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Introduction

Chiral Perturbation Theory (χPT) [1, 2, 3, 4, 5] is an effective theory for strong interactions and

describes the dynamics of the lightest hadrons and their interactions at low energies. Underlying

theory, Quantum chromodynamics, is formulated in terms of quarks and gluons as its degrees of

freedom. The process of spontaneous symmetry breaking gives rise to the octet of the Goldstone

bosons. In χPT we identify these Goldstone bosons (or pseudogoldstone bosons when the quark

masses are taken into account) with the octet of the lightest hadrons, i.e. with the octet of the

pseudoscalar mesons (π0, π±,K±, . . . ). In the low energy region (under some scale Λ that is

typically Λ ≈ 1GeV, the approximate mass of nongoldstone particles) these degrees of freedom

dominate and they can be assumed as the only effective hadronic degrees of freedom.

χPT is formulated as a perturbative theory in terms of the small external momentum p/Λ≪
Λ1. This is a well-founded approach because Goldstone bosons interact weakly at small energies

and therefore, the Lagrangian of χPT can be then written in the form: Lχ = L2 + L4 + . . .

where Ln = O(pn). Weinberg formula [1] provides us with the consistent power counting, i.e.

the rule which operators should be used when calculating concrete tree level or loop diagrams

up to a given order.

The Lagrangian of χPT contains a set of coupling constants (called LEC - low energy con-

stants)2 that describe not only the interactions of the lightest hadrons but also effectively include

the contributions of the heavy degrees of freedom (resonances). For energies p ≈ Λ, χPT looses

its convergence and it is necessary to introduce the phenomenological Lagrangians based on the

large NC QCD that describe the direct interactions of resonances. Of course, when integrat-

ing out these heavier states and coming back to low energies we reestablish the original χPT

Lagrangian. This can help us to learn how the χPT coupling constants are saturated by the

interactions of resonances. Restricting ourselves only to the lightest resonances in each channel

we introduce the Resonance chiral theory (RχT)[6, 7]. Matching with experiments can give us

1In the massive case we do the expansion also in the quark masses which are of the second order, mq = O(p2)
2For O(p2) we have 2 constants, for O(p4) 14 constants and for O(p6) approximately 100 constants
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the predictions of the values of LEC [8]. RχT has not been yet formulated as a closed theory,

despite a considerable progress has already been done [9, 10, 11, 12].

This thesis makes a simplification of RχT to the case of one type of resonances, vector

resonances 1−−, but the general case does not principally differ from it. Our contributions to

the study of RχT can be divide in several areas that will be discussed in the following chapters.

1. The different Lagrangian formalisms for description of (vector) resonances are not fully

equivalent. The contributions to the effective chiral Lagrangian start at different orders in

vector and antisymmetric tensor formalisms. This problem is briefly discussed in chapter

2. The detailed version can be found in article [A] and some fragments in [B] and [C].

2. There is no complete study of high energy constraints and their applications to various

correlators. The discussion of two and three point Green functions is proposed in chapter 3.

Moreover, we have also studied the more difficult example of four point correlator 〈V V PP 〉
and Compton-like scattering. The results can be found in chapter 4 and in appendix C.

The detailed study will appear in [E].

3. Quantum loops in RχPT were briefly studied in [13, 14] but with the simplest Lagrangian

terms only. In chapter 5 can be found the systematic study of the renormalization of

resonance propagators and its interesting consequences. Complete version will be published

in article [D].

Formally, this thesis is segmented in the following way. In chapter 1 it is briefly described

the Chiral Perturbation Theory and its connection with QCD. Chapter 2 is focused on the

basis of Resonance Chiral Theory, the way how to describe resonances in the framework of

effective theories for QCD. Next chapters provide with explicit calculations of some processes

together with the interpretation of the results that can help us to study the formal properties

of the Resonance Chiral Theory. In chapter 3 we study the two point and the three point

Green functions, in chapter 4 there are proposed the calculations of Compton-like scattering

and in chapter 5 the one loop corrections to resonance propagators. Some technical tools and

complementary results can be found in appendices.



CHAPTER 1

Introduction to Chiral Perturbation Theory

In the first chapter we want to describe briefly the motivation that leads to the construction of

Chiral Perturbation Theory, the effective theory for QCD at low energies.

First, we discuss the realization of symmetries in quantum field theory and then we formulate

Goldstone theorem that connects the spontaneously symmetry breaking and the presence of

Goldstone bosos in the spectrum. Next, we concentrate on the case of QCD, the gauge theory for

strong interactions, and we mention some of its formal properties. We write SU(3)C invariant

Lagrangian and we focus only on the light quark sector with massless quarks u, d, s. The

Lagrangian then possesses the additional flavor symmetry U(3)L × U(3)R which is broken on

the quantum level to SU(3)L × SU(3)R × U(1)V (the axial symmetry U(1) is not present).

We also comment some features of chiral Ward identities as the relations between various

Green functions that represent the symmetry properties of the Lagrangian on the quantum

level. In order to incorporate all Ward identities we introduce the external sources (currents

and densities) into the Lagrangian. The Lagrangian L = L0
QCD+Lext is then invariant under the

local chiral symmetry group SU(3)L×SU(3)R×U(1)V . The external sources are coupled on the

interpolating fields and they are often used to introduce other interactions (e.g. electroweak,. . . )

or the quark mass matrix into the massless QCD.

Furthermore, we discuss the effect of symmetry breaking in QCD. The explicit symmetry

breaking is provided by the introduction of the quark mass matrix. Consequently, the flavor

symmetry is then completely destroyed in the general case. In QCD, there exists an order

parameter and therefore, the chiral symmetry is also spontaneously broken to the subgroup

SU(3)V . According to Goldstone theorem, this phenomenon leads to the existence of 8 massless

Goldstone bosons in the spectrum of QCD.

In Chiral Perturbation Theory, these particles are identified with an octet of pseudoscalar



1.1 Symmetries in QFT 7

mesons which are the lightest degrees of freedom in the hadronic spectrum. We formulate χPT

as a perturbation theory based on the symmetry properties of QCD with an external momentum

p as an expansion parameter. The connection between χPT and QCD can also be expressed as

the equality of generating functionals after both are expanded in terms of p. Theoretically, we

should express the coupling constants in ChPT Lagrangian in terms of QCD parameters but

practically, this is impossible to do.

1.1 Symmetries in QFT

Let us assume that the Lagrangian of the system is invariant under the symmetry group G

with the conserved currents Ja
µ(x). There are two possible ways how to realize this symmetry:

Wigner-Weyl realization and Nambu-Goldstone realization.

Wigner-Weyl realization

This situation occurs when not only the Lagrangian but also the vacuum is invariant under the

action of symmetry group G. Its elements can be represented by means of unitary operators

U = exp (−iαaQa) , a = 1, . . . n (1.1.1)

where n is the dimension of the group generated by the charges Qa,

Qa =

∫
d3xJa

0 (x) (1.1.2)

which commute with the Hamiltonian, [H,Qa]=0. For the vacuum we have

U |0〉 = |0〉 → Qa|0〉 = 0. (1.1.3)

Because the generators of symmetry group commute with Hamiltonian, the energy eigenstates

are degenerate and they form the multiplets with the same energies. The number of states then

relates to the dimension of a representation of the group G.

Nambu-Goldstone realization

If the vacuum is not invariant under the action of elements of G, the situation is different. We

can then divide the generators into two parts Qa = (H i,Xj) where

H i|0〉 = 0, Xj |0〉 6= 0 (1.1.4)

The generators H i form the subgroup H (little group) of the symmetry group G and the real-

ization is of Wigner-Weyl type. This is no longer possible for the generators Xj . Let us denote

the energy of the vacuum E0, H|0〉 = E0|0〉. Then the states Xj |0〉 have the same energy,

H(Xj |0〉) = XjH|0〉 = E0(X
j |0〉 (1.1.5)
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and therefore, the vacuum is degenerate. But the cluster decomposition theorem (see for example

[18]) indicates that the vacuum must be non-degenerate. Moreover, the states Xj |E〉 are not

well defined on the Hilbert space and the corresponding multiplets are missing in the physical

spectrum.

Goldstone theorem

The spontaneously broken symmetry relates very closely to the spectrum of the theory. Gold-

stone theorem claims:

If the Lagrangian is invariant under the symmetry of the continuous group G and the vacuum

is invariant only under the symmetry of continuous group H ⊂ G, then there appear n massless

scalar particles in the spectrum, where n = dimG− dimH.

Another formulation of Goldstone theorem says that for every generator of the symmetry

group Qa for which there exists an operator O such that

〈0|[Qa,O]|0〉 6= 0, (1.1.6)

there appears in the spectrum one independent massless state |φa〉 with

〈0|Ja
0 (0)|φa〉〈φa|O|0〉 6= 0 (1.1.7)

where Ja
0 (0) is the zero component of the conserved current. We call the quantity δaO =

[Qa,O] the order parameter. Its non-vanishing vacuum expectation value leads to spontaneously

symmetry breaking and (according to Goldstone theorem) to the existence of the Goldstone

bosons.

1.2 Quantum chromodynamics

Quantum chromodynamics (QCD) is the quantum field theory of strong interactions. It is

based on SU(3)C color gauge symmetry and describes quarks and gluons as its fundamental

degrees of freedom. However, quarks have been never observed as free asymptotic states, only

their composite particles are in the physical spectrum. Regardless, we believe that QCD is the

fundamental theory and it is principally possible to use it for description of the behavior of all

strongly interacting hadrons.

QCD Lagrangian

As was said QCD describes quarks and gluons as their fundamental degrees of freedom. We

introduce the quark colour triplet as the basic building block

qf =




qr
f

qg
f

qb
f


 (1.2.1)
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where f stands for flavour of the quark triplet and upper index is the color one (r - red, g -

green, b - blue). This triplet transforms as

qf → U(x)qf (1.2.2)

where U(x) stands for an element of SU(3)C color group. This means that each flavor triplet

transforms separately in the same way as others. The SU(3)C invariant quark Lagrangian can

be written in the form

Lq =
∑

f

qf (iγµDµ −mf )qf (1.2.3)

where Dµ is the covariant derivative such that Dµqf transforms as the triplet too.

