of
the U(6) generators b†αbβ . It is clear that such operators preserve the decomposition
of the Hilbert space into subspaces corresponding to different total numbers of
bosons N = 0, 1, 2, 3, . . .. In fact, the conservation of the total boson number N
represents a substantial difference of IBM in comparison with the collective model.
In applications to particular even-even nuclei31, N is chosen to be equal to the
number of valence nucleons or holes divided by 2.

28The monopole and quadrupole degrees of freedom are known to be the most important collective
degrees of freedom in nuclei. The choice of the s and d bosons reflects both this fact, as well as the
character of the interactions between valence nucleons, which prefer coupling to pairs with total angular
momentum 0 and 2.

29IBFM allows also for a supersymmetric approaches and the research based on it has lead to the first
experimental observation of (broken) supersymmetry in nature [Iach91].

30Which lead to Cooper-pair-like behavior of the nucleonic pairs.
31Description of odd-even or odd-odd is possible only in terms of the IBFM extension.
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In IBM-1, there are three fundamental dynamical symmetry chains [Iach87]:

ր U(5) → O(5) ց (1.8)

U(6) → O(6) → O(5) → O(3) , (1.9)

ց SU(3) ր (1.10)

which begin with U(6) and end with the rotational group in three dimensions
O(3) required to be the invariant symmetry group of any nuclear Hamiltonian.
The particular selections of the bilinear U(6) generators b†αbβ forming each of the
chains can be found in [Iach87]. We note that for the chains (1.9) and (1.10), there
are two different possibilities, which differ by the relative phases chosen between
s† and d†µ. These are conventionally denoted as O(6), O(6) and SU(3), SU(3).
Hence there are five different dynamical symmetries of IBM-1 in total.

The IBM-1 Hamiltonian is usually considered to include one- and two-body
terms having the following general form

Ĥ = E0 +
∑

αβ

ǫαβb
†
αbβ +

1

2

∑

αβγδ

vαβγδb
†
αb

†
βbγbδ . (1.11)

It is further required to be (i) Hermitian, (ii) invariant with respect to the O(3)
rotations, and (iii) invariant with respect to the inversion of time, which is ex-
pressed by complex conjugation of the coefficients ǫαβ , vαβγδ and the transforma-

tion s† → s†, d†µ → (−)µd†−µ (note that since both s and d bosons are of positive
parity, they are automatically invariant with respect to space inversion). These
constraints reduce the number of independent control parameters to only seven.

The electromagnetic transition operators of different mutipolarities l are in the
IBM-1 represented by linear combinations of the elements of the U(6) algebra

T̂ (l) =
∑

α,β Kαβ [b†α × bβ ](l), with α , β = 0, 1, . . . , 5, coupled to a total angular
momentum l = 0, 1, 2, 3, 4. Let us note that since the parity of all IBM-1 states is
even, the only relevant transitions involve E(0), M(1), E(2), M(3) and E(4).

The Hamiltonian (1.11) may be equivalently transformed to a linear combi-
nation of Casimir operators corresponding to the chains (1.8)–(1.10) in order to
display the individual dynamical symmetry limits explicitly, giving

Ĥ = k0 + k1C1[U(5)] + k2C2[U(5)] + k3C2[O(6)]

+ k4C2[SU(3)] + k5C2[O(5)] + k6C2[O(3)] . (1.12)

The explicit forms of the Casimir operators (in various conventions) can be found
e.g. in the books [Iach87, Fran05].

The three fundamental dynamical symmetries (1.8)–(1.10) can be simulta-
neously incorporated even in Hamiltonians with essentially two control param-
eters [Warn82, Lipa85, Whel93]. In the publications reprinted in Appendix A
we adopt the particular form, which depends essentially on η ∈ [0, 1] and χ ∈
[−

√
7/2, 0]:

Ĥ(η, χ) =
η

N
n̂d −

1 − η

N2
Q̂(χ) · Q̂(χ) , (1.13)
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and which contains the d-boson number operator32 n̂d = d† · d̃ and the quadrupole
operator Q̂m(χ) = d†ms+s

†d̃m+χ[d†d̃](2)m . Scaling by the total number of bosons N
ensures that the bounds of energy spectrum do not change for asymptotic values
of N and is useful especially while constructing the classical limit33. We neglect
here the overall scaling coefficient of the Hamiltonian (i.e. we express energy in
units of this coefficient). Eigenstates of (1.13) are for general (η, χ) labeled by
the U(6)-label N and the O(3)-label l corresponding to the angular momentum

operator L̂m =
√

10[d†d̃](1)m .

The U(5), SU(3) and O(6) limits are reached setting (η, χ) to (1, χ), (0,−
√

7/2)
and (0, 0), respectively and correspond to the vertices of the so-called Casten
triangle, which is commonly drawn to represent the parametric space of (1.13),
see e.g. [J5*]. The SU(3) can also be obtained with (η, χ) = (0,+

√
7/2) and in fact

the whole χ > 0 domain is just a mirror image of the χ < 0 one, see Ref. [Joli01].
Notice that the whole transition between U(5) and O(6) [characterized by χ = 0]
is endowed with the O(5) symmetry, which is a common subgroup of the latter
two, see Eq. (1.8).

The regular and chaotic properties of low lying states in even-even nuclei were
using IBM studied for the first time in Refs. [Alha90, Alha91a] on the case of the
SU(3)–O(6) transition. Later they were extended to include also the U(5) limit and
the whole interior of the Casten triangle [Alha91b, Whel93] with a parametrization
equivalent to the one in Eq. (1.13). The Hamiltonian (1.13) is integrable (hence
fully regular) in the dynamical symmetry limits34 and additionally along the χ = 0
edge where the integrability is guaranteed by the O(5) symmetry. Inside the
Casten triangle, the dynamics is chaotic or mixed regular/chaotic, depending on
the values of (η, χ) as well as the energy E [Alha90, Alha91a, Alha91b]. Let us
note, that the rather peculiar energy-dependence of the measures of chaos (cf.
Figs. 1.3, 1.4) make IBM35 substantially different from the paradigmatic systems
of regularity/chaos studies—the classical and quantum billiards [Gutz90, Stoc99].

Having specified the position of the dynamical symmetries of the Hamilto-
nian (1.13) connected to integrable dynamics, let us now turn our attention to
the possible partial and quasi dynamical symmetries within the Casten triangle
in connection to the regularity/chaoticity of the dynamics therein36.

32Notice that we utilize here the convention d̃µ ≡ (−)µd
−µ and the scalar product notation related

to the standard tensor coupling via Â(l) · B̂(l) ≡ (−)l
√

2l + 1[Â(l)B̂(l)]
(0)
0 , which is very common in the

IBM literature.
33For details about the classical limit of IBM, see [Hatc82] or also [J2*, J5*, D1*] and references

therein.
34More precisely, it is “overintegrable” due to additional “missing labels” of the reductions O(5) ⊃

O(3) and SU(3) ⊃ O(3), see [Whel93].
35And similarly also the related geometric collective model, whose chaotic properties were investigated

thoroughly in Refs. [Stra06, Stra09a, Stra09b].
36We remind that although the Hamiltonian (1.13) contains all the fundamental DS of IBM-1, it still

covers only a part of the complete parametric space of the model. Here we shall concentrate on the
question of possible appearance of PDS and QDS in the Casten triangle solely, omitting other domains
[There exist IBM Hamiltonians tailored to display special PDS, see e.g. [Levi07] which are distinct from
(1.13)].
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The integrable χ = 0 edge connecting the U(5) and O(6) vertices, is particularly
richly endowed with these phenomena:

1. We observe a PDS of type II (all states with some quantum numbers) corre-
sponding to U(5) and O(6), due the underlying O(5) symmetry, conserving
the labels corresponding to the O(5)⊃O(3) reduction.

2. The low lying states display a transition between QDS corresponding to U(5)
and O(6), see [Rowe04]37, which are separated by the second order quantum
phase transition point at η = 0.8, see [Joli02].

Similarly to the second point, the low lying states along the χ = −
√

7/2 edge
connecting U(5) and SU(3) show a transition between QDS of the corresponding
types [Rose05]38. The transition occurs at the first order phase transitional point
at η ≈ 0.8, see [Joli02]. Unlike in the first point, no PDS is present along this
edge.

An interesting question arises with the possible presence of PDS and QDS in-
side the Casten triangle—especially in connection with the highly39 regular arc
(AW arc) disclosed by Alhassid and Whelan [Alha91a] between the SU(3) and
U(5) vertices. The first expectations about an underlying PDS were not con-
firmed, but the increased regularity seems to be connected to an increased occur-
rence frequency of states showing a SU(3) QDS. The SU(3) QDS is typical for the
low-lying states throughout the whole axially deformed part of the Casten trian-
gle, see [J6*] in Appendix A, and can be identified by rotational bands showing
coherent mixing of SU(3) irreps in their decomposition40. At the AW arc however,
rotational bands with coherent SU(3) decompositions appear additionally also at
intermediate and high energies and their appearance coincides considerably with
the areas of high regularity, see [J7*, J8*] in Appendix A.

37There are indications, that the QDS affect essentially the whole spectrum along the U(5)–O(6)
edge [J2*, J3], excluding only a narrow region at E ≈ 0, which corresponds to an excited state quantum
phase transition. The indication of U(5) QDS for E > 0 and O(6) for E < 0 is evident in the joint
spectra of seniority and energy, see [J2*, J3] in Appendix A. But while an analytical explanation for the
O(6) QDS is given by the shifted harmonic approximation, for the U(5) QDS in the interval η ∈ [0, 0.8]
it is still missing (note the for η ∈ [0.8, 1], U(5) QDS is explainable by the valid RPA, see [Rowe04]).

38Unlike in the integrable case U(5)–O(6), the high energy spectrum is chaotic and obviously free of
any QDS.

39but not completely
40This is a typical behavior of embedded representations of SU(3), cf. [Rose05].
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Figure 1.3: Classical regular fraction freg of the phase space volume Ω(E) calculated
in the plane χ × E using the classical limit of the Hamiltonian (1.13) with η = 0.5.
The values of freg are color coded so that the most chaotic parts (freg → 0) are blue,
while the most regular parts (freg → 1) are red. The colored area covers the whole
interval of accessible energies between the global minima and maxima of the potential
Emin and Emax. We note only that our calculations suffer numerical instability at high
energies, cf. [J8*], so that the upper part with the obviously coarser mesh corresponds to
these inaccessible areas. The semiregular Alhassid-Whelan arc is clearly visible around
χ = −0.9. It seems to be a joint effect of two distinct regular regions, one based at high
energies, while the other at low energies. These two regions merge at energy E ≈ 0.
The picture complements the behavior of freg shown in Refs. [J5*, P5*, J7*, J8*] to
be found in Appendix A.
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Figure 1.4: Classical regular fraction freg as in Fig. 1.3, but for η = 0.7. The semiregular
Alhassid-Whelan arc has now migrated to χ ≈ −0.7.



Chapter 2

Synopsis of the Results Obtained

This chapter provides a structured overview of the results published in the articles
attached in Appendix A. The aim is to highlight the most important points and
illustrate the connections between the results obtained in different publications.

2.1 Integrable Dynamics in the Interacting Boson Model

While studying the integrable domains in IBM, we have concentrated on the quan-
tum and classical dynamics along the O(6)–U(5) edge of the Casten triangle, where
the underlying O(5) symmetry guarantees integrability all along the edge, which
is parametrized by η, while the other parameter is fixed to χ = 0. The relevant
publications are [J1, J2*, J3], to be found in the Appendices A.1 and A.2. The
double-article [J1, J2*] was created already during the master study of the au-
thor, but we nevertheless include it here since it provides an essential background
for the article [J3] as well as for [J5*]. An article that directly builds upon the
results of these three articles, but is not a part of this thesis is [J4].

The main points of the articles include:

• In [J1], the evolution of the quantum spectrum along the O(6)–U(5) edge
of the Casten triangle is investigated. A surprising bunching of l = 0 levels
is observed at the energy E = 0. The bunching is disentangled separating
the sets of states with distinct seniority quantum number v [it is the O(5)
label], which shows that the spectra are compressed as the levels approach
E = 0 and that the compression is strongest for v = 0 and getting weaker for
higher seniorities. The compression is explained using the Pechukas-Yukawa
equations.

• In [J2*], an alternative explanation of the spectral compression is given us-
ing the semiclassical periodic orbit theory of spectral fluctuations. Classical
orbits of zero seniority are found to have a diverging period T → ∞ at
E = 0, which is the energy of a local maximum of the classical potential
energy surface and hence corresponds to an unstable equilibrium point. The
diverging period causes the contributions of these trajectories to the semi-
classical Berry-Tabor formula (which specifies the effects of periodic orbits
on the semiclassical level density fluctuations) to diverge.

17
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• The classical trajectories are found to have significantly different structures
at high and low energies, with an abrupt change taking place at E = 0.

• The energy E = 0 is identified as the energy of classical as well as quantum
monodromy in [J2*].

• In [J3] the energy of the monodromy E = 0 is found to demarcate the collapse
of the shifted harmonic approximation (SHA) [Rowe04], which analytically
transforms the O(6) solutions at η = 0 to solutions with η > 0 and hence
underlies the O(6) quasi dynamical symmetry related to E < 0 eigenstates for
η ∈ [0, 0.8]. The collapse of SHA is used to identify the line of excited state
quantum phase transition at the monodromy energy E = 0 which affects all
(and only) the seniority v = 0 states.

• The connection between the monodromy and the excited state quantum
phase transition is generalized to any systems with Mexican hat type of
potential.

2.2 Non-integrable Dynamics
in the Interacting Boson Model

The studies of the non-integrable dynamics in the interior of the Casten trian-
gle were originally motivated mainly by the attempts to explain the increased
regularity found by Alhassid and Whelan [Alha91b] along an arc-like path (AW
arc) connecting the SU(3) and U(5) vertices of the triangle. Partial dynamical
symmetries (PDS) were suspected to be the hidden cause. In the first paper of
the series [J5*] we have used essentially the same methods as in the studies of
the integrable dynamics described in Sec. 2.1. Incidentally, we have discovered a
bunching pattern in the evolution of the quantum spectra being very similar to
the one found along the O(6)–U(5) transition. Now the level bunching is located
slightly above E = 0, unlike in the O(6)–U(5) case. The corresponding level den-
sity fluctuation has again been linked to the properties of classical orbits via a
semiclassical trace formula. At low energies, a degeneracy line of β and γ vibra-
tions was identified to lie very close to the line of AW arc in the axially deformed
region of the Casten triangle (near to the spherical region, the two lines separate
significantly).

The application of the Peres lattice method to investigate the quantum spectra
visually using a 2d lattice, see especially [P5*], greatly facilitated the identification
of PDS connected to the standard dynamical symmetries. In fact, the presence of
PDS in the interior of the Casten triangle was disproved, since no states showing
zero variance corresponding to the Casimir operators of DS present in the Casten
triangle were found [J6*]. Later, the Peres lattices were found to indicate perfectly
the angular momentum multiplets corresponding to the SU(3) quasi dynamical
symmetry (QDS). Indeed, SU(3) QDS was found to be a frequent inhabitant of
the Casten triangle, see [J6*, J7*, J8*].

The investigations performed here were inspired and motivated mainly by
Refs. [Alha91b, Cejn98, Levi96, Rowe04, Rose05].
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The main points of the articles include:

• In [J5*], the evolution of the quantum spectrum along the AW arc and in its
near vicinity is inspected. A significant bunching of l = 0 levels, similar to the
one found along the O(6)–U(5) transition is observed slightly above E = 0.
The bunching fades away both with increasing the angular momentum and
moving away from the AW arc. The numbers of crossing l = 0 levels show
here [in contrast to the integrable O(6)–U(5) case] a pattern typical for the
SU(3) limit.

• Three major families of regular classical orbits are identified to appear at
the AW arc in the vicinity of E ≈ 0. Two of these families show equal time
periods of their central periodic orbits at an energy which corresponds to
the degeneracies of the l = 0 levels within the bunching pattern. Energy
dependence of the periods and actions of the three major families of orbits
explain the quantum level density fluctuation, through their contribution to
the semiclassical trace formula.

• The AW arc is found to lie close to a degeneracy line of single β and γ
vibrations, which originates in the equal stiffness of the potential around its
global minima in this region. The degeneracy line is calculated analytically
in a mean field approximation using the intrinsic coherent state formalism.

• In [P5*], the Peres lattice method is used to draw the spectra of IBM
throughout the Casten triangle. The regularity of the Peres lattices is shown
to correspond very well with the regularity of the classical phase space freg,
so the Peres method provides an obviously good heuristic to reveal quantum
regularity/chaos. The applicability of virtually arbitrary quantities as bases
for the Peres method is demonstrated—the regular and chaotic features dis-
closed by Peres lattices corresponding to various operators are shown to be
equivalent, in particular the lattices corresponding to any operators are com-
pletely regular in case of an integrable system (cf. also Fig. 1.2 in Chapter 1
of this thesis).

• In [J6*], the Peres lattices are used to reveal mutually similar structures
among the low-lying regular states of different angular momenta l in the
axially deformed part of the Casten triangle. These states, whose appearance
is found to be bounded from above roughly by the saddle point energy Esad of
the potential energy surface, are shown to belong to quasi SU(3) multiplets
by investigating their decompositions in the SU(3) basis, their excitation
energy ratios following the rotor l(l + 1) dependence and their interband as
well as intraband B(E2) transition rates following the Alaga rules [Alag55].
Structure of these rotational bands is explained analytically by a mean field
approximation using intrinsic coherent states. Hence the validity of SU(3)
QDS was identified and explained in a much larger region of the Casten
triangle than observed previously [Rose05].

• In [J7*, J8*], rotational bands similar to those described in the previous
point are surprisingly found and then studied in detail also at intermedi-
ate and high energies. Occurrence of these high-energy rotational bands is
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highest in the vicinity of the AW arc, and their occurrence frequency in
general shows significant correlation with variations of the measures of regu-
larity/chaos of purely vibrational l = 0 modes. The correlation indicates that
the regularity of intrinsic vibrational modes has a strong effect on adiabatic
separation of vibrations and rotations. In contrast, the chaotic vibrational
states seem to be mixed easily if the rotation comes into play.

• The degeneracy of low-energy β and γ vibrations was in Ref. [J6*] shown to
be responsible for a novel type of non-analytic behavior of several observable
quantities, predominantly of the inter- and intra-band B(E2) transition rates
and the excitation energy ratios. The degeneracy thus leads to a critical be-
havior, which is not exactly a ground state quantum phase transition (QPT),
since the properties of the ground state band remain intact, but which affects
already the lowest vibrational excitations and so is actually very near to a
QPT.



Bibliography

[Alag55] G. Alaga, K. Adler, A. Bohr, B. R. Mottelson, Dan. Mat. Fys. Medd.
29, no.9 (1955).

[Alha90] Y. Alhassid, A. Novoselsky, N. Whelan, Phys. Rev. Lett. 65, 24, 2971
(1990).

[Alha91a] Y. Alhassid, N. Whelan, Phys. Rev. C 43, 6, 2637 (1991).

[Alha91b] Y. Alhassid, N. Whelan, Phys. Rev. Lett. 67, 816 (1991).

[Alha92] Y. Alhassid, A. Leviatan, J. Phys. A Math. Gen. 25, L1265-Ll271 (1992).

[Arim75] A. Arima, F. Iachello, Phys. Rev. Lett. 35, 1069 (1975).

[Arno63] V. I. Arno’ld, Rus. Math. Sur. 18, 5, 9 (1963); Rus. Math. Sur. 18, 6, 9
(1963).

[Baru64] A. O. Barut, Phys. Rev. 135, 3B, B839 (1964).

[Ball98] L. E. Ballentine, S. M. McRae, Phys. Rev. A 58, 3, 1799 (1998).

[Ball02] L. E. Ballentine, Phys. Rev. A 65, 6, 062110, (2002).

[Berr76] M. V. Berry, M. Tabor, Proc. R. Soc. Lond. A349, 101 (1976).

[Berr77] M. V. Berry, M. Tabor, Proc. R. Soc. A 356, 375, (1977).

[Berr84] M. V. Berry, M. Robnik, J. Phys. A 17, 2413 (1984).

[Berr87] M. Berry, Proc. R. Soc. A 413, p. 183 (1987); Physica Scripta 40, 335
(1989).

[Birk35] G. D. Birkhoff, Mem. Pont. Acad. Sci. Novi Lyncaei 1, 85 (1935).

[Bohi84] O. Bohigas, M. J. Giannoni, C. Schmidt, Phys. Rev. Lett. 52, 1 (1984).

[Bohr52] A. Bohr, K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 26, 14 (1952).

[Bohr53] A. Bohr, B. R. Mottelson, K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 27,
16 (1953).

[Brod81] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, S. S. M.
Wong, Rev. Mod. Phys. 53, 385 (1981).

[Capr08] M. Caprio, P. Cejnar, F. Iachello, Ann. Phys. (N.Y.) 323, 1106 (2008).

21



22 BIBLIOGRAPHY

[Carv86] J. Carvalho, R. Le Blanc, M. Vassanji, D. J. Rowe and J. McGrory, Nucl.
Phys. A 452, 240 (1986).
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[Stoc99] H.-J. Stöckmann, Quantum Chaos. An Introduction (Cambridge Univer-
sty Press, Cambridge, UK, 1999).
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Chapter 3

List of Author’s Publications

This chapter lists all the scientific articles that contain contributions by the author
of this PhD thesis and which were either published during the years 2005-2010 or
have currently been submitted for publication.

The list is separated into three parts, which include respectively:

1. articles in international refereed journals [J1]–[J8*],

2. articles published within conference proceedings [P1*]–[P8],

3. internal publications of the Charles University in Prague [D1*].

Each of the parts (1–3) is ordered chronologically starting from the oldest
works, which often provide background for the newer ones. The order hence
somewhat represents the logical line of thoughts. The articles with a substantial
contribution of the author are marked by asterisk*. The oldest articles [J1, J2*]
and [P1*, P2] contain results obtained already as a part of the master thesis of
the author [D1*].
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in Proc. of 13th International Symposium on Capture Gamma-Ray Spec-
troscopy, Cologne, 2008, AIP Conderence Proceedings Series 1090, 174
(Springer-Verlag, New York, 2009). [5 pages]

[P8] Chaotic dynamics in collective models of nuclei,
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Appendix A

Reprint of Selected Publications

A.1 Evolution of spectral properties along the
O(6)-U(5) transition in the interacting boson model.

I. Level dynamics [J1];
Evolution of spectral properties along the
O(6)-U(5) transition in the interacting boson model.

II. Classical Trajectories [J2*]
[Phys. Rev. C 73, 014306 and 014307 (2006)]

This article, consisting of two parts, deals with various aspects of the fully in-
tegrable dynamics along the O(6)–U(5) edge of the symmetry triangle of the
interacting boson model (IBM). The author’s contribution to these studies has
been obtained as part of his master thesis and is not directly related to this PhD
thesis. We reprint the full text for the readers’ convenience, since it provides an
introduction and reference to the following publications, especially Refs. [J3, J5*].

The Part I, Level Dynamics, shows that both, the evolution of individual lev-
els, as well as of the bulk of the spectrum of IBM can be interpreted using the
Pechukas-Yukawa equations, which provide an intuitive analogy between the be-
havior of quantum levels and a gas of particles in one dimension interacting via
Coulomb force. A bunching (a level density oscillation) of angular momentum
l = 0 levels is observed in the numerically obtained spectrum throughout the
O(6)–U(5) transition to occur at energy E ≈ 0, where also the effect of quan-
tum monodromy is identified. These observations have lead to the identification
of an excited-state quantum phase transition (ESQPT) later in Ref. [J3]. Also
the eigenstate dynamics along the O(6)–U(5) transition is discussed and some
characteristic behavior of the eigenstates related to the later-identified ESQPT is
shown.

The Part II, Classical Trajectories, deals with the classical limit of IBM and
studies detailed properties of the classical orbits along the O(6)–U(5) transition.
The semiclassical periodic orbit theory for integrable systems (Berry-Tabor for-
mula) is used to interpret the level density fluctuations observed in Part I. A
significant change of the character of classical trajectories is observed as the en-
ergy of the local maximum at E = 0 is passed, see Fig. 4. The classical monodromy
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is identified at this energy value.

Author of this thesis contributed substantially to the Part II, where he per-
formed all the numerical calculations of the classical trajectories with their sub-
sequent analysis. He noticed that (i) the occurrence-rate of the simplest periodic
orbits shows a sharply-peaked behavior at certain energy values Ebif , specifically
linked to their β- and γ-vibrational frequency ratio, see Fig. 5, (ii) the orbits un-
dergo bifurcations at the energy Ebif , as plotted in Fig. 6 and that (iii) at the
energy E = 0, some trajectories with diverging time period T → ∞ occur. All
these effects were identified as possible sources of the strong level density fluctu-
ations in the semiclassical spectra. The occurrence of the 4/1-type orbits with
diverging period T has lead to the identification of the classical monodromy, see
also Ref. [J3].
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Evolution of spectral properties along the O(6)-U(5) transition in the
interacting boson model. I. Level dynamics
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We investigate the evolution of quantal spectra and the corresponding wave functions along the [O(6)-U(5)] ⊃
O(5) transition of the interacting boson model. The model is integrable in this regime, and its ground state
passes through a second-order structural phase transition. We show that the whole spectrum as a function of the
Hamiltonian control parameter as well as structures of all excited states exhibit rather organized and correlated
behaviors, which provide deeper insight into the nature of this transitional path.

DOI: 10.1103/PhysRevC.73.014306 PACS number(s): 21.60.Fw, 21.10.Re, 05.45.Mt

I. INTRODUCTION

Properties of the interacting boson model (IBM) [1] in
transitional regimes between various dynamical symmetries
have been extensively studied mainly in connection with
zero-temperature quantum phase transitions [2,3]. In any of
such transitions, the structures of the ground state and a
few low-lying states change abruptly (for the system size
tending to infinity) at a certain critical point located between
the two dynamical-symmetry limits, see, e.g., Refs. [4–9].
This behavior finds experimental evidence (in a finite-N
approximation) in observed variations of nuclear shapes in
some isotopic or isotonic chains of nuclei.

The IBM phase transitions are of the first order, except for
the isolated point of a second-order transition, which is located
at the intersection of borders between spherical and deformed,
and between prolate and oblate shapes in the parameter
space [4–6]. To pass this point, one commonly starts from
the O(6) dynamical symmetry and proceeds to U(5) via the
line of unbroken O(5) dynamical symmetry. The deformed-to-
spherical second-order phase transition on this path manifests
itself as a nonanalytic but continuous change of the ground-
state deformation, in contrast to the discontinuous changes
observed along the other (even infinitely close) transitional
paths. This type of phase structure of the parameter space
agrees with the classical Landau theory of thermodynamic
phase transitions, which is applicable at zero temperature if
the role of thermodynamic variables is taken by the model
control parameters [7,8], and with catastrophe theory [2,5].

The above-mentioned [O(6)-U(5)] ⊃ O(5) transitional path
also differs from the others in that it does not destroy the
integrability of the Hamiltonian. Due to the underlying O(5)
dynamical symmetry [10], the integrals of motion along
the whole transition form a complete set of commuting
operators, and the Hamiltonian eigenproblem can be solved
analytically [11,12]. This was used for an explicit calculation
of some second-order phase-transitional observables [13].
Recent studies of the O(6)-U(5) transitional path were also
based on the concepts of the E(5) critical-point dynamical
symmetry [14,15] and the quasidynamical symmetry [16].

The ultimate mechanism that is on the deepest level
responsible for the occurrence of ground-state phase tran-
sitions of various orders in quantum many-body systems

remains unclear. For example, the distinction between the
IBM first- and second-order phase transitions was shown [9]
to be connected with different densities of unavoided energy
crossings (branch points) in the complex-extended parameter
space, which in the N → ∞ limit accumulate infinitely
close to critical points on the real axes (in analogy with
similar behaviors of complex zeros of partition functions in
thermodynamic phase-transitional systems). However, many
questions—among them the role of integrability in the process
of dynamical-symmetry breaking—still remain unanswered.

The present work contributes to the mapping of this
relatively new territory of physics by studying in detail
various spectral observables associated with the integrable
phase-transitional path in the IBM. In particular, we investigate
the evolution of energies and wave functions of individual
Hamiltonian eigenstates with zero angular momentum along
the whole [O(6)-U(5)] ⊃ O(5) line. It is shown that this
transitional class of IBM exhibits rather peculiar features.

We will combine two totally different, but mutually related
general approaches: (i) the theory of level dynamics, initiated
by Pechukas and Yukawa [17], also known as the dynamical
Coulomb-gas analogy, and (ii) the semiclassical theory of
quantal spectra represented by the Gutzwiller and Berry-Tabor
trace formulas [18]. Results obtained by applying both these
approaches will be presented in two parts: approach (i) is
discussed in the present article (Part I), which gives numerical
results on level dynamics; approach (ii) will be used in the
following article (Part II) [19].

The Pechukas-Yukawa theory describes the dynamics of
individual levels and the interaction matrix elements via a set of
coupled differential equations, where the varying Hamiltonian
control parameter plays the role of time. It enables one to
understand the evolution of spectral observables with the
control parameter (including eventual phase transitions) in a
more intuitive way, using the parallel with a classical ensemble
of charged particles moving in one dimension.

The trace formulas, on the other hand, describe a snapshot
of the energy spectrum at each fixed value of the control
parameter (time) by expressing the quantum density of states
(as a function of energy) through properties of periodic orbits in
the classical limit of the system. Since both methods (i) and (ii)
translate the original problem to the classical language, they
often provide deeper understanding of specific behaviors
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observed on the quantum level. Also in our case, the most
significant features of the IBM in the [O(6)-U(5)] ⊃ O(5)
transitional regime will be elucidated by both kinds of classical
concepts involved in the above approaches.

The plan for this part of the paper is the following: In Sec. II,
we will briefly describe the quantum Hamiltonian under
study, its integrals of motion and phase-transitional features.
Section III presents numerical results on the level dynamics
and their interpretation in the framework of the Pechukas-
Yukawa theory. The accompanying changes in the structure
of wave functions are then discussed in Sec. IV. Finally,
Sec. V contains partial conclusions of this part of the study.

II. QUANTUM HAMILTONIAN

The interacting boson model [1] describes shapes and
collective motions of atomic nuclei in terms of an ensemble
of N interacting s and d bosons with angular momenta 0 and
2, respectively. To analyze the evolution of properties of this
model along the O(6)-U(5) transitional path, we adopt the
Hamiltonian

Ĥ (η) = a

[
−1 − η

N2
(Q̂ · Q̂) + η

N
n̂d

]
, (1)

where the dimensionless control parameter η ∈ [0, 1] changes
the proportion of both competing terms and drives the
system between the O(6) (η = 0) and U(5) (η = 1) dynamical
symmetries. The operator n̂d = (d† · d̃) = N − n̂s represents
the d-boson number, while Q̂ ≡ Q̂

(2)
0 = [s†d̃ + d†s̃](2) stands

for the O(6)-U(5) quadrupole operator. The energy scale is set
by an arbitrary factor a, which in the following will be fixed
at the value a = 1 MeV.

Hamiltonian (1) is a special case of a more general Hamil-
tonian of the same form, but with the quadrupole operator
given by Q̂(2)

χ = Q̂
(2)
0 + χ [d†d̃](2), where χ ∈ [−

√
7

2 ,+
√

7
2 ] is

an additional control parameter. Equation (1), where χ = 0,
can be decomposed [20] into a linear combination of Casimir
invariants corresponding to the O(6), O(5), O(3), and U(5)
algebras, with no admixture of SU(3), SU(3), and O(6)
invariants; i.e., it describes the [O(6)-U(5)] ⊃ O(5) transitional
line in the extended Casten triangle [6].

The above Hamiltonian can also be rewritten as

Ĥ (η) = (1 − η)Ĥ (0) + ηĤ (1) = Ĥ0 + ηV̂ , (2)

which is the form well known from various studies of quantum
phase transitions. Assuming a = 1, we obtain

Ĥ0 = − 1

N2
(Q̂ · Q̂), (3)

V̂ = 1

N
n̂d + 1

N2
(Q̂ · Q̂). (4)

The evolution of Hamiltonian (2) with η can be treated in a
perturbative way since Ĥ (η + δη) = Ĥ (η) + δη V̂ . Note that
the powers of N in denominators of Eqs. (1), (3), and (4)
guarantee convenient scaling of the Hamiltonian with variable
boson number N � 1.

It can be easily shown that for Hamiltonian (2), the ground-
state average 〈V 〉η ≡ 〈ψ1(η)|V̂ |ψ1(η)〉 = dE1(η)

dη
[where E1(η)

and |ψ1(η)〉 are the ground-state energy and wave function,

respectively] is a nonincreasing function of η. Therefore, if V̂

is nonnegative—as in our specific case, see Eq. (4)—then an
instantaneous satisfaction of 〈V 〉ηc = 0 at some critical point
ηc implies that the average gets fixed for all η � ηc, freezing
both the energy and wave function of the ground state. At this
point, the system may exhibit (for N → ∞) a ground-state
phase transition of order κ � 2. If the second derivative
of energy changes discontinuously from a value d2E1(η)

dη2 =
d〈V 〉η

dη
< 0 at η = ηc− to zero at η = ηc+, the transition is of

the second order. Higher-order transitions [2,3] would require

additional constraints, namely, dk〈V 〉η
dηk |ηc− = 0 for k < κ .

It is not difficult to see that for the specific Hamiltonian
in Eq. (1) the ground-state average of V̂ indeed interpolates
between a positive value at η = 0 and zero at η = 1. However,
the phase-transitional scenario is generically allowed only in
the limit of infinite Hilbert-space dimensions, thus N → ∞,
when the ground-state energy as a function of η may acquire
nonanalytic character. The asymptotic critical point is located
at ηc = 4

5 = 0.8. At this point, the deformed ground-state
configuration, given by a mixed-boson condensate |ψ1〉 ∝
(s† + βgsd

†
0)N |0〉, changes into the pure s-boson condensate,

|ψ1〉 ∝ (s†)N |0〉, characterizing the spherical U(5) phase.
In the left vicinity of the critical point, the ground-state
“deformation parameter” βgs drops to zero as βgs ∝ √

ηc − η

[7], and the corresponding value of 〈V 〉η behaves according to
N → ∞ asymptotic formula 〈V 〉η ∝ (ηc − η) [9]. Thus both
βgs and 〈V 〉η can be considered as order parameters describing
a second-order quantum phase transition, κ = 2, with critical
exponents 1

2 and 1, respectively.
The limits Ĥ (0) and Ĥ (1) of Eq. (1) possess the O(6)

and U(5) dynamical symmetries, respectively. Since the
dynamical-symmetry Hamiltonians are constructed using
solely observables “in involution” (the Casimir invariants of
the respective algebraic chain), they are always integrable [21].
Moreover, because the O(5) dynamical symmetry underlying
both O(6) and U(5) limits is not broken in the transitional
regime, the integrability of Hamiltonian (1) is preserved for
all values of η [20,22]. Indeed, one can find five mutually
commuting integrals of motion, the same number as the
dimension of the classical configuration space (given by two
geometric parameters and three Euler angles [23]). Four of
these integrals can be associated with the following quantum
numbers: energy Ei(η) given by the Hamiltonian Ĥ (η),
squared angular momentum l(l + 1) represented by L̂2 (where
L̂ = √

10[d†d̃](1)), its projection m determined from L̂z, and
the seniority v defined through the v(v + 3) eigenvalue of the
O(5) Casimir invariant [1]

Ĉ2[O(5)] = 1
5 (L̂ · L̂) + 2(T̂3 · T̂3), (5)

where T̂3 = [d†d̃](3). The fifth integral of motion, connected
with the so-called missing label ñ� of the O(5) ⊃ O(3)
reduction, is not given explicitly, but its existence is guaranteed
by the fact that there must be five independent commuting
operators in the complete set, so the Hamiltonian (which is
made of four of them) commutes with the fifth one [21]. Note
that in this paper we will only consider the set of states with
zero angular momentum, l = 0.
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III. EIGENVALUE DYNAMICS

A. Pechukas-Yukawa equations

Drawing the dependence of all individual level energies
Ei(η) for Hamiltonian (2) on the control parameter, one
obtains a picture containing n continuous curves that resemble
trajectories xi(t) of an ensemble of particles in one dimension.
Indeed, as shown by Pechukas and Yukawa [17], the quantum-
mechanical perturbation theory applied to Eq. (2) allows for
a dynamical interpretation such that the motion of levels
is described in terms of a set of Hamilton-type first-order
differential equations. These can be associated with a gas of
particles interacting via two-dimensional Coulomb force:

d2Ei

dη2
= 2

∑
j (�=i)

|Vij |2
Ei − Ej

(6)

(analogous to d2xi

dt2 = 1
2πε0

∑
j (�=i)

qiqj

xi−xj
). In contrast to the

ordinary gas dynamics, however, the “product charge” |Vij |2 =
|〈ψi(η)|V̂ |ψj (η)〉|2 ↔ qiqj ≡ Qij cannot be factorized and
varies as the “time” η ↔ t elapses. Thus the product charges
(alias interaction matrix elements) are also dynamical vari-
ables, subject to specific evolution, and the system’s phase
space is larger than 2n. Besides Eq. (6), we have

dVij

dη
=

∑
k(�=i,j )

Ei + Ej − 2Ek

(Ei −Ek)(Ej − Ek)
VikVkj − Vii − Vjj

Ei − Ej

Vij (7)

for i �= j (assuming an appropriate choice of phases), and

dEi

dη
= Vii . (8)

A transparent derivation of these formulas can be found, e.g.,
in Ref. [24].

Equations (6)–(8) are equivalent to the well-known
Pechukas-Yukawa set of equations, although we use here
their original form instead of the usual one [24], which was
introduced by Yukawa [17]. The system described by these
equations of motion is deterministic and even integrable. If all
energies and interaction matrix elements are known at a single
point η (for instance, η = 0), the equations determine Ei and
Vij for all other η values.

Let us stress that we have tacitly assumed (as is evident
from the energy denominators of the dynamical equations)
that the initial spectrum of eigenvalues is nondegenerate.
Since the product charge |Vij |2 in Eq. (6) is nonnegative, the
levels never touch each other unless their mutual interaction
completely vanishes. In absence of symmetry-dictated zeros
of the interaction matrix, the coincidence of simultaneous
convergences |Vij |2 → 0 and Ei+1 − Ei → 0 is extremely
unlikely, which gives rise to the well-known no-crossing rule
for level energies. The presence of symmetries, however,
induces the disappearance of Vij for certain sets of states
which, therefore, can cross. In case of Hamiltonian (1), this
concerns levels with different values of angular momentum l
and levels with different seniority v.

B. Level bunching around E ≈ 0

Figure 1 shows the dynamics of all levels with l = 0 along
the η ∈ [0, 1] path between the O(6) and U(5) dynamical
symmetries of Hamiltonian (1). The calculation was performed
by numerical diagonalization of the Hamiltonian for N =
40 bosons. One can observe numerous level crossings,

FIG. 1. Spectrum of Hamiltonian (1) with
N = 40 as a function of η for l = 0 levels with
all seniorities. Vertical and horizontal rectangles
are expanded in the upper right and lower panels,
respectively. Seniority is assigned to several
levels in the lower panel.
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particularly in the region around E ≈ 0 (the horizontal rectan-
gle, expanded in the lower panel), which is a consequence of
the unbroken O(5) dynamical symmetry of the system. Indeed,
the seniority quantum numbers, as marked for a few levels
on the rightmost side of the lower panel, differ for any pair
of levels that cross at some point. We will see below that the
crossings disappear after separation of levels with different
seniorities into several figures.

