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Introduction

Chiral Perturbation Theory (xPT) [1, 2, 3, 4, 5] is an effective theory for strong interactions and
describes the dynamics of the lightest hadrons and their interactions at low energies. Underlying
theory, Quantum chromodynamics, is formulated in terms of quarks and gluons as its degrees of
freedom. The process of spontaneous symmetry breaking gives rise to the octet of the Goldstone
bosons. In xPT we identify these Goldstone bosons (or pseudogoldstone bosons when the quark
masses are taken into account) with the octet of the lightest hadrons, i.e. with the octet of the
pseudoscalar mesons (7, 7%, K*,...). In the low energy region (under some scale A that is
typically A ~ 1GeV, the approximate mass of nongoldstone particles) these degrees of freedom

dominate and they can be assumed as the only effective hadronic degrees of freedom.

XPT is formulated as a perturbative theory in terms of the small external momentum p/A <
A'. This is a well-founded approach because Goldstone bosons interact weakly at small energies
and therefore, the Lagrangian of yPT can be then written in the form: £, = Lo + L4 + ...
where £, = O(p"). Weinberg formula [1] provides us with the consistent power counting, i.e.
the rule which operators should be used when calculating concrete tree level or loop diagrams

up to a given order.

The Lagrangian of yPT contains a set of coupling constants (called LEC - low energy con-
stants)? that describe not only the interactions of the lightest hadrons but also effectively include
the contributions of the heavy degrees of freedom (resonances). For energies p ~ A, xPT looses
its convergence and it is necessary to introduce the phenomenological Lagrangians based on the
large No QCD that describe the direct interactions of resonances. Of course, when integrat-
ing out these heavier states and coming back to low energies we reestablish the original yPT
Lagrangian. This can help us to learn how the xyPT coupling constants are saturated by the
interactions of resonances. Restricting ourselves only to the lightest resonances in each channel

we introduce the Resonance chiral theory (RxT)[6, 7]. Matching with experiments can give us

'In the massive case we do the expansion also in the quark masses which are of the second order, mqg = O(pz)
2For O(p?) we have 2 constants, for O(p*) 14 constants and for O(p°®) approximately 100 constants
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the predictions of the values of LEC [8]. RxT has not been yet formulated as a closed theory,
despite a considerable progress has already been done [9, 10, 11, 12].

This thesis makes a simplification of RxT to the case of one type of resonances, vector
resonances 1~ ~, but the general case does not principally differ from it. Our contributions to

the study of RxT can be divide in several areas that will be discussed in the following chapters.

1. The different Lagrangian formalisms for description of (vector) resonances are not fully
equivalent. The contributions to the effective chiral Lagrangian start at different orders in
vector and antisymmetric tensor formalisms. This problem is briefly discussed in chapter

2. The detailed version can be found in article [A] and some fragments in [B] and [C].

2. There is no complete study of high energy constraints and their applications to various
correlators. The discussion of two and three point Green functions is proposed in chapter 3.
Moreover, we have also studied the more difficult example of four point correlator (VV PP)
and Compton-like scattering. The results can be found in chapter 4 and in appendix C.

The detailed study will appear in [E].

3. Quantum loops in RyPT were briefly studied in [13, 14] but with the simplest Lagrangian
terms only. In chapter 5 can be found the systematic study of the renormalization of
resonance propagators and its interesting consequences. Complete version will be published

in article [D].

Formally, this thesis is segmented in the following way. In chapter 1 it is briefly described
the Chiral Perturbation Theory and its connection with QCD. Chapter 2 is focused on the
basis of Resonance Chiral Theory, the way how to describe resonances in the framework of
effective theories for QCD. Next chapters provide with explicit calculations of some processes
together with the interpretation of the results that can help us to study the formal properties
of the Resonance Chiral Theory. In chapter 3 we study the two point and the three point
Green functions, in chapter 4 there are proposed the calculations of Compton-like scattering
and in chapter 5 the one loop corrections to resonance propagators. Some technical tools and

complementary results can be found in appendices.



CHAPTER 1

Introduction to Chiral Perturbation Theory

In the first chapter we want to describe briefly the motivation that leads to the construction of

Chiral Perturbation Theory, the effective theory for QCD at low energies.

First, we discuss the realization of symmetries in quantum field theory and then we formulate
Goldstone theorem that connects the spontaneously symmetry breaking and the presence of
Goldstone bosos in the spectrum. Next, we concentrate on the case of QCD, the gauge theory for
strong interactions, and we mention some of its formal properties. We write SU(3)¢ invariant
Lagrangian and we focus only on the light quark sector with massless quarks wu,d,s. The
Lagrangian then possesses the additional flavor symmetry U(3)r, x U(3)r which is broken on
the quantum level to SU(3)r x SU(3)r x U(1)y (the axial symmetry U(1) is not present).

We also comment some features of chiral Ward identities as the relations between various
Green functions that represent the symmetry properties of the Lagrangian on the quantum
level. In order to incorporate all Ward identities we introduce the external sources (currents
and densities) into the Lagrangian. The Lagrangian £ = E%C p+Lezt is then invariant under the
local chiral symmetry group SU(3)r x SU(3)gr x U(1)y. The external sources are coupled on the
interpolating fields and they are often used to introduce other interactions (e.g. electroweak,. ..)

or the quark mass matrix into the massless QCD.

Furthermore, we discuss the effect of symmetry breaking in QCD. The explicit symmetry
breaking is provided by the introduction of the quark mass matrix. Consequently, the flavor
symmetry is then completely destroyed in the general case. In QCD, there exists an order
parameter and therefore, the chiral symmetry is also spontaneously broken to the subgroup
SU(3)y. According to Goldstone theorem, this phenomenon leads to the existence of 8 massless

Goldstone bosons in the spectrum of QCD.

In Chiral Perturbation Theory, these particles are identified with an octet of pseudoscalar
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mesons which are the lightest degrees of freedom in the hadronic spectrum. We formulate yPT
as a perturbation theory based on the symmetry properties of QCD with an external momentum
p as an expansion parameter. The connection between yPT and QCD can also be expressed as
the equality of generating functionals after both are expanded in terms of p. Theoretically, we
should express the coupling constants in ChPT Lagrangian in terms of QCD parameters but

practically, this is impossible to do.

1.1 Symmetries in QFT

Let us assume that the Lagrangian of the system is invariant under the symmetry group G
with the conserved currents J(z). There are two possible ways how to realize this symmetry:
Wigner-Weyl realization and Nambu-Goldstone realization.

Wigner-Weyl realization

This situation occurs when not only the Lagrangian but also the vacuum is invariant under the

action of symmetry group G. Its elements can be represented by means of unitary operators
U = exp (—ia®Q?), a=1,...n (1.1.1)
where n is the dimension of the group generated by the charges Q%,
Q" = /d?’xjg(;n) (1.1.2)
which commute with the Hamiltonian, [H, Q*]=0. For the vacuum we have
Ul0) = |0) — Q%0) = 0. (1.1.3)

Because the generators of symmetry group commute with Hamiltonian, the energy eigenstates
are degenerate and they form the multiplets with the same energies. The number of states then

relates to the dimension of a representation of the group G.

Nambu-Goldstone realization

If the vacuum is not invariant under the action of elements of GG, the situation is different. We

can then divide the generators into two parts Q* = (H*, X7) where
H0)=0,  X7|0)#0 (1.1.4)

The generators H* form the subgroup H (little group) of the symmetry group G and the real-
ization is of Wigner-Weyl type. This is no longer possible for the generators X7. Let us denote
the energy of the vacuum Ep, H|0) = Ep|0). Then the states X7|0) have the same energy,

H(X?|0)) = X7 H|0) = Eo(X?|0) (1.1.5)
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and therefore, the vacuum is degenerate. But the cluster decomposition theorem (see for example
[18]) indicates that the vacuum must be non-degenerate. Moreover, the states X7|E) are not
well defined on the Hilbert space and the corresponding multiplets are missing in the physical

spectrum.

Goldstone theorem

The spontaneously broken symmetry relates very closely to the spectrum of the theory. Gold-

stone theorem claims:

If the Lagrangian is invariant under the symmetry of the continuous group G and the vacuum
is invariant only under the symmetry of continuous group H C G, then there appear n massless

scalar particles in the spectrum, where n = dimG — dimH.

Another formulation of Goldstone theorem says that for every generator of the symmetry

group Q% for which there exists an operator O such that

(0][Q*, 0])0) # 0, (1.1.6)

there appears in the spectrum one independent massless state |¢?) with

(0195 (0)|¢")(¢]0[0) # O (L.L7)

where J§(0) is the zero component of the conserved current. We call the quantity 0O =
[Q?, O] the order parameter. Its non-vanishing vacuum expectation value leads to spontaneously
symmetry breaking and (according to Goldstone theorem) to the existence of the Goldstone

bosons.

1.2 Quantum chromodynamics

Quantum chromodynamics (QCD) is the quantum field theory of strong interactions. It is
based on SU(3)¢ color gauge symmetry and describes quarks and gluons as its fundamental
degrees of freedom. However, quarks have been never observed as free asymptotic states, only
their composite particles are in the physical spectrum. Regardless, we believe that QCD is the
fundamental theory and it is principally possible to use it for description of the behavior of all

strongly interacting hadrons.

QCD Lagrangian

As was said QCD describes quarks and gluons as their fundamental degrees of freedom. We

introduce the quark colour triplet as the basic building block

a
0= | df (1.21)
0
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where f stands for flavour of the quark triplet and upper index is the color one (7 - red, g -

green, b - blue). This triplet transforms as

qr — U(x)qy (1.2.2)

where U(z) stands for an element of SU(3)¢ color group. This means that each flavor triplet
transforms separately in the same way as others. The SU(3)¢ invariant quark Lagrangian can
be written in the form
Lq =3 G v" Dy — mp)ay (1.2.3)
f
where D# is the covariant derivative such that DHqy transforms as the triplet too.

Dyqp = 0uqy —igAu(z)ay, (1.2.4)

with A, (z), the octet of SU(3)c gauge fields

8 a
Ap(z) =) 5 A(). (1.2.5)
a=1
that transform as ‘
Ay () - Uz) Ay (2)U () — é@MU(a:)UT(x) (1.2.6)

The gauge particles for QCD, gluons, mediate the interactions between quarks. The construction
of an invariant object made of gluon fields leads to the introduction of the nonabelian stress
tensor

iy = 0uAL — 0, AL + g f" AL A (1.2.7)

with the transformation property
G — U(2)GuU' (z) (1.2.8)

The only nontrivial scalar (dim < 4), which can be made from given objects, is the contraction

of two stress tensors. The complete QCD Lagrangian is then

8
. 1
Locp =Y q(iv" Dy — my)qy — 1 > ga,gum. (1.2.9)

! a=1
In contradiction to the abelian case of QED, the nonabelian gluon Lagrangian involves not only
kinetic term but also the self-interaction vertices with three and four gluons. Moreover, the
invariance under SU(3)¢c allows us to add one another term, the so called 6-term,

g°0 -
Lo= s > ghae, (1.2.10)
a=1

This term implies explicit P and CP violation of strong interactions and it is the origin of the
nonzero electric dipole moment of the neutron. Regardless, due to empirical information 6 term

is small and is often omitted.
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Global symmetries of QCD Lagrangian

Let us now concentrate on the flavor sector. There are six quark flavors in the spectrum, which
are often divided into two parts - light quarks u, d, s and heavy quarks ¢, b, t. For quark masses
we have the relation

My, Mg, Mg <K 1GeV < me, my, my (1.2.11)

where the scale 1GeV called Ay (hadron scale) is the natural value which is associated with
the masses of hadrons containing the lightest quarks, therefore, in the low-energy region only
light quarks can be taken into account. The approximation with massless quarks is called chiral

limgt. In this limit the massless QCD Lagrangian

Lhop= > Grit"Dugs— ZQ“ G (1.2.12)
f=u,d,s
is invariant not only under SU(3)¢ group but also possesses U(3) flavor symmetry. Now we can

introduce the projection operators Pj, and Pr'

1 1
Pr,==-(1+ 75), Pr = 5(1 — ’y5) (1.2.13)

5
with the expected properties

P} = Pp, P} =Py, PrP;, = P Pr =0, Pr,+ Pp=1. (1.2.14)

Acting by these operators on the quark field we get its left-handed and right-handed chiral
components
qr = PRy, qr = Prq (1.2.15)

with the relation ¢ = ¢z +¢qr. The properties of gamma matrices allow us to rewrite the massless

QCD Lagrangian in terms of chiral components gr, qr,

Locp = Z (Tr.fiv" Duar,s +dr. i7" Duqr,f) ZQ“ G (1.2.16)
f=u,d,s
It is easy to see that this Lagrangian is invariant not only under the global flavor U(3) transforma-
tion of quark fields ¢, but also under the independent transformation of their chiral components
qr and qr,.
qr — ULqr, qr — Urqr (1.2.17)

with 3 x 3 unitary matrices Uy, and Ug. L'%CD is said to have the classical U(3)r x U(3)r

symmetry. The element of the group U(3) can be divided into SU(3) component and the phase

U(1) part. According to Noerther’s theorem there are 18 conserved currents associated with the

transformations of left-handed and right-handed quarks. The octets of SU(3) currents are then
a a

Lt :qL/yM?qL, R&H :quy“?qR (1.2.18)

!The indices L and R correspond to left and right.
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where A% are Gellmann matrices? and \° = /2/31. The conservation laws corresponding to
these currents are d,L*" = 0,R*" = 0. Instead of these chiral currents it is suitable to use

their linear combinations,

2@
Va,u — Ra,,U« + Lfllef — q/}/ﬂgq’ (1219)
2@
AWE = RGHE oM — q,yﬂz)%?q (1220)

where a = 1, ... 8 which transform as vector and axial vector under parity transformations
Va(x,t) — Vi(—x,t), A% (x,t) — = AL (=x%,1). (1.2.21)

and the singlet U(1) currents (a = 0) can also be associated with the vector and axial vector
currents

VH =gvytq, A* = gyPysq (1.2.22)
Both currents are conserved on the classical level but after the quantization the axial current is
not conserved anymore. The symmetry is not preserved due to the anomaly,

342 :
9, Al = 32—126,“,“, 3 ger g (1.2.23)

a=1

Consequently, on the quantum level the Lagrangian E%C p is invariant under the chiral group
SU(3)L X SU(3)R X U(l)v.
In addition to the vector and axial vector currents it is convenient to define scalar and
pseudoscalar densities of the form
A A4
S = 67(]’ PY = z’@m;q (1.2.24)

where the octet a = 1,...8 forms the SU(3) part and for index a = 0 we have the U(1) part

which is useful to write separately as
S =1qgq, P =igvysq (1.2.25)
The parity transformation for these densities reads
Sa(x,t) — Sa(—x%,1), P,(x,t) —» —P,(—x,t) (1.2.26)

and same for singlets S(x) and P(z).

Chiral Ward identities

The amplitudes of physical processes can be computed using LSZ reduction formula from the
Green functions, the time ordered products of quantum fields. The Green functions are con-

nected through very important relations - Ward identities that reflect the symmetry properties

2They are described detailed in appendix A
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of a given theory on the quantum level. Their knowledge helps us to determine the structure of

Green functions and their important features.

The correlator of chiral currents and densities is defined as
G(a:l, Loy ,a;n) = <O‘T[A1 (a:l)Ag(xg) N An(xn)]0> (1.2.27)

with A; = V, A, S, P where the Lorentz and group indices were suppressed. The chiral Green
functions are then the time, ordered vacuum expectation values of the currents and densities
where at least one factor of V®* or A%* is present. The divergences of chiral Green functions
correspond to the linear combinations of other Green functions. These relations we call chiral

Ward identities, explicitly
I O|T[JH(2) A1 (1) - . . An(20)]|0) = (O[T[(9; J*(x)) A1 (21) - . . An()]0)
+3 82" = 2 )O|T[Ar(21) - .- [Jo(x), Ai(x:)] . .. An(@0)]|0) (1.2.28)
i=1

where JH(x) stands for any of the Noether currents and A;(x;) are arbitrary chiral currents or
densities (again the indices are suppressed). For evaluating the concrete chiral Ward identity
we have to know the equal-time commutation relations among V, A, S and P. Omitting the

Schwinger terms we can write

Vi (x, 1), Vo, £)] = [A§ (%, 1), A}, (v, )] = 6% (x — y)i f** Vi (%, 1), (1.2.29)
Vi (x, 1), A3 (v, )] = [A§(x, 1), Vil (v, 1)] = 6% (x — y)i f* AS (x, 1), (1.2.30)
V5 (%, 1), S (y,1)] = 6% (x — )i f**°5¢(x, 1), (1.2.31)
V' (x, 1), PP (y, 1)] = 6% (x — y)if *“P°(x, 1), (1.2.32)
[A4(x,1), PP(y,1)] = =63 (x — y)i <dabCSC(x, t) + géabS(x, t)> : (1.2.33)
[A%(x,1), 88 (y,1)] = 63(x — y)i (d“bCPc(x, t) + gaabp(x, t)> , (1.2.34)
[Va' (x,1), VE(y. )] = [V5'(x,1), S(y, )] (1.2.35)
[Va'(x,1), Py, t)] = [A§(x,1), VF(y,1)] =0, (1.2.36)
[A§(x, 1), S(y, )] = 6°(x — y)iP"(x,1), (1.2.37)
[A§(x, 1), P(y,t)] = —6°(x — y)iS"(x, 1) (1.2.38)

In xPT P%(x,t) and A%(x,t) are interpolating fields for Goldstone bosons, V*(x,t) corre-

spond to electroweak currents and S%(x,t) is related to the quark mass matrix.

Generating functional

It is useful to introduce the generating functional of currents and densities in QCD. Varying it

with respect to the external sources one obtains all chiral Green functions. To construct the
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generating functional we have to couple the nine vector currents and eight axial-vector currents
as well as the scalar and pseudoscalar quark densities to the external c-number fields v*(x),

vé‘s) (), a*(x), s(x) and p(z),

1 .
L=Lep+ Leat = LOcp + Tru(v" + gvé) +y5a*)q — q(s — iv5p)q (1.2.39)

The external fields are color-neutral, they transform as the singlets under color SU(3)¢c group.
In the flavor sector they are represented by Hermitian 3 x 3 matrices, where the matrix character

is

p AT e A* o O
(O A— Z Evav a” = Z Eaa, S = Z 78117 p= Z 7]f)a (1240)
a=0

a=1 a=1 a=0

The ordinary three flavor QCD Lagrangian is recovered by setting v# = vé )= a* =p =0 and

s =M in (1.2.39). The generating functional is defined as

exp (iZ[v,a, 5,p]) = (0T exp [z / d'a ﬁezt(:c)} 0). (1.2.41)

The n-point Green functions can be obtained by variation with respect to corresponding external
sources. For example,
52

OITIVE V010 = () 5o

exp (iZ[v,a, s,pl) (1.2.42)

v=a=p=0, s=M

More tricky task is to derive the correlator of quark fields. They appear non-linearly in the

currents and densities, for (wu) we have

(Of()u(x) 0} = 5 [\/g R e 53;331 exp (1[0, 4, 5,7])

The Lagrangian (1.2.39) can be written in terms of left-handed and right-handed quark fields

(1.2.43)

v=a=p=s=0

qr, qr- Defining the vector and axial-vector currents
1 1
ot — 5(7‘“ + 1M, at = 5(74‘ — M. (1.2.44)
we obtain
0 oo L () " L0
£:£Q0D+qL’Y lu+§v QL+qR’Y Tu+§’uu dRr
—qr(s+ip)qr — Gr(s —ip)qr (1.2.45)

This Lagrangian is manifestly invariant under the local SU(3);, x SU(3)g x U(1)y group with

qr — €xp <—i@;x)>VR(x)qR, (1.2.46)
qr, — exp <—i@;$)>VL(3:)qL (1.2.47)
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where Vg(z) and Vi (z) are SU(3) matrices. The following transformation properties of the

external sources are

ry — Var, Vi +iVed, v, (1.2.48)
L, — ViV +ivia,V;, (1.2.49)
o) — Wl 9,0, (1.2.50)
s+ip — Vr(s+ipVy, (1.2.51)
s—ip — Vi(s—ip)VL. (1.2.52)

The part of Lagrangian L.,; represents the interaction of quarks with the external fields. For
example, we can restore the electroweak interaction Lagrangian by setting r, and [,, dependent

on the gauge fields Z,, W/]—L The result is then the usual electroweak quark Lagrangian.

Although the Lagrangian (1.2.39) is invariant under the local transformations (1.2.48)-
(1.2.52), it is no longer true for the generating functional Z|v, a, s, p]. The anomalies of fermionic
determinant leads to the breaking of the chiral symmetry at the quantum level. If we assume

the infinitesimal chiral transformations
Vi(z) =1 +ia(x) —if(x), Vr(z) =1+ ia(z) + i6(x), (1.2.53)

the change of the generating functional under (1.2.48)-(1.2.52) is given by

0Z[v,a,s,p] = —%/dﬁ‘x(ﬁ(aj)f)(w» (1.2.54)

where

4 2 8 4
Qz) = guupa{’uw/’upa + gvuauvaa,, + gi{v,w, aga,} + giangap + gauayagap} (1.2.55)

with

Uy = Oty — Oy — [y, vy, Vv = 0pay — ifvy, ay). (1.2.56)

This anomalous variation of Z is an O(p?) effect, in chiral power counting. The source for this
change of functional was found by Wess and Zumino [15] and reformulated in a geometrical way
by Witten [17].

Explicit symmetry breaking

So far we have not considered the quark masses. If we take them into account the flavor
symmetry is explicitly broken due to the presence of the mass term in the Lagrangian. So let

us consider the quark-mass matrix of the three light quarks

my, O 0
M=10 mg O (1.2.57)
0 0 mg
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The mass term then mixes between left-handed and right-handed quarks
Ly = —gMq = —(qpMar + 7 Mqr). (1.2.58)

The divergences of the constructed currents are

A[l
9V = ig [M,?} q, (1.2.59)
a — A
0, A%t = g {M,?}q, (1.2.60)
dVh = 0, (1.2.61)
9, A" = 2igM 39 ¢ e GG 1.2.62
" = 21gMry5q + 32?5;11/;)0 . ( -4 )

Let us analyze the results according to the form of the quark-mass matrix. For the general
values of m,,, mgq and ms we have no flavor symmetry (except for U(1)y which is present all the

time and represents the conservation of baryon number). In the special cases are

1. my = mg = mgs = 0 - The octet vector and axial vector currents are conserved. The
symmetry group is SU(3)r x SUB)r x U(1)v .

2. my = mg = mg # 0 - Vector current is conserved and the Lagrangian is invariant under

SU(3)V X U(l)v.

3. my = mg = 0 - The model with two massless quarks implies the SU(2);, x SU(2)gr x
U(1l)sy x U(1)y invariance where U(1)sy symmetry stands for the conservation of the

strangeness.

4. my, = mg # 0 - The chiral limit of lightest quarks indicates the symmetry SU(2)y x
U)sy x U(1)y.

Spontenous Symmetry breaking in QCD

As it is well known, the symmetry group of the massless QCD SU(3)r x SU(3)r x U(1)y is
spontaneously broken to SU(3)y x U(1)y due to the presence of an order parameter in QCD.
According to the Goldstone theorem, to each generator, which does not anihilate the vacuum
state, there corresponds one massless Goldstone boson. Therefore, an octet of these particles

appears in the spectrum of QCD.

Our goal is now to find the order parameter for QCD which is responsible for the spontaneous
symmetry breaking. The generators of SU(3)y symmetry are defined as

a

A
Qo) = [ @Vt = [ oo aw, (1.2.63)
The equal time commutation relations with the SU(3)y octet of scalar densities are

Q% (1), 8°(y)] = if "5 (y). (1.2.64)
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We can reverse this relation,

5(0) = 5 F™IQY (), 5°) (1.2.65)
The vacuum is invariant under SU(3)y, so we can write
(0]5%(y)|0) = 0. (1.2.66)
Taking a = 3 and a = 8 we get
(wu) — (dd) =0, (uu) + (dd) —2(3s) =0 = (uu) = (dd) = (3s). (1.2.67)
Now assuming the non-vanishing singlet scalar density and using previous results we find
(0[S10) = (qq) = 3(uu) # 0 (1.2.68)
For the equal-time commutation relation
Q). PA(9)] = d S (o 1) + 2 S(a 1) (1.2.69)

we calculate the vacuum expectation value

(OIQA(), P W)]I0) = - (3a) # 0 (1.2.70)

So we have found the order parameter for QCD, O = (ggq). Consequently, the octet of Goldstone
bosons ¢*(z) appear in the spectrum. Moreover, Goldstone theorem and Lorentz covariance
permit us to write

(0] A%(0)[¢" (p)) = ip,Fp6® (1.2.71)

where Fy denotes the decay constant. Because O = P® the Goldstone bosons have the quantum

numbers of pseudoscalar particles.

