Klonování a amplifikace isoforem b a g genu Clr, ligandu pro receptory Nkrp1 myších NK buněk

Bakalářská práce

Školitel: Mgr. Ondřej Vaněk
Vedoucí bakalářské práce: Prof. RNDr. Karel Bezouška, DSc.
UNIVERZITA KARLOVA v Praze
Přírodovedecká fakulta
Oborová knihovna chemie
Albertov 6, 128 43 Praha 2
IČO: 00216208, DIČ: CZ00216208
UK 22

př. 98 b/08 stud
(bröchemie)
Poděkování

Ráda bych zde poděkovala především svému školiteli Mgr. Ondřeji Vaňkovi, za odborné vedení, trpělivost a cenné rady, dále pak Prof. RNDr. Karlu Bezouškovi, DSc., za možnost vypracování bakalářské práce a odborné vedení, a všem členům Laboratoře architektury proteinů MBÚ AV ČR. Děkuji také MUDr. Anně Fišerové, CSc., za poskytnutí celkové RNA izolované z myších slezin.

Poděkování patří i mým rodičům, za podporu v době mého studia.
Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně pod vedením svého školitele Mgr. Ondřeje Vaňka a všechny použité prameny jsem řádně citovala.

V Praze dne 6.6.2008

...

PETRA CELADOVÁ
SEZNAM ZKRÁTEK

ADCC buněčná cytotoxicita závislá na protilátkce (antibody dependent cell cytotoxicity)
bp pár bazí (jednotka délky řetězce DNA)
BSA hovězí sérový albumin (bovine serum albumin)
CD označení povrchových molekul leukocytů (cluster of differentiation)
cDNA komplementární DNA (complementary DNA)
Clr rodina proteinů obsahujících podobný motiv jako lektiny typu C (C-type lectin related) = Ocil
DAP12 12kDa protein aktivující DNAX (DNAX-activating protein of 12 kDa)
ddH₂O dvakrát destilovaná voda
DMSO dimethylsulfoxid
dNTP směs deoxynukleotidtrifosfátů
DTT dithiothreitol
EDTA kyselina ethylendiamintetraoctová
Fc část molekuly protilátky (Fragment, crystallizable)
FceRIγ vysokoafinitní receptor pro IgE (Fc epsilon receptor type I gamma chain)
FW forward primer
H-2 hlavní myší histokompatibilní komplex
H-60 antigen menšího myšího histokompatibilního komplexu
HLA hlavní lidský histokompatibilní antigen (human leukocyte antigen)
IFN-γ interferon γ
IgG imunoglobulin G
IL-3 (15) interleukin 3 (15)
ILT2 imunoglobulinový transkript 2 (Ig-like transcript 2)
IPTG isopropyl-β-D-thiogalaktopyranosid
ITAM imunoreceptorový tyrosinový aktivační motiv (immunoreceptor tyrosine-based activation motif)
ITIM imunoreceptorový tyrosinový inhibiční motiv (immunoreceptor tyrosine-based inhibitory motif)

KARAP protein asociovaný s aktivačními receptory zabíječských buněk (killer activating receptor associated protein), = DAP12

kb kilobaze (jednotka délky řetězce DNA)

KIR imunoglobulinový receptor zabíječských buněk (killer cell Ig-like receptor)

KLRF1(G1) C-letonový receptor zabíječských buněk F1 (G1) (killer cell lectin-like receptor F1 (G1))

LB název média podle Luria-Bertaniho

LIR-1 imunoglobulinový receptor leukocytů (leukocyte immunoglobulin-like receptor)

LRC komplex genů pro receptory leukocytů (leukocyte receptor complex)

Ly-49 rodina receptorů C-letonového typu (lymphocyte antigen 49)

M-CSF faktor stimuluječící tvorbu osteoklastů (macrophage colony-stimulating factor)

MHC gp I glykoproteiny hlavního histokompatibilního komplexu I. třídy (major histocompatibility complex type I glycoproteins)

MICA(B) proteiny podobné MHC gp I (MHC-class-I-like chain A(B))

mRNA mitochondriální RNA (mitochondrial RNA)

NCR skupina aktivačních receptorů z imunoglobulinové nadrodiny (natural cytotoxicity receptor), = NKp

NK přirozený zabíječ (natural killer)

NKC NK genový komplex (NK-gene complex)

NKG2 rodina C-letonových receptorů NK buněk (natural killer group 2)

NKp30 receptor ze skupiny NCR (natural killer cell p30-related protein)

Nkrp1 rodina C-letonových receptorů NK buněk (natural killer cell receptor protein 1)

NKT NK-T-lymfocyty (natural killer T cells)

Ocil lektin inhibující formaci osteoklastů (Osteoclast inhibitory lectin), = Clr

PCR polymerasová řetězová reakce (polymerase chain reaction)

RANKL faktor stimuluječící tvorbu osteoklastů (receptor activator of nuclear factor kappa B ligand)
REV reverse primer
RPM počet otáček za minutu (*rounds per minute*)
RT reverzní traskriptasa
SHP1(2) proteinová tyrosinová fosfatasa (*SH2-domain-containing protein tyrosine phosphatase 1 (2)*)
SOC bakteriální médium s vysokým obsahem živin
TAE Tris-acetátový pufr s EDTA
Tc cytotoxický T-lymfocyt (*T cytotoxic cell*)
TE Tris pufr s EDTA
Th pomocný T-lymfocyt (*T helper cell*)
Tris tris(hydroxymethyl)aminomethan
ULBP protein vázající UL16 (*UL16 binding protein*)
X-Gal 5-bromo-4-chloro-3-indoly†-D-galaktopyranosid
OBSAH

SEZNAM ZKRATEK .. 4

1. LITERÁRNÍ ÚVOD .. 9
 1.1. Imunitní systém ... 9
 1.2. Imunitní mechanismy .. 9
 1.3. Buňky imunitního systému .. 10
 1.4. NK buňky ... 12
 1.5. Receptory NK buněk ... 14
 1.6. Nkrp1 ... 16
 1.7. Clr/Ocil ... 17

2. ČÍL PRÁCE .. 20

3. MATERIÁL .. 21
 3.1. Přístroje a pomůcky ... 21
 3.2. Chemikálie ... 22
 3.2.1. Primery pro PCR .. 22
 3.2.2. Enzymy ... 22
 3.2.3. Bakteriální kmeny ... 22
 3.2.4. Vektory .. 22
 3.2.5. Chemikálie ... 22
 3.2.6. Roztoky a média ... 23

4. METODY ... 25
 4.1. Izolace celkové RNA z myší sleziny ... 25
 4.2. Syntéza cDNA z mRNA ... 25
 4.3. PCR amplifikace ... 25
 4.4. Detekce produktů PCR agarosovou elektroforézou 26
4.5. Ligace získaných genů do expresního vektoru ze soupravy TOPO TA
 Cloning® .. 26
4.6. Transformace kompetentních buněk Escherichia coli tepelným šokem ... 27
4.7. Minipreparace plazmidové DNA ... 27
4.8. Restrikční analýza .. 28
4.9. Analýza DNA fragmentů agarosovou elektroforesou 28
4.10. DNA sekvenování .. 28

5. VÝSLEDKY ... 29
 5.1. Návrh a syntéza oligonukleotidových primerů 29
 5.2. Klonování a amplifikace DNA fragmentu .. 29
 5.3. Ligace DNA fragmentu do vektoru a kontrola restrikční analýzou 30
 5.4. DNA sekvenování .. 33

6. DISKUZE .. 38

7. ZÁVĚR .. 41

8. SEZNAM CITOVAΝE LITERATURY .. 42
1. LITERÁRNÍ ÚVOD

1.1. Imunitní systém

Imunitní systém je vysoce komplexní homeostatický mechanismus, který se u organismů vyvinul na obranu před škodlivinami z vnějšího i vnitřního prostředí\(^1^2\). Funkce imunitního systému se projevuje jako obranyschopnost – schopnost rozpoznat a eliminovat vnější škodliviny (patogenní mikroorganismy a jejich toxické produkty), autotolerance – schopnost rozpoznat vlastní tkáně organismu a udržovat vůči nim toleranci – a imunitní dohled – schopnost rozpoznat a odstranit vnitřní škodliviny (staré, poškozené nebo zmutované buňky)\(^1\).

1.2. Imunitní mechanismy

Součástí imunitního systému je velké množství buněk a molekul, jejichž vzájemnými interakcemi jsou zprostředkovány imunitní reakce\(^2\). Ty jsou dvojího typu: nespecifické (neadaptivní, vrozené) a antigenně specifické (adaptivní)\(^1\). Pro obranu organismu mají zásadní význam také neporušený povrch kůže a sliznic a přirozené neimunitní obranné mechanismy, jako jsou pohyb řasinek, nízké pH žaludku, teplota nebo různé chemické mediátory\(^1,\(^2\).

Evolučně starší nespecifické mechanismy jsou založeny na molekulách a buňkách, které jsou v organismu připraveny předem a rozpoznávají obvykle velké množství patogenů podle strukturních nebo funkčních rysů, jež jsou jim společné\(^1\). Nespecifické imunitní mechanismy jsou zprostředkovány jednak buněčnými složkami (fagocytující buňky a přirozeně cytotoxické buňky, tzv. NK buňky, natural killer), jednak složkami humorálními (komplementový systém, interferony, lektiny a jiné sérové proteiny). Složky vrozené imunity reagují na přítomnost patogenů rychle, řádově v minutách\(^1\).