The pattern of consecutive compressions and dilutions of
the spectrum in the region around E ≈ 0 is one of the most
apparent attributes of Fig. 1 (see the lower panel). A striking
feature of this pattern is the regular sequence that characterizes
the total number of levels involved in individual bunches:
when descending from η = 0.8 to ≈0.4, the sequence goes
1, 2, 3, 4, . . . . At first, the different seniority states seem to
cross exactly at the same point (within the available numerical
precision); but with η descending below 0.65, the higher
seniorities get increasingly out of focus, and the bunching
pattern becomes more and more diffuse. Nevertheless, the
structure of alternating clusters and gaps extends over a wide
range η ∈ [0.3, 0.8]. Secondary “interference” patterns are
also visible at other energies (see the vertical rectangle of
Fig. 1, extended in the upper right-hand-side panel), but these
are much weaker than the main one.

The energy E ≈ 0, where the bunching pattern appears,
is significant because it corresponds to the local maximum
at β = 0 of the classical potential [1,23] corresponding to
Hamiltonian (1). The bunching of levels thus develops just at
the value of energy where the classically accessible range of
the deformation parameters, β ∈ [βmin, βmax], extends due to

FIG. 2. Spectrum of Hamiltonian (1) with N = 80 for l = 0
levels with seniority v = 0 and v = 18.

βmin becoming zero. The connection of the bunching pattern
with the IBM classical dynamics will be elaborated in Part II
of this contribution [19].

C. Shock-wave scenario

Figure 2 demonstrates that the level bunching pattern can
be deconvoluted by separating states with different seniorities.
Here we show the level dynamics for v = 0 (this set includes
the ground state) and v = 18, with the boson number N = 80.
Clearly, the v = 0 levels in panel (a) form a smooth flow with
a “shock wave” propagating from the top of the spectrum (at
η = 0) to the ground state (at η = 0.8). The mutual distances
�Ei = Ei+1 − Ei of individual v = 0 levels as functions of
η are shown in Fig. 3(a), where we can clearly identify
points of the closest approach of neighboring states as the
wave propagates through the ensemble. Note that because
of the energy denominator in Eq. (6), a minimal spacing of
levels tends to induce maximal “force” acting on the relevant
levels, which is basically the mechanism that keeps the wave
moving. This is also why the wave initiates in the upper
(densest) part of the spectrum (at η = 0, the distance of nearest
levels linearly decreases with i, while at η = 1 it is constant,
cf. Fig. 3).

On the other hand, the dynamics of the v = 18 levels, shown
in panels (b) of both figures, exhibits much weaker interactions.
The flow in Fig. 2(b) looks almost laminar, and the minimal
distances in Fig. 3(b) (still disclosing interactions) are about
twice as large as in the v = 0 case. It can be checked that
the weakening of level interactions proceeds gradually as v

increases.

FIG. 3. Distances of neighboring levels from Fig. 2.
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The shock-wave interpretation of Fig. 2(a) is particularly
appealing if used as tentative reasoning for the ground-state
phase transition at ηc = 4/5. It seems that this transition
results from a highly ordered sequence of structural changes
that propagates from upper to lower parts of the spectrum
and terminates at the ground state just at the critical point.
This mechanism, however, needs to be verified by an anal-
ysis of wave functions and will be further discussed in
Sec. IV.

Closely related to the regular evolution of level energies
is the organized pattern of the Hamiltonian branch points in
the complex plane of parameter η [25]. It is shown for N =
20 in Fig. 4 for (a) v = 0 and (b) v = 6. Branch points are
places in the complex-extended parameter space where two (or
more) Hamiltonian complex eigenvalues become degenerate
[26]. A branch point located on the real η-axis would imply
a real crossing of the corresponding levels, which does not
typically happen (for levels with different symmetry quantum
numbers). On the other hand, if a given branch point is not
on, but sufficiently close to the real axis, one observes an
avoided crossing of the relevant levels at the corresponding
value of η. Recall that a sequence of such avoided crossings
is significant for the “shock wave.” A cumulation of branch
points in infinitesimal vicinity (for N → ∞) of the critical
point ηc was recently shown [9] to constitute the essential
triggering mechanism for the IBM quantum phase transitions
of both orders.

For each seniority, there are altogether n(n − 1)/2 complex
conjugate pairs of branch points, where n is the dimension of

(a)

(b)

 0.2

 0.4

 0.6

 0.8

1

0

 0.2

 0.4

 0.6

 0.8

0  0.2  0.4  0.6  0.8 1

FIG. 4. Branch points of Hamiltonian (1) with N = 20 for l = 0
states with seniorities v = 0 and v = 6.

the given seniority subspace. Because of numerical constraints,
we can only show results for moderate dimensions that
correspond to the lower boson number N = 20. As can be
seen in Fig. 4, branch points for both seniorities form rather
regular patterns. In the v = 0 case, we notice a chain of points
at η < 0.8 that approaches close to the real axis. These points
clearly correspond to the sequence of avoided crossings shown
(for a higher boson number) in Fig. 2(a). With increasing
seniority, the pattern gets more and more separated from the
real axis [see the example in (b)], which results in a weakening
of level interactions, as observed (for different values of N
and v) in Fig. 2(b). Note that such an organized behavior of
branch points is a characteristic of only the [O(6)-U(5)] ⊃
O(5) transitional class, where the separation of seniorities is
possible (cf. Ref. [9]).

D. Focal point and spectral invariant

A more detailed view of Fig. 2(a) discloses that almost
all v = 0 levels on the η = 0 side (except perhaps a few at
the top of the spectrum) point to a virtually sharp focus on
the η = 1 side. Indeed, an unperturbed evolution (with no
mutual interactions between levels) would lead to a crossing
of individual lines at the point (η,E) = (1, 1

2 ), which we
call an (approximate) focal point of the [O(6)-U(5)] ⊃ O(5)
transition.

From Eq. (8), we see that (ηf ,Ef ) will be a focal point
of Hamiltonian (2) if 〈ψi(0)|Ĥ (ηf )|ψi(0)〉 = Ef ; so in our
particular case, we have

〈ψi(0)|n̂d |ψi(0)〉 ≈ N

2
, (9)

where |ψi(0)〉 are the Hamiltonian eigenvectors with v = 0
at η = 0. This means that the average number of d bosons
in individual O(6) eigenstates with zero seniority stays nearly
constant across the whole spectrum. Figure 5(a), where the
nd average is shown explicitly along the whole η ∈ [0, 1]
path for all v = 0 levels with N = 80, supports this rule;
see the η = 0 limit (graphically it is difficult to distinguish,
whether the convergence of all curves to the N/2 point is
exact or not, but numerical values indicate that it is only
approximate). With a lower precision, the validity of the above
“spectral invariant” can be extended to higher seniorities,
but with increasing v there are more and more upper states
that do not fit, see Fig. 5(b), which shows 〈nd〉i for the
v = 18 levels.

Even in the SU(3)-U(5) and SU(3)-U(5) transitions, when
Q̂ in Hamiltonian (1) is replaced by Q̂χ with χ = −√

7/2
or χ = +√

7/2 and the seniority is not conserved, one finds
a similar approximate invariant, namely 〈ψi(0)|n̂d |ψi(0)〉 ≈
3N/4, where |ψi(0)〉 represent the SU(3) or SU(3) eigenvec-
tors (the complete l = 0 spectrum for these transitions can be
found in Ref. [8]).

Note that we first detected these invariants geometrically,
from the focal points. The impact of such invariants on the
level dynamics can be enormous since focal points represent an
essential condition for the initial compression of the Coulomb
gas, which results in stronger interactions between levels. This
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FIG. 5. Average number of d bosons for v = 0 and v = 18 states
with l = 0 and N = 80.

compression triggers the formation of the “shock wave” in the
densest part of the spectrum, see Sec. III C. Therefore, the
existence of an initial (exact or approximate) focal point may
belong to the main causes that eventually lead to a phase
transition at some point.

E. Finite-N phase transitions

Although we are dealing here with the spherical-deformed
transition induced by varying parameter η in Hamiltonian (1),
one should realize that the [O(6)-U(5)] ⊃ O(5) transitional
path itself coincides with the separatrix between prolate and
oblate deformed phases [5,6]. The prolate-oblate first-order
phase transition for N → ∞ at any fixed value of η ∈ [0, 4

5 )
can be induced by varying parameter χ in the generalized
Hamiltonian of the form (1) with Q̂ replaced by Q̂χ .

It was shown [13] that in the O(6) dynamical symmetry,
a discontinuous prolate-oblate change of the ground state
structure can be observed even for finite boson numbers.
Indeed, if one explicitly includes the O(5) Casimir invariant
(5) into the Hamiltonian with a coefficient such that the v = 0
ground-state at (η, χ ) = (0, 0) becomes degenerate with the
lowest states of other seniorities, a crossing of the ground-state
configurations will occur for any value of N when passing the
O(6) point in the χ direction.

We are now in a position to extend this mechanism to the
whole η ∈ [0, 4

5 ) transitional region. The basic trick—the fact
that levels with different seniorities can be made degenerate—
remains the same. After subtracting the component corre-
sponding to the O(5) Casimir invariant [20] from the general

χ -dependent Hamiltonian of the form (1), we arrive at the
expression

Ĥ ′(η,χ ) ∝ η − 1

N2

{
(Q̂χ · Q̂χ ) − 1

2
Ĉ2[O(5)]

}
+ η

N
n̂d, (10)

which exhibits the desired property: for any fixed value of
η < 4

5 and any finite boson number N, the ground state as a
function of χ changes discontinuously at χc = 0.

We therefore extend the region of possible finite-N
prolate-oblate phase transitions to the whole prolate-oblate
separatrix, using the integrability of [O(6)-U(5)] ⊃ O(5)
IBM Hamiltonians. Note, however, that phase transitions at
finite dimensions, induced by unavoided crossings of levels
involving the ground state, are not robust enough to survive at
finite temperatures. Indeed, if the temperature increases from
zero to an infinitesimally small value, nonzero populations of
both levels result in a smooth dependence of the free energy
on the control parameter, and the phase-transitional behavior
is washed out.

F. Bulk properties of the spectrum

It is clear that the strongest influence on a given level comes
typically from its neighbors at the places of avoided crossings.
Besides these binary interactions (involved in the shock-wave
propagation), there exists also a component of the total force
acting on each individual level that originates from the bulk of
the whole ensemble. In this subsection, we will consider two
global measures of this bulk component.

First, we consider the overall compression of all levels,
represented by the energy dispersion (squared “spread”) of
the spectrum, �2

E = 1
n

∑
i(Ei − Ē)2, where Ē = 1

n

∑
i Ei is

a center-of-mass energy. A straightforward calculation yields
the expression

�2
E =

[
TrĤ 2

0

n
− Tr2Ĥ0

n2

]
+ 2η

[
Tr(Ĥ0V̂ )

n
− TrĤ0TrV̂

n2

]

+ η2

[
TrV̂ 2

n
− Tr2V̂

n2

]
, (11)

which shows that the spectral dispersion is a quadratic function
with a minimum at

η0 = −nTr(Ĥ0V̂ ) − TrĤ0TrV̂

nTrV̂ 2 − Tr2V̂
. (12)

For η ≈ η0, the strengths of both terms Ĥ0 and ηV̂ of
Hamiltonian (2) are comparable, so the strongest effects of
mixing take place in the surrounding region. For η � η0 or
η � η0, on the other hand, the spectrum just blows up, the
Hamiltonian being dominated by ηV .

For v = 0 and v = 18 subsets of the spectrum with N = 80,
the function (11) is shown in Figs. 6(a) and 6(b). We see
that the v = 0 levels are maximally compressed at η0 ≈
0.56, i.e., in the region just before the phase transition. For
higher seniorities, the minimum moves toward ηc = 4/5. Note
that a similar conclusion can be made for χ �= 0, when of
course the seniority is not conserved and the contribution of
all l = 0 levels must be summed up. For χ = ±√

7/2, for
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FIG. 6. Dispersion (11) of the spectrum and the kinetic energy
from Eq. (13) for v = 0 and 18 states, corresponding to l = 0 and
N = 80.

instance, the energy dispersion forms a sharp minimum
directly at η0 ≈ 0.8.

The second quantity we will use here to characterize the
bulk component of the force is the total product charge Q =∑

i>j Qij = ∑
i>j |Vij |2. It is related to the sum

1

2

∑
i

(
dEi

dη

)2

︸ ︷︷ ︸
T

+ 1

2

∑
i �=j

|Vij |2

︸ ︷︷ ︸
V

= 1

2
TrV̂ 2 ≡ E, (13)

which is an integral of motion of the Pechukas-Yukawa model,
known as the total energy [24]. Since d

dη
E = 0, the second term

that represents the potential energy V = Q is at any value of η

just a complement of the first, kinetic term T . For η � η0 and
η � η0 [assuming for a while η ∈ (−∞,+∞)], the eigenbasis
of Ĥ (η) virtually coincides with the eigenbasis of V̂ so that
TrV̂ 2 ≈ ∑

V 2
ii = 2T and V ≈ 0. In these regions, the gas just

freely expands. On the other hand, around η0 the kinetic and
potential terms in Eq. (13) are comparable, and the interaction
may generate nontrivial effects.

The kinetic energy from Eq. (13) for levels with v = 0 and
v = 18, respectively, is shown in Figs. 6(c) and 6(d). In both
cases, we observe a minimum of T very close to the critical
point; for v = 0, the minimum is located at η ≈ 0.67. This
means that V = Q is maximal at the same place, implying
the strongest overall strength of level interactions. For higher
seniorities, the minimum gets shallower and moves toward ηc.

We saw that both the compression of the spectrum and
total interaction strength are maximal in the region of control
parameters around η0 which immediately precedes the phase
transition at ηc. Conversely, Eq. (12) yields a reasonable rough
estimate of the parameter range of a general Hamiltonian (2)
where eventual phase transitions may be located.

IV. EIGENSTATE DYNAMICS

Besides dynamics of individual Hamiltonian eigenval-
ues Ei(η), one can also analyze structural changes of the

corresponding eigenstates |ψi(η)〉. These two aspects of
spectral evolution are mutually correlated, since the matrix
elements Vij , which carry information on wave functions,
belong to dynamical variables involved in Pechukas-Yukawa
equations (6)–(8).

In Fig. 5, we already observed the evolution of the
average number of d bosons 〈nd〉i in the v = 0 and v =
18 eigenstates. This information is now supplemented by
Fig. 7, where the η dependence of the whole distribution
Pi(nd ) of nd is shown for selected N = 80 Hamiltonian
eigenstates, namely the v = 0 states with i = 1, 10, 20, and
30 (ordered with increasing energy). For l and v fixed, the
probability

Pi(nd )|η =
∑
ñ�,m

|〈nd, v, ñ�, l,m|ψi(η)〉|2 (14)

for each η is determined as the projection of the state |ψi(η)〉
onto the subspace of the U(5) eigenstates with nd equal to the
given number. In the U(5) limit, the distribution is concentrated
on a single value nd = 2i − 2 (with zero seniority, the value
of nd must be even), but it quickly spreads over a broad range
of nd as η decreases from 1 to 0.

Figure 7 shows four qualitatively different ways for how
this delocalization proceeds. For the ground state, i = 1,
the value of nd remains zero as far as η > ηc, and then it
suddenly increases (with decreasing η), forming a ridge around
the average that goes approximately as 〈nd〉1 ∝ √

ηc − η, in
agreement with the phase-transitional predictions; cf. Fig. 5(a).
For excited states, the gradual spread of wave functions in nd

can be compared to the propagation of waves on a string.
The string is initially (at η = 1; the “time” is now thought to
go backward) subject to an instantaneous point perturbation
and the resulting waves propagate in both nd = 0 and nd = N

directions asymmetrically. The pattern of wave propagations
changes with i: for instance, the speed of the upper wave is
lower for higher excited states. When the lower front of the
wave reaches the nd = 0 limit, it either gets reflected (this
happens for lower excited states, see the i = 10 example)
or stops there (for higher excited states, see i = 20 and
30 cases).

It is interesting that the value of η where the wave reaches
the lower endpoint nd = 0 coincides with the range where
the shock wave affects the given level, see Figs. 2(a) and
3(a). This can be checked for a larger set of levels in
Fig. 5(a). The dependences of individual nd averages exhibit
well-pronounced minima that correspond to the stopping
or reflection of the lower wave front at nd = 0 and that
reasonably coincide with the moments of passage of the
shock wave.

Also shown in the insets of Fig. 7 is the U(5) wave-function
entropy,

S
U(5)
i = −

N∑
nd=0

Pi(nd ) ln Pi(nd ), (15)

which measures the overall spread of the instantenous eigen-
vector |ψi(η)〉 in the U(5) basis [20]. Assuming a quasiuniform
distribution of the ith state over a certain set of the n̂d eigen-
states, one finds that the effective number of components
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FIG. 7. Distribution of the d-boson number
nd in four l = v = 0 eigenstates of Hamiltonian
(1) with N = 80 as a function of η. Insets show
the corresponding U(5) wave-function entropy.

is given by neff
i = exp S

U(5)
i . This number is approximately

equal to half of the width (at a given value of η) of the nd

distribution corresponding to the respective level (taking into
account that odd nd values are not populated for v = 0).

As can be seen in Fig. 7, the widths of the nd distributions
and the corresponding U(5) entropies grow with decreasing η

as far as the distribution touches the nd = 0 limit (the level
gets into the shock-wave region). After this point, the width
and entropy stay approximately constant. If proceeding from
the O(6) side, i.e., returning to the forward direction of time,
we can say that the process of localization of level i in the U(5)
basis starts approximately when the shock wave hits the level.
This supports and further specifies the shock-wave scenario
described in Sec. III C. We must stress, however, that for
excited states, the transition to the U(5) structure after passing
the shock wave is only gradual. A sudden phase-transitional
type of change is reserved for the ground state only.

As indicated by the i > 1 examples in Fig. 7, the decrease
of the U(5) wave-function entropy exhibits some undulations,
connected with quantum interferences of the amplitudes
corresponding to populations of individual nd . It is surprising
that vertical coordinates of the main oscillations are about
constant for the whole ensemble of states. This is demonstrated
in Fig. 8, where we show the U(5) wave-function entropy for
all v = 0 and v = 18 states (N = 80). Clearly, if one proceeds
from state to state, the undulations are shifted in η, but remain
at about the same levels of entropy. The result is a peculiar
pattern of plateaus present in both panels of Fig. 8. (Let us
stress, however, that these plateaus are only a visual effect
appearing when all entropies are drawn in the same figure.)
This hints at strong correlations in the structural changes of in-
dividual eigenstates after the passage through the shock-wave
region.

The most distinguished steps of the patterns in Fig. 8 are
the same for both seniorities. They correspond to the effective
numbers of wave-function components equal approximately to

FIG. 8. U(5) wave-function entropy for all v = 0 and v = 18
eigenstates of Hamiltonian (1) with l = 0 and N = 80.
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neff
i ≈ 4.5, 7.5, 10, and 12. Note that the average delocalization

of a given state in a randomly chosen basis is for sufficiently
high dimensions n given by neff

GOE ≈ 0.48 n [20], which for the
v = 0 and v = 18 subspaces yields typical saturation values
of the wave-function entropy equal to SGOE ≈ 3 and ≈2.7,
respectively. [The largest U(5) entropies in the η = 0 limit
slightly exceed the Gaussian-Orthogonal-Ensemble (GOE)
values, but the latter provide reasonable estimates of averages
if all states are taken into account.] We see that the system of
plateaus in Fig. 8 disappear in noisy oscillations just below the
respective GOE entropy values.

Let us stress that no steplike structures are observed in
cumulative plots of the U(5) wave-function entropy of all l =
0 states for the SU(3)-U(5) and SU(3)-U(5) transitions. The
present correlated behavior is therefore connected solely with
the integrable χ = 0 region.

V. CONCLUSIONS

We have studied dynamics of the l = 0 energy levels and
the corresponding eigenstates along the [O(6)-U(5)] ⊃ O(5)
transition of the interacting boson model. Results of our
numerical calculations were discussed in the framework of
the Pechukas-Yukawa model, which describes the evolution
of quantal spectra as one-dimensional motions of an ensemble
of classical particles. Treated in this way, spectral attributes
for all values of the control parameter—including possible
phase transitions at some critical points—result just from
a specific “initial condition,” i.e., the set of energies and
interaction matrix elements at a single arbitrary point η. (It
needs to be stressed that this viewpoint does not, in fact,
require the Pechukas-Yukawa equations, since the knowledge
of energies and all matrix elements of V̂ in the Hamiltonian
eigenbasis at a single value of the control parameter clearly
represent a complete determination of the Hamiltonian matrix
for any η.) Of course, particularly tempting is to consider the
whole spectral evolution along η ∈ [0, 1] (and beyond) being
predetermined by properties of the system in either of the two
limiting dynamical symmetries.

We disclosed cooperative and highly coherent behaviors
of the individual spectral constituents, i.e., level energies
and wave functions corresponding to various seniorities. This
may be generally linked to the integrability of the model
in the present regime, namely, to the possibility to separate
seniorities; but we have to admit that some of the findings
remain just plain observations. Further studies may shed more
light on how this all “comes about.”

The most significant cooperative effect seems to rely on
the shock-wave mechanism, which consists of an ordered se-
quence of avoided crossing of levels in the region around E ≈
0 and the accompanying changes of eigenstates (Secs. III C
and IV). Triggered by an initial compression of the spectrum,
the shock wave initiates in its densest upper part and propagates
downward to the ground state. The passage of the wave through
a given state starts the gradual transfiguration of the state
structure into the U(5) form. This mechanism provides a deeper
insight into the process that eventually leads to the ground-state
phase transition of second order.

Among the other findings, we highlight the following: (a)
approximate focal points of IBM spectra in transitions to the
U(5) dynamical symmetry (Sec. III D), (b) possible finite-N
prolate-oblate phase transitions along the whole [O(6)-U(5)] ⊃
O(5) separatrix (Sec. III E), (c) extremes of spectral “bulk
observables” in the region immediately preceding the phase
transition (Sec. III F), (d) highly correlated changes of consec-
utive eigenstates leading to plateaus in the cumulative plot of
U(5) wave-function entropies (Sec. IV).

In the following part of our article [19], we will focus
on the interpretation of the E ≈ 0 pattern of level bunchings
(Sec. III B) within the semiclassical theory of quantal spectra.
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We continue our previous study of level dynamics in the [O(6)–U(5)]⊃O(5) transition of the interacting boson
model [Phys. Rev. C 73, 014306 (2006)] by using the semiclassical theory of spectral fluctuations. We find
classical monodromy, related to a singular bundle of orbits with infinite period at energy E = 0, and bifurcations
of numerous periodic orbits for E > 0. The spectrum of allowed ratios of periods associated with β and γ

vibrations exhibits an abrupt change around zero energy. These findings explain anomalous bunching of quantum
states in the E ≈ 0 region, which is responsible for the redistribution of levels between O(6) and U(5) multiplets.

DOI: 10.1103/PhysRevC.73.014307 PACS number(s): 21.60.Ev, 21.60.Fw, 03.65.Sq

I. INTRODUCTION

In the first part of this work [1] (hereafter referred to
as Part I), we discussed the evolution of level energies and
wave functions along the [O(6)–U(5)]⊃O(5) transition in the
interacting boson model (IBM) [2]. It is known that this
transitional class is integrable—because of the O(5) underlying
symmetry and the associated seniority quantum number ν—
and exhibits a second-order ground-state phase transition from
deformed γ -soft to spherical equilibrium shapes.

Remember that our family of model Hamiltonians is given
by

Ĥ (η) = a

[
−1 − η

N2
(Q̂ · Q̂) + η

N
n̂d

]
, (1)

with η ∈ [0, 1] denoting a dimensionless control parameter
that drives the system between the O(6) (η = 0) and U(5)
(η = 1) dynamical symmetries. The spectrum of Ĥ (η) at any
point of the transitional path depends on the specific interplay
of both terms in Eq. (1), where Q̂ = [s†d̃ + d†s̃](2) represents
the quadrupole operator and n̂d = (d† · d̃ ) is the d-boson
number operator. Note that N is the total number of bosons,
which in the classical limit tends to infinity (both terms in
the above Hamiltonian are properly normalized by the Nk

denominators to yield finite contributions in this limit), and
a = 1 MeV is an arbitrary scaling factor (energy unit). The
N → ∞ ground-state shape-phase transition takes place at
ηc = 4/5.

We have shown that one of the most significant features
of spectra in the η ∈ [0, 1] transitional regime of Hamiltonian
(1) is the pattern of alternating compressions and dilutions of
levels with angular momentum l = 0 around energy E ≈ 0.
This pattern spreads over a wide interval of the control
parameter between η ≈ 0.3 and 0.8; see Fig. 1 in Part I. After
deconvoluting spectra with different seniorities, it transforms
into a sequence of avoided crossings that constitute what we
called the “shock-wave scenario” [1].

The level-bunching pattern represents basically a huge
oscillation of the level density in the E ≈ 0 region, not
dissimilar to shell effects in single-particle spectra of some
quantum-mechanical potentials. There exists a deep and far-
reaching relation between fluctuations of the quantum level

density and properties of periodic orbits in the classical
counterpart of the given system [3,4]. While it is known that
each periodic orbit brings one oscillatory term into the level
density, with an amplitude related to the orbit’s dimensionality
and stability [5–7], the interference of several such terms gives
rise to spectral beating patterns that underlie shell effects
in nuclei, quantum dots, or metallic clusters [8]. Indeed, as
follows from the analysis performed by Balian and Bloch [6],
the inclusion of just the two the simplest periodic orbits in a
spheroidal cavity explains the essentials of the shell structure
in these systems.

The majority of semiclassical studies on level-density
fluctuations was performed for hard-wall systems—two-
dimensional billiards or three-dimensional cavities [3,4]. In
these systems, the calculation is considerably simplified since
each individual orbit exists with easily predictable properties
for all energies of the particle bouncing between the walls
and contributes by a well-defined term to the single-particle
level density. Nevertheless, the influence of periodic orbits is
equally important also in systems with “soft” potentials, in
which the orbit analysis is much more involved. This is also
the case of the IBM, in which the classical limit for l = 0
describes two-dimensional motions within a bounded (for
each finite E) range of quadrupole deformation parameters,
governed by a Hamiltonian containing specific kinetic and
potential terms [9–12].

The purpose of the present part of our contribution is
to show that the shell effects and the IBM level-bunching
phenomenon are indeed of similar nature, both originating
in some particular features of classical periodic trajectories.
Nevertheless, our reasoning does not only point to ordinary
beating patterns, known from hard-wall systems, but makes
use of two concepts that in the context of nuclear models
are somewhat less usual. The first one relies on bifurcations
of periodic orbits [13], the second on monodromy in classical
and quantum integrable systems [14]. Both these effects lead to
singular contributions to semiclassical trace formulas that pro-
vide a simplified description of the level-density fluctuations.
Therefore they can be potentially linked to anomalous effects
in quantal spectra, such as the level bunching at E ≈ 0. We
want to emphasize that the conclusions of the present work are
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mostly qualitative (because of large complexity of the rigorous
theoretical description), but even with this limitation we hope
to shed more light on the problems discussed.

The paper is organized as follows: In Sec. II we review the
construction of the classical limit of the IBM Hamiltonian
under study and describe basic features of the resulting
classical dynamics. Subsection III A briefly recapitulates the
Berry-Tabor trace formula and the role of singular orbits and
bifurcations in the semiclassical theory of quantal spectra.
Numerical analysis of orbits with l = 0, presented in Sub-
sec. III B, shows that in the E ≈ 0 region our system passes
through a robust structural change of classical dynamics. This
change is correlated with the occurrence of a singular bundle of
E = 0 trajectories and triggers multiple bifurcations of orbits
in the region E > 0. The relation of these findings to the
concept of monodromy is discussed in Sec. IV. Finally, Sec. V
contains concluding remarks.

II. CLASSICAL HAMILTONIAN

The classical limit of the IBM can be obtained by
means of the well-known procedure, elaborated in detail
by Hatch and Levit [9] and by Alhassid and Whelan
[10–12]. The procedure makes use of Glauber coherent states
|α〉 ∝ exp(αss

† + ∑
µ αµd†

µ)|0〉 with complex time-dependent
coefficients α ≡ {αs, αµ}µ=−2,...,+2 that define a set of 12
classicallike variables (both coordinates and momenta). The
equations of motion for α are derived from the time-dependent
variational principle, which results in the Hamilton function
given by the coherent-state average Hcl(η; α) = 〈α|Ĥ (η)|α〉.
This function and analogous counterparts of other operators
can be obtained by substitutions s, dµ 
→ αs, αµ and s†, d†

µ 
→
α∗

s , α
∗
µ in the respective normal-ordered quantal expressions.

Since Glauber coherent states do not fix the total number
of bosons, an additional constraint must be required, namely
that 〈α|N̂ |α〉 = |αs |2 + ∑

µ |αµ|2 = N . This (plus an arbitrary

choice of the overall phase, αs =
√

N − ∑
µ |αµ|2) reduces

the number of relevant degrees of freedom from 6 to 5.
Naturally, the classicality of coherent states becomes more
and more pronounced as N increases and the fully classical
limit is obtained in the N → ∞ limit. To prevent divergence
of the corresponding averages, one has to scale all operators
according to their order [see the (1/Nk) factors in Hamiltonian
(1)] and to absorb the respective factors into the definition
of α’s. This leads to the substitution αµ 
→ α̃µ = (αµ/

√
N )

while, simultaneously, the (1/Nk) factors drop out.
Final expressions for the classical-limit observables are

obtained after the identification of real coordinates qµ and
momenta pµ by means of relations

√
2α̃µ = (−)µq−µ + ipµ

and
√

2α̃∗
µ = qµ − (−)µip−µ. The coordinates qµ are associ-

ated with the geometric variables describing an instantaneous
quadrupole deformation of the nucleus and its orientation in the
laboratory frame. Because of the fixed boson number average,
the motion is constrained by the condition∑

µ

(
p2

µ + q2
µ

)
� 2 (2)

to the interior of a sphere in the 10-dimensional phase space.

The calculation of classical observables is substantially
simplified for zero angular momentum, l = 0 [12,15]. In this
case, the intrinsic frame connected with the ellipsoid of defor-
mation remains at rest, and one can fix Re q0 ≡ x and Re q+2 =
Re q−2 ≡ y/

√
2 (while q±1 = Im q±2 = Im q0 = 0). The l =

0 classical limit of Hamiltonian (1) reads

Hcl = η

2
π2 + (1 − η) β2π2

︸ ︷︷ ︸
Tcl

+ 5η − 4

2
β2 + (1 − η) β4

︸ ︷︷ ︸
Vcl

(3)

(with a = 1), where β2 = x2 + y2 is the squared radius in the
q0 × √

2q±2 plane (the polar angle denoted as γ ) and π2 is the
squared length of the associated vector of momenta:

π2 = π2
x + π2

y = π2
β +

(
πγ

β

)2

. (4)

Hamiltonian (3) can be thought of as describing planar
motions of a particle with the position-dependent kinetic
energy Tcl in potential Vcl, which is for η = 0, 0.6, and 1, as
shown in Fig. 1. Whereas for η < ηc = 4/5, the potential has
the “Mexican-hat” (or “champagne-bottle”) form, for η � ηc

it is just a well with a minimum at β = 0. To emphasize
the rotational symmetry in the x × y plane, we show both
positive and negative domains of β (the latter corresponding
to the rotation by angle 180◦). As follows from the form of the
potential and from condition (2), the radius must satisfy

β ∈ [βmin, βmax] ⊂ [0,
√

2] (5)

E

FIG. 1. Potential-energy term of Hamiltonian (3) for three values
of parameter η. The lowermost (η = 0) and uppermost (η = 1) curves
correspond to O(6) and U(5) limits, respectively. The middle curve
(η = 0.6) represents an intermediate case, for which the accessible
range of radii (for the three given energies) is shown by the dashed
lines. Energy is given in units a from Eq. (1). “Negative radii”
express the (β, γ ) → (β, γ + 180◦) ≡ (−β, γ ) transformation and
are included just to emphasize the rotational symmetry.
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and the total energy

E ∈ [Emin, Emax] ⊂ [−1,+1],
(6)

Emin =
{

− (5η−4)2

16(1−η) for η < 4
5

0 for η � 4
5

, Emax = η.

Remember that throughout this paper the energy is always
expressed in units of the scaling constant a, see Eq. (1), so it
is formally dimensionless.

Note that polar coordinates β and γ of x and y can be
immediately associated with Bohr geometric variables, but in
this case the deformation parameter is restricted to interval
(5). To obtain β̃ ∈ [0,∞), as is usual in nuclear structure,
the coordinate plane would have to be radially stretched
[16] according to β 
→ β̃ = (β/

√
2 − β2), together with the

accompanying transformation of the radial momentum. In the
following discussion, nevertheless, we use classical limit (3)
with constraint (5).

It is immediately apparent that Hamiltonian (3) is “γ soft,”
invariant under rotations about the origin, so it conserves the
“angular momentum”:

πγ = xπy − yπx. (7)

Thus, since the number of degrees of freedom f = 2, the
system must be integrable. This is in agreement with the argu-
ments explaining the integrability of the [O(6)−U(5)]⊃O(5)
Hamiltonians with arbitrary angular momenta, as outlined
in Part I [1], since Eq. (7) is closely related to the in-
tegral of motion Ĉ2[O(5)] = 1

5 (L̂ · L̂) + 2(T̂3 · T̂3). Indeed,
for l = 0, the classical limit of the O(5) Casimir invariant
reads [9]

C2[O(5)]cl|l=0 = 2π2
γ . (8)

Note that since angular momentum (8) does not correspond
to the ordinary O(2) algebra of two-dimensional rotations,
its quantization yields eigenvalues v(v + 3), where, for l = 0,
the seniority takes values v = 0, 3, 6, . . . , in contrast to the
m2 formula with m = 0,±1,±2, . . . , corresponding to O(2).
Nevertheless, we realize that each value of C2[O(5)]cl is
associated with both signs of πγ , i.e., with two opposite
orientations of the motion in the γ direction. This intrinsic
“degeneracy” (which does not affect physical results in the
quantum case) will become important in Sec. IV.

The integrability of Hamiltonian (3) is illustrated in Fig. 2,
where we show Poincaré phase-space sections for η = 0.6
at three different energies, (a) E = −0.1, (b) E = 0, and (c)
E = 0.1. Each of the panels represents passages of 10–50
randomly selected trajectories with the given energy E through
the β × πβ plane in four-dimensional phase space. Because
of the rotational symmetry, the plane can have an arbitrary
orientation in the x × y frame and the pattern of sections must
be symmetric under the reflection of the β axis (we show both
β > 0 and β < 0 halves).

All sections in Fig. 2 demonstrate fully regular dynamics,
in agreement with the integrability of our system. As can be
anticipated from Fig. 1, the E < 0 motions in panel (a) must be
confined inside the annular region β ∈ [βmin, βmax], while the
E > 0 trajectories in panel (c) already range over the full disk
β ∈ [0, βmax] (the values βmin and βmax depend on energy).
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FIG. 2. Poincaré phase-space sections for Hamiltonian (3) with
η = 0.6 at the three given values of energy. The sections show a finite
number of crossings of (a) 10, (b) 30, and (c) 50 trajectories with the
plane β × πβ for arbitrary γ .

Panel (b) shows just the singular E = 0 situation, when the
central inaccessible (for E < 0) disk shrinks into a single point
(which can be reached in infinite time). We return to this case
in Sec. IV.

Let us stress that the Poincaré sections in Fig. 2 separate
trajectories with different energies, but mix together those
with various values of the angular momentum πγ . Indeed,
the outermost curves in all panels represent pure β vibrations
with πγ = 0, while the central points (not shown) correspond
to “spinning” only in the γ direction with πβ = 0. The
other trajectories correspond to various mixtures of β and
γ vibrations. An interesting attribute of these intermediate
cases is the spread �β of each individual trajectory in the β

direction, which can be determined as the difference between
radii corresponding to the outermost and the innermost points.
This attribute is used in Sec. III to classify quasi-periodic orbits
in our system.

III. PERIODIC ORBITS

A. Berry-Tabor formula, singular orbits, and bifurcations

Semiclassical analyses of quantal spectra are performed
within the framework of so-called trace formulas that represent
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the fluctuating part �fl(E) of the level density �tot = �sm + �fl

in terms of purely classical quantities associated with periodic
orbits, while the complementary smooth part �sm(E) is
determined just as the classical phase-space volume available
at a given energy E in units of h̄f (where f is the number of
the system’s degrees of freedom). The best-known expression,
derived by Gutzwiller [5], was obtained under the assumption
that individual periodic orbits are isolated, which is not
satisfied for integrable systems. In this case, periodic orbits
come in continuous families characterized by arbitrary shifts
of initial angles if the motion is described in the action-angle
variables [13]. An adequate semiclassical approach to the level
density of integrable systems was developed by Berry and
Tabor [7].

In the following discussion, we consider a two-dimensional
integrable system, f = 2, that applies in our case of
Hamiltonian (3). In the action-angle representation, the
Hamiltonian depends only on actions H = H (I1, I2), and the
angles evolve according to θ̇1 = ω1 and θ̇2 = ω2. All trajec-
tories represent folded rotations on various tori determined
by �I = (I1, I2). Let us note that, in many integrable systems,
including ours, the action-angle variables can be introduced
only locally [14] (see Sec. IV). Therefore it is not possible
to write analytic expressions for the corresponding canonical
transformation from normal coordinates and momenta.

Any primitive periodic orbit on a given torus can be
characterized by a pair of coprime integers (µ1, µ2) ≡ �µ such
that the ratio of angular frequencies R = (ω1/ω2) coincides
with the rational number µ1/µ2. The Berry-Tabor formula for
the fluctuating part of the quantal state density [7] then reads

�fl(E) = 1

πh̄

∑
�µ

∞∑
r=1

T �µ√
h̄|g′′

E|(rµ2)3

× cos

[
1

h̄
rS �µ(E) − π

2
rν �µ − π

4

]
, (9)

where the sum runs over all repetitions r of all primitive orbits
�µ with period T �µ = [(2πµ1)/ω1] = [(2πµ2)/ω2], Maslov
index ν �µ [3], and action

S �µ(E) = 2π �I · �µ =
∫ T �µ

0
[πβ β̇ + πγ γ̇ ] dt. (10)

The meaning of the function g′′
E in Eq. (9) will be explained

later.
Expression (10), which in the general case integrates the

scalar product of momentum and velocity over the specific
periodic trajectory �µ, has a particularly simple form for
billiards (or cavities), for which one can write S �µ = 2ET �µ =
pL �µ, with p = mv denoting the ordinary momentum and
L �µ the length of the given orbit. For “soft” systems, the
dependence of S �µ on energy is nonlinear and frequencies of
individual cosine terms in Eq. (9) vary with E. Since in the
latter case each oscillatory term in the Berry-Tabor formula
contains also a nontrivial energy dependence of the amplitude,
the semiclassical analysis of spectra in such cases is certainly
much less intuitive than in the hard-wall systems.

