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INTRODUCTION

We analysed two long—term sets of data on insect species, suitable for (1) evaluation of
changes in species diversity and population dynamics, and (2) assessment of the effect of
climate change on the distribution and abundance of insects. The first set of data is an
assemblage of moth species at a suburb of Prague (50°5'11"N,14°18'06"E), which were
monitored by a highly efficient mercury light trap for 23 years (1967-1976, 1980-1992) by
Ivo Novék. The second set is data on the thermal requirements for development of 66 species
from 8 orders of insects, which were obtained from the literature by Alois Hon¢k and his
collaborators.

The thesis consists of Introduction, Literature Review, and three studies in the form of
manuscripts. The first study (Effect of land use and climate on diversity of moth guilds with
different habitat specialization) and the second (Effects of life history traits on the long-term
population dynamics of moths) are unpublished manuscripts which are based on the data on
moth species. The third study (Relationship between the minimum and maximum
temperatures of the thermal tolerance range in insects) is based on the data on thermal
requirements for insect development and will be published in Functional Ecology.

In our first study, we explore a unique opportunity to separate climate and habitat
effects on diversity of moth light trap catches, using 23-years long data series originating
from a single, but particularly efficient light trapping method. The trap was situated at a single
location for the entire period, illuminating a section of landscape whose part remained
unchanged for all the time, whereas the other part underwent substantial land use changes.
The trap attracted both habitat specialists on several habitat types and habitat generalists, and
while habitats of some specialists have declined rapidly, habitats of others did not change and
hence increased in proportion. This situation allows us to compare the temporal changes of
diversity of specialised and unspecialised species, as well as of species that have been loosing
habitats with those not losing them.

The unique setting, and concurrent recording of meteorological data, allows us to test
the hypothesis that the diversity of habitat-specialised species will respond mainly to land use
changes, whereas the diversity of generalists will reflect long-term meteorological trends.
More specifically, the diversity of specialists whose habitats in vicinity of the trap have
declined in extent should decrease, the diversity of those whose habitats remained intact

should not exhibit any particular trend, whereas the diversity of generalists should increase,



mainly as warming climate brings forth prolonged season and colonisation by a higher
diversity of migrants that tend to be habitat generalists (cf. Sparks et al. 2005, 2007).

Our second study analyse a long-term, highly reliable set of data on 81 species of
moths that were monitored for 26 years (Novak 1983, Holyoak et al. 19975. This large set of
analysed species enables to compare their life-history traits with their population dynamics by
detecting their density dependences, level of seasonal fluctuation, linear decreases/increases
and concave/convex population dynamics over time. This approach enables to ask clear
biological questions: (1) Are there groups of species that have a similar population dynamics
based on their biology? (2) What are the common biological characteristics of the species
with significant density dependence? (3) Do we recognise groups of species reacting in the
same way to environmental changes and are they biologically related?

The objective of our third study is to determine whether in insects the difference
between the temperatures when development proceeds at the minimum and maximum rates is
about 20° C, whether the width of this thermal window can be modified by environmental and
biological traits and species phylogeny, and whether the relationship between the minimum
and maximum developmental rate temperatures is dependent on species relatedness. If our
analysis indicates that each species of insect can only develop over a limited range of
temperatures, independent of species traits, and that the relationship between the minimum
and maximum developmental rate co-vary, independent of species phylogeny, it may help
identify the precise nature of the biochemical adaptations underlying the seasonal
development and distribution of ectotherms. This could be an important step in achieving a
better understanding of how communities work and integrating physiology and ecology at the
community scale. In addition, this concept might help when predicting the effect of climate
change on the distribution and abundance of insects (e.g. Harrington & Stork 1995;
Yamamura & Kiritani 1998; Dixon 2003; Kiritani 2006) and the spread of invasive species
(e.g. Simberloff, Parker & Windle 2005; Baker et al. 2005; Hatherly et al. 2005).



LITERATURE REVIEW

1 Light traps sampling

1.1 History

The first primitive light traps operating with oil lantern were used by Roman beekeepers to
protect against wax moths. Engravings, illustrating beekeepers or people with oil lamps or
burning torches killing wax moths, are also recorded from the 17th and 18th centuries
(Hoberg 1682). Hungarian forestry literature in the 19th-century advised that great fires must
be lit at forest edges to suppress moth pests (like Lymantria dispar, Operophtera brumata,
Malacosoma neustria or Euproctis chrysorrhoea) causing defoliation, because many of them
would be attracted and burnt by the flames (Szentkiralyi 2002). At these times, a generally
applied insect collecting method had become 'lamping' with the aid of a white sheet placed in
front of a light source (Kov Acs 1958, Lbdl 1989).

In the second half of the 1910s, a wider availability of electricity made possible the
development of several trap types with this light source that allowed automatic insect
collection. From that time, an increasing number of studies were published annually
throughout the world on light trapping, mostly in the international agricultural entomology
literature (Szentkiralyi 2002). During trapping of different target pests, it was discovered that
from nearly all winged insect orders, a huge number of species flies toward light, e.g. moths,
beetles, leafhoppers, flies, mosquitoes, crickets, hymenopteran parasitoids, etc. (Szentkiralyi
2002). These experiments greatly contributed in the development of different trap types:
several constructions were tested; furthermore, capture changes due to different spectral com-
position of light sources were also discovered and comparative studies were made on the light
sensitivity of different insect orders.

In the 1910s and 1920s, Williams trapped several important economic pests (froghopper,
cotton and pink bollworm) in tropical areas (Surinam, Trinidad and Egypt, respectively), and
during this work he developed a new type of light trap design which he continuously kept

modifying to increase its efficiency.

In the late 1940s and early 1950s, before the use of light traps, post-war Hungarian
plant protection was faced with the countrywide outbreaks and heavy damage by serious

insect pests (Szentkiralyi 2002). In that period, JERMY investigated both under field and



laboratory conditions the control of these pests. Also he studied the behavior and the
ecological characteristics of these pests and he saw that the foundation of a forecasting
system, with greater spatial scale and different temporal scales, was needed to prevent insect
damage at the national or regional level, and he knew about the results of studies reporting
that light traps are capable of collecting a high number of individuals, especially noctuid
moths.

In 1952, JERMY constructed his light trap from very simple components, while taking
into consideration practical point of view (as a part of the trap, there is a circular roof made of
aluminum with a diameter of 1 meter fixed to a column at two meters above ground level).
Jermy intended his light trap to forecasting of insect pests - his idea was to operate it in a
long-term national network. His great technical talent, which he has proved many times with
his experiments, helped him to make a very clever selection of all the materials and tools: all
of them could be bought then and were expected to remain commercially available for
decades. So, as a light source, he chose a 100 W incandescent, tungsten filament light bulb.
(This bulb type is still available in Hungary.) The Hungarian network is still operating with
the "JERMy-type" traps, being the best proof of the grandiosity of his conception. Although
minor technical modifications on the trap have been made on experience while running the
network (Benedek et al. 1974), its main structure, the arrangement of technical elements
determining the way and level of catches has remained. Jermy's light trap type was tested
mainly in the surrounding countries, e.g., in Austria (Maliczky 1965), but was also used in
France (Gagnepain 1974), and it was thoroughly described and compared with other traps in
Germany (Mesch 1965, Jermy 1961, 1974).

In former Czechoslovakia, IVO NOVAK in sixties of the last century designed a light
trap incorporating an electrified wire grid for stunning the insects (Figs. 1 and 2). The use of
the stunning grid massively increased catches of Lepidoptera and other insects in comparison
with other types of light traps commonly used (Minnesota, Rothamsted, Robinson, Mesch,
Jermy, New Jersey, ESLU-2, Pennsylvania, etc.).

The light-trap is 2.50 m high and 1.00 m wide, with a slanting roof 1.40 m wide by 0.80
m deep. The light source is a Tesla RYL 250 VV mercury-vapor (MV) lamp commonly used
for street lighting. It produces a white light with approximately 25% total energy radiation in
the ultraviolet (UV) part of the spectrum. The MV lamp is located 0.20 m in front of a white
wall measuring 1.00 m by 1.20 m. The white surface reflects the light thereby increasing the
overall illumination of the surroundings. Placed at a 20° angle in front of the MV lamp and

white light-reflecting wall is an electrified wire grid set in a frame measuring 1.00 m by 1.00



m. The grid is made of copper wires (0.3 mm in diameter) spaced 7 mm apart and attached
alternately to the poles of a 220 '1'/2000 V transformer (Figure 1). At the bottom each wire is
held fast in a whole drilled in the screw fitted in a strip of insulation material and can be
tightened by turning the screw.

Beneath the MV lamp and grid is a large collecting funnel made of thin metal sheet: It
is rectangular at the top, where it measures 1.10 m by 0.60 m, and funnels to a circular whole
80 mm in diameter opening into the neck of a collecting vessel. The protective roof is only
slightly larger than the collecting funnel and therefore partially shields the light-trap from
rain. A larger roof would shade the light too much and thus reduce the number of insects
attracted to the trap. The glass collecting vessel has a capacity of 5000 ml. A pad made of
muslin or organdie filled with cotton wool is placed at the bottom. This proved to be better
than mere cotton wool from which insects are often disentangled with difficulty. Below the
pad is the small hole (10 mm in diameter) for drainage. Suspended on a wire about one-third
of the way up the vessel is a small glass container with anaesthetic measuring 60 mm in
diameter at the top (Figure 2). By using a container with a smaller neck opening, e.g. 20 mm
in diameter, it is possible to decrease the amount of evaporation of the chloroform or other
anaesthetic thereby merely stupefying the insects, which may then be revived and released or
retained alive for breeding, etc. The opening is covered with organdie to prevent insects from
falling into the liquid and attached to the wire above the container is a small flap to keep
water out. For the more information about the light trap see Novak (1983).
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Fig.1. Front view of the light-trap designed by Ivo Novak (Novak 1983). A roof, B

gutter, C electric grid, D white light-reflecting wall and baffle, E collecting funnel, and
F collecting vessel.




Fig. 2 Side view of the light-trap designed by Ivo Novéak (Novék 1983). A roof, B
gutter, C electric grid, D white light-reflecting wall and baffle, E collecting funnel, F
collecting vessel, G hole, H pad, I small flap, and K container with anesthetic, light ,

and insect.
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1.2 Applications

Nowadays, hundreds of light traps are working around the world mainly to forecast
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agricultural and forest pests. Forecasting results of light trapping concerning agricultural
pests were summarized by Meszaros and Vojnits (1968, 1974) and Nowinszky (2000). These
forecasting methods became part of the every day practice in plant protection (Benedek et al.
1974, Szentkiralyi 2002). Light trap catch data played an important role in the yearly forecast
of forest pests (Lesko and Szaboky 1998). Those research results, which were based upon the
simultaneous analyses of light trap and damage data series of forest defoliating moth pests,
were built into the yearly published forecasting works (Szontagh 1974, 1976, 1980, 1987,
Lesko et al. 1994, 1995, 1997, 1999, Szentkiralyi 2002).

Two countries are known worldwide where there is an existing national light trap
network, >50 stations, that has been operating for decades. One of these is in UK
(Rothmansted Insect Surrvey: R.L.S.), the other one is in Hungary (Hungarian Light-trap
Network) (Szentkiralyi 2002). Samplings with the networks of light traps are carried out
according to landscape, or even at a larger spatial scale to forecast insect pest densities.
Transformation of the information from such networks to distribution maps is useful in the
analysis of spreading and migration of species (Kov Acs 1971, Mezaros and Vojnits 1967,
Vojnits 1966, 1968a). These networks are able to make synoptic monitoring dynamics of
complete insect assemblages. Such as survey systems are fundamental not only for pest
forecasting, but also to others modern research fields, e.g., the study of effects of climate
change on habitats and communities, or for long-term monitoring of biodiversity changes and
their trends.

The biological effects of climate change have an increasing importance since 1980s
(Tracy 1992). There are numerous predictions for expected influences of the increasing
temperature ("global warming") on abundance, life cycle and phenology of insects,
interspecific relationships in food chains of insects, and geographical distribution of some
pests (Watt et al. 1990, Harrington and Woiwod 1995, Szentkiralyi 2002). Various
hypotheses regarding direct and indirect effects of arid, warm climate on insects (Plant Stress
Hypothesis, Climate Release Hypothesis, Plant Vigour Hypothesis) exist that may explain the
insects' outbreaks (Martinat 1987, Mattson and Haack 1987, Price 1991, Szentkiralyi 2002).
Different climate elements and aridity indices were used in time series analysis of data sets of
yearly moth catches by Lesko et al. (1994, 1995, 1997, 1999), Szentkiralyi et al. (1995, 1998)
and Szentkiralyi (2002). Light trap network in Great Britain (Taylor 1986, Taylor et al.
1978) informed that the land-use changes (mechanization of agriculture, increase of intensity
of farm practice, "hedging and ditching", forest clearing, intensive field margin management,

widespread use of pesticides) reduced the total number of moths by about 60 percent between
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1950 and 1960. In parallel, the diversity of the moth assemblages was also decreasing
(Szentkiralyi 2002).

The possible uses of data on the identified species from light traps thus appear wide
ranging. Apart from the forecasting of pests and monitoring of climatic and biodiversity
changes mentioned above, they can serve the analyses of effect of light trap location and
surrounding habitats on captures, taxonomic-faunistic, zoogeographic or insect-ecological
studies, to name a few. Light traps have been also used widely in studies of community
structure, population variability, incidence of density dependence and spatial synchrony
(Wolda, 1978, Hanski and Woiwod, 1991, 1993a, b, Holyoak, 1993a, Yela & Hen'era, 1993,
Holyoak et al. 1997).

Data coming from the method of light trapping can also aid in analyses of insect daily,
seasonal and long-term year-to-year activities. The research on daily activity includes effects
of weather elements on daily flight activity (Kadar and Szentkiralyi 1992, Nowtnszky 1994,
1997, 2000, 2001, Puskas et al. 1997, Lesko et al. 1998), effects of moonlight and moon
phases, characteristics of night flight behavior, changes of male/female ratio, nocturnal flight
distribution, relationship between egg-laying and flight to light (Williams 1935, 1936a,
1936b, 1939, 1940, 1948, 1951, 1953, 1964, Szentkiralyi 2002).