Dµqf = ∂µqf − igAµ(x)qf , (1.2.4)

with Aµ(x), the octet of SU(3)C gauge fields

Aµ(x) =

8∑

a=1

λa

2
Aa

µ(x). (1.2.5)

that transform as

Aµ(x) 7→ U(x)Aµ(x)U †(x)− i

g
∂µU(x)U †(x) (1.2.6)

The gauge particles for QCD, gluons, mediate the interactions between quarks. The construction

of an invariant object made of gluon fields leads to the introduction of the nonabelian stress

tensor

Ga
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν (1.2.7)

with the transformation property

Gµν → U(x)GµνU †(x) (1.2.8)

The only nontrivial scalar (dim ≤ 4), which can be made from given objects, is the contraction

of two stress tensors. The complete QCD Lagrangian is then

LQCD =
∑

f

qf (iγµDµ −mf )qf −
1

4

8∑

a=1

Ga
µνGa,µν . (1.2.9)

In contradiction to the abelian case of QED, the nonabelian gluon Lagrangian involves not only

kinetic term but also the self-interaction vertices with three and four gluons. Moreover, the

invariance under SU(3)C allows us to add one another term, the so called θ-term,

Lθ =
g2θ

64π2
ǫµνρσ

8∑

a=1

Ga
µνGa

ρσ (1.2.10)

This term implies explicit P and CP violation of strong interactions and it is the origin of the

nonzero electric dipole moment of the neutron. Regardless, due to empirical information θ term

is small and is often omitted.
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Global symmetries of QCD Lagrangian

Let us now concentrate on the flavor sector. There are six quark flavors in the spectrum, which

are often divided into two parts - light quarks u, d, s and heavy quarks c, b, t. For quark masses

we have the relation

mu,md,ms ≪ 1GeV < mc,mb,mt (1.2.11)

where the scale 1GeV called ΛH (hadron scale) is the natural value which is associated with

the masses of hadrons containing the lightest quarks, therefore, in the low-energy region only

light quarks can be taken into account. The approximation with massless quarks is called chiral

limit. In this limit the massless QCD Lagrangian

L0
QCD =

∑

f=u,d,s

qf iγµDµqf −
1

4

8∑

a=1

Ga
µνGa,µν (1.2.12)

is invariant not only under SU(3)C group but also possesses U(3) flavor symmetry. Now we can

introduce the projection operators PL and PR
1

PL =
1

2
(1 + γ5), PR =

1

2
(1− γ5) (1.2.13)

with the expected properties

P 2
R = PR, P 2

L = PL, PRPL = PLPR = 0, PL + PR = 1. (1.2.14)

Acting by these operators on the quark field we get its left-handed and right-handed chiral

components

qR = PRq, qL = PLq (1.2.15)

with the relation q = qL+qR. The properties of gamma matrices allow us to rewrite the massless

QCD Lagrangian in terms of chiral components qR, qL

L0
QCD =

∑

f=u,d,s

(
qR,f iγµDµqR,f + qL,f iγµDµqL,f

)
− 1

4

8∑

a=1

Ga
µνGa,µν (1.2.16)

It is easy to see that this Lagrangian is invariant not only under the global flavor U(3) transforma-

tion of quark fields q, but also under the independent transformation of their chiral components

qR and qL.

qL → ULqL, qR → URqR (1.2.17)

with 3 × 3 unitary matrices UL and UR. L0
QCD is said to have the classical U(3)L × U(3)R

symmetry. The element of the group U(3) can be divided into SU(3) component and the phase

U(1) part. According to Noerther’s theorem there are 18 conserved currents associated with the

transformations of left-handed and right-handed quarks. The octets of SU(3) currents are then

La,µ = qLγµ λa

2
qL, Ra,µ = qRγµ λa

2
qR (1.2.18)

1The indices L and R correspond to left and right.
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where λa are Gellmann matrices2 and λ0 =
√

2/31. The conservation laws corresponding to

these currents are ∂µLa,µ = ∂µRa,µ = 0. Instead of these chiral currents it is suitable to use

their linear combinations,

V a,µ = Ra,µ + La,µ = qγµ λa

2
q, (1.2.19)

Aa,µ = Ra,µ − La,µ = qγµγ5
λa

2
q (1.2.20)

where a = 1, . . . 8 which transform as vector and axial vector under parity transformations

V aµ(x, t)→ V a
µ (−x, t), Aaµ(x, t)→ −Aa

µ(−x, t). (1.2.21)

and the singlet U(1) currents (a = 0) can also be associated with the vector and axial vector

currents

V µ = qγµq, Aµ = qγµγ5q (1.2.22)

Both currents are conserved on the classical level but after the quantization the axial current is

not conserved anymore. The symmetry is not preserved due to the anomaly,

∂µAµ =
3g2

32π2
ǫµνρσ

8∑

a=1

Ga,µνGa,ρσ (1.2.23)

Consequently, on the quantum level the Lagrangian L0
QCD is invariant under the chiral group

SU(3)L × SU(3)R × U(1)V .

In addition to the vector and axial vector currents it is convenient to define scalar and

pseudoscalar densities of the form

Sa = q
λa

2
q, P a = iqγ5

λa

2
q (1.2.24)

where the octet a = 1, . . . 8 forms the SU(3) part and for index a = 0 we have the U(1) part

which is useful to write separately as

S = qq, P = iqγ5q (1.2.25)

The parity transformation for these densities reads

Sa(x, t)→ Sa(−x, t), Pa(x, t)→ −Pa(−x, t) (1.2.26)

and same for singlets S(x) and P (x).

Chiral Ward identities

The amplitudes of physical processes can be computed using LSZ reduction formula from the

Green functions, the time ordered products of quantum fields. The Green functions are con-

nected through very important relations - Ward identities that reflect the symmetry properties

2They are described detailed in appendix A
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of a given theory on the quantum level. Their knowledge helps us to determine the structure of

Green functions and their important features.

The correlator of chiral currents and densities is defined as

G(x1, x2, . . . , xn) = 〈0|T [A1(x1)A2(x2) . . . An(xn)|0〉 (1.2.27)

with Ai = V,A, S, P where the Lorentz and group indices were suppressed. The chiral Green

functions are then the time, ordered vacuum expectation values of the currents and densities

where at least one factor of V a,µ or Aa,µ is present. The divergences of chiral Green functions

correspond to the linear combinations of other Green functions. These relations we call chiral

Ward identities, explicitly

∂x
µ〈0|T [Jµ(x)A1(x1) . . . An(xn)]|0〉 = 〈0|T [(∂x

µJµ(x))A1(x1) . . . An(xn)]0〉

+

n∑

i=1

δ(x0 − xi)〈0|T [A1(x1) . . . [J0(x), Ai(xi)] . . . An(xn)]|0〉 (1.2.28)

where Jµ(x) stands for any of the Noether currents and Ai(xi) are arbitrary chiral currents or

densities (again the indices are suppressed). For evaluating the concrete chiral Ward identity

we have to know the equal-time commutation relations among V , A, S and P . Omitting the

Schwinger terms we can write

[V a
0 (x, t), V b

µ (y, t)] = [Aa
0(x, t), Ab

µ(y, t)] = δ3(x− y)ifabcV c
µ (x, t), (1.2.29)

[V a
0 (x, t), Ab

µ(y, t)] = [Aa
0(x, t), V b

µ (y, t)] = δ3(x− y)ifabcAc
µ(x, t), (1.2.30)

[V a
0 (x, t), Sb(y, t)] = δ3(x− y)ifabcSc(x, t), (1.2.31)

[V a
0 (x, t), P b(y, t)] = δ3(x− y)ifabcP c(x, t), (1.2.32)

[Aa
0(x, t), P b(y, t)] = −δ3(x− y)i

(
dabcSc(x, t) +

2

3
δabS(x, t)

)
, (1.2.33)

[Aa
0(x, t), Sb(y, t)] = δ3(x− y)i

(
dabcP c(x, t) +

2

3
δabP (x, t)

)
, (1.2.34)

[V a
0 (x, t), V µ(y, t)] = [V a

0 (x, t), S(y, t)], (1.2.35)

[V a
0 (x, t), P (y, t)] = [Aa

0(x, t), V µ(y, t)] = 0, (1.2.36)

[Aa
0(x, t), S(y, t)] = δ3(x− y)iP a(x, t), (1.2.37)

[Aa
0(x, t), P (y, t)] = −δ3(x− y)iSa(x, t) (1.2.38)

In χPT P a(x, t) and Aa(x, t) are interpolating fields for Goldstone bosons, V aµ(x, t) corre-

spond to electroweak currents and Sa(x, t) is related to the quark mass matrix.

Generating functional

It is useful to introduce the generating functional of currents and densities in QCD. Varying it

with respect to the external sources one obtains all chiral Green functions. To construct the
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generating functional we have to couple the nine vector currents and eight axial-vector currents

as well as the scalar and pseudoscalar quark densities to the external c-number fields vµ(x),

vµ
(s)(x), aµ(x), s(x) and p(x),

L = L0
QCD + Lext = L0

QCD + qγµ(vµ +
1

3
vµ
(s) + γ5a

µ)q − q(s− iγ5p)q (1.2.39)

The external fields are color-neutral, they transform as the singlets under color SU(3)C group.

In the flavor sector they are represented by Hermitian 3×3 matrices, where the matrix character

is

vµ =
8∑

a=1

λa

2
vµ
a , aµ =

8∑

a=1

λa

2
aµ

a , s =
8∑

a=0

λa

2
sa, p =

8∑

a=0

λa

2
pa (1.2.40)

The ordinary three flavor QCD Lagrangian is recovered by setting vµ = vµ
(s) = aµ = p = 0 and

s =M in (1.2.39). The generating functional is defined as

exp (iZ[v, a, s, p]) = 〈0|T exp

[
i

∫
d4xLext(x)

]
|0〉. (1.2.41)

The n-point Green functions can be obtained by variation with respect to corresponding external

sources. For example,

〈0|T [V µ
a (x)V b

ν (0)|0〉 = (−i)2
δ2

δva,µ(x) δvb,ν(0)
exp (iZ[v, a, s, p])

∣∣∣∣
v=a=p=0, s=M

(1.2.42)

More tricky task is to derive the correlator of quark fields. They appear non-linearly in the

currents and densities, for 〈uu〉 we have

〈0|u(x)u(x)|0〉0 =
i

2

[√
2

3

δ

δs0(x)
+

δ

δs3(x)
+

1√
3

δ

δs8(x)

]
exp (iZ[v, a, s, p])

∣∣∣∣
v=a=p=s=0

(1.2.43)

The Lagrangian (1.2.39) can be written in terms of left-handed and right-handed quark fields

qL, qR. Defining the vector and axial-vector currents

vµ =
1

2
(rµ + lµ), aµ =

1

2
(rµ − lµ). (1.2.44)

we obtain

L = L0
QCD + qLγµ

(
lµ +

1

3
v(s)

)
qL + qRγµ

(
rµ +

1

3
v(s)
µ

)
qR

− qR(s + ip)qL − qL(s − ip)qR (1.2.45)

This Lagrangian is manifestly invariant under the local SU(3)L × SU(3)R × U(1)V group with

qR → exp

(
−i

Θ(x)

3

)
VR(x)qR, (1.2.46)

qL → exp

(
−i

Θ(x)

3

)
VL(x)qL (1.2.47)
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where VR(x) and VL(x) are SU(3) matrices. The following transformation properties of the

external sources are

rµ → VRrµV †
R + iVR∂µV †

R, (1.2.48)

lµ → VLlµV †
L + iVL∂µV †

L , (1.2.49)

v(s)
µ → v(s)

µ − ∂µΘ, (1.2.50)

s + ip → VR(s + ip)V
†
L , (1.2.51)

s− ip → VL(s− ip)V †
R. (1.2.52)

The part of Lagrangian Lext represents the interaction of quarks with the external fields. For

example, we can restore the electroweak interaction Lagrangian by setting rµ and lµ dependent

on the gauge fields Zµ, W±
µ . The result is then the usual electroweak quark Lagrangian.