In general, there may exist singular orbits with diverging
contributions to the Berry-Tabor formula. This happens if

either the period of the given orbit grows to infinity, T �µ → ∞,
or if the denominator of the prefactor in Eq. (9) vanishes,
g′′

E → 0. The former case applies to the motions that for some
energy become infinitely slow at a certain point, which can
be associated with an unstable equilibrium of the system. We
know from the discussion in Sec. II that our system contains
such a point, namely the central maximum of the potential in
Eq. (3) at β = 0 for η � (4/5). For trajectories with E = 0, this
maximum can be reached in only asymptotic times because the
force vanishes there. Among the trajectories passing this point
there are also various periodic orbits, whose contribution to
Eq. (9) must diverge at E = 0 because of the period tending to
infinity. This is essentially the classical mechanism responsible
for the bunching of quantum levels in the region E ≈ 0; see
Fig. 1 in Part I [1]. It shows that the bunching pattern is not
just a finite-N quantum fluctuation, but a robust effect deeply
ingrained in the classical limit of the system. Theoretical
foundations underlying the existence of the singular class
of trajectories and another approach to understand their
influence on the quantum spectrum will be discussed in
Sec. IV.

The second possible source of infinite contributions to
Berry-Tabor formula (9) is connected with the cases when
g′′

E(I1) ≡ [(∂2gE/∂I 2
1 )](I1) = 0. The function gE(I1) is deter-

mined [17] from the implicit equation H (I1, I2 = gE) = E,
which after differentiation and the use of Hamilton equations
yields

θ̇1 + θ̇2
∂gE

∂I1
= 0, (11)

so that g′
E = −(ω1/ω2) = −R. In other words, the function gE

matches possible pairs of actions (I1, I2), i.e., selects the tori
�I relevant at a given energy, and its first derivative determines
the corresponding frequency ratios. If −g′

E is rational for a
selected torus, the associated orbit is periodic and contributes
to Eq. (9). The second derivative g′′

E measures the change of
R as one steps to the tori in an infinitesimal vicinity of �I . If
g′′

E �= 0, the periodic orbit �µ on the torus �I does not survive the
transition to �I + �δI . If, however, g′′

E = 0, a family of periodic
orbits with the same frequency ratio R exists in neighboring
tori, which results in a diverging contribution to Berry-Tabor
formula (9).

Note that the Gutzwiller formula [5], which is valid
in nonintegrable systems with isolated periodic orbits, is
formally similar to Eq. (9), but with the prefactor denominator
replaced with

√
det[(Mp)r − 1], where Mp stands for the

so-called monodromy matrix of a given primitive periodic
orbit p [3,4]. This matrix describes the stability of orbit p
in terms of linearized deviations from the given phase-space
trajectory under a perpendicular perturbation of its initial point.
Thus (Mp)r − 1 represents the deviation from the perturbed
phase-space position after r repetitions. If one (or more)
of the eigenvalues of this matrix is equal to zero, i.e., if
det[(Mp)r − 1] = 0, there exists at least one direction in the
phase space in which any deviation from the given orbit r · p

results in another periodic orbit. The new orbits are detached
from the primitive orbit p as its period r-tupling clones.
Consequently p is not isolated and the corresponding term
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FIG. 3. Examples of various periodic orbits at different energies for Hamiltonian (3) with η = 0.6 and their classification by rational
fractions R = (µβ/µγ ).

in the Gutzwiller formula diverges. This situation is analogous
to the one with g′′

E = 0, as described above.
Both the above singular cases correspond to the same gen-

eral phenomenon, called bifurcation [18]. In Hamilton systems
of classical mechanics, bifurcations represent branching of
periodic orbits at some critical values of energy or other
parameters [13]. While periodic orbits existing below and
above the given bifurcation energy Eb are isolated, either in
the sense of g′′

E �= 0 or det[(Mp)r − 1] �= 0, at E = Eb two
or more orbits merge together in the way described above,
giving rise to zero denominators of the respective semiclassical
level-density formulas. At the bifurcation energies Eb, the
Berry-Tabor or Gutzwiller formula does not represent correct
approximations of the fluctuating level density. Improved
semiclassical methods were developed to treat these situations
[19]. Intuitively one expects an enhancement of the level-
density oscillations at the bifurcation points. In the following
subsection we show that in our system numerous bifurcations
of periodic orbits take place in the energy range E > 0.

B. Numerical results

We have performed a numerical analysis of classical
motions corresponding to Hamiltonian (3) in the interval of
energies E ∈ [−0.1,+0.3] by using a sample of about 50 000
generated orbits. Individual trajectories were calculated with
initial positions and momenta chosen randomly within the
phase-space region accessible at a given energy and classified
by the ratio

R = Tγ

Tβ

= 〈ωβ〉
〈ωγ 〉 (12)

of periods Tγ and Tβ associated with oscillations in both γ and
β directions, respectively. Since ωγ = γ̇ and the angular veloc-
ity ωβ connected with β vibrations are both time dependent,
one has to use the corresponding average angular frequen-
cies per period, 〈ωγ 〉 = (2π/Tγ ) and 〈ωβ〉 = (2π/Tβ). Their
inverse ratio coincides with R and is analogous to the above-
discussed ratioR = (ω1/ω2) of frequencies in the action-angle
variables. In particular, rational values R = (µβ/µγ ) corres-
pond to periodic orbits with period Tµβ/µγ

= µβTβ = µγ Tγ .
Examples of periodic orbits with various rational values

of ratio (12) are shown in Fig. 3. The rational fraction R =
(µβ/µγ ) classifying the given orbit has visual meaning as
the number of outer return points of the β vibration over the
number of rotations in the γ direction needed to close the
orbit. Thus, for instance, the 5/2 orbits look like stars with
five outer “points” that close in two rotations, while the 5/1
stars are similar, but close in only one rotation. The outer and
in some panels also the inner circles in Fig. 3 demarcate the
energetically accessible areas β ∈ [βmin, βmax] in the x × y

plane. As discussed in Sec. II, this area is a disk for E > 0,
an annular ring for E < 0, and a disk minus the central point
for E = 0. We see that although the orbits in Fig. 3 do not
just trivially bounce between the outer (and inner) limits, as
in the case of circular or annular infinite sharp wells, they
still resemble to a large extent the trajectories in these simple
systems [20].

Periodic orbits form a dense subset of all allowed motions,
and we therefore need a more complete picture. A histogram
showing the occurrence of trajectories with arbitrary (rational
or irrational) values of the frequency ratio R within the whole
sample of trajectories with E ∈ [−0.1,+0.3] is presented in

014307-5



MACEK, CEJNAR, JOLIE, AND HEINZE PHYSICAL REVIEW C 73, 014307 (2006)
E

FIG. 4. Frequency of occurrence of trajectories with different
ratios R for Hamiltonian (3), η = 0.6, in the reference sample of
trajectories with different energies. For each value of E (step �E =
0.01) there were 1200 generated trajectories, and the histogram
(see the inset) shows their distribution in R (the bin width �R =
0.01). The main diagram (contour plot of the logarithmic histogram)
depicts the band structure of allowed R values; see expression (13)
and below.

Fig. 4. For each value of energy within the given range (the
energy step �E = 0.01 was chosen), the sample contains
Ntot = 1200 trajectories, and Fig. 4 depicts their distribution
(numbers Ntr of trajectories) into bins of size �R = 0.01 along
the R axis.

The structure shown in Fig. 4 discloses rather interesting
features of classical motions. For each energy, the orbits occur
within a band

R ∈ [Rmin(E), Rmax(E)] (13)

of allowed frequency ratios. The lower bound Rmin(E)
gradually decreases with increasing energy for E < 0, but
it is constant, Rmin = 2, for E > 0. Because of the limited
precision inherent in our generated sample of trajectories
(with nonzero values of the bin size �R and energy step
�E) we cannot resolve whether the Rmin(E) dependence is
discontinuous or just nonanalytic at E = 0. In any case, the
curve reaches the minimal value at this point. On the other
hand, for energy approaching the minimum E0 of the potential
in Eq. (3) (this energy is below the range displayed in Fig. 4) we
must have Rmin → ∞. The upper bound of interval (13) is also
a decreasing function of energy that passes the value Rmax = 4
at E = 0. The decrease of Rmax(E) for E < 0 (and partly also
just above E = 0) is so steep that it cannot be resolved with
the present energy step, but we assume that it is a smooth
curve. It is obvious that a very narrow energy interval around
the point E = 0 carries the most substantial changes in the
spectrum of orbits, where the trajectories pass between both

negative and positive energy regions just through a bottleneck
of values R ∈ [3, 4). While for E < 0 the orbits look similar
to those in the O(6) limit, for E > 0 they already resemble
the U(5) limit.

The behavior demonstrated in Fig. 4 can be qualitatively
understood from the change of the energetically accessible
x × y area around E ≈ 0. The form of an annular ring, valid
for E < 0, does not support trajectories with R < 3 since these
have to traverse through the central region. Consequently these
trajectories can exist for only E > −ε, where ε ≈ 0.03. On the
other hand, the central reflecting disk is needed for trajectories
with R � 4, which therefore appear only for E < 0. One can
say that the R ∈ [4,∞) trajectories, which are “bouncing”
between inner and outer circles inside the annular region
for E < 0, transform to the straight R ∈ [2, 3] trajectories
at E ≈ 0 where the central disk gradually disappears and
the accessible domain of deformation parameters becomes
simply connected. Note that the rapidity of changes of classical
motions around zero energy is connected with the fact that for
E → 0− the radius of the central disk converges to zero with
a rate increasing to infinity (βmin ∝ √−E), as directly follows
from the form of the potential Vcl close to the β = 0 maximum.

It is evident from Fig. 4 that the 3/1 periodic orbit exists
in only a very narrow interval around E = 0. A closer
analysis of the term in the Berry-Tabor formula associated with
this orbit may therefore enable one to estimate the width
�Ebunch of the bunching pattern in the quantum spectrum
around E ≈ 0. Since action (10) changes with energy faster for
long periodic orbits than that for the short ones, the long orbits
have a tendency to interfere destructively. This was verified
by our schematic calculation, which shows that the dominant
contribution to Eq. (9) in a broader vicinity of E ≈ 0 is indeed
practically only due to the 3/1 orbit. [As already mentioned
above, a rigorous evaluation of the Berry-Tabor formula is very
difficult in the present case, but we simplified the problem by
considering only the main periodic orbits, those with µγ � 6,
and by estimating the weights of individual terms in Eq. (9)
through the relative occurrence of the corresponding orbits in
the generated sample.] Because the period of the cosine term
associated with the 3/1 orbit is much longer than the width
�E3/1 of the interval where this orbit exists, the latter should
roughly coincide with the width �Ebunch of the bunching
pattern. Indeed, by comparing Fig. 4 above and Fig. 1 in
Part I [1], we see that �E3/1 ≈ �Ebunch ≈ 0.05. It should be
stressed, however, that in spite of this approximate agreement
the role of 3/1 orbits in explaning the bunching pattern must not
be overestimated since the truly singular character of the value
E = 0 results from the existence of T �µ → ∞ trajectories,
discussed in Subsec. III A. and Sec. IV.

Figure 5 shows the relative frequency of occurrence of
several types of periodic orbits from Fig. 3 in our generated
sample as a function of energy. The curves in Fig. 5 can be
basically understood as energy cuts of the function Ntr in
Fig. 4 at the respective rational values R = (µβ/µγ ) of fraction
(12), but with a variable precision �R. More specifically,
Fig. 5 presents the relative fraction of all generated (at each
energy) trajectories satisfying the condition that the µβ th outer
reflection after µγ revelations is shifted from the first outer
reflection by an angle not exceeding (in absolute value) the
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FIG. 5. Relative frequency of occurrence of
several types of quasiperiodic orbits (see Fig. 3)
for η = 0.6 as a function of energy. The scale
on the vertical axis depends on the value �γ in
condition (14), here equal to 5◦.

selected precision �γ = 5◦. This leads to the condition∣∣R − µβ

µγ

∣∣
R

�
�γ

2πµγ

. (14)

Let us stress that the use of a smaller value of �γ decreases
the yield of trajectories—implying a prolongation of the
computation time—but does not change (as we checked for
�γ = 1◦) the shape of dependences in Fig. 5.

The most common type of behavior shown in Fig. 5
indicates that for many orbits the relative frequency of
occurrence sharply culminates at a certain energy, just before
this orbit totally disappears from the system. The sharpest peak
of this kind is observed at E = 0.02 for the 3/1 orbits (see the
discussion above), but there are also other well-pronounced
peaks at higher energies, like the 5/2, 11/4, or 13/5 ones, and
many others. All these maxima appear at positive energy, and
one can trace their origin to the ridge of values Ntr visible for
E > 0 at the upper bound Rmax(E) in Fig. 4 (see the inset). The
peak at E = 0 (the 4/1 “crosses”) and also the one at E = 0.02
(the 3/1 “Mercedes-Benz stars”, see Fig. 3) are located just on
the upper edge of the major E ≈ 0 level-bunching pattern in
Fig. 1 of Part I [1].

Special attention should be paid to the 4/1 orbits that in our
system take two different forms: For E < 0 they exist as stars,
shown in the third uppermost panel of Fig. 3, but at E ≈ 0
they can also look like crosses; see the second panel. (In fact,
the latter case exemplifies the above-discussed critical E = 0
periodic trajectories with infinite period, as will be further
elaborated in Sec. IV.) The contributions of these forms to the
dependence in Fig. 5(a) can be decomposed into a constant
steplike function equal to zero for E > 0 (“stars”) and a sharp
peak at E = 0 (“crosses”).

We also see in Fig. 5(a) that the 2/1 orbits, which pass by
means of the central maximum of the potential and correspond
to the E > 0 edge Rmin in Fig. 4, exhibit a different type
of energy dependence than the others. The frequency of
occurrence of these orbits is zero at E � 0 and gradually
increases (if neglecting fluctuations) with energy E > 0.

It is not difficult to show that the peaks in Fig. 5
corresponding to the R ∈ (2, 3] orbits are connected with
bifurcations. To this end, we first characterize individual orbits
by the radial width, defined as the difference �β between the
outer and inner radii (see the end of Sec. II). The values of �β

associated with various orbit types are shown in Fig. 6, where
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FIG. 6. The radial width �β of individual
periodic orbits (µβ/µγ ) as a function of energy
(η = 0.6). Horizontal bars at each energy de-
marcate intervals of �β where trajectories are
detected within our sample, while points con-
nected by curves represent statistical averages
within each interval. The bifurcations of orbits
in panel (a) explain the respective peaks in Fig. 5.
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the horizontal bars demarcate intervals of the �β values that
are populated (for energy given on the vertical axis) by some
trajectories in our sample. The curves (used just to lead the
eye) connect points that represent arithmetic averages of �β

in neighboring intervals.
The three panels of Fig. 6 collect three types of qualitatively

different behaviors: (a) For R ∈ (2, 3], the populated domain
of �β consists of two separate branches (see, e.g., the two
7/3 orbits in Fig. 3) that merge at a certain energy Eb(R) > 0,
which can be determined from the condition Rmax(Eb) = R.
Similarly, the lower endpoint energy (the termination of the
longer branch of the respective curve) follows from the
Rmin(E) bound. (b) For R ∈ (3, 4], the domains consist of
only one band that shifts to larger �β values as the energy
increases and terminates slightly above E = 0. The upper
end-point energies can again be determined from Rmax(E), but,
as discussed above, this dependence is so steep in the given
range of R that all end-point energies in Fig. 6(b) fall into the
narrow interval E ∈ [0, 0.01]. Lower end-point energies again
follow from Rmin(E). A special case of this kind is the 4/1 orbit
with the two above-discussed incarnations (see Fig. 3): The
respective �β value at the end point E = 0 apparently deviates
from the direction followed for E < 0. (c) For R > 4, the �β

bands look similar, as in case (b), but terminate at energies just
below E = 0, supposedly following the steep E < 0 branch
of the curve Rmax(E).

It becomes apparent that the R ∈ (2, 3] peaks in Fig. 5
arise because of the merging of two different branches of
�β values, as shown in Fig. 6(a). An increased frequency of
occurrence of the orbit just before the end point is related to the
flatness of the respective curve close to its maximum (a larger
number of trajectories is concentrated in a smaller energy
interval). At the end point (�βb,Eb) of each of the curves
in Fig. 6(a) the respective type of periodic orbit bifurcates,
having infinitely close neighbors with different radial widths,
and thus yields g′′

E = 0, as discussed in Subsec. III A. Berry-
Tabor formula (9) cannot be applied at these points [19].
In our case, the bifurcations seem to be of the pitchfork
type, when two stable orbits join and produce an unstable
one [18]. Unfortunately, the unstable orbits are not accessible
to numerical studies, so they are not seen in Fig. 6. This
problem may be further investigated analytically.

It follows from the above discussion that the bifurcations
are connected with only the region of positive energies [there
is a ridge of Ntr values, apparent in the inset of Fig. 4, that is
located solely at the Rmax(E) edge with E > 0]. This implies
that divergences of the Berry-Tabor formula associated with
bifurcations are not directly relevant in the explanation of the
main level-bunching pattern in Fig. 1 of Part I [1] (except
perhaps the 3/1 case with Eb = 0.02). Bifurcation energies for
low-period orbits are not even correlated with the secondary
less-pronounced bunchings of levels, observed in the region
E > 0 [1]. Therefore it seems that the presence of various
orbits in the same energy range and an interplay of their
bifurcations result in interferences that wash out contributions
of individual orbits.

On the other hand, highly organized behavior of levels at
E ≈ 0 perfectly coincides with the predicted existence of a
singular torus of orbits with infinite period at zero energy and

also with the observed abrupt redistribution of the spectrum of
orbits in a narrow vicinity of this energy.

IV. CLASSICAL AND QUANTUM MONODROMY

The anomalous E = 0 bundle of orbits with infinite period,
discussed in Subsec. III A, is related to a more general
phenomenon, called monodromy. Classical monodromy in
integrable Hamilton systems can be briefly introduced as the
impossibility of defining global action-angle variables as being
due to the existence of a singular, so-called “pinched” torus
[14]. The name Moνoδρoµία (monodromia or “once around”)
originates from a property similar to that of the Möbius strip:
If one follows a closed loop in the space of regular tori
around the singular torus and—loosely speaking—redefines
the coordinate system on the consecutive tori continuously on
the way along the loop, one returns back to the starting torus
with a coordinate system that differs from the initial one.

Classical monodromy affects the quantum counterpart of
the system by means of the Einstein-Brillouin-Kramers (EBK)
quantization rules [3,4]. It turns out that quantum monodromy
can be seen as a point defect in the lattice of quantum numbers
corresponding to a complete set of commuting operators. This
defect results in a transformation of the elementary quantum
cell when a closed loop is completed around the singular
point, in analogy with the above feature of phase-space tori.
An overview of the mathematical background and various
examples of monodromy can be found in Ref. [21].

Soon after its discovery in 1980 [22], it became clear that
monodromy substantially affects global features of numer-
ous integrable systems, which might have previously been
considered too trivial for detailed analyses. The simplest
system that exhibits monodromy is the spherical pendulum—
particle moving on a sphere in a gravitational field. It can be
shown [14,21] that the phase-space torus passing the unstable
equilibrium position at the North pole, with the particle energy
exactly equal to the critical value Em needed to reach that
point, is pinched, i.e., one of its basic circles is contracted to
a single point (with appropriate initial conditions the particle
is at rest). As a consequence, the lattice of quantum states,
characterized by quantum numbers enumerating energy E and
the projection Lz of angular momentum, has a point defect
at (E,Lz) = (Em, 0). It was found that closely related to
this simple observation is the realization of monodromy in
vibrational and rotational spectra of some molecules [21,23].

Other examples of monodromy can be found in the
following systems: Particle in quartic, sextic, and decatic
potentials [24], hydrogen atom in orthogonal electric and
magnetic fields [25], systems of two or three coupled angular
momenta [26], particle bouncing between walls in a prolate
elliptic cavity [27] or moving in a two-center attractive
potential [28]. As in the spherical pendulum, monodromy in
several of the latter systems is connected with the trajectories
passing with the critical energy by means of the point of
an unstable equilibrium [21,24,28]. We already know that
a similar point, namely the top of the central maximum at
β = 0, can be found in our classical Hamiltonian (3) for
η � ηc ≡ (4/5), with Em = 0 being the minimal energy needed
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(a) (b) (c)

FIG. 7. The lattice of l = 0 eigenstates of
Hamiltonian (1) with three given values of η and
N = 40 in the plane E

√
v(v + 3) (where the

seniority v = 0, 3, 6, . . . ). The curves connect
states with the same radial quantum numbers
nβ . The singular torus (E, v) = (0, 0) is located
in the center of the semicircle in panel (b).

to pass through this point. In fact, our Hamiltonian for η � ηc is
identical with the champagne-bottle Hamiltonian of Ref. [24],
except the position-dependent kinetic term in Eq. (3), which,
however, does not affect the presence of monodromy with the
central point (E,πγ ) = (0, 0).

Figure 7 shows the lattice of l = 0 eigenstates of quantum
Hamiltonian (1) with the number of bosons N = 40 in the
plane where the vertical axis represents energy E and the
horizontal axis the momentum:

πγ ≡
√

v(v + 3) = 3
√

ṽ(ṽ + 1). (15)

Since for zero angular momentum the seniority takes values
equal to multiples of 3, we defined above also the “reduced”
seniority quantum number ṽ ≡ (v/3) = 0, 1, 2, . . . . The three
panels in Fig. 7 correspond to various values of the control
parameter: (a) η = 0, the O(6) case, (b) η = 0.6, a transitional
case, and (c) η = 1, the U(5) case. Individual states (marked by
dots) can be directly related to level energies at the respective
values of η in Fig. 1 of Part I [1], which collects all states with
different seniorities for the same boson number as that given
here.

The sorting of states according to seniority in Fig. 7 helps
identify the values of ν that are involved in level bunchings
at different points η. For instance, one immediately sees that
the clustering of levels across the whole spectrum in the U(5)
limit [panel (c)] is due to the multiple degeneracy of states
with even or odd values of ṽ that correspond to the same value
of the U(5) quantum number nd (even or odd, respectively).
For the highest states, this degeneracy remains approximately
valid across the whole interval η ∈ [0, 1]; see panels (a)–(c).
The seniority deconvolution of the spectrum for η < (4/5) is

exemplified by the η = 0.6 case in panel (b). We observe here
that levels with all values of ṽ become nearly degenerate in
the region around zero energy, which is a clear signature of the
E ≈ 0 bunching pattern [1].

The lattices in Fig. 7 represent quantum energy-momentum
maps [21] of the classical phase space, with each dot being
an image of a classical torus of trajectories that survived
the semiclassical EBK quantization [17]. This is given by
Ii = 2πh̄[ni + (νi/4)], where Ii (with i = 1, 2) are quantized
actions and νi the respective Maslov indices [4]. The EBK
tori should be determined by two quantum numbers n1 and
n2, whose integer values increase by one. Good candidates
for these numbers are the reduced seniority ṽ (connecting
vertical columns of points in Fig. 7) and the radial quantum
number nβ = 0, 1, 2, . . . , which enumerates states with a fixed
ṽ according to energy (in Fig. 7, the constant-nβ states are
connected by curves). For η = 0, the radial quantum number
is related to σ , which corresponds to the O(6) Casimir invariant
[2], and the pair (nβ, ṽ) represents the appropriate choice of
the EBK quantum numbers. In the U(5)-like case, as shown
below, yet another alternative pair of quantum numbers needs
to be defined.

It follows from Eq. (3) that the l = 0 classical limit of
the η = 1 Hamiltonian (1) is identical with an isotropic
two-dimensional harmonic oscillator. Indeed, for the subset
of states with the U(5) quantum number nd equal to multiples
of 3 (in this case nd = 2nβ + v) the U(5) lattice coincides
with the two-dimensional oscillator lattice of states (the
energy in the latter case being enumerated by the oscillator
quantum number no = 2nr + m, where nr and m stand for
ordinary radial and angular-momentum quantum numbers,

014307-9



MACEK, CEJNAR, JOLIE, AND HEINZE PHYSICAL REVIEW C 73, 014307 (2006)

respectively). In the entire U(5) lattice, however, the majority
of states are located in “interstitial” positions with nd �= 3k;
this is because the underlying angular-momentum algebra
differs from that of the ordinary O(2). Apart from nβ and ṽ, all
U(5) states can be labeled by a pair of oscillatorlike quantum
numbers n1 = nβ + ṽ and n2 = nβ + 2ṽ. States with constant
values n1 = 0, 1, 2, . . . , form upward-inclined rows of dots
in Fig. 7(c), while the n2 = 0, 1, 2, . . . , quantum number
connects states in the downward-inclined rows. The n1 chains
are clearly apparent also in both remaining panels (a) and (b)
of Fig. 7.

For the purpose of the semiclassical analysis, the lattices in
Fig. 7 must be extended to cover both positive and negative πγ .
Remember from Sec. II that, although the physical quantum
states can be represented by nonnegative values of πγ , the
intrinsic degeneracy of classical motions in both γ directions
results in the mirror imaging of all states with v > 0 into
the πγ < 0 half-plane (to guarantee a smooth continuation of
quantum numbers, we assign values ṽ = −1,−2, . . . , to these
“twin” states). In the absence of monodromy, one must be able
to engage all states in the extended lattice into a “crystal” grid
of continuous and smooth lines, corresponding to constant
values of two compatible global quantum numbers, with
“elementary cells” of the grid being topologically equivalent to
squares. From Fig. 7(a) we see that a smooth grid, symmetric
under the πγ ↔ −πγ reflection, can be constructed in the O(6)
case, by use of the pair of generating quantum numbers (nβ, ṽ).
In the U(5) case [panel (c)], this choice of quantum numbers
produces a grid of lines that are broken at πγ = 0, but a smooth
global grid (a diagonal “chessboard”) is generated by the pair
(n1, n2). The latter structure can be extended to the whole
interval η ∈ [4/5, 1] where the U(5)-like spectrum exists.

In contrast, quantum monodromy implies the absence of
a smooth global grid. This is the case in Fig. 7(b), in which
a smooth grid for E < 0 would be generated by the pair of
quantum numbers (nβ, ṽ), but for E > 0 by the pair (n1, n2).
Any attempt to define two global quantum numbers that
behave smoothly in the entire lattice for η ∈ (0, 4/5) fails
at the point (E, v) = (0, 0), which represents the singular
torus of trajectories and, simultaneously, a “defect” in the
quantum lattice of states [21,24,26]. It is clear that in the
transition to the O(6) limit the defect is gradually pushed
up to the upper edge of the lattice. For the whole interval
η ∈ (0, 4/5) the singular point indicates the place where
the energy-momentum map passes between the O(6) and
the U(5) types of elementary cells—tetragons with ordered
(nβ, ṽ), (nβ, ṽ + 1), (nβ + 1, ṽ + 1), and (nβ + 1, ṽ) vertices
and analogous tetragons in (n1, n2), respectively. Note that
elementary cells of either type cannot be uniquely defined
along a closed loop around the singular point since after
one turn the cell gets distorted. This can be illustrated by a
graphical construction in Fig. 7(b) and its mirror image, but
the rigorous proof would require an infinite density of the
lattice in the N → ∞ limit. The last observation represents a
common quantum signature of monodromy [21,23–28].

It should be stressed that monodromy in the present
case is not a property of just a single Hamiltonian, but
characterizes the whole η ∈ (0, ηc) family (1) of transitional
systems. Since—as shown in Part I [1]—the most substantial

changes in quantum spectra of these systems take place in
the E ≈ 0 region, monodromy seems to play the key role
in the process of redistribution of individual levels between
the O(6) and U(5) multiplets. Related examples exist also
in other parametric families of Hamiltonians, for instance,
in transitions between uncoupled and coupled regimes of two
quantum rotators [26] and between Zeeman and Stark limits of
the hydrogen atom in crossed electric and magnetic fields [25].
Also in these examples, the crossover between the limiting
spectral structures takes place at the point (or in the interval)
of control parameters and energy where monodromy exists.
These findings deserve further investigation.

V. CONCLUSIONS

In the present part of our work, devoted to the
[O(6)−U(5)]⊃O(5) transition of the interacting boson model,
we have studied the classical limit of Hamiltonian (1) with
zero angular momentum. Results of the analysis of level
dynamics, presented in Part I [1], were qualitatively discussed
with the aid of the Berry-Tabor semiclassical trace formula,
which describes fluctuations of quantum spectra in integrable
systems in terms of families of periodic orbits existing at
various energies. The transitional regime was exemplified by
the choice of a single value of the control parameter, η = 0.6.

Both possible sources of diverging contributions to trace
formula (9), namely, the existence of bifurcating (g′′

E = 0) and
singular (T �µ = ∞) orbits, were identified in our system. While
bifurcations of periodic orbits with ratios between γ - and β-
vibration periods R ∈ (2, 3] were shown to exist in the region
E > 0, singular orbits with πγ = 0 appeared at E = 0. The
latter finding led to the identification of classical monodromy,
which on the quantum level exhibits itself as a defect in the
lattice of quantum states located at zero values of energy and
seniority. This is related to the bunching of levels in the E ≈
0 region [1] and underlies the process of redistribution of
states between O(6) and U(5) spectral structures, i.e., between
the (nβ, ṽ) and (n1, n2) types of elementary cells, and the
respective multiplets of levels.

Also the numerical analysis of periodic and nonperiodic
classical vibrations disclosed that the most substantial changes
in the spectrum of allowed ratios R take place in a very
narrow energy interval around E ≈ 0. This interval represents
a kind of demarcation line between the O(6) and U(5) types of
classical motions. At E ≈ −0.03, the inaccessible central disk
in the plane of deformation parameters becomes sufficiently
small to allow for vibrations with R ∈ (2, 3], and at E = 0,
when the disk vanishes, the oscillatorlike orbits with R = 2
arise. With the energy further growing to positive values,
individual vibrations with R > 2 eventually disappear in
bifurcations (“annihilations” of two separate �β branches of
a given orbit). The 3/1 orbits, which exist only in a narrow
interval around E = 0, determine the width �Ebunch ≈ 0.05
of the bunching pattern in the corresponding region of the
quantum spectrum.

We believe that results of this analysis will have a concrete
impact on the interpretation of data on collective vibrations
in γ -soft nuclei. Collective 0+ states in the nuclei between
spherical and deformed equilibrium shapes have recently
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received considerable attention (see Ref. [29], particularly the
contribution by J. Jolie et al. therein). Our study (including
the classical part) may help disclose the nature of these states,
and it addresses the broadly discussed topic of coexisting shape
structures found within the same nuclear species. In particular,
the E ≈ 0 bunching of levels, which for η ∈ (0.5, 0.8) lies
at reasonably low excitation energies, may turn out to serve
as an observable signature of the transition between O(6)-
and U(5)-like types of dynamics in the spectrum of a single
nucleus. Relevant experimental work is in progress [29].

In a more general perspective, the [O(6)−U(5)]⊃O(5)
transition of the interacting boson model represents a valuable
theoretical laboratory for studying structural changes between

incompatible dynamical symmetries in integrable quantum
systems. It will be interesting to learn whether the E = 0 line
separates (in the thermodynamic limit) the O(6)- and U(5)-like
phases in the conventional sense of structural phase transitions
involving excited states (finite temperatures).
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A.2 Monodromy and excited-state

quantum phase transitions in integrable systems:
collective vibrations of nuclei

[J. Phys. A: Math. Gen. 39, L515 (2006)] [J3]

The article identifies a non-analytic behavior of excited energy levels and eigen-
states with zero seniority v = 0 along the completely integrable O(6)-U(5) tran-
sition of the interacting boson model (IBM) and recognizes it as a chain of con-
tinuous excited-state quantum phase transitions (ESQPT). The chain of observed
ESQPT’s starts at the ground state quantum phase transition (which is also con-
tinuous in this integrable case) at the critical point ηcrit = 0.8 and leads towards
the vicinity of the O(6) limit (η → 0), where it affects in the contrary the highest-
lying excitations. In contrast to v = 0 states, the states with higher seniority
v > 0 do not undergo ESQPT and evolve analytically.

The ESQPT’s are found to be triggered here by a topological property of the
phase space called the monodromy [Duis80, Sado06]. Classical monodromy is
a generic property of systems which contain a singular pinched torus of classical
trajectories with a diverging time period T → ∞ in their phase space. The pinched
tori can be found at a special value of energy E = Emon, which coincides with an
unstable equilibrium of the potential. Quantum monodromy can be identified
in joint spectra of two commuting operators, which provides a (2D crystal-like)
lattice of points. In case that the monodromy is present, no primordial cell within
the lattice can be circled around the monodromy point and brought to the original
position and shape—it always becomes deformed, see e.g. Ref. [Sado06].

The link between the continuous non-analyticity in the evolution of energy lev-
els and eigenstates (i.e. ESQPT) and the monodromy is in the IBM demonstrated
by the breakdown of the shifted harmonic approximation (SHA) [Rowe04] pre-
cisely at the energy Emon. SHA provides an analytic transformation of the O(6)
solutions to the whole interval η ∈ [0, ηcrit]. It however holds only for the eigen-
states at energies E < Emon = 0, as we show. For E > Emon, the eigenstates seem
to be linked analytically to the solutions at the U(5) limit, the link is however not
yet known explicitly.

The results of the article lead to a generalization of the monodromy-ESQPT
interconnection and its recognition in a wide class of systems with the Mexican-hat
type of potential [Capr08].

Contribution of the author rests in the identification of the pinched torus re-
sulting from his analysis of the properties of the classical trajectories shown in
Ref. [J2*]. He also performed the calculation of the phase space volume Ω(E)
in Fig. 2 showing a non-analyticity at energy E = 0, which affects the smooth
part of the energy level density and gives a first indication of the possibly ESQPT
behavior.
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Abstract
Quantum phase transitions affecting the structure of ground and excited states of
integrable systems with the Mexican-hat type potential are shown to be related
to a singular torus of classical orbits passing the point of unstable equilibrium.
As a specific example, we consider nuclear collective vibrations described by
the O(6)–U(5) transitional Hamiltonian of the interacting boson model. While
all states with zero values of the O(5) invariant undergo a continuous phase
transition when crossing the energy of unstable equilibrium, the other states
evolve in an analytic way.

PACS numbers: 21.60.Ev, 05.70.Fh, 02.30.Ik

Motions of a classical integrable system with n degrees of freedom in the phase space stick
onto surfaces that are topologically equivalent to 2n-dimensional tori. It is generally thought
that this feature results in a fully analytic expressibility of observables for integrable systems.
However, in some cases the analyticity cannot be maintained in the global sense. A common
obstacle for n = 2 is monodromy [1], related to the existence of an anomalous, so-called
pinched torus of orbits. Most usually, the pinched torus originates from a singular point of
unstable equilibrium of the focus–focus type and is connected with a class of trajectories with
period τ → ∞ if the energy crosses a certain critical value Emon. The presence of such orbits
in the phase space also affects the quantum spectrum, producing a ‘crystal defect’ in the joint
spectrum of commuting operators [2].

One of the systems with monodromy is the spherical pendulum [3]. Here, the pinched
torus is formed by orbits passing the upper point with just the energy needed for equilibration.
Classical motions with zero value of the conserved angular momentum Lz undergo a qualitative
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change and the corresponding quantum lattice in the joint spectrum has a defect at E = Emon

and the Lz quantum number m = 0. The parts of the lattice below and above Emon are
characterized by nearly degenerate multiplets of states with the same vibrational and rotational
quantum numbers, respectively, and both types of multiplets fail to smoothly extend across
the monodromy point to the other domain.

Another example of monodromy follows from the Mexican-hat potential V ∝ r4 − r2

with r2 = x2 + y2 [4]. The local maximum at r = 0 corresponds to an unstable equilibrium
with Emon = 0, which results in a pinched torus of Lz = 0 orbits. Crossing the critical
energy induces a transition between two types of Lz = 0 motions, the first type confined
within the annulus r ∈ [rmin, rmax], and the second one traversing across a compact region
r ∈ [0, rmax]. Also the joint spectrum shows a crossover between multiplets characterized
by the radial quantum number nrad (below Emon) and those labelled by the principal quantum
number 2nrad + m (above Emon) [4].

These effects are reminiscent of another interesting class of phenomena—quantum phase
transitions (QPTs). These are usually introduced as nonanalytic (in the thermodynamic limit)
changes of system’s ground-state properties with external parameters [5, 6]. Here, the concept
will be extended also to excited states. The first-order or a continuous QPT, respectively, for
the ith state is defined as the discontinuity of the first derivative or a more subtle nonanalyticity
in the dependence of excitation energy Ei on a control parameter η. It is related to a
nonanalytic evolution of the respective wavefunction |ψi〉. The aim of this letter is to show
that monodromy and excited-state QPTs in integrable systems are closely related. This is
exemplified by quadrupole vibrations of atomic nuclei in the so-called γ -soft regime [7, 8].

Recall that simplified models of nuclear collective motions take into account only the
degrees of freedom corresponding to quadrupole deformations [7]. The quadrupole tensor
α is characterized by five parameters, two of them describing the deformed shape and the
other three its orientation. A pair of deformation parameters can be constructed from
the only two independent scalar combinations of α, namely [α × α](0) = β2/

√
5 and

[[α ×α](2) ×α](0) = −√
2/35β3 cos 3γ , where [•×•](λ) stands for coupling of the quantities

involved to angular momentum λ. Variables β ∈ [0,∞) and γ ∈ [0, 2π) represent Bohr
deformation parameters [7], which can be visualized as polar coordinates in the plane x × y.
The radius β measures the overall deformation, while the angle γ characterizes the deformed
shape type, orientation in the principal frame, and the degree of triaxiality.

The collective Hamiltonian can be written as

H = Trot + Tvib + Aβ2 + Bβ3 cos 3γ + Cβ4 + · · · , (1)

where Trot and Tvib = Kπ2 + · · · [with π2 = π2
x + π2

y = π2
β + (πγ /β)2] stand for the rotational

and vibrational kinetic energies (πi denotes the momentum canonically conjugated to
coordinate i). {K,A,B,C, . . .} is a set of external parameters (K,C > 0). Here, we
included only the lowest order vibrational kinetic terms and the potential energy up to the
quartic term.

If Hamiltonian (1) does not depend on γ (i.e., is ‘γ -soft’), it is integrable. In the following,
we will deal with motions at zero angular momentum J , thus Trot = 0, when the system has
just two vibrational degrees of freedom and in the γ -soft case yields two commuting integrals
of motions—energy E and momentum πγ = xπy − yπx (analogue of Lz). Without the
higher order terms and for B = 0, A < 0 the potential energy in equation (1) represents the
Mexican-hat potential that leads to monodromy at E = πγ = 0.

It is known [9] that Hamiltonian (1) exhibits the ground-state QPT from deformed (β0 > 0)

to spherical (β0 = 0) equilibrium shape at Ac = B2/4C. For B = 0 we have Ac = 0 and
the transition is continuous (of second order in the Ehrenfest classification). In this case, the
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QPT is realized within an integrable domain with monodromy. Note that the B = 0, A < 0
half-line itself demarcates the first-order QPT between prolate (γ0 = 0, B < 0) and oblate
(γ0 = π/3, B > 0) shapes, so the second-order transition lies in the intersection of three
first-order phase separatrices [10].