1.3 Chiral perturbation theory

The effective theory is the way how to construct the general S matrix for low energy degrees of
freedom that satisfies all necessary conditions (analycity, unitarity, crossing symmetry). More-
over, the effective theories are based only on the symmetry properties of the fundamental theory
when all other aspects are forgotten. Finally, the particle contents of such a theory should agree

with the real physical spectrum.

We have seen in the last chapter that the spontaneous symmetry breaking in QCD leads,
according to Goldstone theorem, to the presence of Goldstone bosons. Identifying them with
the octet of psedoscalar mesons, which are the lightest particles in hadronic spectrum, we can

construct the low energy effective theory for QCD called Chiral Perturbation Theory (xPT).
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Pseudoscalar mesons

In the chiral limit (when all quark masses are set to zero), the Lagrangian of yPT must be
invariant under the symmetry group of massless QCD - G = SU(3)r x SU(3)g x U(1)y. The
eight pseudoscalar mesons then transform as an octet under the subgroup H = SU(3)y. Let us

now define the essential building block of xPT

u(¢) = exp <z \/§F0> (1.3.1)

where ¢ = ¢?T® with T® = \*//2 and

70 + %77 V2rt V2K
o)=—| V2r— %4+ Ln V2K° 1.3.2
¢(x) 7 ek : (1.3.2)
\/iK_ V 2K — TT]
3
is the matrix describing the pseudoscalar mesons fields. The Goldstone bosons are parametrized
by the elements u(¢) of the coset space SU(3)r, x SU(3)r/SU(3)y, transforming as

u(@) = Vru(d)h(g,¢) ™" = h(g, d)u(¢)Vr (1.3.3)

under a general chiral rotation ¢ = (Vz,Vz) C G in terms of the SU(3)y compensator field
h(g, 9)-

It is also useful to introduce the classical sources s, p, v* and a* (with transformation
properties (1.2.48)-(1.2.52)) that couple on the scalar density S®, pseudoscalar density P®, vector
currents V' and axial currents A**. These are the interpolating fields for the external particles
entering the process, coupled to quark mass matrix and so on. For instance the process 7 — 2+
corresponds to 3-point Green function composed from two vector currents and one pseudoscalar
density (VV P).

Construction of Lagrangian

As in all effective theories also in yPT the Lagrangian can be expanded in powers of small
physical quantity. Here it is the external momenta p which should be much smaller than an
energy scale A &~ 1GeV. It is related to the typical (nongoldstone) hadron masses. Another
small quantities are the quark masses (in quark mass matrix) and correspond to the second

order in momenta®, M ~ O(p?).

Expansion of the Lagrangian in terms of p has the following form (according to the symmetry

conditions only even terms can contribute)

Lo=LP+LP+L0+ ... (1.3.4)

3There is another approach, based on an assumption M ~ O(p), which is called Generalized Chiral Perturba-

tion Theory.
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where £ stands for a part of the Lagrangian which is of the n-th order in p, ie. £ =
O(p™). The Lagrangian must possess the same symmetry as the underlying theory, i.e. the local

SU(3)r x SU(3)r symmetry. The lowest order Lagrangian reads

F2
L? = IOTr[uuu” + x4 (1.3.5)
where
w, = i[ul(0, —iry)u—u(d, —il,)ull, (1.3.6)
x+ = ulxul £uxTu, x=2By(s+ip) (1.3.7)

are the chiral building blocks. The left and right sources [,,,r, are related to the vector and axial

vector sources as

1 1
vy = 5(1” + ), a, = 5(1” —Tp). (1.3.8)
There exist more chiral building blocks in higher order Lagrangians. For our next calculation
we need
i =u f’juT + quI’éyu (1.3.9)
where
o= oMY = 9nIt — 1M, 17, (1.3.10)
= oMy ="t —i[rt, 1] (1.3.11)

Moreover, we can define the covariant derivative of a field X respecting the symmetry properties
D, X =0,X +[I'y, X] (1.3.12)

with
1 , :
r,= §{UT(8;L —ir)u + u(d), —il,)ul}. (1.3.13)
We see that the second order Lagrangian contains only two unknown constants Fy and By (in

chiral limit). But it is not true for higher orders. In the next-to-leading order (order O(p*))[2, 3]

the Lagrangian reads

£ =Lamau)? + Lofu’) ) + L n,u’) + La(uu) ()
+ Ls(uuutxs) + Le(x4)” + Lr(x-)* + Lg/2(x2 + x3)
— iLo(f1 upun) + Lio/A f4pw [ — f—p )
+iLu (x—(Dpu +i/2x-)) = Liz((Dpu +i/2x-)?)
+ Hy2(fw P2+ fow P27 + Ha JAE — X2) (1.3.14)

The number of coupling constants grows rapidly, £, ¢ has already about 100 constants [20].
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Generating functional

The generating functional for xPT is defined as

Zypr(s,p,v,al :/Duexp {z’/d4xﬁx} (1.3.15)

Because xPT is the effective theory of QCD we must demand the equality of corresponding
generating functionals after expanding in terms of small momenta
Zyprls,p,v,a] = Zgcpls, p, v, al (1.3.16)
= / DgDgDG exp {Z / d'x [Loop + (v +v50")q — (s — i%p)cd}

Unfortunately, we don’t know this functional from the first principles, so the constants in yPT

Lagrangian cannot be computed directly from QCD.

Weinberg power counting formula

Weinberg power counting scheme describes a behavior of Feynman diagram under a linear rescal-
ing of an external momenta, p — Ap. 4 If we define the chiral dimension D of a given diagram,

the amplitude of such a diagram satisfies
M(Ap, N2my) = \P M(p, my). (1.3.17)

Power counting formula gives the expression for the chiral dimension

o
D=2+2L+) (2n—2)Ny, (1.3.18)

n=0
where L is number of loops and Ny, denotes the number of vertices from Ls,. Because the
number of possible counterterms with the chiral dimension D < D, is finite, the theory is

then renormalizable if we take into account only diagrams up to a given chiral order [1].

“In the same way, we rescale quadratically the masses of light quarks, mq — A%>m,. Therefore, the masses of

Goldstone bosons (outside the chiral limit) are rescaled M? — A2 M?>.



CHAPTER 2

Resonance chiral theory

We have seen that yPT describing pseudoscalar mesons as the only degrees of freedom can be
used as an effective theory for QCD at low energies. If we go to energies ¥ > 1 GeV xPT looses
its convergence and cannot be used anymore because the higher mass states become active in
dynamics of hadrons. We use the tool of effective theory to describe these degrees of freedom

(resonances) using phenomenological Lagrangians based on symmetries of QCD.

It was shown [16] that QCD in the limit of infinite number of colors can be formulated as a
perturbative expansion in 1/N¢. Its spectrum contains the infinite tower of resonances [17] and

provides us with an exact theory for resonances based on QCD.

In the intermediate energy region 1 GeV < E < 2GeV it is justified to take into account
only one type of resonance in each channel. The final theory based partially on xyPT and large
N¢ QCD (we do the matching at low and high energies), Resonance Chiral Theory (RxT), is
the topic of this chapter. For simplification, after general discussion we restrict ourselves to one
type of resonances - vector resonances 1~ which are the most interesting in the spectrum of

resonances. The results in complete RxT are longer but principally similar to our results.

2.1 Phenomenological Lagrangians

In contrast to xPT where the expansion parameter is the external momentum p, in the Resonance
Chiral Theory the standard chiral power counting breaks because the momenta and the masses
of resonances are not neglected in comparison with the typical scale in the intermediate energy
region. This reason together with the absence of an energy gap in the spectrum of hadrons make
difficult to build the resonance theory as an effective theory of resonances for QCD. Fortunately,

the short distance constraints, OPE results and large N¢o behavior can help us with construction
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of RxT Lagrangian.

1/N¢ expansion

The basic proposal is to investigate the properties of QCD in the large N¢ limit when the
symmetry group is enlarged from SU(3)c to SU(N¢). Despite this seems to be quite strange
because the case N¢o = 3 is far from the infinite value No — o0, this generalization of QCD
suggested by Gerard t’Hooft has many simple properties that are partially shared by real QCD.
Witten showed [17] that the Green functions calculated in large No QCD in the leading order

contain the exchange of infinite tower of resonances.

Taking gs to be of order O(1/y/N¢) and letting No — oo while a;N¢o fixed we obtain

important results

e Mesons are free, stable and non-interacting and the number of meson states is infinite.

e Elasting scattering amplitudes are of order O(N'~#/2) where k is the number of mesons

in the process.

e The dynamics of mesons in the leading order in 1/N¢ is dominated by the tree level

diagrams, the loops are of higher orders in 1/N¢.

e The flavor group of the theory is U(Nf)r, x U(N¢)r because there is no axial anomaly in
large N¢ limit. This symmetry is spontaneously broken to U(Ny)v .

Despite the expansion in 1/N¢ has a beautiful theoretical sense based directly on the properties
of the underlying theory (large No QCD), its use in hierarchy of Lagrangian terms in RxT is
problematic. In practice, power counting in 1/N¢ is an expansion in number of mesons and the

terms with many derivatives are not suppressed.

Relation between yPT and RxT

As was said, in No — oo we can construct the effective Lagrangian (RxT) for QCD for inter-
mediate energy region that satisfies all symmetry properties dictated by the underlying theory.
Unfortunately, the Lagrangian of this theory is not known from first principles. However, its
coupling constants can be related to the phenomenology of the resonance sector. Up to the

order O(p%) it has the general form
Loyt = Lap + Lres = L, + L9 + 25 4 £ 4 £6) (2.1.1)

where Lgp = Eg])B + E(G‘% + Eg])B contains only the (pseudo)Goldstone bosons and Egg) has

)

the same form as the O(p?*) xPT Lagrangian £§f" . The corresponding LECs are, however,

different. Actually, in concrete resonance saturation calculation, these LECs are treated as

negligible at the resonance scale. c&‘?s and c&?s are the resonance Lagrangians of the chiral order



22 Resonance chiral theory

O(p*) and O(p®) respectively!. Integrating out the resonance fields from the RyT Lagrangian
and expanding to the given chiral order yields an effective xPT" Lagrangian £,. The LECs in
this Lagrangian are now expressed in terms of the resonance parameters and the LECs from
Lap. Schematically, up to the order O(p%)

Lypr = Lo+ Lyepy = Loy + Lap+ L5+ L +£0) (2.1.2)

So, we can write

2 2

£, = L&y (2.1.3)
Sy = Lo+l (2.1.4)
6 6 6

£Or = o+ (2.1.5)

)

Here Eg?%s has the same form as Egg with LECs depending on the resonance masses and

couplings of L;¢s.

It was shown in [6] that the hypothesis of the successful saturation of O(p*) LECs by the finite
number of resonances is legitimate. Since then this idea has been often used in particular cases in
order to estimate also the contribution of the O(p%) LECs to various quantities calculated within
the O(p%) xPT. Quite recently, the first steps towards a systematic and consistent estimate of
the O(p%) LECs via resonance saturation have been made in [12, 8] and confirms the validity of
RxT results.

2.2 Spin one particles

In this short section we describe the basic properties of two essential ways how to describe
massive spin one particles in the framework of quantum field theory. We can either use the
formalism of vector fields or antisymmetric tensor fields. In the first case we can write the free

field Lagrangian in the form

1.

N 1
Ly = _ZVMVVW + §M2Vuvu7 (22.1)

where V/w = 0,V, — 0,V,,. Classical equation of motion gives

OV, + M?*V,, —9,(0-V)=0. (2.2.2)
Taking the divergence we get
0-V=0 (2.2.3)
and hence
(0 +M?)V, =0. (2.2.4)

The chiral order of the resonance fields depend on the formalism used and will be clarified in what follows.
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A real vector field satisfying these two equations can be expressed as Fourier transform

P {Byu(p,0)e”" + Bj(p,0)e 7"} (2.2.5)

Au(z) = 3/2 Z \/@

where E = \/p? + m2. In the quantization procedure we substitute operators for functions, i.e.
B, — Eu- Separating the tensor structure we can write
1 o=1 d3
> T
(2m)*? =2, V2E

) = {eu(p,0)a(p,0)e?” + cp(p 0)al(p,o)e ), (2.26)

where ¢#(p, o) are three independent polarization vectors satisfying
o=1

pt'p”
Z 6” P, ) = _.gwj m2 )

€u(p,o')5 (p,U/) = —500/,
puet(p,o) = 0.

and a(p, o), a'(p, o) are anihilation and creation operators that satisfy commutation relations
[a(pﬂ),cﬁ(p’,a’)] = 3*(p' = P)door,
[a(p,0).a(p',0")] = |al(p,0).a! (B 0")| = 0.

Then fields V,(x) transform in (1/2,1/2) representation of Lorentz group. The 2-point correlator
of these fields (called propagators) is defined as

AL (& = y) = (0T [Vu(2)Va (9)]]0).- (2.2.7)

where the covariant part of the result has the form

4
iNp (2 = Y) = / d—ZiAF(p)uue"’p'(x‘y) (2.2.8)
(2m)
and ‘
AV _ - N Pubv
ZAF(p)uV - p2 — m2 n ic (g/u/ M2 > (229)

is the propagator in momentum representation.

For the description of vector resonances using antisymmetric tensor formalism we use the

free field Lagrangian

1 1
Ly = =W, W+ ZJ\FRWRW. (2.2.10)

where W, = 0%R,,,. Classical equation of motion has the form

9u0° Raw — 0,0“Roy, + m* Ry, = 0. (2.2.11)
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Applying the derivative 0" we obtain for 0“R,,, (multiplied by 1/m because of proper dimension
of the field)

(0% +m?) (%WRW) =0. (2.2.12)

The condition of transversality is satisfied identically due to the antisymmetry of R,,. So we
obtain again Proca field equation and it is possible to write for 0% R,,, the same expression as in
previous case (using the same creation and anihilation operators!). Guessing the general form

of the expansion for R, we get?

R, (x) = 3/2 Z { w(p,0)a (p,a)eip'x+Buy(p,a)aT(p,J)6_ip'x}. (2.2.13)

Applying the derivative in the momentum space we obtain

iph A, = mel(p,o),
—ip*Bu, = me'*(p,o).

Easy calculation using the relation p,c#(p, o) = 0 gives the result

o=1

dp i .
Rua) = > T2 L eypi0) — st )+
3/20__1 2FEm

(o2 (p, o) — m(p,a))awp,a)e—w-r}.

The covariant propagator of the field is then

4

ZA%(x - y)aﬁuu = <O‘T[Raﬁ(aj)R’W(y)”0> B / (277]))4

Z‘AF(p)a,B,uzxe_ip.(x_y) (2214)
where
Z‘Ag(p)aﬁ,uu = (2'2'15)

—1 1

2 2
mm ((m — D%)9ap9py + GauPsPy — JawPaPy — (1 < V)) .

In the following sections we propose the study of both mentioned ways of description of vector
resonances in RxT up to O(p®) together with study of their equivalence and the introduction

of alternative formulation.

2.3 Construction of Lagrangian

The Resonance Chiral Theory enlarges the number of degrees of freedom of standard yPT (which

contains only pseudo Goldstone bosons) by including also massive multiplets of resonances -

2 Actually, this is not a guess. Antisymmetric tensor field transforms under (1,0) + (0, 1) representation of

Lorentz group which guaranties the possibility of the expansion of the field in this form [18], [19].
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vector 177, axial vector 17, scalar 07" and pseudoscalar 0. The same procedure as in
xPT can be done when constructing resonance Lagrangian, only the symmetry group is now
U3)L x U(3)g.

Let us now restrict ourselves to the octet of vector resonances 1~ which is the subject of
our interest. The resonance field in the antisymmetric tensor formalism (the form in vector

formalism is analogous and both formalisms will be discussed later) can be written as

%PO + %ws + %wo p* Kt
R, = p- — 5"+ Jews + pws K*0 (2.3.1)
- 7*0 2 1
K K “veestoze /o,

The resonance fields transform in the nonlinear realization of the U(3)r, x U(3)r. These massive

states transform as octets Rg or singlets Ry under SU(3)r, x SU(3)r
R8 = h(97 ¢)R8h(g7 gb)_lv RO = RO- (232)

where Rg = ), R;T;. In the large N¢ limit with massless quarks (chiral limit) we can collect

these states into a nonet state (with the same mass)

8 9
R=> TiRi+TyRo=» TR, (2.3.3)

i=1 j=1

where Ty = /1/31. Moreover, the Lagrangian must be invariant under P and C transformations

and hermitian self-conjugate. The resonance fields R, transform under these symmetries as

P:R™ — RW
C:R" +— —RZV
h.c.:R" +— R,

Then in the leading order (the complete lists of Lagrangian terms are provided in the follow-
ing sections) in 1/N¢ (terms with one resonance) we can construct the interaction resonance

Lagrangian that is invariant under all these symmetries

) Gy
Lt = 2V (R f1) + T
R 2\/5(# +> 2\/5

where the resonance fields are coupled on the O(p?) chiral building blocks. The complete

a (Rywlu', u”]). (2.3.4)

resonance Lagrangian is then
Lp=LY%+LH (2.3.5)

where E% represents the kinetic and mass terms (that will be discussed in following). Integrating

out the resonance fields we obtain the effective chiral Lagrangian

/ DRexp <z / d4x(£R)> = exp (z / d4:cLX7eff> (2.3.6)
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After Gaussian integration we obtain the result

GY 2 Gy 3G2, F2
Lers = YE (upuf)™ + e (upu”) (ufu,) — 2 (uyufu,u’) — e

<f+,uufﬁu> (2'3'7)

We can easily find that this result can be decomposed into the yPT Lagrangian. The form
of the terms in £, .r indicates that the constants Fy, and Gy contribute into O(p*) coupling
constants. Doing the precise matching we obtain
L/_G%/ /_G%/ /__3G%/ / __F‘2/ /__F\%' (238)
Y VR Y VE L Y V. Y/ C A Ve o

where the prime denotes that this is a contribution of vector resonances only. We have observed
that the constants in O(p*) chiral Lagrangian are saturated by the constants from £#, so we
can assign the chiral order to the resonance fields R, = O(p?). The situation for vector fields
is similar, we can just replace R — V, the simplest interaction term (analogous to previous one)
Fy iGy

—((D,V,, — D,V,)f*y + —=(R(D,V,, — D, V,))[u",u"]). 2.3.9
375 (DuVe = DVFL) + ST (R, = DY) ). (239)

We can easily find that the corresponding effective chiral Lagrangian cannot be decomposed

into the terms of O(p*) xPT Lagrangian form. Eg) contributes only to the order O(p%) which

ﬁint —

indicates the chiral order, V = O(p?). The fact there is no O(p*) contribution to saturation of

LECs indicates the future problems with the equivalence of descriptions.

2.4 Vector field formalism

The most natural way how to describe vector resonances is the vector field formalism (called

often Proca field formalism).

The short hand notation used in this and following sections is explained in appendix A.

General properties
The resonance Lagrangian can be written in the form
Ly = L 4 it (2.4.1)
where the kinetic and mass terms (covariant derivative include interaction part, of course) are
kin 1 - (; 1 2
and the interaction part can be expand in terms of chiral order
cipt =4 £+ L) 4 (2.4.3)

In the beginning of the chapter we have seen that integrating out the resonances no effective

)

chiral Lagrangian up to O(p*) is generated, so E%f = 0. Moreover, we have found that the chiral
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order of the vector fields is V = O(p®). In the following discussion, it is also useful to introduce

the alternative expansion in terms of the number of resonance fields

cot = (Jl-V)+(J2:V)+%(V-K-K)+(V-J3:V) (2.4.4)

+terms trilinear and higher in resonance fields

External sources J; are built from the usual chiral building blocks that determine the chiral

orders of the sources

S = 00, (2.4.5)
Jy = O, (2.4.6)
J3 = O(p), (2.4.7)
K = 0@, (2.4.8)
For example, we have
a 7a fV
T ']2,uz/ = 2\/—f—|—uu + 2\/79V[uuauu]' (2.4.9)

Effective chiral Lagrangian

Dividing the resonance Lagrangian into O(p®) and O(p®) parts we can write

Lo - %MZ(V-V) (V) (e V), (2.4.10)
5%;?) — —%(V:V)+%(V-K'V)+(V'J3:V) (2.4.11)

Integrating out the resonance fields we get the corresponding effective chiral Lagrangian up to
the given order. The integration is Gaussian, what effectively means the insertion of the solution
of the classical equation of motion into the original Lagrangian. To the lowest non-trivial order
O(p?) we obtain

Ve = #(J1 —2D - Jy). (2.4.12)

The result up to the order O(p®) is then
1

Ly = —W<<J1—2D~J2>-<J1—2D-J2>> (2.413)
1 -
= —gyph )+ M2<D T2 )+ 53 2 (D1 D)

This Lagrangian can be rewritten in the standard O(p®) basis [20] and we can find the saturation
of O(p%) LECs by the resonance couplings. As pointed out in [7], the contributions to the O(p*)
LEC are not generated, unless extra contact terms are added to the Lagrangian. On the other
hand, the interaction terms contained in the Eg) give contributions only to the O(p®) chiral
Lagrangian and could be therefore ignored (there is no study of xPT Lagrangian up of this

order). Note also that, in principle, higher derivative terms as well as terms cubic or higher in
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the resonance fields can be added to the Lagrangian, but the chiral order are higher and these
terms are irrelevant with respect to the possible contribution to O(p%) LECs. Despite it, both
types of additional terms mentioned above could be useful to satisfy high energy constraints of
Green functions dictated by OPE, [7], [9], or as the counterterms to kill the infinities in one loop

calculations.

Complete basis of terms

The Lagrangian terms can be divided into two parts representing odd and even intrinsic parity
sector. The basis of O(p®) terms that has been already studied in [9] and also in [A] has the

form

O(p°%) even parity | coupling
1 i<Vﬂ[uV’ f—/w]> ay
2 (VHup, x-1) Bv
3 (VﬂVf_Hw> —ﬁf\/
4 i) | o
O(p°®) odd parity | coupling
i€ ap (VFEuYu*uP) Oy
Euua6<vu{uyafi6}> h’V

Moreover, we mention one of the O(p®) terms that will have the analogue in the first order

formalism:

O(p?) odd parity with VV | coupling
8 Eapur ({V, Vi uf) %av

2.5 Antisymmetric tensor formalism

The alternative description of vector resonances uses the antisymmetric tensor fields Rj,,.

General properties

The resonance Lagrangian in the antisymmetric tensor formalism has the same form as in the

Proca field case
Lr =LY+ cint (2.5.1)

The kinetic and mass terms are then

: 1 1
Lhin — —5(W- W)+ ZMQ(R ' R) (2.5.2)
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Similarly as in the vector formalism we can use the chiral expansion of the interaction part of

Lagrangian

We have seen that the leading interaction term is of the order O(p*) and the chiral order of
resonance field is R = O(p?). The expansion in terms of resonance fields and external sources

has the form

L =(J - W)+ (Jy:R)+(W-J3:R)+ (R:Js: R) (2.5.4)
+(R:J5-D:R)+ (R:Js : RR) + terms higher in resonance fields

On the contrary to the vector formalism (where analogous term would be of the order at least
O(p'?)) the trilinear term is present here. The leading chiral orders of the external sources .J;

are

J. = 0@, (2.5.5)
I = o), (2.5.6)
iY== owh, (2.5.7)
J3 = O(p), (2.5.8)
Ji = 0@pY), (2.5.9)
Js = O(p), (2.5.10)
Jo = 0" (2.5.11)
where we divide the Jy source into O(p?) and O(p*) parts.
Effective chiral Lagrangian
The O(p*) and O(p%) parts of resonance Lagrangian are
1
Ly = TMAR:R)+ (J2(2> : R) , (2.5.12)
1
£ = =3 W)+ (S R) 4 (o W)+ (W g B)+ (R: Ju R)
+(R:J5-D:R)+ (R:Js:: RR) (2.5.13)

There is, of course, additional O(p®) contribution but it is not relevant in the following. Equation

of motion to the lowest order is then

2
M2

R® = J2. (2.5.14)



30 Resonance chiral theory

Integrating out resonance fields in the original Lagrangian by the inserting this solution of EOM

we obtain the effective chiral Lagrangian with O(p*) and O(p®) contributions

Loy = —% (A2 7Y (2.5.15)
9, = -2 (A7 15" + W (D7 7. D) - = (D 1 5)
+% (D : J2(2) 3 J2( )> 4 % <J( )T, J(2)> i <J(2) D J(2)>
—%(Jz(m PNl (2.5.16)

Complete basis of terms

The O(p*) basis reads

O(p*) terms | coupling
0 ) | gy
2 | i(R™ [uy, uy))

Gv

2f

The complete basis of O(p°®) in antisymmetric tensor formalism has not been constructed
yet. In [12] is provided the complete list of the even intrinsic parity sector terms, in [11] we can
find the odd intrinsic parity terms that contribute to all correlators that we will compute in the

following.