Although the Lagrangian (1.2.39) is invariant under the local transformations (1.2.48)-

(1.2.52), it is no longer true for the generating functional Z[v, a, s, p]. The anomalies of fermionic

determinant leads to the breaking of the chiral symmetry at the quantum level. If we assume

the infinitesimal chiral transformations

VL(x) = 1 + iα(x)− iβ(x), VR(x) = 1 + iα(x) + iβ(x), (1.2.53)

the change of the generating functional under (1.2.48)-(1.2.52) is given by

δZ[v, a, s, p] = − NC

16π2

∫
d4x〈β(x)Ω(x)〉 (1.2.54)

where

Ω(x) = ǫµνρσ

{
vµνvρσ +

4

3
∇µaν∇σaρ +

2

3
i{vµν , aσaρ}+

8

3
iaσvµνaρ +

4

3
aµaνaσaρ

}
(1.2.55)

with

vµν = ∂µvν − ∂νvµ − i[vµ, vν ], ∇µvν = ∂µaν − i[vµ, aν ]. (1.2.56)

This anomalous variation of Z is an O(p4) effect, in chiral power counting. The source for this

change of functional was found by Wess and Zumino [15] and reformulated in a geometrical way

by Witten [17].

Explicit symmetry breaking

So far we have not considered the quark masses. If we take them into account the flavor

symmetry is explicitly broken due to the presence of the mass term in the Lagrangian. So let

us consider the quark-mass matrix of the three light quarks

M =




mu 0 0

0 md 0

0 0 ms


 (1.2.57)
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The mass term then mixes between left-handed and right-handed quarks

LM = −qMq = −(qRMqL + qLMqR). (1.2.58)

The divergences of the constructed currents are

∂µV a,µ = iq

[
M,

λa

2

]
q, (1.2.59)

∂µAa,µ = iq

{
M,

λa

2

}
q, (1.2.60)

∂µV µ = 0, (1.2.61)

∂µAµ = 2iqMγ5q +
3g2

32π2
ǫµνρσGa,µνGa,ρσ . (1.2.62)

Let us analyze the results according to the form of the quark-mass matrix. For the general

values of mu, md and ms we have no flavor symmetry (except for U(1)V which is present all the

time and represents the conservation of baryon number). In the special cases are

1. mu = md = ms = 0 - The octet vector and axial vector currents are conserved. The

symmetry group is SU(3)L × SU(3)R × U(1)V .

2. mu = md = ms 6= 0 - Vector current is conserved and the Lagrangian is invariant under

SU(3)V × U(1)V .

3. mu = md = 0 - The model with two massless quarks implies the SU(2)L × SU(2)R ×
U(1)SV × U(1)V invariance where U(1)SV symmetry stands for the conservation of the

strangeness.

4. mu = md 6= 0 - The chiral limit of lightest quarks indicates the symmetry SU(2)V ×
U(1)SV × U(1)V .

Spontenous Symmetry breaking in QCD

As it is well known, the symmetry group of the massless QCD SU(3)L × SU(3)R × U(1)V is

spontaneously broken to SU(3)V × U(1)V due to the presence of an order parameter in QCD.

According to the Goldstone theorem, to each generator, which does not anihilate the vacuum

state, there corresponds one massless Goldstone boson. Therefore, an octet of these particles

appears in the spectrum of QCD.

Our goal is now to find the order parameter for QCD which is responsible for the spontaneous

symmetry breaking. The generators of SU(3)V symmetry are defined as

Qa
V (t) =

∫
d3xV a

0 (x, t) =

∫
q†(x, t)

λa

2
q(x, t). (1.2.63)

The equal time commutation relations with the SU(3)V octet of scalar densities are

[Qa
V (t), Sb(y)] = ifabcSc(y). (1.2.64)
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We can reverse this relation,

Sa(y) = − i

3
fabc[Qb

V (t), Sc(y)] (1.2.65)

The vacuum is invariant under SU(3)V , so we can write

〈0|Sa(y)|0〉 = 0. (1.2.66)

Taking a = 3 and a = 8 we get

〈uu〉 − 〈dd〉 = 0, 〈uu〉+ 〈dd〉 − 2〈ss〉 = 0 ⇒ 〈uu〉 = 〈dd〉 = 〈ss〉. (1.2.67)

Now assuming the non-vanishing singlet scalar density and using previous results we find

〈0|S|0〉 = 〈qq〉 = 3〈uu〉 6= 0 (1.2.68)

For the equal-time commutation relation

i[Qa
A(t), P a(y)] = daacSc(x, t) +

2

3
S(x, t) (1.2.69)

we calculate the vacuum expectation value

〈0|i[Qa
A(t), P a(y)]|0〉 =

2

3
〈qq〉 6= 0 (1.2.70)

So we have found the order parameter for QCD, δO = 〈qq〉. Consequently, the octet of Goldstone

bosons φa(x) appear in the spectrum. Moreover, Goldstone theorem and Lorentz covariance

permit us to write

〈0|Aa
µ(0)|φb(p)〉 = ipµF0δ

ab (1.2.71)

where F0 denotes the decay constant. Because O = P a the Goldstone bosons have the quantum

numbers of pseudoscalar particles.

1.3 Chiral perturbation theory

The effective theory is the way how to construct the general S matrix for low energy degrees of

freedom that satisfies all necessary conditions (analycity, unitarity, crossing symmetry). More-

over, the effective theories are based only on the symmetry properties of the fundamental theory

when all other aspects are forgotten. Finally, the particle contents of such a theory should agree

with the real physical spectrum.

We have seen in the last chapter that the spontaneous symmetry breaking in QCD leads,

according to Goldstone theorem, to the presence of Goldstone bosons. Identifying them with

the octet of psedoscalar mesons, which are the lightest particles in hadronic spectrum, we can

construct the low energy effective theory for QCD called Chiral Perturbation Theory (χPT).
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Pseudoscalar mesons

In the chiral limit (when all quark masses are set to zero), the Lagrangian of χPT must be

invariant under the symmetry group of massless QCD - G = SU(3)L × SU(3)R × U(1)V . The

eight pseudoscalar mesons then transform as an octet under the subgroup H = SU(3)V . Let us

now define the essential building block of χPT

u(φ) = exp

(
i

φ√
2F0

)
(1.3.1)

where φ = φaT a with T a = λa/
√

2 and

φ(x) =
1√
2




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K− √

2K
0 − 2√

3
η


 (1.3.2)

is the matrix describing the pseudoscalar mesons fields. The Goldstone bosons are parametrized

by the elements u(φ) of the coset space SU(3)L × SU(3)R/SU(3)V , transforming as

u(φ) 7→ VRu(φ)h(g, φ)−1 = h(g, φ)u(φ)VR (1.3.3)

under a general chiral rotation g = (VL, VR) ⊂ G in terms of the SU(3)V compensator field

h(g, φ).

It is also useful to introduce the classical sources s, p, vµ and aµ (with transformation

properties (1.2.48)-(1.2.52)) that couple on the scalar density Sa, pseudoscalar density P a, vector

currents V aµ and axial currents Aaµ. These are the interpolating fields for the external particles

entering the process, coupled to quark mass matrix and so on. For instance the process π0 → 2γ

corresponds to 3-point Green function composed from two vector currents and one pseudoscalar

density 〈V V P 〉.

Construction of Lagrangian

As in all effective theories also in χPT the Lagrangian can be expanded in powers of small

physical quantity. Here it is the external momenta p which should be much smaller than an

energy scale Λ ≈ 1GeV. It is related to the typical (nongoldstone) hadron masses. Another

small quantities are the quark masses (in quark mass matrix) and correspond to the second

order in momenta3, M∼ O(p2).

Expansion of the Lagrangian in terms of p has the following form (according to the symmetry

conditions only even terms can contribute)

Lχ = L(2)
χ + L(4)

χ + L(6)
χ + ... (1.3.4)

3There is another approach, based on an assumption M ∼ O(p), which is called Generalized Chiral Perturba-

tion Theory.
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where L(n) stands for a part of the Lagrangian which is of the n-th order in p, ie. L(n) =

O(pn). The Lagrangian must possess the same symmetry as the underlying theory, i.e. the local

SU(3)L × SU(3)R symmetry. The lowest order Lagrangian reads

L(2)
χ =

F 2
0

4
Tr[uµuµ + χ+] (1.3.5)

where

uµ = i[u†(∂µ − irµ)u− u(∂µ − ilµ)u†], (1.3.6)

χ± = u†χu† ± uχ†u, χ = 2B0(s + ip) (1.3.7)

are the chiral building blocks. The left and right sources lµ,rµ are related to the vector and axial

vector sources as

vµ =
1

2
(lµ + rµ), aµ =

1

2
(lµ − rµ). (1.3.8)

There exist more chiral building blocks in higher order Lagrangians. For our next calculation

we need

fµν
± = ufµν

L u† ± u†fµν
R u (1.3.9)

where

fµν
L = ∂µlν − ∂ν lµ − i[lµ, lν ], (1.3.10)

fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ]. (1.3.11)

Moreover, we can define the covariant derivative of a field X respecting the symmetry properties

DµX = ∂µX + [Γµ,X] (1.3.12)

with

Γµ =
1

2
{u†(∂µ − irµ)u + u(∂µ − ilµ)u†}. (1.3.13)

We see that the second order Lagrangian contains only two unknown constants F0 and B0 (in

chiral limit). But it is not true for higher orders. In the next-to-leading order (order O(p4))[2, 3]

the Lagrangian reads

L(4)
χPT =L1〈uµuµ〉2 + L2〈uµuν〉〈uµuν〉+ L3〈uµuµuνuν〉+ L4〈uµuµ〉〈χ+〉

+ L5〈uµuµχ+〉+ L6〈χ+〉2 + L7〈χ−〉2 + L8/2〈χ2
− + χ2

+〉
− iL9〈fµν

+ uµuν〉+ L10/4〈f+µνf
µν
+ − f−µνf

µν
− 〉

+ iL11〈χ−(Dµuµ + i/2χ−)〉 − L12〈(Dµuµ + i/2χ−)2〉
+ H1/2〈f+µνf

µν
+ + f−µνf

µν
− 〉+ H2/4〈χ2

+ − χ2
−〉 (1.3.14)

The number of coupling constants grows rapidly, Lχ,6 has already about 100 constants [20].
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Generating functional

The generating functional for χPT is defined as

ZχPT [s, p, v, a] =

∫
Du exp

{
i

∫
d4xLχ

}
(1.3.15)

Because χPT is the effective theory of QCD we must demand the equality of corresponding

generating functionals after expanding in terms of small momenta

ZχPT [s, p, v, a] = ZQCD[s, p, v, a] (1.3.16)

=

∫
DqDqDG exp

{
i

∫
d4x [LQCD + qγµ(vµ + γ5a

µ)q − q(s− iγ5p)q]

}

Unfortunately, we don’t know this functional from the first principles, so the constants in χPT

Lagrangian cannot be computed directly from QCD.