The most interesting research on daily activity concerns the moth response to light

traps. This response differs between species, some flying directly to the light, others in a
chaotic fashion and some seem completely unaffected by the light source and fly straight past
(Brook and Conrad 2007). Two theories explaining this behavior have been advanced, but the
first has been disregarded. Moths may be dazzled by a bright light. Once they enter a circle of
light they are reluctant to leave it because they cannot see outside it. The second explanation
which has more physiological backing is that moths are attracted to lights by what is more or
less an optical illusion, known as a mach band caused by lateral inhibition in the moth’s eye.
This optical illusion means the moth sees a dark band adjacent to the strong light source and
is, in fact, flying toward what it believes is the darkest spot in the sky (Brook and Conrad
2007).

Analyses of seasonal activity includes flight pattern of insects from catches summed
e.g. weekly. These light trap data provided useful information for seasonality description of
Heteroptera (Jaszatne and Benedek 1968, Benedek and Jaszal 1973, Erdelyi and Benedek
1974) cockchafers (Homonnay 1977), and certain leaf hopper species (Macrosteles spp.,
Jaszaine 1977). The long-term data series of light trappings can be implemented also in the
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description or characterization of seasonal flight patterns of less abundant, rarer species
(Szentkiralyi 2002). In this way sufficient number of data has been collected for seasonality
analysis of some rare species (Kadar and Szentkiralyi 1998), Szentkiralyi 1992, 1997, 2002).

Analyses on long-term year-to-year activities concern fluctuations in population
dynamics. Increase in the abundance of Lygus species caused by arid years could be proved
by long-term light trapping (Racz and Bernath 1993). The spatial spreading of an invader
moth pest (cotton bollworm) has been reported in dry and warm years (Szaboky and
Szentkiralyi 1995). Kadar and Szentkiralyi (1997) demonstrated the emigration of
hygrophilous species by flight from drying habitats in arid seasons.

1.3 Pitfalls

The use of light traps in sampling moth populations is an established technique used by
entomologists and ecologists. However, trap data partly reflect the variable attractiveness of
UV light to different moth species. An alternative method of recording moth populations is
developed, using a modification of the transect count technique used for butterflies and
recently applied to moths (Birkinshaw and Thomas 2004).

With moth sampling by light trap, it might be expected that the samples are taken from a
community occupying a limited area. However, this depends on the mode of action of the
now usually mercury vapor light trap (Cook and Graham 1996). Baker (1985) likens the
process of recording moths to some of the traffic traveling in one direction along a motorway,
rather than to sampling from a community. If this is the mechanism at work then the moths
caught is not come from the vicinity of the trap, but come from other places further field,
different species from different places. The differences in pattern between catches on grass
and in woodland suggest that the communities in these habitat types in close proximity are
different. However, this may be explained alternatively by arguing that different species have
different favored flight paths (Majerus et al. 1994).

Another pitfall concerns the effects of weather. Temperature is obviously an important
environmental factor, especially for ectothermic organisms like insects. Brehm et al. (2003b)
and Brehm and Fiedler (2003) discussed possible physiological adaptation of geometrid
moths (particularly Larentiinae) to low flight temperature. Geometrids clearly demonstrate
that not all insects prefer the warmest climates, although richness of small ranged Ennomonae
and Geometridae as a whole showed a significantly positive correlation with temperature
(Brehm et al. 2007). The numbers of moths caught in light traps are thus generally higher on

warmer nights and lower on windy or wet nights (Williams 1940, 1961, Persson 1976,
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Bowden 1982, Dent and Pawar 1988). Consequently, daily changes in moth captures are more
representative of changes in flight activity than changes in abundance (Muirhead - Thomson,
1991). Holyoak et al. (1997) say that this is supported by: (I) actograph experiments with
tethered moths (Lance et al. 1988), (2) comparisons of activity of captive moths with light
trap catches (Riley et al. 1992) and (3) comparisons between direct censuses of moths and
light trap catches (Riley et al. 1992). The last two forms of evidence also suggest that daily
changes in moth abundance are usually small by comparison to changes in numbers flying,
and environmental conditions are also likely to influence light trap catches by altering trap
efficiency (Holyoak et al. 1997). For example, winds might blow moths approaching a trap
off course, and background illumination could reduce trap efficiency (e.g. Hardwick 1972).

Holyoak et al. (1997) and Morton et al. (1981) interpreted the effects of weather on
light trap catches as sampling error that could be corrected for by estimating the size of
weather effects on abundances and adjusting to constant conditions. However, Holyoak et al.
(1997) concluded that they cannot separate meteorological effects on flight activity from
those on trap efficiency without independent evidence. As a consequence, no study of
population dynamics probably can exactly correct for the effects of weather on catches in
multiply species assemblages, because effects vary between species (Morton et al. 1981,
Gaydecki 1984, Muirhead- Thomson 1991, Holyoak et al. 1997).

Light- trap catches of many species are also affected by the moon. Observers have
noted that catches are les at full moon and have attributed this to a reduction in the
effectiveness of the trap because of competing moonlight (Williams, 1939, Bowden 1972).
Differences in catch imply an effect of light illumination, because this is the only major
difference in average conditions between moon phases, but few attempts have been made
previously to estimate that effect of different amount of night illumination on catch (Bowden
and Church 1973). Changes in light-trap catches associated with differences in nigh
illumination may be caused by changes in insect activity (i.e. in the type and pattern of
movement of individuals within a given distance of the trap when the light is switched off),
by changes in population, and by changes in the range of effectiveness of the light-trap and
the proportion of the population within this range which is trapped (Bowden and Church
1973).

Also humidity and rainfall can have direct or indirect effects, via the vegetation, on
herbivorous insects. It remains to be shown whether or not ambient humidity levels could act

as physiological constraint to certain moth species (Brehm et al. 2007).
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Light traps used by naturalists to trap moths are however not believed to effect moth
population sizes. In fact, light traps used to control pest moths have been largely unsuccessful.
Car headlight’s are also probably not a substantial form of light pollution as most of the moth
deaths are likely to be the result of moths and cars coinciding in the same time and place.
However, street lighting, floodlighting security lighting and other urban light sources are a
serious cause of concern and might be the single biggest threat to urban moth population
(Brook and Conrad 2007). An alternative suggestion is that modern street lighting is generally
less attractive to moths. However this may not be a good thing, for example the widely used
sodium lamps that do not attract moths and therefore might seem benign, may in fact be

particularly pernicious as they stop moths flying altogether (Uffen 1994).

2 Population dynamic

The central task for ecologists studying biological populations is to develop an understanding
of the dynamics of those populations. Such understanding can only be forged by combining a
consideration of the dynamics themselves with a consideration of the underlying responses of
individuals and the interactions between individuals (Bjornstad et al. 1998). Understanding
population dynamics of insects has long been of interest for solving these general questions,
as a consequence of both their economic and ecological significance (Nothnagle and Shultz
1987, Wallner 1987, Cappuccino et al. 1995, Nylin 2001).

Regarding the responses of individuals, insect researches (e.g. Dodge and Price 1991,
Thompson and Pellmyr 1991, Larsson et al. 1993, Miller 1996, Ribeiro et al. 2003) have
been focused on identification the life history differences between herbivorous insects with
eruptive and latent population dynamics. Typically, eruptive species exhibit temporal
population size fluctuations ranging from three to five orders of magnitude, whereas latent
species fluctuate between only one to two orders of magnitude (Price et al. 1990, Velditman
2005). In general therefore, population size variability in eruptive species is considered to be
far higher than that in latent species (Wallner 1987, Price et al. 1990, Price et al. 1995, Leyva
et al. 2003).

A generality in the relationship between life history traits and population dynamics of
the eruptive and latent species has potential application in both conservation and pest
management (Velditman 2005). Nothnagle and Shultz (1987) found the difference between
eruptive and latent species of Northern Hemisphere Macrolepidoptera. However, eruptive

and latent species are extremes on a gradient of population size variability, and species with
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moderate population size fluctuations may not have readily predictable life history traits
(Price et al. 1990, Nylin 2001, Steinbauer et al. 2001). Even if different life history traits are
associated with eruptive versus latent population dynamics, it does not necessarily follow that
they are the cause of differences in population dynamics (Velditman 2005). Although insects
may have life history traits typical of eruptive species, factors such as host plant distribution,
predation pressure and other biotic factors can, either directly or indirectly, significantly alter
the population dynamics observed (Larsson et al. 1993, Bjorkman et al. 2000 Azerefegne et
al. 2001, Steinbauer et al. 2001). From the point of underlying responses of individuals,
consideration of species interactions with their biotic (natural enemies) and abiotic
environments (climate), in addition to life history traits, is thus clearly important for
understanding population dynamics (Nylin 2001, Steinbauer et al. 2001).

Regarding the interactions among individuals, the most important trait for population
dynamic is definitively the interaction between natural enemies and their prey (Wallner 1987,
Price et al. 1990, Berryman 1996, Muzika and Liebhold 2000). These responses are defined
as any relationship between the natural enemy and host (or prey) (Gaston et al. 1997, Frears et
al. 1999, Gentry and Dyer 2002, Stireman and Singer 2003, Velditman 2005), including
association between natural enemy responses and herbivore defensive traits (Larsson et al.
1993, Bowers 1993, Dyer and Gentry 1999, Louda et al. 2003).

Regarding the dynamics themselves, density dependence is central to understanding
population persistence and fluctuations (Ginzburg et al. 1990, Royama 1992, Murdoch 1994).
However, the measurements of persistence, fluctuation and a level of density dependence are
difficult to interpret, because time series of animal abundances usually contain both sampling
error and variation in population size due to real changes in abundance (Gaston and McArdle
1994, Link and Nichols 1994, Holyoak et al. 1997). As a consequence, one of the most
persistent and challenging questions in population biology, which concerns the degree to
which natural populations are characterized by complex or even chaotic dynamics due to
inherent nonlinear relationships among key demographic variables (Schaffer and Kot 1986,
Berryman and Millstein 1989, Turchin and Taylor 1992, Hanski et al. 1993, Ellner and
Turchin 1995, Constantino et al. 1995, John et al. 1998), is difficult to answer. If deterministic
chaos is common in natural populations, then predictability over long time scales is
essentially impossible, even though short-term predictability can be enhanced by strong
density dependence (Ellner and Turchin 1995). An alternate hypothesis is that complex
population dynamics arise from stochastic environmental variation. This does not offer much

improvement for short-term predictability unless we understand the sources and dynamics of
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environmental variability, but at least stochastic effects will not propagate over time, as they
do for chaotic systems (Ellner and Turchin 1995).

Disregarding environmental variability, fluctuations may be caused by either
demographic stochasticity (disruptive forces) or delays in regulatory mechanisms (controlling
forces). The delays may arise because of developmental time and/or interactions between
individuals of different stages (age, stage, or size-structured dynamics) (Nisbet et al.1983,
Royama 1992). From a mechanistic point of view, fluctuations caused by regulatory delays in
structured populations may be divided into two broad categories: (i) those driven by
symmetric interactions between similar individuals, and (ii) the resulting from asymmetric
interactions between individuals of different stages (Gurney et al. 1985, Nisbet et al. 1994).
Sustained population cycles may result in either case if the interactions are highly nonlinear
or if it is weakly nonlinear or linear dynamics are disrupted by stochastic forces (Stenseth et
al. 1996a).

3 Diversity

The most simple and straightforward way of measuring species diversity is the number of
species. However, as the total number of species depends on sample size, total species
number usually does not enable the researcher to determine if one site is more, or less, diverse

than another.

The second approach is species-abundance curves based on the rank of species
abundance. Alpha statistic of Fisher et al. (1943) is often considered the "best" diversity
measure for many communities of species of this type, including Lepidoptera (Southwood
1978, Taylor 1978, Wolda 1983, Barlow and Woiwod 1989, Wolda et al. 1994, Chey et al.
1997), and was the only diversity measure, apart from species richness, used by Intachat and
Holloway (2000). Magurran (1985) tested three species abundance curves, log normal, log
series, and broken stick, for goodness of fit to her light-trap data from forests in Northern
Ireland. She found that the log normal model provided the best fit. Landau et al. (1999)
studied moth diversity in Louisiana forests. They determined that the species distribution
"roughly followed a log normal pattern". However, they were unable to give a number
characterizing diversity because when compared different sites the lognormal species-

abundance curve, similarly as log series and broken stick curves, unlike alpha cannot be
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characterized by a single number, which makes comparisons among sites difficult.

Though alpha can be characterized numerically, which makes between-site
comparisons easier, its disadvantage lies in its inability to discriminate between sites that
have the same numbers of individuals and species. It is likely that such sites vary in the
evenness of the frequencies of the constituent species. A site that has a greater evenness is
usually considered more diverse than a site where a few species dominate, even though the
alpha value may be higher in the site showing greater dominance (Rings and Metzler 1990).
The use of alpha to describe a community's diversity thus confounds two factors, species
richness and the evenness with which the individuals are apportioned among the species

(Pielou 1975).