Specific realization of Hamiltonian (1) can be achieved within the interacting boson model
(IBM) [11]. The model, formulated in terms of s and d-bosons (with angular momenta 0 and 2),
exploits the decompositions of dynamical algebra U(6) into chains of subalgebras terminating
at the symmetry algebra O(3). Three such chains, called after the highest subalgebra U(5), O(6)
and SU(3) define dynamical symmetry limits (if the Hamiltonian is composed of invariants of
the respective chain), while transitional Hamiltonians are located within a ‘triangle’ between
these limits. In the dynamical-symmetry cases the model is integrable, and this property
is preserved also along the transition between O(6) and U(5), where the underlying O(5)
symmetry results in conserved quantum number v called seniority [12].

In the following, we will consider a simplified O(6)–U(5) transitional Hamiltonian given
by

H(η) = η
nd

N
− (1 − η)

Q · Q

N2
, (2)

where N stands for the total number of bosons, nd = d† · d̃ for the d-boson number operator
and Q = d†s + s†d̃ for the quadrupole operator. Note that the dot represents scalar coupling
and d̃µ = (−)µd−µ. For Hamiltonian (2) the O(6) dynamical symmetry is located at η = 0
and U(5) at η = 1. Using Glauber coherent states |α〉 ∝ exp

(
αss

† +
∑

µ αµd†
µ

)|0〉 (where
αs can be eliminated by fixing the average of N and the global phase) [13], one can rewrite
Hamiltonian (2) in the form (1) with B = 0:

H
(η)

clas = T
(η)

rot +
η

2
π2 + (1 − η)β2π2 +

5η − 4

2
β2 + (1 − η)β4. (3)

Since the role of h̄ is played by N−1, the classical limit is attained for N → ∞. Moreover,
in the J = 0 case (Trot = 0), due to the coherent-state relation C

O(5)
2

/
N2 �→ π2

γ , where

C
O(5)
2 = nd(nd + 3) − (d† · d†)(d̃ · d̃) is the O(5) invariant with eigenvalues v(v + 3), the

momentum πγ can be (for N → ∞) associated with relative seniority δ = v/N (where
v = 0, 3, 6, . . . � N for J = 0).

It is clear from equation (3) that a continuous QPT between O(6)- and U(5)-like ground-
state configurations happens at ηc = 4/5, where the potential changes from the Mexican-hat
shape to a quartic oscillator. Note, however, that the IBM shows some specific differences from
these standard potential systems: first, due to boundedness of Hamiltonian (2) the physical
domain is restricted to β ∈ [0,

√
2], πβ ∈ [0,

√
2] and πγ ∈ [0, 1]. Second, equation (3) also

contains an unusual kinetic term ∝β2π2. Third, for J = 0 the quantum grid of states in E
versus v differs from the standard E versus m grid associated with the given potential; this
results from inherent differences between the O(5)- and O(2)-based angular momenta.

Figure 1 illustrates classical monodromy of Hamiltonian (3) at absolute energy Emon = 0
for η < 4/5. The Poincaré phase-space section shows crossings of 30 orbits of πγ > 0 with
the plane β ×πβ . The πγ = 0 orbits passing asymptotically the point β = 0 form the pinched
torus, whose section corresponds to the cusped enveloping curve of the filled area. The surface
of the pinched torus, nonanalytic at β = 0, interpolates between two distinct types of analytic
πγ = 0 tori at lower and higher energies. This results in a nonanalytic growth of the available
phase-space volume 
(E) = ∫

δ(H − E) dπx dπy dx dy at E = Emon. In particular,


(E) = 4π

∫ βmax(E)

βmin(E)

πβ(E, β, πγ = 0)β dβ, (4)
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where πβ as well as βmin and βmax are evaluated from equation (3), has a singular tangent at
zero energy, as shown in figure 2. Note that 
(E) is related to the smooth part of the quantum
density of states ρ(E) = Tr δ(H − E); the oscillatory part depends on properties of periodic
orbits (also singular at Emon [8]) and is not discussed here.

Features of Hamiltonians (2) and (3) related to the anomalous behaviour at Emon were
recently analysed in [8]. It was shown that monodromy is correlated with two important
dynamical effects: (i) on the classical level, trajectories with predominantly large values of the
ratio R = τγ /τβ of β- and γ -vibration periods transform to those within a narrow band above
R = 2. While values R � 2 observed for E < Emon correspond to zig-zag orbits inside the
accessible annular region in the x × y plane, the value R ≈ 2 valid for E > Emon is connected
with ‘bouncing-ball’ orbits traversing through the central region. In particular, the πγ = 0
trajectories undergo a discontinuous change from R = ∞ to R = 2. (ii) On the quantum
level it was shown that O(6)- and U(5)-like types of elementary cells in the E versus v lattice
of J = 0 quantum states exist in energy domains below and above Emon, respectively, i.e.,
interchange at about the monodromy energy. This is accompanied by degeneracy of levels
with different seniorities and by coherent patterns of avoided crossings of levels with the same
seniority, both at energy E ≈ Emon.
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To show that these structures correspond to QPT evolutions of excited states with zero
seniority, we invoke an oscillator approximation recently discussed by Rowe [14]. The method
is valid on the O(6) side of the transition for finite seniorities and asymptotic boson numbers,
when x = 2nd/N − 1 can be treated as a continuous variable. Eigenstates |ψi〉 are expressed
as conventional wavefunctions ψi(x) ≡ 〈nd |ψi〉 and the scaled Hamiltonian H(η)/(1 − η)

from equation (2) turns into a differential operator

− 4

N2

d

dx
(1 − x2)

d

dx
+

[
x − η

4(η − 1)

]2

−
[

5η − 4

4(1 − η)

]2

, (5)

where the use is made [14] of the fact that Hamiltonian (2) only connects states with
�nd = 0 ± 2 and is therefore local in x for N → ∞. The last expression, after neglecting
O(N−1) and higher terms, reduces to a quantum oscillator with variable centroid position and
energy shift, and with an x-dependent mass. (The latter feature was not discussed in [14] and
can be neglected for x ≈ 0.) Therefore, the O(6) quasi-dynamical symmetry extends away
from η = 0 through an analytic transformation of eigensolutions.

However, the analytic extension is limited to the range of η where the semiclassical
wavefunction is located within the physical domain nd ∈ [0, N ], thus x ∈ [−1, +1] ≡
[xmin, xmax]. Once the classical turning points of the oscillator particle reach these bounds,
expression (5) is no longer applicable for the given state. This happens when the actual level
energy Ei crosses the value of the oscillator potential energy at the lower edge, V (η)

osc (xmin) = 0,
i.e., just when Ei = Emon. At this point, the probability distribution P(x) ∝ ẋ−1 (where ẋ

stands for the velocity of the oscillator particle) becomes singular since the mass diverges for
x = ±1 and the particle spends infinite time in an infinitesimal vicinity of xmin. An equivalent
conclusion follows from the classical Hamiltonian (3), which for E = Emon yields a singular
concentration of the probability distribution P(β) ∝ β̇−1 at β = 0. As the analytic extension
of η = 0 semiclassical wavefunction cannot pass over the singularity, the parameter range is
split into two disconnected branches, which can be named quasi-O(6) and quasi-U(5).

The ground-state energy E0 crosses Emon at ηc = 4/5. For the other v = 0 states with
increasing excitation energy, the crossings form a descending sequence of points within the
interval η ∈ (0, ηc). These are positions of excited-state QPTs where individual eigenfunctions
|ψi〉 and energies Ei evolve in a nonanalytic way. Note that for Hamiltonian (2), which has
the form H(0) + ηV , the relation dEi/dη = 〈ψi |V |ψi〉 transmits nonanalytic behaviours of
wavefunctions to level energies. Since 〈ψi |V |ψi〉 itself changes in a continuous way, the QPT
for excited states is—like the one for the ground state—continuous. The present analysis,
however, does not allow one to specify the type of nonanalyticity for i > 0.

Finite-N precursors of excited-state QPT’s are shown in figure 3, where we display
J = v = 0 level dynamics and two examples of wavefunctions (nd -distributions) for N = 80.
Wavefunctions for Ei < 0 are approximate eigenstates of the oscillator Hamiltonian (5).
They reach the nd = 0 edge just when passing E = 0 (the region with multiple avoided
crossings) where the validity of the quasi-O(6) description for the given level ends. At the
transition, the slope of individual energy curves tends to vanish, in agreement with the fact that
〈ψi |V |ψi〉 = 0 at Ei = Emon for N → ∞. The Ei > 0 branch of wavefunction is analytically
connected to the U(5) limit.

Formula (5) is valid only if δ = v/N → 0 in the classical limit, i.e., for v ≈ 0 in finite-N
approximations. Therefore, a question appears what happens to states with δ ∈ [0, 1]. The
answer can be obtained from equation (3) that allows one to extract an effective potential
corresponding to the fixed value πγ = δ:

V
(η,δ)

eff (β) = ηδ2

2

1

β2
+ (1 − η)δ2 +

5η − 4

2
β2 + (1 − η)β4. (6)



L520 Letter to the Editor

nd

|Ψ|2

η

nd

|Ψ|2

η

i = 10

η

E

i = 15

 0  80

 40

 0 1

 0  80

 40

 0 1

–1

–0.75

–0.5

–0.25

 0

0.25

 0  0.2  0.4  0.6  0.8  1

Figure 3. The evolution of v = 0 level energies between O(6) and U(5) limits and the nd -
distributions for the 10th and 15th excited states (thicker curves); N = 80.

This expression contains, besides the standard potential terms of Hamiltonian (3), also a
constant shift and a centrifugal term ∝β−2 resulting from the fixed value of πγ . The centrifugal
term keeps the solutions with δ �= 0 away from β = 0 (in agreement with the fact that minimal
nd for a given v is equal to v [11]) and destroys the Mexican-hat shape of the potential
for states with nonzero seniority. Does the phase-transitional evolution survive under these
circumstances?

The minimum β0 of Veff interpolates between β0 = 1 at η = 0 and β0 = √
δ at η = 1. As

we know, for δ = 0 the minimum has a discontinuous derivative dβ0/dη at ηc = 4/5 which
leads to a jump in the second derivative of the Veff minimal value. On the other hand, for
δ �= 0 the minimum evolves in a fully analytic way, as can be seen from the fact that within
η ∈ [0, 1] it does not cross the border where the sign of ∂2Veff/∂β

2 changes (for v = 0 this
happens at ηc). Therefore, Veff(β0) is analytic for δ �= 0 implying that no phase transition
occurs in the behaviour of the lowest state with v �= 0. Although potential (6) itself does not
allow us to predict properties of individual excited states, the above result and the absence of
the central maximum in the δ �= 0 effective potential make one assume that critical behaviour
dies out for all states with nonzero seniority. This conforms with numerical calculations of
finite-N spectral properties [8] and also with classical considerations showing that only the
πγ = 0 trajectories change the form abruptly (at the monodromy point) as η and/or E vary.
Of course, for very small v’s one still obtains rapid, though analytic structural rearrangement
in the E ≈ 0 region.

In summary, we gave an example of integrable system where monodromy triggers
continuous QPT evolutions of excited-state energies and wavefunctions. It shows that the
critical value of interaction parameter may depend on the excitation and that some subsets of
states may not undergo the phase transition at all. In the derivation, the key role was played
by the oscillator approximation (5) (for v = 0 states) and by the effective potential (6) (for
v �= 0). Links of QPT phenomena to specific motions on the classical level were found crucial.
It would be interesting to learn how the above-discussed properties extend to the nonintegrable
regime with B �= 0.
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It can be anticipated that our conclusions, apart from having particular consequences for
J = 0 collective states in γ -soft nuclei between deformed and spherical shapes, are generic for
all quantum systems with the Mexican-hat potential. In particular, recent studies [15] of the
Lipkin model disclosed very similar nonanalytic structures of quantum properties correlated
with the top of a double-well potential. Since the fundamental Ginzburg–Landau model [16]
of spontaneous symmetry breaking is based on the same type of potential, the present results
might be relevant in rather broad context.
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A.3 Classical and quantum properties of the semiregular

arc inside the Casten triangle
[Phys. Rev. C 75, 064318 (2007)] [J5*]

The article studies the dynamics of the interacting boson model in the non-
integrable regime. Special emphasis is given to the dynamics at the so-called
Alhassid-Whelan semiregular arc [Alha91b, Whel93]. Detailed properties of both
quantum and classical solutions of the equations of motion are studied with the
aim to understand the source of increased regularity in this region.

Firstly the results of Refs. [Alha91b, Whel93] are confirmed in the classical
case by determining the relative fraction of regular trajectories in a sample with
randomly generated initial conditions and by measuring the regular part of the
Poincaré section area. Similarly for the quantum case, the Brody parameter of
the nearest neighbor spacing distribution among eigenenergies is evaluated across
the Casten triangle. All measures show significant increase of regularity in the
Alhassid-Whelan arc.

An interesting bunching pattern (level density oscillation), markedly resem-
bling the one found along the integrable O(6)–U(5) transition (cf. [J1, J2*]), is
found in the low angular momentum spectra slightly above E = 0 to be a char-
acteristic feature of the semiregular arc. Its origin is found to be linked (through
semiclassical trace formulas) with properties of three major families of classical
regular trajectories grouped around three simple primitive orbits being stable in
this domain of energy and control parameters. Two of these primitive orbits
become degenerate in oscillation frequencies at the energy corresponding to the
bunching within the quantum spectrum.

In the low lying spectrum, a degeneracy between simple β and γ vibrations
(representing bandheads of β and γ rotational bands) is found along a line, which
runs across the axially deformed region of the Casten triangle lying very close to
the semiregular arc. The position of the line is determined analytically using the
intrinsic coherent state formalism. This degeneracy line is also found to be closely
correlated with a change of stability properties of low-energy classical β and γ
vibrations.

In the last part of the paper, a particular region near to the deformed-to-
spherical shape phase transition within the Casten triangle is disclosed, where
the classical dynamics strongly resembles the dynamics of the geometric collective
model, hence a link between these two models is obtained.

The author of this thesis developed the code for numerical solutions of the
classical Hamilton equations of motion and performed extensive numerical calcu-
lations and analyses of the properties of the classical orbits. He recognized the
periodic orbits substantially contributing to the semiclassical trace formulas and
found the region linking the interacting boson model with the geometric collec-
tive model by comparison of the respective Poincaré sections. He also gave the
analytical arguments for this correspondence.
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We investigate classical and quantum signatures of increased regularity in the Alhassid-Whelan semiregular
arc inside the symmetry triangle of the interacting boson model. A significant bunching/antibunching pattern of
quantum levels, similar to that observed along the O(6)-U(5) transition, is found in the 0+ energy spectrum and
related to a crossover of two specific families of classical regular orbits slightly above E = 0. We also discuss
the degeneracy of β and γ bandheads in a region close to the arc and the relation to regularity in the geometric
model.
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I. INTRODUCTION

The interacting boson model (IBM) of nuclear collective
motions, developed by Iachello and Arima [1] in the 1970’s,
displays a wide variety of interesting features. Apart from
being successful in the description of low-lying collective
states of even-even nuclei, it has also served as a useful “toy
model” to study various general phenomena, such as quantum
phase transitions [2–4] or order/chaos coexistence [5–16]. The
interplay between regular and chaotic behaviors, observable
on both the quantum and classical levels of the model, is
surely one of the most intriguing properties. It seems to be a
common feature of nuclear collective motions in general. The
present paper contributes to this subject, extending our recent
study [17,18] of fully regular dynamics in the IBM. Special
attention is payed to the semiregular region of Alhassid and
Whelan [8–10] lying within the parametric space of IBM.

The onset of chaos in a system is closely connected with the
breakdown of symmetries [19–21]. The IBM is known [1] to
possess three standard dynamical symmetries, namely, U(5),
O(6), and SU(3), and two additional ones, O(6) and SU(3),
following from gauge transformations [22]. They are related to
the possible decompositions of the spectrum generating group
U(6) into subgroup chains that contain the invariant-symmetry
group O(3) of physical rotations. An important consequence of
dynamical symmetries is the integrability of the corresponding
Hamiltonians, guaranteed by the complete set of constants of
motion provided by Casimir operators of respective subgroup
chains [23]. The system in such cases exhibits completely
regular dynamics.

Apart from the dynamical-symmetry limits, there exists
a unique integrable transition path between O(6) and U(5)
marked by conservation of the Casimir invariant of the
common subgroup O(5) [24]. Away from these integrable
regions, the IBM dynamics was expected to be chaotic until the
study in Ref. [8] revealed surprisingly high degree of regularity
along a particular path inside the model parameter space. This

path forms a bent curve in between the SU(3) and U(5) vertices
of the symmetry triangle and is called hereafter the “AW arc”.
Unlike the O(6)-U(5) path [15,17,18], the dynamics within
the AW arc is not completely regular, indicating the existence
of a kind of partial dynamical symmetry [25]. Interestingly,
evolutions of energy spectra along the two regular paths display
certain similarity, as we will show below.

Unknown nature of regularity along the AW arc stimulated
research of the IBM properties from various perspectives.
Originally, Alhassid and Whelan observed the dependence
of both short- and long-range spectral correlations together
with classical measures of chaos on the angular momentum
l and two control parameters η, χ that change the amount
of dynamical symmetries in the Hamiltonian. Significant rise
of regularity in the arc was found using both quantum and
classical measures [8–10]. Later, the analysis of wave function
entropies [26] revealed an increased localisation of energy
eigenstates in dynamical-symmetry bases within a region
coinciding with the AW arc. Recently, several real nuclei were
located very close to the arc, an approximate degeneracy of 0+

2
and 2+

2 states being pointed out as a characteristic feature of
nuclei in this region [27]. Also a close relative of the IBM—the
geometric collective model (GCM)—was found to show a
similar increase of classical regularity away from integrable
regimes [28–30].

The layout of this article is as follows. The IBM and its
classical limit are briefly described in Sec. II. In Sec. III we
demonstrate increased regularity of the dynamics within the
AW arc using the nearest neighbor spacing distribution of 0+
states and classical measures based on Poincaré sections [19]
and so-called alignment indices [31]. Section IV presents an
observation of strong level bunchings in the spectra of 0+
states along the arc, slightly above zero absolute energy. The
pattern shows great degree of similarity to the bunching found
in spectra along the O(6)-U(5) transition [17]. In Sec. V,
we search for related effects in the classical phase space,
exploiting the connection of level density with periodic orbits.

0556-2813/2007/75(6)/064318(13) 064318-1 ©2007 The American Physical Society
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In Sec. VI we apply the technique of intrinsic states to explain
the approximate degeneracy of 0+

2 and 2+
2 states close to

the arc. Section VII is devoted to the comparison of regular
dynamics within IBM and GCM. Finally, Sec. VIII brings a
summary and outlook.

II. HAMILTONIAN

The interacting boson model describes low-lying spectra of
even-even nuclei in terms of an ensemble of N bosons s and d

with angular momenta 0 and 2, respectively. Bilinear products
of creation and annihilation operators b

†
i bj , where i, j =

s, 1, . . . , 5 stand for the s-boson and the five components
of d-boson, form a set of U(6) generators. We limit our
investigation to the simplest version of the model, the IBM-1,
which does not distinguish neutron and proton types of bosons
(we use nevertheless the common abbreviation IBM). Instead
of the most general quantum Hamiltonian with all rotationally
invariant one- and two-body terms we consider a simplified
form

Ĥ = a

[
η

N
n̂d − 1 − η

N2
(Q̂χ · Q̂χ )

]
, (1)

with n̂d = (d† · d̃) denoting the d-boson number operator
and Q̂χ = [s†d̃ + d†s̃](2) + χ [d†d̃](2) the quadrupole opera-
tor. The scaling factor a sets an effective energy unit in
quantum spectra. In the figures below we use a numerical
value a = N/10 in arbitrary units, thus the quantum energy
is taken as an extensive quantity. Hamiltonian in Eq. (1)
depends on two dimensionless parameters η ∈ [0, 1] and
χ ∈ [−√

7/2,
√

7/2], that drive the system in between four
dynamical-symmetry limits: U(5) for (η, χ ) = (1, 0), O(6) for
(η, χ ) = (0, 0), SU(3) for (η, χ ) = (0,−√

7/2), and SU(3)
for (η, χ ) = (0,

√
7/2); the dynamical symmetry O(6) is not

present in the parameter plane (so-called extended Casten
triangle [32]).

The classical limit can be constructed by the method of
Hatch and Levit [33] using Glauber coherent states. We
have outlined the procedure in Ref. [18], where the special
case χ = 0 was studied for zero eigenvalue l(l + 1) of L2,
with the angular momentum defined as L = √

10[d†d̃](1). For
general χ and l = 0 the Hamiltonian—with the quadrupole
deformation parameters β, γ and their conjugate momenta
pβ, pγ as canonical coordinates—becomes

Hcl = 1

2
[η + 2(1 − η)β2] (β2 + T ) − 2 (1 − η)β2

− 2√
7
χ (1 − η)

√
1 − 1

2
(β2 + T )

× [(
p2

γ /β − βp2
β − β3) cos 3γ + 2pβpγ sin 3γ

]
− 4

7
χ2(1 − η)

[
1

8
(β2 + T )2 − 1

2
p2

γ

]
. (2)

Here, T ≡ p2
β + p2

γ /β2 stands for the usual kinetic energy. The
Hamiltonian (2) represents the “energy per boson”. Coordi-
nates and momenta are limited to intervals β ∈ [0,

√
2], pβ ∈

[0,
√

2], and pγ ∈ [0, 1] following from the boundedness of

Hamiltonian (1). Note that classical energy from Eq. (2) is
expressed in units of the numerical scaling parameter a, see
Eq. (1). To distinguish energies obtained from Eqs. (1) and (2),
we use hereafter symbols E and Ecl, respectively.

In Sec. VII, the classical IBM dynamics will be compared
with the dynamics of truncated geometric collective model
with Hamiltonian [28–30,34]

HGCM = 1

2K
T + Aβ2 + Bβ3cos3γ + Cβ4︸ ︷︷ ︸

VGCM

. (3)

In contrast to GCM, the classical IBM Hamiltonian (2) is
apparently not a sum of T and a potential V . The IBM potential

V (β, γ ) = 1

2
(5η − 4)β2 + (1 − η)

(
1 − 1

14
χ2

)
β4

− 2√
7
χ (1 − η)β3

√
1 − 1

2
β2 cos 3γ , (4)

obtained by setting pβ = pγ = 0 in Eq. (2), differs from VGCM

in Eq. (3) by the square-root factor. Variables β and γ can be
treated as polar coordinates of the corresponding Cartesian
variables x and y, thus

x = β cos γ , px = pβ cos γ − (pγ /β) sin γ ,

y = β sin γ , py = (pγ /β) cos γ + pβ sin γ ,
(5)

with px and py denoting the associated momenta. This notation
will be frequently used below.

Low-energy motions generated by potential (4) undergo
essential changes when the first-order shape-phase separa-
trices are crossed [2–4]. These are located at χ = 0, η <

0.8 (prolate-oblate ground-state transition) and η = (4 +
2χ2/7)/(5 + 2χ2/7) ≡ ηc (deformed-spherical transition). In
panel (b) of Fig. 1 we show a contour plot of the potential
for η = 0.5, χ = −0.91 in the plane x × y, while panel (a)
presents three sections in the plane y = 0 for the dynamical-
symmetry limits. It is worth noting that the value of potential
at β = 0 is always zero; for η < 0.8 it represents a local
maximum while for η > 0.8 it is a minimum (which becomes
global after ηc).

FIG. 1. Sections of potential (4) in the plane y = 0 for control
parameters corresponding to dynamical symmetries (panel a) and a
contourplot of the potential for η = 0.5 and χ = −0.91 (panel b).
Bohr coordinates β and γ are the radius and polar angle, respectively,
in the plane x × y. Energy unit is arbitrary.
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III. ALHASSID-WHELAN SEMIREGULAR ARC

A. Linear fit of the arc

Location of the highly regular region inside the Casten
triangle was determined in Ref. [9] by fitting the minimum
of the fraction of chaotic classical phase space volume by a
linear dependence. The other classical and quantum measures
of chaos (average maximum Lyapunov exponents, spectral
correlations, E2 strength distributions) showed very similar
dependence. The linear fit can be approximated by [26]

χreg(η) ≈ ±
[√

7 − 1

2
η −

√
7

2

]
. (6)

Note that the arc occurs symmetrically in both χ < 0 and
χ > 0 halves of the extended Casten triangle (since the halves
are dynamically equivalent, connected by a simple phase
transformation). In the following, we will mostly use the
convention with χ � 0.

B. Classical measures of regularity

While the results of Refs. [5–9] comprehensively reflect
the overall dependence of chaotic measures on the model
control parameters η and χ , some peculiar features of motions
related to the increase of regularity remain unaddressed. The
present paper offers a closer view on the classical and quantum
dynamics at zero angular momentum in the vicinity of the AW
arc. In the classical part, the limitation to l = 0 admits us
to use methods based on Poincaré sections [19] (since the
system becomes effectively two-dimensional), which provide
neat overall “snapshots” of the phase space at given energy
E and allow us to consider stability properties of individual
types of trajectories in a simple way. Let us note that Poincaré
sections associated with Hamiltonian (1) at lower energies
were for the first time studied in Ref. [10]. Here, we extend the
study also to higher energies. Several examples of Poincaré
sections at Ecl = 0 can be seen in Fig. 2, where a line crossing
the AW arc is followed at a fixed value of parameter η. The
numerical procedure is described in Sec. V A.

To quantify the degree of regularity of a given Poincaré
section, we determine the areal fraction f (P)

reg occupied by
regular trajectories as described in Refs. [28,30]. This method,
instead of evaluating the maximal Lyapounov exponent [6,9]
associated with each orbit, makes use of the fact that regular
orbits fill one-dimensional subsets of the section (topological
circles), whereas chaotic orbits fill the available phase space
ergodically [19]. The regular fraction is given as the ratio of
the area Sreg filled with regular trajectories to the total area Stot

of the accessible phase space section,

f (P)
reg = Sreg/Stot. (7)

A different and faster method we use to determine regularity
of the system is based on calculation of the so-called smaller
alignment index (SALI) [31] for individual trajectories, ran-
domly generated inside the whole accessible phase space. The
regularity is now given as the ratio of the number of regular
trajectories Nreg to the total number Ntot generated at a given

FIG. 2. Phase space portraits disclosed by Ecl = 0 Poincaré
sections at η = 0.5 and χ ∈ [0, −√

7/2]. Each panel contains ∼104

passages of 120 trajectories with Ecl = l = 0 and randomly generated
initial condition through the plane defined by setting y = 0. The
crossing of the AW arc can be noticed at χ ≈ −0.9.

values of control parameters and energy, hence

f (S)
reg = Nreg/Ntot. (8)

Both measures attain values freg ∈ [0, 1] and provide an
independent verification of increased regularity in the AW arc.

In Fig. 3, we present the dependence of regularity on
χ at η = 0.5 and Ecl = 0: both regular fractions decrease
monotonously from freg = 1 in the integrable regime χ = 0 to
values freg < 0.05 for χ ≈ −0.4. Then they rise again to reach
freg = 0.8 at χ = −0.91. Decreasing χ further, the fractions
drop to freg ≈ 0.3 with a slight increase at χ = −√

7/2.
In the more efficient SALI calculation, we chose a finer
step in χ , which discloses some minor peaks in the interval
χ ∈ [−0.8,−0.4]. In the region of η ≈ 0.5, these are however
negligible in comparison with the main regularity increase
around χ ≈ −0.9.

Poincaré sections in Fig. 2 corresponding to selected values
of χ along the same line show, that in the most chaotic
regions, χ ∈ [−0.8,−0.1], the phase space consists of a
complicated pattern of minor regular regions emerging from

064318-3



MICHAL MACEK et al. PHYSICAL REVIEW C 75, 064318 (2007)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.2-1-0.8-0.6-0.4-0.2 0

f r
eg

FIG. 3. Regularity of classical IBM for η = 0.5 and Ecl = 0 as a
function of χ determined by two methods: (i) the fraction of regular
area in the Poincaré section (solid line) and (ii) the fraction of regular
trajectories obtained by the SALI method (dashed line). The peak at
χ ≈ −0.9 corresponds to AW arc. Oscillations on the dashed curve
are caused by a finer step of the SALI evaluation.

the “background” of ergodic trajectories. On the other hand,
the peak of regularity at χ ≈ −0.9 gives rise to a remarkably
simple picture containing basically only four major regular
islands. These correspond to two families of regular orbits,
discussed further in Sec. V.

The degree of regularity is not uniform in energy and the
relative regularity of the arc is most significant just around
absolute energy Ecl = 0. This is illustrated in Fig. 4, where we
plot the regular fraction (8) for η = 0.5 and several values of
χ as a function of energy. Our observations conform with the
earlier results of Refs. [6–9]. The energy dependence will be
studied in more detail in Sec. V.

C. Quantum measures of regularity

To check the signatures of classical regularity in the quan-
tum spectrum, we fitted the Brody distribution of normalized
spacings S = (Ei+1 − Ei)/〈Ei+1 − Ei〉 between neighboring
eigenvalues in the unfolded spectrum of 0+ levels. The Brody
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FIG. 4. Energy dependences of regularity in classical IBM for
η = 0.5 at selected values of χ determined by the SALI method.
Energy unit is arbitrary.
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FIG. 5. The evolution of 0+ energy levels (panel b) and the
corresponding dependence of the Brody parameter ω on χ at η = 0.5
(panel a). The minimum of ω at χ ≈ −1 is connected with the
bunching of E ∈ [0, 1] levels. Energy unit is arbitrary. The boson
numbers in each panel differ only to make panel (b) more legible.

distribution has the form [35]

Pω(S) = NωSω exp(−αωS1+ω) , (9)

where ω is an adjustable parameter, αω = �( 2+ω
1+ω

)1+ω, and
Nω = (ω + 1)αω. It interpolates between Poisson distribution
(ω = 0) valid for generic integrable systems and Wigner
distribution (ω = 1) corresponding to chaotic systems [20,21].
The spectrum was obtained by numerical diagonalisation of
Hamiltonian (1) and the subsequent unfolding was performed
by methods described in Ref. [36].

In Fig. 5 we show values of the Brody parameter ω (panel a)
and the evolution of 0+ energies (panel b) as χ is varied at
η = 0.5. The dependence of ω(χ ) has again a clear minimum
ω ≈ 0.25 corresponding to a Poisson-like distribution (hence
quasiregular dynamics) at χ ≈ −1. Note that the nonzero value
of ω in the integrable region χ = 0 results from nongeneric
spectral fluctuations [9].

We can conclude that both classical and quantum measures
freg and ω show significant increase of regularity for values
close to curve Eq. (6) that predicts χreg ≈ 0.91 for η = 0.5.
However, it should be stressed again that the picture depends
very much on energy. Although the increase of regularity can
be clearly observed in energy-averaged measures [8,9], the
greatest contribution comes from the region around E ≈ 0 (cf.
Fig. 2 of Ref. [8]). If repeating the above classical analysis for
another energy value, the AW arc might remain unnoticed.
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IV. BUNCHING OF 0+ STATES

In this section, we study the evolution of energy spectra of
Hamiltonian (1) with variable η, following the path along the
AW arc. We try to trace out a pattern of multiple bunchings
and antibunchings of levels, noticeable already in Fig. 5(b) at
χ ≈ −0.9, and discuss its relation to a similar structure in the
O(6)-U(5) transition [17,18]. We claim that this pattern, for the
first time noticed in the analysis of unfolded spectra in Ref. [4]
and also reported in Ref. [37], constitutes the most distinctive
characteristic of the AW arc.

The pattern can be clearly observed when looking at
η-dependent spectral evolution along the path χreg(η), Eq. (6).
The relevant part of the 0+ spectrum for N = 40 bosons is plot-
ted in the middle panel [k = 3, see Eq. (10) below] of Fig. 6.
Note that in this subsection we use a numerical scaling factor
a = N/10 of quantum Hamiltonian (1), i.e., a = 4 energy
units for N = 40. As seen, the bunching pattern resides slightly
above E = 0; it starts at η ≈ 0.1, E ∈ [0.2, 0.6] and spans
roughly the whole region of deformed ground-state shapes
until it runs off the spectrum at η ≈ 0.8, E ∈ [−0.2, 0.2].

The question arises whether such bunchings may be
observed also in neighboring parameter regions. To find the
answer, we chose several paths “parallel” with the AW arc,
see Fig. 7, and look at the associated spectra in various panels

k = 1
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k = 3

k = 4

k = 5

E

η
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FIG. 6. Evolutions of 0+ spectra for N = 40 [Hamiltonian (1)
with a = 4] along paths shown in Fig. 7. Energy unit is arbitrary.
A bunching pattern slightly above E = 0 is observed in the AW arc
(panel k = 3) and gradually disappears as the path deviates from the
arc (panels with k �= 3).
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FIG. 7. A set of paths (10) “parallel” to the AW arc (6). The
paths are labeled by k = 0, 1, . . . , 5, with k = 0 corresponding to the
SU(3)-U(5) edge and k = 3 representing the arc (solid curve). Only
the χ � 0 half of the extended Casten triangle is shown.

of Fig. 6. The paths are labeled by integer k in the following
parametrization:

χk = ±
[
k

√
7 − 1

6
η −

√
7

2

]
, (10)

where k = 0 corresponds to the SU(3)-U(5) [or SU(3) − U(5)]
edge of the Casten triangle while k = 3 to the fit (6) of the arc.
Apparently, the bunching fades away as we depart from the arc.
Since, as mentioned in Sec. III, the regularity within the AW
arc for low spins is mostly connected with the region around
and just above zero absolute energy (cf. Fig. 4 above and
Fig. 2 of Ref. [8]), we anticipate that the bunching (present in
the same range) is intimately related to the source of regularity.

Another immediate question is whether the bunching
survives an increase of angular momentum. Figure 8 shows
that when increasing the angular momentum eigenvalue l, the
gaps in the spectrum become less pronounced due to repulsion
among increased numbers of levels. For low spins a tendency
to bunch is still observable in the same range of energies, but
the effect is practically gone for l � 8.

Figure 9 offers a comparison of the bunching pattern in
the AW arc (lower panel) with a similar pattern along the
integrable O(6)-U(5) transition [17,18,38] (upper panel). It
is clear that both structures exist at l = 0 in very close
(although not identical) energy domains, E ≈ 0, and exhibit
great deal of similarity. On the other hand, while in the
O(6)-U(5) transition the bunching involves real crossings of
levels with different seniority quantum numbers, all crossings
along the AW arc are presumably avoided (though to prove
this numerically is, in some cases, practically impossible). It
can be noticed that if proceeding along the bunching from
the right (η ≈ 0.8) to the left, the numbers of states involved
form a sequence 1, 2, 3, 4, 5, . . ., in the O(6)-U(5) case and
1, 1, 2, 2, 3, 3, . . ., in the AW case.

With increasing η, the center of the bunching in both
O(6)-U(5) and AW cases travels toward the kink of the
ground-state energy at η = ηc which separates the deformed
and spherical phases [2–4]. As shown recently [38], the E = 0
bunching along the O(6)-U(5) path demarcates the N → ∞
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FIG. 8. Washing out of the bunching pattern at χreg(η) (k = 3)
with increasing angular momentum l for N = 30. (Energy unit is
arbitrary.)

phase transition of excited states with zero seniority. It would
be interesting to learn whether the pattern in the AW arc has a
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FIG. 9. Comparison of the bunching of 0+ states in O(6)-U(5)
transition (upper panel) and along the AW arc (lower panel); both
spectra calculated for N = 40. (Energy unit is arbitrary.)

similar consequence (although seniority is not defined in this
case).

V. CLASSICAL EFFECTS

A. Numerical procedure

In the following, we discuss classical phase-space structures
arising from Hamiltonian (2) that uncover various types of
regular motions in different parts of the Casten triangle. We
focus in particular on classical motions within the AW arc.

To make a detailed image of the IBM phase space, a
sufficient number of trajectories must be launched, covering
the whole plane of the Poincaré section, and each of them
must be traced for sufficiently long time. In our calculations,
we generated 120 trajectories with random initial conditions
(satisfying the constraint l = 0) for every set of η, χ , and
Ecl. The classical equations of motions corresponding to
Hamiltonian (2) were solved numerically, using the fourth-
order Runge-Kutta method, and the calculation was stopped
after 3 × 104 passages of each trajectory through the x × px

plane with y = 0.
The method of evaluating the areal fraction f (P)

reg from Eq. (7)
was described in Ref. [30]. Finite resolution of the Poincaré
section division leads to some systematic errors which are
most significant when f (P)

reg ≈ 1 but do not exceed cca 5%. The
implementation of the SALI method (for details, see Ref. [31])
in the evaluation of f (S)

reg from Eq. (8) induces statistical errors
connected with the finite numbers of generated trajectories.
In our case (Ntot = 500 for each point of f (S)

reg ) the error is

estimated by the expression �freg/freg ≈ 0.04f
−1/2
reg .

The energy dependence of the degree of chaos at selected
values of η and χ is explored with a sample of ten equidistant
levels

Ei = Vmin + i

11
(Vlim − Vmin) , (11)

i = 1, . . . , 10, covering the whole energy range between the
global minimum Vmin = V (β = βmin) of the potential for given
η, χ and the value Vlim ≡ V (β = √

2), which represents the
uppermost energy for the classical motion to be finite (since
β = √

2 is the maximal physical value of the deformation
parameter). Remind that energies Ecl obtained from classical
Hamiltonian (2) are scale-free, i.e., given in units of a (in
contrast to quantum energies E analyzed in Sec. IV). We
point out two important intermediate energy values: (i) Energy
Esad < 0 of the saddle points between three degenerate global
β > 0 minima of potential (4) at γ = 0, 2π/3, and 4π/3.
Below Esad, the energetically accessible region in the plane
x × y consists of three separate areas surrounding the global
minima; at Ecl = Esad these areas touch and merge. (ii) The
energy Ecl = 0 coinciding with the local maximum V (β = 0).
For Ecl > 0 the accessible region in the x × y plane is a simply
connected area.

B. Poincaré sections

Poincaré sections corresponding to Ecl = E1, . . . , E10

from Eq. (11) were generated at 35 points lying on paths
χk , Eq. (10), with k = 0, 1, . . . , 5, 7 and η ∈ [0.3, 0.7]. The
results show a sensitive dependence of the dynamics on χ ,
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with particularly distinct structural changes of trajectories in
the vicinity of the AW arc (k = 3), for all values of η. On the
other hand, varying η for a fixed k affects the motions mostly
via shifting both energy limits Vmin and Vlim upward (thus
energies Ecl < 0 become unattainable for η > ηc ≈ 0.8), but
the shape of the main phase space structures far enough from
ηc remains visually intact.

A complete collection of Poincaré sections may be found
on our website [39]. Here we will illustrate the dependence
of the dynamics on χ at η = 0.5, by selecting three values
χk with k = 2, 3, 4, that represent the regions of |χ | >

|χreg|, χ = χreg, and |χ | < |χreg|, respectively. The corre-
sponding Poincaré sections are arranged in three columns of
Fig. 10. Rows from bottom to top correspond to increasing
energies from Eq. (11). Note that values of Ei differ for the
three columns (because the shape of potential depends on η

and χ ), but energy ranges below and above the above-specified
benchmarks Ecl = 0 and Esad can be easily recognized from
the topology of the respective section: While for Ecl < Esad (no
pass between three degenerate global minima) the crossings
form a single compact area around x ≈ βmin > 0, px = 0, for
Ecl > Esad we observe two separate areas of crossings (with
x > 0 and x < 0) that merge at Ecl = 0. For Ecl > 0, the
crossings fill in a single area around the origin.