The list of even parity terms with two resonances is

O(p®) even parity with RR | coupling
1 (R R u“uq) AV
2 (R ;wuaRW a) Y
3 (Rua R"utu,,) AV
4 <RWR Yutuy,) AV
5 | (Rua(u®R*Pug + ug RFPu®)) AV
6 (R BMx+) A
7 197 (Rua R fpv) AV
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O(p®) even parity with R O(p®) even parity with R
1 (R ufuqu®u) /\Y 12 <Ru,,uaf’“j ) >‘¥2
2 (R u*utu"uq) )\g 13 | (Ruw (u# f¥%q + ua fY%UuM)) )\Yg
3 (R {u®, ufuqu”}) /\g 14 | (R (ulua fS¥ + [ uqut)) )\Y4
4 (R {uru”, u®uq }) Y 15 | (R (uaul f& 4+ f&%ulug)) | AVs
5 igag (R [ f7) A 16 iRy, [D" fva ) A
6 (R AL x4 1) Y 17 (R [Da f2", u]) Mz
7 igas (R f1° Vﬁ> A 18 Ry [Da f2F, u"]) Al
8 Ry {x+, u'u”}) Y 19 YRy [f2°, hg)) Mo
9 Ry ut x4u”) Ay 20 (Ruv 27, x=1) Mo
10 (R [ut, D" x_]) A 21 (R, Do DY (utu")) A
11 i<R,uz/{ffj>uaua}> >‘¥1 22 <R,uz/DaDaffj> >‘¥2

This is quite a new classification. In the older papers where the basis is incomplete alternative

representation of these terms is used.

alternative O(p%) even parity | coupling
1 (D' Ry [x -, u”]) — /M
2 WRM {[u, wwl, X+ 1) 39 /M
3| RM™(u'xiuw —uyxtu) | 904 /M
4 (R { fpws X+1) /M
b (R [f—ps x=]) fva/M
6 (x+{R", R }) i
The correspondence between these two sets of terms yields
)‘XHf\Tla )\z‘a/a)\s‘)/J\YOHQ\%aQ\%afx’
Mo < I, WY o 16l
The direct calculation leads to the following relations between some constants
W= I ALt AV (2.5.17)
M M 2

The odd intrinsic parity sector has not been classified yet. We have just an incomplete list

of contributing terms

O(p°®) odd parity with R | coupling
Euvpe (R, Dau’}) | /M
Eprpo (R LY, Dyu}) | eo/M
i€uwp0 (R {7 X)) cs/M
i€ po (R 27 x+]) ca/M
Spupe (DARMASY u}) | cs/M
5MHPU<DVRW{fiUqu}> ce/M
Euvpor (DR {FP un}) | cr/M

N || O | W~
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O(p®) odd parity with RR | coupling
1| euvao({R*™, R} Dgu’) dq
2| cwap{{R™, R*}x-) da
31 oo {({DyR*, RPOYuN) ds
41 epopa({D*R*™, R Yu,,) dy

Up to O(p®) we have to take into account also a term which is trilinear in the resonance
fields.

O(p%) with RRR | coupling
1| i(RuwRMRY)gp0 AVVV

2.6 Equivalence of both approaches

In this section we will study the correspondence between vector and antisymmetric tensor for-
malisms. We have already mentioned the problems connected with the contribution to the

effective chiral Lagrangians and now we show this feature directly on the Lagrangian level.

As it was recognized in [7] the naive correspondence connecting free vector and antisymmetric

tensor fields

1 ~
R —V
< M 5
1
Vv ——W 2.6.1
o (2:6.1)
does not relate the Lagrangians properly. Let us now start with the simple antisymmetric tensor
Lagrangian
1 1
L= ZM2(R ' R) — 5(W W)+ (Ja: R). (2.6.2)

From the naive correspondence we obtain

1 ~ = 1 1 ~

ER—>£V:—Z(V:V)+§m2(V-V)+—(J2:V). (2.6.3)
m

However, the contributions to the effective chiral Lagrangians up to O(p®) are not identical (as

can be shown from last sections). For instance to restore equality up to O(p*) we have to add

the contact term

1

Lr— Ly — W(JQ(” - ). (2.6.4)

Therefore the naive substitution into the interaction terms with the sources J; does not ensure

the equivalence of both formulations.

The correspondence of these two formulations was studied in the past (cf. references [6], [7],
[21], [22], [23], [24], [10]).
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Vector — tensor correspondence

In this subsection we start with the vector field Lagrangian £y, and try to construct the antisym-
metric tensor field Lagrangian E%ff which is equivalent to Ly . Let us consider the Goldstone

boson effective action I'y [J;, K] defined as
Zy[Ji, K] = exp (iT'y [J;, K]) = / DV exp <z / d43:£V> . (2.6.5)

The equivalence of Ly and E;f 7 means the equivalence of the contributions to the effective
action I'y [J;, K]

Zy[Ji, K] = exp (ily [J;, K]) = / DR exp (z / d*zLslt > : (2.6.6)
Introducing an auxiliary antisymmetric tensor field R we can write

ZylJi, K] = /Dvexp< /d a:ﬁv> (2.6.7)

[ DVDRexp (i f d'x (m*(R: R)+ Lv)) _ | »
= [DRexp (i fd4;Zm2(R-R)) N/DRexp <Z/d4x£R >

The auxiliary field R is merely an integration variable, it can be therefore freely redefined. In

the following we try to integrate out the vector field and get the expression for the effective

Lagrangian E%f T which is completely equivalent to Ly. The detailed calculation is done in

[A]. The result is an infinite series in powers of p and can be found in the same article. The

3 £%ch(§6)

antisymmetric tensor field Lagrangian is not completely equivalent to the original

Ly but is equivalent up to O(p%) and gives the same O(p%) chiral Lagrangian. The result for

E%f 7(<6) ¢an be written in the same form as the Lagrangian Lp

L= 4M2(R R)——(W W) + (Jfff-W)+(J§ff:R) (2.6.8)

+ WIS R+ (R I R) + (R I D« R) L PEO et

where

e 1

JeT = —— . (2.6.9)
2 1

J26ff = mdy— —Jy:Jy-Jy— —Jp - Js, (2.6.10)
m m

S~ g (2.6.11)

. 1

T (2.6.12)

JIE (2.6.13)

and the contact term

e contac 1
ﬁRff(Sﬁ)7 tact (Jg 2 Jo) — Jy-Jy) —

a2 Jo: Js-Jy o). (2.6.14)

2 2
a2 sl = g

3We have denoted E;fﬂgm the effective Lagrangian [,;ff where only terms up to (’)(pS) are taken into account.
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The sources J; are taken, of course, from the vector formalism. The equivalence between the
vector and the effective antisymmetric tensor Lagrangian up to the order O(p®) cannot be

complete unless X = J; = 0 in the original model. Then we have explicitly* E;ff =8 — 0 and

%f Y (SG). This condition is satisfied in the vector field formulation

(<6)

the infinite series reduces to £

so the equivalence between Lp and E%ff is guaranteed.

Tensor — vector correspondence

Analogously, we want to find the effective vector Lagrangian E?,ff which is completely equivalent
to the antisymmetric tensor Lagrangian Lr. Detailed calculation is done again in [A] and we

again obtain the infinite series of terms. The result up to O(p%) is then

L0 — %(V V) + %mQ(V V) + (I vy + () (2.6.15)
+ %(V LKV 4 (VT T 4 8 (S6)contact (2.6.16)
where
J =
et~ _% @
K = gt =o.
and the contact term
gyt _ L gy Logw ey 2o ),

2 2 4 e 2
(57 Ja s )+ (5D T ).
The equivalence between the antisymmetric tensor and the effective vector Lagrangian up to
the order O(p%) cannot be complete unless J3 = J; = J5 = 0 in the original model. But the
concrete forms of the sources J; in the antisymmetric tensor field formulation up to O(p%) do
not satisfy these conditions so the infinite series does not generally reduce to the finite number

of terms.

2.7 First order formalism

General properties

In last two subsections we have tried to prove the equivalence between the vector and the
antisymmetric tensor formulation up to O(p®). We have seen that the equivalence is not obtained

in the general case. It can be observed already on the level of the effective chiral Lagrangians

4[',(;?“(28) are the terms from [,;ff that are of order O(p®) or higher
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which neither start at the same order nor all terms are analogous. The antisymmetric tensor
formulation seems to be better (and it really is) but as it was mentioned in [8] and [12] it does

not create the contact term

L) = —%(Jl - Jh) (2.7.1)
in the effective chiral O(p®) Lagrangian after integrating out the resonances. So it must be
added by hand as in [8]. All these problems lead us to find another formulation from which both
previous cases can be derived and which will be more general than the traditional descriptions.

Let us now start with the following simple first order Lagrangian
1 1 1 ~
Lyr = ZM2(R ‘R)+ 5m?(v V) — 5M(R V)Y+(J1-V)+ (J2: R) (2.7.2)

Using the derivation presented in the appendix of [A] we can write for the fields V# and R, in

the momentum representation

Vo) = -850 (50 + 2o 0 )
R) = ~680): (B0) - 5000 (2.13)

and thus

( V(p) ) _ ( A¥(p) LAYy ) ( L) ) (2.7.4)
R(p) LAR(p)-p AR(p) Ja(p) )

where iAY.(p),, and iA%(p),, o are the covariant parts of the propagators of vector and anti-
symmetric tensor fields (it means that they are reconstructed in the first order formalism). We

use the notation of two-point Green functions as in [A]

Va@)Vi(0))  =iA%(P)uw
TRy (p) Rpo (0)) = iAR (D) po
TV (p) Ry (0)) = iARY (D)o v
TR (p)Ve(0)) =iARY (=p)o = —IAE (D)o po- (2.7.5)

= (TV,
=
=
= {

\_/\_/

It is not difficult to prove, that the off-diagonal mixed propagator reads
i

1
(gaupu gaupu) . (276)

Agv( ): __AV( )p_ __AR( ) P = p2 m2+10m

This approach was first introduced in [A], we call it the first order formalism as it is clear from

the construction.

Effective chiral Lagrangian

Let us now discuss the general case of first order Lagrangian up to O(p®) maximally bilinear in
resonances,

" (R:R)—|—§m (V-V)—gm(R:V)—|—§(V-K-V)+(J1-V)
+(Jo:R)+(V-J3:R)+(R:Jy:R)+ (R:Js5-D:R). (2.7.7)

Ly =
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The solutions of the equations of motion to the lowest order are

)
R — m2 2
1 2 . 4@ 2 2)
V — _W <J1—w¢]3 . J2 —EDjz

that indicate the chiral counting R = O(p?) and V = O(p?®) (as it is usual). We can then

organize the Lagrangian as follows

Ly = E%ff)p - E%ff)p + E&f} (2.7.8)
where
£ im%}z R+ (J?: R), (2.7.9)
Ly = %mz(V V) - %m(R )V - (V) + T R+ (V- s R)
+(R:Jy:R)+(R:J5-D:R), (2.7.10)
£ = %(v K -V). (2.7.11)

The corresponding effective chiral Lagrangian up to O(p%) is

Lovr =L+ L0, (2.7.12)
where
Dy = L,
L% = g )~ (D I+ 2 AP AP D)
+%(D I ) - %(D I T I+ %(Jf) WRWIS)

+%(J2(2) :Js D JP) - %(JQ(” Js - Js s IS+ %(Jl s ).
As it was shown in [A] it is possible to integrate out the vector or the antisymmetric tensor fields
and to derive the corresponding effective vector or effective antisymmetric tensor Lagrangians
up to O(p%) that are completely equivalent to the original vector, resp. antisymmetric tensor
Lagrangians. So, the first order formalism can be assumed as a new way how to describe vector
resonances in RxT or at least as a consistent method how to find the contact terms that must be
added to vector or antisymmetric tensor Lagrangians when generating complete effective chiral

Lagrangians.

Complete basis of terms

The complete basis of terms is identical with the sum of terms from the vector and antisymmetric
tensor formalisms. Moreover, we have one mixing term coming from the source J3 coupled to

the resonance fields.
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O(p®) mixing term | coupling
1 Eaﬁuu<{vav RMV}U6> %MO-V

2.8 Summary of the chapter

In this chapter, we have investigated the general properties of Resonance Chiral Theory (RxT).
It is motivated by large No QCD which contains the infinite tower of resonances and fully de-
scribes the spectrum of hadrons. In RxT we restrict ourselves just to the lightest resonances
in each channel. Satisfying all symmetry properties dictated by QCD we can construct the
phenomenological Lagrangians for resonances and find the connection of their coupling con-
stants with LEC from xPT. In the following we have discussed one type of resonances - vector
resonances 17, the discussion and the calculations with other types of resonances would be

analogous.

The vector resonances can be described in two ways - using vector or antisymmetric tensor
fields. It is shown in this chapter and in [A] that these formalisms are not fully equivalent and
when integrating out the resonances they give different effective chiral Lagrangians (effective
contribution of resonances in xPT) so it is necessary to add some contact terms in both reso-
nance Lagrangians. Therefore, we have introduced the alternative formulation - the first order
formalism, that is in some sense a generalization of both traditional descriptions. The effective
chiral Lagrangian then contains all possible terms and there is not necessary to add any terms
by hand. Finally, we have also presented the complete basis of interaction terms in all three

formalisms that will be useful in the concrete calculations in the following chapters.



CHAPTER 3

Green functions at tree level

Our first goal is to investigate the behavior of two and three point Green function in the frame-
work of Resonance Chiral Theory. In the leading order in 1/N¢ tree diagrams dominate and

the contributions from loops could be neglected.

First, we mention the general properties of correlators and then we do the explicit calculations
in all three formalisms. Finally, some relations between coupling constants are found in order

to satisfy high energy constraints.

3.1 (General properties

Correlators

In quantum mechanics the Green function G(z1, 22, t1, t2) describes the propagation of a particle
from one point to another. In QFT we work with quantum fields and analogously as in quantum

mechanics, we can define the two point Green function as
(0|04 (x)O04]]0). (3.1.1)

where «, (0 represent both Lorentz and group indices. Because of the translation invariance of

the theory we can use the relation
(OIT[Oa(2)Op(y)]|0) = (O[T[Ou(x — y)Op(0)]|0). (3.1.2)

In is often useful to define this object (often referred to a correlator of quantum fields) also in

the momentum representation

Mo (p) = (0T[Oa(p)O5(0)]|0) = /d4:ﬂei”m<0lT[(9a(ﬂc)(96(0)]|0>- (3.1.3)
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The asymptotic behavior of two point Green functions can provide us with information about

the spectrum of one particle states |p, A). They correspond to the poles in II1,z(p)

OIT[Oa(P)Os(O)]10) Rt ———— 3 (01Oulp, Xy {p, AIOK[0)

2 .
p? —m?+ie 5
+ regular terms (3.1.4)

where we denote A all internal indices. So, if we know the Green function we can reconstruct

the matrix element (0|O4|p, A) # 0 of one particle state |p, A).

We can also define the n-point Green functions as

where all Lorentz and internal symmetry indices are suppressed. In the momentum representa-

tion we have

(0|T[O1(p1)O2(p2) - . . On(0)]]0) (3.1.6)
= / dzid ey . . dh e, @ PrETPREE P 1) (0| T[O; (1) Oa () . . . O (0)]]0)

For example, in the future we will discuss (VV P) correlator which can be obtained from the
general case setting O1 =V, Oy = VP and O3 = P°.
Operator product expansion

Following the arguments in [25] we construct the expansion of the time order product of operators

called OPE (operator product expansion) for the limit z — 0

T[Oa()05(0))] = Y Cif(2) A (0). (3.1.7)
n=0

where C5” (x) is are c-numbers. It provides us with information about short distance (high
energy) behavior of a given correlator. The vacuum expectation value of (3.1.7) can be written

in the form

(OT[Oa()O5(0)]|0) = 3 _ ¥ (x)an (3.1.8)
n=0
with a,, = (0|4, (0)]0). This result can be expanded in terms of x.
(01T [0 (2)0g(0)]|0) = > caPam (3.1.9)

Let us now investigate the short distance behavior of the correlator, i.e. x — 0. In what follows

we are interested only in leading order and the result can be written in the simplified form

2
(O[O0 ()05(O)]I0) = %+ 0 ( ! > (3.1.10)

xn—l
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If O, are bosonic fields then only the terms proportional to even powers of x can survive and

we can write 5
o 1

In the general case we can find the OPE for the more point Green function. Considering that all

x; are of the same order (~ €) we can then write the expansion in terms of this small quantity.

If we write OPE in momentum representation and take all non-exceptional momenta to
infinity (it is the analog of z; — 0), p; — Ap; where A\ — oo we obtain the expansion in terms of
A in the deep euclidean region that gives us the constraints which we compare with the results
calculated in RxT. In order to satisfy these constraints we can obtain the set of relations between
coupling constants. These relations will be then applied on the result in the low energy limit
and compared with the yPT prediction. Finally, we find the set of relations for saturation of

LECs valid in the leading order in 1/N¢ expansion.

3.2 Simple Green functions

In this section we focus on the properties of simple Green functions, concretely two-point corre-
lators (VV), (PP) and vector formfactor.

(PP) correlator

Two point (PP) correlator is defined as

(Mepip) = [ e OT[P(2)P'(0)]0). (3:21)
There is no tensor structure so the general form of the correlator can be written in the form
(ITpp)ge, (p) = 6™ TLpp(p?). (3.2.2)
The OPE expansion can be found in appendix A, the high energy behavior then reads
3p?
2.2\ _ 2 2 0
[Mpp(Ap°) = —167r2)\ In A\ 4+ O(N°, as) (3.2.3)

The O(p*) and O(p%) Lagrangians contributing to this correlator are

L : j
£0 =220 +43) + il (Dt +i/2x-)
‘ H
— Lia{(Dyut +i/2x-)?) + 72<x2+ —x2), (3.2.4)

L) =cg1 (D x D). (3.2.5)

There is no 17~ resonance contribution at tree level. We have only pure xPT result.

F2B2 4(Lyy — Lig)p?\ 2
Ipp(p?) = — 2 . <1 _ 4 2 12)p ) —4B§(2Ly1 + Hy — L1o — 2Ls) — 4B§p*cor
B

(3.2.6)

A(Lyy — Lyo)?
— 4B%(Ly + Hy — 2Lg) — AB2 <691 + M) 2

p2 F2
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p? p°

fo

Figure 3.1: Diagrams contributing to PP correlator.

In order to satisfy the high energy constraints we do not have to impose any relation. In the
low energy limit we just restore the result in Chiral perturbation theory, when the LEC with
tilde are substituted by the LEC from xPT Lagrangian. As a result, there is no saturation of

LEC from vector resonances (of course other types of resonances could contribute).

(VV) correlator
Two point (VV') correlator is defined as
(Myy ) (p) = /d4$€ip'x<0|T[V,f(ﬂf)Vf(0)]|0>- (3.2.7)
Using the Ward identities, p“(HVV)ZIL =0 we get
(ITyv) % (p) = i6° Ty y (p) (D> Gy — Ppuw) (3.2.8)

The OPE constraints up to leading order have the form

My (A2p?) = —

1 1
? ln )\2 + O <p, a8> (329)

Figure 3.2: Diagrams contributing to VV correlator.

The low energy result calculated in xyPT is determined by the contribution of the terms

L v v H v v
£y = %(fﬂwfi — fo ) + 71<f+wfi + fo ™), (3.2.10)
55(6) = co3(DyFrDPFIY + L — R. (3.2.11)

and the result for the formfactor has the form

105y (p%) = 2L1g + AH; + degsp®. (3.2.12)
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Vector formalism

There is only one simple contribution coming from interaction term

fv ¢
Ly =22 (pm , 3.2.13
1% 2\/5( f+,LLI/> ( )
and the formfactor in vector formalism reads
I Q—ﬁJrzE + 4H; + 4ég3p* 3.2.14
vv(p)—pQ_MQ 10 1+ 4égsp”. (3.2.14)
In high energy limit for A — oo we have
2,2 S 2 2 7 7 2 1
yyv (Ap°) = 4ég3A\"p” + 2L10 + 4H1 + fyy + O <ﬁ> (3.2.15)
Compatibility with high energy constraints requires
Co3 = 0. (3.2.16)
For p — 0 we can write
~ _ 2
Iy (p?) = 2Ly + 4H, — (% + 4593) P+ 0(p") (3.2.17)
Applying the high energy relation we find the relations
Lio+2H, = Lo+ 2H, (3.2.18)
i
_ ) 2.1
co3 e (3.2.19)

The first relation says that there is now resonance saturation in the combination of these O(p?)
low energy constants. For the O(p®) constant cg3 we have found the exact prediction in terms

of resonance couplings.

Antisymmetric tensor formalism

Analogous interaction Lagrangian term in antisymmetric tensor formalism has not only O(p%)

but also O(p*) contribution

FV v 4 [ v
Lr= 2—\/5(R“ fuw) + Ago(Ru D Do f1). (3.2.20)
The result can be then written in the form
1 N _
v (p%) = Ty (F& — VIR Ap? + 8(A¥2)2p4> V2010 + 4, + 43e3p®. (3.2.21)

In high energy limit for A — oo we have

- . 1
Iy (A%p?) = (4éos + 8(A\y2)?) A2p? — AV2Fy A, +8(\%)2 M2 + 2L +4H; + O <§> (3.2.22)
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Compatibility with high energy constraints requires
oz = —2(A\5)% (3.2.23)

For p — 0 we can write

va(pz) = 2510 + 4ﬁ1 — W —

F2 FZ2  4V2F ),
M4 M2

— 4593> P+ O0(ph) (3.2.24)

Applying (3.2.23) we find again the saturation of the constant cg3 in terms of couplings from

the antisymmetric tensor Lagrangian and also the nontrivial contribution to the O(p*) LECs

1

cos = —apa(Fv - V2NN M?)2, (3.2.25)
- - F2
2110 +4H, = 2Ly9+4H, — M‘g (3.2.26)

First order formalism

In first order formalism we have the terms of interaction Lagrangian which are the sum of those

in vector and antisymmetric tensor formalisms.

fV Y% FV v a v
Lr= _2\/§<V“ frmw) + 2\/§<R“ Fuw) + A3 {Ruy D* Do f1). (3.2.27)
The result is of the form
F2 p? 2 fv I

2\ _ v 2 1% vy

va(p ) —p2 Y - p2 — M2 |:_fV + 4\/§Fv)\22 + M :|

4 A2 fy A, - -
- zﬁ [—8(A¥2)2 - % 42000 + 4H, + 4ég3p? (3.2.28)

In high energy limit for A — oo we have

B A2 Fy AV
My (A2p?) = (4093 —8(\Y)? — #) N2+ AV2Ey A, — 8(AY,)2 M2

2F ~ ~ 1
— A2y ALM — f2 ]\Vjv + 2Ly +4H, + O <ﬁ> (3.2.29)
Analogously for ¢g3 we obtain
. V2 Y
Goz = —2(N\o)? — % (3.2.30)
The low energy result reads
2 7 ry F
Iy (p®) =2Lyo + 4H;y — MVQ (3.2.31)
Fy 4V2FyN,  fe 2Ry 4
- (W‘T*W‘ M s |+ O0Y)
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Applying (3.2.30) one finds

Cg3 — 4M4 (FV — va — 2\/_)\ ) (3.2.32)
2

1%
2M2°

Taking fiy = 0 we restore the result from the antisymmetric tensor formalism and for Fy =

Li+2H = EIO + 2?[1 — (3233)

/\22 = 0 we get the relation known from the vector formalism.

Vector formfactor

The vector formfactor is defined as the matrix element

FR(gR) = (g () (p2) V) (3:2:34)

where ¢* = (p1 +p2)* and p% = p% = 0 (off-shell external pions). Symmetry properties determine

the group and tensor structure uniquely.

(@ (1) (p2)[VH2|0) = iF (¢°) f**(p2 — p1)" (3.2.35)

High energy constraints require vanishing of F(q?) for ¢* — oo.

vaH /q
p . “ ’ N S
1/" \\ \pz :' ! :l ‘\

Figure 3.3: Diagrams contributing to vector form factor.