The disadvantage of alpha index is overcome by a third approach, a diversity index
which summarize the data on the number of species and their proportional abundances into a
single numeric value (Hill 1973). There is no single index suitable for all situations and the
choice of an index depends upon which criteria the researcher wishes to emphasize. These
criteria may include how well the index discriminates between sites or samples that are not
unduly different, to which extent the index is sensitive to sample size, to species richness, or
to the evenness with which the individuals are apportioned among species (Rings and Metzler

1990). Examples include Margalef richness index (Dash and Mahanta 1993):

R S—-1
LHn)

where R is the richness index, S is the total number of species and » is the number of

individuals observed; Shannon and Weiner diversity index (e.g. Magurran 1988):

H=-) piLnp.

where H is the diversity index, p; is the frequency of the i’th species and Ln natural
logarithm; and evenness or equability index of the species (Pielou 1975, 1977):

J=H/LnS

where J is the species evenness or equitability index, H is the Shannon and Weiner

diversity index and S is the numbers of species recorded.
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Excellent introductions to the measurement of diversity are to be found in Pielou
(1975), Southwood (1978), Magurran (1988), Krebs (1989) and a relatively recent paper by
Colwell and Coddington (1994). Practical examples on measurements of diversity from light
trap data include Lesko et al. (2001), Szentkiralyi et al. (2000, 2001), Szentkiralyi (1992,
1998, 2002), Kadar and Szel (1999), Clay et al. (1998), Profant (1990), Butler et al. (1995,
1999), Landau and Prowell (1999a, 1999b), Landau et al. (1999), Barlow and Woiwod (1989,
1990), Robinson and Tuck (1993), Voss (1969, 1981, 1983, 1991), Sanders (1991), Grimble
and Beckwith (1992), Chaundy (1999), Butler and Kondo (1991), Dirks (1937), Frost (1964),
Moulding and Madenjian (1979), Rings et al. (1987), Rings and Metzler (1988, 1989, 1990)
and Lang and Tbrbk (1997).

4 Thermal requirements for insect development

Temperature is an important component of an insect environment, as it significantly affects
both its rate of development and survival. For each species, there is a range of temperatures
over which it can survive, and within this range there is a more limited range over which it
can grow and reproduce. Of particularly concern is the latter, which is referred to as a species’
ecologically relevant temperature range (Jaro$ik et al. 2002, 2004).

A simple way to describe the effect of temperature on insect development is the linear
regression of development rate on temperature. This relationship is significant in a range of
biologically favorable temperatures from about 2°C above the temperature at which the
growth ceases to the upper temperature above which the development is negatively affected
(Honek 1996b). Although the variation in development rate over the whole range of
temperatures may be described by non linear relationships, use of linear regression is

sufficient in most cases (Lamb 1992).

Linear regression enables calculation of the lower development threshold (LDT), a
temperature at which development ceases, and sum of effective temperatures (SET), the
number of heat units called day degrees above LDT required to complete development
(Honek 1996b). From the linear relationship between development rate and temperature (R =
aT + b, where R is development rate and T is temperature), the thermal characteristics of
development may be calculated as LDT = -b/a and SET = l/a. Thermal constants LDT and
SET are convenient for comparing requirements of insect populations since they provide a
good prediction of development time over a wide range of biologically significant

temperatures (Honek 1996b).
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Abstract

An assemblage of moth species at a suburb of Prague (50°5'11"N,14°18'06"E) was monitored
by a highly efficient mercury light trap for 23 years (1967-1976, 1980-1992). Species caught
were divided into seven guilds according to habitat specialisation, and analysed for yearly
catches and effect of annual mean temperature and precipitation by Shannon’s index of
diversity, separately for all and abundant (> 5 individuals per year) species. Overall, 424
species was recorded: 25 early successional species of arable land (43% of all caught
individuals), 116 forest species feeding on trees and shrubs, 33 forest species feeding on herbs
and lichens, 92 forest-steppe species, 116 grassland species, 28 wetland species, and 14 non-
specialized generalists. Species diversity of habitat specialist was mainly driven by changes of
land use, independently on climate variables: diversity of arable land species followed a
domed relationship with a peak in early succession stages after field abandonment, diversity
of wetland and forest-steppe species decreased in time due to the destruction of their habitats,
and diversity of grassland, and both groups of forest species, did not change in time as their
habitats were not substantially changing. In contrast, the diversity of generalists increased
with mean annual temperature. Abundant species were represented by 127 species and
exhibited patterns similar to all species, plus some more subtle changes. Grassland species
tended to increase with mean annual precipitation at low mean annual temperature. Non-
specialized species in the first years of observation had the same tendency but simultaneously
tended to decrease with increasing precipitation at high average temperature. It is concluded
that for habitat specialist, the indication of climate changes by indices of diversity can be
overlaid by changes in habitat use or buffered by availability of suitable habitats, and that
selection of abundant species, by elimination of random catches, can precise the revealed
patterns of diversity.
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Introduction

Climate change and habitat loss represent widely recognised twin threats to global
biodiversity, and hence to integrity of Earth’s life supporting systems (Parmesan and Yohe
2003, Franco et al. 2006). In terrestrial biomes, the effects of changing climate include spatial
shifts in species’ ranges (Konvicka et al. 2003, La Sorte and Thompson 2007, Wilson et al.
2007), phenological changes such as earlier arrival times or flowering periods (Roy and
Sparks 2000; Hassall et al. 2007), and disruptions of finely-tuned biotic interactions
(Harrington et al. 1999, Crozier 2004, Davies et al. 2006, Jepsen et al. 2008). The effects of
habitat loss are evident in declines of populations and losses of species across wide regions of
earth, particularly so in industrial countries (Konvicka et al. 2005, Pimm 2008). The losses no
longer affect only rare and specialised organism, but apply to widely distributed species as
well (Gaston and Fuller 2007). For instance, Britain’s once common moths have declined in
numbers by about one third of their abundance forty years ago (Conrad et al. 2006), likely
affecting food supply of insectivorous vertebrates, and hence structuring of food chains.
Overall, it has been estimated that 15-35% of Earth’s species face losses due to the combined
effects of climate change and habitat loss in a near future (Thomas et al. 2004).

Finding efficient responses to the two growing threats is complicated by close
interrelations between climate change and habitat loss effects. In groups in which distribution
changes are monitored in detail, such as butterflies, both contrasting and reinforcing impacts
of both developments have been detected. About one third of British warm-preferring
butterfly species is shifting their ranges northwards, whereas another third fails to respond to
increasing temperature, as habitat loss counterbalances the benefits of warmer climate
(Warren et al. 2001). Changing climate increased the magnitude of population fluxes of the
Bay checkerspot in California, eventually leading to population extinction (McLauglin et al.
2002) and complex effects increasing extinction proneness have been observed elsewhere
(Wallisdevries and Van Swaay 2006). It is increasingly clear that without disentangling the
climate change and habitat loss effects, we cannot achieve predictive models of response to
biotic communities to either of the two developments.

Here, we explore a unique opportunity to separate climate and habitat effects on
diversity of moth light trap catches, using 23-years long data series originating from a single,
but particularly efficient light trapping method. The trap was situated at a single location for
the entire period, illuminating a section of landscape whose part remained unchanged for all
the time, whereas the other part underwent substantial land use changes. The trap attracted
both habitat specialists on several habitat types and habitat generalists, and while habitats of
some specialists have declined rapidly, habitats of others did not change and hence increased
in proportion. This situation allows us to compare the temporal changes of diversity of
specialised and unspecialised species, as well as of species that have been loosing habitats
with those not losing them.

The unique setting, and concurrent recording of meteorological data, allows us to test
the hypothesis that the diversity of habitat-specialised species will respond mainly to land use
changes, whereas the diversity of generalists will reflect long-term meteorological trends.
More specifically, the diversity of specialists whose habitats in vicinity of the trap have
declined in extent should decrease, the diversity of those whose habitats remained intact
should not exhibit any particular trend, whereas the diversity of generalists should increase,
mainly as warming climate brings forth prolonged season and colonisation by a higher
diversity of migrants that tend to be habitat generalists (cf. Sparks et al. 2005, 2007).
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Material and Methods

Moths were trapped at Ruzyné crop research station, at the outskirts of Prague
(50°5'11"N,14°18'06"E) using a highly efficient mercury-vapour light trap (Novak 1983). The
trap was placed 8 m above the ground on the southern wall of a large building. It illuminated
a dendrological park with a collection of deciduous trees and shrubs (2.7 ha), further
surrounded by arable land (77.5 ha). In a larger distance, but still in the range of the trap
operation, there were dry and mesic grasslands with shrubs, intervened by small
anthropogenic woodlands, lines of trees, small trampled areas, and riverine carr fen scrubs.
During the period of the light trap operation, the park in front of the trap remained unchanged,
while wet habitats were destroyed by the establishment of a pond, and small arable fields and
forest-steppe habitats were both gradually abandoned, and part of them finally converted in
build-up areas (Figure 1).

The trap has been operating consistently throughout the growing seasons (March-
November), from 1967 to 1992, and the catches were sorted to species by IN. Yearly catches
of all species belonging to families of traditional “macrolepidoptera” (i.e., the monophyletic
Macorlepidopteran sensu Kristensen et al. 2007, plus primitive Hepialidae), which are
available for 23 years, are analyzed here. Catches from 1977-1979, when only 19 most
abundant species were monitored, are excluded from this analysis.

Seven distinct habitat preference guilds of the moths were distinguished, based on
preferences of both adult and larval stages (Fajéik 1998, Fajéik 2003): arable land species;
forest species with relationship to woodland herbs and lichens; forest species directly feeding
on trees and shrubs; forest-steppe species; grassland species; wetland species; and generalists,
occurring in many types of habitats (Appendix 1). Mean annual temperatures and
precipitations originated from a local meteorological station.

From all species sampled, we selected a group of abundant species, which had annual
average catches five or more individuals (species in bold in Appendix 1). This selection
should remove species with large occurrence of zeros in the data (Woiwod and Hanski, 1992),
and eliminate the influence of random effects (scare species and random catches stray
individuals from distant habitats). In the following analyses, all sampled species and the
abundant species are analysed separately.

Species diversity in each of 23 years was expressed, separately for all/abundant
species and all/abundant species belonging to the specified guilds, as Shannon’s index of
diversity

H= _Z":pi lnpt s

i=]

where p; is the proportion of individuals of the i-th species in the total number of individuals
of all species, n is the total number of species, and In is the natural logarithm (e.g. Pielou
1966). This index was chosen because it is largely independent of sample size (Pielou 1966,
1975, Kobayashi 1981) and summarises the number of species (i.e. species richness) and the
pattern of distribution of the individuals between the species (i.e. equitability or evenness)
with a single number, which can be easily expressed to non-biologists, such as planners
(Southwood and Henderson 2000).

The diversity was then analysed by multiplicative regression models that included
interactions between explanatory variables. The diversity index H was the response variable,
and the explanatory variables were linear and quadratic terms of the individual years of
monitoring (1967-1976, 1980-1992) and mean annual temperatures and precipitations in that
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years. The square powers of the explanatory variables were added in the analyses to test for
non-linear relationships. Because the explanatory variables were measured on different scales,
they were standardized to zero mean and unit variance. The standardization enabled direct
comparisons of the variable effects because steeper regression slopes directly indicated larger
effects. Using the standardized values, we checked for collinearity with a matrix of correlation
coefficients and by calculating tolerance values. To achieve the latter, we compared the
regression of the explanatory variable in question against all the remaining explanatory
variables in the model. The tolerance values for each explanator; variable were considered
unacceptably low if their values in the expression 1—* (where 7*is the variance explained by
the remaining explanatory variables) were < 0.1 (Quinn and Keough 2002, p. 128). These low
tolerance values, indicating a high correlation, can negatively affect the estimates of model
parameters.

We sought to obtain the minimal adequate models where all explanatory variables and
their interactions were significantly (p < 0.05) different from zero and from one another, and
all non-significant terms were removed. This was achieved by a step-wise process of model
simplifications, beginning with the maximal model (containing all explanatory variables and
their interactions) and proceeding with elimination of non-significant terms (through deletion
tests from the maximal model) and retention of significant terms (e.g. PySek et al. 2002). To
prevent biases to model structures caused by correlation between variables, we simplified by a
backward elimination from the maximal models using step-wise analysis of deviance tables
(Crawley 1993). Thus the results were not affected by the order in which the explanatory
variables were removed in the step-wise process of model simplification. To keep the
recommended number of explanatory variables 6-10 times smaller than the number of
observation (Neter et al. 1996), only the quadratic terms of explanatory variables which
appeared significant in preliminary regressions of the response variable on the single
individual explanatory variables were included in the maximal models. Appropriateness of the
fitted models was checked by plotting standardized residuals against fitted values and by
normal probability plots.

Following Quinn and Keough (2002, p. 131-133), we analyzed interactions among the
explanatory variables by using centered variables (i.e., variables rescaled by subtracting their
mean from each observation). Significant interaction between two variables was examined
with simple slopes of the multiplicative models at varying values of the interacted variables.
We used simple slopes of one variable on another to arrive at three specific values of the
changing variable: mean and mean plus and minus its sample standard deviation (Quinn and
Keough 2002). All calculations were made in S-PLUS® v. 6.2.1 ( Insightful Corp.).

Results

Overall, during 23 years, 424 macro-moth species and 800,690 individuals were recorded: 25
species of arable land (in 365,820 individuals), 116 forest species feeding on trees and shrubs
(49,123 individuals), 33 forest species feeding on herbs and lichens (33,059 individuals), 92
forest-steppes species (88,310 individuals), 116 grassland species (184,539 individuals), 28
wetland species (4,281 individuals), and 14 generalists (75,558 individuals) (Table 1). Mean
annual temperature and precipitation had an insignificant tendency for increase.

The diversity of all species followed a domed relationship, with the highest diversity
about 1980, symmetrically decreasing both towards the beginning (1967) and the end (1992)
of observation. This pattern was however caused just by the guild of arable land species
(Figure 2A), which formed 43% of all caught individuals. Diversity of the other habitat guilds
either significantly decreased in time, as in forest-steppe and more markedly in wetland
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species (Figure 2B), or did not change neither in time nor under the effect of the climate
variables (Table 1). Generalists increased with growing mean annual temperature (Fig. 2C).

Abundant species were represented by 127 species, i.e. by 30% of all sampled species,
and 768,489 individuals. Comparing with all species, forest species feeding on herbs and
lichens, arable land species and generalists were proportionally over-represented in this
group, while forest-steppe species, forest species feeding on trees and shrubs, and particularly
wetland species were under-represented (Table 1). The diversity of the total and arable land
abundant species showed the same domed relationship (Figure 2D) as was the case for the all
sampled species (Figure 2A), but explained more variance than for all species (Table 1). This
was clearly due to the guild of arable land species that comprised 45% of abundant species
individuals. The diversity of abundant species however also revealed some more subtle
changes not apparent for the all sampled species, which appeared as significant interactions
among predictors of species diversity (Table 1). Grassland species tended to increase with
mean annual precipitation at low mean annual temperature, and generalists had the same
tendency in the first years of observation, but also tended to decrease with increasing
precipitation at high average temperature (Table 2).