Regular trajectories contributing to Poincaré sections in
Fig. 10 form islands of concentric “circles” enfolding some
simple periodic orbits in their centers. Examples are given in
Fig. 11. The central orbits represent elliptic fixed points of the
associated Poincaré mapping [19] and can be used to classify
the enveloping islands. We distinguish the following principal
families of orbits:

(i) Trajectories forming a regular island centered at a
point x > 0 and px = 0. These constitute a family of
“γ -vibrations” since the central orbit (see orbit 1 in both
panels of Fig. 11) oscillates with β ≈ βmin around the
potential minimum. (To avoid confusion we note that in
the present case angular momentum l = 0, which is in
contrast to the lowest γ -vibrational quantum state with
l = 2.)

(ii) Trajectories forming two symmetric regular islands
with central points at x > 0 and px > 0, px < 0 and
for Ecl > Esad also an additional island at x < 0 and
px = 0. These are mixed “βγ -vibrations” that for
Ecl < Esad oscillate around one potential minimum
[see both orbits 2 in panel (a) of Fig. 11] and for
Ecl > Esad migrate over the saddle points between the
pairs of neighboring minima [orbits 2a and 2b in panel
(b) of Fig. 11 connecting the γ = 2π/3 and 4π/3
minima; analogous orbits exist also for the other pairs
of minima].

We observe (cf. Figs. 4 and 10) that the degree of chaos
varies with χ most significantly at intermediate energies,
especially around Ecl ≈ 0 (cf. Sec. IV). At low energies,
Ecl < Esad, but also at very high energies, Ecl ≈ Vlim,
the dynamics is mostly regular—this being understood from
the prevailing harmonic and pure quartic character of collective
oscillations in the respective regimes [30]. In the following,

FIG. 10. Poincaré sections y = 0 for η = 0.5 and χk, k = 2, 3, 4
(columns) at energies Ecl = E1, . . . , E10 (rows). The middle column
corresponds to the AW arc. Notice that sections for Ecl < Esad are
expanded compared to those for Ecl � Esad.
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FIG. 11. Poincaré sections and the central periodic orbits corresponding to the principal regular islands in the vicinity of the AW arc.
In both panels η = 0.5. Panel (a) corresponds to Ecl = E4 < Esad, χ = χ2, panel (b) to Ecl = E7 > 0, χ = χ3 (cf. the respective sections of
Fig. 10). The dashed lines at y = 0 demarcate the plane of section and the arrows show the position of individual orbits in the Poincaré sections.

we describe features of motions characteristic for the three
regions with respect to the regular arc.

|χ | > |χreg| (k = 2 column of Fig. 10): The low-energy
behavior below Esad (E1, . . . , E4) is completely regular,
dominated by γ and βγ vibrations (types 1 and 2). The
Poincaré section at E5 reflects merging of the hitherto separate
accessible regions. The rims of the regular islands get chaotic
around E6, E7. Increasing the energy further, chaos prevails
destroying the regular family around the type 1 and only tiny
regular areas roughly in the previous position of the three
regular islands of type 2 are left. At the highest energies,
around E10, the regular islands of the type-2 vibrations spread
significantly, increasing freg to ≈ 0.5.

χ = χreg (k = 3 column of Fig. 10): The single island of
type-1 γ -vibrations present at the lowest energies (E1) splits in
its center into two smaller islands corresponding to vibrations
of type 2 (see panels E2, . . . , E5). Unlike in the previous case,
the γ -vibration now constitutes a hyperbolic fixed point [19].
Interestingly, it becomes elliptic again around Ecl ≈ 0 [(see
regular islands around x > 0, px = 0 in panels E6 and E7 of

Fig. 10 and panel (b) of Fig. 11] and subsequently “disappears”
in a sea of chaos at E8. Another distinctive fact is a crossover of
the 2a and 2b types of βγ -vibrations slightly above Ecl = 0 (see
E7): one of the outermost tori of mixed vibrations (with central
orbit of type 2b) disintegrates to produce a new island of regular
trajectories (type 2a), which with increasing energy “expels”
the original island of type 2b orbits toward the boundary of
the accessible region. At E9 and E10, a new family or regular
orbits appears: these circle around the whole accessible region
giving rise to two new islands. It is worth noting that the regular
islands corresponding to βγ -vibrations (types 2 or 2a, 2b) exist
in the whole energy range between E2 and E10 and that the
low-energy form of these trajectories (type 2) reminds strongly
the trajectories of the SU(3) limit.

|χ | < |χreg| (k = 4 column of Fig. 10): The process starts
in a similar way as for χ = χreg, with the γ -vibration
becoming hyperbolic around E3, but the enveloping “circles”
disintegrate into complicated Poincaré-Birkhoff chains of
alternating elliptic and hyperbolic fixed points [19] which
usher in strong chaos resident at higher energies, E4, . . . , E7.
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FIG. 12. The AW arc [Eq. (6), the dashed curve] and the locus
of degeneracy of β and γ bandheads [Sec. VI, the dotted curve]
inside the Casten triangle. The points mark the change of stability of
γ -vibrations (orbits of type 1 in Fig. 11) at Ecl = −|Vmin|/2 (crosses)
and at Ecl = 0 (asterisks), see Subsec. V B. Numerical errorbars are
smaller than the pointsize.

At the highest energies the regularity rises again; the Poincaré
section at E10 yields freg ≈ 0.8.

The scenarios described above hold for the whole region
η < 0.6. As already pointed out in Refs. [10,11], the vicinity
of AW arc can be recognized as a place where the γ -vibrations
(type-1 orbits) change their character from elliptic (|χ | >

|χreg|) to hyperbolic (|χ | < |χreg|) fixed points. Note that at
low energies (Ecl < 0), the change of stability of the central
γ -vibration is always accompanied by stability changes of the
outermost enveloping “circles” in Poincaré sections, which in
turn represent almost pure β-vibrations (for our choice of the
phase space section, y = 0, these do not represent fixed points).
The stability properties of β-vibrations are opposite to those of
γ -vibrations: they are stable in the region where γ -vibrations
are unstable and vice versa. This happens very close to χreg

on the SU(3)-U(5) side of the triangle. On the other hand, at
higher energies (Ecl ≈ 0), the γ -vibrations change stability
on the other side of χreg. This may be seen in Fig. 12, where
the stability changes at Ecl = −|Vmin|/2 and at Ecl = 0 are
marked by crosses and asterisks, respectively.

When approaching the phase transition, for 0.6 < η < 0.8,
the loci of Ecl < 0 and Ecl ≈ 0 stability changes discussed
above deviate from the curve χreg(η) from Eq. (6). In fact, the
linear fit of the regular arc becomes inaccurate in this region
and changes in classical dynamics follow rather the curve
χdeg(η) of the β- and γ -bandhead degeneracy (dot-dashed
curve in the Fig. 12), which will be discussed further in Sec. VI.

As a final remark we point out that crossing of the SU(3)-
U(5) edge of the Casten triangle, in contrast to crossing of
the AW arc, does not bring about any significant change in
dynamics.

C. Periodic orbits

In this subsection, we will discuss a possible relation
of stability changes in classical dynamics (as described in
Sec. V B) to the E ≈ 0 bunching pattern in quantum spectra
(Sec. IV). In particular, we focus on the crossover between the

two types of βγ -vibrations (orbits 2a and 2b in Fig. 11) and
on the temporal resurrection of γ -vibrations (orbit 1 therein),
both these phenomena taking place in the relevant energy and
parameter domains (cf. panels E6 and E7 of Fig. 10).

The influence of classical dynamics on quantized energy
spectra is described in the framework of semiclassical periodic
orbit theory [19–21]. The oscillating part ρosc(E) of the
quantum level density can be be expressed via so-called trace
formulas, which depend on properties of classical periodic
trajectories and have the following generic form:

ρosc(E) = 1

πh̄

∑
p

∞∑
r=1

rTp

Ap

cos

[
rSp(E)

h̄
− rµp

π

2

]
. (12)

The sum is running over all primitive orbits p with period
Tp together with their multiple retracings r = 1, 2, 3, . . .. The
argument of the cosine is determined by the action

Sp(E) =
∮

�p · d �q =
∫ Tp

0
�p · �̇qdt (13)

along the primitive orbit and the number of caustics µp

(Maslow index) encountered there. Inverse amplitude Ap

reflects the stability properties of the orbit and depends on
the nature of dynamics. The explicit form of Ap is known only
for completely regular or chaotic systems, respectively, given
by the Berry-Tabor formula for contributions of tori [40] and
Gutzwiller formula for contributions of isolated orbits [41].

The level bunching described in Sec. IV constitutes a
significant fluctuation in level density. We may therefore
expect that it is connected, through Eq. (12), with changes
in properties of classical periodic orbits. In Sec. V B, the
increased regularity of l = 0 motions in the AW arc was
shown to be basically due to regular trajectories surrounding
the vibrations of types 1 and 2 (see Fig. 11). Although we
are not able to perform the semiclassical calculation of the
level density for a mixed regular/chaotic system such as the
IBM (the formula is not known), we will show that stability
intervals of the above types of motions and crossover energies
are strongly correlated with the bunching pattern.

For this purpose, we calculated actions (13) of orbits from
Fig. 11 using a numerical approximation Sp = ∑

(px�x +
py�y) in variables (5), where the sum runs over all calculated
points until the orbit closes. The energy dependences of
cos Sp for the three types of orbits are presented in Fig. 13
for χ = χreg and η = 0.35 (panel a), η = 0.5 (panel b), and
η = 0.65 (panel c). Individual curves end at the values of
energy, where the respective trajectories turn unstable and the
surrounding regular islands disappear. The classical energy Ecl

from Hamiltonian (2) is related to quantum energy E scaled
by a = N/10 via E = 4Ecl (for N = 40, see Figs. 6 and 9).
The energy interval where the bunching of quantum spectrum
resides for the given value of η is demarcated by the shaded
area in the respective panel of Fig. 13.

As we observe, the upper edge of the energy gap demarcat-
ing the bunching pattern coincides almost precisely with the
endpoint of 2b orbits, while the crossover energy of 2a and 2b

orbits takes place within the gap. This is so for all selected
values of η (panels a–c of Fig. 13). It also turns out that both
orbits 2a and 2b match their periods just above the crossover
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(a)

(b)

(c)

FIG. 13. Oscillating contributions to the state density calculated
for the central periodic orbits from Fig. 11 at χ = χreg and η = 0.35
(a), 0.5 (b), 0.65 (c). Maslow index µp = 4 for all orbits makes no
change of the cosine. Grey zones indicate the regions corresponding
to the bunching of quantum levels. (Energy unit is arbitrary.)

energy, within the shaded area. The stability changes of type-1
orbits are also correlated with the bunching, although in this
case the energy match does not behave in a systematic way.

These findings provide a strong support to the hypothesis
that the quantum bunching pattern discussed in Sec. IV is
closely connected with the stability changes of the above
orbits, in particular with the crossover between 2a and 2b

vibrations. Whether this is just an interplay of accidents or a
deeper effect resulting from internal symmetries of the system
remains an open question.

VI. β AND γ BANDHEAD DEGENERACY

In attempts to fit nuclear spectra with the simplified
Hamiltonian (1), an approximate degeneracy of 0+

2 and 2+
2

states (belonging to so-called β and γ bands, respectively)
was found to be a useful tool for identification of nuclei close
to the AW arc [27]. Here we estimate the locus of the 0+

2 -2+
2

degeneracy region in the Casten triangle analytically, by means
of the intrinsic-state formalism [42]. It will turn out that the
curve χdeg(η) expressing the locus lies indeed very close to the
AW arc χreg(η).

In the intrinsic-state formalism, the unprojected wave
functions for the ground-state band, β-band, and γ -band are

up to a combinatorial factor given by

|K = 0, gs〉 ∝ �
†N

0 |0〉 , |K = 0, β〉 ∝ �
†
β�

†N−1
0 |0〉,

(14)
|K = 2, γ 〉 ∝ �†

γ �
†N−1
0 |0〉

with

�
†
0 = 1√

1 + β2
[s† + βd

†
0], �

†
β = 1√

1 + β2
[−βs† + d

†
0]

(15)

�†
γ = 1√

2
[d†

2 + d
†
−2].

The deformation parameter β is determined by minimizing the
ground state energy

Eg.s. = 〈K =0, g.s.|H |K =0, g.s.〉 (16)

while the excitation energies of the β and γ bandheads
consequently follow from

E∗
β = 〈K =0, β|H |K =0, β〉 − Eg.s., (17)

E∗
γ = 〈K =2, γ |H |K =2, γ 〉 − Eg.s.. (18)

The minimization of the ground-state energy (16) and equality
of expressions (17) and (18) lead—after taking the N →
∞ limit—to two simultaneous equations in η, χ , and β.
Elimination of β gives the dependence χdeg(η), which is shown
in Fig. 12 together with the linear fit χreg(η) of the AW arc,
Eq. (6).

We see in Fig. 12 that both curves χdeg(η) and χreg(η)
are relatively close to each other for η < 0.7. The agreement
even slightly improves if we compare χdeg(η) directly with the
points in Fig. 13 of Ref. [9] without the fit (6). As η approaches
0.8 both curves diverge. Indeed, since at η = ηc ≈ 0.8 the
spherical configuration of the ground state is reached, the
notion of β and γ bands looses its sense. Note, however,
that the whole spherical region with η > ηc behaves rather
regularly and the concept of the semiregular arc is not well
defined here. Notably, both loci of classical-orbit changes
discussed in Sec. V apparently follow the χdeg(η) curve instead
of χreg(η).

Note that the present procedure equating the bandhead
energies of the β and γ vibrational bands differs somewhat
from that of Ref. [27] where energies of the 0+

2 and 2+
2 states are

compared. Namely, the rotational energy shifts up the position
of the 2+

2 state from the γ bandhead energy. For the near rotor
nuclei discussed in Ref. [27] this does not make a substantial
difference as the rotational energy is small as compared to the
excitation energy of the γ bandhead. In some cases inspected
in Ref. [27], the 2+

2 state even belongs to the β-band, then
however γ -band is still close to the β-band. For the near
vibrator nuclei, the comparison is less straightforward. Here,
however, the comment of the previous paragraph applies.

A rotational L · L term can remove the degeneracy of states
of different spins but does not change eigenfunctions and the
extent of regularity. Then a link of the regular region to the
2+

2 -0+
2 degeneracy may somewhat be hidden. On the other

hand, the L · L term shifts also the relative position of the β

and γ bands. This shift is, however, of the order of 1/N as
compared to the effect of all other two-body terms of the
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FIG. 14. Regularity f (S)
reg at Ecl = 0 as a function of B̄ =

B/
√|AC| and B̄(η, χ ) in the GCM and IBM, respectively, deter-

mined by the SALI method.

general IBM Hamiltonian. Of course, the latter deficiency
of the L · L term could be balanced by coefficient ∼N of
that term. Then the unprojected version of the intrinsic-state
formalism ceases to be valid and the angular momentum
projection should be considered [43].

VII. RELATION TO GEOMETRIC MODEL

Recent analyses [28–30] of the classical GCM displayed
an unexpectedly complicated dependence of chaoticity on the
control parameters and energy. It is certainly interesting to find
out whether at least some of the distinctive features of GCM
phase space can be “mapped” onto the more realistic IBM. We
are going to set focus on the energy Ecl ≈ 0, connected with
the most dramatic changes of regularity in the GCM as well
as in the IBM case.

We start with an expansion of the square root in the IBM
Hamiltonian (2), which up to first order in (β2 + T )/2 gives

H ′
cl = 1

2K ′ T + A′β2 + B ′β3 cos 3γ + C ′β4

+ B ′

4

(
2pβpγ + p2

γ /β − βp2
β

)
(β2 + T − 4) sin 3γ

− B ′

4
(β3T cos 3γ +β5)+D′β2T +E′

(
1

2
p2

γ − 1

8
T 2

)

≡ H ′
GCM + H ′

res. (19)

We may immediately identify the GCM-like Hamiltonian
(3) in the first line. The residual terms H ′

res in the next
two lines contain a correction ∝ β5 in the potential and a
collection of rather complicated kinetic terms. The coefficients
A′, . . . , E′ are functions of η, χ : A′, B ′, C ′ being equal to re-
spective factors in Eq. (4), while K ′ = 1/η,D′ = (1 − η)(1 −
χ2/7), E′ = 4χ2(1 − η)/7. The expansion (19) is justified
only for small amplitude vibrations around an equilibrium
deformation satisfying β2

0 � 1, which is for Ecl ≈ 0 fulfilled
in a region near to the phase transition, η ∈ [0.7, 0.8]. It needs
to be stressed that even in this region H ′

res contains kinetic
terms of the same order as T . One therefore cannot expect a

FIG. 15. Comparison of Ecl = 0 Poincaré sections y = 0 in the
IBM at η = 0.75 (lefthand column) and GCM (righthand column) at
the most pronounced minima and maxima of freg(B̄) from Fig. 14.

perfect match with the GCM results. Nevertheless, as shown
below, the similarity is appreciable.
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To obtain a mapping between IBM and GCM parameters,
we use scaling properties of the classical GCM Hamiltonian,
see Ref. [30]. In this way, H ′

GCM is transformed so that
only the coefficient B̄ in front of the term ∝ β3 remains
variable while Ā = −C̄ = −1 are fixed. The expression for the
rescaled control parameter then reads B̄(η, χ ) = B ′/

√|A′C ′|.
This provides the desired correspondence (η, χ ) ↔ B̄ for
small-amplitude vibrations (wrong scaling of the noninvariant
part H ′

res may then be neglected).
In Sec. III we saw that in the “middle” of the Casten triangle

(η = 0.5, cf. Fig. 3) the zero-energy dependence of freg on χ

in the IBM has the only well pronounced peak at the AW
arc, quite in contrast with the corresponding fine structured
freg(B̄) dependence in GCM [28] at Ecl = 0 (see the inset of
Fig. 14). However, as we approach the deformed-to-spherical
phase transition, some significant peaks of regularity develop
in the region between χ = 0 and the AW arc. As the validity of
approximation (19) improves in this part of the Casten triangle,
the freg dependences start to resemble that of the GCM, see
Fig. 14.

The similarity is evident also from the Poincaré sections
shown in Fig. 15, where the lefthand and righthand columns
correspond to the IBM and GCM, respectively. The adjacent
pairs of sections belonging to the most pronounced maxima
and minima of freg in the GCM and IBM at η = 0.75 are
visually almost identical (here we use χ > 0 to be consistent
with the choice B > 0 of Refs. [28,30]). The differences must
be attributed to the residual part H ′

res of Hamiltonian (19),
which is not obviously small.

We can conclude that the GCM peak of regularity at
B̄ ≈ 0.6 is closely related to the AW arc in the region η ∈
[0.7, 0.8]. Note, however, that the most regular IBM Poincaré
section, observed at |χ | = 0.52 (associated with the GCM
section at B̄ = 0.62), is already deviated from the linear fit
(6) of the AW arc, which predicts |χreg| = 0.71 for η = 0.75.
This is in agreement with results of Secs. V B and VI (see
Fig. 12).

VIII. SUMMARY AND OUTLOOK

In this paper, we studied quantum and classical effects
associated with a partial increase of regularity in nuclear
collective dynamics away from integrable regimes. This
increase seems to be a common feature of both the inter-
acting boson model and the geometric model, but so far
lacks unambiguous theoretical evidence. Below we list our
most important findings together with the questions they
induce:

(i) The increase of regularity, localized mainly in the
absolute-energy region around E ≈ 0, coincides with
the “macroscopic” bunching of the IBM quantum
states, most clearly observed in the 0+ spectrum. This
bunching is visually similar to that observed in the O(6)-
U(5) transition (see Fig. 9 and Ref. [17]), but cannot
have the same origin (monodromy [18,38]) as there
is no local potential maximum with the corresponding
energy. More sophisticated concepts, like generalized

forms of monodromy [44] or Hamiltonian fixed points
[45] may turn relevant in future studies. Since the
O(6)-U(5) bunching was recently related to excited-
state quantum phase transitions [38], the question rises
whether the present bunching induces analogous effects
in the SU(3)-U(5) case.

(ii) At the classical level, the bunching pattern seems to be
related to changes in stability of some specific orbits.
In particular, we disclosed the crossover between orbits
of types 2a and 2b from Fig. 11 and equalizing of
their periods taking place in the relevant energy and
parameter domains, see Fig. 13.

(iii) Proximity of the AW arc to the locus of 0+
2 -2+

2
degeneracy, previously noticed in Ref. [27], was related
to the the degeneracy of β and γ bandheads. It remains
unclear whether it is accidental or systematic. The ex-
change of stability of low-energy γ -vibrations [type-1
orbits from Fig. 11(a)] and β-vibrations was found to be
correlated with the locus of degeneracy (see Fig. 12). It
is known that no ground-state phase transition occurs in
between γ -soft and γ -rigid sides of the Casten triangle,
but the present observations suggest that a kind of sharp
change of low-energy collective modes appears very
close to the AW arc.

(iv) The relation of the AW arc to the increase of regularity
observed at Ecl ≈ 0 in the geometric model [28] was
demonstrated in the region η ∈ [0.7, 0.8], i.e., close
to the deformed-to-spherical transition. Even in this
region, however, the IBM corrections to the GCM
kinetic energy cannot be fully neglected and lead to
some rescaling of the fine structure of freg in parameter
B̄ (see Fig. 14).

Note that findings summarized under (iii) and (iv) indicate
that the semiregular arc is in fact well defined only on the
deformed side of the Casten triangle [a kind of partial SU(3)
dynamical symmetry being a potential explanation] and that
close to the phase transition it deviates significantly from the
linear fit (6).

We hope that results presented in this paper will help
to eventually disclose microscopic origins of regularity in
nuclear collective dynamics. This is an important funda-
mental task in itself, but in view of the recent revival
of interest in statistical analyses of nuclear 0+ spectra
[46] it may also turn relevant from the experimentalists’
viewpoint.
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A.4 Peres lattices in nuclear structure

[Int. J. Mod. Phys. E, 18, 1058 (2009)] [P5*]

This short article applies the visual lattice method of distinguishing between quan-
tum integrable and quantum chaotic systems originally introduced by Peres, see
Ref. [Pere84a], to study the mixed regular/chaotic dynamics of the interacting bo-
son model. The method may be considered as a quantum analog of the Poincaré
section method in classical mechanics. Here, it is used for the first time in the
IBM, following its previous application in the geometric collective model [Stra09b].

IBM provides an especially good environment to test the Peres’ proposal, which
states that if a quantum system is integrable, the lattices corresponding to practi-
cally arbitrary operators (even those non-commuting with the Hamiltonian) should
display visually regular patterns [Pere84a]. The Casimir operators connected to
mutually incompatible dynamical symmetries of the IBM may be easily taken
as the Peres operators and their lattices be evaluated in some of the integrable
domains within the parametric space of IBM. We select here in particular the
U(5) limit and plot the lattices corresponding to the operators related to the in-
compatible O(6) and SU(3) symmetries and indeed confirm the intuitively rather
surprising statement about the regularity of all lattices.

We also investigate the mixed regular/chaotic interior of the Casten triangle
plotting the Peres lattices corresponding to various incompatible quantities in
several points inside the triangle. The results allow to observe an interesting
combination of regular and chaotic regions within the lattices and in particular
enable to select “regular states”, which belong to regular sublattices within the
lattices corresponding to each individual quantity. The quantum regularity, as
revealed by the lattices, is found to correspond very well to the classical regularity
determined by the relative volume of the regular phase space, cf. the preceding
paper, Ref. [J5*].

The author of this thesis initiated the simultaneous study of different Peres
lattices and performed the classical as well as quantum numerical calculations
necessary to plot the figures 1 and 2.
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Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2,
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A method by Peres is used to represent spectra of the interacting boson model as lattices
in the plane of energy versus an arbitrary observable average (or variance). Ordered
(disordered) lattices are signatures of regularity (chaos) in both quantum and classical
dynamics. The method is also apt to disclose exact or approximate dynamical symmetry.

We use a method by Asher Peres1 to study order and chaos within the spectra
of collective nuclear models. The method allows to distinguish order/chaos in a
quantum system by visual inspection, which is in a way similar to the well-known
Poincaré section method used in classical mechanics. In contrast to the conventional
approaches to study of quantum chaotic systems based mostly on statistical prop-
erties of energy eigenvalues found in a certain interval, the lattice method enables
one to assign regular or chaotic type of dynamics to individual states.

Within every quantum-mechanical model, we can construct trivial integrals of
motion—we call them Peres invariants P̂ (Ô)—by taking the time average of an
arbitrary “well-behaved” operator Ô:

P̂ (Ô) = lim
T→∞

1
T

∫ T

0

Ô(t)dt , (1)

where Ô(t) is the Heisenberg image of Ô. By plotting the expectation values Pi(Ô) =
〈ψi|P̂ (Ô)|ψi〉 versus the energy Ei = 〈ψi|Ĥ |ψi〉 for an arbitrary set of states |ψi〉,
we obtain what we call Peres lattices. If |ψi〉 are eigenstates of the Hamiltonian Ĥ ,
the expression 〈ψi|P̂ (Ô)|ψi〉 can be simply replaced by 〈ψi|Ô|ψi〉.

A regular lattice of points can be expected, if the system is integrable.1 The
supporting arguments are based on semiclassical Einstein-Brillouin-Keller (EBK)
quantisation: For a classically integrable system in d dimensions, the phase space
trajectories are bound to d-dimensional tori. A complete set of motion integrals can
be formed by the action variables Jk =

∮
Ck

pidxi, where i, k = 1, .., d and Ck are
topologically non-equivalent curves on the torus surfaces. From the EBK quantisa-
tion we obtain Jk = �nk+ak, where ak are constants and nk = 0, 1, 2, ..integers. Any
other integral of motion—including energy E and the Peres invariant P̂ (Ô)—can

1
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be expressed as a smooth function of Jk. The lattice of P (Ô) versus E is therefore
a smooth transform of the regular lattice Jk versus E and should in most cases be
visually regular.

Adding a perturbation to an integrable system brings about formation of ir-
regular patterns in the Peres lattices. For weak perturbations, the regular lattice
usually does not break down “uniformly”. On the contrary, chaos develops in lo-
calised segments of the lattice, while the rest may remain untouched, as seen from
the studies within the geometric collective model and interacting boson model of
nuclei.2,3 The method allows to select the states most affected by the perturbation
and is thus appealing for studies of the onset of quantum chaos.

To demonstrate the essence of the method, we consider the interacting boson
model (IBM) Hamiltonian4 in the simple form which incorporates all standard
dynamical symmetries of IBM:

H = η n̂d − (1 − η)N−1 Q̂χ · Q̂χ, (2)

with nd = d† · d̃ the d-boson number operator, Q̂χ
μ = d†μs + s†d̃μ + χ[d†d̃](2)μ the

quadrupole operator, N the total number of bosons being conserved and (η, χ) two
external parameters defining the Casten triangle. Its vertices (η, χ) = (1, 0), (0, 0),
and (0,−

√
7/2) correspond to the U(5), O(6), and SU(3) dynamical symmetries,

respectively.
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Fig. 1. Peres lattices—the mean values of selected invariants indicated above the corresponding
columns—calculated in the integrable U(5) limit of IBM for L = 0 states and N = 40 bosons are
arranged in the bottom-row panels. Notice that all lattices are regular despite non-commutativity
of Q̂·Q̂χ with the Hamiltonian ĤU5 = n̂d. The corresponding variance lattices (top row) show non-
zero values for Q̂.Q̂SU3 and Q̂.Q̂O6 and zero for the good quantum numbers τ , nd. All quantities
are scaled by their maximum value to fit in the interval [0, 1].

The striking property of the Peres method—the arbitrariness of choice of Ô

in Eq. (1)—is demonstrated here in the completely integrable U(5) limit of (2).
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In the bottom row of Fig. 1, we plot the Peres lattices related to the Casimir
operators of groups O(5), SU(3), U(5) and O(6). Notably, all quantities display
completely regular lattices despite the fact that only τ (O(5) label) and nd (U(5)
label) are indeed exact quantum numbers. Non-existence of quantum numbers re-
lated to Q̂.Q̂SU(3) and Q̂.Q̂O(6) is evident from the variance lattices shown above
the corresponding Peres invariants—all eigenstates display non-zero value of the
variance var(Ô) = 〈Ô2〉 − 〈Ô〉2.

E
-0.8 -0.4 0 0.4
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Fig. 2. Peres lattices of L = 0 eigenstates of the IBM Hamiltonian (2) for U(5) and SU(3) Casimir
invariants and O(6) and O(5) labels σ, τ and the corresponding classical regular fraction freg

calculated inside the Casten triangle for N = 40 bosons. The parameter η = 0.5 and χ is indicated
on the top of individual columns. The dotted and dashed lines mark respectively Esad and Elim

of the classical IBM potential. Each invariant is scaled to fit in the interval [0, 1].
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Having tested the Peres’ proposal in one of the integrable cases, we can explore
the interior of the Casten triangle, which is known to display mixed regular/chaotic
dynamics.5,6 Figure 2 illustrates the evolution of various Peres invariants—nd,
Q̂.Q̂SU(3), τ and σ (O(6) label)—for selected values of χ changing across the Casten
triangle at η = 0.5. Panels devoted to a particular invariant are arranged in rows,
while the columns correspond to a given value of χ. In the top row, we show the
classical regularity expressed by the regular fraction freg of the phase space (see
Ref.6 for details).

Peaks of freg correspond to distinct regular areas in the lattices of all the Peres
invariants considered. In the energy intervals of mixed dynamics, we may point out
states belonging to the regular lattices. A thorough analysis shows that for every
Peres invariant the “regular” states form a completely regular lattice if plotted
separately without the remaining “chaotic” states. The regular states correspond
to resilient classical tori.3

As the energy E increases, we observe changes of the form and pattern in the lat-
tices. Major changes in the overall form are noticeably triggered by stationary points
of the classical IBM potential (see Ref.6)—the saddle point energy Esad(dotted ver-
tical lines in Fig. 2), the local maximum at E = 0 and the limiting energy for the
system to be bound Elim(dashed lines). Probably the most significant overall fea-
ture is the “linear” dependence of 〈Q̂.Q̂SU(3)〉 on E below Esad roughly in the range
of χ < −0.8, which is connected with the quasi SU(3) dynamical symmetry.3

The lattice method is applicable for any quantum model, possibly beyond
nuclear structure physics. It is in particular well suited to disclose approximate
symmetries of the model, like quasi dynamical symmetry7 and partial dynamical
symmetry,8 especially using the variance lattices. More results concerning the dy-
namics of both the interacting boson model and the geometric collective model are
accessible in an interactive way at our web site9 and will be described in deeper
detail in our prepared publications.3

This work was supported by the Czech Science Foundation (202/06/0363) and
by the Czech Ministry of Education (MSM 0021620859 and LA 314).
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A.5 Transition from gamma-rigid to gamma-soft

dynamics in the interacting boson model:
Quasicriticality and quasidynamical symmetry

[Phys. Rev. C 80, 014319 (2009)] [J6*]

This article presents a detailed study of the low-energy dynamics in the axially
deformed region of the Casten triangle. The numerical results are compared and
physically interpreted using the bosonic mean-field (BMF) approximation utilizing
extensively the intrinsic coherent state formalism.

We find out that the BMF states approximate the low-lying exact spectrum
of IBM very well throughout the axially deformed part of the Casten triangle.
The upper limit of their applicability is found to be closely related to the saddle
point energy Esad of the potential energy surface. Below Esad, the plain BMF
approximation becomes inadequate also near to the degeneracies of individual
intrinsic BMF excitations, some features of the spectrum can be however even
here reproduced, if we consider the mixing of equal-K BMF states. The location
of the degeneracies within the Casten triangle is studied systematically in the
article.

The main points of the article involve the observation of a (i) novel type of
critical behavior (called here “quasicriticallity”) which affects already the lowest
vibrational excitations (β and γ band, as well as higher excitations lying below the
saddle point Esad) above the ground state band and (ii) observation of SU(3) quasi
dynamical symmetry in the interior of the Casten triangle. The SU(3) QDS can
be understood using the BMF states and its locus coincides with the applicability
of the BMF approximation.

We also illustrate that the quasi-SU(3) rotational bands can be neatly disclosed
by the Peres lattice method [Pere84a, P5*]. The Peres method indeed turns out
to be a powerful indicator of rotational band structures within the spectrum.
It points out to the occurrence of some very high lying rotational bands, which
cannot be explained by the simple BMF approximation. The rotational character
of these states was actually proven in subsequent Refs. [J7*, J8*].

The author of this thesis used the IBM codes from Pavel Cejnar and the transi-
tion code provided by Francesco Iachello to calculate the exact spectra and B(E2)
transition rates and adapted these codes for calculation of Peres lattices and the
SU(3) decompositions of the wave functions. He noticed the overlapping patterns
in the Peres lattices corresponding to different angular momentum l states, which
lead Jan Dobeš to suggest the mean-field interpretation of the low-energy spectra.
The author subsequently performed the corresponding calculations using the BMF
approximation determining also the exact positions of various BMF degeneracies
inside the Casten triangle.
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CZ-18000 Prague, Czech Republic

2Nuclear Physics Institute, Academy of Sciences of the Czech Republic, CZ-25068 Řež, Czech Republic
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We study the transition from the γ -rigid to γ -soft collective nuclear dynamics across the Casten triangle
of the interacting boson model using mean-field techniques and confront the description with the exact
diagonalization. We inspect the domain of validity of the SU(3) quasidynamical symmetry inside the Casten
triangle and reveal critical behavior within the low-lying excited spectrum due to a degeneracy of β and γ

vibrations.
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I. INTRODUCTION

As known from the maritime history, nautical navigation
began as cruises along coastal lines and only much later
continued with the first successful passages across the open
sea [1]. The study of nuclear structure between various types
of collective dynamics has taken a similar route. Within the
models taking into account quadrupole degrees of freedom,
(a) an (anharmonic) spherical vibrator, (b) an axially sym-
metric (γ -rigid) deformed rotor, and (c) a deformed rotor
unstable against the onset of triaxiality (γ -soft) represent the
basic structural archetypes of collectivity. In the interacting
boson model (IBM) [2], the above three cases are represented
by three distinct dynamical symmetries: (a) U(5), (b) SU(3),
and (c) O(6), which form vertices of the so-called Casten
triangle [3–5]. It is not surprising that numerical studies of the
transitions between the IBM dynamical symmetries were first
performed along the sides of the Casten triangle, avoiding the
“turmoil of the elements” inside the triangle, i.e., taking into
account the interplay between only two selected symmetries
and neglecting the contribution of the remaining symmetry.

A large number of analyses within the IBM have been
focused on the so-called transitional classes A and C, i.e.,
the U(5)-SU(3) and U(5)-O(6) sides of the Casten triangle,
respectively [2]. In the limit of infinite boson numbers,
both these paths exhibit a spherical-deformed shape-phase
transition, which according to the Ehrenfest classification
are of the first order in case A and of the second order in
case C [6,7]. On the other hand, the transitional class B, i.e.,
the SU(3)-O(6) side of the triangle, exhibits no phase transition
on the ground-state level [2].

At present, a competition of all three dynamical symmetries
(a)–(c) is considered when nuclei are placed in the Casten
triangle [8]. Empirical signatures of the spherical-deformed
phase transition, which is of the first order except for the U(5)-
O(6) line, are commonly searched using the IBM Hamiltonians
of transitional class D [9]. The investigations of the triangle
interior led to interesting and sometimes even surprising
findings. It was so when Alhassid and Whelan [10,11]
disclosed therein a rather unexpected region of semiregular
dynamics, the so-called arc of regularity [12,13]. This is in

contrast to the most disordered area of the triangle, which
appears to be centered close to the middle of the SU(3)-O(6)
side.

While the transitions between spherical and deformed
shapes have a critical character, the transition between γ -rigid
and γ -soft deformed shapes is known to be just a crossover
everywhere in the Casten triangle [2,6,7]. Nevertheless,
the question concerning the mechanism of this transition
is very interesting. In critical shape-phase transitions, the
restructuralization of the low-lying spectra between the forms
corresponding to the limiting dynamical symmetries appears
to be rather abrupt, supporting the concept of quasidynamical
symmetries associated with individual “phases” of the system
[14,15]. It is not so clear, however, how the restructuralization
proceeds in the crossover case. Because the main attention has
been on the IBM quantum phase transitions, this question has
not been studied much in the past.

In this work, we attempt to perform a detailed theoretical
analysis of the transition between the U(5)-SU(3) (γ -rigid)
and U(5)-O(6) (γ -soft) sides of the Casten triangle. This
transition has been recently partly addressed in Ref. [16],
but here we focus on its different aspects. In particular,
we identify the critical behavior in the spectrum of excited
states and demonstrate the range of applicability of the SU(3)
quasidynamical symmetry in an extensive domain inside the
Casten triangle. We remark that the SU(3)-O(6) transition has
been recently studied also in the context of the shell model [17].

In Sec. II, the simplified IBM Hamiltonian and the intrinsic
mean-field states suitable for the description of the γ -rigid to
γ -soft transition are introduced. Properties and evolution of
the energy spectrum throughout the transition are discussed
in Sec. III by the mean-field approximation (Sec. III A)
and by exact diagonalization (Secs. III B and III C). In
Sec. IV, the critical behavior caused by degeneracy of β

and γ vibrations is revealed in electromagnetic transitions.
In Sec. V, the rotational quasidynamical symmetry and the
related regularity of the spectrum are studied by decomposition
of the wave functions into the SU(3) basis (Sec.V A) and
by spectral lattices showing global characteristics of the
spectra (Sec.V B). Finally, Sec. VI presents the summary and
conclusions.
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II. BOSONIC MEAN-FIELD BASIS IN THE IBM

A. Model

We consider the IBM-1 version of the interacting boson
model, which approximates the coupled pairs of nucleons
in the nucleus by the s and d bosons of the total angular
momentum 0 and 2, respectively. We take the simplified form
of the Hamiltonian [11,18,19]

Ĥ (η, χ ) = η

N
n̂d − 1 − η

N2
Q̂(χ ) · Q̂(χ ), (1)

which incorporates all three basic dynamical symmetries (DS)
of the model. The Hamiltonian in Eq. (1) is composed of
the d-boson number operator n̂d = d† · d̃ and the quadrupole
operator Q̂m(χ ) = d

†
ms + s†d̃m + χ [d†d̃](2)

m . Scaling by the
total number of bosons N ensures that the bounds of the
energy spectrum do not change for asymptotic values of N .
Two control parameters η ∈ [0, 1] and χ ∈ [−√

7/2, 0] drive
the transitions of the system between the individual DS limits
and span the Casten triangle. We neglect the overall scaling
coefficient of the Hamiltonian, i.e., we express energy in units
of this coefficient.