Weinberg power counting formula

Weinberg power counting scheme describes a behavior of Feynman diagram under a linear rescal-

ing of an external momenta, p 7→ λp. 4 If we define the chiral dimension D of a given diagram,

the amplitude of such a diagram satisfies

M(λp, λ2mq) = λDM(p,mq). (1.3.17)

Power counting formula gives the expression for the chiral dimension

D = 2 + 2L +

∞∑

n=0

(2n− 2)N2n (1.3.18)

where L is number of loops and N2n denotes the number of vertices from L2n. Because the

number of possible counterterms with the chiral dimension D ≤ Dmax is finite, the theory is

then renormalizable if we take into account only diagrams up to a given chiral order [1].

4In the same way, we rescale quadratically the masses of light quarks, mq 7→ λ2mq. Therefore, the masses of

Goldstone bosons (outside the chiral limit) are rescaled M2
7→ λ2M2.



CHAPTER 2

Resonance chiral theory

We have seen that χPT describing pseudoscalar mesons as the only degrees of freedom can be

used as an effective theory for QCD at low energies. If we go to energies E ≥ 1GeV χPT looses

its convergence and cannot be used anymore because the higher mass states become active in

dynamics of hadrons. We use the tool of effective theory to describe these degrees of freedom

(resonances) using phenomenological Lagrangians based on symmetries of QCD.

It was shown [16] that QCD in the limit of infinite number of colors can be formulated as a

perturbative expansion in 1/NC . Its spectrum contains the infinite tower of resonances [17] and

provides us with an exact theory for resonances based on QCD.

In the intermediate energy region 1GeV ≤ E ≤ 2GeV it is justified to take into account

only one type of resonance in each channel. The final theory based partially on χPT and large

NC QCD (we do the matching at low and high energies), Resonance Chiral Theory (RχT), is

the topic of this chapter. For simplification, after general discussion we restrict ourselves to one

type of resonances - vector resonances 1−− which are the most interesting in the spectrum of

resonances. The results in complete RχT are longer but principally similar to our results.

2.1 Phenomenological Lagrangians

In contrast to χPT where the expansion parameter is the external momentum p, in the Resonance

Chiral Theory the standard chiral power counting breaks because the momenta and the masses

of resonances are not neglected in comparison with the typical scale in the intermediate energy

region. This reason together with the absence of an energy gap in the spectrum of hadrons make

difficult to build the resonance theory as an effective theory of resonances for QCD. Fortunately,

the short distance constraints, OPE results and large NC behavior can help us with construction
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of RχT Lagrangian.

1/NC expansion

The basic proposal is to investigate the properties of QCD in the large NC limit when the

symmetry group is enlarged from SU(3)C to SU(NC). Despite this seems to be quite strange

because the case NC = 3 is far from the infinite value NC → ∞, this generalization of QCD

suggested by Gerard t’Hooft has many simple properties that are partially shared by real QCD.

Witten showed [17] that the Green functions calculated in large NC QCD in the leading order

contain the exchange of infinite tower of resonances.

Taking gs to be of order O(1/
√

NC) and letting NC → ∞ while αsNC fixed we obtain

important results

• Mesons are free, stable and non-interacting and the number of meson states is infinite.

• Elasting scattering amplitudes are of order O(N1−k/2) where k is the number of mesons

in the process.

• The dynamics of mesons in the leading order in 1/NC is dominated by the tree level

diagrams, the loops are of higher orders in 1/NC .

• The flavor group of the theory is U(Nf )L × U(Nf )R because there is no axial anomaly in

large NC limit. This symmetry is spontaneously broken to U(Nf )V .

Despite the expansion in 1/NC has a beautiful theoretical sense based directly on the properties

of the underlying theory (large NC QCD), its use in hierarchy of Lagrangian terms in RχT is

problematic. In practice, power counting in 1/NC is an expansion in number of mesons and the

terms with many derivatives are not suppressed.

Relation between χPT and RχT

As was said, in NC → ∞ we can construct the effective Lagrangian (RχT) for QCD for inter-

mediate energy region that satisfies all symmetry properties dictated by the underlying theory.

Unfortunately, the Lagrangian of this theory is not known from first principles. However, its

coupling constants can be related to the phenomenology of the resonance sector. Up to the

order O(p6) it has the general form

LRχT = LGB + Lres = L(2)
GB + L(4)

GB + L(6)
GB + L(4)

res + L(6)
res (2.1.1)

where LGB = L(2)
GB + L(4)

GB + L(6)
GB contains only the (pseudo)Goldstone bosons and L(2n)

GB has

the same form as the O(p2n) χPT Lagrangian L(2n)
χ . The corresponding LECs are, however,

different. Actually, in concrete resonance saturation calculation, these LECs are treated as

negligible at the resonance scale. L(4)
res and L(6)

res are the resonance Lagrangians of the chiral order
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O(p4) and O(p6) respectively1. Integrating out the resonance fields from the RχT Lagrangian

and expanding to the given chiral order yields an effective χPT Lagrangian Lχ. The LECs in

this Lagrangian are now expressed in terms of the resonance parameters and the LECs from

LGB . Schematically, up to the order O(p6)

LχPT = LGB + Lχ,eff = L(2)
GB + L(4)

GB + L(6)
GB + L(4)

χ,eff + L(6)
χ,eff . (2.1.2)

So, we can write

L(2)
χPT = L(2)

GB, (2.1.3)

L(4)
χPT = L(4)

GB + L(4)
χ,eff , (2.1.4)

L(6)
χPT = L(6)

GB + L(6)
χ,eff . (2.1.5)

Here L(2n)
χ, res has the same form as L(2n)

GB with LECs depending on the resonance masses and

couplings of Lres.

It was shown in [6] that the hypothesis of the successful saturation ofO(p4) LECs by the finite

number of resonances is legitimate. Since then this idea has been often used in particular cases in

order to estimate also the contribution of the O(p6) LECs to various quantities calculated within

the O(p6) χPT . Quite recently, the first steps towards a systematic and consistent estimate of

the O(p6) LECs via resonance saturation have been made in [12, 8] and confirms the validity of

RχT results.

2.2 Spin one particles

In this short section we describe the basic properties of two essential ways how to describe

massive spin one particles in the framework of quantum field theory. We can either use the

formalism of vector fields or antisymmetric tensor fields. In the first case we can write the free

field Lagrangian in the form

LV = −1

4
V̂µν V̂ µν +

1

2
M2VµV µ, (2.2.1)

where V̂µν = ∂µVν − ∂νVµ. Classical equation of motion gives

∂2Vµ + M2Vµ − ∂µ(∂ · V ) = 0. (2.2.2)

Taking the divergence we get

∂ · V = 0 (2.2.3)

and hence
(
∂2 + M2

)
Vµ = 0. (2.2.4)

1The chiral order of the resonance fields depend on the formalism used and will be clarified in what follows.
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A real vector field satisfying these two equations can be expressed as Fourier transform

Aµ(x) =
1

(2π)3/2

σ=1∑

σ=−1

d3p√
2E

{
Bµ(p, σ)eip·x + B∗

µ(p, σ)e−ip·x} (2.2.5)

where E =
√

p2 + m2. In the quantization procedure we substitute operators for functions, i.e.

Bµ → B̂µ. Separating the tensor structure we can write

Aµ(x) =
1

(2π)3/2

σ=1∑

σ=−1

d3p√
2E

{
εµ(p, σ)a(p, σ)eip·x + εµ∗(p, σ)a†(p, σ)e−ip·x

}
, (2.2.6)

where εµ(p, σ) are three independent polarization vectors satisfying

σ=1∑

σ=−1

εµ(p, σ)εν∗(p, σ) = −gµν +
pµpν

m2
,

εµ(p, σ)εµ(p, σ′) = −δσσ′ ,

pµεµ(p, σ) = 0.

and a(p, σ), a†(p, σ) are anihilation and creation operators that satisfy commutation relations

[
a(p, σ), a†(p′, σ′)

]
= δ3(p′ − p)δσ,σ′ ,

[
a(p, σ), a(p′, σ′)

]
=

[
a†(p, σ), a†(p′, σ′)

]
= 0.

Then fields Vµ(x) transform in (1/2, 1/2) representation of Lorentz group. The 2-point correlator

of these fields (called propagators) is defined as

i∆V
F (x− y)µν ≡ 〈0|T [Vµ(x)Vν(y)]|0〉. (2.2.7)

where the covariant part of the result has the form

i∆V
F (x− y)µν =

∫
d4p

(2π)4
i∆F (p)µνe−ip·(x−y) (2.2.8)

and

i∆V
F (p)µν =

−i

p2 −m2 + iǫ

(
gµν −

pµpν

M2

)
(2.2.9)

is the propagator in momentum representation.

For the description of vector resonances using antisymmetric tensor formalism we use the

free field Lagrangian

LT = −1

2
WµW µ +

1

4
M2RµνRµν . (2.2.10)

where Wµ = ∂αRαµ. Classical equation of motion has the form

∂µ∂αRαν − ∂ν∂
αRαµ + m2Rµν = 0. (2.2.11)
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Applying the derivative ∂ν we obtain for ∂αRαµ (multiplied by 1/m because of proper dimension

of the field)
(
∂2 + m2

)( 1

m
∂αRαµ

)
= 0. (2.2.12)

The condition of transversality is satisfied identically due to the antisymmetry of Rµν . So we

obtain again Proca field equation and it is possible to write for ∂αRαµ the same expression as in

previous case (using the same creation and anihilation operators!). Guessing the general form

of the expansion for Rµν we get2

Rµν(x) =
1

(2π)3/2

σ=1∑

σ=−1

d3p√
2E

{
Aµν(p, σ)a(p, σ)eip·x + Bµν(p, σ)a†(p, σ)e−ip·x

}
. (2.2.13)

Applying the derivative in the momentum space we obtain

ipµAµν = mεµ(p, σ),

−ipµBµν = mεµ∗(p, σ).

Easy calculation using the relation pµεµ(p, σ) = 0 gives the result

Rµν(x) =
1

(2π)3/2

σ=1∑

σ=−1

d3p√
2E

i

m

{
(pνεµ(p, σ)− pµεν(p, σ)) a(p, σ)eip·x +

(
pνε

∗
µ(p, σ) − pµε∗ν(p, σ)

)
a†(p, σ)e−ip·x

}
.

The covariant propagator of the field is then

i∆T
F (x− y)αβµν ≡ 〈0|T [Rαβ(x)Rµν(y)]|0〉 =

∫
d4p

(2π)4
i∆F (p)αβµνe−ip·(x−y) (2.2.14)

where

i∆T
F (p)αβµν = (2.2.15)

−i

p2 −m2 + iǫ

1

m2

(
(m2 − p2)gαµgβν + gαµpβpν − gανpβpµ − (µ↔ ν)

)
.

In the following sections we propose the study of both mentioned ways of description of vector

resonances in RχT up to O(p6) together with study of their equivalence and the introduction

of alternative formulation.

2.3 Construction of Lagrangian

The Resonance Chiral Theory enlarges the number of degrees of freedom of standard χPT (which

contains only pseudo Goldstone bosons) by including also massive multiplets of resonances -

2Actually, this is not a guess. Antisymmetric tensor field transforms under (1, 0) + (0, 1) representation of

Lorentz group which guaranties the possibility of the expansion of the field in this form [18], [19].
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vector 1−−, axial vector 1++, scalar 0++ and pseudoscalar 0−+. The same procedure as in

χPT can be done when constructing resonance Lagrangian, only the symmetry group is now

U(3)L × U(3)R.