Discussion

It appears that the distribution of abundance, briefly and clearly summarized by means of
indices of diversity, may be a more sensitive indicator of a recent environmental disturbance
than the number of species (Kempton and Taylor 1974, Taylor et al. 1978). The diversity
index thus may appear more characteristic of the community at a site than is the number of
species caught (Taylor et al. 1976, Taylor 1978). However, the use of diversity indices has
often been criticised (Hurlbert 1971, Peet 1974, May 1975), and the uncharitable view is that
diversity indices do not give any additional insight comparing to species number (Southwood
and Henderson 2000). In spite of this view, diversity measures remain popular (Cairns 1974,
Kempton and Taylor 1974, Kempton 1979, Lyons 1981, Magurran 1988, Purvis and Hector
2000), especially in empirical studies (Rosenberg 1972, Maurer1974, Bakelaar and Odum
1978, Py3ek et al. 2004). We believe diversity indices can appear superior to the number of
species, their abundance or biomass (Jaroik 1991), as well as diversity expressed as species-
abundance relationships (Jaro$ik 1992). However, for their reliable use, the catches have to
cover the whole period of the activity of the species (Jarosik 1991). The analysed moths have
to work through a fixed reproductive program each year, by means of an almost constant total
amount of activity which is realized step by step during spells of suitable weather during a
season (Holyoak et al. 1997). The monitoring throughout the whole period of activity is thus
crucial for the adequate use of diversity index, as short-term catches give unreliable estimates
of diversity indices, due to inadequate assessments of relative abundances of individual
species (Jaro$ik 1991, Holyoak 1994).

In light trap catches of macromoths from a suburban station in Prague, generalists
increased their diversity in response to warming climate, whereas several guilds of habitat
specialists did not increase at all. This suggests that for specialist moths, any climatic effects
were probably overlaid by changes in habitat availability. That abundant grassland species
also reacted to climatic variables does not contradict this assertion, as grassland habitats are
created, comparing to the other habitats, by relatively non-specialised environments from
trampled areas and mesic grasslands to house gardens. Consequently, for long-term
monitoring in environments with extensive changes in land use, non-specialised species
appear more sensitive indicators of climate changes than habitat specialist.
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The placement of the light trap differed from those of most other light traps that
usually illuminate the vicinity circularly and draw insects from quite wide areas and mixtures
of communities. Contrary, the catches from this trap came from well defined environments,
that of a dendrology park in front of the building, the surrounding arable land, and the
environments of originally seminatural vegetation behind the arable land. While the park, the
surrounding arable land and grassland formations remained largely unchanged throughout the
whole period of the monitoring, the originally seminatural environments changed markedly.
The forest-steppe habitats were gradually converted into build up areas, intervened by just
small patches of mesic grasslands. This likely decreased the diversity in all sampled forest-
steppe species, and caused their proportional decrease in abundant species. Wetlands were
destructed and the riverine carr fen scrubs strongly limited by the establishment of the pond.
That was the cause of rapid decrease of diversity of wetland species in the sample of all
species and an occurrence of only one abundant wetland species among the abundant species.
The high proportional decrease of forest species feeding on woods and shrubs among
abundant species had a similar cause, as many of these species could had been associated with
car fen scrubs. Small arable fields in the vicinity of grassland formations were abandoned. A
few years later, after initialization of succession processes, diversity of arable species on these
plots increased, as a lot of these species belong to early successional (Jongepierova et al.
2004, Kiehl and Pfadenhauer 2007). However, subsequent successional development of these
fields again initiated rapid decrease of these species. This pattern is responsible for the domed
relationship of arable species, with the highest diversity in the mid of monitoring, and a
decrease both to the start and the end of this period. Proportional increase in representation of
arable land species, forest species feeding on herbs and lichens and non-specialized species
can be attributed to unchained environment of the park and surrounding arable land, and the
overall ruderalization of the whole area in the range of the light trap operation.

The increase of generalists and grassland species is caused by two interrelated
processes. The first process is the change of habitat types and their proportional availability,
manifested by the succession of the arable land to mesic biotopes, which compensates for the
increase of overbuilding sites. This process supports particularly grassland species. Second,
generalist and grassland species are those best able to face climate changes. As mostly
generalists, they are mainly polyphagous and have large geographical ranges, which give
them, in a case of temperature increase, better chance for finding an appropriate biotope and
host plant (Bale et al. 2002, Brachsler and Hill 2007). Increasing temperature shortens
developmental time of pre-imaginal stages and thus mortality caused by predation and
diseases (Hill and Gatehouse 1992, Dennis and Sparks 2007). In addition, some of the
generalist and grassland species are migrants and their probability of occurrence thus further
depends on temperature; in hot summers, migrants have better chance for surviving in regions
where temperature is normally insufficient (Sparks et al. 2005). However, hot and wet seasons
may also have negative effects on survival of generalist and grassland species. This is so if
caterpillars are the overwintering stage and the winter temperatures appear insufficiently low
for dormancy (Conrad et al. 2002, Parajulee et al. 2004). Survivorship can also be negatively
affected by strong summer rainstorms, due to the dissolution of eggs and first larval instar,
particularly of small species (Kobori and Amano 2003). This could be the cause of the
decrease of generalists with increasing precipitation at high average temperature.

The results suggest that the selection of abundant species eliminates effects of random
catches and thus help to indicate relationships which appear vague in sample of all detected
species. A disadvantage is that this selection can decrease the sample to a magnitude that does
not enable to analyse diversity, as happened for wetland species (Table 1). On the other hand,
the selection of abundant species enabled to reveal the interactions among the predictors of
species diversity for grassland and generalist species and to explain more variance in the
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domed relationship for arable land species. Even if the decrease in sample size prevents to
determine significant changes in species diversity, as probably happened for forest-steppe
species, comparison of proportional representation between all and abundant species still can
indicate long term trends. This was shown as the proportional decrease between all and
abundant species for the forest-steppe guild. Finally, proportional changes between all and
abundant species can indicate changes that were not apparent by the use of the index of
diversity, as appeared for forest species feeding on woods and shrubs, where the index of
diversity did not reveal any trend, but the decline of forest species was clearly apparent in the
decrease of the proportion of abundant species. A change in proportion can also indicate
overall changes in land use, as suggested the proportional increase of abundant species for
generalists, arable land species and forest species feeding on herbs and lichens.
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Table 2. Simple slopes (estimates, standard errors SE, t-tests ¢, degrees of freedom df and
significances P) of species diversity (Shannon’s index H) on mean annual precipitation for
different values of mean annual temperature for abundant (yearly catches >5 individuals)
grassland species, and for different values of mean annual temperature and year of
observation for abundant generalits (only combinations for marginally significant values, i.e.
slopes with 0.05 <P <0.1, are shown).

Interacting variables Estimate SE t da P
Grassland species

Mean annual temperature 6.1 °C 0.0062 0.0032 191 19 0.07
Mean annual temperature 7.7 °C 0.0025 0.0029 0.84 19 041
Mean annual temperature 9.4 °C . -0.0013 0.0052 -0.24 19 0.81
Generalists

Mean annual temperature 6.1 °C in 1985 0.017 0.0082 2.10 16 0.05
Mean annual temperature 9.4 °Cin 1985  -0.019 0.0098 -1.94 16 0.07
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Abstract

An assemblage of moth species at a suburb of Prague (50°5'11"N,14°18'06"E) was monitored
by a highly efficient mercury light trap for 23 years (1967-1976, 1980-1992). A group of 81
abundant monovoltine species which had annual average catches five or more individuals was
selected, and their density dependences, early fluctuations, linear decreases/increases, and
concave/convex population dynamics were examined. Results were related to life histories of
the moths. Eighty-tree percent of the species was significantly density dependent. The
probability of detection of density dependence increased with decreasing population
fluctuation, independently of life histories of the individual species. Eleven species
significantly decreased and was mostly prone to high population fluctuation, while only six
species significantly increased. It is concluded that density dependence, at least to some
extent, most probably influences population dynamic of all species, and that the highly
fluctuating species are most liable to local extinctions.
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Introduction
Important questions in population ecology are why and how much a population fluctuates,
how much is the population regulated and which is a trend of its population dynamic. Since
Nicholson (1933), Solomon (1949), Andrewartha & Birch (1954) and Morris (1959) first
studied population dynamics there have been two trends in interpretation. The first stresses
the disturbing influence of density independent environmental factors (Andrewartha 1957,
Birch 1957, Dempster 1983, Den Boer 1988, 1990, Den Boer & Reddingius 1989) the second
the stabilising influence of density dependent mechanisms (Varley et al. 1973, Hassell 1975,
Bellows 1981, Royama 1984, Latto & Hassell 1987, Latto & Bernstein 1990, Turchin 1990),
and there is an ongoing discussion between representatives of both opinions (e.g. Berryman
1987, 1991, 1998, Wolda 1989, 1991, Sinclair 1989, Wolda & Dennis 1993, Holyoak &
Lawton 1993, Jaro$ik & Dixon 1999).

Three problems confound a real understanding of population dynamics: (1) a paucity
of high-quality, long-term population data (Hassell et al. 1989, Woiwod & Hanski 1992,
Holyoak & Lawton 1993), (2) absence of a reliable method of detecting density dependence,
in spite of the effort of many authors (Varley & Gradwell 1960, Solomon 1964, Maelzer
1970, St Amant 1970, Bulmer 1975, Slade 1977, Vickery & Nudds 1984, Bernstein 1985,
Gaston & Lawton 1987, Pollard et al. 1987, Reddingius & den Boer 1989, Turchin 1990,
Vickery 1991, Turchin & Taylor 1992, Crowley 1992, Holyoak 1993, 1994, Holyoak &
Crowley 1993, Dennis & Taper 1994, Shenk et al. 1998, Lele 2006), and (3) a preoccupation
with extracting deterministic dynamics from the data, which may obscure the ultimate aim: to
identify the nature of real-world dynamic processes (Kindlmann & Dixon 1995, Dixon et al.
1996, Sequeira & Dixon, 1997).

Most studies in which populations have been monitored over several generations show
fluctuations in population size, but around some characteristic level of abundance. Clearly,
some kind of negative density dependent feedback process must be involved in the dynamics
of such populations, i.e. there must be some actions of repressive environmental factors which
intensify as the population density increases and relax as this density falls (Huffaker &
Messenger 1964). Identifying these feedback process by teasing out the density dependent
signal from the environmental noise, and explaining just how they operate, is of fundamental
importance. Only then can such practical applications as harvesting of renewable resources,
epidemiology, conservation of species and pest control be properly addressed on a truly
scientific basis (Hassell et al. 1989).

This study analyse a long-term, highly reliable set of data on 81 species of moths that
were monitored for 26 years (Novak 1983, Holyoak et al. 1997). This large set of analysed
species enables to compare their life-history traits with their population dynamics by detecting
their density dependences, level of seasonal fluctuation, linear decreases/increases and
concave/convex population dynamics over time. This approach then enables to ask clear
biological questions: (1) Are there groups of species that have a similar population dynamics
based on their biology? (2) What are the common biological characteristics of the species
with significant density dependence? (3) Do we recognise groups of species reacting in the
same way to environmental changes and are they biologically related?

Material and Methods
Moths were trapped at Ruzyné Crop Research Station, at the outskirts of Prague
(50°5'11"N,14°18'06"E) using a highly efficient mercury-vapour light trap (Novak 1983). The
trap was placed 8 m above the ground on the southern wall of a large building. It illuminated
a dendrological park with a collection of deciduous trees and shrubs (2.7 ha), further
surrounded by arable land (77.5 ha). In a larger distance, but still in the range of the trap
operation, there were dry and mesic grasslands with shrubs, intervened by small
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anthropogenic woodlands, lines of trees, small trampled areas, and riverine carr fen scrubs.
During the period of the light trap operation, the park in front of the trap remained unchanged,
while wet habitats were destroyed by the establishment of a pond, and small arable fields and
forest-steppe habitats were both gradually abandoned, and part of them finally converted in
build-up areas.

The trap has been operating consistently throughout the growing seasons (March-
November), from 1967 to 1992, and the catches were sorted to species by IN. Yearly catches
of all species belonging to families of traditional “macrolepidoptera” (i.e., the monophyletic
Macorlepidopteran sensu Kristensen et al. 2007, plus primitive Hepialidae), which are
available for 23 years, are analyzed here. Catches from 1977-1979, when only 19 most
abundant species were monitored, are excluded from this analysis. For further analyses, we
selected a group of 81 monovoltine (i.e. having one generation per year) abundant species,
which had annual average catches five or more individuals (Table 1). The selection of
abundant species should remove those with large occurrence of zeros in the data (Woiwod
and Hanski, 1992), and eliminate the influence of random effects (scare species and random
catches stray individuals from distant habitats). The selection of monovoltine species was
done for correct testing of density dependence, as species tested for density dependence
should be monovoltine and semelparous (Murdoch & Walde 1989).

The Bulmer’s (1975) test statistic of density dependence, based on the first-order serial
correlation, was used for testing density dependence. Its value, for natural Jog of population
density, In N; = X,, in census data N;, N, ... N, where N are population densities in /, 2, ... n
seasons, 1S

R =g (1), where
U=Z(XM—X’)Z
V=Z:(Xi‘X.)z and
x-34

The null hypothesis on density independence is rejected for small values of R; critical P-
values are listed in Bulmer (1975). For correct use of the test, 62 species from the group of 81
monovoltine species, which had no population trends, was chosen, as testing density
dependence by Bulmer’s (1975) test is inefficient for data with trends (Slade 1977, Vickery
and Nudds 1984). The trends were tested by linear and quadratic regression in S-Plus v. 6
(Insightful Corp. 2003).