The U(5), SU(3), and O(6) limits are reached setting (η, χ )
to (1, χ ), (0,−√

7/2), and (0, 0), respectively. The SU(3) can
also be obtained with (η, χ ) = (0,+√

7/2), but since the χ >

0 domain is just a mirror image of the χ < 0 one, see Ref. [20],
we do not discuss it explicitly in this paper. Eigenstates of
Eq. (1) are for general (η, χ ) labeled by the U(6)-label N and
the O(3)-label l corresponding to the angular momentum oper-
ator L̂m = √

10[d†d̃](1)
m . The usual convention d̃µ ≡ (−)µd−µ

and the scalar product notation related to the standard tensor
coupling via Â(l) · B̂(l) ≡ (−)l

√
2l + 1[Â(l)B̂(l)](0)

0 are utilized.
For the E2-transition calculations, we take the quadrupole

operator

T̂ E2(χ ) = qQ̂(χ ), (2)

consistently with Eq. (1). In all the following calculations, we
set the effective charge to q = 1.

B. Bosonic condensate

The geometrical interpretation and phase-transitional be-
havior can be deduced from a variational calculation performed
on the condensate state [6,21]

|gs; N〉 = 1√
N !

�
†N
0 |0〉, (3)

composed of N general intrinsic bosons [22]

�
†
0 = 1√

1 + β2

[
s† + β cos γ d

†
0 + β sin γ

d
†
2 + d

†
−2√

2

]
. (4)

Here, |0〉 is the boson vacuum, and the parameters β � 0 and
γ ∈ [0, 2π ) are connected with the Bohr deformation variables
of the geometric collective model via an N -dependent relation
[6,23]. Condensate (3) with β = βmin and γ = γmin corre-
sponding to the minimum Emin of the potential energy surface

V (β, γ,N) ≡ 〈gs; N |Ĥ |gs; N〉, (5)

approaches the exact ground state of Eq. (1) as N → ∞.

 0
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η = 0.5
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FIG. 1. Relative γ rigidity G from Eq. (6) of the semiclassical
N → ∞ potential in the deformed part of the Casten triangle.

The γ rigidity of the system may be suitably characterized
by a quantity

G =
[

1

β2

(
∂2V

∂γ 2

) / (
∂2V

∂β2

)]
min

(6)

evaluated at the minimum point βmin, γmin. Figure 1 shows the
dependences G(χ ) for a few values of η in the deformed part
of the Casten triangle. All the curves show a monotoneous
decrease to zero as χ → 0.

In the Casten triangle, the spherical (βmin = 0) and de-
formed (βmin > 0) shapes are separated by the critical line
ηcrit = (4 + 2χ2/7)/(5 + 2χ2/7) + O(1/N) [24], which in
the semiclassical limit N → ∞ corresponds for χ �= 0 to a
first-order quantum phase transition (QPT), while for χ = 0
the phase transition is of the second order [6].

In the deformed part of the triangle, βmin ∈ (0,
√

2]. For
χ < 0, the angle γmin = 0 (or equivalently 2π/3 or 4π/3; the
latter two, however, make all the expressions cumbersome) and
the γ rigidity G > 0. Finally, for χ = 0, the potential energy
surface of Eq. (5) becomes independent of the angle γ and
G = 0.

Thus the Casten triangle splits into the spherical part (η ∈
[ηcrit, 1]), the axially symmetric prolate-deformed γ -rigid part
(η ∈ [0, ηcrit], χ < 0), and the γ -soft part (η ∈ [0, ηcrit], χ =
0), in which the nuclei are unstable against the onset of
triaxiality. The oblate-deformed γ -rigid shapes are obtained
with χ > 0 and will not be discussed in the current paper. A
schematic phase diagram is depicted in Fig. 2.

In the γ -rigid prolate-deformed part of the Casten triangle,
the potential energy surfaces [Eq. (5)] have a three-fold sym-
metry with respect to rotations by the angle γ and display three
degenerate saddle points at γsad ∈ {π/3, π, 5π/3}, βsad > 0,

located between the three minima at γmin ∈ {0, 2π/3, 4π/3}
with βmin > 0. The saddle point energy Esad will be shown
to set an upper bound to the applicability of the SU(3)
quasidynamical symmetry. In Fig. 2, we show the elevation
of Esad above Emin across the Casten triangle by contours of
the ratio

Rsad = Esad

Emin
, (7)

measuring the fraction of the E < 0 spectrum that is above
Esad. As χ → 0 the saddle point energy falls down so that
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FIG. 2. Casten triangle with the regions of different ground-state
shapes separated by the line of the spherical-to-deformed phase
transition ηcrit. We indicate the contours of the ratio Rsad from
Eq. (7) throughout the deformed region together with the spinodal
line ηsp for N = 100.

R → 1. Precisely at χ = 0, the saddle point melts away
into the degenerate γ -independent minimum of the potential,
which obtains the Mexican hat form here. Note that in the
SU(3) limit, Rsad = 0.25 for N → ∞. At the spinodal line
ηsp(χ ) of the spherical-to-deformed phase transition, the three
saddle points merge to form a spherical minimum with βmin =
0. The spinodal line ηsp(χ ) is drawn in Fig. 2 for N = 100.

C. Mean-field excitations

The Hamiltonian (1) is frequently diagonalized numerically
in the U(5) basis (we perform it using an adaptation of
the PHINT code [25]). Alternatively, the low-energy states
can be inspected in a mean-field approximation using an
orthogonal set of the general nonspherical bosons [22] that
contains the ground-state boson from Eq. (4) and specific
mutually orthogonal excitations. For a general account of this
method, see Ref. [26]. A thorough study of general IBM-1
Hamiltonians by diagonalization within the intrinsic mean-
field states up to two-phonon excitations has been performed
in Ref. [27]. In our analysis, we use the mean-field techniques
to interpret the critical behavior and SU(3) quasidynamical
symmetry within the spectrum of the simple Hamiltonian (1)
lying below the saddle point energy Esad.

The excitations can be separated into the part related to
vibrations in the intrinsic frame (usually called “phonons”)

�
†
β = 1√

1 + β2

[
−βs† + cos γ d

†
0 + sin γ

d
†
2 + d

†
−2√

2

]
,

�†
γ = − sin γ d

†
0 + cos γ

d
†
2 + d

†
−2√

2
, (8)

and collective rotations

�†
x = d

†
1 + d

†
−1√

2
, �†

y = d
†
1 − d

†
−1√

2
, �†

z = d
†
2 − d

†
−2√

2
. (9)

In the U(5) limit, all excitations (8) and (9) are physical. Away
from U(5), the rotations (9) turn into Goldstone modes in the
semiclassical limit N → ∞. The same holds additionally for
�†

γ along the γ -soft χ = 0 leg of the Casten triangle.
In the current paper, we will try to capture the essential

features of the low-energy dynamics inside the Casten triangle
using the set of bosonic mean-field (BMF) states, which we
compose in a simple way only of the condensate in Eq. (3) and
the vibrational phonons, that is,

|1, 0; N〉 ∝ �
†
β�

†N−1
0 |0〉,

|0, 1; N〉 ∝ �†
γ �

†N−1
0 |0〉,

(10)
...

|nβ, nγ ; N〉 ∝ �
†nβ

β �
†nγ

γ �
†N−nβ−nγ

0 |0〉,
with the normalization N = 1/

√
nβ!nγ !(N − nβ − nγ )!. The

set of many-body states in Eq. (10) is orthogonal because of
the orthogonality of states in Eqs. (4) and (8); but of course it is
incomplete because of the omission of the rotations in Eq. (9).
For the sake of brevity, we will nevertheless call it a basis
hereafter. Further on, we will sometimes use the shorthand
notation |nβ, nγ 〉 ≡ |nβ, nγ ; N〉 taking N implicitly.

It is quite natural to anticipate that the low-energy ex-
citations in the γ -rigid region sufficiently far from χ = 0
will display a structure similar the SU(3) limit, differing
expectedly only by the deformation value β �= βSU(3) = √

2
found by variation of the condensate in Eq. (3). Similarly,
the eigenstates in the deformed γ -soft region near χ = 0
should reflect the structure of the O(6) basis with only β

corresponding to the minimum of Eq. (5). The expectation
is supported by the observed SU(3)- and O(6)-quasidynamical
symmetries along the SU(3)-U(5) and O(6)-U(5) legs of the
Casten triangle [14,15,28], respectively, for η < ηcrit. We ask
what is the detailed mechanism of transition between these
two regimes.

D. Dynamical symmetry limits and beyond

As a starting point, we describe briefly the structure of
eigenstates at the dynamical symmetry limits SU(3) and O(6)
and along the two legs of the Casten triangle leading from them
toward the U(5) limit. The description is based on studies in
Refs. [29,30], which the reader may consult for details.

The SU(3) basis can be constructed using the BMF states
of Eqs. (3) and (10) with β = √

2, γ = 0. The construction
is exact in the N → ∞ limit, in which the contribution of
the rotations in Eq. (9) vanishes [29]. With γ = 0, the BMF
states are endowed with a definite projection of the angular
momentum onto the symmetry axis, labeled by K (we use the
convention in which K � 0). Among the lowest excitations,
the ground-state and β bands have K = 0, and the γ band
has K = 2. For the higher excitations, K may take the values
0 � K � 2nγ , with K/2 being even (odd) for nγ even (odd).

The β and γ excitations are degenerate in the SU(3)
limit, so the diagonal energy of the individual excited BMF
bands depends merely on the total number of excitation
phonons n ≡ nβ + nγ . Hence, the only peculiarity of the
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otherwise simple construction is that all β and γ combinations
coupled to identical K quantum numbers for given n are
mixed in order to fit the BMF states into definite SU(3)
irreducible representations (irreps), which are labeled by two
quantum numbers (λ,µ) associated with the SU(3) Casimir
operator [27,29]. The SU(3) ground band belongs to the
irrep (λ,µ) = (2N, 0), the one-phonon β and γ bands (K =
0, 2, respectively) to (2N − 4, 2), two-phonon γ 2, βγ and
the mixed

√
2/3β2 + √

1/3γ 2 (K = 4, 2, 0, respectively) to
(2N − 8, 4), and the second mixed band

√
1/3β2 − √

2/3γ 2

(K = 0) to the (2N − 6, 0). The individual band members
are obtained applying an angular momentum projection being
expressed formally by an operator P̂l , with l = 0, 2, 3, 4, . . . .

Throughout the whole prolate-deformed region of the
Casten triangle (χ < 0, η < ηcrit), i.e., also away from SU(3),
the energy minimizing value of γ is zero. Consequently the
BMF states may be labeled by K in a similar way as in
the SU(3) limit. The only difference is the changing value
of β = βmin(η, χ ).

The O(6) basis is labeled by σ , which is the quantum
number associated with the O(6) Casimir operator, and consists
of states of the form

|σ ; N〉 = 1√
σ ![(N − σ )/2]!

Â†(N−σ )/2�
†σ
0 |0〉. (11)

They can be obtained from the condensate in Eq. (3) with β =
1 by successively replacing the ground-state bosons in pairs
by Â† = d† · d† − s†s†. The band members are now obtained
applying at first the seniority projection (involving integration
over γ ) and then the angular momentum projection (involving
integration over Euler angles). For example, the ground state
is given by

|gs, O(6)〉proj = P̂l=0

∫ π/3

0
dγ sin 3γ |gs; N〉β=1, (12)

where the integral over γ represents the projection onto
the seniority v = 0 and is followed by angular momentum
projection onto l = 0 (see Ref. [31]).

The ground-state condensate of Eq. (3) with β = βmin(η)
while γ remains free applies to the O(6) limit as well as
along the O(6)-U(5) leg. The seniority projection leads then
to analytical expressions for the expansion coefficients ζN

nd ,v

of the condensate state in the U(5) basis (i.e., in powers of the
d† operator) [30,32]. For example, the v = 0 states are up to
normalization given by

ζN
nd ,0 = βnd

√
N !

(N − nd )!

3

(nd + 3)(nd + 1)!
, (13)

where only even nd are present.
To conclude the section, we would like to stress the

significance of the saddle point energy Esad of the potential
in Eq. (5) for the dynamics in the prolate-deformed part of
the Casten triangle. Above Esad, the eigenstates of Eq. (1)
are no longer localized around the potential minima, and
the dynamics becomes in a way “γ -soft” and sometimes
chaotic; see, e.g., Ref. [13]. Therefore we cannot expect much
accuracy from Eq. (10) with γ = 0 here. The eigenstates above
Esad display in general quite complicated structures unless a

dynamical symmetry is present. We shall demonstrate this in
Sec. V B.

III. EVOLUTION OF ENERGY SPECTRA FROM γ -RIGID
TO γ -SOFT DYNAMICS

The dynamics in the interior of the Casten triangle is known
to be of intricately mixed, regular/chaotic nature [10,11,13].
One thus tends to be naturally skeptical about the sufficiency
of the simple basis construction algorithm (10). Nevertheless,
it turns out that the BMF states of Eq. (10) can describe some
essential features of the exact spectrum despite the fact that
they do not form a complete basis [the bosons from Eq. (9)
are omitted]. In particular, evolution of the energies of the
individual BMF states sheds light on the evolution of the low-
lying rotational bands coming from the exact diagonalization
of Hamiltonian in Eq. (1) throughout the deformed part of the
Casten triangle. The asymptotic behavior of the mixing matrix
elements among different BMF states, moreover, influences
the onset of chaotic dynamics within the triangle, as will be
argued in Sec. V B.

Apart from the results of the complete numerical diagonal-
ization, we present BMF calculations that are twofold: either
we show most simply the diagonal matrix elements of the
Hamiltonian (1) in the BMF states of Eq. (10) or we perform
a highly restricted diagonalization within equal-K BMF
subspaces of a small dimension d (typically d = 2), see also
Ref. [27]. In the rest of the paper, we will often use the terms
“diagonal BMF” and “mixed BMF” to distinguish the latter
two approximations from the exact numerical diagonalization.

It should be stressed that both of the above BMF approaches
lose their sense at χ = 0. The description along this line would
require a proper treatment of the spurious γ excitations by
either (a) restoring the O(5) symmetry or (b) considering spon-
taneously broken O(5) through resolution of the Hamiltonian
into intrinsic and collective parts, see Ref. [22]. This we do
not perform here, since we focus on the χ �= 0 case.

The results shown in the current paper are mostly calculated
along the line η = 0.5, χ ∈ [−√

7/2, 0). Note, nevertheless,
that we performed the calculations also at η = 0.0, 0.2, 0.7
and found that all essential properties being discussed for the
deformed region of the Casten triangle are well represented by
the η = 0.5 line.

A. Mean-field spectrum and degeneracies

Let us first discuss the evolution of diagonal BMF energies
in the prolate-deformed region without the possible mixing
being considered. The general trend is such that all multiple
γ excitations fall toward the ground state as χ approaches
zero [remember the potential of Eq. (5) being γ flat and the γ

excitations hence spurious]. On the contrary, the energies of the
β excitations evolve “in parallel” with the ground-state energy,
so their excitation energies remain approximately constant.
This leads to a considerable number of level crossings among
the β and γ bands of various excitation degree n = nβ +
nγ . We recall that above the saddle point energy Esad, the
BMF energies (especially the diagonal ones) should not be
considered to have a straightforward physical relevance; see
discussion in Secs. II and V B.
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FIG. 3. (Color online) Diagonal BMF energies (in arbitrary units)
of βn-(solid red lines) and γ n-(dashed blue lines) phonon excitations
for η = 0.5 and N = 100 bosons with n = 0, . . . , 30. Selected series
of degeneracies among the mean-field states are indicated by arrows.
Additionally, the saddle point energy Esad is indicated by the dot-
dashed blue line roughly delimiting the region of applicability (E <∼
Esad) of the BMF method. The solid black lines delimit the wedge-
shaped mixing regions of BMF states listed in rows (i) and (ii) of
Table I.

Figure 3 shows the evolution of diagonal BMF energies for
N = 100 along the line η = 0.5. Since the complete spectrum
would be highly overabundant, we plot only the energies of
n-tuple pure β and pure γ excitations |nβ = n, nγ = 0〉 and
|nβ = 0, nγ = n〉 with n = 0, 1, 2, . . . ,≈ 30. The energies
of combined excitations |nβ, n − nβ〉, nβ = 1, . . . , n − 1 (not
shown in Fig. 3) spread in between the latter two extreme
cases except (for high enough N ) of the near vicinities of the
βn × γ n degeneracy points, denoted as χdeg(βn, γ n), where
the ordering of the levels may differ [an example can be seen
in Fig. 5(a)].

Degeneracies of diagonal BMF energies appear systemati-
cally throughout the spectrum and create an “interference-like”
pattern in Fig. 3. The βn × γ n (n = 1, 2, 3, . . .) degeneracies
form an almost vertical sequence at χ ≈ −1. The sequences
of βn × γ n+i (i = 1, 2, 3, . . .) degeneracies form neighboring
“interference fringes” in the figure.

The diagonal BMF treatment as shown in Fig. 3 is of
course incomplete. In the mixed BMF approach, the character
of level crossings is modified by the level repulsion among
interacting states, and the levels may become avoided. The
Hamiltonian (1) in general mixes only BMF states of equal
angular momentum projection (K , if γmin = 0). Moreover,
the crossings may be avoided only if the BMF states under
consideration differ by at most two excitations due to one- and
two-body interactions present in the Hamiltonian (1).

TABLE I. Asymptotic behavior of nonzero matrix elements
mixing the BMF states of Eq. (10) coupled to equal K . Rows
(i)–(iii) contain states differing by two γ excitations, while the rows
(iv)–(vi) contain states with equal nγ . The bottom row—behavior
of the diagonal matrix elements—reflects the energy-per-boson
scaling of Hamiltonian (1).

(i) 〈nβ, nγ + 2|Ĥ |nβ + 2, nγ 〉 O(N−2)
(ii) 〈nβ, nγ + 2|Ĥ |nβ + 1, nγ 〉 O(N−3/2)
(iii) 〈nβ, nγ + 2|Ĥ |nβ, nγ 〉 O(N−1)
(iv) 〈nβ + 2, nγ |Ĥ |nβ, nγ 〉 O(N−1)
(v) 〈nβ + 1, nγ |Ĥ |nβ, nγ 〉 O(N−1/2)
(vi) 〈nβ, nγ |Ĥ |nβ, nγ 〉 O(1)

Let us point out that direct level crossings appear throughout
the whole spectrum and represent a vast majority of the BMF
degeneracies. On the contrary, the avoided BMF crossings
inhabit only certain limited parts of the spectrum, which we
shall specify below.

Interesting clues can be obtained from the asymptotic
behavior of the mixing matrix elements of the equal-K BMF
states 〈nβ, nγ |Ĥ |n′

β, n′
γ 〉. We summarize all possible nonzero

elements in Table I. For the BMF states mixed according
to the table, the degeneracies of the diagonal BMF energies
with consequent level repulsion occur only among the cases
labeled (i) and (ii), if we stay inside the Casten triangle. In
the N → ∞ limit, the degeneracies are recovered, as the
off-diagonal matrix elements vanish.

As χ approaches 0, the spectrum of the BMF states with
multiple γ excitations in Fig. 3 gets compressed, as expected
from the fact that γ excitations become spurious, hence
carrying zero energy. The remnant splitting among these states
seen in the χ ≈ 0 region of Fig. 3 is due to different number
N − nγ of ground-state bosons �

†
0. Because the energy of the

saddle point of the potential (5) converges to the ground-state
energy for χ → 0, as the potential becomes γ flat, the BMF
description of the spectrum is invalid at χ ≈ 0.

Energies of the states differing only by nβ , as in the cases
(iv) and (v), evolve visually in “parallel,” as evident from
Fig. 3. Hence their mixing, despite being for finite N strong,
does not introduce any observable level repulsion. The strong
interactions just reflect the fact that the Hamiltonian (1) is in
general not a mean-field operator.

Let us now specify the regions where the avoided crossings
(i) and (ii) appear. For convenience, we actually spot the
points of direct crossings of diagonal BMF energies, which
are followed by the corresponding avoided crossing points
and provide reasonable distinction of the regions (i) and (ii).

In case (i), the crossings correspond to BMF states that
differ by two excitations—β2 in one state and γ 2 in the
other—while they have additional nβ − 2, nγ − 2 excitations
in common. Taking states of a definite excitation degree
n = nβ + nγ , the individual avoided crossings take place
within specific bounded χ domains. The crossings are ordered
so that increasing the number of the additional γ excitations
against the number of β excitations increases the χ value of the
degeneracy point. As shown in Fig. 3, region (i) is limited from
below in the energy by a line connecting degeneracy points
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FIG. 4. Casten triangle with selected βnβ × γ nγ BMF degeneracy
lines. The β × γ and β × γ 2 lines are valid in the N → ∞ limit
(solid lines), while β2 × γ 3, β3 × γ 4, and β10 × γ 11 lines correspond
to N = 100 (dashed lines). The η = 0.5 line, where the most
calculations in the present paper have been performed, is also
indicated.

for which the additional excitations are either purely βn−2

or purely γ n−2. The minimum energy point of this boundary
line is the degeneracy point χdeg(β2, γ 2). The left wing of
the line for χ < χdeg(β2, γ 2) connects the degeneracy points
χdeg(β2βn−2, γ 2βn−2), whereas the right wing connects for
χ > χdeg(β2, γ 2) the points χdeg(β2γ n−2, γ 2γ n−2).

In case (ii), the crossings correspond to a single-β state
on one side and a γ 2 state on the other, while both states
have additional nβ − 2, nγ − 2 excitations in common (there is
moreover one extra ground-state boson in the β state compared
to the γ 2 state). In complete analogy with case (i), region
(ii) is limited from below by a line with the minimum point
χdeg(β, γ 2), the left wing for χ < χdeg(β, γ 2) connecting the
degeneracy points χdeg(ββn−2, γ 2βn−2) and the right wing for
χ > χdeg(β, γ 2) connecting the points χdeg(βγ n−2, γ 2γ n−2).

The boundary lines demarcate two wedge-shaped regions
inside the spectrum, as shown in Fig. 3 for N = 100. At low
energies, the regions are distinct, while at higher energies
E > 0, they overlap. We remark that the shape of the regions
relative to the upper and lower bounds of the spectrum
Emax(χ ), Emin(χ ) is practically independent of N .

The structure of the BMF spectrum just described for η =
0.5 smoothly changes across the whole prolate-deformed part
of the Casten triangle. What differs, are the precise positions
of the degeneracies for particular values of η. They shift along
the lines indicated in Fig. 4, where we plot χdeg(β, γ ) and a few
other selected degeneracies. These curves, together with those
from Fig. 2, provide a set of guidelines on the “sailing map”
leading our voyage from the γ -rigid to the γ -soft “coast.”

B. Exact spectrum

Let us now compare the BMF approximation (10) with the
exact spectra. Figure 5 shows the evolution of energies of low-
lying states along η = 0.5 for N = 20 bosons for both diagonal
and mixed BMF in Fig. 5(a) and for the exact l = 0, 2 states
in Fig. 5(b). Among the BMF energies, we show the diagonal

matrix elements calculated within the n � 3 BMF subspace
supplemented by levels coming from a simple diagonalization
of Eq. (1) in the n � 2 K = 0 BMF subspace consisting of
{gs, β, β2, γ 2}. Comparing the spectra in panels Figs. 5(a) and
5(b), we come to several observations:

(1) The BMF spectra are obviously lifted up in energy
compared to the exact spectra. The correspondence
can be improved by angular momentum projection. In
Fig. 5(b), we show the effect of the approximate projec-
tion after variation

E′
min = 〈gs; N |Ĥ − L̂ · L̂

2Jc
|gs; N〉 (14)

using the cranking moment of inertia

Jc = 3Nβ2

(1 + β2)(E1 − Emin)
, (15)

with E1 = 〈gs; N − 1|�xĤ�
†
x |gs; N − 1〉. Emin and E′

min
stand for the unprojected minimum of Eq. (5) and the
projected l = 0 energy, respectively. This approximate
projection provides a reasonable agreement with the
exact rotational-band levels (excitation energies given by
l(l + 1)/2Jc), as apparent from the detail shown in the
inset of Fig. 5(b). Note that this approximate projection
(in contrast to the exact projection) may locate the state
slightly below the actual eigenstate.

(2) To reproduce the level repulsion between exact β2 and
γ 2 bands in the χ ≈ χdeg(β2, γ 2) = −1.0 region, it is
sufficient to consider the mixing of just the nearest
equal-K BMF states [this holds in general for equal-K
states in the mixing region (i) described in Sec. III A]. On
the other hand, the mixing strength of the order O(N−3/2)
between β and γ 2 excitations requires for N = 20 a
diagonalization in a more extended equal-K subspace,
and the method loses its appeal [similarly in the whole
mixing region (ii)]. Moreover, the spectrum in the latter
case gets complicated because of the falling saddle point
energy Esad—the approximate limit of BMF applicability
(see Secs. II and V B)—as χ → 0.

(3) Another notable effect seen in Fig. 5(b) is the increasing
deviation of the exact ground state from the approximate
l = 0 projected state as χ converges to zero. Indeed,
at χ = 0, the seniority v = 0 projection is needed to
obtain a correct estimate of the ground-state energy.
Interestingly, the deviation can be very well reproduced
by considering the mixing of the BMF ground state with
γ 2 excitation; see Fig. 5(a). [The difference between
mixed and diagonal BMF g.s. energies in Fig. 5(a) is
about the same as the difference between the exact and
the approximately projected l = 0 state.] This can be
understood from Eq. (13), which for η = 0.5, N = 20
shows the n̂d = 2 component to be dominant in the
seniority v = 0 projected ground state. The BMF ground
state and γ 2(K = 0) excitation are then sufficient to cover
this n̂d = 2,K = 0 component, since the β2(K = 0)
excitation lies at significantly higher energy, which makes
its contribution less important. So the mixing of these two
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FIG. 5. (Color online) Evolution of energy spectra (in arbitrary units) calculated for η = 0.5 and N = 20 bosons. (a) BMF spectra both
with and without mixing of K = 0 states [Eq. (10)]. (b) Corresponding exact spectrum of a few lowest l = 0 and l = 2 states; inset shows
the effect of the angular momentum projection (14)—the exact spectrum is supplemented by the 0+

1 and 2+
1 levels projected from the BMF

condensate. Esad is indicated by decreasing dot-dashed blue lines in both panels.

states simulates the effect of the seniority projection in
this case.

(4) A more subtle effect, uncaptured by the BMF basis of
Eq. (10), is the breaking of the K quantum number
away from the SU(3) limit. As noted above, the scalar
Hamiltonian (1) cannot mix the BMF states differing
in the K quantum number. However, this restriction does
not hold for the states being angular momentum projected
from the BMF basis. Similarly, K is not applicable for
states from the exact diagonalization. Nevertheless, it can
be inferred that the mixing of states developing from the
BMF states with the same K is much stronger than the
mixing of those coming from BMF states of different
K . The repulsion for the equal-K case is obvious in
Fig. 5(b), whereas it is indistinguishable for the bands
differing in K . Under close inspection, the crossings of
individual l states in different-K bands, e.g., in the β

and γ band, are found to be avoided. This effect reflects
the actual absence of the dynamical symmetry inside the
triangle, although the resilience of K in contrast to the
O(6) “missing label” n� is rather strong, as was pointed
out already in Ref. [33].

C. Rotational bands

The rotational character of the bands can be tested by
suitable excitation energy ratios, such as

R(4i/2i) ≡ E(4i) − E(0i)

E(2i) − E(0i)
, (16)

R(4i/3i) ≡ E(4i) − E(2i)

E(3i) − E(2i)
, (17)

R(6i/4i) ≡ E(6i) − E(2i)

E(4i) − E(2i)
, (18)

plotted in Fig. 6 for i = 1, 2, 3. The indices i = 1, 2, 3
correspond on the γ -rigid side for χ < χdeg(β, γ ) to the
ground, β, and γ bands, respectively. Some care has to be taken
because of the band crossings and consequent reordering of
the levels: for χ > χdeg(β, γ ), we have i = 1, 3, 2 for the same
bands. Note also that R(4i/2i) obviously cannot be applied to
the K = 2 γ band, so we employ R(4i/31) here.

As we may observe from Fig. 6, all the bands are
rotational at χ = −√

7/2, showing the l(l + 1) excitation
energy dependence with high accuracy. The ground band
remains such almost up to the completely γ -soft regime
and starts to deviate from the SU(3) values R(4i/2i) = 4/3
and R(6i/4i) = 18/7 noticeably only for χ > −0.4, where it
interacts significantly with γ 2, as we have noted above. In
the excited bands, deviations from the SU(3) values set on
noticeably for χ > −0.6, with the exception of the staggering
around χdeg(β, γ ) = −1.04. The staggering is caused by the
fact that individual even-l states from β and γ bands cross for
slightly different χ . Moreover the odd-l states from the γ band
of course do not undergo any crossings, since the β band with
K = 0 contains only even spins. As a consequence, distinction
of the β and γ bands is meaningless in the small vicinity of
χdeg(β, γ ).

Validity and breakdown of the rotational bands can also
be observed as the “parallel” evolution of the l = 0 and
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FIG. 6. (Color online) Exact excitation energy ratios
R(4i/2i), R(6i/4i) plotted for i = 1, 2, 3, and R(4i/31) for
i = 2, 3 along the η = 0.5 line with N = 20. The “rotational” SU(3)
values are indicated by arrows. Staggering of the ratios due to the
crossing of β and γ bands is observable at χ ≈ −1.04. We plot
R(4/2) for the ground and β bands; R(6/4) for the ground, β, and
γ bands; and R(4/3) for the γ band. For χ > −0.6, the spectrum
evidently undergoes a transformation from the rotational to the
seniority directed pattern.

l = 2 states on the γ -rigid side of the transition, which can
be followed in Fig. 5(b). This corresponds to only a very
gentle variation of the moments of inertia with χ on this
side. The parallel evolution is evidently disrupted as the levels
approach the saddle point energy Esad, close to which the
l = 0 and l = 2 levels split to obey gradually the seniority
directed pattern at χ = 0. In Fig. 7, we plot the moments of
inertia J calculated for the ground-state and β (K = 0) bands
as J = 3/(E(2+) − E(0+)), while for the γ (K = 2) band
as J = 3/(E(3+) − E(2+)) for η = 0.5 and N = 20 in the
main panel and for N = 40 in the inset. We may notice that
with increasing boson number N , the moments of inertia J
approach each other for χ < −0.6.

A strong evidence for rotational bands is provided by
electromagnetic transitions, in particular the reduced E2
transition rates should be well described by the Alaga rule

B(E2; l, K → l′,K ′) = 〈K ′|T̂ E2(χ )|K〉2(lK2m|l′K ′)2,

(19)

where (lK2m|l′K ′) is the relevant Clebsch-Gordan coefficient
with m ≡ K ′ − K, and |K〉 denotes a BMF state of given K .

For relative intraband B(E2) transition rates, the Alaga rule
of Eq. (19) predicts values given simply by ratios of squared
Clebsch-Gordan coefficients. In Figs. 8(a), 8(b), and 8(c), we
show the relative intraband rates within the ground-state, β,

and γ bands, respectively, obtained by exact IBM calculations
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FIG. 7. (Color online) Moments of inertia (in arbitrary units) for
the ground-state band and excited β and γ bands for η = 0.5 and N =
20 (exact calculation). The disturbance of the smooth dependence at
χ ≈ −1.04 is due to β × γ degeneracy. The inset shows the same for
N = 40, which demonstrates mutual convergence of all three curves
for high N .

for N = 20 bosons at η = 0.5 together with the Alaga values
indicated by thin lines. The transition rates are divided by
B(E2; 2+ → 0+) for the ground-state band and β band and
by B(E2; 4+ → 2+) for the γ band. The agreement with the
Alaga rule is good for χ < −0.4, especially for l � 6. Strong
deviations from the Alaga rule for χ > −0.4 are due to mixing
with higher excited bands.

The spikes seen in Figs. 8(b) and 8(c) at χ ≈ −1.04 result
from ambiguous assignments of the 2+, 4+, 6+, 8+ states to
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FIG. 8. (Color online) Relative intraband B(E2) transition rates
(exact calculation) for the (a) ground-state, (b) β, and (c) γ bands
for η = 0.5 and N = 20. The transitions indicated in the legend
are divided by B(E2; 2+ → 0+) for the ground-state and β bands
and by B(E2; 4+ → 2+) for the γ band. For each transition, the
values predicted by the Alaga rule are indicated by thin lines of
corresponding type and color. The spikes at χ ≈ −1.04 originate
from the β × γ crossing (see text).

014319-8



TRANSITION FROM γ -RIGID TO γ -SOFT DYNAMICS . . . PHYSICAL REVIEW C 80, 014319 (2009)

the β and γ bands in the region where the individual members
of these bands cross. Close to each crossing, the distinction
of the β and γ excitations with the same spin is washed out
because of strong effects of mixing, which makes the concept
of β and γ bands invalid. In Fig. 8, the notation based on these
bands is used just for brevity, while in a detailed study of the
transitional region one should look at individual B(E2) values
organized according to the order of the levels involved. Rapid
changes of the relevant E2 strengths represent a significant
indicator of the β × γ crossing (see the discussion of Fig. 6).

IV. QUASICRITICALITY OF THE γ -RIGID TO
γ -SOFT TRANSITION

In the IBM framework, the phase transitions in nuclear
shapes involving the γ degree of freedom have been identified
between the prolate and oblate shapes [Hamiltonian (1)
extended to negative and positive values of χ ] [20] and between
the axially symmetric and triaxial γ -rigid shapes (IBM with
three-body interactions) [34]. In contrast, the transition from
the γ -rigid (either prolate or oblate) to the γ -soft dynamics
is a noncritical crossover—the ground-state properties evolve
analytically as the γ dependence of the deformation energy
surface disappears [6].

The crossings of the diagonal BMF energies described in
Sec. III, especially the β × γ degeneracy pointed out already in
Refs. [12,13], are nevertheless connected with the nonanalytic
behavior of low-lying excited states and display significant
finite-N precursors of the criticality, as we shall show in this
section. The effect is actually very similar to a quantum phase
transition, because although not the ground band itself, already
the lowest excited bands experience the crossings of energy
levels, which is the mechanism responsible for the first-order
phase transition [35]. The nonanalyticities can be studied by
calculating specific electromagnetic transitions, which may
also represent an interesting observable from the experimental
point of view.

In Fig. 9, we show the χ dependence of B(E2) values
between the lowest excited two-phonon l = 0 and one-phonon
l = 2 states for η = 0.5 and N = 20 bosons. In the γ -
rigid region, the two-phonon l = 0 states belong in a good
approximation to two orthogonal combinations of K = 0
bands [27]:

|β2 + γ 2〉 = A|2, 0〉 + B|0, 2〉,
(20)

|β2 − γ 2〉 = B|2, 0〉 − A|0, 2〉.
The mixing amplitudes A,B are obtained by diagonalization
of Ĥ within this two-dimensional K = 0, n = 2 BMF sub-
space. On the contrary, the one-phonon l = 2 states belong to
the single β and γ bands. The observed agreement between
the mixed BMF and the exact B(E2) values is very good in the
γ -rigid region for χ < −0.6, but it breaks down as Esad falls
toward the energy of the two-phonon BMF states, as described
in Sec III A—see Figs. 5(a) and 5(b).

In Fig. 10 we may observe that the β × γ crossing is in
a similar way responsible also for the singular behavior of
transitions from one-phonon bands to the ground-state band.
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FIG. 9. (Color online) B(E2) values for transitions between
two-phonon K = 0 and one-phonon bands (states indicated in each
panel) obtained by both the intrinsic BMF formalism and exact
numerical diagonalization for η = 0.5 and N = 20 bosons. The BMF
calculation takes into account the mixing of two-phonon K = 0
bands. The mixing of bands with different phonon number n is not
included, which leads to significant discrepancies for χ > −0.6.

Precursors of nonanalytic jumps at χ = −1.04 may be clearly
noticed in all panels of Fig. 9. The jumps themselves originate
in the direct crossings among one-phonon BMF (“nearly
direct” among the exact) β and γ bands, while the abruptly
changing, but still smooth behavior near the jumps [see the
“peaks” in Figs. 9(b) and 9(c) and “trenches” in Figs. 9(a) and
9(d)] is caused by the variation of the deformation parameter
β and the mixing amplitudes A,B from Eq. (20) among the
avoided-crossing two-phonon bands. The variation of A(χ )
and B(χ ) is shown in the inset of Fig. 11 for η = 0.5 and
N = 20 bosons.

If we define the width of the mixing region �χ as the
distance between the extremes of ∂2A/∂χ2 and ∂2B/∂χ2 (see

 0

 1

 2

-1.2 -0.9 -0.6 -0.3  0

22->01

B
(E

2)

χ

(a)

 0

 2

 4

 6

-1.2 -0.6  0

-1.2 -0.9 -0.6 -0.3  0

23->01
(b)

Exact
BMF

FIG. 10. (Color online) B(E2) values of transitions from the
l = 2 states belonging to the one-phonon β and γ bands to the
l = 0 ground state for N = 20 bosons calculated by both BMF
approximation and exact diagonalization. The range of axes is set
to allow direct comparison between panels (a) and (b) in the region
χdeg(β, γ ) ≈ −1.04. The inset inside panel (a) displays the complete
curves using a different scaling of the y axis.
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FIG. 11. (Color online) Behavior of the mixing amplitudes A, B

of the two-phonon β2 and γ 2 K = 0 bands for η = 0.5 as a function
of χ for N = 20 bosons is shown in the inset, while the width of
the mixing region �χ , decreasing roughly as O(1/N ), is in the main
panel. The line represents a linear fit yielding �χ ∝ N−1.004.

the inset in Fig. 11), we may observe that the mixing region
calculated within the BMF scales as �χ ∝ N−α , with α

.= 1,

as found by fitting the points in the main panel of Fig. 11.
The amplitudes A(χ ) and B(χ ) consequently converge to step
functions for N → ∞. The BMF approximation gives for the
transition strengths

B(E2; β2 → γ ) = 0, B(E2; γ 2 → β) = 0,
(21)

B(E2; β2 → β) ∝ N, B(E2; γ 2 → γ ) ∝ N,

so the peaks and trenches consequently become asymptotically
high and deep, respectively, as well as infinitesimally narrow
because of the step-like shape of A(χ ) and B(χ ) in the limit
N → ∞. It would be interesting to verify the scaling of �χ

also within the exact calculations using an IBM code able to
work with high enough N . Since the amplitudes A(χ ) and
B(χ ) are defined only for BMF, in the exact calculations, one
could alternatively consider, for example, the scaling of width
of the above-discussed B(E2) peaks at the half-maximum.

We remark that the exact position of the degeneracy point
χdeg is usually very sensitive to the energies of the levels
involved, because of the acute angle of crossing. Actually,
the position of the nonanalytic jump in the B(E2) strengths
described above in exact and BMF results agrees to the extent
shown in Fig. 9 only after the angular momentum projection
of Eq. (14). It means that the proper energies and the crossing
point of projected 2+

β and 2+
γ states must be considered instead

of the unprojected BMF. The degeneracy of unprojected β and
γ BMF states for N = 20 occurs at χ = −1.00 compared to
the exact χdeg(β, γ ) = −1.04.

V. QUASIDYNAMICAL SYMMETRY, ORDER, AND
CHAOS INSIDE CASTEN TRIANGLE

A. Wave functions

An interesting behavior of wave functions inside the Casten
triangle is revealed when we decompose the β-dependent BMF
states into the SU(3)-BMF basis (βmin = √

2, γmin = 0) and
compare them with the SU(3) decomposition of the exact
eigenstates of individual spins l.