The Lagrangian terms of xPT contributing to the vector formfactor are (including O(p?)

term)
£§<4) = —Z'L9<ffj“uuﬁ — L12(D"u,D"uy),
L£O = icgs(D? 1 [y, up]) + icoo (Dy f1 [, u])
with the result Loq®  A(cor — cas)q
fx(q2) =1+ 2 + 2 ) (3.2.36)
Vector formalism
The terms in interaction resonance Lagrangian that contribute to the formfactor are
£y = =0 i) = SO ) (3.2.37)



3.2 Simple Green functions 45

The formfactor then reads

4 79 ~ = y4
5 fvagv ¢ Log® | 4(Cgo — Css)q
=1- . 3.2.38
In high energy limit for ¢> — co we have
4(Cg0 — Css) fvgv  2Lg fvgv M? 1
2\ _ 4 2
f(q)—Tq— F2 —ﬁ (]+1—T+O ? (3239)
Compatibility with high energy constraints requires
Cop = Csg, (3.2.40)
fvgyM? = F? (3.2.41)
fvgy = 2Lo. (3.2.42)
For low energies, ¢ — 0, we can write
2Lg fvgv | 4(Coo — Css)
Fl@®) =1+ 24 ¢+ <M2F2 + == q* +0(q% (3.2.43)
Applying the relations found in matching with OPE at large energies one finds
¢ 4
Flq )_1+W+W+O( q%). (3.2.44)
Comparing with the prediction of YPT we obtain the relations for LEC
F2
Ly = — 2.4
9 2M2 ) (3 5)
F2
Cgp — C88 — m (3.2.46)

together with the relation (3.2.41).

Antisymmetric tensor formalism

In antisymmetric tensor formalism we have as usual O(p?) and O(p®) terms contributing to the

formfactor
Fy ZGV
Lr=—=(R*™ . R*™u,, u,
+z’>\¥1(RWDaDa(u“u )) 4+ Ao (Ruw Do D™ f1Y) (3.2.47)

The formfactor then reads

1 ¢
2y _ 2\V 2\V
Flq) = l—ﬁm <FV - 2V2q >\22) <GV —V2g >\21>
2Loq* | 4(Goo — Cas)q”
F? * F? )

n (3.2.48)
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In high energy limit for ¢> — oo we have

F(q%) = =5 (Goo — Tss — A5 Ao) (3.2.49)
2 ~
+ L5 (VRS +2v3Gy MY, — AMPANY, + 2L

1 1
4+ o [2\/§A¥2(GVM2 —V2M*\Y) — Fy(Gy — \/§M2A¥1)} +0 <?>

The compatibility with high energy constraints requires

oo — Cgg = Ay Abo, (3.2.50)
. Fy )Y,

R r/;l — V2Gy Ay, + 2M2AY Y, (3.2.51)

F? = Fy(Gy — V2M?)\)) — 22205 (Gy M? — V2M*)\Y). (3.2.52)

For ¢> — 0 we can write

2 (FyG -
Flg?) =1+ % ( Tt 2L9> (3.2.53)
4
q V2 FyGy
+ 13 (4((:90 — gg) — 17 (Fy MY, +2Gy Y, + o gt + 0%

Taking into account the conditions (3.2.50)-(3.2.52) we obtain the same form of the formfactor

(3.2.44) as in the vector formalism together with the same relations for LECs.

First order formalism

The contributing Lagrangian is here just the sum of Ly and Lg, Lry = Lr + Ly. For the

formfactor we obtain the more general result as in the previous cases

4 2

o+ Jfvav ¢ 1 q 2\V 2,V
f(q)_l_ 2 (]2—M2_ﬁq2—M2 (FV—2\/§Q )‘22) (GV_\/iq )‘21>

4 4
gv q Jv q
MF2q2 — M?2 (FV B Qﬂqz%) NS YT e (GV B \@Q%VJ

2Lgq*>  4(coo — css)q?
F? + F?

(3.2.54)
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In the high energy limit for ¢> — oo we have

fv)\gl + 29\/)\¥2>
2v2M

— fvgv +2Lg +

4q* [ .
:ﬁ <090 — (€88 — >\¥1/\¥2 -

n ¢ | (Fy = 2v2M>)\})gv
F? M

F(q?) (3.2.55)

fv(Gy —V2M2\Y)
M

+V2F Y+ 2V205(Gy — \/§M2/\¥1)}

n {1 _ fvgvM? n fyM(Gv — V2M?)\)) n gv M (Fy — 2v/2M?)\}))
F2 F2 F2

L 2VAMAAG(Gy —VAMANY)  RGy  VERVMAAL | (L
F2 F2 F? q°

The compatibility with high energy constraints requires

TS+ 290\,
2V/2M ’
N Fy A, fvgv
9= — \/521 —V205(Gv = V2M2A3) + =
(Fy —2v2M2)\Y,)gv N fv(Gy = V2M2)Y)
oM oM ’
F? = fygy M? — fy M(Gy — V2M?)\})) — gy M(Fy — 2V2M?)},)

— 2V2M2\L(Gy — V2M2AY) + Fy Gy — V2EF, M2\, (3.2.58)

~ ~ VAV
Cgp) — Cg8 — )\21)\22 +

(3.2.56)

(3.2.57)

For ¢°> — 0 we can write

9 4
9 ¢ (FvGy | - ) fvgv  (Fvgv +Gvfv)

+ 4(590 — 688) +

FyGy \/§FV/\¥1 + 2\/§GV/\¥2 6
M4 - M2 + O(q )

Again, we obtain the same relations for LECs as in the vector and the antisymmetric tensor

formalisms.

We continue our discussion of Green functions in xT focusing on the more complicated case

of the three point correlator.

3.3 (VVP) correlator

This correlator was already studied in [11, 9, 26]. We enlarge this study by taking account
the complete O(p%) Lagrangian in the antisymmetric tensor formalism and we also include the
calculations in the first order formalism. The result can be then applied for many processes, ie.

T — 27.
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General properties

The definition of the correlator in the momentum representation is

Wvp).0) = [dto [ dye®= o OV V) P o)), (3.3.)
Denoting » = —p — ¢ we can write the Ward identities in the form
—ip(Tyy p)ie = if ™ 01TV, (p + q)P°(0)[0) + i f*“*(0[TV; (q) P*(0)[0) = 0 (3.3.2)
where
(Iy )5 = (O|TV;¢ () P?(0)|0), (3.3.3)

which is identically zero. The similar calculation can be done for the second independent mo-

mentum. As a result, we obtain

P Myvp)i = ¢/ (Myyp)is =0 (3.3.4)

Together with the invariance under P and C transformation we get the structure,
(Myvp)o = €uapp™d’d* Fyvp(p®, ¢*,r?) (3.3.5)
with the four-vector r = —p — ¢ and formfactor F(p?, ¢%,72) is symmetric under p <> q. The

OPE calculations can be found in the appendix, in the high energy limit we have
lim [ d*zdiy e[V (2) VO (y) PE(0)]]0) (3.3.6)

A—00
1 BoFgdebe P2+ ¢+ (p+q)? o 1
_ —,
222 P23 (p + q)? xS

which means that the formfactor Fy v p must satisfy the relation

P pag

BoFg p* + ¢ +1° 1
2,2 12,2 12 2y _ Pol'g P T4
fVVP(A b 7)\ q 7)‘ r ) - o\ p2q27’2 @ <F> (337)
The xPT Lagrangian is here enlarged by the Wess-Zumino term Lyyz
) . 2
. ? )
£;4I)3T = ZLll(X— <Duu” + EX_> > — L12< <Duu” + 5)(_) >, (3.3.8)
4) _ \/éNC abc vaa, B
Ly, = — S2F A" €0 (PO V" 0 7), (3.3.9)
6 . vV ppo v o
E;I)JT = chvequ0<X—fﬁ i >+012/g6;u/p0'<uu{D-y 1. (3.3.10)
(3.3.11)

The formfactor for yPT yields

Fvp0% ¢%1%) = 32Bpcl —

72 8m2r2 F? o

In the low energy limit we have

1 NoBg
Fove(ep)?, (ea)?, (er)?) = “Ege T 32Bycy” (3.3.13)
8By (p? 2 NA~Bo(Li1 — L 32BncW (p2 2
_ 0022(12’ +q°) 4 e o( 2112 12) L2 0022(1; +q°) L o)
T 2w F

and this relation will be useful in the matching it with the result calculated in RxT.
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Ve v
v e 'R G v
pX I xq — +
./
—(X)p° .

T , B ®

Figure 3.4: Diagram topologies contributing to VVP correlator.

Resonance contribution

Vector formalism

In the vector formalism we have the following O(p®) resonance Lagrangians

6 fV 2 @
cl¥ ——2\/§<VW MY 4 hyuag (VY £2P), (3.3.14)
1 .
c%/S) _ 50‘/6aﬁw<{vw7 Veluf) (3.3.15)

where we have explicitly introduced also one of the contributing O(p®) terms that has the

analogue in the O(p%) term in the first order formalism. The formfactor then reads

B 20y fEpiq? 4 2p%hy f
Vv 2 2 .2 0 Vv p v jv
_ o) 3.1
Fovpp® q°,r7) 2 { 2 — M2)( — M%) + (? — M) } (3.3.16)
8 Bo(p®> +¢*) N¢B 4(Lyy — Lyp)r?
~W 22 B0 (P q cbo 11 12
328087 — r2 © 1672r2 1= - F?2 P =a)
'R
Ct@/ M= f 5
®p X p
Figure 3.5: Diagrams in vector formalism.
In the high energy region we have
limy o iy p(A0)*, (A0)?, (Ar)?) = (3.3.17)
32 32By(L11 — L12)é (> + ¢°) . BoNe(Lyy — Lio)
F? 22 F2
_ 8Boéy(0* +4¢*) | B 4oy & 8V2h N,
+ 393 B, 0022(2; +Q)+_§ 3 UvzfvJr \/_2va_ o
r A r r 8mar

Lo <4fv(\/§hv — frov)(? + q2>M2> o <%>

P2q2r2
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By setting some relations between the coupling constants we can satisfy the high energy
constraints up to the order 1/A? but the condition proportional to 1/A\* can be satisfied in no
way. Therefore, the result in the vector formalism is not consistent with high energy constraints

and no saturation of xPT LECs can be found.

Antisymmetric tensor formalism

The Lagrangian in the antisymmetric tensor formalism that contribute to the (V'V P) correlator
is much richer than in the vector case so there is a chance that some relations between coupling

constants allow us to satisfy the high energy constraints.

Fy
£ = VR, 3.3.18
W= o Ret) (3:3.18)
6 C1 v «Q o C2 « o v
LY = 7 Cunr LR P2} Dot”) + S upo ((RP, £17} Do)
i63 v o C4 v log
+M€uupa<{RM ) -[1)- X—> + Meuup0<Ru [ff 7X+]>
C5 v 1o o 66 a [ v
+M€uypcr<{DaRu 5 _i }’LL >+ MQJJ/pO’({DaRM 9 -i }U >
C7 fod v (0%
+M6Wpa<{D RM™ | P buy)
+iA31 (Ryu Do D (uu”)) + Ay ( Ry Do D 1) (3.3.19)
The result in this formalism has the form
Five®® ¢ 1) = (3.3.20)

dy — d3)r? + d3(p? + ¢?)
(p? — M?)(q? — M?)r?

16y (Fy — 2V2NGp°) | 162es(Fy — 2V20°)

Bo{2<Fv — 2V2A\5p?) (Fy — 2¢5A¥2q2>(

(p? — M?)(¢*> — M?) M(p? — M?)
NC 4(i11 — fqg)?ﬂ 2\/5 \a)

y r2(c1 4 ca — ¢5) + p?(—c1 + co + 5 — 2¢6) + ¢%(c1 — co + c5)
r2(p? — M?)

32 W 22 1 (L
¢ 7,2 ] 67-[-27»2 F2 (] 1 )

(3.3.21)
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LR -
pA AL - +V L+ : + \// + v
LA AP SN o o

Figure 3.6: Diagrams in antisymmetric tensor formalism.

In the high energy region we have
limkﬂoof\}/'zVP((/\p)zv ()\(])2, (/\7,)2) = BO X {

/\2 32622 (LH L12)

2
1 16(cg — c5)A\Y: _
+ = M 32d5(A)? + L 16(cs —es)Asy 8eW ) + 32(AY,)%(dy + 8dy — ds)
A r2 M
167, w , No(Li — L)
— M (Cl+CQ+8C3—C5)+32C7 +W
+ e [%{2\/5 (MV — 2\/§A¥2M> (c1+co+8cs —cs5)

F
—8V2MAY, (MV - 2\/§A¥2M> (dy + 8ds — dg)}
4 4
pTtq Fy v
+ W{Qﬂ <ﬁ — 2\/5)\22M> (Cl — C2 + C5)
F
— 8V2AY, Mds (MV - 2\/§MA2VQ> }
+ R 4\/5 _— — 2\/§A22M (Cl —Cy — C5 + 266)
T M
F N,
—16V2M Ay, ds <MV - 2\/§>\¥2M> - —CH

872
1[ 1
1 [p—2q2 {4(FV — 2V205 M?)?(dy + 8dy — ds)}
P’ + ¢

+
p2q27’2

{4(F3 — 6V2Fy AN M2 +16(0\,)2 M%)

F
— 2\/§M2 <ﬁV — 2\/5)\;/2]\4) (Cl —Cy — C5 + 266)}

4

+ppq {2\fM2< —2V2\, M )(01+02+803—05)

— 8V2AY, M <ﬁv - 2\/§>\¥2M> (dy + 8dy — dg)}

St (§ )]

p q47’2

+0 <%> (3.3.22)
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To fulfill the high energy conditions we have to demand

c1 = —403 (3323)
co = —4dcg+cs (3.3.24)
NeM
6 = c5— ——C (3.3.25)
64212 Fy,
NcM?  F?
di = —8dy— 3.3.26
! 2" Gan?FE T ARD (3:3.26)
NeM?  F?
da = — 3.3.27
° 64m?F2 | SFZ (8:3.27)
Ao = 0 (3.3.28)
_ No(Ln — L)
w c\411 12
oy = 0. (3.3.30)

If these conditions are satisfied, the result simplifies to

4
BoF? p* +¢* +r2 — {2
2 (p* = M?)(¢* — M?)r?

Fvp® ¢*,r%) = (3.3.31)

which coincides with the lowest meson dominance (LMD) approximation developed in [26, 9].

1 B)ONe  F?2  p>+¢% ([ F? N¢
Flyp((ep)?, (eq)?, (er)?) = 0

T2 8n2p2 | 24 r2 oML Sm2 M2
4 4 2 2.2 2 2
o) p*+q¢* [ F Nc¢ pqc ([ F N¢ 9 o F 4
e { r2 <2M6 - 87T2M4> T <W “ ) T g HOE)
(3.3.32)

and comparing with the yPT prediction up to O(1) we finally get the relations

Nc(Ly1 — Lia) F?
w . Nelln 12
o= 64n2F2 | GAMY (3.3.33)
N, F?
W C
- - . 3.3.34
22 6472M2  16M2 (3:3.34)

The relation (3.3.33) confirms the well known fact that the O(p*) constants Li; and L3 can be
effectively included in the O(p%) constant cgv. The reason is that the corresponding operators

are proportional to the classical O(p?) equations of motion and can be removed by means of the
field redefinition.

First order formalism

The Lagrangian in the first order formalism up to O(p®) is identical with the sum of Lagrangians

from the vector and the antisymmetric tensor formalisms (up to O(p%)). Moreover, we have one
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mixing term that is analogous of the O(p®) interaction term in the Proca field Lagrangian that

was already mentioned. So we can write
1
Lav =LY+ 420 4 S Moveas ({V?, R Yu) (3.3.35)
The result for the formfactor then reads
B " 'Rt g eer " ‘
T R S
1% ', . X
pe v X0 Xp 5
o
Ve ’

B

Figure 3.7: Diagrams in first order formalism. The thick line represents the sum of double line

(antisymmetric tensor fields) and thin line (vector fields).

8By (p* +¢°%)

Fp(* ¢ r?) = Bo{+3230517/v

2
N¢ 4(Lyy — Lyg)r? 4\/_hvp
—— 11— 2v2)\Y.
167r2r2< F2 T E o) Jv = + V2 22M
di + 8dy — d3)r? + 2dsp?
+2Fv(p2)Fv(q2)( 1 o —d3)r 3D

(p? — M2?)(q? — M?)r?
N 2V2Fy (p?) (c1 + c2 + 8cz — ¢5)r2 4 (—c1 + ca + c5 — 2¢6)p® + (c1 — 2 + ¢5)¢?
M (p* = M?)r?

o 2Y,.2
(P2 2_ ]\(4]\24)1(*;\/2((]_ i@z)ﬂ <fV - Fﬁ + 2\/_)‘22M> } +(p<q). (3.3.36)

where

Fy(¢®) = Fy — fv— — 2V2M\5hq (3.3.37)
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In the high energy region we have

Jim fvvp((kp)27 (Aa)?, (Ar)?) = Bo x

1 [p* +¢* (4dy fV 16hy Y,
F{ ) ( (fy + 4V2M Y. )+32(A¥2)2d3+T22

1%
+£(CG —¢5)(fv + 2225 M) — 2\/ﬁ#‘”(fv + 2\/§A2V'2M))

fV —— (fv + 4V2ALM)(dy + 8da — ds) + 32(\},)*(dy + 8da — d3)
4 Ne(Liy — L
\/_(fv + 2\/_)\22M)(61 + co + 8cg — 65) + %]
1 [p?+¢? F
i [%{4 (fa S+ AVIMfAY, — VTfV +8(AY)2M? — 2\/§FV>\¥2> v
22 Va2
X (dy + 8dy — d3) + W(FV — fvM — 2\/5/\22M )(c1 + c2 + 8¢z — ¢s5)
4 4
pt gt (2V2
W{ i (Fy — fuM — 2V2X\5, M?)(c1 — ¢a + ¢5)
+ A2 (Fy — fy M — 2205 M?) oy,
+ 4d; (8(A2V'2)2M3 FAV2F LA, M2 + fEM — 22 A, M — vaV) }

1 N, 4 fy F;
+ —{ - 0 4 320y MY, — 3200 M2(\)? — Aftoy + %

7»2
- M}W (Fy — M) + 82y (Fy — 2M fi)

4
\/_(FV — fvM —2vV2M?\},)(e1 — e2 — 5 + 2¢6)
8d
+ﬁ3(8()\¥2)2M3 +4V2 N M? + f2M — 2V2Fy A, M — vav)H

+ % [1%{4(011 + 8dy — d3) (Fv — M(fv +2\/§)\¥2M)>2}

2, 2

_I_

1;,(]72(12{ — 2V2M (1 + ¢ — c5 + 205 + 2 ) (Fy — M fyy — 2V/205,M?)
—2(ov — 2d3) (16(>\¥2)2M4 + 8V2 A, M? 4 22 M

—6V2Fy Ay M? — 3fy Fy M + F\%) }

4 4
_|_
+ pp4qf {4M(d1 +8dy — ds) (8(A¥2)2M3 +4V2f A5 M? + fE M
V2R AL M — fVFV) }
P+ d° Vo2
+ e 2V2M (1 — ¢ + ¢5)(Fyv — fu M — 2V2X5M?) — Afy Mds(Fy — fy M)

+4V2AL M2 (Fy — fy M — 2v205,M?)(oy — 2d3)H +0 < ;) (3.3.38)
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Now the situation is little bit different from the situation discussed in [A] where the coupling fy
had to be zero in order to satisfy the high energy constraints. In this calculation we have taken
into account the complete O(p%) Lagrangian and it is possible to preserve the nonzero value of
this constant. Moreover, on the contrary to the antisymmetric tensor formalism we do not have

to set the )\5/2 constant to zero, it is in some sense compensated by the constant fy. Finally, we

obtain
Jv
Ap = NI, (3.3.39)
c1 = —463 (3.3.40)
co = —4dcg+cs (3.3.41)
NeM
Ce = C5—hv—764\/§ﬂ_2FV (3.3.42)
oy Nem? F?
di = —8dy+ — — 3.3.43
! 2t T GanE AR (3:343)
oy Ncm2 F2
d3 = — — 3.3.44
° 2 G4n2FZ | BEZ (3:344)
) No(Li — Lio)
w c\t11 12
ay = 0. (3.3.46)

Applying these constraints on the result we find the same relations of LEC as in the antisym-

metric tensor formalism.

In the first order formalism, the bad high energy behavior connected with the vector formal-

ism (fy) is canceled by the similar unsuitable behavior from the antisymmetric tensor formalism

(A%).

3.4 Summary of the chapter

First, we have briefly reminded the general properties of Green functions and the operator

product expansion.

Then we have done the explicit calculation of (PP) and (V'V') correlators, we have applied
the high energy constraints and we have found the saturation of the O(p°®) LEC cg3. The study
of the vector formfactor was already briefly mentioned in [B]. Here it provides us with the
interesting relations between the constant F and O(p*) LEC Lg and the difference cgg — cgg of
O(p°%) constants.

More tricky example of the three point Green function is (V'V P) correlator that was already
discussed in [11, 9] and [A]. We have concluded that the high energy constraints cannot be satis-
fied in the vector formalism up to O(p®) there is an inconsistency with the high energy behavior

dictated by OPE. In the antisymmetric tensor formalism, we have repeated the calculation done
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in [11] and [A] with the more general Lagrangian containing all contributing O(p®) terms but
we have found that this extra term (with coupling A},) did not survive the restriction from the
high energy constraints. However, we have found the relations for the O(p%) LECs ¢} and CI7/V.
Some interesting facts have been observed in the first order formalism. The result presented in
[A] required to set fiy = 0 in order to preserve the compatibility with OPE but in this more
general case we can preserve fir nonvanishing and we find the relation between this coupling

from the vector formalism and O(p%) coupling A, from the antisymmetric tensor formalism.

As a result, we can sum up this chapter: we have found the case where the compatibility of
the vector field formalism with the high energy constraints is not preserved and we have also

seen the nontrivial implication of the first order formalism.



CHAPTER 4

Compton-like scattering of Goldstone bosons

In this chapter we continue in studying processes within the framework of Resonance Chiral
Theory. Now, we focus on the example of the four-point correlator (VV PP) that was already
briefly mentioned in [27] but the detailed study is still missing. In the beginning we study
the general properties of this correlator and its symmetries, then we restrict ourselves to the
Compton-like process with the external legs of the pseudoscalar bosons which is the simplified
version of the general case. Then we calculate the contribution of resonances to this process in
the vector formalism up to O(p%) and in the antisymmetric tensor formalism up to O(p*). We
also mention some aspects of the result in the antisymmetric tensor formalism up to O(p%), but
we skip the complete calculation because it is extremely long. The results will be then compared

with the high energy constraints and some relations between coupling constants will be found.

4.1 Motivation

This chapter is motivated by the conjecture in [27] that for 7° Compton scattering the antisym-
metric tensor formalism violates the Froissart bound while the vector formalism preserves it. In
this paper it was taken into account just one interaction term with the coupling Ay in the vector

formalism and the analogous term in the tensor formalism (one of the terms with the coupling

CZ').
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4.2 Definition

The (VV PP) correlator is the four point Green function, its definition in momentum represen-

tation has the form
Gad(p,q,r;8) = (0| TVHp)VL(—q)P(r)P*(0) | 0) (4.2.1)

— / dtzdtydtzePeiavtirz (| Tv;(a;)vf(y)PC(z)Pd(O) | 0)

where the conservation of momenta indicates s = p + r — ¢q. The on-shell matrix element of the

Compton-like process in the chiral limit can be written as

A pa,ris) = (0°0) [ TVIR)V0) | 6%(s)) (42.2)
= = Jlim PSRBTV )V (o Pr)P0) | 0)

where the pseudoscalar density satisfies
(0[P*(0)[¢"(s)) = FoBod™ (4.2.3)

and |¢?(p)) represents the Goldstone boson state. The amplitude of the Compton-like scattering
of the Goldstone bosons is then

IM$ P, q.ris) = lim e (p, Ne" (g, m) A (g7 5). (4.2.4)
P9~ —

4.3 Symmetry properties

abed
nv

symmetry, gauge symmetry and the Ward identities.

Now, we discuss the symmetry properties of G¢°*(p, q,,s) and AZII’,Cd(p, q,r,s) including Bose
Bose symmetry and crossing symmetry

Bose symmetry for the correlator reflects the symmetries under the interchange of Vj(p) >

VP(—q) or ¢°(r) < ¢?(—s). Then the corresponding relations are
G(p,q, 1 8) = Goo™(p,q, —s; —1) = GL9(—q, —p, 73 5) (4.3.1)
Analogously, Bose symmetry and crossing give

Abed(p g1y s) = A% (p,q, —s; —1) = AL (—q, —p, 73 5). (4.3.2)

SU(3) symmetry

Resonance Chiral Theory is SU(3) invariant so all the correlators must show this symmetry.