Results for density dependence and trends were related to the following life-history
traits of individual species:

e level of population fluctuation: measured as standard deviation of natural log +/ of
population abundance in individual years of monitoring;

e abundance: measured as mean for natural log +1 of population abundance in
individual years, and as a dichotomous categorical variable (yes/no) for categories
low/ intermediate/high abundance;

e habitat associations: dichotomous variable for habitat categories
steppe/meadow/marsh/floodplain forest/oak forest/ coniferous forest/arable
land/orchard/park/generalist;

e taxonomy: Noctuidae/Geometridae;
size: wingspan and egg size (mm);
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fecundity (yes/no): tens/hundreds/thousands of eggs;

flight period: dichotomous variable with selected months when the species on wings;
altitude: dichotomous variable lowland (up to 400 m a.s.l.)/mountain (800-1000 m
a.s.l.)/both lowland and mountain species;

o food specialization: dichotomous variable specifying whether imago takes/does not
take food; caterpillar is endophagous/exophagous; caterpillar eats
leafs/stems/flowers/flowers and buds/fruits/wood/roots, tubers and bulbs; caterpillar is
monophagous on herbs/monophagous on shrubs and trees/oligophagous on
herbs/oligophagous on shrubs and trees/oligophagous on wetland plants/polyphagous
on herbs/polyphagous on shrubs and trees/polyphagous on vascular plants; caterpillar
eats mosses and lichens/withered and decomposed plants/animals;

e migrant: no/yes/occasional;

dormancy: diapause in egg/caterpillar/pupa/imago stage; hibernation in

egg/caterpillar/pupa/imago stage; aestivation in egg/caterpillar/pupa/imago stage

life-history according to population dynamic: r/K/K-r

eggs laid: separately/in small (< 20 eggs)/large loads;

tendency to outbreaks: yes/no

caterpillars’ aggregation: solitary/aggregated in nests.

The relationships of population trends and density dependence to the life history traits

were analysed by classification trees. Density dependence (yes/no), linear

(positive/none/negative) and quadratic (convex/concave/none) trends were the response

variables, and the life-history traits explanatory variables. The trees were constructed by

binary recursive partitioning in CART v. 6.0 (Breiman et al. 1984, Steinberg & Colla 1995),

which uses the most reliable pruning strategy of over-growing trees, ensuring that any

important tree structure is not overlooked. To find the optimal tree, a sequence of nested trees
of decreasing size, each of them being the best of all trees of its size, were constructed, and
their resubstitution relative errors were estimated. A random subset of the data (a test subset),
comprising approximately 20% of all the data, was used to obtain estimates of cross-validated
relative errors of these trees. These estimates were then plotted against tree size, and the
minimum cost tree was selected as the optimal tree (Steinberg & Colla 1995). Following

De’ath & Fabricius (2000), a series of 50 cross-validations were run, and the modal (most

likely) single tree was chosen for description. The quality of the best single classification tree

was evaluated by its misclassification rate, i.e. by comparing the misclassification rate of this
best model with misclassification rate of the null model (De’ath & Fabricius 2000). The best
trees were represented graphically, with the root Node 1 standing for undivided data at the
top, and the terminal nodes, describing the homogeneous groups of data, at the bottom of the
hierarchy. To prevent missing explanatory variables to have an advantage as splitters, the
explanatory variables were penalized in proportion to the degree to which they were missing,
and treated by back-up rules that closely mimicked the action of the primary splitters.
Classification trees appeared ideally suited for these analyses, due to their flexibility
and robustness, invariance to monotonic transformations of predictor variables, their ability to
use combinations of explanatory variables that are categorical and/or numeric, to deal with
nonlinear relationships, high order interactions and missing values that appeared for some of
the explanatory variables and, despite all these analytical difficulties, their capability to give
easily understandable and interpretable results, providing a highly intuitive insight into the
kinds of interactions between the explanatory variables (De’ath & Fabricius 2000, Chytry et
al. 2008).
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Results
Eighty-tree percent of 62 species without trends, which were analysed by Bulmer’s test of
density dependence, appeared to have significant density dependence in their population
dynamics (Table 1). None of the life history traits was able to explain which traits are
responsible for the density dependence, except that the strength of density dependence was
indirectly related to population fluctuation (Fig. 1). All significantly density dependent
species had a standard deviation of log transformed population dynamic less than 0.74. This
means that density dependent species fluctuated less than density independent species.

Of eighty-one abundant monovoltine species, eleven species significantly decreased
and only six significantly increased over the monitoring period (Table 1). The decreasing
species Agrochloa circellaris, A. lychnidis, Agrotis ipsilon, Cidaria fulvata, Ennomos
autumnarius, Eulithis prunata, E. pyraliata, Hydraecia micacea and Lacanobia w-latinum
highly fluctuated in time, and the two remaining species with decreasing trend Apamea
sordens and Oligia latruncula were characterised by hibernating caterpillars. The increasing
species Euxoa aquilina, Hoplodrina octogenaria, Mythimna comma, M. ferrago,
Opistograptis luteolata and Thalpophila matura were characterized by hibernating
caterpillars (Figure 2).

Of the six species with concave population dynamic (Table 1), suggesting the highest
abundance at the mid of the monitoring period, four (Euxoa nigricans, E. aquilina, Mythimna
comma and Opistograptis luteolata) laid small load eggs; the remaining two either little
fluctuated (Hoplodrina alsines) or were little abundant (Thalpophila matura). The nine
species with convex population dynamic (Agrochloa lychnidis, Agrotis ipsilon, Apamea
sordens, Ennomos autumnarius, Hydraecia micacea, Lacanobia w-latinum, Luperina
testacea, Oligia latruncula and O. strigilis, Table 1) had a tendency to a large population
fluctuation and a large abundance (Figure 3).

Discussion
The fact that the probability of detection of density dependence increases with decreasing
population fluctuation is not surprising. This is so because density dependence is responsible
for population regulation, which, in turn, is manifested by dumping population fluctuation.
The relationship between increasing density dependence and decreasing population
fluctuation is directly incorporated in the structure of the Bulmer’s (1975) test of density
dependence: in Bulmer’s test statistic (1), small value of R, for which the null hypothesis on
density independence is rejected, means that numerator ¥ in the equation (1), which describe
average fluctuation around characteristic level of abundance X', is proportionally small
comparing to the denominator U, which describe fluctuation between population densities in
Xi+1 and X; season. In other words, in case of density dependence the fluctuation around some
characteristic level of abundance X" is small because of small values of X;.; in the
denominator U are followed by large values of X; and vice versa, which is a consequence of a
regulatory process.

More interesting is thus the fact that significant density dependence in population
dynamic appeared rather a rule than exception, independently on population trends and all the
other life histories of the individual species than is the level of population fluctuation. This
result strongly suggests that density dependence, at least to some extent, influences population
dynamic of all the examined species. It is consistent with the previous results on population
dynamics of moths from light traps. Woiwod and Hanski (1992) detected significant density
dependence in 79% of moth species by Bulmer’s (1975) test. However, unlike our study, in
noctuids the average degree of density dependence increased with body size.

That the density dependence was not detected in all species is affected by the fact that
there is not a method which is reliably able to detect density dependence in census data,
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independently on sample size and a type of population dynamic (e.g. Gaston & Lawton 1987,
Pollard et al. 1987, Hassell et al. 1989, Turchin 1990, Shenk et al. 1998, Lele 2006). For
instance, Dempster (1983) argued that density dependence was not detected in one third of
life-table studies of butterflies and moths, but additional studies were able to detect density
dependence in many of these studies (Sinclair 1989). Strong et al. (1984) were unable to
detect density dependence in 11 of 31 studies on phytophagous insects, but a detail later study
(Southwood et al. 1989) revealed density dependence in one of these cases. Stilling (1988), in
review of life-table studies of insects, found density dependence for only about a half of
cases, but Hassell et al. (1989) were able to find density dependence for most of these studies.

Similarly to density dependence, also the population trends were largely independent
on life history traits of the individual species. Only the level of population fluctuation,
average abundance, hibernating stage and egg load appeared significant determinants of
population trends in time.

The percentage of decreasing species was about double that of displaying increases,
similarly to results on population dynamics of moths from light traps in Great Britain (Conrad
et al. 2004). All but two species with significantly decreasing trend highly fluctuated. This
result suggests that decreasing species are more prone to high population fluctuation than
other species, which in turn may increase their chance to local extinction. This is so because
species with high population fluctuations are less regulated than species with low fluctuations,
and these unregulated populations are more prone to extinctions than those which are strictly
regulated (Reddingius 1971, Strong 1984). In case of a local decrease of a highly fluctuated
species, its fluctuation thus can largely increase its extinction chance.

All significantly increasing species, but also two decreasing species, had hibernating
caterpillars. Species with concave population dynamic often laid small egg loads and species
with convex dynamic tended to fluctuate and be abundant. These traits however could hardly
play an important role in the population dynamics per se. More important are probably
interactions with habitat changes, which are related mainly to species’ habitat associations
(Table 1).

Some of the forest-steppe species can have a tendency to population increase due to
gradual changes of grasslands into forest-steppe habitats (Kadlec et al. 2008). This can be the
case for increase of Mythimna ferrago, feeding on grasses but living mainly in forest-steppe
habitats. Conversely, the decrease of grassland habitats can be the cause of decline in
grassland species Cidaria fulvata, Eulithis pyraliata and E. prunata. The decrease of
Hydraecia micacea, and probably also of Agrochloa circellaris and Ennomos autumnarius, is
related to the destruction of wetland habitats. The revealed concave and convex trends in
species abundance concern mainly non-specialized ruderal species. Their peaks or troughs in
population dynamics in the mid of the monitoring period thus can be attributed mainly to
successional changes in availability of their food plants after abundance of small patches of
arable land in the vicinity of the light trap at the beginning of the monitoring period.
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Figures

Figure 1. Index of the strength of density dependence plotted against index of population
fluctuation. The index of the strength of density dependence is expressed as —I times the logit
transformed probability of detection of density dependence by Bulmer’s (1975) test, and the
index of population fluctuation as a standard deviation of log-transfromed+/ yearly catches of
individual species. Larger indices mean, respectively, more likely detection of density
dependence and larger population fluctuation. Density dependence = 4.82 — 1.90 population
fluctuation. F' = 33.33;df = 1, 58; P <0.001; R?>=0.36.
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Figure 2. Classification tree analysis of the negative (red Class -1), positive (green Class 1)
and no (blue Class 0) linear trend in population dynamic of 81 monovoltine moth species.
Each node (polygonal table) and terminal node (rectangular table) shows node number,
splitting variable name, split criterion and number of cases of negative, none and positive
trends. Code (0) of a splitting variable means no, code (1) yes. The splitting variable
STANDARD DEVIATION characterize population fluctuation — large values mean large
population fluctuation. The misclassification rate for the negative trend is 18.1% (two
misclass cases of eleven) and zero for the positive trend (no misclass cases of six), compared
to misclassification rate 33.3% for the null model (guessing the probabilities of the negative,
positive and none trend being equal, i.e. 33.3%).
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Figure 3. Classification tree analysis of the concave (blue Class 1), convex (green Class 2) and no
(red Class 0) quadratic trends in population dynamic of 81 monovoltine moth species. Each node
(polygonal table) and terminal node (rectangular table) shows node number, splitting variable
name, split criterion and number of cases of negative, none and positive trends. Code (0) of a
splitting variable means no, code (1) yes. The splitting variable STANDARD DEVIATION
characterize population fluctuation — large values mean large population fluctuation, and
LOG_MEAN (average of log-transfromed+/ yearly catches of individual species) characterize
population abundance. The misclassification rate for the concave trend is 16.7% (one misclass
case of six) and 22.2% for the convex trend (two misclass cases of nine), compared to
misclassification rate 33.3% for the null model (guessing the probabilities of the concave, convex
and none trend being equal, i.e. 33.3%).
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Node 1
SMALL_LOADS_EGGS = (0)
ClassCases %

0 66 815
1 6 74
9 111

N =81

SMALL_LOADS_EGGS = (0) SMALL_LOADS_EGGS = (1)
1 ]

Node 2 Teminal
STANDARD_DEVIATION <= 0.38 Node 4
ClassCases % ClassCases %

0 60 857 0 6 545

1 2 29 1 4 364

8 114 2 1 9.1
N=70 N=11

STANDARD_DEVIATION <= 0.38 STANDARD_DEVIATION > 0.38
| l
Terminal Node 3
Node 1 LOG_MEAN <= 1.76
ClassCases % ClassCases %
0 1 50.0 0 59 86.8
1 1 50.0 1 1 15
2 0 0.0 8 11.8
N=2 N=68

LOG_MEAN <= 1.76 LOG_MEAN> 1.76
l 1
Terminal Terminal
Node 2 Node 3
ClassCases % ClassCases %
0 34 944 0 25 781
11 28 0 00
2 1 28 2 7 219
N =36 N =32
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Summary:

1. The objective of this study was to test the theoretical prediction that the thermal tolerance
range for development in insects should be about 20° C.

2. The data on the thermal requirements for development of 66 species from 8 orders of insects
was obtained from the literature. The temperatures at which the developmental rates are at their
minimum and maximum was obtained for each population by defining the relationship between
developmental rate (1/D) and temperature, using either Lactin et al.’s (1995) or Briére et al.’s
(1999) model.

3. Thermal windows, i.e. the range in temperature between the minimum and maximum rate of
development for individual species, and the relationship between the minimum and maximum
temperatures, were examined.

4. The mean thermal window, 19.8° C with 95% confidence interval 19.1 — 20.5 and range 13.3 —
28.6, was influenced by species phylogeny, with the windows narrower for species having a true
pupal stage, but not by ecological traits thought to affect species thermal requirements. The
relationship between the minimum and maximum temperatures was highly significant and
independent of species phylogeny.

5. The facts that theory and this analysis of empirical data indicate that each species of insect can
only develop over a limited range of temperatures independently of species traits, and that the
relationship between the minimum and maximum developmental rate co-vary independently of
species phylogeny may help identify the precise nature of the physiological mechanism
underlying the seasonal development and distribution of insects, and possibly other ectotherms.