Antigenně specifické imunitní systémy jsou evolučně mladší, reakce na cizorodou strukturu je založena na její reakci s vysoce specifickými molekulami – v případě humorální složky adaptivní imunity se jedná o molekuly protilátek, u buněčně zprostředkovaných mechanismů o antigenně specifické receptory T-lymfocytů.
Mechanismy adaptivní imunity se aktivují až po setkání s daným antigenem. K úplnému rozvinutí specifické imunitní reakce je potřeba několik dní až týdnů. Charakteristickým rysem mechanismů adaptivní imunity je imunologická paměť, což je schopnost urychlené odpovědi při opětovném setkání s daným patogenem1,3.

1.3. Buňky imunitního systému

Na imunitní odpovědi organismu se podílejí především různé druhy leukocytů (bílých krvinek), které jsou přítomné v krvi, lymfě a lymfatických orgánech (např. mízní uzliny, slezina)2,3. Všechny druhy leukocytů vznikají z pluripotentních kmenových buněk1,2. Ty se nalézají po celý život v malém počtu v kostní dřeni a jejich úbytek v důsledku diferenciace na různé typy leukocytů (způsobenou vlivem určitých růstových faktorů a cytokinů) je kompenzován dělením1,2. Z kmenových buněk vznikají dvě linie buněk – lymfoidní a myeloidní (viz Obr. 1 na následující stránce).

Další diferenciace buněk myeloidní linie dává vznik třem druhům granulocytů: neutrofilům, eozinofilům a bazofilům (tkáňovou formou posledně jmenovaných jsou žírné buňky – mastocyty); monocytům (cirkulují v krvi a diferencují se na makrofágy) a dendritickým buňkám. Buňky myeloidní linie tvoří základ nespecifické části imunitního systému – většina z nich má schopnost fagocytovat, produkuje cytokiny a další rozpustné signální látky1. Kromě toho však některé (hlavně dendritické buňky, ale i monocity a makrofágy) působí také jako antigen prezentující buňky pro T-lymfocytý, čímž se stávají spojkou mezi antigenně specifickou a vrozenou částí imunitního systému. Z myeloidní linie vznikají také červené krvinky (erytrocyty) a krevní destičky (trombocyty), jejichž hlavní funkce nespočívají v imunitních reakcích organismu (ač se na některých podílejí – zejm. při zánětu)1.

Z lymfoidní linie vznikají diferenciaci NK buňky a lymfocytů B a T1,2. B-lymfocyté se nejprve vyvíjí v kostní dřeni1,3. Následně putují do sekundárních lymfoidních orgánů, kde po setkání s antigenem dojde k jejich diferenciaci do konečného stádia – plazmatických buněk (plazmocytů), které produkují protilátky1. Vývoj většiny T-lymfocytů probíhá v brzlíku (thymus)1,3 až do chvíle, kdy z nich vzniknou buňky patřící do jedné ze dvou fenotypicky odlišných subpopulací: prekurzory pomocných T-buněk (T\textsubscript{H}), nesoucí na svém buněčném povrchu receptor CD4, a prekurzory cytotoxických

T-buněk (T_C) s receptorem CD8^1. Po setkání s vhodným antigenem T_H prekurzory diferencují na zralé efektorové T_H, jejichž hlavní funkci je produkce cytokinů regulujících jiné buňky, T_C prekurzory pak dávají vznik efektorovým T_C buňkám, které jsou schopné cytotoxicky zabíjet jiné buňky^1.
1.4. NK buňky

NK buňky (*natural killers*, „přirození zabíječi“) jsou velké granulární lymfocyty schopné rozpoznat a zabít některé nádorové, vírem infikované, protilátkami pokryté, transplantované nebo stresované buňky\(^1,4,5\). Jejich cytolytická aktivita není podmílena předchozím setkáním s patogenem (není nutná stimulace, proliferace a diferenciace, jako je tomu u lymfocytů T\(_C\)\(^1\)) – NK buňky jsou tedy důležitou složkou vrozené imunity\(^5\).

NK buňky, narozdíl od T- a B-lymfocytů, neexprimují na svém povrchu antigenně specifické receptory, ale širokou škálu jiných receptorů, a to především imunoglobulinové a C-lektinové povahy\(^1\), jejichž ligandy jsou v převážné většině MHC glykoproteiny I. třídy (MHC gp I)\(^5,6\). MHC gp I jsou přítomny ve velkém množství na všech jaderných buňkách organismu (na somatických buňkách několik tisíc, na různých druzích leukocytů řádově více) a jejich základní funkcí je vázat peptidové fragmenty proteinů produkovaných (popř. pohlcených) buňkou a vystavovat je na buněčném povrchu, čímž umožní, aby mohly být potenciálně rozpoznány T-lymfocyty\(^1\). Před tímto rozpoznáním (a následným napadením T\(_C\) lymfocytům) se nádorové i některé virově infikované buňky brání potlačením exprese povrchových MHC gp I\(^1\).

NK buňky (narozdíl od T-lymfocytů) rozpoznávají MHC gp I jako takové, nikoli peptidy, které jsou na nich vázané. Přítomnost normálního množství MHC gp I na povrchu cílové buňky inhibuje aktivaci NK buňky, zatímco jejich snížení množství nebo nepřítomnost vyvolává opačnou odpověď\(^6\) (viz Obr. 2 na následující stránce). Tento mechanismus rozpoznávání cílových buněk bývá často nazýván „missing-self“ („absence sebe sama“)\(^7,8\) a je vysvětlován tím, že NK buňky exprimují inhibiční receptory specifické pro MHC gp I\(^8\). Kromě inhibičních receptorů mají NK buňky na svém povrchu i stimulační receptory\(^4,6,8\) (viz dále). K likvidaci cílových buněk slouží NK buňkám cytotoxické granule, které obsahují perforin a granzymi\(^1\).
Obr. 2: Rozpoznávání cílových buněk NK buňkami na základě chybějících MHC gp I ("missing-self" hypotéza). Obrázek vlevo ukazuje, že pokliže se NK buňka prostřednictvím některého inhibičního receptoru (zde Ly-49a) naváže na MHC gp I (zde konkrétně H-2D^d) na povrchu jiné buňky, NK cytotoxické mechanismy jsou inhibovány. Obrázek vpravo ukazuje nezdravou buňku, u níž virová infekce vedla k zastavení povrchové exprese MHC gp I. NK buňka není inhibována signály vznikajícími vazbou inhibičních receptorů na MHC gp I a je tedy možné, aby NK buňka cílovou buňku zabila. CRD – doména rozpoznávající MHC gp I (carbohydrate recognition domain); α1, α2, α3 – extracelulární domény těžkého (α) řetězce MHC gp I; β2m - β2 mikroglobulin, běžně se vyskytující lehký řetězec MHC gp I molekul. Červeně jsou vyznačeny oligosacharidy H-2D^d. Obrázek byl převzat z Parham, P.: NK cell receptors: Of missing sugar and missing self a upraven.

NK buňky se vyvíjejí v kostní dřeni z definovaných NK progenitorů, diskontinuálně přes jednotlivá stádia. Důležitým faktorem pro jejich růst a vývoj je interleukin 15 (IL-15). Aktivita NK buněk je významně stimulována interferony α a β (ty jsou produkované různými virově infikovanými buňkami); míra přirozeného zabijení může být ovlivněna nejrůznějšími membránovými proteiny, jako jsou CD2, 2B4, CD11a-CD18 a CD69, a také cytokiny. NK buňky mají i důležité regulační funkce: produkují látky, které ovlivňují diferenciaci efektorových T_{H}-buněk a hematopoézu (cytokiny IFN-γ, IL-3, M-CSF a některé další).
1.5. Receptory NK buněk

Na povrchu NK buněk se vyskytují receptory jednak stimulační (aktiváční), jednak inhibiční. Vliv inhibičních receptorů obecně převažuje nad vlivem aktiváčních receptorů.

Mechanismus inhibice NK buněčného zabíjení souvisí s přítomností inhibičního motivu ITIM (immunoreceptor tyrosine-based inhibitory motif, Val/Ile-Xaa-Tyr-Xaa-Xaa-Leu/Val) v cytoplazmatických doménách inhibičních receptorů. Po navázání ligandu je tyrosín z ITIM motivu fosforylován tyrosinovou kinázou z rodiny Src, což aktivuje proteinovou tyrosinovou fosfatasu 1 (SHP1), popř. některé další (SHP2). Tyto aktivované fosfatazy ruší fosforylační signalační dráhy zahájené stimulačními receptory a vedoucí k aktivaci NK buněk.

Mnohé aktivační receptory mají podobné extracelulární domény jako inhibiční receptory, ale postrádají intracelulární motiv ITIM. Místo toho však velmi často obsahují v transmembránové doméně nabité aminokyselinové zbytky. Ty usnadňují nekovalentní asociaci se signálními řetězci (adaptorovými molekulami) – transmembránovými proteiny, které jsou často vyžadovány pro optimální povrchovou expresi. V signálních řetězcích na NK buňkách se nalézají molekuly obsahující aktivační motiv ITAM (immunoreceptor tyrosine-based activation motif, Asp/Glu-Xaa-Xaa-Tyr-Xaa-Xaa-Leu/Ile-Xaa6,8-Tyr-Xaa-Xaa-Leu/Ile) – jedná se např. o DAP12 (DNAX-activating protein of 12 kDa, známý také jako KARAP – killer activating receptor associated protein), FceRIγ a CD3ζ. Po navázání ligandu na stimulační receptor dojde k fosforylací tyrosinu v motivu ITAM, což spustí kaskádu intracelulárních dějů vedoucích k NK buněčné aktivaci.