Let us therefore study the group structure of the correlator and find the basis of invariant group
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tensors. As it was shown in [D] the group structure is the linear combinations of the invariant

tensors
<Tcr(a) To(b) > <To(c) To(d) >
(To@e®) pole)po(d)

where o is some permutation. The detailed discussion can be found in [D] and in the appendix

C. The basis of tensors is

Tlabcd — 5ab 5cd (4.3.3)
Tz‘f?fd _  gacgbd 4 sadgbe (4.3.4)
Tgbcd _ fablfcdl (435)
ngbcd _ dabl dcdl (436)

The correlators can then be expanded as

5
GZ?/Cd(p’ q,ris) = Z G;w(p7 q,T; s)(Z)Tiade
=1
5
AZ?/Cd(p’ q,ris) = Z A;w(pa q,T; s)(l)Tiade
i=1

Ward identities

Let us now apply the Ward identities in the momentum representation on the general case of
the four point correlator
—ip' Gl (p,q,ri8) = 1TV (p — q) PY(r) P (0)[0)
Hf OV (=) P (r + p) P(0)]0)
+ife 0TV (—q)Pe(r)P%(0)|0) (4.3.7)

Analogously for the Compton-like scattering we obtain

—ipt S (p,q,rys) = ifHe(r) | ViE(0) | %(s)) (4.3.8)
iq" A% (p, q,r58) = 1fP g% (r) | VE(0) | ¢%(s)) (4.3.9)

The right hand side of these identities is nothing else than the vector formfactor with one
Goldstone boson in the initial state and one in the final state. The structure of such a matrix
element is

(@°(MV(0)|¢?(s)) = if U (r + ) Fy((r — s)°) (4.3.10)

where Fy(p?) is related to the vector formfactor from chapter 3 as Fy (p?) = —F(p?). We

see that only the term A, (p,q,7; 8)(4) survives the contraction with the momentum p*. This

means,
—ip" A (p,q,m;8)? = 0 fori#d (4.3.11)
—ip" A (p, g, 5)Y = —(r+ ), Fy((r —s)%) (4.3.12)
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and similarly for second momentum ¢”

iq” A (D, q, 73 YD = 0 fori#4 (4.3.13)
i¢" A (p gy )P = —(r 4 8), Py ((r — 5)?) (4.3.14)
4.4 Lorentz structure

Let us now focus on the Lorentz structure of the result. The conservation of momenta has the

form p+r = g+ s. Let us take the momenta p, ¢ and k£ = r + s as independent. Generally,

there are six independent invariants: p?, ¢%, r2, s® and
1
S = +r)=(+9)"=1(k+p+q)’ (4.4.1)
= (p—q)°=(r—s) (4.4.2)
1
U = (p=s)=(-r"=5k-p-q’ (4.4.3)

with S+ T + U = p? + ¢ + r? + s%. For our purpose 7> = s> = 0 (in the chiral limit) and the
only independent invariants are now p?,¢%,S,U. T can be expressed as T = p*> +¢*> — S — U.

The independent transverse structures satisfy p“LW =q" wa =0

Ly, = qupv— P ) (4.4.4)
L2, = (q-k)poku+ @ k)guks — (0 k)0 k)guw — (0 kb (4.4.5)
LY, = @pupv + 1"ty — 0’9 — (P Pty (4.4.6)
Lfiu = (¢ -k)aky + - k)puks — (¢ k) (0 k)pugy — P*@*kuky (4.4.7)
L, = 0’ k)auky — (¢ k)poky + (¢ k) - k) [@®pupy — P°0000)

+(p-q) [P*(q- k)avky, — ¢ (p - k)puky] (4.4.8)

General structure
We have already seen that the Ward identities for k = r + s and T' = (r — 5)? have the form
—iph Agbed = — ol pedle, By (T). (4.4.9)

The solution of the Ward identities can be divided into two parts. The first one vanishes after
contracting with p# and is constructed from the transverse structure wa. The second one is
responsible for the right hand side of 4.4.9. Finally, using also the relation (p-k) = (¢- k) =
(S —U)/2 we can write

2Fv( )

i = L pablpedly &, (4.4.10)

5
AZIb/Cd(pv(LT;S) = ZA“” D, q,T; 3 Tiade
=1
5 5
2F
= ZZAP q SUT) TadeLj — SV(U)fabldelk k
i=1 j=1
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where we have introduced the formfactors A(p?, ¢%, S, U; T) that posses no Lorentz and group

structure. Under crossing symmetry ¢°(r) « ¢%(s) we obtain

abed . __ Aabdc .
Auu (p7Q7TaS) - Auy (p7Q7_37 _T) (4411)
5 5
; ; 2R
=> > AQ*, ¢ U S TSI L] (p, q, —k) — SV(U) FFeA ek,
i=1 j=1
. . . 2F
=S DA U ST, (50 k) — g )
i=1 j=1

The resulting symmetry relations for the formfactors are

A(p27 q27 57 Ua T); = 5(i)A(p2, q2, U, 57 T); (4412)
where e = ¢@ = () = (1) = £) = 1. Analogously, Bose symmetry Vi(p) < V2 (q)
implies
abed . __ pbacd .
A;w (p7 q,7; S) - Aup (_(L —-p, T S) (4413)
5
. . 2
=303 AU S T (0, ) — i
i=1 j=1
7 1 rabe / 2FV( ) a c
=D > eUng AR PP U S T T, (0., k) = = Mk,
i=1 j=1
which means

where 7(1) = n(2) = 1(3) = N4) = —7(5) = 1 while the crossing symmetry gives further

Helicity amplitudes

For further calculation it is useful to introduce the helicity amplitudes. The result derived in
[D] reads

M (p g r;s) =

1F* (, V™ (q, ) MS*Y(S,U; T) — Fy, (p, \)F*(q, )K" kp M5 (S, U T)

9 m P
2F
= 2IVCL) ot gt (2, 2) - ) (el ) - B) (14.16)
where
F™(lo) = —i(l*e"(l,0) —1"eM(,0)) (4.4.17)
6
IM§ (PP, ¢ S, UST) = Y A(0,0,8,U; T)ST, (4.4.18)

1=1
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Further for external on-shell legs we have p? = ¢®> = 0 and, therefore we can write in CMS

1 ., y 1
S Ew (P N E(g,5) = =50 T (4.4.19)
1
_F;V(pv A)FW[)((L H)kykp = _5)\,{SU‘|‘ _(5}\,_,{T2 (4420)
(e, A) - k) (eg, k) - k) = ——A s (4.4.21)

The final result for the helicity amplitudes in CMS

abed _ abed ( ) abl pcdl
MPE(p,q,r;s) = — SUMS(S,U;T) +TUS(S U)f f (4.4.22)
M, q,755) = = STMPS,U;T) + {T2ME (S, U T)
Fy(T)  pabi pedr
U5/ (4.4.23)

These expressions will be very useful in the future when we will compare the calculated results

with the high energy constraints.

4.5 The high energy constraints

The Ward identities and the other symmetry properties indicate the conditions that are satisfied
automatically without any other constraints on the coupling constants. On the contrary, the high
energy constraints are not intrinsically contained in the results and do not have to be satisfied
in all cases. The compatibility with these constraints shows the right high energy behavior of
the theory.

Operator product expansion

The OPE reflects the high energy behavior of QCD. At the leading order in o, we can write for
p— Ap, ¢ — Aq, A — oo and r, s fixed

i Fy (T
AZ?/Cd()‘p7 )\p—i-T o S,T;S) — _ifablfcdl[puku _|_ka” — (p . k)g ] p( ) +0 </\2,a > (451)

The more symmetric form can be obtained when introducing the kinematic quantities k = r + s,
A =r—s,%=p+q. Then we have for > — AX and k, A fixed

AN — A), S8+ A), L (k+ A); 5k~ A)) = (4.5.2)

%A Fy(T |
SIS 4 Sk = (5 gl +0 (.00 )
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The leading behavior for wa in the large A limit reads

L, = %2 (2.5 — 22g,) + O(N) (4.5.3)
L, = %2 (k- 2)(Suky + Sk — (2 k) g — 2kuky] + O(N) (4.5.4)
L, = i—gzﬁ (2,50 = 2%g) + O(N?) (4.5.5)
L, = —i—z (k- %) =22k, (Su(k - ) — %k,) + O(\®) (4.5.6)
L, = g—;(k: CX) [EHE? + (k- D) (kuAy + kAy) (4.5.7)

—2A(E - A) Sk + Soky) +2(8 - A) (k- 22,5, ] + O

The constraints on the level of formfactors A(p?,q2,S,U; T ); can be found in appendix C.

Froissart bound

The Froissart bound is a high energy condition for four particle processes. The application on
the Compton-like scattering helicity amplitudes M%’fd(p, q,r;s) is detailed discussed [D]. The
results are

M5, —S;0)] < const. S In? S (4.5.8)

~

|IM$ed(S —S —T;T)| < const. S In* 25 for T <0 fixed (4.5.9)

These results make the implications for the constraints for the formfactors A(p?, ¢, S, U, T);

. 1
A(0,0,5,—S5;0)5 < const. 5 In% S (4.5.10)

. 1
A(0,0,8,—S —T;T)5 < const. < %28 for T <0 fixed (4.5.11)
A(0,0,8,—-S —T;T); < const. S %28 for T <0 fixed (4.5.12)

This is the last note on the general properties of the Compton-like scattering process. Let

us now focus on the concrete calculations of the formfactors.

4.6 xPT contribution

First, we do the calculation in pure yPT without resonances. Let us assume only the leading

O(p?) Lagrangian
F2

There are only two possible Feynman diagrams that contribute.
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Figure 4.1: Contributing diagrams in pure xPT.

Helicity amplitudes

The results for the formfactors can be found in appendix. The amplitudes M?de(S, U;T) are
then

M8, UST) = (52 ;CUU ) (T1 — T + 3T5) + %n (4.6.2)
MBS U T) = —%(Tl — Ty +3T5) + 751(]5;;2]) Ty (4.6.3)
In O(p?) XPT we have Fy/(T) = —1 and the helicity amplitudes are
MEE(S,U,T) = (Ty ~ T+ 8T5) + ST (4.6.4)
MEE(S,U,T) = —gn (4.6.5)

Constraints

Now we apply the Froissart bound on the previous results of the helicity amplitudes. Taking
the limit S — oo, T' = konst

1
M8, T) = (Ty — Ty + 3T5) + O <§> (4.6.6)
abed [ Q. T 1
MEE (5;T) = _§T4 +0 I (4.6.7)

which means that the constraints coming from the Froissart bound are automatically satisfied.

For T = 0 we have

MA(S) = (T — Ty 4 3T5) + O (%) (4.6.8)
ME(S) =0 (4.6.9)

and this result also satisfies given constraints.

We can also easily see that the high energy constraints coming from OPE and the results

calculated in xPT up to O(p?) (see appendix C) are not compatible.
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4.7 Resonance contribution

In the following section we will study the contribution of vector resonances to the Compton-like
scattering. For simplicity, in the following we neglect the contribution from O(p*) and O(p%)
Goldstone boson Lagrangians because the corresponding coupling constants are usually assumed

to be small at the resonance scale.

Topology of graphs with resonances

Before starting to do the calculations in the concrete formalism we first draw all possible diagrams

with the vector resonance exchange that can appear. See figure 4.2.

Figure 4.2: Diagram topologies contributing resonance exchanges of Compton pion scattering

process.

Vector formalism

The interaction Lagrangian for vector resonances in the vector formalism up to O(p%) that is

important for this process has the form

£ == D0 fr) = DT )
+iay (VR foyl) + B (VP [up, x=1) + hv was (VA £7}) (4.7.1)

There are only four possible Feynman diagrams that contribute (see figure 4.3.).
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Figure 4.3: Contributing diagrams in the vector formalism (up to crossing).

Helicity amplitudes

For the vector formalism we have

fvgy T?
F2 T — M?

Fy(T)=—1+

The amplitudes calculated in this formalism read

abed(g 7.y = B HU) U-9),, 20(S-U)AM>+5+U),
Ml (S, U, T) = 25T (Tl T + 3T5) + 550 Ty 3F2(M2 = S)(M2 — U) (2T3 3T4)
(4.7.2)
2h3, (—6SM? — 6UM? + S2 + U2 + 10SU)
- SF2(M2 — §)(M2 — 1) (T + T — 3T5)
(4.7.3)

(S+7U) 4h2.(S + U — 2M?)

1
gbed :T) = —— (T} — Ty + 3T T. T, + Ty — 3T
M2 (S7Uﬂ ) SU( 1 2+3 5)+SU(S_U) 4+3F2(M2_S)(M2_U)( 1+ 2 3 5)
(4.7.4)
4h3 (S —U) Afvgv(S+U)
s — 9y —0) 2L Y mg g -
The helicity amplitudes are
2 o 2
MPA(S U T) = Ahy SU(S + U = 2M7) (T) + Ty — 3T5) (4.7.5)

S 3F2(M2 - S)(M2—U)

4h2.8U(S — U) fvgvUT(2S —T)

T
(2T5 — 3Ty) + Ty+ (Th — To + 3T5) + 5 T4

© 3F2(M2 - S)(M2—TU) F25(M2 —T) S
(4.7.6)
R T [2M?(25 +2U) — S — S(T + 9U))]
abed N B
M:I:$ (S,U,T) = 3E2(M? — §)(M2 — ) (Th + Ty — 3T5) (4.7.7)
4hiy, M?T (S — U) fegvT(S+U),, T
+ 3F2(M2 = S) (M2 —U) (213 — 3Ty) — WT4 + §T4 (4.7.8)
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High energy constraints

Taking the limit S — oo, T' = konst

abedy .y _ ) 8hY B 2fvgvT 0
MPE(S;T) = {3F2 (215 — 3Ty) — 7F2(T = MQ)T4 S+ 0(SY) (4.7.9)
abed [ Q. 8h2 1
M (S, T) 3F2 (Tl + 15 — 3T5) + 0O S (4.7.10)
For T' = 0 we obtain
abcd 8h2 0
M8y =0 <%> (4.7.12)

The Froissart bound is satisfied automatically without any additional constraints on the coupling

constants.

Application of the high energy constraints from OPE can be found in appendix C. Here
we can see that the constraints are very strict and cannot be nontrivially satisfied (without

including additional contact terms or other types of resonances).

Antisymmetric tensor formalism up to O(p?)

The interaction Lagrangian in the antisymmetric tensor formalism up to the order O(p*) has
the following form
iGy

ﬁg) <R‘uyf+;w> - 2\/*

=3 \f (B [y, wo]) (4.7.13)

Helicity amplitudes

As was presented in chapter 3 the vector formfactor calculated in the antisymmetric tensor

formalism is

Gy T
WIT)=-14+————. 4.7.14
V( ) + F2 T — M2 ( 7 )
The amplitudes in this formalism yield
2Fy G (S+70) (U-25)
abed . _ vavy
MPS,U;T) = — 202 (Th — Ty + 3T5) 55T (Ty — Ty + 3T5) + 55U Ty
1 (S+70) 4Fy Gy
abcd
;1) =— T —T: T Ty — T, (4.7.1

The helicity amplitudes are

FyGyU(25-T) T
abed vavy
MA(S U, T) = SO =T Ti+ (Ty = Ty +3T5) + ST (4.7.16)
FyGyT FyGyT? T
abcd viav vav
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R er ® ® P
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Figure 4.4: Contributing diagrams in antisymmetric tensor formalism (up to crossing). In
comparison with the vector formalism there is no diagram with the resonance exchange in S

and U channels.

High energy constraints

Taking the limit S — oo, T = konst in the expressions for the helicity amplitudes we obtain

MEPA (S Ty = — { %n}s +0(5Y (4.7.18)
MPed(S;T) = F;SAZZT(Tl — Ty 43T5) + O (%) (4.7.19)
For T' = 0 we obtain
Mebed(§) — 235; T4S + O(SY) (4.7.20)
MEE(S) =0 (4.7.21)

As a result, Froissart bound is satisfied without any additional coupling constant constraints. If
we add the analogue of the hy term from the vector formalism (as it was proposed in [27]) we
obtain the O(p°®) interaction term (with coupling cg which gives rise to the diagram with the
resonance exchange in S and U channels). Including this term the Froissart bound is explicitly

violated, as it will be seen in the next subsection.

The OPE high energy constraints cannot be again nontrivially satisfied (the proof can be
found in appendix C).

Antisymmetric tensor formalism to O(p°)

The resonance Lagrangian in the antisymmetric tensor formalism up to O(p%) is very rich,
many terms contribute to this process and the complete expressions for the formfactors shall

take plenty sheets of paper. Therefore, we will not investigate the high energy constraints
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coming from OPE. However, we know the result from O(p?) case where these constraints are
not nontrivially satisfied. The situation would not be better here and we hardly would obtain any
nontrivial equation between coupling constants. Also the expressions for the helicity amplitudes
are very long and we focus now only on the limits that can be used for applying the Froissart
bound.

vay Yoy

® X &9 ® P & ®
T Y Y

r f \ s

Figure 4.5: Contributing diagrams in antisymmetric tensor formalism.

Froissart bound

The helicity amplitudes in the limit S — oo and T' = 0 are

M T = (4.7.22)

_ [M2(—Cl +co +c5 + 267)2 + 2d3(d1 + dg)F‘%]
3E2M6

(Tl + 15 — 3T5)

n \/iFv(—Cl + o+ c5 + 2¢7)dy
3E2M5

(Ty 4 Ty — 6T3 + 9T — 3T5)}S3

1
— {W [T(—c1 + 2+ c5 + 2c7)* = 2M?(—c1 + 2 + ¢5 — 2¢5)*

T
—dg(dl + dg)F\%v] (Tl + 15 — 3T5) + W(_cl +co +c5 + 207)2(2T3 — 3T4)
3v/2d3 Py
— 3F27]?\)4,3V(Cl — C9 — Cj + 206)(T1 + T2 — 3T5)

V2Fy

+ e [(61 —Ccg —C5 + 266)M2d3 —4(—c1+cat+cs+ 267)Td4] (215 — 3Ty)
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F\% 4% 4% 2F‘2/A¥V
+ W(Ag + /\4 )(T2 - 2T5) + W(2Tl — 3Ty + 3T5)
F
- ZS\/_TZW [8A13 — 4A14 — 4X15 — 3(2A 16 + Aig +4M9)] T}
Fi
_ \/EF‘Q/M2 (—4)\14 —4X15 + 2 6 + A8 + 4)\19)T2
Fi
- \/ET‘;W [4A13 4+ 8A14 + 8Ai5 — 3(2A16 + Aig + 4A\19)] T5
d3(dy + d3)F2T
il 112;2 ;\”}6 VZ (2T + 2T + 6T — 9T, + 6T5)}S2 +0(S)
Mt:ztbchd(S; T) —_ (4723)
2T M? —c1 4+ co+c5+ 2cr 2 —Tds(dy + ds F2
— { [ ( 6F2M6) ( lid (Ty + Ty — 3T5)

2(— 2c7)T'dy Fy
_\/_( c1+cg +c5 +2c7)Tdy V(3T1+3T2_2T3—|—3T4—9T5)}52

3F2M5

2T
- {W [M2(—Cl +co+c5 — 266)2 + T(—Cl +c2+c5 + 267)2] (2T3 - 3T4)

2T Fy
B 5\3/1;2ng [(e1 — o — 5 + 2¢6)dsM? + 2(—c1 + ¢ + ¢5 + 2¢7)Tdy) (Ty + T — 3T5)
2T Fy
— 7;/1;2]\4‘2 [3(c1 — c2 — ¢5 + 2¢6) M?d3 — 2(—c1 + 2 + 5 + 2¢7)T'dy] (215 — 3Ty)
T
+ spaqpa(Gv — V2Tha1) [BMPF AV + 4V2M )7 + 3V2 Fg.,w} T,
(4.7.24)
T Tds(dy + d3)F?
+ m(‘l)\l? — Mg +4Aa1) Ty + 354}2]\;&) V.(4M? — T)(213 — 3Ty)
T2dy(d) + d3) Fy BT vv _\vv 0
- 6F2M6 (T1+T2_3T5)+W()\3 —)\4 )Tl S+O(S )
For T'= 0 we obtain
MEL(S) = (4.7.25)
M?(—c1 + ca + ¢5 + 2¢7)? + 2d3(dy + d3) F
: { [ 3F2M6 Y (Th + T3 — 3T5)

n V2Fy(—c1 + 2+ ¢5 + 2c7)dy
3F2)M5

(Ty + Ty — 6T3 + 9Ty — 3T5)}S3
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1
B { — (e + o5 — 26)2 (T + T3 — 3T3)
ds F
\3/1;23\4;/( — ¢5+ 2¢6) (3T + 313 — 275 + 3Ty — 97T5)
. 2RV
+pmEa | F A (T = 2T5) + S (27 — 3T+ 3T5)
Fy
- ?,\/_Tvéj\/ﬂ [BA13 = 4A1a — 4A15 = 3(2A16 + Ais + 4A19)] Th
E
B ﬁT‘gw(_4A14 — 415 +2X16 + Ais + 4A19) 1o
F
B \/_Fi‘;]w2 [4M13 + 8A14 + 815 — 3(2A16 + A1s + 4A19)| T5
ds(dy +d
I 1,47, 5 05

ML (S) = 0(8Y) (4.7.26)
In order to kill M4t ~ S2 terms we have to demand

—c1 +ca+c5+ 2c7 =0, (4.7.27)
dy +ds = 0. (4.7.28)

In order to kill Myt ~ S? terms we obtain the additional relations

cp—co—c5+2c =0, (4.7.29)
MWV =o, (4.7.30)
8A13 —4A14 — 4X15 — 3(2M\16 + A1g + 4A19)
2F
V2 V()\ + /Yy =0, (4.7.31)
2v/ 2 F;
—4 4 — 415 + 216 + Mg + 419 + \/_ v ()\ )\XV) =0. (4.7.32)

The constraints (4.7.27) - (4.7.29) are compatible with those found in the case of (VV P)

correlator. The other relations have no analogue in the previous calculations.

4.8 Summary of the chapter

In this chapter, we have investigated the process of Compton-like scattering (the four point
correlator (VV PP) with on-shell Goldstone bosons). In the beginning we have discussed the
properties of this process including all symmetries and the general form of the formfactor and

their transformation relations.
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Next, we have turned to the concrete computation of Feynman diagrams in RxT. The results
for the formfactors in the vector formalism up to O(p%) and the antisymmetric tensor formalism
up to O(p*) can be found in the appendix C. Then we have computed the helicity amplitudes
corresponding to these results, some fragments from the antisymmetric tensor formalism up
to O(p%) are also included. Then we have applied the OPE high energy constraints and the
Froissart bound. It is shown in appendix C that none of the results could non-trivially satisfy
the OPE constraints. The Froissart bound is automatically satisfied in the vector formalism and
in the antisymmetric tensor formalism up to O(p?), in the antisymmetric tensor formalism up

to O(p®) some additional constraints on coupling constants must be set.

In the end, we mention some possibilities how to satisfy the high energy constraints for the

case of this process.

e We can add some O(p%) local contact terms or higher order terms with vector resonances

that save the high energy behavior.

e Of course, the result is incomplete because we take into account only vector resonances.
Maybe if we would include all types of resonances then the result would be already com-

patible with the high energy constraints.



CHAPTER b

Renormalization of propagators

In this chapter we are focusing on the calculating loops in Resonance Chiral Theory. The
renormalization procedure can lead to the presence of special type of counterterms that are
responsible for the propagation of additional degrees of freedom. We will see that this really
happens in the antisymmetric tensor and in the first order formalisms, the vector formalism is

free of this feature (probably because we restrict only up to O(p®) Lagrangians).

First, we mention some basics of renormalization in RxyPT and then we focus on the very
interesting example of the resonance propagator. We will study in more details (than in chapter
2) the properties of the propagators in all three formalisms and we will find the reasons why
the new degrees of freedom, which were frozen at the tree level, could appear after the renor-
malization. Finally, we will do the complete renormalization procedure and we will find the
concrete forms of the counterterm couplings, i.e. the coefficients of the beta functions. This
will explicitly show that the new terms responsible for the propagation of the new degrees of

freedom are generated in the RyT.

5.1 Tools of renormalization procedure

Feynman integrals and counterterms

The detailed discussion of Feynman integrals is done in the appendix A. In the following we will

be interested only in the infinite parts of the Feynman integrals, so for our purpose we can write

M2
Ag(M?) = —)o 1.1
0( ) 167’(’2/\ (5 )
1
Bo(p®, Mi, M3) = A (5.1.2)

S 16m2°



74 Renormalization of propagators

with
2) d—4

T d—4
where v = 0.577... is the Euler constant and p is the renormalization scale.

Aoo

+ 95 —Indr — 1 (5.1.3)

These infinities will be canceled by the contribution of counterterm Lagrangian

La=) A0 (5.1.4)

where O are operators and the bare coupling constants A’ have the form
Ai =Tido + Al (1) (5.1.5)

and the finite part A} (p) renormalized at scale p satisfies the renormalization group equation

0
— Al (n) = —T;. 1.
g AT ) (5.1.6)

In the following we will calculate the infinite parts of A;, i.e. the constants I';.