Key words: distribution, insects, thermal requirements for development, thermal window,
thermal tolerance range, ectotherms.
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Introduction

The effect of temperature on the development and growth of ectotherms has been well studied
over a very long period and is extremely well reported. Nearly three hundred years ago Réaumur
(1735, 1736) was already aware that there were temperatures below which organisms cannot
develop and appreciated that the temperature sum required for complete growth of an organism is
a constant. That is, nearly three hundred years ago the basic aspect of the relationship between
ectothermic species and their thermal environment, namely the constancy of the temperature sum
required by each organism for development, now usually measured in day degrees (D°), had been
identified. Current physiologically based theoretical studies are mainly concerned with the effect
of temperature and body size on the rates of biological processes (Gillooly et al. 2002; Charnov
& Gillooly 2003; Brown et al. 2004). It is appreciated that the lower developmental thresholds of
tropical species are higher than those of temperate species (Honek 1996a) and for each species
there is an ecologically relevant range of temperatures over which it can grow and reproduce, its
thermal window (van der Have 2002; Jarosik, Honek & Dixon 2002; Jaros$ik et al. 2004).
However, neither the relationship between the temperatures at which development proceeds at the
minimum and maximum rates has been studied, or the prediction that the width of the thermal
window is about 20°C been tested.

Theoretical studies (Charnov & Gillooly 2003; Gillooly et al. 2002) suggest that the width
of the thermal window for each species should be about 20° C. This can be derived from Charnov
& Gillooly’s (2003) assertion that for ectotherms the lower developmental threshold is about ten
centigrade below the mean developmental temperature in nature (10° C rule), that the rate of
development is a linear approximation to a universal exponential function reflecting underlying
biochemical kinetics of metabolism, and that this exponential function causes the estimated lower
developmental threshold to increase with the mean developmental temperature in nature. The
consequences of the 10° C rule are that the lower developmental threshold and the temperature at
which the development is fastest should be correlated, and as the mean temperature for
development should be the midpoint between the temperatures for the minimum and maximum
developmental rates, the expected width of the thermal window should be about 20° C, with the
exact value depending on a reference middle temperature for development rate. Finally, as both
these predictions are based on a thermodynamic model of development in ectotherms then the
mechanism is more likely to be physiological than ecological, and might be independent of
phylogenetic relationships.

The objective of this study is to determine whether in insects the difference between the
temperatures when development proceeds at the minimum and maximum rates is about 20° C,
whether the width of the thermal window can be modified by environmental and biological traits
and species phylogeny, and whether the relationship between the minimum and maximum
developmental rate temperatures is dependent on species relatedness.

Material and Methods

In ectothermic organisms, development rate increases with temperature following a sigmoidal
curve when measured over the ecologically relevant range of temperatures (e.g. Wagner ef al.
1984, Wagner, Olson & Willers 1991). A surrogate value for the lower developmental threshold,
which has been widely adopted, is to use the value obtained by extrapolating the linear portion of
the relationship between rate of development and temperature back to intercept the X-axis. This
virtual value is referred to in the literature as LDT or basal temperature (tb) (e.g. Jaro$ik, Honek
& Dixon 2002, Trudgill, Honek & Van Straalen 2005). At the higher temperatures the slope of
the curve decreases, reaches a maximum and then decreases. The point of the maximum
development rate is referred to as the optimum temperature (to) (Trudgill, Honek & Van Straalen.
2005) or maximum temperature (tdmax) (Birkemoe & Leinaas 2000). Although at temperatures
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greater than that at which the maximum development rate is recorded some individuals can still
develop they take longer to reach maturity and many die. That is, the thermal window can be
defined in terms of the temperatures at which the minimum and maximum developmental rates
occur. We favour the use of tdmax over to because optimum implies this temperature is the most
favourable for the organism concerned. However, in nature organisms are subject to fluctuations
in temperature and are unlikely to be adapted to doing best at one particular temperature but to
optimize their performance over the range of temperatures they most frequently experience in the
field. For the same reasons and conformity, we prefer tdmin to tb.

Several models are proposed, which describe the non-linear relationship between
developmental rate and temperature (e.g. Stinner, Gutierrez & Butler 1974; Logan et al. 1976;
Sharpe & DeMichele 1977; Schoolfield, Sharpe & Magnuson 1981; Harcourt & Yee 1982).
Nevertheless, only two, relatively recent models (Lactin et al. 1995, their equation 1; Briére et al.
1999, their modified 2™ model) are biologically realistic and simple, and enable a simultaneous
fitting of a non-linear developmental response to temperature and assessment of the value of
tdmin. These models are used in this study to determine tdmin and tdmax and the width of the
thermal window, the difference between these two values.

The data on the thermal requirements for development of insects used in this study mainly
comes from papers published by Alois Honek and his colleagues (Honek & Kocourek 1990;
Honek 1996; Jaros$ik, Honek & Dixon 2002; Jaro$ik & Honek 2007). Developmental times for at
least four different constant temperatures (°C) were obtained mainly from this literature for
seventy-four non-dormant (i.e. not in diapause) populations of sixty-six species, belonging to
eight orders of insects. To avoid pseudo-replication of the species for which the studies were
done on different morphs or genetic strains, or in different atmospheric conditions or on different
host plant cultivars, the values of the temperatures for the minimum and maximum
developmental rates for the morphs, strains, atmospheric conditions or cultivars were calculated
separately for each population of these species, and to obtain one independent data point for each
species, the average value for these populations then established. The averages for these species
were not calculated directly by first pooling the results for all their populations, because
temperature dependent responses usually differed among the populations of each of these species.
The species analysed and their estimated lower and upper temperatures for development are listed
(before calculating average tdmin and tdmax for those species for which several populations were
analyzed) in Appendix S1 in Supplementary Material.

With a few exceptions, for which only data for one developmental stage (egg, larva or
pupa) or part of the total development (e.g. larva + pupa) are available, the total pre-imaginal
development (egg to adult) for each population of a species was analysed. In those cases where
data is available for more than one stage but the developmental time for these stages could not be
pooled (usually, data available for egg and pupa, but not for larva), the developmental stages
were analyzed separately, but only the result for the stage giving the better overall fit was chosen
for analysis. This selection was based on a comparison of the residual sums of squares, total
explained variance (r*) and an inspection of fitted plots of the models. That data for total
development is not available for all species should not bias these analyses, as all the
developmental stages of an ectotherm species have the same lower developmental threshold
(Jaro$ik, Honek & Dixon 2002; Jaro$ik et al. 2004).

To establish the minimum and maximum temperature for development of each
population, the relationship between the developmental rates and temperature, with the rate
expressed as the reciprocal values of the developmental times in days (1/d), was defined using the
Lactin et al.’s (1995) or Briére et al.’s (1999) model. Briére et al.’s model for the rate of
development, », which is a positive function of temperature, 7 (°C), needs only three parameters:

r(T)=al(T-T)\T,-T (1)
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where a is an empirical constant, 70 is the lower temperature developmental threshold, i.e. the
minimum temperature tdmin, and 7L lethal temperature. On the other hand, Lactin et al.’s model
needs four parameters:
F(T) = ¢ — el tue8] 4 4 @
where p is the developmental rate to the maximum temperature tdmax, 7max lethal temperature
(TL in Briére et al.’s model above), 4 is the width of the high temperature boundary layer (the
width of the high temperature decline in developmental rate, over which thermal breakdown
becomes the overriding influence), and 4 is the intersection of the fitted model curve with
abscissa at the lower temperatures, which is used to estimate the minimum temperature tdmin.
As a consequence of the difference in the number of parameters, to have at least one
degree of freedom for the parameter estimates of a fitted model all the populations for which data
for only four constant temperatures were available were fitted by Briére et al.’s three-parameter
model. For the remaining populations, Lactin et al.’s model was preferred, because this model
gives a better overall fit than that of Briére et al. (Kontodimas et al. 2004). Both the models were
fitted using the least-square non-linear Levenberg-Marquardt iterative regression method in
Statistica 6.0 for Windows (StatSoft, Tulsa), with convergence criterion set to 0.00001. Values
for the maximum temperatures for development were calculated analytically from the fitted
models; for Briére et al.’s model as:

2mT, +(m+ )T, + 4m’T? +(m+1)°T? - 4m’T,T, &)
o max 4dm+2
for m = 2 (Briére et al. 1999), and for Lactin et al.’s model as:
. _(p=18)T,, ~In(pn) 4)
dmax — / .
p—1A

(Appendix S2). Values of the minimum temperatures tdmin were estimated as the intersections of
the fitted curves with abscissa (Fig. 1), but can be also solved numerically, as described in
Appendix S2. Parameters of the fitted models are available in Appendices S3 (Lactin et al.’s
model) and S4 (Briére et al.’s model).

The widths of the thermal windows, the differences between tdmax and tdmin for
individual species (Fig. 1), were calculated, their distribution presented in a frequency histogram,
and the mean value with 95% confidence interval (CI) determined. To reveal how the thermal
windows are influenced by species phylogeny and ecological traits, the variation in thermal
windows was partitioned into phylogenetic and non-phylogenetic components. First, for all 66
species, a patristic distance matrix (i.e. the sum of branch lengths on a path between a pair of
taxa) was derived from the tree of life web site http://tolweb.org/tree/phylogeny.html [except for
Diptera, for which phylogenetic relationships were extracted from Yeates & Wiegman (1999),
Sather (2000) and Yeates (2002)], considering each branch length to be equal to one unit (e.g.
Prinzing et al. 2001). A principal coordinate analysis was then performed on this matrix, using
the function cmdscale in R Package version 2.3.1 (R Development Core Team, 2006). Each
principal coordinate (called PC hereafter) of the matrix represents the relative amount of
phylogenetic variance, which is proportional to the associated eigenvalue (Diniz-Filho, De
Sant'ana & Bini 1998). The PCs were listed in decreasing order of explained variance, from PC1
to PC6S. Their order describes decreasing phylogenetic scales, but do not distinguish the exact
hierarchical contribution of the individual PCs to the phylogeny.

We then incorporated phylogenetic information encompassed in the PCs into the
statistical analysis that simultaneously included ecological traits, following Desdevides et al.
(2003; Appendix SS5). The included ecological traits were (i) species dry body mass in mg (In
transformed), calculated as mass = (body length)z'62 (Rogers, Hinds & Buschbom 1976), (ii)
latitude (°N or S) from which the experimental populations originated (a surrogate for the effect
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of climate; Honek 1996a) and (iii) food specialization according to Honek (1999): (a) predators,
which feed on living animals, i.e. true predators and parasitoids; (b) herbivores, which feed on
living plants, i.e. grazers and sap feeders; and (c) “seed eaters”, feeding on dry seeds and dead
plant and animal remains, represented mostly by store product pests. All these traits are known to
affect the species thermal requirements, namely lower developmental thresholds and sum of
effective temperatures necessary for the completion of development of a species (Honek 1996a,
b, 1999, Honek & Kocourek 1990), and the effect of latitude on the lower developmental
thresholds that differ in tropical (at <23 °N or S) and subtropical or temperate zones (Honek
1996a). Body mass (Honek 1996b, Honek 1999) and food specialization (Honek 1999) are
known to affect the thermal requirements of insect orders differently, and the effect of food
specialization to interact with temperature data for the locations from which the tested species
originated (Honek 1996a).

Incorporation of these traits enabled the partitioning of the variance in thermal windows
into a part strictly due to (1) ecological traits (i.e., body size, climate and food), (2) phylogeny,
(3) joint influence of phylogenetic and ecological traits (i.e., phylogenetically structured variation
of ecological traits) and (4) unexplained variation (see Appendix S5 for details).

The relationship between tdmax and tdmin for individual species was examined by
regressing tdmax on tdmin. Because tdmax and tdmin were both estimated with error, and on the
same scale (°C), major axis (MA = model II) was used instead of least square (LS = model I)
regression (Sokal & Rohlf 1995); however, for comparison and generality, a LS regression and
its statistics (equation, F, df, and explained variance rz) were also calculated. For MA the
regression slope, which is always greater than the LS slope, and its 95% confidence intervals (CI)
were calculated, following the method of Sokal & Rohlf (1995, p. 586-593). After the analysis of
the original data, the same analysis was repeated with the variation due to phylogenetic
relatedness removed, in which independent contrasts (Felsenstein 1985) for incompletely
resolved phylogenies (Harvey & Pagel 1991) were used on the same phylogeny as for the thermal
windows. If the slope of the regression for the independent contrasts, forced through the origin,
remains significant, it is evidence that the evolutionary independent comparisons yield the same
overall pattern between tdmax and tdmin as the cross-species comparison. That is, the variation
in the relationship between tdmax and tdmin is, in fact, independent of differences associated
with phylogeny (Harvey & Pagel 1991).

Results

RANGE IN THERMAL WINDOWS

The average range of the thermal window between tdmin and tdmax of individual species was
19.8 °C, with 95% CI 19.1 — 20.5 and the frequency for individual species concentrated around
the predicted value of 20 °C (Fig. 2). The range of values was 13 — 29 °C with the extremes 13.3
[Feltiella acarisuga (Vallot): Diptera], 13.7 [Chilocorus bipustulatus (L.): Coleoptera] and 28. 6
[Aphis spiraecola (Patch): Hemiptera] °C (Appendix S1).

The fraction of variation in thermal windows related to ecological traits (i.e. body mass,
geographical origin, and food specialization), which include the embedded parts of
phylogenetically structured variation (fractions [a+b] in Fig. 3), were significant only if
geographical origin is expressed as a geographical zone, i.e. tropical vs. subtropical or temperate
species origin (F = 4.067; df = 1, 64; P = 0.048); when the origin of the populations is expressed
as latitude in °N or S, the whole model with all the ecological traits and their possible interactions
appeared insignificant (F = 1.673; df = 11, 54; P = 0.105). In the former model, the effect of body
mass and its interactions with zones and food specializations were insignificant (deletion test: F =
1.239; df = 4, 62; P = 0.305), and that of geographical zone only marginally significant (F =
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3.123; df = 1, 63; P = 0.082), suggesting narrower windows by 2.2 °C (standard error SE = 1.767,
df = 62) for species originating from the tropics compared to subtropical or temperate species.
Herbivores feeding on living plants and “seed eaters” did not differ significantly in thermal
windows (deletion test on factor level reduction: F = 1.585; df = 1, 64; P = 0.213); the only
significant effect of ecological traits thus indicated that true predators and parasitoids (deletion
test: F =4.067; df = 1, 64; P = 0.048) have narrower windows by 1.5 °C (SE = 0.744, df = 64)
than grazers, sap feeders and “seed eaters”.