Let us now restrict ourselves to the octet of vector resonances 1−− which is the subject of

our interest. The resonance field in the antisymmetric tensor formalism (the form in vector

formalism is analogous and both formalisms will be discussed later) can be written as

Rµν =




1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω0 ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω3 K∗0

K∗− K
∗0 − 2√

6
ω8 + 1√

3
ω0




µν

(2.3.1)

The resonance fields transform in the nonlinear realization of the U(3)L×U(3)R. These massive

states transform as octets R8 or singlets R0 under SU(3)L × SU(3)R

R8 7→ h(g, φ)R8h(g, φ)−1, R0 7→ R0. (2.3.2)

where R8 =
∑

i RiTi. In the large NC limit with massless quarks (chiral limit) we can collect

these states into a nonet state (with the same mass)

R =

8∑

i=1

TiRi + T0R0 =

9∑

j=1

TjRj (2.3.3)

where T0 =
√

1/31. Moreover, the Lagrangian must be invariant under P and C transformations

and hermitian self-conjugate. The resonance fields Rµν transform under these symmetries as

P : Rµν 7→ Rµν

C : Rµν 7→ −RT
µν

h.c. : Rµν 7→ Rµν

Then in the leading order (the complete lists of Lagrangian terms are provided in the follow-

ing sections) in 1/NC (terms with one resonance) we can construct the interaction resonance

Lagrangian that is invariant under all these symmetries

Lint
R =

FV

2
√

2
〈Rµνfµν

+ 〉+
iGV

2
√

2
〈Rµν [uµ, uν ]〉. (2.3.4)

where the resonance fields are coupled on the O(p2) chiral building blocks. The complete

resonance Lagrangian is then

LR = L0
R + Lint

R (2.3.5)

where L0
R represents the kinetic and mass terms (that will be discussed in following). Integrating

out the resonance fields we obtain the effective chiral Lagrangian

∫
DR exp

(
i

∫
d4x(LR)

)
= exp

(
i

∫
d4xLχ,eff

)
(2.3.6)
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After Gaussian integration we obtain the result

Lχ,eff =
G2

V

2M2
〈uµuµ〉2 +

G2
V

4M2
〈uµuν〉〈uµuν〉 −

3G2
V

4M2
〈uµuµuνu

ν〉 − F 2
V

8M2
〈f+µνf

µν
+ 〉 (2.3.7)

We can easily find that this result can be decomposed into the χPT Lagrangian. The form

of the terms in Lχ,eff indicates that the constants FV and GV contribute into O(p4) coupling

constants. Doing the precise matching we obtain

L′
1 =

G2
V

2M2
, L′

2 =
G2

V

4M2
, L′

3 = −3G2
V

4M2
, L′

10 = − F 2
V

4M2
, H ′

1 = − F 2
V

8M2
(2.3.8)

where the prime denotes that this is a contribution of vector resonances only. We have observed

that the constants in O(p4) chiral Lagrangian are saturated by the constants from Lint
R , so we

can assign the chiral order to the resonance fields Rµν = O(p2). The situation for vector fields

is similar, we can just replace R→ V , the simplest interaction term (analogous to previous one)

Lint
V =

FV

2
√

2
〈(DµVν −DνVµ)fµν

+ 〉+
iGV

2
√

2
〈R(DµVν −DνVµ)[uµ, uν ]〉. (2.3.9)

We can easily find that the corresponding effective chiral Lagrangian cannot be decomposed

into the terms of O(p4) χPT Lagrangian form. L(2)
V contributes only to the order O(p6) which

indicates the chiral order, V = O(p3). The fact there is no O(p4) contribution to saturation of

LECs indicates the future problems with the equivalence of descriptions.

2.4 Vector field formalism

The most natural way how to describe vector resonances is the vector field formalism (called

often Proca field formalism).

The short hand notation used in this and following sections is explained in appendix A.

General properties

The resonance Lagrangian can be written in the form

LV = Lkin
V + Lint

V (2.4.1)

where the kinetic and mass terms (covariant derivative include interaction part, of course) are

Lkin
V = −1

4
(V̂ : V̂ ) +

1

2
M2(V · V ) (2.4.2)

and the interaction part can be expand in terms of chiral order

Lint
V = L(4)

V + L(6)
V + L(8)

V + . . . (2.4.3)

In the beginning of the chapter we have seen that integrating out the resonances no effective

chiral Lagrangian up to O(p4) is generated, so L(4)
V = 0. Moreover, we have found that the chiral
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order of the vector fields is V = O(p3). In the following discussion, it is also useful to introduce

the alternative expansion in terms of the number of resonance fields

Lint
V = (J1 · V ) + (J2 : V̂ ) +

1

2
(V ·K ·K) + (V · J3 : V̂ ) (2.4.4)

+terms trilinear and higher in resonance fields

External sources Ji are built from the usual chiral building blocks that determine the chiral

orders of the sources

J1 = O(p3), (2.4.5)

J2 = O(p2), (2.4.6)

J3 = O(p), (2.4.7)

K = O(p2). (2.4.8)

For example, we have

T aJa
2µν = − fV

2
√

2
f+µν +

igV

2
√

2
gV [uµ, uν ]. (2.4.9)

Effective chiral Lagrangian

Dividing the resonance Lagrangian into O(p6) and O(p8) parts we can write

L(6)
V =

1

2
M2(V · V ) + (J1 · V ) + (J2 · V̂ ), (2.4.10)

L(8)
V = −1

4
(V̂ : V̂ ) +

1

2
(V ·K · V ) + (V · J3 : V̂ ) (2.4.11)

Integrating out the resonance fields we get the corresponding effective chiral Lagrangian up to

the given order. The integration is Gaussian, what effectively means the insertion of the solution

of the classical equation of motion into the original Lagrangian. To the lowest non-trivial order

O(p3) we obtain

V (3) =
1

M2
(J1 − 2D · J2). (2.4.12)

The result up to the order O(p6) is then

L(6)
χ,V = − 1

2M2
((J1 − 2D · J2) · (J1 − 2D · J2)) (2.4.13)

= − 1

2M2
(J1 · J1) +

2

M2
(D · J2 · J1) +

2

M2

(
D · J2 · J2 ·

←−
D
)

This Lagrangian can be rewritten in the standard O(p6) basis [20] and we can find the saturation

of O(p6) LECs by the resonance couplings. As pointed out in [7], the contributions to the O(p4)

LEC are not generated, unless extra contact terms are added to the Lagrangian. On the other

hand, the interaction terms contained in the L(8)
V give contributions only to the O(p8) chiral

Lagrangian and could be therefore ignored (there is no study of χPT Lagrangian up of this

order). Note also that, in principle, higher derivative terms as well as terms cubic or higher in
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the resonance fields can be added to the Lagrangian, but the chiral order are higher and these

terms are irrelevant with respect to the possible contribution to O(p6) LECs. Despite it, both

types of additional terms mentioned above could be useful to satisfy high energy constraints of

Green functions dictated by OPE, [7], [9], or as the counterterms to kill the infinities in one loop

calculations.

Complete basis of terms

The Lagrangian terms can be divided into two parts representing odd and even intrinsic parity

sector. The basis of O(p6) terms that has been already studied in [9] and also in [A] has the

form

O(p6) even parity coupling

1 i〈V µ[uν , f−µν ]〉 αV

2 〈V µ[uµ, χ−]〉 βV

3 〈V̂ µνf+µν〉 − 1
2
√

2
fV

4 i〈V̂ µν [uµ, uν ]〉 − 1
2
√

2
gV

O(p6) odd parity coupling

5 iεµναβ〈V µuνuαuβ〉 θV

6 εµναβ〈V µ{uν , fαβ
+ }〉 hV

Moreover, we mention one of the O(p8) terms that will have the analogue in the first order

formalism:

O(p8) odd parity with VV coupling

8 εαβµν〈{V α, V̂ µν}uβ〉 1
2σV

2.5 Antisymmetric tensor formalism

The alternative description of vector resonances uses the antisymmetric tensor fields Ra
µν .

General properties

The resonance Lagrangian in the antisymmetric tensor formalism has the same form as in the

Proca field case

LR = Lkin
R + Lint

R (2.5.1)

The kinetic and mass terms are then

Lkin
R = −1

2
(W ·W ) +

1

4
M2(R : R) (2.5.2)
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Similarly as in the vector formalism we can use the chiral expansion of the interaction part of

Lagrangian

Lint
R = L(4)

R + L(6)
R + L(8)

R + . . . (2.5.3)

We have seen that the leading interaction term is of the order O(p4) and the chiral order of

resonance field is R = O(p2). The expansion in terms of resonance fields and external sources

has the form

Lint
R =(J1 ·W ) + (J2 : R) + (W · J3 : R) + (R : J4 : R) (2.5.4)

+(R : J5 ·D : R) + (R : J6 :: RR) + terms higher in resonance fields

On the contrary to the vector formalism (where analogous term would be of the order at least

O(p10)) the trilinear term is present here. The leading chiral orders of the external sources Ji

are

J1 = O(p3), (2.5.5)

J
(2)
2 = O(p2), (2.5.6)

J
(4)
2 = O(p4), (2.5.7)

J3 = O(p), (2.5.8)

J4 = O(p2), (2.5.9)

J5 = O(p), (2.5.10)

J6 = O(p0). (2.5.11)

where we divide the J2 source into O(p2) and O(p4) parts.

Effective chiral Lagrangian

The O(p4) and O(p6) parts of resonance Lagrangian are

L(4)
R =

1

4
M2(R : R) +

(
J

(2)
2 : R

)
, (2.5.12)

L(6)
R = −1

2
(W ·W ) +

(
J

(4)
2 : R

)
+ (J1 ·W ) + (W · J3 : R) + (R : J4 : R)

+(R : J5 ·D : R) + (R : J6 :: RR) (2.5.13)

There is, of course, additional O(p8) contribution but it is not relevant in the following. Equation

of motion to the lowest order is then

R(2) = − 2

M2
J

(2)
2 . (2.5.14)
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Integrating out resonance fields in the original Lagrangian by the inserting this solution of EOM

we obtain the effective chiral Lagrangian with O(p4) and O(p6) contributions

L(4)
χ,eff = − 1

M2

(
J

(2)
2 : J

(2)
2

)
, (2.5.15)

L(6)
χ,eff = − 2

M2

(
J

(2)
2 : J

(4)
2

)
+

2

M4

(
D · J (2)

2 · J (2)
2 · ←−D

)
− 2

M2

(
D · J (2)

2 · J1

)

+
4

M4

(
D · J (2)

2 · J3 : J
(2)
2

)
+

4

M4

(
J

(2)
2 : J4 : J

(2)
2

)
+

4

M4

(
J

(2)
2 : J5 ·D : J

(2)
2

)

− 8

M6
(J

(2)
2 : J6 :: J

(2)
2 J

(2)
2 ). (2.5.16)

Complete basis of terms

The O(p4) basis reads

O(p4) terms coupling

1 〈Rµνf+µν〉 1
2
√

2
FV

2 i〈Rµν [uµ, uν ]〉 1
2
√

2
GV

The complete basis of O(p6) in antisymmetric tensor formalism has not been constructed

yet. In [12] is provided the complete list of the even intrinsic parity sector terms, in [11] we can

find the odd intrinsic parity terms that contribute to all correlators that we will compute in the

following.