To obtain the transformation coefficients between the
general and the SU(3) BMF bases, we introduce a shorthand
notation for the SU(3) ground-state and β bosons, i.e.,

g† ≡ s† + √
2d

†
0√

3
, β† ≡ −√

2s† + d
†
0√

3
, (22)

whence for �
†
0, �

†
β given by Eqs. (4) and (8) follows

�
†
0 = C1g

† + C2β
†, �

†
β = −C2g

† + C1β
†,

(23)

C1 ≡ 1 + √
2β√

3
√

1 + β2
, C2 ≡ β − √

2√
3
√

1 + β2
.

Consequently, we just substitute Eq. (23) into Eqs. (3)
and (10). The results of the transformation for η = 0.5
and χ = −1.3,−1.04,−0.7 are displayed in Fig. 12. The
BMF wave functions are being compared with the exact
numerical wave functions for l = 0, 2, 4, 6, 8 (arranged in
bars from left to right beside the BMF bar). We show
the components in the four lowest SU(3) irreps, namely,
(λ,µ) = (2N, 0), (2N − 4, 2), (2N − 8, 4), and (2N − 6, 0),
in absolute values for greater legibility. The two-phonon
K = 0 bands are approximated by two orthogonal BMF
combinations from Eq. (20).

All excited bands corresponding to χ = −1.3 (left-hand
column) show a remarkable coherence among the different
low-l states—the decomposition amplitudes are practically
identical. Moreover, the BMF calculation predicts the am-
plitudes with deviations less than 2%. This is true until we
reach the β × γ degeneracy line χdeg(β, γ ) ≈ −1.04, which
is the locus of the strongest mixing of higher l states among
different-K bands, see Sec. III B. Departing slightly from the
degeneracy with χ > χdeg(β, γ ), the coherence is restored to a
certain extent, as seen in the right-hand column corresponding
to χ = −0.7. It does not, however, reach the precision of the
χ < χdeg(β, γ ) side mainly because of the β × γ 2 interaction,
and it disintegrates finally as the rotational bands approach
the saddle point energy Esad with χ → 0. The ground band,
in contrast, shows undisturbed coherence much farther toward
χ = 0. It is not affected by any crossings at χ = χdeg(β, γ ),
but only by the interaction with γ 2 near χ = 0, as described
in Sec. III B. In general we observe that the band coherence
is connected with the validity of the “rotational values” of the
ratios in Eq. (16) shown in Fig. 6.

The coherent behavior of wave function components of
different (here spin) states may indicate the presence of
the so-called quasidynamical symmetry (QDS). The concept
was introduced and discussed in Refs. [14,15,28,36–38] and
describes the peculiar situations when a dynamical system
does not possess any dynamical symmetry (the eigenstates
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FIG. 12. (Color online) Wave function components in the SU(3) basis for N = 30, η = 0.5, and χ = −1.3, −1.04, −0.7 in the left, middle,
and right columns, respectively. The amplitudes of the BMF states and individual exact states with different l are arranged as indicated in the
left-most bottom panel. The SU(3) quasidynamical symmetry is disclosed by approximate equality of the amplitudes among the rotational band
members. Evidently, it is present for χ = −1.3, gets disrupted by the degeneracy of β and γ excitations around χdeg(β, γ ) ≈ −1.04, and is
restored (although not perfectly) for χ = −0.7 (especially in γ, βγ, and Aβ2 + Bγ 2 bands).
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are mixtures of irreps of the symmetry group); however,
the observable quantities (such as the energy spectrum and
transition strengths) within a particular subset of eigenstates
behave as if the symmetry were present. Very often, a QDS
based on a group G is reflected by a coherent mixing of basis
states associated with different irreps of G. This was found in
several specific realizations of the quasi-SU(3) symmetry in
various nuclear models [28,37,38] and turns out to hold in the
IBM case as well [15].

The presence of an SU(3)-based QDS in our case is verified
by direct spectroscopic observables. In Figs. 6–8, we have
studied the rotational character of the lowest bands. For
energies lower than Esad, we observe the l(l + 1) dependence
of the excitation energies on spin within the bands, equality of
the moments of inertia among the bands (for high enough N ),
and good fulfillment of the Alaga rule for the intraband B(E2)
transition rates. The latter ones are even in better agreement
with the SU(3) predictions that bring the finite N corrections
to the Alaga rule [2]. The interband B(E2) transitions (Figs. 9
and 10) are also well described by the Alaga rule. Moreover,
in the N → ∞ limit, the interband B(E2) transitions vanish
when compared to the intraband transition rates. All of these
features are characteristic of the SU(3) dynamical symmetry
and suggest the existence of the SU(3) QDS.

Figure 12 shows that the states exhibiting the SU(3) QDS
are spread across numerous SU(3) irreps with the mixing
being practically independent of the spin. As shown in
Refs. [15,28,36], this effect can be interpreted in terms of
embedded (also called adiabatic) representations of SU(3). The
observed agreement of the mixing amplitudes with the BMF
predictions shows that the mechanism forming the embedded
representations is well understood in terms of the angular
momentum projection from a common intrinsic BMF state.

So far, QDS in IBM has been detected along the O(6)-U(5)
and SU(3)-U(5) legs of the Casten triangle, in the spectral
evolutions of the low-lying states. The ground-state bands have
been identified as being formed by embedded representations
[36] of the corresponding dynamical groups. Particularly, the
character of SU(3) QDS is discussed extensively in Ref. [15].

Now, we observe that the SU(3) QDS is not limited to the
χ = −√

7/2 line, but it reaches rather far into the interior
of the Casten triangle. It may be attributed to the low-lying
rotational bands localized below the saddle-point energy Esad

of the potential energy surface [Eq. (5)]. Degeneracies of the
BMF states, predominantly the β × γ degeneracy, represent
local disturbances to the coherent behavior of the angular
momentum multiplets in the rotational bands.

B. Spectral lattices and quantum chaos

In the last part of this paper, we apply an approach inspired
by a visual method of Peres [39]. The method was primarily
developed to disclose regularity/chaoticity of quantum systems
on the basis of the ordered/disordered character of particular
lattices, deduced from and reflecting the structure of individual
eigenstates. Recent studies that focused on order/chaos in
collective nuclear dynamics using the lattice method can be
found in Refs. [40–42].

The lattices are formed by the expectation values 〈ψi |Ô|ψi〉
of an arbitrary operator Ô plotted against the energies Ei =
〈ψi |Ĥ |ψi〉 of the Hamiltonian eigenstates |ψi〉. We extend
the Peres method slightly and investigate also the variances
of the operators var[Ô] = 〈ψi |Ô2|ψi〉 − 〈ψi |Ô|ψi〉2, which
bring additional information on the dynamical symmetry
content of |ψi〉. The method allows us to spot individual
eigenstates possessing dynamical symmetry almost in “one
glimpse” while looking at the whole spectrum. A more detailed
theoretical explanation of the method can be found in Ref. [41],
as well as in the original paper [39].

First, let us look at the structure formed by the low-energy
states already considered in previous sections. As the operator
Ô, we take the linear Casimir operator C1[U(5)] = n̂d . In
Fig. 13, we plot the mean values and variances of n̂d in the
eigenstates corresponding to χ = −1.3,−1.04,−0.7,−0.4
and l = 0, 2, 4, 6, 8 along the η = 0.5 line (in accord with
all previous sections) and N = 30 bosons. The exact diago-
nalization results are supplemented by the BMF values corre-
sponding to the ground-state band and one- and two-phonon
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FIG. 13. (Color online) Low-

energy part of the 〈n̂d〉 and var(n̂d )
spectral lattices for η = 0.5 and
N = 30 bosons (quantities are
dimensionless). The numerical
eigenstates of Eq. (1) with angular
momenta l = 0, 2, 4, 6, 8 (crosses
and squares) are supplemented by the
BMF approximation (dots).
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FIG. 14. (Color online) 〈n̂d〉 and var(n̂d ) lattices of the whole spectrum of numerical eigenstates for η = 0.5 and N = 30 bosons (quantities
are dimensionless). Panels (a)–(d) correspond to χ = −1.3, (e)–(h) to χ = −1.04, and (i)–(l) to χ = −0.4. The panels in the first and third
row display the l = 0 spectrum separately, while those in the second and fourth row show a synoptical view upon the l = 0, 2, 4 lattices. The
solid vertical lines correspond to Esad for N = 30. For comparison, black dots corresponding to a few lowest BMF states (10) are inserted, see
Fig. 13.

excitations. The two-phonon bands are mixed according to
Eq. (20).

The points corresponding to numerical states with l =
0, 2, 4, 6, 8 bunch for χ � − 0.7 into sequences which repre-
sent the rotational bands. We may distinguish between bands of
different K on the basis of the actual spin values being present.
We observe, that the BMF states give very good prediction
(especially for the variances) for χ = −1.3,−1.04,−0.7 and
that they start to deviate considerably for χ = −0.4 because
of the already discussed breakdown of the rotational band
structure.

The whole spectrum is displayed in Fig. 14 by means of
spectral lattices and variances corresponding again to n̂d . The
values of N and η are the same as in Fig. 13. Panels in the
first and third rows from the top display the separate l = 0
spectra, while those in the second and fourth rows each show
a combined plot of spins l = 0, 2, 4.

The variances in Figs. 14(a) and 14(b) corresponding to
χ = −1.3 display notable “plateaux” at low E and reveal a
series of states with distinct symmetry content, which may
have been noticed already in Fig. 13. The structure can
be explained well by BMF. The bottom plateau is formed
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by the ground band followed by pure n-tuple γ bands as
E increases, so the number of β excitations nβ = 0. The
following plateaux differ by additional β excitations; hence,
e.g., in the first nβ = 1 plateau, we have β, βγ, βγ 2, . . . ; in
the second β2, β2γ, β2γ 2, . . . , etc. Notice that the individual
low-spin states reside near each other. This creates “spots”
corresponding to the low-energy rotational bands in this part
of the spectral lattices, in contrast to the “chaos” for E > Esad,
where the different spin lattices start to overlap without any
obvious correlation.

The plateaux at χ = −1.3 exist below Esad, as we may
roughly say. This supports the expectation that Esad represents
a reasonable terminating point of applicability of the BMF
approximation and of validity of the closely related quasi-
SU(3) symmetry. The mixing of β2 × γ 2 and other equal-K
bands evidently disturbs the plateau pattern at χdeg(β, γ ) =
−1.04 [mixing region (i)]. Notice that all spectral lattices
change dramatically at E ≈ Esad for any value of χ . A
similarly pronounced change in the overall shape of lattices
happens also at the local maximum of the potential of Eq. (5)
at β = 0 with E ≈ 0 (exactly zero for N → ∞).

As found in Refs. [11,13], regions of appreciable regularity
of the system—here observed as regular “sublattices” within
the entire lattice—are not restricted to low energies. It is
interesting to observe that the regular sublattices of states with
different angular momenta l display similar patterns and often
almost overlap in some energy intervals, creating the spots like
in the low-energy domain. This suggests a link of the observed
regularity with some (so far unknown) intrinsic states, from
which the individual l states could be projected. We point
out that the regularity at high energies is most pronounced
around χ = −1.04 (for η = 0.5), i.e., around the Alhassid-
Whelan arc of regularity [10,11]—see Figs. 14(d), 14(h),
and 14(l).

An important clue to understanding Poisson (regular) and
Wigner (chaotic) types of level statistics inside the Casten
triangle [10,11,13] is provided by the asymptotic behavior of
matrix elements in Table I. The matrix elements reveal stronger
repulsion among β × γ 2 states [case (ii)] than between β2 ×
γ 2 states [case (i)]. Recall that the avoided crossings take
place approximately within two wedge-shaped regions in the
spectrum, as shown in Fig. 3.

We suppose that the strong repulsion in case (ii) is reflected
in the prevalence of quantum chaos in a broad region of the
Casten triangle located between the O(6)-U(5) and SU(3)-
O(6) legs and the semiregular arc [11]. On the other hand, the
relatively closely approaching levels in case (i) lead to spectral
statistics similar to that of regular systems [10] in the vicinity
of χdeg(β, γ ), i.e., close to the Alhassid-Whelan semiregular
arc [13].

This observation sheds light on one aspect of the in-
creased regularity of the Alhassid-Whelan arc, namely, on
its overall increase evident from the behavior of energy-
averaged measures [10,11]. The BMF states of Eq. (10) may
represent a subset of the Hilbert space, which shifts the overall
nearest neighbor spacing distribution among energy levels
more toward the Poisson distribution for any energy E in
the wedge-shaped region around χdeg(β, γ ) because of the
relatively very narrowly-avoided crossings among the states

(i). We stress, however, that the β and γ excitations of the
type in Eq. (10) approximate the spectrum of exact eigenstates
adequately at low energies E < Esad. Above Esad, the spectrum
becomes more complicated with the so-far omitted modes of
Eq. (9) presumably also coming into play. So the second aspect
of the Alhassid-Whelan arc—namely, the intricate energy
dependence of the measures of regularity at high energies
E > 0 (connected to some more peculiar modes of motion [13]
and observed also in Fig. 14)—seems to be unexplainable by
merely the behavior of the BMF states.

VI. SUMMARY AND CONCLUSIONS

This paper presents a detailed study of nuclear collective
dynamics at the transition from the γ -rigid to the γ -soft
side of the Casten triangle. The effects connected to the
transition are studied by both exact diagonalization and a
mean-field approximation using intrinsic states [Eq. (10)]. The
results map the locus of validity of the SU(3) quasidynamical
symmetry inside the Casten triangle and reveal a novel type
of critical behavior within the low-lying spectrum. Also
one aspect contributing to the increase of regularity in the
Alhassid-Whelan regular arc is pointed out.

We found that the SU(3) quasidynamical symmetry (and
the consequent presence of rotational bands in the low-lying
spectrum) is not limited to only the line χ = −√

7/2 and the
ground band [15], but rather it affects the low-lying states
throughout the prolate-deformed part of the Casten triangle.
We observed that SU(3) QDS has an upper bound, which is set
by the saddle point energy Esad of the potential energy surface
[Eq. (5)]. Basically the QDS applies to states residing inside the
potential wells around the tree equivalent minima of Eq. (5).
Above Esad, the structure of the eigenstates becomes radically
different, which is well demonstrated by the spectral lattices.
As the γ -soft regime at χ = 0 is approached, the fraction of
quasi-SU(3) symmetric states among the eigenstates vanishes,
since Esad → Emin.

We can reconstruct the quasi (or “embedded”) representa-
tions of SU(3) using the intrinsic mean-field states of Eq. (10)
with γ = 0. Local disturbances to SU(3) QDS below E = Esad

in certain regions of the Casten triangle can be interpreted
as a consequence of degeneracies and consequent mixing
among the intrinsic states [Eq. (10)], most significantly by the
degeneracy of the single β and γ bands and their multiphonon
analogs.

We observe critical behavior of excited states around
the χdeg(β, γ ) line, although the ground-state energy and
deformation evolve analytically between the γ -rigid and γ -soft
dynamical regimes. The criticality affects already the lowest
excited bands and is caused by the degeneracy of β and
γ vibrations. Its finite-N precursors are well expressed in
the interband electromagnetic transitions. The abrupt changes
in the B(E2) values as well as the staggering in β and γ

bands may represent a suitable experimental signature of
this quasicritical region, in addition to the (approximate)
degeneracy of the 0+

2 and 2+
2 levels already pointed out in

Ref. [12].
We also show how the β × γ degeneracy proliferates into

the BMF spectrum at high excitation energies. It causes level
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crossings among equal-K BMF states which are narrowly-
avoided in comparison with the crossings due β × γ 2 de-
generacy resident in the most chaotic regions of the Casten
triangle. We suggest this is an important source of the nearly
Poisson spectral statistics observed in the exact spectra around
the Alhassid-Whelan regular arc [10,11].
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A.6 Regularity-induced separation of intrinsic and

collective dynamics
[recently submitted to Phys. Rev. Lett.] [J7*]

This Letter is closely related to the more detailed article [J8*] about the ob-
servation of very high lying rotational bands in the IBM (this article follows on
the subsequent pages of this thesis). The Letter brings a rather general conjecture
about the influence of the regularity/chaoticity of intrinsic dynamics in many-body
systems on the adiabatic separation of the intrinsic and collective motions, while
the details interesting specifically for the nuclear structure audience are reserved
for Ref. [J8*].

We support the conjecture by the observations made in the IBM dynamics
corresponding to the axially-deformed ground state shape. We observe that the
regular non-rotating l = 0 states are accompanied by states with l > 0, that
have (approximately) the same intrinsic structure as the l = 0 states, which is
demonstrated by their (approximately) equal decompositions in the SU(3) basis.

The regularity of the quantum l = 0 states is determined by the Peres lat-
tice method [Pere84a] (see the detailed elaboration of this in Ref. [J8*]), while
regularity of the classical trajectories is determined by the method of alignment
indices [Skok01], and used to calculate the regular fraction freg of the classical
l = 0 phase space. We observe a clear correlation between the regularity of the
non-rotating l = 0 states and the occurrence frequency of the rotational bands in
the whole accessible range of energies.

The author of this thesis discovered the high-lying rotational bands in the IBM
on the basis of the coherent SU(3) decomposition of some states identified with
the help of Peres lattices and coded an algorithm for automatic identification of
the rotational bands, which is described in detail in Ref. [J8*].
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One of the most significant effects in the dynamics of
quantum many-body systems is the adiabatic separation
of the intrinsic and collective motions, e.g., electronic and
nuclear motions in molecules [1, 2] or single-particle and
collective motions in atomic nuclei [3]. This phenomenon
results from the fact that the collective dynamics is typi-
cally much slower than the intrinsic one and therefore can
be approximated by a gradual, nearly adiabatic variation
of the intrinsic Hamiltonian. In such a situation, the mix-
ing between intrinsic states is strongly suppressed, imply-
ing that rather similar sequences of collective excitations
are built on any intrinsic state. Abundant examples of
rotational and vibrational bands are known from nuclei
and molecules [2, 3]. Similar physics seems to be relevant
also at higher energies, where collective vibrations corre-
sponding to nuclear giant resonances [3] are often found
to be well separated from the nucleonic motions [4].

Of course, the adiabatic separation is only an approx-
imation. It fails at high collective energies for which the
intrinsic and collective time scales converge, but some-
times it is not good enough even at low energies. The
degree of validity of the adiabatic approximation is not
only a question of the time scales, but depends also on
the susceptibility of intrinsic states to external perturba-
tions. If the susceptibility is large, even a slow collec-
tive motion affects the intrinsic dynamics, which results
in mixing up of various intrinsic states in an amount
strongly depending on the collective quantum number.
The collective bands loose their characteristic shape and
uniformity, and eventually disappear.

In this Letter, we offer a very simple tentative criterion
to assess the prevailing validity or invalidity of the adia-
batic separation. It is based on the distinction between
regular and chaotic dynamics as it follows from the study
of classical and quantum chaos [5]. One consequence of
chaos on the quantum level concerns the generic forms of
high-lying (semiclassical) energy eigenstates. While an
overwhelming majority of wave functions from chaotic
parts of the spectrum are spread over the whole kine-
matically accessible domain of the configuration space
[6] (with exceptions known as quantum scars [5]), the
ones corresponding to regular parts usually cover much
smaller regions along stable classical orbits [7]. This has
an immediate consequence that a typical ‘chaotic’ wave

function can be mixed very easily with another wave
function of the same kind as there should be a consider-
able overlap (perturbation matrix element) between both
states. On the other hand, a ‘regular’ wave function is
likely to be more rigid since the overlap is much smaller.
Guided by these intuitive considerations, one may an-

ticipate that states from regular parts of the intrinsic
spectrum are better candidates to support adiabatically
separated sequences of collective excitations than states
from chaotic domains, which are prone to loose their
identity under collective perturbations. Clearly, the ef-
ficiency of any perturbation depends on many circum-
stances, of which the most substantial is perhaps the en-
ergy separation of unperturbed states. Nevertheless, the
above conclusion should hold in a statistical sense for reg-
ular and chaotic domains of comparable level densities.
To support this surmise, we employ the interacting bo-

son model (IBM) of atomic nuclei [8]. This model de-
scribes nuclear collective dynamics in terms of a finite
number N (a half of the valence particle or hole number)
of mutually interacting s and d-bosons with angular mo-
mentum l = 0 and 2, respectively. The bosons represent
pairs of valence particles (holes) and simultaneously stem
from the quantization of the most relevant collective de-
grees of freedom in nuclei. The geometric interpretation
of these motions in terms of (i) two shape variables {β, γ}
describing the intrinsic quadrupole shape of the nucleus
(the degree of deformation and axial asymmetry, respec-
tively [3]) and (ii) three Euler angles {θi}3i=1 yielding its
orientation in space can be obtained via the method of
coherent states [9]. These two sets of variables define for
us the (i) intrinsic (vibrational) and (ii) collective (rota-
tional) degrees of freedom, on which the above-outlined
idea of adiabatic separation will be probed. Note that a
more general approach to intrinsic and collective dynam-
ics in the IBM (including also collective modes in β and
γ) is introduced in Ref. [10].
The IBM has a symmetry-dictated structure follow-

ing from the fact that its finite Hilbert space (for a
fixed N) coincides with the space of irreducible repre-

sentation (irrep) of the algebra U(6) generated by b†ibj
combinations of boson creation and annihilation oper-
ators [11]. This dynamical algebra can be further de-
composed into some subalgebras ending at the rotation
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algebra O(3), generated by angular momentum opera-

tors L
(1)
m =

√
10[d†d̃]

(1)
m , where d̃m = (−)md−m and

[AB]
(l)
m =

∑
m′,m′′(l′m′l′′m′′|lm)A

(l′)
m′ B

(l′′)
m′′ (coupling of

rank-l′ and l′′ tensors into a product with rank l and
projection m). The decomposition leads to three alter-
native dynamical symmetries of the model, for which the
spectrum is given analytically since the Hamiltonian is
written in terms of commuting Casimir invariants of the
algebras in one particular chain U(6)⊃ · · · ⊃O(3) [8].
These symmetries are called U(5), SU(3), and O(6) after
the first algebra in the decomposition.
The IBM Hamiltonian typically contains only one- and

two-body terms. Here we employ a simplified form

H = η
1

N
nd − (1− η)

√
5

N2
[Q(2)(χ)Q(2)(χ)](0) , (1)

with η ∈ [0, 1] and χ ∈ [−
√
7/2, 0] being control parame-

ters, nd =
√
5[d†d̃](0) the d-boson number operator, and

Q
(2)
m (χ) = d†ms + s†d̃m + χ[d†d̃]

(2)
m the quadrupole oper-

ator. The classical phase-space dynamics and the equi-
librium shape associated with the ground state can be
obtained for N → ∞ from the coherent-state technique.
Based on the ground-state shape, the model exhibits
three distinct quantum phases: spherical (for η & 4/5),
deformed axially symmetric (η < 4/5, χ 6= 0), and de-
formed axially unstable (η < 4/5, χ = 0). Associated
with these are the three dynamical symmetries U(5),
SU(3), and O(6), achieved for (η, χ) = (1, arbitrary),

(0,−
√
7/2), and (0, 0), respectively. At these places and

for χ = 0 the Hamiltonian is integrable, hence fully regu-
lar. For the other parameter values, the system exhibits
a complicated mixture of regular and chaotic features
[12]. It is therefore a good environment to study effects
of regularity on the adiabatic separation.
The dynamical symmetry SU(3), based on the em-

bedding U(6)⊃SU(3)⊃O(3), exhibits perfect separation
of rotational and vibrational modes [13]. Intrinsic ex-
citations (connected with the β, γ degrees of freedom)
are classified by quantum numbers λ, µ, parameterizing
the eigenvalues of the SU(3) invariant, and by index K,
that represents a missing label of the SU(3)⊃O(3) re-
duction and is interpreted as the angular momentum
projection to the shape symmetry axis. Members of
rotational bands (connected with the {θi}3i=1 degrees
of freedom) are classified by the O(3) quantum num-
ber l (total angular momentum), which takes the values
l = K,K+1, . . . ,K+max(λ, µ). In the following, we con-
sider the sequences built on l = 0 states, hence K = 0.
Quite surprisingly, characteristic features of the SU(3)

dynamical symmetry survive in a vast parameter do-
main within the axially deformed ground-state phase.
This is a concrete implementation of a more general
phenomenon named quasidynamical (effective) symme-
try [14]. It turns out, in particular, that the SU(3) dy-
namical symmetry breaking happens in such a way that
the decomposition of the actual Hamiltonian eigenstates
in the (λ, µ)-basis yields very similar patterns of ampli-
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FIG. 1: Squared amplitudes from the decomposition of some
eigenstates of Hamiltonian (1) with (η, χ) = (0.5,−0.9), N =
30 in the SU(3) basis (only the most important components
shown). Gathered in each panel are the lj states maximally
correlated with the respective 0i state.

tudes for a number of states from the original rotational
band. Hence, although a strong mixing among the SU(3)
irreps takes place, the concept of the intrinsic state—here
a common structure present in several l-members of a
given sequence of states—is still applicable.
As shown in Ref. [15], the rotational band structure

remains intact at low energies, where the intrinsic shape
is not yet completely smeared by vibrational fluctuations,
i.e., roughly below the energy Esad corresponding to the
saddle point of the potential energy surface V (β, γ). The
intrinsic dynamics in this energy domain is almost fully
regular. In this Letter we show that also for excitations
aboveEsad the band structure is preserved at those places
where the prevailing character of the intrinsic dynamics
is regular. This is so despite the spread of high-energy
wave functions over the space of shape variables makes
the intrinsic shape indefinite.
The coherence of the (λ, µ)-mixing amplitudes for

states with different angular momenta far away from the
SU(3) limit is illustrated in panels (a)-(c) of Fig. 1. Here
we show squared amplitudes from the expansion of indi-
vidual members of several rotational bands in the SU(3)
basis. Note that the bandheads of these sequences belong
to different parts of the spectrum (consisting altogether
of 91 l = 0 states for N = 30), panel (a) corresponding to
an excited band below the saddle-point energy Esad, pan-
els (b) and (c) to highly excited bands well above Esad.
Panel (d) shows an example of a non-rotational sequence
of states with a negligible overlap of intrinsic structures.
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The states in each panel of Fig. 1 were grouped to-
gether by a numerical procedure, which connects states
with increasing values of l on the basis of maximal corre-
lation in their (λ, µ)-decomposition. We use the Pearson
coefficient π(~x, ~y) measuring the amount of linear corre-
lation between the respective components of two vectors.
For asymptotic dimensions the values of π are bounded
between +1 and −1 demarcating a perfect linear cor-
relation and anticorrelation, respectively, while medium
values indicate a weak (vanishing for π = 0) correlation.
In our case, the vectors ~x and ~y are identified with proba-
bility distributions of a given pair of states in the (λ, µ)-
basis. For the K = 0 sequences built on a presump-
tive l = 0 bandhead state 0i the correlation coefficient
π(0i, lj) is evaluated for all l = 2, 4, 6, . . . states lj (the
subscript distinguishes individual states with a given an-
gular momentum l). The sets of states in Fig. 1 are those
with a maximal correlation. In the following, we will use
the product C(2, 4)i = maxj [π(0i, 2j)]maxk[π(0i, 4k)],
which takes into account only the correlation of l = 0, 2
and l = 0, 4 pairs of states.

It turns out that a high correlation π(0i, lj) is not a
sufficient condition for states with increasing l to form a
rotational band. Relative excitation energies ∆E(l)i =
E(lj)−E(0i) of individual band members lj with respect
to the given bandhead state 0i should follow the law of a
rotator, i.e., ∆E(l)i = l(l + 1)/2Ji, where Ji stands for
the moment of inertia. This means, in particular, that
the ratio R(4/2)i = ∆E(4)i/∆E(2)i should be close to
10/3. Another signature of rotational bands concerns the
rates of electromagnetic transitions. In the IBM, these
can be evaluated using the electric quadrupole (E2) tran-
sition operator TE2(χ) = q Q(2)(χ), where Q(2)(χ) is the
operator from Eq. (1) and q an effective charge. For
large values ofN , the intra- and inter-band E2 transitions
for low-lying rotational sequences in the SU(3) limit and
nearby follow the Alaga rule: the transition rate from a
state with quantum numbers l and K to a state with l′

and K ′ factorizes into a ‘dynamical’ part depending on
both intrinsic structures and a ‘kinematical’ part given by
(lK2m|l′K ′)2 withm = K ′−K [3]. The first part cancels
out if considering only ratios of transition rates between
members of fixed bands. Note that absolute rates of the
interband transitions are usually considerably suppressed
with respect to the intraband ones.

We have performed an extensive search for the rota-
tional bands within the IBM spectrum in the plain of
control parameters η and χ. A detailed description of
the procedure, which takes into account all the criteria
mentioned above, is given in a parallel publication [16].
Two examples of our results are depicted in Figs. 2 and
3, corresponding to two places in the parameter plane.
We show (a) the behavior of C(2, 4)i for individual 0i-
based sequences throughout the whole spectrum and (b)
the corresponding energy ratios R(4/2)i. Electromag-
netic transition rates are not shown, but they were eval-
uated as well, disclosing a very high coincidence degree
for state sequences satisfying simultaneously (i) C(2, 4)i

C
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)

R
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/2
)

FIG. 2: C(2, 4)i and R(4/2)i for rotational-like sequences at
energy E(0i) (arb. units) for (η, χ) = (0.5,−0.9), N = 30,
and the corresponding classical regular fraction freg. Vertical
lines mark energies of stationary points.

C
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,4
)

R
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/2
)

FIG. 3: The same as in Fig. 2 but for (η, χ) = (0.5,−0.5).

close to 1, (ii) R(4/2)i close to 10/3, and (iii) E2 ratios
following the Alaga rule. Vertical lines demarcate the
energies corresponding to stationary points of the poten-
tial V (β, γ), specifically, the minimum Emin, saddle point
Esad, local maximum Elmax, asymptotic value Elim, and
global maximum Emax [15].

From these results it is obvious that rotational bands
occur abundantly at low excitation energies, below Esad.
This is so in a broad territory within the axially deformed
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phase, in the domain of the SU(3) quasidynamical sym-
metry [14, 15]. In addition, well distinguished sequences
of states with increasing l satisfying criteria (i)–(iii) exist
also at much higher energies, well above Esad and some-
times up to the maximal energy of the spectrum. The
occurrence of these bands is limited only to some param-
eter and energy domains, but even so it is rather sur-
prising because there is no definite shape for such highly
excited states. In particular, our calculations indicate
that each of the high-energy bands has a common intrin-
sic structure, see Fig. 1(b,c), but this structure deviates
substantially from that of the low-energy bands (e.g., the
moments of inertia in the high-energy case are larger by
a factor of ≈ 3, and other observables differ as well [16]).
We find that the occurrence rate of the high-energy

rotational-like bands is strongly correlated with the de-
gree of regularity. In panels (c) of Figs. 2 and 3 we show
the regularity measure freg(E) of the intrinsic classical
dynamics. This quantity, defined as a fraction of the
phase-space volume containing regular trajectories over
the total volume available at energy E, was evaluated by
the method of so-called alignment indices [17] on a sam-
ple of trajectories generated with randomly chosen initial
conditions. The calculation was done in the nonrotat-
ing regime (considering only the shape variables β, γ and
their momenta, with the Euler angles frozen) and there-
fore corresponds to the intrinsic dynamics. Note that in
the classical limit, N → ∞, we obtain slightly different
values of stationary-point energies (vertical lines) than
for N = 30. Also, the freg curve cannot be calculated
(because of stability problems) above the asymptotic en-
ergy of the potential, thus it ends below the maximal
energy. It needs to be stressed that qualitatively the

same results would be obtained from the other classical
or quantal measures of chaos, as follows from their de-
tailed comparisons in Ref. [12].

Confrontation of the three panels in each of Figs. 2 and
3 (taking into account the finite-N energy shift) discloses
that the regions with an increased degree freg of intrinsic
regularity coincide with the regions showing a higher sta-
tistical occurrence of l = 0 bandheads of rotational-like
sequences. This is in agreement with our initial surmise
on the applicability of the adiabatic separation. Simi-
lar pictures can be obtained also in other places of the
parameter plane (η, χ).

To summarize, we report on rotational-like bands of ex-
citations occurring in the interacting boson model of nu-
clei far away from the SU(3) dynamical symmetry, where
the band structure is anchored analytically. A consider-
able fraction of the non-SU(3) bands resides at low ener-
gies, below the saddle point of the potential, where the
nucleus still has a well defined axially deformed shape
and conforms to a quasi-SU(3) description [14, 15]. How-
ever, a large amount of rotational bands was identified
at much higher energies, where the intrinsic structure is
completely different [16]. In all cases, a positive correla-
tion between the band occurrence rate and the degree of
intrinsic regularity is observed, in agreement with the in-
tuition of higher susceptibility of chaotic wave functions
to external perturbations. These observations hint at a
new tentative criterion for the statistical validity of the
adiabatic approximation for collective dynamics.

This work was supported by the Czech Science Foun-
dation (202/09/0084) and by the Czech Ministry of Ed-
ucation (MSM 0021620859).
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A.7 Occurrence of high-lying rotational bands

in the interacting boson model
[recently submitted to Phys. Rev. C] [J8*]

This article brings a more detailed discussion of the properties of the high-lying
rotational bands in IBM shown in the Letter [J7*] and also describes the procedure
for the identification of the rotational bands.

To complement the brief Letter [J7*], this article additionally:

(i) Discusses the behavior of the SU(3) correlation coefficient, which sets the
basis for the identification procedure.

(ii) Shows the Peres lattices demonstrating the quantum regularity/chaoticity of
the eigenstates.

(iii) Describes the electric quadrupole B(E2) transition rates within and in be-
tween the high-lying rotational bands; in particular it demonstrates the va-
lidity of the Alaga rule and reveals the structure of allowed, suppressed and
forbidden inter-band transitions among the high-lying bands.

(iv) Apart from the K = 0 bands, it considers also the properties of bands with
K > 0 by stydying the Peres lattices and B(E2) transition rates.
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Occurrence of high-lying rotational bands in the interacting boson model
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We observe an adiabatic separation of collective rotations built upon a subset of intrinsic vibra-
tional states within the interacting boson model (IBM) in the parameter domains corresponding
to axially deformed ground state. The effect is not limited only to the low-lying states and closely
follows the variation of quantum and classical measures of regularity. It leads to the existence of
rotational bands even close to the highest accessible energies in specific regions within the IBM sym-
metry triangle. We conjecture a more general effect of regular intrinsic dynamics on the adiabatic
separation of intrinsic and collective motion.

PACS numbers: 21.60.Ev, 21.10.Re, 21.60.Fw, 24.60.Lz, 05.45.Mt

I. INTRODUCTION

Rotational bands represent a widely observed char-
acteristic of various mesoscopic systems ranging from
molecules and atomic clusters to atomic nuclei. Their
appearance signifies a decoupling of intrinsic degrees of
freedom from the collective rotation of the entire body,
which gives rise to characteristic l(l+1) excitation energy
sequences for states with different angular momentum l
being built upon intrinsic bandhead states.

Apart from the rotational bands, the mesoscopic sys-
tems display numerous other regular patterns arising
from different types of collective motion. In collective
dynamics of nuclei, these include prominently vibrational
and seniority directed energy spectra and transition prob-
abilities [1–3]. Such highly regular properties used to be
originally attributed only to exact or very slightly broken
dynamical symmetries (DS) of the systems [4, 5].

Only later it was noticed, that the symmetry-like prop-
erties of observables may persist even when very strong
symmetry breaking interactions occur in the Hamilto-
nian. This gave rise to a novel concept named quasi
dynamical symmetry (QDS) [6–9] or effective symme-
try [10]. Rotational bands resulting from the separation
of intrinsic vibrational and collective rotational motions
may be caused also by some specific forms of QDS; the
one based on the SU(3) dynamical symmetry being a
simple example.

In the context of nuclear dynamics, QDS of various
kinds have been studied mainly in connection with the
experimentally relevant low -energy states using various
models (shell model, geometric collective model, inter-
acting boson model) [11]. In the present paper, we take
instead a more general perspective onto the particular
case of the quasi SU(3) symmetry, with its separation of
collective rotations and intrinsic vibrations: We ask how
the adiabatic separation depends on the regular/chaotic
nature of the intrinsic vibrational dynamics while looking
at the entire range of accessible energies.

Taking the interacting boson model of the nucleus
(IBM) [4], we study the rate of occurrence of the ro-

tational bands in connection with the changing degree
of regularity/chaos of the non-rotating l = 0 modes
throughout the accessible energy domain in the axially-
deformed part of the IBM symmetry triangle. The ob-
servation is made especially interesting by the very non-
trivial dependence of the measures of regularity on the
energy and control parameters of the model [12–14].

Recently, the low-energy rotational bands resident in
IBM were explained analytically using specific SU(3)-like
intrinsic β and γ excitations built upon the intrinsic bo-
son condensates in Ref. [15]. A conjecture about the rota-
tional character of some peculiar high-energy states was
made therein. In this paper, we prove that these states
indeed form rotational bands of definite angular momen-
tum projection on the symmetry axis K and compare
the occurrence rate of the K = 0 rotational bands with
the classical and quantum measures of regularity of the
non-rotating l = 0 modes throughout the whole energy
spectrum.

The paper is organized as follows: Sec. II briefly de-
scribes the interacting boson model Hamiltonian, Sec. III
presents the methods used to distinguish and visual-
ize the regular/chaotic modes in the quantum as well
as in the classical cases, Sec. IV specifies the selection
algorithm for identification of rotational bands, Sec. V
presents the results of the numerical calculations, which
map the occurrence of rotational bands and put them in
correlation with the previously observed regular regions
in the parameter and energy domains, and finally Sec. VI
brings the summary and conclusions.

II. INTERACTING BOSON MODEL

We consider the IBM-1 version of the interacting bo-
son model [4], which approximates the coupled pairs of
nucleons of the same type by the s- and d-bosons of to-
tal angular momentum 0 and 2, respectively, not distin-
guishing between proton and neutron bosons. We take
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the simplified form of the Hamiltonian [13, 16, 17]:

Ĥ(η, χ) =
η

N
n̂d − 1 − η

N2
Q̂(χ) · Q̂(χ), (1)

which incorporates all three basic dynamical symmetries
of the model. The Hamiltonian in Eq. (1) is composed

of the d-boson number operator n̂d = d† · d̃ and the

quadrupole operator Q̂m(χ) = d†ms + s†d̃m + χ[d†d̃]
(2)
m .

The usual convention d̃µ ≡ (−)µd−µ and the scalar prod-
uct notation related to the standard tensor coupling via

Â(l) · B̂(l) ≡ (−)l
√

2l+ 1[Â(l)B̂(l)]
(0)
0 are utilized. Scaling

by the total number of bosons N ensures that the bounds
of energy spectrum do not change for large values of N as
approaching the classical limit with N → ∞. We neglect
the overall scaling coefficient of the Hamiltonian, i.e. we
express the energy in units of this coefficient.

Two control parameters η ∈ [0, 1] and χ ∈ [−
√

7/2, 0]
drive the transitions of the system between the individ-
ual dynamical symmetry limits and span the symmetry
(Casten) triangle of IBM [see the inset in panel (a) of
Fig. 1]. The U(5), SU(3) and O(6) limits are reached set-

ting (η, χ) to (1, χ), (0,−
√

7/2) and (0, 0), respectively.
Eigenstates of (1) are for general (η, χ) labeled by the
U(6)-label N and the O(3)-label l corresponding to the

angular momentum operator L̂m =
√

10[d†d̃]
(1)
m .