However, the net effect of ecological traits (part [a] in Fig. 3) appeared insignificant (F =
1.457; df = 1, 64; P = 0.232), containing only a negligible portion of the variation (r* = 0.6%; part
[a] in Fig. 3); this suggests that any effect of ecological traits have to be attributed to a joint
influence of phylogenetic and ecological traits (part [b] in Fig. 3 which cannot be statistically
tested). That is, though there is a small but significant contribution of ecological traits to the
range of thermal windows, explaining 6.0% of variance (part [a+b] in Fig. 3), this has to be
attributed to phylogenetically structured variation of ecological traits. That is, the thermal
windows are independent of strictly ecological traits.

When ascertaining phylogenetically related fractions of variation in thermal windows that
included the embedded parts of phylogenetically structured variation in ecological traits
(fractions [b+c] in Fig. 3), only the first principal coordinate (PC) appeared significant and was
retained in the model (F = 9.863; df = 1, 64; P = 0.002). Its eigenvalue represented 36.9% of the
total variance of the patristic distance matrix and explained 13.4% of the variation in thermal
windows (fractions [b+c] in Fig. 3). Because the order of PCs describes decreasing phylogenetic
scales, this means that only differences at the largest phylogenetic scales were important; this is
further supported by the fact that only the second PC still appeared marginally significant (t =
1.786; df = 64; P = 0.079). The sum of the eigenvalues of the first two PCs represented 68.3% of
the total variance of the patristic distance matrix. The difference between the average thermal
window among the highest phylogenetic clades, the Hemipteroid complex vs. Endopterygota,
was highly significant (t-test: t = 2.865; df = 64; P = 0.006), with the average range 2.4 °C wider
for the Hemipteroids (insect orders Psocoptera, Thysanoptera and Hemiptera) than for the
Endopterygota (Neuroptera, Coleoptera, Diptera, Hymenoptera and Lepidoptera). That is, the
widths of thermal windows are non-randomly distributed between these two taxonomic groups of
insects.

The part of the variation strictly due to phylogeny (fraction [c] in Fig. 3) explained the
largest percentage of variance (8.0%; F = 6.950; df = 1, 64; P = 0.010) and together with the
phylogenetically structured variation of ecological traits (fraction [b] in Fig. 3) contributed 13.4
% to the variation in width of thermal windows (fractions [b] and [c] in Fig. 3). Because in total
the fractions of variation simultaneously related to both ecological traits and phylogeny (fractions
[a+btc] in Fig. 3) account for 14% of the variation (F = 5.698; df = 2, 63; P = 0. 005), the
overwhelming amount of variation in thermal windows was clearly attributed to phylogeny.
However, in spite of these phylogenetic effects, most of the variation (86.0%; part [d] in Fig. 3)
remains unexplained.

THE RELATIONSHIP BETWEEN THE MINIMUM AND MAXIMUM DEVELOPMENTAL
TEMPERATURES

The relationship between tdmin and tdmax for the individual species was highly
significant (least square regression LS: tdmax = 24.78 + 0.50tdmin; F = 32.45;df=1,64; P <
0.001) and explained 33.6% of the variance (r* = 0.336); very similar results were obtained for
phylogenetically independent contrasts (LS: tdmax = 0.54tdmin; F = 14.24; df = 1, 34; P <0.001;
r* = 0.29). The slope of the major axis (MA) for individual species suggested an increase in
tdmax of 1.3 °C (tdmax = -28.0 + 1.27tdmin) for each one degree centigrade increase in tdmin,
and the 95% confidence interval (CI) of this slope (CI = 0.90 — 1. 85) broadly overlapped the
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significant MA slope for phylogenetically independent contrasts (b = 1.00; CI = 0.56 — 1.78)
(Fig. 4). This means that there is a strong relationship between tdmin and tdmax among species,
and this relationship is independent of the phylogeny of the species.

Discussion

The analysis of empirical results on thermal requirements showed that the thermal window
between tdmin and tdmax is similar among insect species. This is in accord with Charnov &
Gillooly’s (2003) theoretical predictions. A similar prediction can be derived from a linear
approximation of the slope of the derivative of the Sharpe-Schoolfield developmental rate model
at the middle of the temperature range (Schoolfield, Sharpe & Magnuson 1981). Both models
predict thermal windows of about 20 °C, with ranges narrower than 10 or wider than 25 °C
requiring a rather extreme combination of physiological parameters. This accords with our
empirical results for insects (Fig. 2), and strengthens the theoretical premise that this
phenomenon is physiologically rather than ecologically based. In addition, there are indications
that ectothermic animals other than insects have thermal windows of similar widths (Moore 1942,
1949), and that the thermal window for plant development is also about 20° C (Bonhomme
2000). Thus, it is likely that this is a general feature of all ectothermic organisms.

Biochemists at the end of the 19™ century developed temperature-coefficient equations,
based on thermodynamic reasoning for simple inorganic systems, to account for the effect of
temperature on the rate of biological processes (Arrhenius 1889; van’t Hoff 1894). It was also
appreciated that these relationships do not apply to the entire temperature range, but only narrow
segments, depending on the species of animal, or in particular the enzyme(s) that control
development. As the temperature rises, the enzymes begin to denature, with the effect that the
accelerating effect of temperature on the speed of development may be counteracted by the
inactivating effect on the limiting enzyme(s) (Chick & Martin 1910). It is possible limiting
enzymes are similarly affected by temperatures at the lower end of the ecologically relevant
range. These physiological constraints could delimit the widths of thermal windows in
ectotherms in general.

The analysis of empirical results on thermal requirements for insects further showed that
species that have a low tdmin have a low tdmax and vice versa, as predicted by Charnov and
Gillooly (2003). Bodenheimer (1927), after studying two species of weevil that infest stored
grain, Sitophilus granarius and S. oryzae, which in the field have a northern and southern
distribution, respectively, argued their distributions could be attributed to S. granarius doing
better at low temperatures than S. oryzae and vice versa at high temperatures. The trade-off
between tdmin and tdmax, manifested by the observation that northern and southern insect
species differ in their performance at high and low temperatures, with the northern species doing
better at low temperatures than the southern species and vice versa at high temperatures, was thus
appreciated nearly a hundred years ago. More recently, it has been suggested that the trade off
between tdmin and the D° required for development has a basis in the thermal adaptation of
enzymes (van Straalen 1994; van der Have & de Jong 1996; van der Have 2002; Trudgill et al.,
2005), and that the same reasoning as for northern vs. southern species can be applied to closely
related early spring vs. summer species in the temperate zone (Dixon & Hopkins, unpublished).
In addition, there are indications that the tdmin of C3 plants is lower than that for C4 plants,
which accords with their respective predominantly temperate and tropical distributions
(Bonhomme 2000). Thus, it is likely that, as with the widths of thermal windows, the trade-off
between tdmin and tdmax is a general and physiologically based feature of all ectothermic
organisms.
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Fitness is often viewed in terms of potential rate of population increase. If it is a major
component of fitness, and development rate and population rate of increase are correlated, as they
are in related insect species (Dixon 1998, 2000), then it would appear to be generally
advantageous for tropical species and those temperate species that develop in summer to have a
lower tdmin, as they would then be able to develop even faster at the high temperatures.
However, this assumes there are no constraints to developing even faster at the temperatures
prevailing in the tropics and high summer in temperate regions. Theory and this study indicate
that the constraint is that each species can only develop over a narrow range of temperatures.
That is, fitness is constrained by physiology, with the optimization of fitness in a variable thermal
environment the central issue. Or put another way fitness is maximized by optimizing thermal
reaction norms (Angilletta et al. 2003). Viewed in this way seasonal development and
distribution are very similar in that they both involve adaptation to development over a particular
temperature range. Northern species and those temperate species that start developing early in a
year, have to be able to tolerate relatively low temperatures, those temperate species that develop
in summer and tropical species, relatively high temperatures.

This study indicates that the widths of thermal windows are non-randomly distributed
within the highest taxonomic groups of insect, slightly affected by phylogenetically structured
variation of ecological traits, but not by ecological traits. Notably, there is no effect of body mass
on the range of thermal windows, though body mass is the most important single trait related to
many ecological and life-history traits (e.g. Peters 1983, Honek 1993, Brown 1995) and is known
to have a significant phylogenetic component shared by related species (e.g. Cheverud, Dow &
Leutenegger 1985, Gittleman & Kot 1990, Geffen et al. 1996, Pignata & Diniz-Filho 1996). The
marginally significant effect of climatic zones, suggesting narrower windows for tropical
compared to more cold-tolerant species, could be attributed to temperate species being exposed to
a wider temperature range if development proceeds through spring and summer, whereas tropical
species might develop in narrower temperature ranges. However, this interpretation must be
verified with a larger data set. The same holds for the narrower windows of true predators and
parasitoids compared to grazers, sap feeders and species feeding on dry seeds and dead plants and
animals. This is so because though this pattern is significant, the overwhelming portion of
variance in this relationship must be attributed to phylogenetically structured variation, which
cannot be tested statistically.

The broader windows of the species in the Hemipteroid complex (orders Psocoptera,
Thysanoptera and Hemiptera) compared to the Endopterygota (Neuroptera, Coleoptera, Diptera,
Hymenoptera and Lepidoptera) may be attributed to differences in their postembryonic
development. The Hemipteroids lack a true pupal stage (though Thysanoptera have quiescent
stages, ecologically similar to true pupae) and their larvae become gradually more like the adults
and live in the same environment as the adults. On the other hand, in the Endopterygota larvae
and adults often live in completely different environments, and the species undergo a complete
histolysis of larval tissues during pupation. These innovations in the latter group may have
enabled the evolution of narrower thermal ranges for development. These narrow ranges, in turn,
might have contributed to the greater ecological radiation of the Endopterygota, due to the more
efficient niche differentiation among species along thermal gradients. That is, as argued by
Angilletta et al. (2003) a unified theory that includes all classes of trade-offs is more likely to
provide a better understanding of the mechanisms that drive the evolution of thermal reaction
norms. However, the ecological significance of these differences in the width of their thermal, if
confirmed, needs to be determined.

That most of the variation in the range of thermal windows remained unexplained, and the
relationship between tdmax and tdmin, though highly significant accounts for only 34% of the
variance, may in part be due to the quality of the original data. There has been a tendency to
monitor the development of organisms at a fixed interval, usually a day, irrespective of the
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temperature. This can lead to errors in the estimates of the duration of development, especially at
higher temperatures (van Rijn, Mollema & Steenhuis-Broers 1995; Jarosik, Honek & Dixon
2002). In addition, mortality during development at each of the temperatures is very rarely
recorded. This can lead to errors in the estimates of the duration of development especially at low
temperatures, at which the individuals with the fastest development complete their development
early while the rest succumb to adverse conditions (Jaro$ik, Honek & Dixon 2002). If the data
had been specifically collected to determine the value of tdmax and tdmin then it is likely the
estimates of these values would have been more accurate. Another factor that could have affected
the results is food quality, which will be extremely difficult to standardize for insects and
especially for ectotherms in general.

The facts that theory and this analysis of empirical data indicate that each species of insect
can only develop over a limited range of temperatures, independent of species traits, and that the
relationship between the minimum and maximum developmental rate co-vary, independent of
species phylogeny, may help identify the precise nature of the biochemical adaptations
underlying the seasonal development and distribution of ectotherms. This could be an important
step in achieving a better understanding of how communities work and integrating physiology
and ecology at the community scale. In addition, this concept might help when predicting the
effect of climate change on the distribution and abundance of insects (e.g. Harrington & Stork
1995; Yamamura & Kiritani 1998; Dixon 2003; Kiritani 2006) and the spread of invasive species
(e.g. Simberloff, Parker & Windle 2005; Baker et al. 2005; Hatherly et al. 2005).
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FIGURE LEGENDS

Figure 1. Least-square non-linear Levenberg-Marquardt iterative regression fit (A) of Lactin et
al.’s model (equation 2) to results for Bemisia tabaci, biotype “B” reared on “DES119” cotton
(Wagner 1995), parameters in Appendix S2, and (B) of Briére et al.’s model (equation 1) to
results for B. tabaci, biotype “B” reared on “Pima S-6” cotton (Wagner 1995), parameters in
Appendix S3. Values of tdmax, calculated analytically (equation 4 for Lactin et al.’s model A,
equation 3 for Briére et al.’s model B) and tdmin, assessed as the intersections of the fitted curves
with abscissa, are shown. Thermal window is the difference between the tdmax and tdmin values.

Figure 2. Frequency histogram of the thermal tolerance ranges (i.e. thermal windows) of the
individual species.

Figure 3. Partitioning of the variation in thermal windows among ecological traits (ET, parts
[atb] of the Venn diagram), phylogeny (PH, parts [b+c]) and phylogenetically structured
variation of ecological traits (PSVET, the intersection [b]). The rectangle represents 100% of the
variation, of which [d] is the unexplained part. Values do not add up exactly due to rounding
erTors.

Figure 4. The relationship between the temperatures at which the developmental rates are at the
minimum (tdmin) and maximum (tdmax) for individual species (A) and that of the
phylogenetically independent contrasts (B). Statistics for least square (LS: equation, F, df| see
text).
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Appendix S2. Analytical solution for the maximum temperature #,,, and numerical solution

for the minimum temperature ¢, .

Aim: To find the (i) maximum temperature (¢, ; the temperature with maximum r by
definition) and (ii) minimum temperature (¢, ; the minimum temperature with » =0 by

definition) of the Lactin et al.’s (1995) model, which obeys Eq. 2 with parametersp, 7, A

max °

and 4.