The list of even parity terms with two resonances is

O(p6) even parity with RR coupling

1 〈RµνR
µνuαuα〉 λV V

1

2 〈Rµνu
αRµνuα〉 λV V

2

3 〈RµαRναuµuν〉 λV V
3

4 〈RµαRναuµuν〉 λV V
4

5 〈Rµα(uαRµβuβ + uβRµβuα)〉 λV V
5

6 〈RµνRµνχ+〉 λV V
6

7 i gβµ〈RµαRανf+βν〉 λV V
7
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O(p6) even parity with R

1 i〈Rµνuµuαuαuν〉 λV
1

2 i〈Rµνuαuµuνuα〉 λV
2

3 i〈Rµν{uα, uµuαuν}〉 λV
3

4 i〈Rµν{uµuν , uαuα}〉 λV
4

5 igαβ〈Rµνfµα
− f νβ

− 〉 λV
5

6 〈Rµν{fµν
+ , χ+}〉 λV

6

7 igαβ〈Rµνfµα
+ f νβ

+ 〉 λV
7

8 i〈Rµν{χ+, uµuν}〉 λV
8

9 i〈Rµνu
µχ+uν〉 λV

9

10 i〈Rµν [uµ,Dνχ−]〉 λV
10

11 i〈Rµν{fµν
+ , uαuα}〉 λV

11

O(p6) even parity with R

12 〈Rµνuαfµν
+ uα〉 λV

12

13 〈Rµν(uµf να
+ uα + uαf να

+ uµ)〉 λV
13

14 〈Rµν(uµuαfαν
+ + fαν

+ uαuµ)〉 λV
14

15 〈Rµν(uαuµfαν
+ + fαν

+ uµuα)〉 λV
15

16 i〈Rµν [Dµf να
− , uα]〉 λV

16

17 i〈Rµν [Dαfµν
− , uα]〉 λV

17

18 i〈Rµν [Dαfαµ
− , uν ]〉 λV

18

19 i〈Rµν [fµα
− , hν

α]〉 λV
19

20 〈Rµν [fµν
− , χ−]〉 λV

20

21 i〈RµνDαDα(uµuν)〉 λV
21

22 〈RµνDαDαfµν
+ 〉 λV

22

This is quite a new classification. In the older papers where the basis is incomplete alternative

representation of these terms is used.

alternative O(p6) even parity coupling

1 〈DµRµν [χ−, uν ]〉 −fχ/M

2 i〈Rµν{[uµ, uν ], χ+}〉 1
2gm

V 1/M

3 i〈Rµν(uµχ+uν − uνχ+uµ)〉 1
2gm

V 1/M

4 〈Rµν{f+µν , χ+}〉 fm
V 1/M

5 〈Rµν [f−µν , χ−]〉 fm
V 2/M

6 〈χ+{Rµν , Rµν}〉 1
4em

V

The correspondence between these two sets of terms yields

λV
6 ↔ fm

V 1, λV
8 , λV

9 , λV
10 ↔ gm

V 1, g
m
V 2, fχ,

λV
20 ↔ fm

V 2, λV V
6 ↔ 1

4
em
V

The direct calculation leads to the following relations between some constants

λV
6 =

fm
V 1

M
, λV

20 =
fm

V 1

M
, λV V

6 =
em
V

2
(2.5.17)

The odd intrinsic parity sector has not been classified yet. We have just an incomplete list

of contributing terms

O(p6) odd parity with R coupling

1 εµνρσ〈Rµν{fρα
+ ,Dαuσ}〉 c1/M

2 εµκρσ〈Rµν{fρσ
+ ,Dνuκ}〉 c2/M

3 iεµνρσ〈Rµν{fρσ
+ , χ−}〉 c3/M

4 iεµνρσ〈Rµν [fρσ
− , χ+]〉 c4/M

5 εµνρσ〈DλRµν{fρλ
+ , uσ}〉 c5/M

6 εµκρσ〈DνRµν{fρσ
+ , uκ}〉 c6/M

7 εµνρσ〈DσRµν{fρλ
+ , uλ}〉 c7/M
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O(p6) odd parity with RR coupling

1 εµνασ〈{Rµν , Rαβ}Dβuσ〉 d1

2 εµναβ〈{Rµν , Rαβ}χ−〉 d2

3 ερσµλ〈{DνRµν , Rρσ}uλ〉 d3

4 ερσµα〈{DαRµν , Rρσ}uν〉 d4

Up to O(p6) we have to take into account also a term which is trilinear in the resonance

fields.

O(p6) with RRR coupling

1 i〈RµνRµρRνσ〉gρσ λV V V

2.6 Equivalence of both approaches

In this section we will study the correspondence between vector and antisymmetric tensor for-

malisms. We have already mentioned the problems connected with the contribution to the

effective chiral Lagrangians and now we show this feature directly on the Lagrangian level.

As it was recognized in [7] the naive correspondence connecting free vector and antisymmetric

tensor fields

R ↔ 1

M
V̂ ,

V ↔ − 1

M
W (2.6.1)

does not relate the Lagrangians properly. Let us now start with the simple antisymmetric tensor

Lagrangian

LT =
1

4
M2(R : R)− 1

2
(W ·W ) + (J2 : R). (2.6.2)

From the naive correspondence we obtain

LR → LV = −1

4
(V̂ : V̂ ) +

1

2
m2(V · V ) +

1

m
(J2 : V̂ ). (2.6.3)

However, the contributions to the effective chiral Lagrangians up to O(p6) are not identical (as

can be shown from last sections). For instance to restore equality up to O(p4) we have to add

the contact term

LT → LV −
1

m2
(J

(2)
2 : J

(2)
2 ). (2.6.4)

Therefore the naive substitution into the interaction terms with the sources Ji does not ensure

the equivalence of both formulations.

The correspondence of these two formulations was studied in the past (cf. references [6], [7],

[21], [22], [23], [24], [10]).
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Vector → tensor correspondence

In this subsection we start with the vector field Lagrangian LV and try to construct the antisym-

metric tensor field Lagrangian Leff
R which is equivalent to LV . Let us consider the Goldstone

boson effective action ΓV [Ji,K] defined as

ZV [Ji,K] = exp (iΓV [Ji,K]) =

∫
DV exp

(
i

∫
d4xLV

)
. (2.6.5)

The equivalence of LV and Leff
T means the equivalence of the contributions to the effective

action ΓV [Ji,K]

ZV [Ji,K] = exp (iΓV [Ji,K]) =

∫
DR exp

(
i

∫
d4xLeff

T

)
. (2.6.6)

Introducing an auxiliary antisymmetric tensor field R we can write

ZV [Ji,K] =

∫
DV exp

(
i

∫
d4xLV

)
(2.6.7)

=

∫
DVDR exp

(
i
∫

d4x
(

1
4m2(R : R) + LV

))
∫
DR exp

(
i
∫

d4x1
4m2(R : R)

) ≈
∫
DR exp

(
i

∫
d4xLeff

R

)
.

The auxiliary field R is merely an integration variable, it can be therefore freely redefined. In

the following we try to integrate out the vector field and get the expression for the effective

Lagrangian Leff
R which is completely equivalent to LV . The detailed calculation is done in

[A]. The result is an infinite series in powers of p and can be found in the same article. The

antisymmetric tensor field Lagrangian3 Leff(≤6)
R is not completely equivalent to the original

LV but is equivalent up to O(p6) and gives the same O(p6) chiral Lagrangian. The result for

Leff(≤6)
R can be written in the same form as the Lagrangian LR

Leff(≤6)
R =

1

4
M2(R : R)− 1

2
(W ·W ) +

(
Jeff

1 ·W
)

+ (Jeff
2 : R) (2.6.8)

+ (W · Jeff
3 : R) + (R : Jeff

4 : R) + (R : Jeff
5 ·D : R) + Leff,(≤6)contact

T .

where

Jeff
1 = − 1

m
J1, (2.6.9)

Jeff
2 = mJ2 −

2

m
J2 : J3 · J3 −

1

m
J1 · J3, (2.6.10)

Jeff
3 = −J3, (2.6.11)

Jeff
4 = −1

2
J3 · J3, (2.6.12)

Jeff
5 = 0, (2.6.13)

and the contact term

Leff(≤6),contact
R = (J2 : J2)−

1

2M2
(J1 · J1)−

2

M2
(J2 : J3 · J1)−

2

M2
(J2 : J3 · J3 : J2). (2.6.14)

3We have denoted L
eff(≤6)
R the effective Lagrangian L

eff
R where only terms up to O(p6) are taken into account.
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The sources Ji are taken, of course, from the vector formalism. The equivalence between the

vector and the effective antisymmetric tensor Lagrangian up to the order O(p6) cannot be

complete unless K = J3 = 0 in the original model. Then we have explicitly4 Leff(≥8)
R = 0 and

the infinite series reduces to Leff(≤6)
R . This condition is satisfied in the vector field formulation

so the equivalence between LR and Leff(≤6)
R is guaranteed.

Tensor → vector correspondence

Analogously, we want to find the effective vector Lagrangian Leff
V which is completely equivalent

to the antisymmetric tensor Lagrangian LR. Detailed calculation is done again in [A] and we

again obtain the infinite series of terms. The result up to O(p6) is then

Leff(≤6)
V =− 1

4
(V̂ : V̂ ) +

1

2
m2(V · V ) + (Jeff

1 · V ) + (Jeff
2 : V̂ ) (2.6.15)

+
1

2
(V ·Keff · V ) + (V · Jeff

3 : V̂ ) + Leff(≤6),contact
V (2.6.16)

where

Jeff
1 = mJ1,

Jeff
2 = − 1

m
J

(2)
2 ,

Keff = Jeff
3 = 0.

and the contact term

Leff(≤6),contact
V =

1

2
(J1 · J1)−

1

m2
(J

(2)
2 : J

(2)
2 )− 2

m2
(J

(2)
2 : J

(4)
2 ) +

4

m2
(J

(2)
2 : J4 : J

(2)
2 ) +

4

m4
(J

(2)
2 : D · J5 : J

(2)
2 ).

The equivalence between the antisymmetric tensor and the effective vector Lagrangian up to

the order O(p6) cannot be complete unless J3 = J4 = J5 = 0 in the original model. But the

concrete forms of the sources Ji in the antisymmetric tensor field formulation up to O(p6) do

not satisfy these conditions so the infinite series does not generally reduce to the finite number

of terms.

2.7 First order formalism

General properties

In last two subsections we have tried to prove the equivalence between the vector and the

antisymmetric tensor formulation up to O(p6). We have seen that the equivalence is not obtained

in the general case. It can be observed already on the level of the effective chiral Lagrangians

4
L

eff(≥8)
R are the terms from L

eff
R that are of order O(p8) or higher
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which neither start at the same order nor all terms are analogous. The antisymmetric tensor

formulation seems to be better (and it really is) but as it was mentioned in [8] and [12] it does

not create the contact term

LJ1
χ = −1

2
(J1 · J1) (2.7.1)

in the effective chiral O(p6) Lagrangian after integrating out the resonances. So it must be

added by hand as in [8]. All these problems lead us to find another formulation from which both

previous cases can be derived and which will be more general than the traditional descriptions.