Geny pro receptory NK buněk, ať již inhibiční či stimulační, jsou v genomu uloženy na dvou různých místech: v NK genovém komplexu (NKC, natural killer receptor gene complex; nalézá se na chromozómu 6 u myší, 4 u potkanu a 12p13 u člověka) a v komplexu genů pro receptory leukocytů (LRC, leukocyte receptor complex; u člověka se nalézá na chromozómu 19q13.4, u myší na chromozómu 7). Mezi společné vlastnosti těchto dvou genových komplexů patří např. vysoká míra polymorfismu, která zajišťuje vyšší rezistenci proti infekcím; molekuly kódované v obou oblastech se však od sebe navzájem zřetelně liší.
Receptory, jejichž geny jsou uloženy v LRC, patří do imunoglobulinové nadrodiny6,8,9 a nejsou exprimovány pouze na NK buňkách, ale i na různých jiných hematopoetických buňkách8. Jedná se např. o KIR (killer cell Ig-like receptor) a ILT2 (Ig-like transcript 2, nebo LIR-1, leukocyte immunoglobulin-like receptor) 6,8,9, receptory s inhibiční aktivitou1 specificky rozpoznávající MHC gp I 8. ILT jsou mimo jiné přítomny také na povrchu některých druhů leukocytů, kde pravděpodobně pomáhají tlumit jejich přílišnou aktivitu1. Do imunoglobulinové nadrodiny dále patří i skupina aktivacních receptorů, tzv. NCR (natural cytotoxicity receptors) – konkrétně jde o NKp46, NKp44 a NKp30. Vyskytuje se pouze na NK buňkách a jejich ligandy nejsou MHC gp I 6. Dalším imunoglobulinovým receptorem je CD16, specificky rozpoznávající Fc části protišlecht téří IgG. S těmi se NK lymfocyt může setkat na povrchu infikované buňky1. Asociace receptoru CD16 s jeho ligandem vede ve výsledku k cytotoxické aktivaci NK buňky – tento děj se nazývá cytotoxická reakce závislá na protišlechtách (ADCC, antibody dependent cellular cytotoxicity)1,8.

Receptory kódované v NKC patří do nadrodiny lektinů typu C 5,6 a jsou velmi důležité pro aktivitu NK buněk8. Patří sem rodiny receptorů Ly-49, Nkrp1, NKG2/CD94, dále pak stimulační receptor KLRF1, inhibiční KLRG1, CD69 a některé další6,7,8.

Ly-49 je nejlépe prozkoumanou rodinou receptorů C-lektinového typu. Jedná se o homodimery7, jejichž ligandy jsou MHC gp I (konkrétně různé allotypy molekul H-2)6 a z nichž některé NK buněčné zabíjení inhibují (Ly-49a/c/g2/e a další), některé naopak cytotoxické funkce aktivují (Ly-49d/h)8.

Receptory z rodiny NKG2 tvoří disulfidicky spojené heterodimery s CD94, který je nezbytný pro jejich správnou funkci6,8. Jedná se opět o receptory stimulační (NKG2C, E nebo H) i inhibiční (NKG2A); jejich ligandy jsou často neklasické MHC gp I, u člověka HLA-E a u myší Qa1-6,8. Ze skupiny se poněkud vymyká NKG2D, který je exprimován nejen na NK buňkách, kde funguje jako stimulační receptor, ale i na T-lymfocyttech, kde pravděpodobně hraje roli kostimulační molekuly8; jeho ligandy jsou u člověka proteiny MICA, MICB a ULBP (protein vázající UL16, glykoprotein lidského cytomegaloviru) 6,8, u myší molekuly H-60 a Rae1 8.
CD69 je disulfidicky spojený homodimer, k jehož povrchové expresi dochází krátce po aktivaci lymfocytů (včetně NK buněk)\(^8\). Jeho zesílení s ligandem (např. monoklonálními protiálátkami v přítomnosti forbolesterů) dále přispívá k cytotoxické aktivaci lymfocytů\(^8,10\).

Receptory NK buněk jsou exprimovány po celou dobu vývoje buňky a jejich exprese je regulována mnoha různými faktory. Např. u Ly-49 hraje nejdůležitější roli aktivace či represe promotoru genů pro jednotlivé receptory, kinas Fyn a také stromární MHC gp I\(^6\).

1.6. Nkrp1

Tato rodina zahrnuje receptory NK buněk C-lektinového typu se stimulační nebo inhibiční funkcí\(^11\) – původně však byla popsána jako skupina stimulačních receptorů krychích NK buněk\(^8\). Patří sem mj. také NK1.1 (Nkrp1c), nejlepší známý serologický marker NK buněk myšího kmene C57BL/6\(^8\), který spolehlivě identifikuje i NK buňky mnoha jiných myších kmenů (CE, B6, NZB, C58, FVB atd.)\(^4\). Geny pro receptory Nkrp1 se nalézají na centromerickém konci NKC\(^11\), blízko genu pro CD69\(^8\).

U myší jsou již po dlouhou dobu známy receptory Nkrla, b a c; v nedávné době byly dále identifikovány receptory Nkrlc, d a f\(^12\). Nkrla a c ve své cytoplazmatické doméně neobsahují motiv ITIM a mohou být exprimovány pouze s adaptorovou molekulou nesoucí motiv ITAM (v případě Nkrplc je to FceRI\(^\gamma\))\(^8,12\). Obě tyto skutečnosti naznačují, že Nkrla a c jsou pravděpodobně stimulační receptory: u Nkrplc byla stimulační funkce přímo dokázána\(^12\). Naopak, ve struktuře myšího Nkrlb je obsažen motiv ITIM, tento receptor je inhibiční\(^8,11,12\). Funkce receptorů Nkrlc a f sice nebyla přímo prokázána, ze sekvenční analýzy je však možné předpokládat, že Nkrlc (jehož gen je pravděpodobně alelou Nkrlb\(^4\)) má funkci inhibiční (obsahuje ITIM) a Nkrplf stimulační\(^12\). Nkrl c je patrně pseudogen (gen, který v buňce již není přepisován, je však příbuzný jiným, funkčním genům)\(^12\).

U krys jsou známy receptory Nkrla, b, c a d (b\(^\ast\))\(^11,12\). Prototypický Nkrla (první popsaný receptor z C-lektinové nadrodiny) je homodimer spojený disulfidickým můstkem, transmembránový protein II. typu se stimulační funkcí (provázání s protiálkou (3.2.3.) indukuje NK buněčné zabíjení)\(^13\). Naopak, kryšt Nkrlb ve své cytoplazmatické doméně obsahuje motiv ITIM a byl prokázána jeho inhibiční funkce\(^11\). Inhibiční receptor Nkrlc
byl identifikován teprve nedávno; je exprimován především Ly-49 negativními NK buňkami11. Receptor Nkpr1d (b4) neobsahuje ITIM; nejvíce se podobá myším Nkpr1f12 a odhaduje se, že má aktivační funkci11.

V lidském NKC je kódována jen jediná molekula z rodiny Nkpr1: Nkpr1a. S myším Nkpr1 je identická z 45% a k její expresi dochází pouze na určité skupině zralých NK buněk a na T-lymfocytech (zatímco myší Nkpr1c je exprimován na všech NK buňkách a na specifické skupině T-lymfocytů, tzv. NKT buňkách)8.

1.7. Clr/OcI

Ligandy pro Nkpr1 zůstávaly po dlouhou dobu neznámé. Teprve nedávno bylo zjištěno, že některé z těchto receptorů specificky rozpoznávají a váží molekuly z rodiny Clr/OcI (\textit{C-type lectin-related molecule/Osteoclast inhibitory lectin})14,15.

První objevenou molekulou z této rodiny byl myší mOcI/Clr-b (Hong Zhou a kolegové, Melbourne univerzita, Austrálie; 2001)16. Tento transmembránový protein II. typu, jehož řetězec čítá 207 aminokyselinových zbytků a v extracelulární doméně obsahuje podobný C-lektinový motiv jako CD69, byl nejdříve popsán jako faktor inhibující formaci osteoklastů (mnohojaderných buněk, které se odvozuji z linie makrofágu pocházejících z kostní dřeně14 a jsou zodpovědné za resorpci kosti)16. Bylo dokázáno, že Clr-b \textit{in vitro} inhibuje tvorbu osteoklastů (při aplikaci dostatečné dávky) v proliferativní fázi úplně, ve fázi diferenciační ze 70 %, a to i v případech, kdy jsou v kulturách přítomny také RANKL a M-CSF – faktory zásadní pro formaci osteoklastů16. Zjištěním této funkce se alespoň částečně osvětlilo důvody přítomnosti Clr-b na osteoblastech; tento lektin je však exprimován na povrchu téměř všech hematopoetických buněk (kromě erythrocytů)15, což od začátku poukazovalo na fakt, že inhibice tvorby osteoklastů není pravděpodobně funkci jedinou.