Solution (i): We are searching for an extreme of the Eq. 2, thus for the root of dr/dT =0.

p-1/4)1

Replacing 1 A with @, and ¢/*"= with b, we get dr(r,,, ) dT = pe”™ —bae = = 0.
After logarithmizing and simplifying, ¢, . = (Inba—1n p)/(p —a), which is Eq. 4, after

replacing the a and b back with the original values.

Solution (ii): The minimum temperature, ¢, . , can be solved numerically by the bisection

method (the root-finding algorithm; e.g. http://en.wikipedia.org/wiki/Bisection_method).

Since we know that 7, <¢, . <7 . where 7, =0 and 7, =1, , we can bisect the

interval {7, ; 7, } and compute r(z, ), r(%), and r(r,,, ) using Eq. 2. If

(e, r Tmin ¥ Tman | < , we replace 7, with the midpoint of the interval,
min 2 max

T =(r,, +7,,)/2), otherwise we replace 7__ with the midpoint of the interval. This is

repeated until7_,, — 7, <7, where 7 is the required accuracy.
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Appendix S3. Summaries of Lactin et al.’s (1995) model parameters (modification 2) for the
species included in the analysis, classified by insect order. r

2

= total explained variance; A = the

intersection of the fitted curve with abscissa at suboptimal temperatures that was used to estimate
the lower developmental temperature threshold (tgmin); p = the developmental rate to the optimal
temperature tdmax; T = lethal maximum temperature (high temperature threshold); A = the width
of the high temperature boundary layer (the width of the high temperature decline in developmental
rate, over which thermal breakdown becomes the overriding influence). Orders, and species within
orders, are arranged alphabetically. Source references are given in Appendix S1.

Order Species r A p Toax A
Coleoptera Agasicles hygrophila (Selman & Vogt) 0,9634 -1,0461 0,0035 30,6765 0,1560
Coleoptera Baris coerulescens (Scopoli) 0,9937 -1,0135 0,0011 36,2221 0,2429
Coleoptera Carpophilus hemipterus (L.) 0,9847 -1,0561 0,0036 52,6180 3,5601
Coleoptera Carpophilus humeralis (F.) 0,9574 -1,3040 0,0201 42,9763 2,3252
Coleoptera Carpophilus mutilatus (Erickson) 0,9926 -1,0823 0,0050 47,2887 2,5038
Coleoptera Chilocorus bipustulatus (L.) 0,9465 -1,1472 0,0098 28,2612 0,0765
Coleoptera Cylas puncticollis (Boehman) 0,9947 -1,0756 0,0052 62,4990 8,8233
Coleoptera Euhrychiopsis lecontei (Dietz) 0,9478 -1,0967 0,0086 29,2612 0,0684
Coleoptera Hippodamia sinuata (Mulsant) 0,8432 -1,1944 0,0193 30,5599 0,2497
Coleoptera Hylobius pales (Herbst) 0,9898 -1,0144 0,0019 28,6310 0,1235
Coleoptera Leptinotarsa decimlineata (Say) 0,9400 -1,1363 0,0143 28,3220 0,1383
Coleoptera Nephus bisignatus (Boehman) 0,9994 -1,0194 10,0020 39,1573 1,4656
Coleoptera Nephus includens (Kirsch) 0,9698 -1,0258 0,0024 35,4306 0,0977
Coleoptera Prostephanus truncatus (Horn) 0,9741 -1,0690 0,0039 35,2929 1,3811
Coleoptera Pterostichus nigrita (F.) 0,9554 -1,0163 0,0024 31,5196 0,3553
Diptera Anopheles gambia (Giles) 0,9777 -1,0626 0,0054 38,6922 11,7546
Diptera Bactocera zonata (Sanders) 0,9942 -1,0592 0,0044 46,8865 3,3324
Diptera Chironomus crassicaudatus (Malloch) 0,9961 -0,8203 0,0105 82,4714 34,6972
Diptera Culiseta melanura (Coquillett) 0,8771 -1,0266 0,0026 32,3318 0,0801
Diptera Dacus cucubritae (Coquillet) 0,9881 -1,2687 0,0294 28,1609 0,0481
Diptera Dacus oleae (Gmelin) 0,9654 -1,0441 0,0036 29,8343 0,2186
Diptera Drosophila funebris (Fabricius) 0,9800 -1,0015 0,0001 36,7235 11,1948
Diptera Drosophila melanogaster (Meigen) 0,8800 -1,37440 0,07970 33,50250 3,07660
Diptera Drosophila willistoni (Sturtevant) 0,9900 -1,0025 0,0002 31,3797 0,3067
Diptera Stomoxys calcitrans (L.) 0,9939 -1,0585 0,0048 45,2653 3,2066
Hemiptera Abgrallaspis cyanophylli (Signoret) 0,9634 -1,0461 0,0035 30,6765 0,1560
Hemiptera Acrosternum hilare (Say) 0,9980 -1,03743 0,00258 37,30482 1,82335
Hemiptera Acyrthosiphon pisum (Harris)" 0,9996 -1,02955 0,01019 45,74162 8,13171
Hemiptera Acyrthosiphon pisum (Harris) 0,9980 -1,00016 0,00557 27,20366 0,14000
Hemiptera Aphis gossypii (Glover) 0,9741 -1,0551 0,0086 42,1178 2,7984
Hemiptera Aphis spiraecola (Patch) 0,9696 -1,0068 0,0045 35,5153 0,9505
Hemiptera Bemisia tabaci (Gennadias)’ 0,9484 -1,0487 0,0038 39,4767 2,2491
Hemiptera Bemisia tabaci (Gennadias)* 0,9759 -1,0267 0,0028 42,1734 11,8248
Hemiptera Lipaphis erysimi (Kaltenbach)® 0,9616 -1,0347 0,0077 30,4103 0,1056
Hemiptera  Lipaphis erysimi (Kaltenbach)® 0,9951 -1,0559 0,0082 42,7799 3,2811
Hemiptera Lipaphis erysimi (l(altenbach)7 0,9925 -1,0637 0,0093 44,8637 4,5196
Hemiptera Macrolophus pygmaeus (Rambur) 0,8339 -1,0312 0,0035 49,8484 4,4911
Hemiptera Macrosiphum avenae (F.) 0,9894 -1,0002 0,0004 80,8079 9,8901
Hemiptera Metopolophium dirhodum (Walker) 0,9639 -1,0006 0,0004 55,2017 5,4823
Hemiptera Myzus persicae (Sulzer)® 0,9859 -1,0336 0,0071 30,4553 0,6216
Hemiptera Myzus persicae (Sulzer)’ 0,9940 -1,0344 0,0080 34,0973 11,6483
Hemiptera Pemphigus populitransversus (Riley) 0,9710 -1,0325 0,0055 40,8923 3,1582
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Hemiptera Planococcus citri (Risso) 0,9805 -1,0212 0,0025 30,8060 0,4889
Hymenoptera Anaphes flavipes (Forester) 0,9605 -1,6882 0,0587 38,2650 5,6736
Hymenoptera Aphidius gifuensis (Ashmead) 0,9972 -1,0275 0,0050 35,1779 11,5393
Hymenoptera  Chelonus sp. near curvimaculatus (Cameron) 0,9857 -1,0435 0,0031 46,9998 28417
Hymenoptera Cirrospilus sp. near lyncus (Walker) 0,8402 -0,7818 0,0084 93,6741 41,8048
Hymenoptera  Coccobius fulvus (Compere & Annecke) 0,9983 -1,0447 0,0033 40,6929 2,6326
Hymenoptera  Muscidifurax raptor (Girauld & Sanders) 0,9875 -1,0492 10,0042 41,4694 2,2060
Hymenoptera  Muscidifurax raptorellus (Kogan & Legner) 0,9927 -1,0576 0,0046 41,7639 2,3921
Hymenoptera Muscidifurax zaraptor (Kogan & Legner) 0,9864 -1,0646 0,0047 44,2212 2,9496
Hymenoptera = Oomyzus sokolowski (Kurdjmov) 0,9955 -1,0549 0,0044 45,3806 2,9866
Hymenoptera Venturia canescens (Gravenhorst) 0,9329 -1,0302 0,0025 44,9544 29634
Lepidoptera Cadra cautella (Walker) 0,9607 -1,0159 0,0012 42,1214 11,1378
Lepidoptera Carposina sasakii (Matsamura) 0,9900 -1,0861 0,0079 35,2619 0,0936
Lepidoptera  Endopiza viteana (Clemens) 0,9965 -1,0188 0,0021 35,9895 0,7495
Lepidoptera Harrisina brillians (Barnes & MacDunnough) 0,9697 -1,0208 0,0018 28,3989 0,2699
Lepidoptera Lacanobia subjuncta (Grote & Robinson) 0,9094 -1,0056 0,0009 48,3946 3,6156
Lepidoptera Maruca vitrata (Fabricius) 0,9998 -1,0301 0,0028 39,0005 11,7094
Lepidoptera  Merophyas divulsana (Walker) 0,9987 -1,0208 0,0026 40,0606 2,2007
Lepidoptera Plutella xylostella (L.) 0,9777 -1,0390 0,0039 32,4977 0,0855
Lepidoptera Sesamia nonagrioides (Lefebvre) 0,9705 -1,0198 0,0017 50,7099 4,1578
Neuropera Anomalochrysa frater (Perkins) 0,9958 -1,0356 0,0045 33,4064 11,3327
Psocoptera Liposcelis bostrychophila (Badonnel)' 0,9602 -1,0213 0,0019 35,6116 0,1193
Psocoptera Liposcelis bostrychophila (Badonnel)"' 0,9578 -1,0197 0,0019 35,4927 0,0985
Psocoptera Liposcelis bostrychophila (Badonnel)' 0,9557 -1,0317 10,0025 35,3391 0,0788
Thysanoptera  Ceratothripoides claratris (Shumsher) 0,9764 -1,1300 0,0075 43,9679 2,9804

'pea cultivar "Sancho"

“pea cultivar "Scout"
*biotype "B" on "DES119" cotton strain
*mixture of "B" and "Q" biotypes on sweet pepper

3 Apterae; different strain than®’

SAlatae
" Apterae
¥Alatae
°Apterae

reared in "control atmosphere 1" (10% CO2 and 5% 02)
"reared in "control atmosphere 2" (12% CO2 and 9% 0O2)
"reared in standard atmosphere

116



Appendix S4. Summaries of Briére et al.’s (1999) model parameters of the species included
in the analysis, classified by insect order. r* = total explained variance; a = empirical constant;
To = lower developmental threshold (tgmin); T. = lethal temperature (high temperature
threshold; T\ is equal to Tpax in S1). Orders, and species within orders, are arranged
alphabetically. Source references are given in Appendix S1.

Order Species r a T, T,
Coleoptera Chilocorus kuwanae (Silvestri) 0,8229 0,0001 12,6210 31,7767
Coleoptera Silophilus oryzae (L.) 0,9256 0,0001 13,7398 32,7569
Diptera Chrysomya rufifacies (Macquart) 0,8699 0,0013 71,2577 33,8742
Diptera Feltiella acarisuga (Vallot) 0,9797 0,0001 11,8795 30,8645
Diptera Lydella jalisco (Woodley) 0,9962 0,0001 14,0500 38,7860
Hemiptera Bemisia tabaci (Gennadias)' 0,9468 0,00004  10,42558  35,82238
Lepidoptera Palpita unionalis (Hiibner) 0,9325 10,0002 9,9845 40,2166

'biotype "B" on "Pima S-6" cotton strain

117



Appendix SS. Partitioning of the variance in thermal windows.

We partitioned the variance in thermal windows into a part strictly due to (1) ecological traits,
represented by insect body mass, latitude from which the experimental population originated,
and species trophic specialization; (2) phylogeny; (3) joint influence of these two factors (i.e.,
phylogenetically structured variation of ecological traits); and (4) unexplained variation.

To ascertain the fractions of variation in thermal windows related to ecological traits
that include embedded phylogenetically structured variation, the thermal windows of
individual species were regressed on the ecological traits (trophic specialization, latitude and
body mass, with the latter In transformed to normalize the data), beginning with the maximal
model containing all predictors and their possible interactions, after which all non-significant
terms were eliminated using deletion tests. This was done using an automatic step-wise
process of model simplification of deviance tables (Crawley 2002), based on Akaike
Information Criterion (AIC) (program S-Plus v. 6.2, Insightful Corp. 2003).

To ascertain the fractions of variation related to phylogeny that includes
phylogenetically structured variation in ecological traits, forward selection procedures (S-Plus
v. 6.2) were used to select the principal coordinates (PCs) that significantly contributed to the
explanation of variation in thermal windows. (There was no need to use a more complicated
selection procedure because by definition PCs are all orthogonal, i.e. zero correlated, with
one another). The fractions of variation simultaneously related to both ecological traits and
phylogeny were then ascertained by regressing the thermal windows simultaneously on all
variables selected in the two previous steps of the variance partitioning, which indicated the
fractions related to ecological traits with embedded phylogenetically structured variation, and
fractions related to phylogeny with embedded phylogenetically structured variation in
ecological traits (Desdevides et al. 2003).

The individual fractions of the total variation in thermal windows, i.e. (1) net variation
due to ecological traits, (2) phylogenetically structured variation in ecological traits, (3) net
variation due to phylogeny, and (4) unexplained variation, were then obtained by subtractions
from the results of the previous models, following Desdevises et al. (2003).. The subtractions
were made based on adjusted coefficients of explained variance, rzadj,, taking into account
sample sizes and number of predictors (Legendre & Legendre 1998). Statistical significances
of individual parts of the variance, except the phylogenetically structured variation of
ecological traits, which cannot be tested, were calculated using parametric tests following
Legendre & Legendre (1998).

All data in linear models used for variance partitioning were analyzed assuming
normal distribution of errors and an identity link function. All predictors were checked for
appropriate transformations by raw and residual plots, and for collinearity by calculating
tolerance values (Quinn & Keough 2002 p. 128). Fitted models were checked by plotting
standardized residuals against fitted values, and by normal probability plots (Crawley 1993).
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