Let us now start with the following simple first order Lagrangian

LV T =
1

4
M2(R : R) +

1

2
m2(V · V )− 1

2
M(R : V̂ ) + (J1 · V ) + (J2 : R) (2.7.2)

Using the derivation presented in the appendix of [A] we can write for the fields V µ and Rµν in

the momentum representation

Ṽ (p) = −∆V
F (p) ·

(
J̃1(p) +

2i

m
p · J̃2(p)

)
,

R̃(p) = −∆R
F (p) :

(
J̃2(p)− i

2m
̂
pJ̃1(p)

)
(2.7.3)

and thus (
Ṽ (p)

R̃(p)

)
= −

(
∆V

F (p) − i
m∆̂V

F (p)p
i
m∆R

F (p) · p ∆R
F (p)

)(
J̃1(p)

J̃2(p)

)
, (2.7.4)

where i∆V
F (p)µν and i∆R

F (p)µν ρσ are the covariant parts of the propagators of vector and anti-

symmetric tensor fields (it means that they are reconstructed in the first order formalism). We

use the notation of two-point Green functions as in [A]

= 〈T Ṽµ(p)Vν(0)〉 = i∆V
F (p)µν ,

= 〈TR̃µν(p)Rρσ(0)〉 = i∆R
F (p)µν ρσ ,

= 〈T Ṽσ(p)Rµν(0)〉 = i∆RV
F (p)σ µν ,

= 〈TR̃µν(p)Vσ(0)〉 = i∆RV
F (−p)σ µν = −i∆RV

F (p)σ µν . (2.7.5)

It is not difficult to prove, that the off-diagonal mixed propagator reads

∆RV
F (p) = − i

m
∆̂V

F (p)p = − i

m
∆R

F (p) · p =
i

p2 −m2 + i0

i

m
(gσµpν − gσνpµ) . (2.7.6)

This approach was first introduced in [A], we call it the first order formalism as it is clear from

the construction.

Effective chiral Lagrangian

Let us now discuss the general case of first order Lagrangian up to O(p6) maximally bilinear in

resonances,

LV T =
1

4
m2(R : R) +

1

2
m2(V · V )− 1

2
m(R : V̂ ) +

1

2
(V ·K · V ) + (J1 · V )

+ (J2 : R) + (V · J3 : R) + (R : J4 : R) + (R : J5 ·D : R). (2.7.7)
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The solutions of the equations of motion to the lowest order are

R =
2

m2
J

(2)
2 ,

V = − 1

m2

(
J1 −

2

m3
J3 : J

(2)
2 − 2

m
D · J (2)

2

)

that indicate the chiral counting R = O(p2) and V = O(p3) (as it is usual). We can then

organize the Lagrangian as follows

LV T = L(4)
V T + L(6)

V T + L(8)
V T (2.7.8)

where

L(4)
V T =

1

4
m2(R : R) + (J

(2)
2 : R), (2.7.9)

L(6)
V T =

1

2
m2(V · V )− 1

2
m(R : V̂ ) + (J1 · V ) + (J

(4)
2 : R) + (V · J3 : R)

+(R : J4 : R) + (R : J5 ·D : R), (2.7.10)

L(8)
V T =

1

2
(V ·K · V ). (2.7.11)

The corresponding effective chiral Lagrangian up to O(p6) is

Lχ,V T = L(4)
χ,V T + L(6)

χ,V T (2.7.12)

where

L(4)
χ,V T = − 1

m2
(J

(2)
2 : J

(2)
2 ),

L(6)
χ,V T = − 1

2m2
(J1 · J1)−

2

m2
(J

(2)
2 : J

(4)
2 ) +

2

m4
(D · J (2)

2 · J (2)
2 · ←−D)

+
2

m3
(D · J (2)

2 · J1)−
4

m5
(D · J (2)

2 · J3 : J
(2)
2 ) +

4

m4
(J

(2)
2 : J4 : J

(2)
2 )

+
4

m4
(J

(2)
2 : J5 ·D : J

(2)
2 )− 2

m6
(J

(2)
2 : J3 · J3 : J

(2)
2 ) +

2

m4
(J1 · J3 : J

(2)
2 ).

As it was shown in [A] it is possible to integrate out the vector or the antisymmetric tensor fields

and to derive the corresponding effective vector or effective antisymmetric tensor Lagrangians

up to O(p6) that are completely equivalent to the original vector, resp. antisymmetric tensor

Lagrangians. So, the first order formalism can be assumed as a new way how to describe vector

resonances in RχT or at least as a consistent method how to find the contact terms that must be

added to vector or antisymmetric tensor Lagrangians when generating complete effective chiral

Lagrangians.

Complete basis of terms

The complete basis of terms is identical with the sum of terms from the vector and antisymmetric

tensor formalisms. Moreover, we have one mixing term coming from the source J3 coupled to

the resonance fields.
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O(p6) mixing term coupling

1 ǫαβµν〈{V α, Rµν}uβ〉 1
2MσV

2.8 Summary of the chapter

In this chapter, we have investigated the general properties of Resonance Chiral Theory (RχT).

It is motivated by large NC QCD which contains the infinite tower of resonances and fully de-

scribes the spectrum of hadrons. In RχT we restrict ourselves just to the lightest resonances

in each channel. Satisfying all symmetry properties dictated by QCD we can construct the

phenomenological Lagrangians for resonances and find the connection of their coupling con-

stants with LEC from χPT. In the following we have discussed one type of resonances - vector

resonances 1−−, the discussion and the calculations with other types of resonances would be

analogous.

The vector resonances can be described in two ways - using vector or antisymmetric tensor

fields. It is shown in this chapter and in [A] that these formalisms are not fully equivalent and

when integrating out the resonances they give different effective chiral Lagrangians (effective

contribution of resonances in χPT) so it is necessary to add some contact terms in both reso-

nance Lagrangians. Therefore, we have introduced the alternative formulation - the first order

formalism, that is in some sense a generalization of both traditional descriptions. The effective

chiral Lagrangian then contains all possible terms and there is not necessary to add any terms

by hand. Finally, we have also presented the complete basis of interaction terms in all three

formalisms that will be useful in the concrete calculations in the following chapters.



CHAPTER 3

Green functions at tree level

Our first goal is to investigate the behavior of two and three point Green function in the frame-

work of Resonance Chiral Theory. In the leading order in 1/NC tree diagrams dominate and

the contributions from loops could be neglected.

First, we mention the general properties of correlators and then we do the explicit calculations

in all three formalisms. Finally, some relations between coupling constants are found in order

to satisfy high energy constraints.

3.1 General properties

Correlators

In quantum mechanics the Green function G(x1, x2, t1, t2) describes the propagation of a particle

from one point to another. In QFT we work with quantum fields and analogously as in quantum

mechanics, we can define the two point Green function as

〈0|T [Oα(x)Oβ ]|0〉. (3.1.1)

where α, β represent both Lorentz and group indices. Because of the translation invariance of

the theory we can use the relation

〈0|T [Oα(x)Oβ(y)]|0〉 = 〈0|T [Oα(x− y)Oβ(0)]|0〉. (3.1.2)

In is often useful to define this object (often referred to a correlator of quantum fields) also in

the momentum representation

Παβ(p) ≡ 〈0|T [Õα(p)Oβ(0)]|0〉 =

∫
d4xeipx〈0|T [Oα(x)Oβ(0)]|0〉. (3.1.3)
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The asymptotic behavior of two point Green functions can provide us with information about

the spectrum of one particle states |p, λ〉. They correspond to the poles in Παβ(p)

〈0|T [Õα(p)Oβ(0)]|0〉 ≈p2→m2
i

p2 −m2 + iǫ

∑

λ

〈0|Oα|p, λ〉〈p, λ|O†
β |0〉

+ regular terms (3.1.4)

where we denote λ all internal indices. So, if we know the Green function we can reconstruct

the matrix element 〈0|Oα|p, λ〉 6= 0 of one particle state |p, λ〉.
We can also define the n-point Green functions as

〈0|T [O1(x1)O2(x2) . . .On(xn)]|0〉. (3.1.5)

where all Lorentz and internal symmetry indices are suppressed. In the momentum representa-

tion we have

〈0|T [Õ1(p1)Õ2(p2) . . .On(0)]|0〉 (3.1.6)

=

∫
d4x1d

4x2 . . . d4xn−1e
i(p1x1+p2x2+...pn−1xn−1)〈0|T [O1(x1)O2(x2) . . .On(0)]|0〉

For example, in the future we will discuss 〈V V P 〉 correlator which can be obtained from the

general case setting O1 = V a
µ , O2 = V b

ν and O3 = P c.

Operator product expansion

Following the arguments in [25] we construct the expansion of the time order product of operators

called OPE (operator product expansion) for the limit x→ 0

T [Oα(x)Oβ(0))] =
∑

n=0

Cαβ
n (x)An(0). (3.1.7)

where Cαβ
n (x) is are c-numbers. It provides us with information about short distance (high

energy) behavior of a given correlator. The vacuum expectation value of (3.1.7) can be written

in the form

〈0|T [Oα(x)Oβ(0)]|0〉 =
∑

n=0

Cαβ
n (x)an (3.1.8)

with an = 〈0|An(0)|0〉. This result can be expanded in terms of x.

〈0|T [Oα(x)Oβ(0)]|0〉 =

∞∑

n=−∞
cαβ
n xn (3.1.9)

Let us now investigate the short distance behavior of the correlator, i.e. x→ 0. In what follows

we are interested only in leading order and the result can be written in the simplified form

〈0|T [Oα(x)Oβ(0)]|0〉 =
cαβ
n

xn
+O

(
1

xn−1

)
(3.1.10)
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If Oα are bosonic fields then only the terms proportional to even powers of x can survive and

we can write

〈0|T [Oα(x)Oβ(0)]|0〉 =
cαβ
n

x2n
+O

(
1

x2(n−1)

)
(3.1.11)

In the general case we can find the OPE for the more point Green function. Considering that all

xi are of the same order (∼ ǫ) we can then write the expansion in terms of this small quantity.

If we write OPE in momentum representation and take all non-exceptional momenta to

infinity (it is the analog of xi → 0), pi → λpi where λ→∞ we obtain the expansion in terms of

λ in the deep euclidean region that gives us the constraints which we compare with the results

calculated in RχT. In order to satisfy these constraints we can obtain the set of relations between

coupling constants. These relations will be then applied on the result in the low energy limit

and compared with the χPT prediction. Finally, we find the set of relations for saturation of

LECs valid in the leading order in 1/NC expansion.

3.2 Simple Green functions

In this section we focus on the properties of simple Green functions, concretely two-point corre-

lators 〈V V 〉, 〈PP 〉 and vector formfactor.