Power counting

There are more types of power countings which can be used for our purpose:

e Chiral powercounting: This is a very similar way to that used in the Chiral Perturbation

Theory. The diagrams are hierarchized by the Weinberg formula

D=2+2L+) (Dy-2) (5.1.7)

\%
where Dy is the chiral order of the vertex. The resonance fields are of order R,V = O(1)
and their masses M = O(p). But we are not in the low energy region as in xPT and

therefore, this expansion is not physically meaningful.

e Expansion in 1/N¢: This is the theoretically well-founded solution based on the expansion
in the underlying theory - large No QCD. The index of the vertex dy (of order (’)(N‘C{V))

1S

V)
dy =1 "T —oW) (5.1.8)
where n(V) is the number of mesons in the vertex and OY) is the additional suppression

(O(V) = 0 at the leading order, O(Y) =1 at subleading etc.). We classify the graphs and

the counterterms using the parameter
1
- —1_FE_T— V)
d_EdeV_1 SE—L §Vj0 (5.1.9)

However, there is a problem with the terms with higher derivatives which are not sup-

pressed in this power counting.
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e Combined expansion: We will use it in the following.

We introduce the parameter § so that

p = &2 o 0pP)=0@P?) (5.1.10)
Nic — 5 - OWZ)=0@") (5.1.11)
(5.1.12)

The index of a given diagram is then
A==-D—d. (5.1.13)

Substituting for D and d we obtain the analogue of the Weinberg formula for the combined

power counting

A=1+L+» (AV) 1) (5.1.14)
14
with W
\4
AV) = %DV —1+ "T +oW). (5.1.15)

In the calculation we will use all three power countings described in this subsection. The
corresponding indices will be written under the diagrams. If we restrict ourselves with the
calculations up to the given order A, we have to include all the diagrams and counterterms
with A < Ajaz-

5.2 Propagator in vector formalism

General properties
Let us start with a Lagrangian of Proca field that can be written in the form
l 5 5 v 1 2
Ly = =7V V) + SMAVuVH) + Ling (5.2.1)

and introduce the usual longitudinal and transverse projectors

Pup

Pl = ;2” (5.2.2)
Pup

PL = guw-— ;2”. (5.2.3)

Without any additional assumption on the form and symmetries of the interaction part of the
Lagrangian L;,;, we can expect the following general form of the complete two-point 1PI Green

function

}1
S
S
I

(M? = p* + ST (p*)PL, + (M? + 5" (p*) PL, (5.2.4)
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which corresponds to the propagator

1 1
A = — ) oA — 1 5.2.5
v (P) P2 — M2 — ST (p2) m + M2 + SL(p2)” # ( )

The poles of such a propagator are situated at p* = M\2/ g Where M‘% is given by the solutions of

ME - M?* -xT(ME) = o, (5.2.6)
ME+xE(M2) = o. (5.2.7)
Assume (5.2.6) is satisfied for p? = M‘Q/ > 0, the poles of this type then correspond to spin-one
one particle poles,
Zy
p* — My

Z *
= o s e () +0()
Vo

Au(p) (—gw + M) +0(1) (5.2.8)

M2

where
1

Zy=— "
V1o YT(M2)

(5.2.9)

(N

and where ¢,/ (p) are the usual spin-one polarization vectors. The corresponding spin-one par-

ticle state |p, A, V') couples to the Proca field as
OV (0)[p, A, V) = |2y V28D (). (5.2.10)

At least one of these states is expected to be perturbative in the sense that its mass and coupling

to V,, can be written as

Mg = M?*+5ME (5.2.11)
Zy = 1462y, (5.2.12)

where 5M‘2/ and 07y are small corrections vanishing in the free field limit. In the same limit
7 (p?) = 0 and the other possible solutions of (5.2.6) corresponding to the additional spin-one
one particle poles decouple. There are also another type of possible poles given by (intrinsically
nonperturbative) solutions of (5.2.7). Suppose that the last condition is satisfied by p* = M2 >
0. Such a pole

Zs DPubv
A, (p) = = o(1 5.2.13
wl®) = 3z +OW (5.2.13)
where )
Zg = ——nv (5.2.14)
S'L(ME)

corresponds to the spin-zero one particle state |p,.S) which couples to V,, as

OV (0)[p, 5) =1

(5.2.15)
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For the free field case this scalar mode is frozen and does not propagate according to the special
form of the Proca field Lagrangian. Therefore, in the limit of the vanishing interaction the extra
scalar state decouples. Without any additional assumptions on the symmetries of the interaction

Lagrangian we can therefore expect appearance of the additional propagating degrees of freedom.

We see that the scalar mode will propagate only in the case X1 (p?) # 0 and when this
formfactor has explicit momentum dependence. The original free field Lagrangian has strictly
Y1(p?) = 0 but the counterterms necessary to be included in the renormalization procedure can

lead to the non-trivial momentum dependence.

It was shown in [E] that the propagating scalar degrees of freedom are either ghosts or

tachyons. The detailed study of the interpretation of this phenomenon is still missing.

One loop contribution

The interaction Lagrangian in the vector formalism up to O(p%) is for our purpose
v,
2v/2

The possible diagrams that contribute to the renormalization of vector resonance can be seen

N 1 N
<V“V[uu,u,,]> + —O’Vf-?aﬁuu({Va, VW/}UB> (5.2.16)

Ly = 5

in the picture 5.1. The infinite part of the result is then

N . —m— _ T
L 4 Lt T =
D=4 D=6
d=-1 d=-1
A=3 A=4

Figure 5.1: Vector propagator one loop diagrams in vector formalism.

ZT(pz) _ g%,pﬁ)\oo n 50\2/174)\00 _ 5M2p2a‘2,)\oo (5.2.17)
1672 F4 1872 F2 6m2F2 7 -

sEp?H = o. (5.2.18)

Restricting ourselves to A = 3 (D = 4) we obtain the complete result

50"2/]94)\00 5M2p20‘2/)\00
182 F2 6m2 F2

EpYH = 0 (5.2.20)

(5.2.19)

Counterterms

The renormalization procedure requires to include the counterterms which kill the infinities in

the results. The complete Lagrangian, which is necessary for the renormalization if we restrict
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ourselves to the order A = 3, has the form

L _5—Mz<v VHY (5.2.21)
+ Z—(VWV“”> - %((DMV“)2> (5.2.22)
X“<{DQ,Dﬁ}v (D%, DYV*) + 2Y2((D,, D}V, (D%, DIV
+ 22 XV4 2V DV, {D*, D°}V3) + Xy5(D?V, D*VH)

XV‘"’({DQ,DQ}W{D“ D*}V,) (5.2.23)

Only sums Xy = Xy + Xvs, X{, = Xvi1 + Xvo + Xvs + Xvs + Xys are relevant for our

calculations. The counterterms contribute to the self-energies as

Sh?) = 6M*+p’Zy +p'Xy, (5.2.24)
Sap®) = oM?—p’Yy +ptXy. (5.2.25)

Sum of the one loop contribution and the counterterms contribution must vanish
SPLp?) + L) =0 (5.2.26)

that leads to the relations

SM? = (6M?)"(p), (5.2.27)
Yo = Yiw), (5.2.28)
Xy = X, (5.2.29)
5M?0% Ao ,
502 Moo ,

We see that the infinite parts of Yy and X{, vanish. This means that we can fix the renormalized
couplings Y7, (1) = X{7 (1) = 0 independently on the scale. Consequently, no additional degrees

of freedom are generated in the vector formalism.

5.3 Propagator in antisymmetric tensor formalism

General properties

In this case the situation is quite analogous to the vector formalism. Let us write the Lagrangian

in the form

1 1
£ = —5(0uR") (@ Ryw)) + M (R R + Ligy. (5.3.1)
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and introduce the projectors

1

T T pT T pT

Hl“’aﬁ 5 (P,uaPl/,B - PVaP,uﬁ) (532)
1

Hﬁuaﬁ 5 (g/wcguﬁ - guag,uﬁ) - Hszaﬁ (533)

Again with completely general L;,; we can assume the following general form of the complete

two-point 1PI Green function

T () = %(MQ + 3T ()L, + %(MQ — 2+ L)L, (5.3.4)
implying the propagator of the form
Auvap(p) = —— 22 1105+ %Hwﬁ (5.3.5)
p?2 — M2 —XL(p?) M? + 37T (p?)
with the poles at p? = M‘z, 4 satisfying
ME—M?—2E(ME) = 0 (5.3.6)
M?*+xT(M3) = o. (5.3.7)

Assuming that the solution of (5.3.6) satisfies M‘z, > 0, the propagator behaves at this pole

according to

Zv  PuGvaPs — PvGuaps — (o < )
Ava = = L o(1
= M2 § ) (p) ) +0(1) (5.3.8)
where
Zy = _ (5.3.9)
VT IS (M2) o

(N

and the wave function wu,, (p) is expressed in terms of the spin-one polarization vectors as

uiy) (p) = Miv (P @) = poe () - (5.3.10)

The pole corresponds therefore to the spin-one state |p, A\, V') which couples to R, as
(01 R (0)|p, A, V) = | Zv[2uil) (p). (5.3.11)
Analogously to the Proca case, at lest one of these poles is expected to be perturbative, i.e.

ME = M?+5ME (5.3.12)
Zy = 1462y (5313)

with small corrections (5M‘2/ and §Zy vanishing in the free field limit; the other solutions decouple

in this limit.
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Provided there exists a solution of (5.3.7) for which M% > 0, we get at this pole

Z PupGvaPs — PudvsPa
Apvas(p) W (g/wcguﬁ + = ﬁMz = 1/)) + O(1)
- M2 Zw )*+0(1) (5.3.14)
where
7 —— (5.3.15)
_ 1 N
/(1)1\/) (p) = /(1)1\/) (p) = §Euuaﬁu(>\) 6(]?) (5316)

These poles correspond to the spin-one particle states |p, A\, A) with opposite intrinsic parity

which couple to the antisymmetric tensor field as
(O1 Ry (0)[p, A, A) = [ Zal w3 (). (5.3.17)

This degree of freedom is frozen in the free propagator due to the specific form of the free
Lagrangian and it decouples in the limit of the vanishing interaction. As in the Proca field case,

the additional degrees of freedom can be ghosts or tachyons.

One loop contribution

The Lagrangian contributing to the one loop correction of the propagator is

G
L =5 TR s ) + N (R D (")) + di s (D (R, B2
+ d3€pour (UM Dy R™  RPY) + di popia (u, {D* R, RP7 }) (5.3.18)
o - _ _m_ . . _ .
D=4 D:6}4 D:4,2,0
d=-1 d=- d=-1
A=3 A=4’3 A=37271

Figure 5.2: Tensor propagator one loop diagrams in antisymmetric tensor formalism.

The infinite parts of the result are
»T(p?) = —id (d +d)—57p4(d + dy)(3d3 — 5dy) (5.3.19)
187222 1\ T T T gz e T T BT o e

5p? M? 54
— Ty 21 (A ds + d) — 3(ds + da) (3ds — )] — 5 di(dy — ds - d4>}Aoo
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5\ V2pSGyv o piGE
sLp2y =) P21 1% 39
#") {87‘(2F4 8r2FT ' 16m2F" (5.3.20)
5M?p? 9 5M*
—— |(d3 + d4)(d ds —dy) —di| — —=di1(d1 —d3 —da) p Ao
t or2pe [(d3 + dy)(dy + 3d3 — dy) — di| Yo 1(dy — d3 — da)
Restricting ourselves just to A =3 (D = 4) we obtain
T 9 5p6 4
z =1 — ——5—5-5da(d3 + dy) — ——5—=5(d3 + d4)(3d3 — 5d 5.3.21
(r°) T Ve a(d3 + dy) 367r2F2( 3+ dy)(3d3 1) ( )
5p2 M? 5M*
- W [2d1(d1 + d3 + d4) - 3(d3 + d4)(3d3 - d4)] - Wdl (dl - d3 - d4) Aoo
4072 2,2 4
p*G S5M*=p SM
ZL(pQ) = {167‘(2;4 + 622 [(dg +dy)(dy + 3ds — dy) — d%] — Wdl(dl —d3 — d4)})\oo
(5.3.22)

Counterterms

We take into account all possible counterterms contributed to the diagrams up to the order

A = 3 and four derivatives'. The basis of these terms was already found in [13]

Ly = MR, R™), (5.3.23)
Ly = 2Zp(D"RapD"Ryy) + Yr(D" Ry DaR™), (5.3.24)
553) = XRl<D2R”V{D,,,DU}RW> + %<{DV,DQ}RW{DJ’DOC}RM>
X
+ 22 ({D7, D°}R*{D,, Do} Rys) + W1 (D* Ry, D’RM)
1%
D, D*} Ryu{Da, D} R™) (5.3.25)

Only the sums Xg = Xp1 + Xp2 + Xp3 and Wr = Wgy + Wpgy are relevant. Then the

counterterms contribute to the self-energies as

Sa@®) = 406M? +p*Yr +p*Whr), (5.3.26)
SL(?) = 4(6M? +p*Zr + p*YR + p*Xg + p'Wa). (5.3.27)

!The counterterms with six derivatives have not been classified yet.
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Killing the infinities to the order p* in momenta we demand
1

2 2 r

Xp = —preapr [208ds — 5da)(ds +do) F* +9GV] + Xk(w), (5.3.28)
5M? )

Zr = —gmape(dst+da)(ddy — 3ds +da) + Zg(p), (5.3.29)
5 T

Wr = (i (ds +da)(3ds — 5da) + Wr(p), (5.3.30)

502
Yo = gogs 2di(di+ds+ds) = 3(ds + da) (3ds — du)] + Yi(w), (5.3.31)
0 2 75M4 5 2\r
M= = orapeh(d = ds = du) + (OM7)" () (5.3.32)

The non-vanishing infinite parts of Yz and Wpg indicate the non-trivial running of the corre-
sponding renormalized couplings. This prevents us from fixing the finite parts of these couplings
to zero. Consequently, this leads to the appearance of spin-1 particles with opposite parity as

the propagating degrees of freedom in the antisymmetric tensor formalism.

5.4 Propagators in first order formalism

General properties

In this case, we write the relation for the Lagrangian

L= M(V,0,R") + %M2<VMV“> + %M%RWRM + Lins. (5.4.1)

For this case the matrix of inverse propagators has the following general form
P @wes = 5N+ ShaThes + (M + Sk (542)
P8 W = (M + 30y @) PL + (M + Sy (%) P, (5.4.3)
o (D)pwe = % (M + Zrv(p%)) Mwa (5.4.4)
MW = 5 (M +Sva(?) A, (5.4.5)

where Y gy (p?) = Sy r(p?) and

Mo = =N} = Ppgva — Pugpo (5.4.6)

This implies propagators

2 M? + 3T (p?)

A e = ————TI° o—  VV Ik 5.4.7
RR(p)u B M2+2£R(p2) ,ul/a6+ D(p2) prof3 ( )
1 M? 4+ ¥k (pz)

A L, = pPL RR pl 5.4.8

VV(p),U« M2+2‘[}v(p2) /,u/—i_ D(pz) nv ( )
.M + X gy (p?)

Arv(P)pva = _IWA/JVO{ (5.4.9)
M+ 2

Avi@op = —idTZVEE]) (5.4.10)

D)
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where
D(p?) = (M* + Skr(®)(M? + 2Ty (0%) — P2(M + Srv (0?)(M + Syr(p?).  (5.4.11)

Let us now investigate the structure of the poles. These are situated at p? = M‘z, Ag » being

solutions of

D(MZ) = 0 (5.4.12)
M? 43T (M%) = 0 (5.4.13)
M?+3b,(M2) = 0. (5.4.14)

Assuming M‘z, > 0, we get at this pole (as explained above)

ARr(P)vap = M2 Zuw )* +0(1) (5.4.15)
Avv(p)w = ZVV ZE )+ 0(1) (5.4.16)
ARy (D) jva = M2 Zuw (p)eD (p)* +0(1) (5.4.17)
AvR(P)apw = ZVR Zs )+ 0(1) (5.4.18)
where

Zrr = M Bi@va()Ma) (5.4.19)
Zyy = M ;?ﬁ%(y v) (5.4.20)
Zry = MJ;),E(};\;éya)MV = Zvr = M ;ZZ‘J/\%J)W )MV (5.4.21)

Note that, as a consequence of (5.4.14)
ZrrZvy = Zhy = Zip, (5.4.22)

(remember Sgy (p?) = Sy g(p?)), therefore the pole p> = MZ > 0 corresponds to the spin-one
one-particle state |p, A, V') which couples to the fields as

O1Rw(0)lp. A V) = | Zrr|"?u) () (5.4.23)
OV (O)lp, A V) = [Zvy|2N (p) (5.4.24)

and at least one of these states is expected to be perturbative as above; the others decouple
when the interactions is switched off. The other possible poles, p? = Mé and p? = Mi are
analogical to the spin-zero and spin-one (opposite parity) states mentioned in the previous two
subsections, they correspond to the modes which are frozen at the leading order and decouple
in the free field limit. Again, without further information, all the additional states can be also

ghosts or tachyons.
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One loop contribution

The contributing Lagrangian in the first order formalism is
Lry =——={(R"™[u,,u,]) +iXy (R D*(ubu”)) — —=(V*[u,, u, 5.4.25
v =S R )+ i (R D)) = 2 (7 0] (5.4.29

+ di€pao (Dgu’ {R™, R*PY) + d3e po i (u*{ Dy, R™ , RP7})
1
+@%WAWHWH%RWD+§MmmeHV%RWM@

The self-energies have the form
g%/—p6)\oo 50\2/114)\00 5M2p20‘2/)\00

T (.2 B
By (pY) 1672FY | 72n2 2 Um2F? (5-4.26)
Stv(p?) = 0. (5.4.27)
— — = m + L=+ — O
D=2 D=6
d=_1 d=-1
A=2 A=4

Figure 5.3: Vector propagator one loop diagrams in first order formalism.

Restricting ourselves to A = 3 (D = 4) and taking into account also counterterms contribu-

tions we obtain the result
50‘2,])4)\00 5M2p20‘2/)\00

Shv(e?) = - 4.2
) 22 F? 24n? F2 (5.4.28)
Stv(p?) = 0 (5.4.29)
The self-energies can be written as
SE R (p?) = By +d P (52— dery (ds + 3ds) + A(ds + dy)(3d5 — 5d
rr(P7) = T 1672 F20M 2 a(ds + 4)—m[0’v— oy (ds + 3ds) + 4(ds + dy)(3d3 — 4)]
5p> M3 ,
T 14472 F2 [24d1 (di +d3 +dy) —12(d3 + dy)(3d3 — dy) + 4oy (d3 + 9dy) — UV]
5M* )
422 [4(d1 +ov)(di —ds —dy) + JV] Aoo (5.4.30)
A2, p3A p5V2Gy A\ p*GE A 5oy dspiA
Srr(Y) =\ S apr - T - > 5.4.31
el { gn2F 872F1 | 1672F1 | 18q2F0 (5.4.31)
5M°p? o Bp2MZA
gz (ds  da)(dy 4 3ds — da) — ] + =50y (ov + 8ds)
5M* )
YR [4(d1 +oy)(dy —ds —dg) + O’V] })\OO
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5.4 Propagators in first order formalism

. ' ‘
@ - = =
D=6 4 D=3 D
=_1 d=- d=-1
A=43 A=5/72 A=3
+ :/\: [ S
D=2
d=-1
A=2

They ap-

Figure 5.4: Tensor propagator one loop diagrams in first order formalism.
pear only in mixed formalism. The thick line stands for both mixed propagators
— —

Restricting to A =3 (D = 4) we get
Sha(P?) = P y(dy+d 5.4.32
#rP") =\ ~ Tgprpp il + d) (5.432)
5p? 9
~ TaiergE Lo — 4oy (ds + 3ds) + 4(ds + da) (3ds — 5d)]
5p? M2 2
— i (241 (dy + ds o+ dy) — 12(ds + da) (35 — da) + dov(ds + 9da) — o]
5M4
DYy [4(d1 + ov)(dy — d3 — da) + 07/] })\oo
V20 M dee | D'GEA oy dzp*A
ZL 2) = _p VA21 0 V7o Va3 0o n
RalP’) { 182F1 T 1672F% | 1872FR (5.4.33)
SM7p ) BPMA
gz (ds +da)(dy 4 3ds — da) — di] + =55y (ov + 8ds)
5M4 )
DYy [4(dy + ov)(dy — d3 — dy) + o7 })\oo
The mixed self-energy has the form
(5.4.34)

4
b (20d30v F2 — 9M gy Gy)

Sav(p?) =4 — _
rv (%) 82721 144n2FAN

B 5Moy (oy — 4d3)p? B 5M30v(2dy — 2d3 — 2dy — ov) )
T2m2F2 2472 F2 o

{ gy Aa1p®




86 Renormalization of propagators

X
|/
:
:

'!—+:D—

D=2 D=3 D=75
d=-1 d=-1 d=-1
A=2 A=52 A=9/2 772

Figure 5.5: Mixed propagator one loop diagrams. The thick line stands for mixed propagator

Restricting to A = 5/2 (D = 3) we obtain

Sdsoyp*  BMoy (oy — 4ds)p?
2 30V P viov 3)P
By (p) _{ T 36m2F2M T9m2 2 (5:4.35)
5M30v(2dy — 2d3 — 2dy — o)
_ A 5.4.36
2472 F2 o ( )

Counterterms

In the first order formalism we have to include both types of counterterms from the vector and

the antisymmetric tensor formalisms. Moreover, we have also the mixing terms in this case,

csty, =8 + %) (5.4.37)
where
LYY = Zrv(Ru V™), (5.4.38)
N X A
£ = Xipv (DR D V™) + 22V (DR, DV ) (5.4.39)

Only the sum Xgpy = Xiry + Xory is relevant in the calculations. The contribution to the

self-energy are

Srv(p?) = —2Zpv + 20 X gy (5.4.40)

In the following we denote 5M‘2/ and 6M1,2;z the coupling constant standing by the renormalized
mass term of V# and R,,. If 5M‘2, #* 5M}22, this indicates the mass splitting of the resonance
fields.
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Matching of couplings in counterterms

Killing the infinities up to p* we get

5M30v(2dy — 2d3 — 2dy — o)

Zry = — 1R 2 + Z;%V(N)a (5.4.41)
_ 5Moy(oy — 4ds)p? .
Xpy = T 72 + Xgv (1), (5.4.42)
SMyr = (SMi)" (1), (5.4.43)
Yy =Yy (u), (5.4.44)
Xy = (Xy)" (W), (5.4.45)
SM%03 e,
_ 50‘2,)\00 ,
5M2/\OO 2 r
Zr = _W [12(d3 + d4)(4d1 — 3ds + d4) + oy + 4dv(5d3 + 9d4)] + ZR(,LL), (5.4.48)
Moo )
Xp =i [20(3d3 — 5dy)(ds + dy) F (5.4.49)
+500 F2 — 600y (ds + da) + 9G5 ] + X5 (1), (5.4.50)
5M*
M = oo [+ ov)(dh — ds — da) + 0] + (MRY (1) (5.4.51)
Y= M oyt dy +dy) (5.4.52)
R — 5767T2F2 1 1 3 4 ok
—12(d3 + d4)(3ds — da) + 4oy (ds + 9ds) — o] , (5.4.53)
— 5 2
Wg = Ty [0t — 4oy (ds + 3ds) + 4(ds + da)(3ds — 5da)] (5.4.54)

We have obtained not only the presence of spin-1 particles with opposite parity (that are
either tachyons or ghosts) but also the dynamical generation of the kinetic and the mass terms
for individual resonances V* and R*” where generally (5]\41[2z #* (5M‘2/. The interpretation of this

phenomenon is the task for future studies.

5.5 Summary of the chapter

In this chapter, we have discussed the question of the renormalization in Resonance Chiral
Theory and its application on the concrete example of the resonance propagators. First, we have
studied various possibilities of the power counting used in RxT and their disadvantages. Then we
have concentrated on the self-energies and the propagators of vector resonances calculated in all
three formalisms. Starting with the free field Lagrangians we have learned that at tree level only

physical particles are propagated. However, if we add some special terms into Lagrangian the
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other degrees of freedom, which were frozen at tree level, are now propagated too. Unfortunately,

these states have generally negative norm and refer to the appearance of ghosts in the spectrum.

We have done the one loop renormalization procedure restricting ourselves to the countert-
erms with maximally four derivatives and given A,,., and we have found the concrete forms of
the infinite parts of the counterterms couplings. In the vector formalism, no additional degrees
of freedom are generated because related coupling constants can be fixed to zero independently
on the renormalization scale. If we would enlarge the calculation up to the order O(p®), these
negative norm states would probably also appear. In the antisymmetric tensor and the first

order formalisms, this pathology is present already at the order O(p%).