Velmi brzy po objevu Clr-b byly u myší identifikovány dvě další molekuly vykazující významnou podobnost s mOcI, jak ve struktuře, tak i v jejich tkáňové distribuci a ve schopnosti \textit{in vitro} inhibovat tvorbu osteoklastů17. Tato redundancy u Clr molekul pravděpodobně poukazuje na společného předchůdce. Molekuly, z nichž každá je kódována jiným, byť velmi podobným genem, nesou názvy mOcIlrP1 (Clr-d) a mOcIlrP2.
(její isoformou, lišící se o 4 aminokyseliny, je mOCilrP2b neboli Clr-g; srovnání primární struktury Clr-b a Clr-g je na Obr. 3)17. Později byl nalezen také lidský homolog myšího Clr, hOCil, který má srovnatelné efekty na vývoj osteoklastů jako mOCil a kromě toho je schopen inhibovat resorpci kosti již vyvinutými osteoklasty odvozenými od nádorových buněk18. Dále bylo ukázáno, že Ocil je schopný vázat různé fyziologicky důležité glykosaminglykany a že tato vazba neovlivňuje jeho inhibiční funkci v osteoklastogenezě19.

Obr. 3: Srovnání aminokyselinové sekvence Clr-b, Clr-g a myší CD69 (část sekvence). Aminokyseliny, ve kterých se sekvence shodují, jsou psány černě, ostatní červeně. Zatímco Clr-b a Clr-g jsou homologní z 67%, jejich podobnost s CD69 je poměrně nižší (podobnost s Clr-b: 28%, podobnost s Clr-g: 32%).

C-pektinová doména je ve všech případech v rámceku. Konzervovaná cysteinová rezidea jsou označena hvězdičkou, konzervovaná N-glykosylační místa jsou označena trojúhelníkem. Sekve jsou rozděleny na jednotlivé domény, intracelulární, transmembránovou (Trans.m.d.) a extracelulární. Sekvence pocházejí z bioinformační databáze přístupné na www.ncbi.nlm.nih.gov a porovnány byly pomocí programu Clustal W (2.0.5) volně dostupného na www.ebi.ac.uk/clustalw/.

V nedlouhé historii rodiny molekul Clr se průlomovým stalo zjištění, že tyto proteiny C-pektinového typu jsou specifickými ligandy pro některé z Nkrp1 receptorů14,15.

--- Intracelulární doména --- Transm.d. ---

Clr-b	MCVTKASLPLMSPTGSQPQEVGKILQGKRHTGISPECAKLYCYYGVMVLTAVIALS 60
Clr-g	MNAQCVQKPEEGNMLGTGKIVQGKCFRIISTVSPVLYCCYGVMVLTAVIALS 57
CD69	LVNGKYNCPGLY 12

--- Extracelulární doména ---

Clr-b	VALSATKTEQIFVNTYAACCPQNIGVENKCYFSEYPSNTFAAQACMAQEAQLRAFDN 120
Clr-g	VALSTKTEQITIINKTACSNKNTVGGNKCFSEYFRNTFAAQACMAQEAQLRAFDN 117
CD69	EKLESS---------DIIHVAIQCKNEWIYKRTYFFSTTTKSWALARQSCEDAATLAVIDS 65

Clr-b	QDELNLMRYKANFDSWIGHLHRESSEHFWKTDNTEYNNTIPIRGEERFAYLNNGISST 180
Clr-g	EEELIFLRKRGDFDCWIGHLHRESSEHFWKTDNTEYNNTNMPILGVRYAYLSSDRISSS 177
CD69	EKDMTFLKRYSGELEHWWGLKEAN-QTWKWANGKEFNSWFLTGSRGCVSVNHNKNTAV 124

Clr-b	RIYSLRMNCISLSYSLHCQFPPPS 207
Clr-g	RSYINRMNCISPLNYLHCQFPPV-- 202
CD69	DCEANFHVVCSPR 139
Konkrétně se jedná o molekulu Clr-g, která je specificky rozpoznávána a vázána stimulačním receptorem Nkrl1f \(^{14}\), a dále o Clr-b, jež je specifickým ligandem pro inhibiční receptory Nkrl1b a Nkrl1d \(^{14,15}\). V později zmíněném případě se v určitém smyslu jedná o novou, jinou formu „missing self“ – místo MHC gp I zde vystupuje molekula Clr-b, která se vyskytuje na povrchu mnoha různých buněk, ale její povrchová exprese je často snížena u buněk nádorových (podobně jako MHC gp I)\(^{15}\).

Geny pro Clr se nalézají na stejném místě jako geny pro Nkrl – jsou s nimi promíchány na centromerickém konci NKC \(^{11,14}\) (viz Obr. 4). Pořadí genů je značně konzervované a daná oblast se vyznačuje velmi nízkým alelýckým polymorfnismem\(^{14}\). Mezi geny pro Clr a Nkrl je potlačena rekombinace, což spojuje skutečnosti, že spolu tyto geny velmi blízce sousedí, zaručuje, že specifické dvojice ligand-receptor jsou děděny společně\(^{11,14}\).

![Diagram organizace genů pro Nkrl (zeleně) a Clr (fialově) molekuly v centromerické části NKC.](image-url)

Obr. 4: Organizace genů pro Nkrl (zeleně) a Clr (fialově) molekuly v centromerické části NKC. Diagram se vztahuje ke genomu myší kmene B6, v tomto úseku je genomická organizace stejná i u myší kmene 129. Obdélníky – geny, šipky – směr transkripce. Obrázek byl převzat z lizuka, K., Naidenko, O. V., Plougastel, B. F. M., Fremont, D. H., Yokoyama, W. M.: Genetically linked C-type lectin-related ligands for the NKR/P family of natural killer cell receptors\(^{14}\).
2. CÍL PRÁCE

Na základě dostupných literárních údajů navrhnout oligonukleonidové primery vhodné pro klonování a amplifikaci genů CLR-b a CLR-g, isoform ligandu pro receptory z rodiny Nkrl myších NK buněk.

Amplifikovat geny pro výše uvedené receptory pomocí PCR z cDNA získané reverzní transkripcí celkové mRNA izolované ze slezin myšího kmene C57BL/6.

Klonovat PCR produkt do plazmidového vektoru, získaný inzert sekvenovat a sekvenci srovnat s bioinformatickými databázemi.
3. MATERIÁL

3.1. Přístroje

Analytické váhy
Automatické pipety
Automatický termocyklér
Centrifuga Allegra X-22R
Centrifuga VSMC-13
Centrifuga stolní Spectrophuge 16M
Ledovač UBE 50-35
Luminiscenční analyzátor LAS-1000 CH
Mrazící box (-20 °C)
Mrazící box (-80 °C) Bio Freezer
pH-metr Φ 200
Předvážky HF-1200 G
Soupraha pro agarosovou elektroforesu
Termocyklér
Termostat BT 120M
Třepačka
UV lampa UVGL-58
Vortex
Zdroj deionizované vody Milli Q
Zdroj napětí BM 551

AND, USA
Gilson, USA
Eppendorf, Německo
Beckman Coulter, USA
Shelton Scientific, USA
Edison, USA
Ziegra, Německo
Fuji photo film, Japonsko
Zannusi, Itálie
Forma Scientific, USA
Beckman, Německo
AND, USA
Sigma, USA
Eppendorf, Německo
Lab. přístroje Praha, ČR
VELP Scientifica, Itálie
Science Company, USA
VELP Scientifica, Itálie
Millpore, USA
Tesla, ČR
3.2. Chemikálie

3.2.1. Primery pro PCR

Clr-b_FW: 5’-ACATATGTGTGTCACAAAGGCTTCCCTA-3'
Clr-b_REV: 5’-TAAGCTTAGGAAGGAADAAAAAAGGAGTTTGCA-3'

Clr-g_FW: 5’-ACATATGAATGCCCAGTGACAGTACAGAAG-3'
Clr-g_REV: 5’-TAAGCTTAGACAGGAGGAGTTTGCAATG-3’

3.2.2. Enzymy

EcoR I New England Biolabs, USA
Lysozym Fluka, Švýcarsko
Platinum Taq polymerasa Invitrogen, USA
SuperScriptTM III RT Invitrogen, USA
RNasa Sigma, USA