For the E2-transition calculations we take the
quadrupole operator

T̂E2(χ) = qQ̂(χ) , (2)

consistently with Eq. (1). In following calculations, we
set the effective charge to q = 1.

The rotational bands flaunt naturally, if we express
the eigenstates in the SU(3) basis [6, 7, 15]. Therefore
we briefly describe the basis here: The SU(3) representa-
tions are labeled by two non-negative quantum numbers
(λ, µ), so that for a fixed number of bosons N , they form
subspaces (λ, µ) = (2N, 0) ⊕ (2N − 4, 2) ⊕ (2N − 8, 4) ⊕
· · · ⊕ (2N − 6, 0)⊕ (2N − 10, 2)⊕ (2N− 14, 4)⊕ . . . . The
transition from SU(3) to the O(3) subgroup is not fully
reducible, i.e. there may appear more than one state of
given O(3) quantum number l within a single (λ, µ) SU(3)
irrep. Hence an additional quantum number (a “missing
label”) K is introduced to distinguish the states. K can
be linked to the projection of the angular momentum
on the symmetry axis of the nucleus and may take the
values K = min{λ, µ},min{λ, µ} − 2, ..., 2, 0. The an-
gular momentum values contained in a band with given
K are l = K,K + 1,K + 2, ...,K + max{λ, µ} with the
exception of the K = 0 band, where only even values
l = 0, 2, 4, ...,max{λ, µ} are present, see Refs. [4, 5]. In

the SU(3) limit, obtained setting (η, χ) = (0,−
√

7/2),
the Hamiltonian (1) reduces to a weighted sum of the
quadratic Casimir operators of SU(3) and its subgroup

O(3), since Q̂(−
√

7
2 ) · Q̂(−

√
7

2 ) = 1
2C

SU3
2 − 3

8C
O3
2 =

1
2 (λ2 + µ2 + λµ+ 3λ+ 3µ) − 3

8 l(l+ 1).
It is known [18, 19] that in the limit N → ∞, equiva-

lent to ~ → ∞, the IBM can be related to the geometrical

model of nuclear collectivity [20]. The link is obtained
through the N -boson condensate states

|Θ, β, γ;N〉 = R̂(Θ)
1√
N !

Γ†N
0 |0〉 , (3)

where

Γ†
0 =

1√
1 + β2

[
s† + β cos γd†0 + β sin γ

d
†
2 + d

†
−2√

2

]
(4)

represents an intrinsic boson with parameters β ≥ 0 and
γ ∈ [0, 2π), and R̂(Θ) stands for a rotation in space by
the Euler angles Θ ≡ {θ1, θ2, θ3}. The parameters β
and γ are connected with the Bohr quadrupole defor-
mation variables of the geometric collective model via an
N -dependent relation [18]. Expanding the IBM state vec-
tors in terms of the condensates (3) one can obtain a co-
ordinate representation of an arbitrary operators acting
on the IBM Hilbert space. For instance, the Hamiltonian
turns into a differential operator

Ĥ = Ĥ(β,
∂

∂β
, γ,

∂

∂γ
,Θ,

∂

∂Θ
) , (5)

see Ref. [18], which describes the intrinsic dynamics of
deformation variables β, γ, as well as the rotations of the
body-fixed frame with respect to the laboratory frame.

A general procedure to specify the intrinsic and collec-
tive dynamics contained within any IBM-1 Hamiltonian
was described in detail in Ref. [21]. The procedure leads

to a separation Ĥ = Ĥint + Ĥcoll, where the collective
part Ĥcoll may in special cases incorporate—apart from
the O(3) rotations involving the Euler angles Θ—also
generalized rotations involving the γ and β degrees of
freedom [21]. However, if we consider only the axially
deformed regime [χ 6= 0, η < 0.8 in the Hamilotnian (1)]
far enough from the γ-soft case (χ = 0 , η < 0.8), the
intrinsic and collective modes should essentially retain
the intuitive meaning: the intrinsic modes corresponding
to vibrations in β, γ, while the collective modes being
connected with the Θ-rotations.

In particular, for the regular part of the l = 0 spec-
trum, we observe that numerous l > 0 states share a com-
mon structure within the decomposition into the SU(3)
basis (λ, µ) with the non-rotating l = 0 states. This indi-
cates that the rotational (Θ-dependent) part of the wave
function separates from the vibrational one (depending
on β, γ).

III. SIGNATURES OF INTRINSIC

REGULARITY

The rich regular/chaotic properties of the interacting
boson model have been studied using numerous meth-
ods and from various perspectives in both the quantum
and the classical cases. The key question about the de-
gree of regularity/chaos of the dynamics has been ad-
dressed in Refs. [12, 13, 22] by inspecting statistical prop-
erties of energy spectra and transition-strengths as well
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as by classical Lyapounov exponents. The content of
dynamical symmetries within the mixed regular/chaotic
regions of the symmetry triangle was tested by mea-
suring wave function entropies in the decomposition of
eigenstates in all relevant dynamical symmetry bases in
Refs. [23]. Detailed properties of the classical trajectories
within the symmetry triangle and their possible influence
on fluctuations in energy spectra have been studied in
Refs. [14, 24, 25].

To gain more insight into the structure of the vari-
ous regular and chaotic modes in the quantum dynam-
ics, we take a different approach here—a visual method
originally proposed by Peres [26]. The method is not
rigorously quantitative, but—rather in analogy to the
Poincaré section method in classical mechanics [27]—
it enables a qualitative distinction between regular and
chaotic motion. Regular/chaotic dynamics is inferred
from the regular/chaotic form of particular spectral lat-
tices [26, 28–30]. The method was recently applied in the
geometric collective model, which is closely related to the
IBM, see Ref. [31], where a more detailed discussion of
the relevant general background is contained.

The lattices are formed by the expectation values
Oi = 〈ψi|Ô|ψi〉 of an arbitrary operator Ô plotted against

the energies Ei = 〈ψi|Ĥ |ψi〉 of the Hamiltonian eigen-
states |ψi〉, i = 1, 2, 3, .... Due to arguments based on
semiclassical quantization, the lattices of points (Ei, Oi),
i = 1, 2, 3, ... show regular patterns in integrable systems.
In chaotic systems on the other hand, the Peres spectral
lattices are formed by visually disordered collections of
points. In partially regular systems, which are neither
completely integrable nor fully chaotic, the lattices show
a combination of ordered and disordered patterns. In ad-
dition to the identification of regularities, an ordered pile-
up of states with various values of angular momentum on
the same place of the lattice indicates a common intrinsic
wave function and therefore hints at a band structure.

In Sec.V, we describe in particular the lattices of
Ô = n̂d corresponding to the eigenstates of (1) with dif-
ferent angular momenta l. Note that other operators, as
for example the Casimir operators related to the remain-
ing symmetries of the symmetry triangle besides U(5)—
namely the SU(3) and O(6) symmetries, show differ-
ent lattice shapes. The identification of regularity/chaos
with them is nevertheless in the cases we consider here
practically equivalent to the U(5) Casimir n̂d. We dis-
play the lattices of n̂d just because of its simple interpre-
tation and elaborate the different operator lattices else-
where [32, 33].

Classical limit of the Hamiltonian (1) describing the
dynamics of vibrational modes with l = 0 has been de-
scribed in detail in Refs. [12–14]. The Hamiltonian cor-
responding to l = 0 modes effectively represents a sys-
tem with two degrees of freedom, which can be iden-
tified with the quadrupole deformation parameters β
and γ. The individual regular trajectories are confined
to two-dimensional torus-like manifolds within the four-
dimensional phase space and their separation from neigh-

boring regular trajectories changes at most polynomially
in time. In contrast, the chaotic trajectories show lo-
cally an exponential mutual divergence governed by the
Lyapounov exponents and cover a subset of the energy
manifold of a dimension 2 < d ≤ 3, see Ref. [27].

We will be interested in the fraction of the phase-space
volume showing a flow of regular trajectories Ωreg(E)
with respect to the total volume of the phase space
manifold Ωtot(E) corresponding to energy E for given
values of η and χ in (1). This fraction, defined as
freg(E) = Ωreg(E)/Ωtot(E), is numerically approximated
by the fraction of regular trajectories Nreg generated
within a sample of Ntot trajectories with random ini-
tial conditions spread over the whole energy manifold,
cf. Ref. [34]. The regularity of individual trajectories is
determined by the method of the alignment indices, [35].
Hence we obtain freg ≈ Nreg/Ntot, keeping always a fixed
size of the sample Ntot = 500.

We note that our classical calculations encounter a nu-
merical instability of solutions of the Hamilton equations
at highest energies near to and above the asymptotic
value Elim of the classical potential [14], hence we are
forced to end the freg(E) curves slightly below the max-
imum potential energy.

IV. IDENTIFICATION OF ROTATIONAL

BANDS

The intricately mixed, regular/chaotic spectrum of the
Hamiltonian (1) may easily hide regular structures like
the rotational bands for general η, χ in Eq. (1). The spec-
tral lattice method described in Sec. III provides a heuris-
tical first indicator of their existence, as the lattices cor-
responding to different angular momenta l show mutually
similar regular patterns and overlap, if the states belong
to rotational bands. This was pointed out in Ref. [15] and
will be discussed further in Sec. V. If we however want to
find and classify all rotational states into the individual
bands, it is desirable to develop an automatic procedure.
We propose one based on the SU(3)-decomposition of the
rotational band states.

It was shown in Refs. [6, 7, 15] that the states |i, l;N〉
belonging to rotational bands with given symmetry-axis
projection K do not necessarily fit into a single SU(3)
irrep and can actually be strongly mixed. The mix-
ing is however systematic, as the angular momentum
multiplets show remarkable coherence when decomposed
in the SU(3) basis |(λ, µ),K, l;N〉. More precisely, the
member states with particular l = l1, l2, . . . and ordinal
numbers i = i1, i2, . . . within the bands display SU(3)-
decompositions

|i, l;N〉 =
∑

(λ,µ),K

A
i,l
(λ,µ),K |(λ, µ),K, l;N〉 , (6)

in which the amplitudes Ai,l
(λ,µ),K are approximately con-

stant within the multiplet, so that Ai1,l1
(λ,µ),K ≈ A

i2,l2
(λ,µ),K ≈
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. . . holds for every (λ, µ),K.

�C
m
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(0,- 7/2) (0,0) (1,    )(1,    )

FIG. 1: Behavior of the SU(3) correlation coefficient C0,2,4
max

(panel a) with the corresponding R4/2 ratios (panel b) and
the moments of inertia J2(1), J4(1) (in arbitrary units) calcu-
lated along the edges of the symmetry triangle for the ground

state 0+
1 . The parameters on the x-axis measure the perimeter

of the symmetry triangle [see the inset in panel (a)] and the
vertical dashed lines indicate the dynamical symmetry points
having the (η, χ) values as indicated in panel (a). The num-
ber of bosons N = 32. Notice the spherical/deformed phase
transitions at ηcrit ≈ 0.8 and the fact that in the spherical
part near U(5), the 2+, 4+ states having the maximal SU(3)
correlation with 0+

1 do not actually belong to the ground state
band (hence the strange R4/2 6= 2), see Fig.2.

The coherent SU(3)-decomposition suggests that the
states can be obtained by angular momentum projection
from a common intrinsic state [15]. Note however, that
this fact alone does not imply rotational character and
quasi SU(3) symmetry of the band, but only its common
intrinsic origin—the pattern of excitation energies may
be completely different from the l(l + 1) dependence, as
in the case of the O(6) ground state band, which also
shows a perfect SU(3) coherence. (The intrinsic ground
states in both the SU(3) and the O(6) cases attain in
fact the same form and differ only by the deformation
βSU(3) =

√
2, while βO(6) = 1, see e.g. Ref. [21], if

the O(6) intrinsic state—which spontaneously breaks the
O(5) symmetry, related to γ—is chosen with γ = 0.) We

FIG. 2: Pearson correlation coefficients π(01, 2j) and π(01, 4k)
showing the SU(3) correlations of the 01 ground state with
the complete spectra of l = 2, 4 states for N = 32, χ = −1.32
and two values of η = 0.51 (panels a,b), η = 0.85 (panels
c,d). Notice that while in the deformed case η = 0.51, the
correlations show clear preference of the ground state band
members 21 and 41, in the spherical case η = 0.85 the cor-
relations are rather evenly distributed with maxima located
among the high-lying l = 2, 4 states.

will discuss this in more detail in Sec. V.
Inspired by these observations, we utilize an algo-

rithm based on correlations between the wave functions
of different-l eigenstates expressed in the SU(3) basis,
followed by detailed investigation of excitation energy
ratios, moments of inertia and the behavior of electro-
magnetic transitions. We describe the algorithm in the
following steps:

(a) To measure the correlation of the wave functions,
we make use of the standard Pearson correlation coeffi-
cient defined for two n-dimensional vectors X , Y as

π(X,Y ) =
1

n− 1

n∑

m=1

(Xm − X̄)

sX

(Ym − Ȳ )

sY
, (7)

where X̄ , Ȳ and sX , sY are the mean values and stan-
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dard deviations of the vector components, respectively.
The Pearson coefficient measures the validity of a lin-
ear dependence between X,Y and its values lie within
π(X,Y ) ∈ [−1, 1]. Specifically π(X,Y ) = 1, π(X,Y ) =
−1 and π(X,Y ) = 0 indicate a perfect correlation, per-
fect anticorrelation and no linear correlation, respec-
tively. The eigenvectors |i, l;N〉 of (1) with different l
differ in the number of components, therefore we intro-

duce the probability distributions P i,l
(λ,µ), where we sum

over the missing label K:

P
i,l
(λ,µ) =

∑

K

∣∣∣Ai,l
(λ,µ),K

∣∣∣
2

. (8)

Now we can link the multiindex (λ, µ) with m in Eq.
(7). To simplify the notation, we introduce the symbol

π(li, l
′
j) ≡ π(P i,l, P j,l′) for the correlations between the

probability distributions P i,l, P j,l′ corresponding to the
eigenstates li, l

′
j, where the subscripts i, j now indicate

the ordinal number of the respective state in the spec-
trum with given l, l′.

(b) Let’s proceed with the actual search of the bands
throughout the spectra. Focusing our attention first to
prospective K = 0 bands (containing sequences l =
0, 2, 4, 6, ...), we correlate each l = 0 eigenstate with the
whole spectrum of l = 2, 4, 6 . . . eigenstates and for each l
select the states lj , which show the maximum correlation
maxj{π(0i, lj)} for each given 0i. These will represent
the candidates for the band-members. Next, we define
the product of the maximum correlation coefficients be-
tween l = 0, l = 2 and l = 0, l = 4 states

C0,2,4
max (i) ≡ max

j
{π(0i, 2j)}max

k
{π(0i, 4k)} , (9)

to characterize the degree of correlation between the i-th
l = 0 state and the lowest members of the prospective
K = 0 bands with l = 2, 4.

(c) Having in mind the expected rotational dependence
of excitation energiesE(l)−E(0) = l(l+1)/2J within the
bands, we take the prospective bandhead 0i and calculate
the “moments of inertia”

J2(i) ≡
3

E(2j) − E(0i)
, J4(i) ≡

10

E(4k) − E(0i)
, (10)

and the excitation energy ratio

R4/2(i) =
E(4k) − E(0i)

E(2j) − E(0i)
=

10

3

J2(i)

J4(i)
, (11)

for the prospective band members, with j, k in Eqs. (10),
(11) being the same as in Eq. (9). It needs to be stressed
that the Hamiltonian (1) contains an inherent scaling
factor, which obscures a direct physical interpretation of
moments of inertia if the parameters η, χ are varied. The
absolute values of J2(i), J4(i) are meaningful therefore
only for mutual comparison of individual excited bands
at fixed values of η and χ in Eq.(1).

�C
m

a
x

0
,2

,4

�C
m

a
x

0
,2

,4

FIG. 3: (color online) IBM dynamics at χ = −1.32 and
η = 0.5 displays complete regularity at low energies roughly
for E < Esad (vertical dashed lines) while it becomes chaotic
for E > Esad in both quantum and classical cases. The regu-
lar part of the quantum spectrum is inhabited by SU(3)-like
rotational bands, while the classical phase space by regular
SU(3)-like trajectories. We show simultaneously: (panel a)
excitation energy ratio R4/2, (panel b) SU(3) correlation co-

efficient C0,2,4
max , (panel c) the spectral lattices of the n̂d oper-

ator, (panel d) the classical fraction of the phase space freg

occupied by regular trajectories. R4/2 and C0,2,4
max are plotted

against the bandhead energies. The vertical dashed lines in-
dicate values of the potential energy surface at stationary or
asymptotic points, as indicated in panel (b), for both quan-
tum (panels a-c) and classical cases (panel d). N = 30 bosons
in panels (a)–(c), while N → ∞ in panel (d). Energy units
are arbitrary.
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(d) If the rotational dynamics separates adiabatically
from the intrinsic dynamics, the reduced E2 transition
rates (both inter- and intra-band) should for l ≪ N be
well described by the Alaga rule [36]

B(E2; l,K → l′,K ′) = 〈K ′|T̂E2(χ)|K〉2(lK2m|l′K ′)2,
(12)

where (lK2m|l′K ′) is the relevant Clebsch-Gordan coef-
ficient with m ≡ K ′ − K and |K〉 denotes an intrinsic
state of given K. Calculating the relative B(E2) val-
ues, we may test the Alaga rule (12) even in case that
the structure of |K〉 is unknown (often relevant in our
following investigations). The intrinsic matrix element

〈K ′|T̂E2(χ)|K〉 then drops out to leave a mere ratio of
squared Clebsch-Gordan coefficients, for which only the
projection values K, K ′ are needed—these can be de-
duced from the sequence of l-values within the prospec-
tive band obtained in steps (a)–(c).

(e) We say that the states 0i, 2j and 4k belong to a
K = 0 rotational band, if they satisfy simultaneously:

C0,2,4
max (i) ≈ 1 , (13)

J2(i) ≈ J4(i) , (14)

B(E2; 4k → 2j)

B(E2; 2j → 0i)
≈ (4, 0, 2, 0|2, 0)2

(2, 0, 2, 0|0, 0)2
. (15)

The condition (14) may be eventually replaced by
R4/2(i) ≈ 10/3, according to Eq. (11).

The procedure (a–e) may be generalized considering
bands of different K and angular momenta l > 4 in a
straightforward way. We only take the i-th bandheads

with li = K and define the correlations Cli,l
′

j ,l′′k
max (i), exci-

tation energy ratios Rl′′
k

/l′
j
(i) and the moments of inertia

Jl′
j
(i), for the excited states l′j , l

′′
k in analogy with the

previous paragraphs. For example the moments of iner-
tia become

Jl′
j
(i) =

1

2(El′
j
− Eli)

[l′(l′ + 1) − l(l+ 1)] . (16)

We note that alternatively to the selection (a–e) based
on the SU(3) correlations, the band members may be
selected naturally also on the basis of B(E2) transi-
tion rates. To consider the states li to form a rota-
tional band, we require in this case that the B[E2; li →
(l + 2)j ] rates have to dominate the other (interband)
rates B[E2; li → (l+2)j′ ], j

′ 6= j, while the sequence has
to show a well defined moment of inertia Jl(i) ≈ Jl+2(i).
In Sec. V B, we utilize a recursive tracing of the chains of
states li → (l+2)j starting from the bandheads to show,
that the rotational bands often reach up to very high an-
gular momenta l ≈ N/2, where the moment of inertia
changes abruptly. We have checked, that both methods
indeed lead to the same identification of the SU(3)-like
rotational bands.

V. NUMERICAL RESULTS

A. Edges of the symmetry triangle

We diagonalize the Hamiltonian (1) numerically in the
U(5) basis using an adaptation of the PHINT code [37]
for different η, χ and N and consequently decompose the
eigenstates into the SU(3) basis obtained for η = 0 and

χ = −
√

7/2. Then we apply the selection algorithm of
Sec. IV and also plot the spectral lattices as described
in Sec. III. Finally, we supplement the quantum calcula-
tions by evaluating the classical regular fractions freg(E)
described at the end of Sec. III.

To get a feeling for the behavior of the quantities intro-
duced in Sec. IV, we inspect them at first for the ground
state along the well understood perimeter of the symme-
try triangle. In Fig. 1, the panel (a) displays the cor-
relation C0,2,4

max (1), panel (b) the ratio R4/2(1) and panel
(c) the moments of inertia J2(1), J4(1) corresponding
to 01 and its maximally correlated l = 2 and 4 counter-
parts for N = 32. In all panels, the x-axis is split into
parts corresponding to the respective parameter driving
the transitions along the three edges of the symmetry tri-
angle. For the U(5)-SU(3) edge it is η changing from 1 to

0 with fixed χ = −
√

(7)/2, for the SU(3)-O(6) edge it is

χ changing from −
√

7/2 to 0 with fixed η = 0, and finally
for the O(6)-U(5) edge it is again η changing now from 0
to 1 with χ = 0, as indicated in panel (a). The dynamical
symmetry points are denoted by vertical dashed lines.

The panel (a) in Fig. 1 illustrates that the ground state
01 shows perfect SU(3) correlations with the yrast states
21, 41 throughout the deformed part of the symmetry
triangle—quite surprisingly even in the O(6) limit and
along the deformed part of the O(6)-U(5) edge. This

might be a consequence of the non-standard ¨SU(3) sub-

group present in the subgroup chain O(6) ⊃ ¨SU(3) ⊃
SU(2) × U(1) within the O(6) limit, and a related quasi

¨SU(3) symmetry further along the O(6)-U(5) edge (we
do not however inspect it here). This chain is not con-
sidered usually in IBM, since it does not conserve the
rotational O(3) symmetry, it is however relevant for the
intrinsic dynamics, see Ref. [21].

In order to distinguish the rotational bands, we there-
fore need to employ the ratio R4/2 of Eq. (11), or even-
tually the moments of inertia J of Eq. (10) in addition
to C0,2,4

max . Indeed, panels (b) and (c) of Fig. 1 show that
these characteristics abruptly change in the vicinity of
the O(6) limit: the excitation energy ratio changes from
the rotational values R4/2 ≈ 10/3 to the seniority-based
values R4/2 ≈ 2.5 and the band simultaneously loses a
well defined moment of inertia (J2 and J4 clearly dif-
fer). The SU(3) correlations, on the other hand, start to
deviate from C0,2,4

max (1) ≈ 1 only near to the deformed-to-
spherical phase transition at ηcrit ≈ 0.8.

We point out one “artifact” of our SU(3)-focused
method: In the spherical region near the U(5), the
l = 2, 4 states showing maximum SU(3) correlations with
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01 actually belong to a rather high lying spectrum, not

to the ground state band (vibrational in this case). It
leads to the fluctuating values of R4/2 near U(5) in panel
(b) Fig. 1, which are obviously different from the vibra-
tional value R4/2 = 2. We illustrate it in Fig. 2, where
we plot the Pearson coefficients π(01, 2j), π(01, 4k) cor-
relating the ground state 01 with the whole spectra of
l = 2, 4 eigenstates for χ = −1.32 and two values of η:
a prolate-deformed η = 0.51 (panels a,b) and a spheri-
cal η = 0.85 (panels c,d). Notice that in the deformed
part—in contrast to the spherical part—the SU(3) corre-
lations clearly prefer the lowest-energy 21 and 41 (panels
a,b), while in the spherical part, the maxima are located
“randomly” among high-lying excitations (panels c,d).

Note also that the decreasing moment of inertia toward
the SU(3) point in panel (c) of Fig. 1 (which is in contrast
to physical expectations) results from an inherent scaling
factor of the Hamiltonian in the parametrization ( 1) and
has no experimental consequences.

B. Interior of the symmetry triangle

Having understood the behavior of the SU(3) correla-
tion coefficient C0,2,4

max , we may start to explore the interior
of the symmetry triangle. In Figs. 3, 4, 5, we display the
SU(3) correlations C0,2,4

max (panels a), the ratios R4/2 (pan-
els b), spectral lattices of n̂d (panels c) and the classical
regular fraction of the phase space freg (panels d) cor-
responding to three different values of χ = −1.32, −0.9
and −0.5, respectively, always lying within the prolate-
deformed part of the triangle with η = 0.5 and N = 30
(except panels d, where N → ∞). These points make
a suitable representative sample of the dynamics in the
prolate-deformed part, see also [15, 33]. We discuss these
cases separately in the blocks (i), (ii) and (iii) below.

The panels of Figs. 3–5 are arranged vertically with
the same energy scale on the horizontal axis to facil-
itate a direct comparison. The vertical dashed lines
in panels (a–c) correspond to the stationary points or
the asymptotic value of the potential energy surface
V (β, γ) = 〈gs;N |Ĥ |gs;N〉, derived using the intrinsic
condensate from Eq. (3) for the respective value of N :
in order of increasing energy, they denote the global po-
tential minimum Emin, the saddle point Esad, the local
maximum Elmax corresponding to the potential energy
at zero quadrupole deformation β = 0, the asymptotic
value Elim at β → ∞ and finally the global maximum
Emax, see Fig. 6. In panels (d), the lines denote the cor-
responding points of the classical potential obtained for
N → ∞, in analogy.

(i) At χ = −1.32, η = 0.5 (see Fig. 3), lying at the
SU(3)-U(5) edge of the symmetry triangle, we observe
perfect SU(3) correlations accompanied by R4/2 ≈ 10/3
for the low-lying states roughly up to the saddle point
Esad, while for E > Esad the ordered behavior breaks
down.

The qualitative difference in the quantum spectrum for

FIG. 4: (color online) The same quantities as in Fig. 3 show
that at χ = −0.9, significant regularity appears at intermedi-
ate energy E ≈ 0 as well as in a broad high-energy interval
reaching up to the maximum energy Emax in addition to the
omnipresent regularity for E < Esad (vertical dashed lines).
In the regular regions, most states show characteristics of ro-
tational bands (panels a,b). The values of N and η are the
same as in Fig. 3.
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E < Esad and E > Esad is illustrated by the spectral lat-
tices of n̂d in panel (c): the lattices for l = 0, 2, 3 and 4
(relatively shifted here by ∆nd = 10l for clear visual sep-
aration of the lattices corresponding to the states with
different angular momenta l) display mutually very sim-
ilar pattern at low E, while they become disordered at
high E. The lattice-points of different l form bunches,
lying close in E and 〈n̂d〉 and inspecting them closely, we
may identify sequences l = 0, 2, 4 and l = 2, 3, 4 corre-
sponding to K = 0 and K = 2 bands, respectively. It
means, that if the artificial l-dependent shift of the lat-
tices with different angular momenta were removed, the
states with sequential values of l belonging to the same
rotational band would be located very near to each other
(they would nearly overlap, cf. Fig. 7). In Ref. [15], these
structures were identified as rotational bands built upon
intrinsic quasi SU(3) β and γ excitations.

In parallel to the quantum measures, the classical mea-
sure freg shows complete regularity of l = 0 modes for
E < Esad, with a gradual decrease to freg ≈ 0 at high
energies. The regular trajectories at E < Esad vibrate
within the potential well around the minimum and very
much resemble the β and γ vibrations found in the SU(3)
limit.

(ii) At χ = −0.9, η = 0.5 (see Fig. 4), which cor-
responds to the Alhassid-Whelan semiregular arc inside
the symmetry triangle [12–14], the dynamics at E > Esad

changes quite dramatically. In both the classical freg as
well as in the n̂d spectral lattices, we may notice two
novel distinct regular regions to appear—one at E ≈ 0
and second reaching to the highest accessible energies
E ≈ Emax—in addition to the always present regularity
at E < Esad.

Looking at the SU(3) correlations and R4/2, we imme-
diately see that a substantial fraction of the l = 0 states
at E ≈ 0 and even more significantly at E ≈ Emax repre-
sent bandheads of K = 0 bands. Zoom into the high en-
ergy part of the lattice around E ≈ Emax in Fig. 7 (now
without the l-dependent shift) shows, that the K = 0
bands are accompanied by K = 2 bands sitting in the
“vacancies” of the K = 0 lattice, as can be seen from
the alternating pattern of l = 0 or l = 3 states nearly
overlapping with the lattice of l = 2 states. For sake of
clarity, we show only the positions of K = 0, 2, 3 bands,
the alternating pattern however extends to higher val-
ues of K with K = 4 bands resident in near vicinities of
K = 0 bands, K = 6 bands nearK = 2, etc. . . In fact, the
neighboring K = 0, 4 bands can be identified in the high-
energy part of the l = 4 lattice in panel (c), Fig. 4, under
close inspection. This reveals a picture indicating a suc-
cessive composition of multiple γ-like vibrational modes.

The moments of inertia (see Fig. 8) provide an alterna-
tive aspect, which illustrates further the rotational char-
acter of the regular states. The three regular regions
at low, intermediate and high energy, corresponding to
K = 0 bandheads 0i can be identified by J2(i) ≈ J4(i).
Notice that the moments of inertia of the low-energy
family of rotational bands found below E < Esad de-

crease with energy, while for the other families—resident
at E ≈ 0 as well as in the highest part of the spectrum—
they grow with E, attaining about 3-times greater values
for the highest-lying bands compared to the ground-state
band. The values of Jl(i) ≈ 0, l = 2, 4, ... are typical for
chaotic l = 0 states, in contrast. Notice that the regular
bands may actually retain well defined moments of iner-
tia up to very high angular momenta, as exemplified in
the inset of Fig. 8.

(iii) At χ = −0.5, η = 0.5 (see Fig. 5), the spectral
lattices in contrast to the previous case are apparently
much more chaotic and do not show very clear regular
patterns apart from the low-energy interval E < Esad.
In particular, the regular region at E ≈ 0 disappears.
The lattices in the highest part of the spectrum seem
to be a superposition of regular and chaotic sublattices.
The classical freg (panel d) supports this interpretation,
as it shows regularity for E < Esad, a complete chaos
at intermediate energy E ≈ 0 and a slight increase of
regularity at high energies. The regularities may be again
identified with the rotational bands on the basis of SU(3)
correlations and R4/2 (panels a,b).

To demonstrate further the rotational character of
states found in the regular parts of spectrum, we an-
alyze the B(E2) transition strengths both within and
in between the bands. In Fig. 9 we plot the relative
B(E2; l → l + 2) calculated for K = 0 and K = 2
bands from the intermediate E ≈ 0 energy spectrum
at χ = −0.9, η = 0.5 and N = 30 and compare
them with the ratios of squared Clebsch-Gordan coeffi-
cients given by Eq. (15). Apparently, a very good agree-
ment is observed. Similarly, Fig. 10 shows the relative
B(E2; l → l+ 2) values in the high energy E ≈ Emax re-
gion. Location of the latter bands within the high-energy
section of the n̂d spectral lattices is shown in detail in
Fig. 7. Again, the Alaga rule is well preserved (with
the accuracy demonstrated in Fig. 10) in the upper-left
part of the lattice, where we indicate the directions of
“allowed” transitions by heavy arrows. Apart from this
very regular region, there is a thin rather chaotic strip
in the lower-right part of the lattice, where the states no
longer fit into rotational band sequences [cf. panels (a–c)
in Fig. 4].

The structure of the “allowed”, “suppressed” and “for-
bidden” interband transitions in the upper-left part of
Fig. 7 is remarkable (the same pattern holds in the
E ≈ 0 regular region), since it follows the pattern of
quasi SU(3) bands resident at low-energies E < Esad,
cf. Ref. [15]. Firstly, the transitions between different
bands of equal K as well as those between the bands
differing by ∆K ≥ 4 vanish (are suppressed by a fac-
tor less than 10−6, more precisely). We observe non-
vanishing transitions only in between neighboring bands
differing by ∆K = 2, which are 5 − 10 times weaker in
comparison with the intraband rates for N = 30. (We
note that in the vicinity of the ground state band, this
suppression factor is much greater—about 300, in con-
trast.) In particular, the interband transitions occurring
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FIG. 5: (color online) The same quantities as in Figs. 3, 4
show that at χ = −0.5, the dynamics is mostly chaotic apart
from E < Esad (vertical dashed lines) and a narrow region
near to Emax, where we may see a few rotational bands (panels
a,b). The values of N and η are the same as in Figs. 3, 4.

in the directions indicated by heavy arrows in Fig. 7 are
two orders of magnitude stronger than those in the per-
pendicular direction (thin dashed arrows). This resem-
bles the structure among the multiple β, γ excitations
at low energies [15], where ∆K = 2 transitions between
bands differing by the number of β-excitations nβ are

FIG. 6: Stationary and asymptotic values (horizontal dot-
dashed lines) of the potential energy surface V (β, γ) plotted
here for (η, χ) = (0.5,−0.9) and N = 30 bosons. This par-
ticular point corresponds to the situation plotted in Fig. 4,
the shape of the potential however essentially represents the
potentials throughout the whole prolate deformed part of the
Casten triangle.

suppressed in comparison with those differing only by
the number of γ-excitations nγ , while having ∆nβ = 0 at
the same time. However, the intrinsic states underlying
the high-energy rotational bands should have a different
form than the mean field excitations used in Ref. [15],
since the exact and mean-field spectral lattices are com-
pletely different at high E. We remark finally, that a few
of the high-energy states belonging to the “chaotic strip”
in the lower-right part of the lattice in Fig. 7 form U(5)-
like sequences with R4/2 ≈ 2, as revealed by tracing the
dominant B(E2) transition rates.

VI. SUMMARY AND CONCLUSIONS

We have revealed families of high-energy rotational
bands in the spectrum of the interacting boson model
in parameter domains corresponding to the nuclei with
axially symmetric ground state deformation. The bands
show signatures of SU(3) quasi dynamical symmetry in
the l(l + 1) excitation energy pattern, in the inter- and
intra-band E2 transition rates and within the decompo-
sition of eigenstates in the SU(3) basis.

Let us stress that the results discussed here differ sub-
stantially from those of Ref. [38], where the SU(3)-like
degeneracies were identified along the Alhassid-Whelan
(AW) arc in the low-energy part of the spectrum, which
occur here below or close to the saddle point energy Esad.
The rotational bands that we bring to attention in the
present paper lie much higher in energy. Indeed, as it was
shown already by Alhassid and Whelan [12, 13], the par-
tially increased regularity of the AW arc (relative to the
neighboring regions) is brought about essentially by the
regular high-lying modes, not the low-energy dynamics,
which is almost completely regular in the entire symme-
try triangle.
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FIG. 7: (color online) Zoom into the high-energy part of the
n̂d lattice at χ = −0.9 from Fig. 4 for l = 0, 2, 3 states. Al-
lowed, suppressed and forbidden interband E2 transitions are
schematically marked by heavy, dashed and dotted arrows, re-
spectively. Allowed transitions (heavy arrows) among K = 0
and K = 2 rotational bands follow the Alaga rule consider-
ably, as do the intraband transitions, cf. Fig. 10. Interband
transitions in the “perpendicular” directions (thin dashed ar-
rows) are suppressed by ≈ 10−2, while those marked by dotted
arrows are forbidden. The intraband B(E2) values are 5-10
times higher than the allowed interband values in this energy
interval for N = 30. Note that the positions of l = 0 and l = 3
states distinguish K = 0 and K = 2 bands in the regular part
of the lattice.

Our findings cannot be interpreted as an explanation
of the increased regularity in the AW arc. Instead we
suggest a sort of an inverse optics: We do not try to ex-
plain the origin of regular or chaotic character of the in-
trinsic modes in specific parameter and energy domains.
Rather in contrast, we accept it and look for possible con-
sequences upon the separation of intrinsic and collective
degrees of freedom.

Within our results, we observe a strong correlation be-
tween the occurrence rate of the rotational bands and the
variation of classical and quantum degree of regularity of
the intrinsic dynamics, as signified by the regularity of
the l = 0 motions. This is remarkable especially if we ap-
preciate the complicated dependence of the measures of
regularity on energy. The low-energy dynamics, bounded
from above roughly by the saddle point energy Esad, is
regular throughout the axially-deformed part of the sym-
metry triangle and in this entire domain it displays rota-
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FIG. 8: (color online) The moments of inertia J2(E) and
J4(E), Eq.( 10), plotted against the energy of the l = 0 states
in the most regular region (Alhassid-Whelan arc) at η = 0.5,
χ = −0.9 and N = 30. Values of J2(E) ≈ J4(E) correspond
to the l = 0 bandheads of the K = 0 rotational bands. Simi-
larly to Fig. 4, the plot reveals three distinct families of reg-
ular rotational bands resident at low, intermediate and high
energies, respectively. The quantities are shown in arbitrary
units, related to an overall scaling of the Hamiltonian (1) and
the vertical lines indicate the stationary and asymptotic val-
ues of the potential energy surface as in Figs. 3-5. The inset
shows the l-dependence of the moments of inertia of the i-th
band Jl(i) through high values of l for two K = 0 bands with
i = 1 and i = 65 at η = 0.5, χ = −1.04 and N = 30. The
band headed by 065 sharply terminates at l = 28.

tional characteristics, as demonstrated in Figs. 3-5. As
it was shown in Ref. [15], the rotational quasi SU(3) be-
havior (in the sense of coherent SU(3) decompositions of
band-member eigenstates, inter- and intra-band B(E2)
values and the excitation energy ratios within the bands)
is here slightly disturbed only in the vicinities of band
crossings, which cause mixing of eigenstates between the
crossing bands.

Above the saddle point energy Esad, the rotational
bands with well-defined projection on the symmetry axis
K appear quite surprisingly also in the intermediate- and
high-energy domains, precisely in the regions showing in-
creased classical and quantum regularity. The highest oc-
currence of rotational bands is observed in the semiregu-
lar Alhassid-Whelan arc. However, it is not the sole locus
of their existence, since they occur also—apart from the
above-mentioned E < Esad energies—in a broad region
between the AW arc and the O(6)-U(5) edge; in this re-
gion, they reside only within a more narrow interval at
the very high energies close to E ≈ Emax (see Sec. V).

Our observation suggests, that the chaotic non-
rotational l = 0 states are more prone to mixing, if ro-
tation of the whole nucleus comes into play, while the
regular states are protected by their symmetry and re-
tain their properties. This may be intuitively understood
from the phenomenology of semiclassical regular/chaotic
wave functions in generic quantum-chaotic systems: the
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tion is demonstrated by significant accuracy of the Alaga
rule for relative B(E2; l − 2 → l) transitions. Panels (a)
and (b) show relative intra-band transitions, while panels (c),
(d) show relative inter-band transitions between the bands
headed by the states indicated in each panel, while η = 0.5,
χ = −0.9 and N = 30. The interband B(E2; l − 2 → l) tran-
sitions are supplemented by B(E2; l − 1 → l) in cases of odd
l. The bands reside in the predominantly regular interval of
intermediate energies around E ≈ 0 (see Fig. 4).
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FIG. 10: The relative B(E2; l−2 → l) transitions as in Fig. 9,
but now for bands selected from the highest-energy spectrum
near to E ≈ Emax. The interband B(E2; l−2 → l) transitions
are supplemented by B(E2; l − 1 → l) in cases of odd l. The
detailed position of the bands within the n̂d spectral lattice
is indicated in Fig. 7.

“chaotic” wave functions fill the classically accessible con-
figuration space more or less homogeneously with very
complicated nodal patterns, while the “regular” wave
functions show a distinct pattern of nodes and antinodes
approximately following the paths of classical regular tra-
jectories, see Refs. [27, 31, 39]. A perturbation—in this
case the external rotation added—is then more likely to
mix the chaotic wave functions rather than the regular
ones among one another.
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