CHAPTER O

Conclusion

Resonance Chiral Theory is an effective theory for QCD for the intermediate energy region
which interpolates between the Chiral Perturbation Theory (the limit for low energies) and
perturbative regime of QCD in the limit of large N¢ (at high energies). In the general case it
would include the infinite tower of resonances in order to fully describe the spectrum of QCD
with No — o0, but the relevant simplification for energies 1GeV < E < 2GeV takes into

account only the lightest resonance in each channel.

In this thesis, we have restricted ourselves to the role of the vector resonances in the RyT.
We have introduced two usual ways how to describe these particles - using the vector and the
antisymmetric tensor fields. Then we have studied their equivalence and we have proposed also
the third possibility that combines both previous - the first order formalism. It provides us with
a method how to obtain the general effective chiral Lagrangian where no additional terms must

be given by hand (which is not true for the vector and the antisymmetric tensor formalisms).

In chapter 3 and 4, we have done the calculation of concrete correlators together with their
formal properties and the high energy constraints. As a result, we have first found the relations
between resonance Lagrangian coupling constants and then after matching with yPT we have
obtained the saturation of LECs. However, the more complicated example of Compton-like
scattering indicates that in some situations the high energy constraints are very strict and
cannot be non-trivially satisfied. Probably these lapses could be corrected if either other types

of resonances or additional local contact terms would be added.

In chapter 5 we have found that one loop corrections to resonance propagators give rise to
the problems relating with the possible appearance of ghosts (or tachyons) in the theory. The
renormalization procedure in the antisymmetric tensor and the first order formalisms needs a

presence of the new kinetic terms that lead to states with negative norm. Generally, it can
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probably happen also in the vector formalism if we include also O(p®) Lagrangian terms.



APPENDIX A

Theoretical background

A.1 Notation

In order to simplify some long expressions we use the same short hand notation as in [A]. All
used fields transform under adjoint representation of SU(3)y. Using the normalisation of [11] we
have V,, = V#T where T* = \*/ V2 and T° = 1/4/3. The same is true about the antisymmetric
tensor fields and pseudoscalar fields, R, = R}, T and ¢ = ¢*T*" L. For sources v and p we
have p = p?T%/+/2 and v, = vﬁT“/\/i

The dot in brackets means the contraction of group and tensor indices, e.g.

(A-B) = A,B™, (A.1.1)
(V-K-V) = ViK™V (A.1.2)

For generic tensors we employ ” : 7 for a pair of contracted antisymmetric indices, i.e.
R:J=R,J" (A.1.3)

We also use the symbol V for an antisymmetric derivative of the vector field V, id. Vaw =
Daebryby . Dabvy/bn and W ofor a derivative of the antisymmetric tensor field W = Dab gbas,

A.2 Some remarks on SU(3)

The group SU(3) plays an important role in the concept of the Standard model, especially in the

theories of strong interactions. In sixties it was used to construct the model of the Eightfold way

!The pseudoscalar mesons transform as an octet so there is no term ¢°7°
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where the particles were organized into multiplets corresponding to irreducible representations
of this group. However, it was evident that this symmetry (flavour SU(3)) is broken due to mass
differences among the particles in the multiplets. The fundamental theory of strong interactions,
QCD, is based on the local SU(3)¢ and possesses chiral SU(3)r, x SU(3)g in the massless quark

limit. It is true only for massless quarks.

The element of the SU(3) group can be generally written in the form

8 a
U(©) = exp <—z’ Z @a%> (A.2.1)
a=1

with eight real numbers ©% and eight linearly independent so-called Gell-Mann matrices satis-

fying

A= A (A.2.2)
Tr(AAY) = 259 (A.2.3)
Tr(A\*) = 0. (A.2.4)

An explicit form of the Gell-Mann matrices is

010 0 — 0 1 0 0

AM=110 0}, =17 0 , A3=|0 —1 ,
0 00 0 0 0 0 0 O
0 01 0 0 —i 0 00

AM=10 0 0}, As=10 0 ) =10 0 11,
1 00 i 0 0 010
00 O . 10

A=10 0 —i], Ag = 3 01 0 (A.2.5)
0 ¢« O 0 0 -2

For our purpose we introduce the T matrices
re = X (A.2.6)

V2

Next we define structure constants of SU(3). The commutator of two 7”s matrices has the form
[T, T°) = V/2i fobeTe (A.2.7)
where f%¢ is totally antisymmetric object. The anticommutator is then
(T, T} = gaab + V/2d%eTe (A.2.8)
with d®¢ being totally symmetric. The reverse relations are

Fabe — /2Ty ([T“, Tb]TC) , o = \/2Tr ({T“, Tb}TC) (A.2.9)
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A.3 Feynman integrals

We use same convention as in [13]. To calculate loop integrals we use Passarino-Veltman reduc-
tions method. The divergencies of the integrals can be collected in the factor

2~
d—4
where vp = 0.577... is the Euler constant and p is the renormalization scale.

Moo =

Indr —1 (A.3.1)

The notation of corresponding Feynman integrals is then

dk? 1 M? M?
Ag(M?) = = 0o +1n — A3.2
o(M7) /i(27r)d k? — M? +ie 1672 {A i W } (4.3.2)
dk? 1
Bo(p*, M}, M3 ;/ A33
WMD) = [ oy G i~ R M i 432)
1 M? M? M? ]\42
= — |\ ! ! 2 In—2| + J(p*, M, M3
16712[ 22 v Ry R Ve MQHM (", M, M),
where the the finite function J(p?, M2, M2) stands for
1 ME— M3 ME+M3]. M
o )‘1/2(]) 7M17M22) (q2 + Al/z(p27M127M22))2 — (M12 — M22)2

In

p? (> = N2 (p?, ME, M3))? — (M} — M)

with A(z,y,2) = 22 + y% + 22 — 22y — 222 — 2y2. Some useful particular cases of By integrals

are:
Aoo
Bo(p*,0,0) = =25 + Bo(w? /), (A.3.5)
1 _
By(p*,0, M?) = 6.2 {A + ln—} J(p?,0, M?), (A.3.6)
Bo(p?, M?, M?) = _161 {)\ + ln— + 1} o(p?, M?), (A.3.7)
2
with the finite parts
1 P>
— — 1 oy +1
Bo(p*, M?) = J(p*, M* M?) = 2 — oyl A3
O(p ; ) J(p ; ; ) 167T2 oV ghtt on — 1 5 ( 3 9)
1 M2 p2
2
where oy = /1 — 4M? /p2.
The three-propagator Feynman integral is defined as
Co(q*, M}, M3, M3) = (A.3.11)

dk? 1
/ i2m)7 [(pr — k)2 — M2+ iel[(pz + k) — MZ + ie](k2 — MZ + ie)
where ¢ = p1 + po.
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A.4 OPE for Green functions

As was mentioned earlier, the interpolating fields for external sources in QCD are defined as

Vel(z) = G(!E)V“EQ(@’ (A.4.1)
b
P(y) = iﬁ(y)vs%q(y)- (A.4.2)

In OPE calculation we will use the propagator of quark fields

xHy
S(z) = 2772;4 (A.4.3)

(PP)
The operator product expansion for the (PP) correlator is

(O|T[P*(x) P*(0)]|0) = —%Tr{<0|i5(—:v)75T“ iS(2)y5T°|0)

+ (0[iS (=) T : G(0)q(x)v5T°|0)
+ (0] : g()q(0) : vsT*iS(z)v5T°|0)

+ 005700 TOu(e) s 26T0) | + O (A
Calculating Dirac traces the leading contribution of this expression can be written in the form

ab
(O[T [P" () P*(0)][0) = —;’;ST:EG +0 <%a> (A45)

(Vv)
The operator product expansion for the (VV') correlator is

(O|T[V2 @) V2(0)]]0) = —%TT{@IZS(—:U)WT“ iS () T|0)

+ (0[iS(—2)y" T : g(0)q(x)7"T?|0)
+ (0] : g(2)q(0) : YT iS ()" T"|0)

#0570 T 70a(o) :1°T0) | + O(a)  (A40)

Calculating Dirac traces the leading contribution of this expression can be written in the form

a 36% 2z,2, — g2’ 1
OIT[V&(z)V,2(0)]]0) = — 5 2 W%g“ +0 <Ea> (A.4.7)
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(VV P)

The operator product expansion then reads

OITIV#(@)V" ()P (010 01T (1) (2) (wT—bq) ) (17 750) 010

- (\/_52)3Tr{ - q(0)G(y) : YT iS(y — 2)y* TS (x)y°T¢
+iS(—y)y T iS(y — o)y T 1 q(0)g(x) : 7°T°
+iS(=2)Y*T S (x — y)y' T : (0)g(y) : 47T
+iS(=x) T - q(y)g(x) ATV ZS(y)’y5TC
+iS(—yT" :q(x)qly) : AT iS () T

where we use the fact that only terms with two contractions can contribute due to properties of

traces of Dirac matrices. Calculating it to the leading order we get
(OIT V@ (2)V>" (y)P*(0)]0)

BoFg Toys Toys Toyp 1
= 0 gabegnval o= A49
Gl € 2z —g)t + iyl + Az — g)’ + 809 ( )

with —ByFZ = (0[gq|0).

The OPE of Compton-like scattering is analogous to the case of (V'V') correlator calculated
to the next to leading order where the vacuum states are replaced by the external Goldsone

boson states.

The Fourier transformations of these results are presented in the main text are used for

determining of high energy constraints.
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Feynman rules

In this appendix we provide the complete list of used Feynman rules.

Factor in Feynman rules

The generating functional can be written in the form
Z[v,a,p,s] = Wlva.p,s] _ <0]Texp {Z/jv +ja+jp —js} ‘O> (B.0.1)

where Wv, a, s, p| is the generating functional of connected Green functions. By definition we

give for Green function

OTGv (zvy)--jv (za,)---ds(zp).-jp(xs,).-)|0)
= (—z')#”Jr7‘7£1’)+7‘7£“_#Si d . (iWTv,a,s,p])

)
v dp da T ds
So for each vertex we have the sign rule

7

m. (B.O.2)

sign =
Factor ¢ in numerator comes from ¢W. We can leave the factor in denominator just multiplying
the expression for the correlators by

sign of correlator = (B.0.3)

GHUTHD
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Chiral building blocks

In the concrete calculations it is neccesary to expand the usual chiral building blocks in terms

of fields, currents and densities and their derivatives. Generally we have the infinite number of

terms but for our purpose it is sufficient to take only few terms. By the definition

P2 P3

) )
= —— |~ 1+1 — - ) B.0.4
v <Z \/§F> "VBF  AF? 19 aFs (B.04)
ul = ex <—ii>~1—i (I) —(1)2 +1 > (B.0.5)
- P\ T"NeR) T T aE T A T ayars o
Then we can write for the chiral building blocks
w, = i(u(0, —ivy)u —u(d, —iv,)ul)
V2 V2i
~ _? u¢+?[vuv¢] 6\/7F3{¢, M¢} 3\/7F3 ( H¢)¢7 (B06)
1
r, = 3 {uT(GM — vy )u+ u(d, — z‘vu)}
) 1
~ 4F2 [¢7 M(b] “)u + m{vua ¢2}7 (BO?)
f+,ul/ = uf,ul/u]L +u fuuu
~ 2(0,v, — Oyvy) — 2i[vy, v] — 2F2 {0y — Oyvp, 6%} + 2F2{[vu,v,,] *}
1 1
+ﬁ¢(8uvu - 8uvu)¢ - ﬁ‘ﬁ[vua Uu]ﬁby (B-O-S)
f—,ul/ = ufuuuT_quuuu
V2i 2
~ T[¢7 a;ﬂ)u - 8VUM] + ? [¢7 [U/u UV]] ) (B09)
X+ = uTqu +uxTu
~ , L #3) — vy B.0.10
7 3fF3{p ¢°} \ngcb{p ¢t ( )
y— = ulyul —uyu
. 1B 2B
~ diBop — 5 {60} — Ty opd (B.0.11)
X—p = quDuqur + uDuXTu = VuX+ — §{X_,u“} (B.0.12)
~ 4iBym,p+ 4Bg[v,, pl, (B.0.13)
2V2B 2sz
Xou = T} - =, v p]}- (B.0.14)
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B.1 PT vertices

In some results we use following simply notation

4 4
Gl — 2dabedcde + gé‘abé‘cd — 2T5 + ng
1 1
Gola,bye,d) = =205+ (576% 4 §¢0™) — 2d™°d™ = — 2T} + T — 2T
Vertex 1: pp
pa pb
Y = —4iB2 [2Lg — 2L11 + L1y — Ha — cg1p?] 6% B.1.1
@@ = —4iBgj [2Lsg 11+ L2 2 — Co1p” | (B.1.1)
Vertex 2: vv
A
p @@ = 2i(Lyo + 2H; + 2co3p”) (> Gas — Papp)d™” (B.1.2)
Vertex 3: p¢
S
R
: . 4(Ly1 — L12)p?
: = iByF |1 — = 52 (B.1.3)
' b
Vertex 5: vo¢
P 2Lop® — 4L15(r? + ¢°
x@\,u,a :fabc(T‘ o Q)a{l + 9p F;Q( q )
q ]4 ﬁ r 4eggp — 8cgo(q - 1)p?
- - F2
CDb' d)c 9 2 _ 7'2
— fabc a% [Lg — 2C88p2 — 4090(q . T)] (B.1.4)

Vertex 4: vvg

p /9
B
: iNc

A = — g Casup'q A" (B.1.5)
A

o
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Vertex 5: vvgp (up to O(p?))

% q
V'”'aLp Wb

r f \s _ igaﬁ(facefbde + fadebeE) (B.1.6)

o @

B.2 Vector formalism

Vertex 1 : Vo

\ ,a
o W

= —ify 6" (p°Gua — Pay) (B.2.1)
Vu,b

Vertex 2 : Voo
yo.a

Py
_ v
r / \s T OR2
q)b'. ._q)c

F U0 r)sa — (- s)ral (B:2.2)

Vertex 3 : VV¢
PpC

|
’ Yy

. = —d“bceaguyr“(q —p)” (B.2.3)
PA \ F
\/u,a/\vﬁ,b

Vertex 4 : Vvo

V)
Ve
K 4\/§h abc o
apf N _ %d %€ 0po DT (B.2.4)

\/eb P°
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Feynman rules

Vertex 5 : Vpo

Vertex 6 : VVwv
»
q/4 \r

veb VB

Vertex 7 : Vugo

Vertex 8 : VVvo

p RV

1

b .
v Vﬁ,c ‘CDd

4\[5 AV20v Bo ate, (B.2.5)

= £ [gap(q — 7))y — Guals + GupTa) (B.2.6)

o2 fabedee{fV [ga,u(p 5) 7au(p : T) + Parlp — pasu]

+4gvras, — 4gvsaru}

2F2 facefbde{ll\/_av[gau(p 3) pasu]
+fv [ga,u(p : Q) - paQ,u] +4gv (ga,u(s : Q) - SQQM]}
2F2 fadefbce{él\/_av[gau(p 7‘) paru]

+fv [gau(p : Q) - paQu] + 4gv (gozu(r : Q) - Toqu]}

(B.2.7)
20
_ ?Veuaﬁp [fadedbce(q _ 7,,)p + Sp(facedbde _ fabedcde)]
(B.2.8)
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Vertex 9 : VVpo

~- a

P P

q/ _ jade bceQiHVBO ad bc4i"€VB0
VI

Vertex 10 : Voo

? q
V/J’aLp b

r4

= foabC [(p - Q)ag;w + (T - p)ugua - (T - Q)ugua] (B-2-10)

\/U,C

Vertex 11 : VVov

q
\/ﬂ’aLp Vv,b
. race rbde . rade rbce
rf \s =i f*f (g,uzx.gaﬁ - guﬁgua) +aif*cf (g;wgozﬁ - g,uaguﬁ)
Ve V8o - Qifabedee(guaguﬁ - guaguﬁ) (B'2'11)
Vertex 12 : Vovo
4v/2h 4v/2h
— fadedbce \/_ Ve/uxozaqo - fbdedace \/_ Ve;u/ozapg
F
4
_fabedcde \/_euuaa 5%
4\/_ Z5\/190

fadefbce (B212)
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B.3 Antisymmetric tensor formalism

Vertex 1 : Rv

~ .a
5 Vs
1
= §5ab(pagug — Pagua) (Fy — 2V2\5p?) (B.3.1)
Raﬁ,b
Vertex 2 : Rov
o Ja
.a | F
v Vv’b = <7V — \/§A¥27"2> fabc(guagl/ﬁ - guﬁgya) (B32)
r} e V2N £ (g (Pats — Pada) + 9us(dapy — (P - Q) gaw)

—Gua(Pvag — (0 - Q) 9v8) + 4u(P3Yar — Pasy)]

Raﬁ,a
” Sins = 43 F(rasp — m35a) (Gy — V2A5 %) (B.3.3)
o8 b
Vertex 4 : Rum
Lp
2v/2
s = M—\/F_d“bc [c1€a8p0D" 7T — ClE0BUaT (P - 1) (B.3.4)
qf \I‘ +C2€aopupprﬁra - C2eﬁapupprara - C5€aﬁu5r6(p ’ Q)
Rafib q) c +cs5 EaﬁpUQMPpTJ + CGGOzpauq,Bparp - Cﬁeﬁpcr,uQOcparp

_C7€aﬁ,ucrqa (p : T) + C7€aﬁ0pqpparu]

Vertex 5 : RR«w
idabc

rl :

P/ \q _dle’ﬂsﬁUTUTQ + d36a5707ﬂp5 - d36a6507ﬁp~/ + d3676aa7‘0(M

o

= [dlea@w?“o?“g — dleag(ggrgﬁy +dy 6750{07’07“5
_d3€7650rUQQ + d4€—y(5aaq0rﬁ - d4€'y(560qara + d4€aﬁ’yapart5

RaB.a v3,b o
R —d4€agson’T] (B.3.5)
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Vertex 6 : Rup
p 9
V“’aL pb
r4
Raﬁ,c
Vertex 7 : Rvup
\S pd
vHé Vv,b
d ~
P, A q
Raﬁ,c

Vertex 8 : RRp

\‘P

pa
q / \r
Raﬁ,b Ryé, c

Vertex 9 : RRv

yia
q / \r
Raﬁ,b RV(S, c

8v2
= —%d“bceagwpg (B.3.6)
8icy abe jcde
= —Wf d E/u/ozﬁ (BB?)
= —SngQdabceaﬁ-y(s (B.3.8)

1 abc
4f

{Qa(g&&q#’y - gﬁfygnd) - qﬁ(ga59u’y - ga’ygué)

— (91985 — 9uBY9as) + 75(98yGua — gavguﬁ)}

)\VV
_%fabc{pa(gﬁvgw — 9859u~) — P3(GarIus — GasGur)

+ Dy (gﬁég,ua - gaéguﬁ) — Ds (guagﬁ'y - ga'yguﬁ)}
(B.3.9)
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Feynman rules

Vertex 10 : RRvv

b fo

7

Re.aB R.v6

v
,

Vertex 11 : Rpo

p
/Y
Resb ¢

Vertex 13 : RRp¢

- a
P p

RBb Ryse ¢

i
=- Zf“cefbde{gua(gﬁagw — 98v9u5) — 9us(Gas Gy — ga'ygv5)}

)
- Zfbcefade{gua (96597;1 - gﬁ'ygué) — GvB (gozégﬁ/,u - gawgué)}

ixyY
+ %fabe}wde{gua (9859w — 987 9v6) — Gup (Gas 9w — gavgué)}
ZA¥V abe pcde
- Tf f 91/04(95597;1 - gﬁ’yQu&) - guﬁ(gach'yu - goz'yg,u5)
(B.3.10)
2v/2i By AV
= J]Eabc(raqg - Tﬁ‘]a) (B.3.11)
F
2v/2By Y.
:Tlo fadefbce(g;mﬂB - guﬁQa)
+fabef0de(g,u63a - g/wcsﬁ)] (B'3'12)
BNV

4
<2dadedbce + géddébC) (ga“/gﬁ(s _ ga6gﬁ'y) (B313)
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Vertex 14 : RR¢¢

i
=— ﬁ(r : 3){9047955 - ga5gﬁ’y} IMVG+ 20 Y Ga(a, ¢,b,d)]
~ 58 { a8 = 55970) 5,908 — 3500 |
Raﬁ a V5b
\/// x [AYV'Ga(a,b,c,d) + XYV Ga(a,b,d, ¢) + 2XY Y Ga(a, ¢,b,d)]
q .
(3
~ 5 {Sa(mgﬁa —75948) — $8(Igas — 7’5%)}
X [ VVGg(a, b,d,c) + AV Gy(a,b,c,d) + 2)\¥VG2(a, ¢, b, d)]
¢ ¢ ¢ d
- 5 f“bef“le{(s —1)alav985 — 4598+) — (s — 1) (01905 — @69ary)

— (5 = 1)y (Payss — PYas) + (s — 7)5(Pagsy — pﬁgay)}

(B.3.14)
Vertex 15 : Rvog
Fy
= 8F2 (pagﬂﬁ pﬁgl/«a) [Gl - 2G2 (CL, d7 b7 C)]
ace € GV aae ce
+ ﬁf fbd (Sﬁg,ua - Saguﬁ) + ﬁf d fb (rﬁgua - Ta.guﬁ)
2v2
- W(T : 3)(pa9uﬁ — PaYua) [)\KGl + )\}QGQ(CL, d, b, c)]
V2

- ﬁ{pﬁ(rasu + TuSa) — guﬁ[(p “8)ra + (p- T)Sa]}

x [Al3Ga(a,d,b,c) — A{,Ga(a,b,c,d) — A\[5Ga(a,b,d,c)]

+ L2 natrs+ i) — gl hra + (0715

X [AY3G2(G7 d> bv C) - AKLG2(&7 b> d7 C) - )‘}/5G2 (CL, bv & d)]
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Feynman rules

\/_A16 facefbde{ (
\/_)‘16 fadefbce{ (
+ %facefbde{(p + T) .S (pagug _ pﬁgua)}

2\/5)“/ ade gbce
+ 7217f d fb {(p+8) 'r(paguﬁ _pﬁgua)}

rapg — rgPa) + (P 8)|gua(p + 1) — gup(p + 1)a

5aPg — 54Pa) + (P 7)[Gua(p + 8)s — gus(p + S)a]}

\[Alg f“cefbde{(p +7) - p(89ua — Sagus) + (P + 1) u(Pssa — pasm}

\/_)‘ ade pbce
+ F218f d fb {(
+ 2\/52)‘}/‘:) facefbde{s (
2\/_)‘19 fadefbce{ (

f/\zl e [ (rasp — Tpsa) (g — T — 8)u + %
\/_1);221q Foe FOC (g ragus)
where
Gy = 2d%edet 4 géabécd = 2T + %Tl
Go(a,b,c,d) = _%5ab50d + (adgbe 4 gacgbd) _ gqabe gede

Vertex 16 : RRR

‘ ‘ RC,KA

_ 3\/52‘)\\/‘/\/

3 £ (GargBsGvm — G5 9NGw

P+ 3) °p (Tﬁgua - Toeg,uﬁ) + (p + S)M(pﬁroz - parﬁ)}
55D — (0 5)Gpa) — S5 — (0 3)guﬁ)}

TuPa — (p : T)gua) - Ta(Tupg - (p ’ T)guﬁ)}

facefbde(sﬁg,ua _ Saguﬁ)

(B.3.15)

1
—ng + Ty — 2715

— 90x9B59yA T 9as 989Ny

—Gar9Bv9sk + Vav987Iks T Gar9BvIrs — Jay9BrISA)

RaB.a RY6.b

(B.3.16)
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B.4 First order formalism

Vertex 1 : RVv

\P

yh-a
q , iM
/ \ = Tfabc(guagﬁa - guﬁgao)
Raﬁ,b \/o.c

Vertex 2 : RV oo

Raﬁ,a VU,b
p\//q
_ M abe pcde
I’/ \3 = _mf f [(8 - T)agﬁo - (8 - T)ﬁgao]
qj‘c ¢ d
Vertex 3 : RV¢
“hC
Moy e
PAY N\ =——5d "t nopr”
Raﬁ,a Vcr,b
Vertex 4 : RVvo
- ,a
P Vg
q/ T\ Z.MO-V ade jbce
ro = —Tf d eﬂaﬁo

Refb oo

(B.4.1)

(B.4.2)

(B.4.3)

(B.4.4)



ApPENDIX C

Compton scattering

In this appendix we propose some technical calculations that were not included in the main text

of thesis.