3.2.3. Bakteriální kmeny

Escherichia coli, TOP10 Invitrogen, USA

3.2.4. Vektory

pCR® 2.1 – TOPO, 3.9 kb Invitrogen, USA

3.2.5. Chemikálie

Agar Oxoid, Anglie
Agarosa Jersey Lab Supply, USA
Bromfenolová modř Sigma, USA
<table>
<thead>
<tr>
<th>Material</th>
<th>Supplier/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>New England Biolabs, USA</td>
</tr>
<tr>
<td>Dimethylsulfoxid</td>
<td>Sigma, USA</td>
</tr>
<tr>
<td>DNA žebřík (100 bp)</td>
<td>New England Biolabs, USA</td>
</tr>
<tr>
<td>dNTP</td>
<td>Fermentas, Kanada</td>
</tr>
<tr>
<td>DTT</td>
<td>Sigma, USA</td>
</tr>
<tr>
<td>EDTA</td>
<td>Fluka, Švýcarsko</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Lachema, ČR</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Jersey Lab Supply, USA</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Sigma, USA</td>
</tr>
<tr>
<td>Chlorid sodný</td>
<td>Lachema, ČR</td>
</tr>
<tr>
<td>IPTG</td>
<td>Sigma, USA</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Jersey Lab Supply, USA</td>
</tr>
<tr>
<td>Kvasničný extrakt</td>
<td>Imuna Pharm, ČR</td>
</tr>
<tr>
<td>Kyselina octová</td>
<td>Lachema, ČR</td>
</tr>
<tr>
<td>Síran hořčnatý</td>
<td>Lachema, ČR</td>
</tr>
<tr>
<td>Sacharosa</td>
<td>Lachema, ČR</td>
</tr>
<tr>
<td>Tris</td>
<td>Serva, USA</td>
</tr>
<tr>
<td>Tris-Cl</td>
<td>Serva, USA</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Sigma, USA</td>
</tr>
<tr>
<td>Trypton</td>
<td>Oxoid, Anglie</td>
</tr>
<tr>
<td>X-Gal</td>
<td>Serva, USA</td>
</tr>
</tbody>
</table>

3.2.6. Roztoky a média

<table>
<thead>
<tr>
<th>Roztok</th>
<th>Osměřování</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarosový gel 1%</td>
<td>0,5 g agarosy; 50 ml TAE pufr; 2 μl Ethidiumbromidu</td>
</tr>
<tr>
<td>EcoRI pufr</td>
<td>50 mM TrisCl, pH 7,5; 10 mM MgCl₂; 100 mM NaCl; 0,02 % Triton X-100; 0,1 mg/ml BSA</td>
</tr>
</tbody>
</table>
EP (lysis buffer) 0,5 ml 1 M TrisCl pH 8,0; 0,1 ml 0,5 M EDTA pH 8,0; 7,5 g sacharosy; 100 mg lysozymu; 10 mg pankreatické RNasy; 5 mg BSA; destilovaná voda do 50 ml

LB agar 15 g agaru na 1000 ml LB média

LB agar s kanamycinem 100 μl kanamycinu na 100 ml LB agaru

LB médium 1 % bacto-tryptone; 0,5 % kvasničného hydrolyzátu; 1 % NaCl; ddH₂O

LB médium s kanamycinem 70 μl kanamycinu na 100 ml LB média

PCR pufr Thermo Pol Buffer 10x: 10 mM KCl; 10 mM (NH₄)₂SO₄; 20 mM Tris-HCl; 2 mM MgSO₄; 0,1 % Triton-X100, pH 8,8

Salt solution (TOPO cloning kit) 1,2 M NaCl; 0,06 M MgCl₂

SOC médium 20 g bacto-tryptone; 5 g bacto-yeast extract; 0,5 g NaCl; 2,5 ml 1M KCl; ddH₂O do 1000 ml

Stop roztok (loading buffer) bromfenolová modř; 50 % glycerol; ethanol; TE pufr

TE pufr 10 mM TrisCl, pH 7,5; 0,5 mM EDTA

TAE pufr 40 mM Tris; 20 mM CH₃COOH; 1 mM EDTA
4. METODY

4.1. Izolace celkové RNA z myší sleziny

Celková RNA byla izolována ze slezin čerstvě odebraných z myší kmene C57BL/6 v laboratoři MUDr. Anny Fišerové, CSc.

4.2. Syntéza cDNA z mRNA

V mikrozkumavce zbavené nukleas bylo smícháno 5 μg celkové RNA (1 μg/5 μl), 1 μl oligo(dT)12-18 (50 μmol/L), 1 μl 10 mM dNTP Mix (10 mM dATP, dGTP, dCTP i dTTP, pH neutrální) a 6 μl destilované vody. Tato směs byla na dobu 5 minut zahřáta na 65°C a poté přenesena na led, kde byla po 1 minutu inkubována. Obsah mikrozkumavky byl poté sesbírán krátkou centrifugací a bylo přidáno 4 μl 5X First-Strand Bufferu, 1 μl DTT (0,1 M; Invitrogen), 1 μl inhibitoru RNas RNaseOUT™ (40 units/μl; Invitrogen) a 1 μl reverzní transkriptasy SuperScript™ III RT (200 units/μl; Invitrogen). Roztok byl promíchán jemným nasáváním a vypouštěním pipetou a mikrozkumavky byly následně inkubovány 60 minut při 50°C. Reakce byla pozastavena zahřátím směsi na 70°C na dobu 15 minut.

4.3. PCR amplifikace

PCR amplifikace byla provedena za použití cDNA získané reverzní transkripcí z RNA (viz kapitola 4.2.), výše uvedených dvojic primerů (viz kapitola 3.2.1.) a Platinum Taq polymerasy (Invitrogen) – úplné složení reakční směsi viz Tab. 1.

Tab. 1: Složení reakční směsi pro PCR amplifikaci.

<table>
<thead>
<tr>
<th>Složka</th>
<th>cDNA</th>
<th>FW</th>
<th>REV</th>
<th>Plat</th>
<th>dNTPs</th>
<th>DMSO</th>
<th>MgSO₄</th>
<th>pufr</th>
<th>ddH₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>V [μl]</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2,5</td>
<td>31,5</td>
</tr>
</tbody>
</table>

FW = forward primer, REV = reverse primer, Plat = Platinum Taq polymerasa, pufr = Thermo Pol Buffer 10x
Bylo provedeno 30 cyklů PCR amplifikace s půlminutovým nasedáním primerů při 60°C a minutovou polymerací při 72°C. Termální profil PCR amplifikace viz Tab. 2.

Tab. 2: Termální profil PCR. Teplota krytu 105°C

<table>
<thead>
<tr>
<th>Počet cyklů</th>
<th>1</th>
<th>30</th>
<th>30</th>
<th>30</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teplota</td>
<td>95°C</td>
<td>95°C</td>
<td>60°C</td>
<td>72°C</td>
<td>72°C</td>
</tr>
<tr>
<td>Čas [min]</td>
<td>2:05</td>
<td>0:30</td>
<td>0:30</td>
<td>1:00</td>
<td>10:00</td>
</tr>
</tbody>
</table>

4.4. Detekce produktů PCR agarosovou elektroforézou

5 µl směsi získané RT-PCR amplifikací bylo smíchano s 2 µl stop pufru a analyzováno agarosovou elektroforézou v 1 % agarovém gelu obsahujícím pufr TAE (Tris-Acetát-EDTA) a ethidiumbromid. Elektroforéza byla provedena při 110, později při 130 V. Poté, co bromfenolová modř doputovala asi do dvou třetin délky gelu, byla elektroforéza ukončena a byla pořízena fotografie gelu pomocí videokamery a transluminátoru při vlnové délce 254 nm.

4.5. Ligace získaných genů do expresního vektoru ze soupravy TOPO TA Cloning®

Pro klonování DNA fragmentů získaných PCR amplifikací byl použit kit TOPO TA Cloning® (Invitrogen) a byl dodržen postup popsaný výrobcem. Ligační směs (složení viz Tab. 3) byla v mikrozkumavce jemně promíchána, inkubována za laboratorní teploty po dobu 5 minut a poté umístěna na led.

Tab. 3: Složení ligací směsi, dle manuálu firmy Invitrogen

<table>
<thead>
<tr>
<th>Složka</th>
<th>PCR produkt</th>
<th>Salt Solution</th>
<th>TOPO® vector</th>
<th>ddH₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>V [µl]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
4.6. Transformace kompetentních buněk *Escherichia coli* tepelným šokem

Ke kompetentním buňkám *Escherichia coli* kmene TOP10 byly po rozmrazení na ledu přidány 2 μl roztoku vzniklého ligaci PCR produktu do vektoru TOPO®. Směs byla jemně zamíchána a inkubována na ledu po dobu 20 minut. Poté byly buňky vystaveny na 30 sekund tepločním šoku (42°C) na vodní lázní bez třepání. Bezprostředně na to byly mikrozkumavky přeneseny zpět na led. K buňkám bylo přidáno 250 ml SOC média vytemperovaného na laboratorní teplotu. Pevně uzavřené mikrozkumavky byly po dobu 1 hodiny inkubovány při 37°C.

100 μl roztoku buněk z každé transformace bylo potom rozetřeno na LB-agarové plotny s kanamycinem, IPTG (0,4 mM) a X-Gal (0,09 mg/μl, původně rozpuštěný v DMSO), které byly předehráty na 37°C. Při této teplotě byly plotny inkubovány do druhého dne.

Z kolonií buněk *Escherichia coli* rezistentních na kanamycin, které na plotně vyrostly, byly bílé kolonie přeneseny vždy do 1 ml sterilně napipetovaného kapalného LB média s kanamycinem. Třepáním v bakteriální třepačce po dobu nejméně 20 hodin pak byla připravena stacionární kultura z vybraných buněk.

4.7. Minipreparace plazmidové DNA

Minipreparační příprava plazmidové DNA byla provedena metodou tzv. "Easyprepu" podle publikované metody. Poté, co byla kultura transformovaných buněk *E. coli* oddělena ode dna a promíchána pomocí Vortexu, bylo odebráno 0,8 ml této kultury do mikrozkumavky a centrifugováno po dobu 30 s, rychlostí 6000 RPM. Supernatant byl odsát automatickou pipetou a peleta resuspendována ve 30 μl EP pufru. Obsah mikrozkumavky byl protřepáván po dobu 5 minut, poté byl na 90 sekund vystaven ve vodní lázní teplotě 100°C a následně inkubován na ledu po dobu 10 minut. Dále byl obsah mikrozkumavek centrifugován při 4°C a maximálních otáčkách (22 000 RPM) po dobu 10 minut.
4.8. Restrikční analýza

V mikrozkumavkách bylo smícháno vždy 9 μl roztoku plazmidové DNA, 0,5 μl EcoRI a 1 μl EcoRI pufru. Mikrozkumavky byly inkubovány po dobu 1 hodiny při 37°C, reakce byla zastavena přidáním 2 μl stop roztoku.

4.9. Analýza DNA fragmentů agarosovou elektroforesou

DNA fragmenty vzniklé restrikčním štěpením byly analyzovány za pomoci elektroforézy v 1 % agarosovém gelu. Pro srovnání byl použit 100 bp DNA žebřík a dále původní produkty (DNA fragmenty získané PCR amplifikací, viz kapitola 4.3.). Po ukončení elektroforézy (asi po 30 minutách) byly vzorky detekovány pomocí transluminátoru při vlnové déle 254 nm.

4.10. DNA sekvenování

Buňky *E. coli* pozitivních klonů obsahující inzert správné délky byly rozetřeny na čerstvou LB-agarovou ploutvu s kanamycinem. Míška byla inkubována přes noc při 37°C (zbytek použitých kultur byl promíchán s glycerolem, který byl přidán do 20 % objemu roztoku, kultury s glycerolem byly postupně ochlazeny a poté uschovány v mrazicím boxu při -20°C). Druhý den byla míška s narostlými koloniemi předána do DNA sekvenační laboratoře MBÚ AV ČR v. v. i. Dr. Jurgenu Felsbergovi, který zajistil přípravu plazmidové DNA s použitím purifikačního kitu firmy Genomed, a dále DNA sekvenování inzertů v obou směrech zahájené z míst specifických primerů obsažených v klonovacím vektoru (Obr. 7 na stránce 32), M13 forward primeru a M13 reverse primeru. Vlastní sekvenování bylo provedeno Sangerovou dideoxynukleotidovou metodou na automatickém DNA sekvenátoru firmy Applied Biosystems ABI Prism 3100.
5. VÝSLEDKY

5.1. Návrh a syntéza oligonukleotidových primerů

Oligonukleotidové primery byly navrženy na základě imunologických článků, jež popisují klonování a sekvenování Clr-b a Clr-g, ligandů pro některé myši receptory Nkrp116,17. Na základě nukleotidových sekvencí těchto ligandů byly zvoleny primery, které byly poté použity při amplifikaci příslušných molekul.

Pro Clr-b byl navržen forward primer 5'-ACATATGTTGTCACAAAGGCTTCCCTA-3' a reverse primer 5'-TAAGCTTAGGAAGGAAAAAAGGAGTGTGGCA-3', pro Clr-g byl zvolen forward primer 5'-ACATATGAATGCCGAGTGTATACAGAAG-3' a reverse primer 5'-TAAGCTTAGACAGGAGGATTTGGCAATG-3'. Navržené primery byly syntetizovány firmou Generi-Biotech v Hradci Králové. Pro každý z těchto primerů byla pomocí programu OligoCalc dostupného na webových stránkách http://www.basic.northwestern.edu/biotools/oligocalc.html vypočítána teoretická teplota jejich nasedání na nukleotidové řetězce, která se pohybovala od 55 do 60°C.

5.2. Klonování a amplifikace DNA fragmentu

Celková RNA izolovaná z myších slevů získaných z laboratorních myší kmeny C57BL/6 byla použita pro PCR amplifikaci genů pro receptory Clr-b a Clr-g. V počátečních experimentech, kdy byla použita v laboratoři běžně používaná Deep Vent DNA polymerasa a zvolena poměrně nízká teplota nasedání primerů (56 a 58°C), docházelo pouze k amplifikaci velmi malých množství DNA fragmentů odpovídajících spíše nespecifickým produktům (tzv. mispriming). Vznikla proto obava, zda tyto problémy nejsou způsobeny špatnou kvalitou nebo malým množstvím použité RNA. Při dalším pokusu však byla tato domněnka vyvrácena – po použití Platinum Taq polymerasy a techniky "Hot Start" byly na gelu pozorovatelné zóny amplifikovaných fragmentů. Pro nasedání primerů byla tentokrát použita teplota 60 a 65°C; zatímco teplota 65°C se ukázala jako příliš vysoká, při teplotě 60°C bylo dosaženo úspěšné a specifické amplifikace obou požadovaných fragmentů. Na gelu jim odpovídaly proužky v oblasti asi 600 bp (viz Obr. 5 na následující stránce).
Obr. 5: Analýza DNA fragmentů amplifikovaných pomocí RT-PCR protokolu pomocí primerů specifických pro Clr-b a Clr-g. Pro analýzu byl použit 1% agarosový gel v přítomnosti pufru TAE a etidiurnbromidu a DNA byla detekována na transluminátor UV zářením vlnové délky 254 nm. Pro srovnání byl použit 100 bp DNA žebřík (tzv. marker s intervaltem 100 bp, čísla vedle DNA žebříku odpovídají délce jednotlivých fragmentů). Obrázek je složen ze dvou fotografii stejného gelu, první z nich byla zaostřena na DNA žebřík, druhá potom na PCR produkty. Pro amplifikaci byla použita teplota nasedání primerů 60°C, naneseno 5 µl reakční směsi.

5.3. Ligace DNA fragmentu do vektoru a kontrola restrikční analýzou

Získané DNA fragmenty byly vloženy do plazmidového vektoru pCR®2.1-TOPO® z komerčně dostupné soupravy TOPO TA Cloning® firmy Invitrogen. Vektor pCR®2.1-TOPO® je dodáván linearizovaný s jedním nespalovaným thymidylovým zbytkem na 3'-konci. Ten se páruje s adenylovým zbytkem na konci DNA fragmentu vzniklým nespecifickou adicí prováděnou většinou běžnými termostabilními DNA polymeras. Celý proces je výrazně určen geneticky pocházející z virusu Vaccinia, jež je umístěna na konci vektoru a pomáhá zachycení a účinné ligaci PCR produktu (viz Obr. 6 na následující stránce). Tak je dosaženo zvýšení účinnosti ligace, které umožňuje provádět ligaci pouze krátkou dobu a i za použití nízké koncentrace DNA fragmentů. Souprava TOPO TA Cloning® teoreticky vyžaduje přítomnost čistého DNA fragmentu, což bylo v případě Clr-b i Clr-g dosti dobře splněno. Ačkoli účinnost použitého kitu je vysoká, je po provedení ligace reakce nutné vyselektovat neproduktní klony (vzniklé např. uzavřením samotného vektoru). K tomu byla použita dvojstupňová procedura:
v prvním selekčním kroku byl použit tzv. blue/white screening a ve druhém restrikční analýza pomocí restrikční endonukleasy EcoR I.

Obr. 6: Princip ligace PCR fragmentu do TA vektoru pCR®2.1- TOPO® ze soupravy TOPO TA Cloning® firmy Invitrogen. Topoisomerasa I z viru Vaccinia se váže na dvojřetěžovou DNA na specifických místech a štěpí fosfodiesterovou vazbu po sekvenci 5'-CCCTT v jednom řetězci. Energie, která vzniká štěpením fosfodiesterové vazby, je zachována vytvořením kovalentní vazby mezi 3'-fosfátem rozštěpeného řetězce a tyrosylovým zbytkem (Tyr-274) topoisomerasy I. Fosfotyrosylová vazba mezi DNA řetězcem a enzymem může být napadena 5'-hydroxylem původního či jiného DNA řetězce, což vede k vytvoření nepřerušeného nukleotidového řetězce a uvolnění topoisomerasy I. Obrázek byl převzat z firemního manuálu firmy Invitrogen, USA²

Podstatou metody blue/white screening je použití X-Gal, substituovaného galaktopyranosidu, který je štěpén enzymem β-galaktosidasou na galaktosu a modré barvivo na bází indolu. Inzercí PCR produktu do plazmidového vektoru pCR®2.1- TOPO® dojde k přerušení genu pro β-galaktosidasu (viz Obr. 7 na následující stránce), což ve výsledku znamená, že bakteriální kolonie obsahující inzert již nejsou schopné produktovat tento enzym a tedy ani rozkládat X-Gal za vzniku modrého barviva. Tak se kolonie obsahující inzert jeví na Petriho misce jako bílé, a naopak kolonie obsahující vektor bez inzertu jsou modré.
EcoR I je restikční endonukleasa, která specificky štěpí polynukleotidový řetězec v místě označeném /: 5'...G/AATTC...3' (viz také Obr. 7).