C.1 Basis of tensors

This gives 9 independent invariant tensors for general SU(N), we can choose the basis as

Tgbed  _ paby ey

Tghed = (TeTeTTY) & (1T (TPTe)

I A

T = ST THTE T - ST (T

Tgbed = <TaT0Tde>+<T“TdTbTC>+%<{T0,Tb}{TC,Td}>
_; <TaTc> <Tde> _ §<TaTd> <Tch>

Tl = LT T e T)

Tgel = (T T T

Tgbed = —_y(TOT°T T 4 (TTITbT*)
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or, in terms of invariant tensors 6%, f2¢ and d*°

Tlabcd — 5ab 5cd

T2a71§cd Y 5bd £ 5ad 5bc
Tgbcd — fabl fcdl

T5abcd — dabl dcdl

T6abcd — dacl dbdl + dbcl dadl
Tézbcd — dabl fcdl

Tézbcd — fabl dcdl

Tgabcd _ % < paclgbdi y gacl gbdl _ gadi gbel _ radl dbcl)

abed

For general SU(N) we the general result for G

(p,q,r;s) and Aﬁ?fd(p,q,r;s) have the given

forms

9
GZ?/Cd(p’ q,ris) = Z G“y(p, q,7; S)(Z)T;-ade
i=1
9
AZ?/Cd(p’ q,ris) = Z A (p,q,r; s)u)Tiade
i=1

For SU(3) we have the additional Cayley-Hamilton identity

0 = T%T°T° 4+ ToTeTb + TeTeTb + TPTeTe + TPTeT? + TeTbT®
—TNTPT) — T (TOT¢) — T¢(TTY) — (T*T*T¢) — (T*T°T")

that helps us to express Té’de in terms of other group structures

dabl dcdl — §5ab5cd + é(éadébc + 5a05bd) _ (dadl dbcl + dacl dbdl)‘
T6abcd — lTlabcd + 1T2abcd . Tézbcd
3 3

which reduces the number of independent group structures to eight. Moreover, the invariances
under C, P and T allow us to eliminate the structures T?de, Téled and Tgde. As a result we
have five independent group structures Ti“b“l, i =1,2,...5. In some cases we will use the short

notation T}/ = T2,
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C.2 Formfactors

ChPT contribution
The list of the formfactors up to O(p?) is following

i(S +U)

2 2 1_
A(p »q 757 U)l - 2SU ’ (021)
2 2 s i(S+U)
A(p »q 757 U)l - 2SU 9 (022)
Ap*, ¢* S, U)} =0, (C.2.3)
2 2 4 (U =9)
A(p »q 757 U)l - 2SU 9 (024)
2 2 5 3i(S+U)
A(p »q 757 U)l - 2SU . (025)
2 2 1 _ i
A(p 7q 757 U)2 - SU’ (026)
2 2 2 4
= —7%= 2.
A(p »q 757 U)Z SU’ (C 7)
A@p*,¢%,5,U)3 =0, (C.2.8)
2 2 4 i(S+U)
= — 2.
2 2 5 __ 3i
A", ¢°, 5, U)z = <57 (C.2.10)

Other formfactors vanish identically.

Vector formalism

A@p?,¢% 8, U)}

2ih% [6M?(S +U) — S? —U? — 105U — 2(2M? — S — U)(p* + ¢*)]
3F2(M2 — ) (M2 —U)
N ifv(M? —p?)q® [SU(2gv — fv +2V2ay) — (S + U)¢’gv]
2F2SU(M? — p2)(M? — ¢?)
N ifv(M? = ¢*)p? [SU(2gv — fv +2V2ay) — (S + U)pgv]
2F2SU(M? — p2)(M? — ¢?)
if‘%g%/p‘lq‘l(S +U) i(S+U)
2FAISU(M? — p?)(M?2 —¢q2) 25U

A@p?,¢%, S, U)i =

I (C.2.11)
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2ih3, [6M?(S+U) — > = U? — 105U — 2(2M?% — S — U)(p* + ¢*)]
3F2(M? — S)(M?2 —U)
| v = )¢ [(S + U)agy + SU(fv — 2gv — 2v/3ay)]
2F25U (M2 — p?)(M? — ¢2)
| v = ) [(S + D)y + SU(fv — 2gv — 2v/3ay )]
2F25U (M2 — p2)(M?2 — ¢2)
if2gipiqt(S +U) i(S+U)
2FLSU(M? — p?)(M2 — ¢?) ' 25U

A(p27 q27 57 U)% =

N (C.2.12)

4ih3, (S — U)(4M?* + S + U — 2p* — 2¢?)
2 2 3 _ Vv

2ih3 (S — U)(4M?* + S + U — 2p* — 2¢?)
2 2 4 _ vV
A(p7q7S7U)1_ F2(M2—S)(M2—U)

L Loy (S —U)p'e ifvgv(S =U) [(M? =p*)g" + (M* = ¢*)p"] (U= 9)
2FASU(M? — p?)(M?2 — ¢2) 2F2SU(M? — p?)(M? — ¢?) 25U
(C.2.14)

2ih3, [6M2(S + U) — §2 — U? — 105U — 2(2M? — S — U)(p* + ¢*)]
F2(M? = S) (M2 —U)

. 3ify (M? — p?)g? [—(S + U)g*gv + SU(~ fv + 2gv + 2v/2ay)]
2F2SU(M? — p2)(M? — ¢?)

. 3ify (M? — ¢)p? [—(S + U)p?gv + SU(— fv + 2gv + 2v/2av)]
2F2SU(M? — p?)(M? - ¢?)

 Bifdgp'dt(S+U)  Bi(S+U)

2FLSU (M2 — p?) (M2 — ¢2) 25U

AP, ¢, S, U); =

(C.2.15)

A2, ¢, S,U)}

4ih2,(2M? — S — U + p? + ¢2)
2 9 1 Ahy
A(paq 757U)2_ 3F2(M2—S)(M2—U)
ifvgy [(MZ - q2)p4 + (M2 _p2)q4] i if\%'g%/p4q4 + L (C.2.16)
F25U(M? = p%)(M? = ¢2) FISU(M? —p?)(M? —¢?) ~ SU -

A2 ¢%, S, U2 = 4ih%(2M? — S - U +p*+¢2)  ifvgv [(M? —¢*)p* + (M? — p?)q*]
) ) My 2 — -

3F2(M2 — 5)(M2 —U) F28U (M2 — p?)(M? — ¢°)
B ifgvpie A
FiSUM? — p?)(M2—¢?) _ SU (C-2.17)
8ihi [(S —U)*+ (2M? — S —U)(p* + ¢*
Ap?, ¢, S, U3 = - = [ S+ & + )] (C.2.18)

3F2(S — U)(M? — S)(M2 —U)
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4ih? [(S —U)?+ (2M?% = S —U)(p* + ¢*)]
F2(MZ— S (M2 —U)(S-U)
B i(S+U)p'a* fo gt
FA(M? —p2)(M? — ¢*)SU(S - U)
ifvgv [¢*(M? = p?) + p*(M? — ¢*)] (S +U)
F2(M? — p%)(M? — ¢*)SU(S - U)
Aifygy [pN(M? = %) + ¢"(M? = p?) + (M? = p*)(M? — ¢*)(S + U)]
F2(M? — p?)(M? — ¢*)SU(S —U)(M2+ S +U — p? — ¢?)
Tifv gy M? [p*(M? — ¢?) + ¢*(M? — p?)]
F2(M2 ) (M2 —@2)(S—U)(M2+S+U—p?—q?)
ifv(fv — 2\/§av) (M2 = ®)p* + (M* —p*)¢®]  i(S+TU)
2F2(M? — p?)(M? — ¢*)(S - U) SU(S —U)

A@p*,¢*,5,U); =

(C.2.19)

4ih% (2M2 — 8 — U + p? + ¢2) 3if¢gvp'et
F2(M? —8)(M? =) FA(M? = p?)(M? — ¢%)SU
3ifvgv [(M? — p?)q* + (M? — ¢*)p*] L 30
F2(M2 = p2) (M2 = ¢%)SU SU

A(p* ¢%, 5, U)3 =

(C.2.20)

A@p?,¢%, S, U)}

4ih% (2M? — S — U) ih% (S — U)2(p +¢%)
3F2(M?2 — S)(M? —U)  3F?(M?—8)(M?2 —U)p?q?
Vi (@M —p ) ifegvp* e
F2(M? —p*)(M? — ¢%)  FH(M? - p?)(M? — ¢?)

A(p®,q%,5,U)3 =

(C.2.21)

4ih2,(2M? — S - U) ih3 (S —U)*(p* + ¢%)
3F2(M2 — S)(M2 —U) = 3F2(M? — S)(M?2 — )p >
\/_zav(2M2 —p? - ¢?) _ Z'fz 92 p’q?
F2(M? — p?)(M? — ¢?)  F4(M? —p*)(M? - ¢?)

A%, ¢, 8, U)% =

(C.2.22)

2ih2 (S — U) [(S + U — 2M2)(p? + ¢?) — 4p*¢?]

3F2p2q2(M?2 — S) (M2 —U) (C.2.23)

A(p*, 4% S, U)3 =

ih2(S — U) [(S +U — 2M2)(p* + ¢%) — 4p?¢?]
F2p2q*(M? - S)(M? - U)
| ifv(fy = 2V2ay) [(M? — p*)¢* + (M? — ¢*)p”] (S - U)
8F2p2q2(M? — p?)(M? — ¢?)
_ifvgyMA(S = U) [(M? — p*)¢® + (M? — ¢*)p?]
AF?(M? — p?)(M? - qz)p2q2(M2 +S+U-p*—¢%)

A(p27 q27 Sa U)é = -

(C.2.24)

4ih% (S + U — 2M?) ih3 (S —U(p* + ¢%)
F2(M2 - 8)(M?2 —U) F2p22(M? — S)(M2 —U)
3V2ifyay (2M? — p* — ¢*) 3ifvgvp’e
(M2 -p)(M?—¢?)  FUMZ—p?)(M? - ¢?)

A@p?,¢% 8, U)3 =

(C.2.25)
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Ap?,¢%, S,U);

2ih%,(S + U)(p? + ¢?)

2 2 1
2 2 2 _ 2ihi (S +U)(0* + ¢°)
2 2 _ _ 2 2
AP 5. U = 4ih3, (2M?% — S = U)(S + U)(»* + ¢%) (C.2.28)

3F2p2q*(M? — S)(M? - U)(S - U)

2ih% (2M? — S —U)(S + U)(p? + ¢?)
N F2(M? — S)(M? - U)p*q®
2if2 g8 p*q?
TP =)0 = (5 - U)
ifv(fv —2v2av)(S +U) [(M? — ¢*)p? + (M? — p*)¢?]
4F2(M2 _ pZ)(M2 _ q2)(5 _ U)p2q2
ifvav (20%¢% [2M2(p? + ¢ — 2M?) — p*¢?] + (S + U)M? [M2(p* + ¢°) — 2p%¢?])
2PN~ ) — @R+ 510 77— )5 U)

A(p*, 4%, S, U); =

(C.2.29)

2ih% (S +U)(p? + ¢%)
2 2 5 v
A(p ) 757 U)4 - F2p2q2(M2 — S)(M2 — U) (0230)

Ap?.¢%, S, U);

4ih3 (p* — ¢%)
2 2 1 _ V
A(p »q 757 U)5 - 3F2p2q2(M2 — S)(M2 — U) (0231)

4ih, (p* — ¢?

2 2 2 _ 1% .2.32
A(p 4 757 U)S 3F2p2q2(M2 _ S)(M2 _ U) (C 3 )
8ihi (2M* — S —U)(p* — ¢*)

2 2 3 _ _
A(p , 4 ,S,U)5— 3F2p2q2(M2—S)(M2—U)(S_U)

(C.2.33)

| 4k (S + U = 2M3)(p® — ¢°)
F2(M? = S)(M? - U)(S — U)p*q?
ifv(fv — 2v2ay ) M?(p* — ¢%)
2F%(S — U)p*q*(M? — p?)(M? — ¢2)
B ifvgv M*(P* — ¢*)
F2(S = U)p*q*>(M? — p?)(M? — ¢*)(M? + S + U — p* — ¢)

A@p?, ¢, S,U)z =

+

(C.2.34)

4ih, (* — ¢°)

2 2 5 __
A(p q°, S, U)5 = F2p2q2(M2 —S)(M2 —U)

(C.2.35)
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Antisymmetric tensor formalism up to O(p*)

AP, ¢2, S, U)}

B iF2G2p2? (S + U)
2F4SU(M? — p2)(M? — ¢?)
iFy Gy [2SU(p? + ¢* — 2M?) — (S + U)(2p%¢* — M?p* — M?¢*)] (S +U)

A(p*, 4%, S, U)} =

- 2F2SU(M? — p?)(M? — ¢2) ~ sy (€230
2 2 2 _ iFEGYp** (S +U)
AW S U1 = sriguan - ) (2 - @)
Py Gy [2SU(p* +¢° = 2M7) — (S + U)(2p*¢° — M?p* — M*¢°)] LS5 +U) (©2.37
2F25U(M? — p?)(M? — ¢?) 28U o
Ap* % S, U)F =0 (C.2.38)
A(p2 2,8 U)éll _ Z‘F‘%G%/pch([] ) o iF‘%(pz )
o 2FYSU(M? — p?)(M? — ¢*)  2F?(M? —p?)(M? — ¢?)
iy Gy (U = S)(M?p* + M?¢* = 2p°¢*) (U = S) (C.2.39)
9F28U (M2 — p?) (M2 — ¢2) 2SU -
AR, 2. 8.0 = — 3iFEGEp** (S +U) 3iFy Gy (2M? — p? — ¢%)
P T T T EISU T =) - ) PR — ) (M — )
_ BiFyGy (S +U)(M?p* + M?¢* — 2p%¢*)  3i(S +U) (C.2.40)
2F2SU(M? — p?)(M? — ¢?) 25U o
A@p*, 4%, 8, U)}
13 222_M22_M22 'F2222 .
AR g2 S, UL = vGv(2p7q p @) | iFyGypig L L
F25U(M? — p?)(M? — ¢2) FASU(M? — @2)(M? — p?) ' SU
(C.2.41)
AW 2 S U2 = iFyGy (2p*q° — M?p® — M*¢*) iFpGypie? R
T F2SU (M2 — p2)(M?2 — ¢2) FASU(M?2 — ¢?) (M2 —p2)  SU
(C.2.42)

A@p* ¢*,5,U); =0 (C.2.43)
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A, ¢%, S, U)3 =

A@p?, 4%, 8,U)3 =

B iFEGY (S + U)pq?
FASU(M? — p?)(M? — ¢*)(S = U)

_ iFy Gy «
F2SU(M? — p?)(M? — @?)(M?+ S+ U —p?>—¢*)(S—-U)

{M4(S +U)(p* + ¢°) — 4AM*SU — M*(S + U)(p* + ¢*)

+ M2(p? + ¢*)(S? + U?) + 3M2SU (p? + ¢°) — AM*p?¢*(S + U)

(S +U
+ 20235 + U)(0* + %) — 2P (S* + U + SU) | — 4;5(;_ 3)
| 3iFy Gy (20%¢° — M%p® — M%) 3Ry GY PP e

FISUOR =) 0P =) | FSUGE - @) (M2~ 77)

Ap*, ¢*, S, U);

A@p?,¢% 8, U)5 =

A(p*,¢%, 8,U); =

iFZGY

FAM? = p?)(M? = ¢?)
iFEGE

FY(M? = p*)(M? — )

A(p*, 4%, S, U)} =

A(p27q27 Sa U)?’) = -

AP?*, ¢*, S, U)3 =0

iF2(p* + ¢*)(U = 5)
 8F?p2@2(M? — p?)(M? — ¢?)
iFy Gy (S — U)(M?*p? + M?q* — 2p*¢?)
AR (M2 - p?) (M2 — P2 (M2+ S+ U —p? — ¢2)
3iFLGE
- F4(M2 —p2)(M2 _ qz)

A@p?,¢%, 8,U)}

A(
A(

2

2

p*, ¢ S,U)}
p%.¢*, S, U)i

2P (S~ D)0 — AOF — PPPOr + 5+~ 2 - )

(C.2.44)

3t
SU
(C.2.45)

(C.2.46)

(C.2.47)

(C.2.48)

(C.2.49)

(C.2.50)

(C.2.51)
(C.2.52)
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A@p?,¢%, S, UL

A@?, ¢% S, U)F = A(p*,¢%, S, U)% = AW, %, S, U)3 = A, ¢*, S, U)3 = 0 (C.2.53)
2 2 4 _ i(p® — ¢*)F
A(p 45, S, U)5 - 2F2(S — U)p2q2(M2 _ q2)(M2 _p2)
iM?Fy Gy (v* — ¢°)

T OpEOr - P OE - 0510 ) Y
C.3 Application of high energy constraints
The following asymptotical behaviour of formfactors for ¢ £ 4
; 1
2 2 . 7 1
A(p , 4 757 U7 T)2 = O F (032)
- 1
; 1
2 2 . 7 1
A(p ,q 757 U7 T)5 = O V (035)
while for others
A(p*, ¢, 8, U;T)E = O (%) (C.3.6)
1
AP, 3,8, U;T)s = O <ﬁ> (C.3.7)
1
1
Ap*, ¢, S, U;T); = O (F) (C.3.9)
AP, 3,8, UTE = 0O (%) (C.3.10)

The results are compared with the OPE constraints (4.5.2). Therefore we write the form-

factors A(p?,¢%, S, U; T); in terms of the kinematic values X =p+¢q, A =1 —s.
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ChPT contribution O(p?)

43 1
ANDP? N2, 8, U); = T2 +0 <F> (C.3.11)
AN NE SUY = -2 oL (C.3.12)
’ » 1 122 24
ANP X¢, 8. U) =0, (C:3.13)
8i(k -2 1
A(A2p27)\2q2757 lj)zll = - é4A3 ) + O <ﬁ> 9 (0314)
A2 22, 8,0 = <2 L oL (C.3.15)
b, q 9, 1 — 22)\2 )\4 e
167 1
AN NG S U)y = —5iq + O (F) ) (C.3.16)
2.2 \2 2 o 161 1
A(Np*, N\q ’S’U)2_E4/\4+O ) (C.3.17)
A()\2p2’/\2q2’s’ U)% =0, (0318)
81 1
2.2 12,2 4_ _
A()‘ p 7/\ q 757 U)Z - (E . k)22/\3 +0 <)\5> ’ (0319)
AN NGRS U = -2 (L (C.3.20)
P, q,9, 2 24)\4 )\6 : o
Vector formalism
2 02 ¥
AP X%, 8,U)] = —Lﬁﬁl X’ (C.3.21)
{8”1%/ . ifv(fy — 2v2av) K 2% (3k* + 8M? — 2A?) } Lo <i>
3F4 2 AF4 A2
2 9 52
AN NP, 8, U)7 = AV Z‘%E A (C.3.22)
8ihi, ifv(fv —2V2ay) Ll vav (3K + 8M? — 2A%) Lot
3r4 F2 AF? A2

32ih% (k- %) 1
Ape e syt = - ZEE ) o (). (€3.23)
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118
k-2
A% N2, S, U)s = %A (C.3.24)
16ih% (k- %) L1 vov (k- X)(K* +4M> — A?)  difygy(k-%) L, o[l
F252 Fiy2 Fiy2 A A3
22
A%, N2, S, U)? = —31f4 ;Z A2 (C.3.25)
) 8ing 3zfvgv(3k72 +8M? —2A%)  Bifv(fy —2v2ay) Lo 1
F?2 AF* F?2 22
AP S U = MV o (L C.3.26
( q-, )2 = TR + 2 (C.3.26)
AN, 022, 8, U gy | o (1L C.3.27
( q, )2 - 4 + ﬁ ( . )
32ih3, 1
2.2 2 2 _
AN D% N2, 8,U)3 = 731?2(1@ SIE +0 <A3> , (C.3.28)
2.2 12 2 4 i\Q/Q%/(k‘E)
_16ihy ifygv (B2 —2MP + A%) ifv(fy = 2avy)
F2(k-%)  F2(k-%)(M2— A2) F2(k - %)
ifgy (3K +8M% —2A%) | 1 Lot
2F4(k - %) A X3 )

3if2g? 1
AN N, 8,U)5 = =+ 0 ( 33 (C.3.30)
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A(A2p2 /\2q2 s, U) vagv

T (C.3.31)
N Sifv(vV2av F? + M?fygy)  32ihi, | 1 oL
F4y2 3F2%2 (A2 M
s r2 2
A2 N 8, U) = IV (C3.32)
) 8ifv(V2av F? + M? fyg}) N 32iny | 1 Lo 1
Fix2 3F2%2 [ X2
128ih3, (k - ©)(k* — 4M? + 3A2 1
2,2 2 2
AN P2 N22, S, U)3 = SF2S0 </\—> (C.3.33)
ANP* X%, 8, U)3 = (C.3.34)
S ifvgy (k- D) - 2M% + A?) L difv(fv = 2v2av)(k-3%) | 1 oL
F234(M2 — A?) 234 A3 A5/
3
AN N2, 8,U)5 = ”;va (C.3.35)
32ih%  24ify (V2ay F2+ M2 fygd) | 1 1
* {F222)\2 * FAy2 FERR ST
128ih? 1
2.2 2 2 1 _ V
128ih? 1
2,2 2 2 2 V

128ih2
AN, N2, S, U)} = — 128y

128ih%, (3A2 + 4k? + 4M?)

24 fv gV

2.2 42 2
AN P? N2, S, U); = Filk- )N

3F2(l<: SEL)D2N3

dify(fv —2v2av)

3F2(k - %)%iNs

difygy (K> — 2M* + A?)

N 64ih3, N
Fi(k-x)x?

F2(k - %)%2

F2(k - %)x2(M? — A?)

16iM2 f2 g% 1
M) )\3 +0 ()\5)
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ANp*, X%, S, U); = ;22821?; < > (C.3.40)
AN 2 N2, S,U)E = 102;;52537 2 +0 ( > (C.3.41)
A2, 022, 8, U2 = ngfzﬁv %o ( > (C.3.42)
A2 22, 5, U8 = 10;;{2}:22%”'“ +0 (%) , (C.3.43)
AN D A2, S, UYL = 51?;;2§Af Lo ( o > ,
ANP N, 5, U)3 = 102‘;32;8 N ) o <%> (C.3.44)
Antisymmetric tensor formalism

ANP*, N¢?,S,U)y = Féz 2 (FPGy = FY) + 0 < 4> (C.3.45)
AND? A28, U)2 = F4;2 v (FPGY — <i4> (C.3.46)
ANp*, N¢%,8,U)F =0, (C.3.47)

A2 V228, U = { - 81(/;12) SiFl‘iél;lA) SZF‘%FGE/E(f D 162FVFczgik %) }%
40 ( ;5> (C.3.48)
AR N S, U)] = i o (G — FY) + 0 <%) , (C.3.49)
AN N¢2,8,U)% = {% (F2GY — F') - 732;%? }% +0 (% : (C.3.50)
AN A2q2.5, U3 = —{% (F2G% — F*) - 32}@;? }% +0 (%) , (C.3.51)
AN 2, A28, U)3 =0, (C.3.52)
ANP?,N¢%, 8, U); = G Z;ZE{ T (C.3.53)

" {42.52(6/?%22_2(21\4]\422—_32) " F2(AZ‘F§)22 B F4(k?i2)22 (FoGy = 1) }% o <%> |

481 96 Fy Gy | 1 1
AN 2 X232, 8,U)5 = {F424 (F2G% — F*) - W}F +0 <—> , (C.3.54)
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AN N2 S, U)% =

AN P2 N2 ,8,U)% =

1(stV(;2
TRz >\

161FVG2

SRRz
AP, NP S, U)3 =

8iFy Gy (k- X)
F254(M2? — A2))3
{ 16iF2 (k- %)

ANp2 N2, U)5 =

236 F236(M2 — A2?)
96i F2 G (A% + 4M?)
F4%.6)6

482G}

2.2 2,2
A(Np*, A q SU) IS

ANDP* N5, U)) = ANp* X%, 5,U);

= ANp*, N2, 5, U)} = ANp* N2, 5,U)f =

8iFy Gy 1
P20k sys2(2 — A O </\5>
AN P2 A28, U)E = AN2?, N3P, S, U2

= AN N2g2, S, U)3 = AN%?, \2¢2, 8, U)3
AN 2 \2q2,S,U)s =

ANp2 X228, U} =

: . 2 2
16iFy Gy (k- £)(2M? + A )}i+o< 1

128iFy Gy (A - k) (k? — 2M? + A?)

F2k228 F2k228(A2 _

{ 128iFR(A k)
M?)

=0,

(C.3.55)

(C.3.56)
(C.3.57)

(C.3.58)

(C.3.59)

(C.3.60)

(C.3.61)

(C.3.62)
(C.3.63)
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