Comments for pCR®2.1-TOPO®
3931 nucleotides

LacZα fragment: bases 1-547
M13 reverse priming site: bases 205-221
Multiple cloning site: bases 234-357
T7 promoter/priming site: bases 364-383
M13 Forward (-20) priming site: bases 391-406
f1 origin: bases 548-985
Kanamycin resistance ORF: bases 1319-2113
Ampicillin resistance ORF: bases 2131-2991
pUC origin: bases 3136-3809

Obr. 7: Schéma klonovacího vektoru pCR®2.1- TOPO® včetně popisu důležitých sekvencí a sekvence polylinkeru. Vyznačená je místo nasedání M13 forward i reverse primeru, dále obě štěpná místa EcoR I a místo, kam se při ligaci vkládá PCR produkt. Plné šipky značí gen kódující enzym β-galaktosidasu (lacZα), počátky replikace (f1 ori a pUC ori), gen kódující rezistenci na kanamycin (Kanamycin) a rezistenci na ampicillin (Ampicillin). Obrázek byl převzat z firemního manuálu firmy Invitrogen.
Nejprve byly tedy za pomoci metody blue/white screening vybrány některé z kolonii, které se jevily bílé a byly dostatečně velké, čímž upozorňovaly na relativně vysokou pravděpodobnost, že obsahují vektor s vloženým inzertem. Vybrané kolonie byly potom ve druhém selekčním kroku podrobeny restrikční analýze za použití restrikční endonukleasy EcoRI s následnou detekcí DNA fragmentu agarosovou elektroforézou, jejíž výsledky lze vidět na Obr. 8. Toto kritérium je již mnohem přesnější a umožňuje vybrat klony vhodné pro DNA sekvenování inzERTu. V mém případě byly získány 4 takové klony, jeden klon obsahující vektor s vloženým Clr-b, tři klony, které obsahovaly vektor s vloženým Clr-g.

Obr. 8: Výsledek restrikční analýzy jednotlivých klonů získaných pěstováním bílých kolonii po transformaci a blue/white screeningu. Pro analýzu byl použit 1 % agarosový gel v přítomnosti pufru TAE a ethidiumbromidu a DNA byla detekována na transluminátoru UV zářením vlnové délky 254 nm. Pro srovnání byl použit 100 bp DNA žebřík (čísla vedle DNA žebříku odpovídají délce jednotlivých fragmentů). Pozitivní klony C43 (Clr-b), C52, C53 a C54 (Clr-g) restrikcí poskytly inzert o předpokládané délce (cca 600 bp). Naneseno 5 μl reakční směsi.

5.4. DNA sekvenování

Konečným důkazem kvality získaného DNA fragmentu je teprve DNA sekvenování. To bylo provedeno jako placená služba v Laboratoři DNA sekvenování MBÚ AV ČR v. v. i. Dr. Jurgenem Felsbergem. Plazmid byl do Laboratoře dodán ve formě bakteriální
kultury; zde byl purifikován pomocí komerčně dostupného kitu a poté sekvenován na obou vláknech s použitím dideoxynukleotidové metody prováděné na automatickém DNA analyzátoru ABI Prism 3100 firmy Applied. Tato technologie je vyhovující pro úsek DNA o délce až 1000 bp, což se pro geny kódující molekuly Clr-b a Clr-g (cca 600 bp) jevilo jako dostávačící. Sekvenování bylo přesto prováděno na obou vláknech za použití M13 forward i M13 reverse primeru (viz Obr. 7 na stránce 32) – obě sekvence potom sloužily jako zdroj pro vytvoření konečné sekvence inzertu.

Nejprve byly v programu Chromas verze 1.45 (Griffith University, Southport, Queensland, Austrálie) prohlédnuté dodané soubory ve formě původních chromatogramů. Z nich bylo ve všech případech usuzováno, že byla získána velmi kvalitní sekvence v celém rozsahu sekvenovaného DNA inzertu. Sekvence začínají být velmi dobře čitelná asi 25 párů bazí za místem nasednutí primeru; její první část tedy odpovídá polylinkeru použitého vektoru pCR®-2.1- TOPO® (viz Obr. 7 na stránce 32). V případě koní C43 (Clr-b) se v místě 68. nukleotidu nachází jedno z obou restrikčních míst pro EcoR I (G/AATTC), ohraničující místo vkládání inzertu, a v místě 79. nukleotidu nepárové T použité pro ligaci DNA inzertu. Poté následuje 633 nukleotidů dlouhá sekvence celého inzertu, není-li započítáno koncové nespecifické A použité pro ligaci (v místě 713. nukleotidu). V místě 719. nukleotidu je pak druhé místo EcoR I použité pro restrikční analýzu (viz Obr. 7 na stránce 32 a Obr. 9). V případech koní C53 a C54 je situace velmi podobná; délka inzertu je v obou případech 618 nukleotidů.

Na Obr. 9, 10 a 11 je konečné zhodnocení kvality klonovaných a amplifikovaných DNA sekvencí (sekvence byly pomocí programu BLAST dostupného na www.ncbi.nlm.nih.gov porovnány s nejblíží nukleotidovou sekvencí nalezenou v bioinformatických databázích) a jejich překlad do aminokyselinové sekvence (proveden pomocí programu Translate dostupného na webových stránkách www.expasy.org). V případě C43 došlo v průběhu amplifikace ke dvěma mutacím, z nichž jedna neměla kódovanou aminokyselinu (GCT (Ala) → GCC (Ala), v místě 431. nukleotidu), zatímco druhá provedla záměnu původního serinu za glycín (AGC (Ser) → GGC (Gly), v místě 129. nukleotidu). U koní C53 došlo k záměně jednoho nukleotidu na místě 234, aminokyselinovou sekvenci to však neovlivnilo (GTT (Val) → GTC (Val)). Konečně u koní C54 došlo k záměně u jednoho nukleotidu (424.), která změnila i aminokyselinovou sekvenci (záměna původního isoleucinu za valin, ATT (Ile) → GTT (Val)).
TATCTGCAGAATTCCCTTTACATATGTGTGTCACAAGGCTTCCCTACTATGTCTTAGT
M CVTKASLPMLS
CCCACAGGCGCCCGCGAGAAGGTAAAGTGGTAAATTCTCCAAGGAAAAAGGACACGA
PTGGPQEVEVGKILQGKRHG
ACCATCTCCCCTGAGTCTTGTGACTATGCTACTATGGAGTATCGTATGTCCTC
TISPESCALKLYGYGVMVL
ACTGTAGCTGTAAATTGCTTTTCTGTGTTTGTCGCAACAAAGACAGACAGACATCCCA
TVIALSVALSATKTEQIP
GTCAACAAGACCTATGCTGCTTGCCCAGCACAACCTGGAGTGGAGTTGGAAATAATGTTTT
VNKTYAACPQNWIGVAQEAAQ
TATTTTCTGAAATCCAAAGTAACTGGGACATTGCCCAGGCTTCTGCAAGGAGAAGAG
LARFDNQDELNFLMRYKENK
GCCCAACTAGGCCTGTGCAACCCCTGTGAGACCTGAACTTCCTAATGAGATACAAAGGC
CFYFSEYPSNWFTFAQCAFMA
AATTTCGATTCTCGATGGCTGCGCTGCACAGAGAATCGTCAGAGACCCCTTGAGAATGGACA
NFDSWIGLHRESSEHPWKWT
GACAACACTGAGTATAAACAAACAGATTCCCACTCCGGGGAGGAAAGATTGGCCTACCTG
DNTEYNNTIPIRGEERFAYL
AACAAACACGGGATCAGCAGTACCCAGATCTATTCACTTCCGATGTGATCTGTAGCAAG
NNNGISSTRYSLRMWSK
CTCAACAGCTATAGCTCCACTGCAAACCTCTTTTTTCTCTTCCTGAGCTTTAAGGGCG
LNSYQLHCPFTPFFPS-
AATTCCAG

A129G → AGC (Ser) → GCC (Gly) — mutace v intracelulární části receptoru
T431C → GCT (Ala) → GCC (Ala) — nezmění aminokyselinovou sekvenci

ATGAATGCCAGTGTACAGAGCCGGAAGGGGATGGACCCCTTTGGAACTGGAGGT
MNAQCVCVOKPEENGPNGLGTGG
AAAATGGCCAGAAATGTTGCCAGAATCATCTCCTCCTTGCTTTAAACCTTAC
KIVQGKCFRISTVSPVLY
TGCTGCTATGGATGATCATGGCTCTCACTGTAATGTCACTTTCTGCTGCTCTTG
CCYGVIMVLTVAVALSVAL
TCAACAAAAAGCAAGACAGATCATATAATCAACAAGACCATTGCTGCTTGCTCATTTAC
STKKTEQIIIINKTYAACSKN
TGGACTGGAATGGAATAAATGTTTTTTTTTTGGAGCTCAGAATCTGCACTTT
WTGVGNGKCFSFYFGSPRNPWTFW
GCCAGGCCCTCTGCAAGCAAGGAAGGCCAACACTGCTCGGTTTGAACGGAGAG
AQAFCMAMQALRFDNREEE
CTGATTTTCTAAAGAGATTTCAAGGGGATTGGATTGCTGAGTTGGCTGCCAGAGAG
LIFLKRFGDFDCWIGLHRE
TCGCTAGAGCACCCTTGGAAGTGGGCAAACAACCATCTGTAATAACACATGAAATCCAT
SSHEHPWKTNNTEYNNMNPI
CTAGGAGTGCGGAAGATATGCTACCTGAGCAGCGTACGATGATCAGCTGAGGACTAT
LGVRGARYLSSDRISSSRSY
ATAAAATCGGATGTGGATCTGTAGCAGCTCAAACACTATAACCTCCATTTGGCAAACTCCT
INRMWICSLKNYNYNLHCQTP
CCTGTCTAAAGCTTAAAGGCGAATTCTGC
P-V-

T234C ... GTT (Val) → GTC (Val) − nezmění aminokyselinovou sekvenci

36
A424G ... ATT (Ile) → GTT (Val) – mutace v lektinové doméně

Obr. 11: Nukleotidová a aminokyselinová sekvence inzertu z klonu C54, odpovídající sekvenci genu pro Clr-g, a popis vzniklých mutací. Barevné značení je stejné jako u Obr. 10.
Tato práce popisuje klonování a amplifikaci Clr-b a Clr-g, které patří do C-lektinové nadrodiny receptorů. Spolu s několika dalšími podobnými molekulami tvoří tyto dva receptory samostatnou rodinu – Ocil/Cnr. U receptorů z této rodiny byly v dřívějších studiích zjištěny některé funkční analogie\(^7\) a dále byla sledována vysoká homologie sekvenční jednotlivých isoform Clr mezi sebou a významná podobnost se strukturou CD69, stimulačního receptoru hrajícího roli při rané fázi aktivace lymfocytů\(^10\). Srovnání aminokyselinových sekvencí Clr-b a Clr-g lze vidět na Obr. 3, kde je také ukázáno, jak rozsáhlé jsou v porovnání domény jednotlivých proteinů. Největší část receptoru zaujímá extracelulární doména, která je zodpovědná za vazbu Clr molekul na jejich receptoryt\(^14\) – v případě Clr-b má délku 143 aminokyselinových zbytků a u Clr-g 141; transmembrálová část v obou případech čítá 21 aminokyselin; intracelulární část receptoru je znatelně kratší (Clr-b 43 aminokyselinových zbytků, Clr-g 40), přesto však je možné, že právě díky tomuto úseku by mohly probíhat nebo být aktivovány některé důležité biologické děje, například aktivace některé ze signalizačních drah.

Prvním krokem v postupu bylo navržení oligonukleotidových primerů, které byly vhodné pro klonování a amplifikaci požadovaných receptorů. Vzhledem k tomu, že sekvence Clr-b a g se od sebe na obou koncích dostatečně liší, při navrhování primerů pro PCR-amplifikaci těchto genů se nevyskytl žádné problémy. Oba forward primery, které jsou 28 bazí dlouhé, začínají o 4 nukleotidy před iniciačním kodónem (ATG) a poskytují tak štěpné místo pro restrikční endonukleasu Ndel (5′...CA/TATG...3′). Reverse primery, jejichž délka je 32, resp. 29 bazí, sledují nejprve strukturu konce extracelulární domény a poté za stop kodónem (TAA) pokračují dalšími pěti nukleotidy, poskytující je tak štěpné místo pro restrikční endonukleasu HindIII (5′...A/AGCTT...3′). Obě tato štěpná místa se mohou ukázat jako velmi užitečná v dalším experimentálním postupu. Pro každý z primerů byla pomocí programu OligoCalc vypočítána teoretická teplota jejich nasedání na templátorové řetězce, která se pohybovala od 55 do 60°C. Proto byla také pro následnou PCR amplifikaci kompromisem zvolena teplota nasedání primerů 56 a 58°C. Ukázalo se však, že tyto teploty nejsou dostatečné, protože dochází k amplifikaci nespecifických produktů a výške produktů specifických je buď velmi malý, nebo nulový. Na neúspěchu
v tomto prvním pokusu se snad také mohla podílet použitá Deep Vent polymerasa, na úkor relativně vysoké přesnosti často neposkytující dostatečný výtěžek. V dalším experimentu byla proto zaměněna za Platinum Taq polymerasu, která poskytuje poměrně vysoký výtěžek, a teplota nasedání primerů byla zvýšena na 60 a 65°C. Kromě toho bylo také použito technologie "Hot Start", jejíž podstatou je zablokování aktivního centra použité DNA polymerasy proteinovým inhibitorem až do doby, kdy dojde k jeho disociaci v okamžiku první denaturace v termálním cyklátoru. Výhoda tohoto postupu spočívá ve snížení úrovně nespecifického nasedání primerů, v důsledku čehož vzrůstá výtěžek specifického PCR produktu. Teplota 65°C se ukázala jako příliš vysoká, naproti tomu však polymerase s teplotou nasedání primerů při 60°C byla účinná a bylo získáno dostatečné množství požadovaných produktů.

Ani klonování získaných fragmentů do plazmidového vektoru nebylo úplně bez problému. Při postupu byla nejprve použita souprava TOPO TA Cloning® firmy Invitrogen, jejíž expirační lhůta se však již chytila ke konci. Bakterie s požadovaným inzertem nebyly získány, a pokus byl opakovan se soupravou TOPO TA Cloning® novějšího data. V tomto případě pak bylo klonování úspěšné, a byly získány některé bakteriální kolonie s požadovaným inzertem.

K vyselektování bakterií, které obsahovaly vektor s inzertovaným PCR produktem, byl v prvním kroku použit tzv. blue/white screening, v druhém potom restrikční analýza. Blue/white screening byl navržen pouze jako orientační metoda, a v tomto rámci se ukázal být poměrně účinný. Princip metody spočívá ve štěpení látky X-Gal na barevný produkt enzymem β-galaktosidasou. Enzym β-galaktosidasu je kódován v použitém plazmidovém vektoru genem, k jehož přerušení dochází v důsledku vložení DNA fragmentu do vektoru. Bakterie transformované takovým vektorom potom nemají schopnost rozkládat X-Gal na modré barvivo a na Petriho misce se jeví jako bílé. Někdy však na základě tohoto postupu mohou být vybrány kolonie, u kterých ještě nedošlo k úplné expresi enzymové výbavy (tomu lze v mnoha případech předejít vybráním větších bílých koloní) nebo kolonie, do kterých byl vložen jiný než požadovaný inzert. Vkládání nespecifických inzertů do plazmidového vektoru je omezeno na úrovni PCR amplifikace/ligace použitím Platinum Taq polymerasy, jež nespecificky přidává na 3'-konec PCR produktu adenyllový zbytek, a TOPO® vektoru, který má na svých otevřených 3'-koncích thymidylový zbytek. To pak zajišťuje zvýšenou pravděpodobnost ligace správného fragmentu do plazmidového
vektoru; na druhou stranu je však nutné, aby PCR směs byla poměrně čistá, tj. aby obsahovala pouze DNA fragmety, jejichž vložení do vektoru je požadováno.

Restrikční analýza se pak ukázala jako spolehlivá metoda při eliminaci špatného výběru na základě dvou výše popsaných důvodů. U všech bakteriálních klonů, které byly na základě restrikční analýzy vybrány k DNA sekvenaci, se potvrdilo, že opravdu obsahují požadovaný DNA fragment.

DNA sekvenování odhalilo ve všech případech některé drobné mutace v nukleotidových sekvencích oproti sekvencím, které jsou uloženy v bioinformatických databázích. Tyto mutace vznikají v důsledku chyb v replikaci – každá polymerasa provádí replikaci pouze s určitou mírou přesnosti (a u Platinum Taq polymerasy není tato míra přesnosti ve snování s jinými polymerasami příliš vysoká), a chyby vedoucí k mutacím jsou tedy nevyhnutele.

U Clr-b došlo k mutaci v intracelulární části receptoru (A129G), která zaměnila původní aminokyselinu serín za glycín. Druhá mutace v této sekvenci (T431C) by se při expresi proteinu neprojevila. U získaných sekvencí Clr-g lze v obou případech pozorovat záměnu v jednom nukleotidu. V prvním případě se jedná o mutaci, která nepoznáva aminokyselinovou sekvenci (T234C), v druhém případě se potom vyskytla záměna, která by v aminokyselinovém řetězci způsobila mírnou mutaci v lektinové doméně (A424G) – záměnu původního isoleucínu za valin.

Pro další pokračování v experimentech je především vhodná molekula Clr-g z klonu C53 bez mutací v aminokyselinové sekvenci, použití molekuly Clr-g z druhého klonu (C54) je z důvodu mutace v lektinové doméně nepříliš vhodné, popř. je nutné mutaci opravit. Mutace v intracelulární části Clr-b nebude překážkou pro další studie molekuly, protože pro následnou rekombinantní expresi proteinu bude vybrán jen jeho extracelulární fragment odpovídající C-lektinové doméně.

Dalším postupem v experimentech bude tedy oprava mutací a dále pak exprese proteinů, které amplifikové molekuly kódují. Ty poslouží pro strukturní studie a dále bude možné přejít ke studiím funkčním, především k výzkumu vzájemné interakce Clr-b a g a jejich receptorů, myších Nkrp1.
7. ZÁVĚR

Byly amplifikovány geny pro molekuly Clr-b a Clr-g, ligandy myších receptorů z rodiny Nkrl.

Výše uvedené geny byly klonovány do plazmidového vektoru, získaný inzert byl sekvenován a sekvence srovnána s bioinformatickými databázemi.
8. SEZNAM CITOVALENÍ LITERATURY

Svoluji k zapůjčení této práce pro studijní účely a prosím, aby byla řádně vedena evidence vypůjčovatelů.

<table>
<thead>
<tr>
<th>Jméno a příjmení, adresa</th>
<th>Číslo OP</th>
<th>Datum vypůjčení</th>
<th>Poznámka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>