〈PP 〉 correlator

Two point 〈PP 〉 correlator is defined as

(ΠPP )ab
µν(p) =

∫
d4xeip·x〈0|T [P a(x)P b(0)]|0〉. (3.2.1)

There is no tensor structure so the general form of the correlator can be written in the form

(ΠPP )ab
µν(p) = iδabΠPP (p2). (3.2.2)

The OPE expansion can be found in appendix A, the high energy behavior then reads

ΠPP (λ2p2) =
3p2

16π2
λ2 ln λ2 +O(λ0, αs) (3.2.3)

The O(p4) and O(p6) Lagrangians contributing to this correlator are

L(4)
χ =

L8

2
〈χ2

− + χ2
+〉+ iL11〈χ−(Dµuµ + i/2χ−)〉

− L12〈(Dµuµ + i/2χ−)2〉+ H2

4
〈χ2

+ − χ2
−〉, (3.2.4)

L(6)
χ =c91〈DµχDµχ†〉. (3.2.5)

There is no 1−− resonance contribution at tree level. We have only pure χPT result.

ΠPP (p2) = −F 2B2
0

p2

(
1− 4(L11 − L12)p

2

F 2

)2

− 4B2
0(2L11 + H2 − L12 − 2L8)− 4B2

0p2c91

= −FB2
0

p2
− 4B2

0(L12 + H2 − 2L8)− 4B2
0

(
c91 +

4(L11 − L12)
2

F 2

)
p2 (3.2.6)
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Figure 3.1: Diagrams contributing to PP correlator.

In order to satisfy the high energy constraints we do not have to impose any relation. In the

low energy limit we just restore the result in Chiral perturbation theory, when the LEC with

tilde are substituted by the LEC from χPT Lagrangian. As a result, there is no saturation of

LEC from vector resonances (of course other types of resonances could contribute).

〈V V 〉 correlator

Two point 〈V V 〉 correlator is defined as

(ΠV V )ab
µν(p) =

∫
d4xeip·x〈0|T [V a

µ (x)V b
ν (0)]|0〉. (3.2.7)

Using the Ward identities, pµ(ΠV V )ab
µν = 0 we get

(ΠV V )ab
µν(p) = iδabΠV V (p2)(p2gµν − pµpν) (3.2.8)

The OPE constraints up to leading order have the form

ΠV V (λ2p2) = − 1

8π2
ln λ2 +O

(
1

λ2
, αs

)
(3.2.9)

Figure 3.2: Diagrams contributing to VV correlator.

The low energy result calculated in χPT is determined by the contribution of the terms

L(4)
χ =

L10

4
〈f+µνf

µν
+ − f−µνf

µν
− 〉+

H1

2
〈f+µνf

µν
+ + f−µνf

µν
− 〉, (3.2.10)

L(6)
χ = c93〈DρFLµνDρFµν

L 〉+ L→ R. (3.2.11)

and the result for the formfactor has the form

Πχ
V V (p2) = 2L10 + 4H1 + 4c93p

2. (3.2.12)
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Vector formalism

There is only one simple contribution coming from interaction term

LV = − fV

2
√

2
〈V̂ µνf+µν〉, (3.2.13)

and the formfactor in vector formalism reads

ΠV V (p2) =
f2

V p2

p2 −M2
+ 2L̃10 + 4H̃1 + 4c̃93p

2. (3.2.14)

In high energy limit for λ→∞ we have

ΠV V (λ2p2) = 4c̃93λ
2p2 + 2L̃10 + 4H̃1 + f2

V +O
(

1

λ2

)
(3.2.15)

Compatibility with high energy constraints requires

c̃93 = 0. (3.2.16)

For p→ 0 we can write

ΠV V (p2) = 2L̃10 + 4H̃1 −
(

f2
V

M2
+ 4c̃93

)
p2 +O(p4) (3.2.17)

Applying the high energy relation we find the relations

L10 + 2H1 = L̃10 + 2H̃1, (3.2.18)

c93 = − f2
V

4M2
. (3.2.19)

The first relation says that there is now resonance saturation in the combination of these O(p4)

low energy constants. For the O(p6) constant c93 we have found the exact prediction in terms

of resonance couplings.

Antisymmetric tensor formalism

Analogous interaction Lagrangian term in antisymmetric tensor formalism has not only O(p6)

but also O(p4) contribution

LR =
FV

2
√

2
〈Rµνf+µν〉+ λV

22〈RµνDαDαfµν
+ 〉. (3.2.20)

The result can be then written in the form

ΠV V (p2) =
1

p2 −M2

(
F 2

V − 4
√

2FV λV
22p

2 + 8(λV
22)

2p4
)

+ 2L̃10 + 4H̃1 + 4c̃93p
2. (3.2.21)

In high energy limit for λ→∞ we have

ΠV V (λ2p2) =
(
4c̃93 + 8(λV

22)
2
)
λ2p2−4

√
2FV λV

22 +8(λV
22)

2M2 +2L̃10 +4H̃1 +O
(

1

λ2

)
(3.2.22)
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Compatibility with high energy constraints requires

c̃93 = −2(λV
22)

2. (3.2.23)

For p→ 0 we can write

ΠV V (p2) = 2L̃10 + 4H̃1 −
F 2

V

M2
−
(

F 2
V

M4
− 4
√

2FV λV
22

M2
− 4c̃93

)
p2 +O(p4) (3.2.24)

Applying (3.2.23) we find again the saturation of the constant c93 in terms of couplings from

the antisymmetric tensor Lagrangian and also the nontrivial contribution to the O(p4) LECs

c93 = − 1

4M4
(FV − 2

√
2λV

22M
2)2, (3.2.25)

2L10 + 4H1 = 2L̃10 + 4H̃1 −
F 2

V

M2
. (3.2.26)

First order formalism

In first order formalism we have the terms of interaction Lagrangian which are the sum of those

in vector and antisymmetric tensor formalisms.

LR = − fV

2
√

2
〈V̂ µνf+µν〉+

FV

2
√

2
〈Rµνf+µν〉+ λV

22〈RµνDαDαfµν
+ 〉. (3.2.27)

The result is of the form

ΠV V (p2) =
F 2

V

p2 −M2
− p2

p2 −M2

[
−f2

V + 4
√

2FV λV
22 +

2fV FV

M

]

− p4

p2 −M2

[
−8(λV

22)
2 − 4

√
2fV λV

22

M

]
+ 2L̃10 + 4H̃1 + 4c̃93p

2 (3.2.28)

In high energy limit for λ→∞ we have

ΠV V (λ2p2) =

(
4c̃93 − 8(λV

22)
2 − 4

√
2fV λV

22

M

)
λ2p2 + 4

√
2FV λV

22 − 8(λV
22)

2M2

− 4
√

2fV λV
22M − f2

V +
2FV fV

M
+ 2L̃10 + 4H̃1 +O

(
1

λ2

)
(3.2.29)

Analogously for c̃93 we obtain

c̃93 = −2(λV
22)

2 −
√

2fV λV
22

M
. (3.2.30)

The low energy result reads

ΠV V (p2) =2L̃10 + 4H̃1 −
F 2

V

M2
(3.2.31)

−
(

F 2
V

M4
− 4
√

2FV λV
22

M2
+

f2
V

M2
− 2FV fV

M
− 4c̃93

)
p2 +O(p4)
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Applying (3.2.30) one finds

c93 = − 1

4M4
(FV − fV M − 2

√
2λV

22M
2)2, (3.2.32)

L10 + 2H1 = L̃10 + 2H̃1 −
F 2

V

2M2
. (3.2.33)

Taking fV = 0 we restore the result from the antisymmetric tensor formalism and for FV =

λV
22 = 0 we get the relation known from the vector formalism.

Vector formfactor

The vector formfactor is defined as the matrix element

Fµ,abc(q2) = i〈φb(p1)φ
c(p2)|V µ,a|0〉 (3.2.34)

where qµ = (p1+p2)
µ and p2

1 = p2
2 = 0 (off-shell external pions). Symmetry properties determine

the group and tensor structure uniquely.

〈φb(p1)φ
c(p2)|V µ,a|0〉 = iF(q2)fabc(p2 − p1)

µ (3.2.35)

High energy constraints require vanishing of F(q2) for q2 →∞.

Figure 3.3: Diagrams contributing to vector form factor.

The Lagrangian terms of χPT contributing to the vector formfactor are (including O(p2)

term)

L(4)
χ = −iL9〈fµν

+ uµuν〉 − L12〈DµuµDνuν〉,
L(6)

χ = ic88〈Dρfµν
+ [hµρ, uν ]〉+ ic90〈Dµfµν

+ [hνρ, u
ρ]〉

with the result

Fχ(q2) = 1 +
2L9q

2

F 2
+

4(c90 − c88)q
4

F 2
. (3.2.36)

Vector formalism

The terms in interaction resonance Lagrangian that contribute to the formfactor are

LV = − fV

2
√

2
〈V̂ µνf+µν〉 −

igV

2
√

2
〈V̂ µν [uµ, uν ]〉 (3.2.37)
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The formfactor then reads

F(q2) = 1− fV gV

F 2

q4

q2 −M2
+

L̃9q
2

2F 2
+

4(c̃90 − c̃88)q
4

F 2
. (3.2.38)

In high energy limit for q2 →∞ we have

F(q2) =
4(c̃90 − c̃88)

F 2
q4 −

(
fV gV

F 2
− 2L̃9

F 2

)
q2 + 1− fV gV M2

F 2
+O

(
1

q2

)
(3.2.39)

Compatibility with high energy constraints requires

c̃90 = c̃88, (3.2.40)

fV gV M2 = F 2, (3.2.41)

fV gV = 2L̃9. (3.2.42)

For low energies, q2 → 0, we can write

F(q2) = 1 +
2L̃9

F 2
q2 +

(
fV gV

M2F 2
+

4(c̃90 − c̃88)

F 2

)
q4 +O(q6) (3.2.43)

Applying the relations found in matching with OPE at large energies one finds

F(q2) = 1 +
q2

M2
+

q4

M4
+O(q6). (3.2.44)

Comparing with the prediction of χPT we obtain the relations for LEC

L9 =
F 2

2M2
, (3.2.45)

c90 − c88 =
F 2

4M4
. (3.2.46)

together with the relation (3.2.41).

Antisymmetric tensor formalism

In antisymmetric tensor formalism we have as usual O(p4) and O(p6) terms contributing to the

formfactor

LR =
FV

2
√

2
〈Rµνf+µν〉+

iGV

2
√

2
〈Rµν [uµ, uν ]〉

+ iλV
21〈RµνDαDα(uµuν)〉+ λV

22〈RµνDαDαfµν
+ 〉 (3.2.47)

The formfactor then reads

F(q2) = 1− 1

F 2

q2

q2 −M2

(
FV − 2

√
2q2λV

22

)(
GV −

√
2q2λV

21

)

+
2L̃9q

2

F 2
+

4(c̃90 − c̃88)q
4

F 2
. (3.2.48)
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In high energy limit for q2 →∞ we have

F(q2) =
4q4

F 2
(c̃90 − c̃88 − λV

21λ
V
22) (3.2.49)

+
q2

F 2

(√
2FV λV

21 + 2
√

2GV λV
22 − 4M2λV

21λ
V
22 + 2L̃9

)

+1 +
1

F 2

[
2
√

2λV
22(GV M2 −

√
2M4λV

21)− FV (GV −
√

2M2λV
21)
]

+O
(

1

q2

)

The compatibility with high energy constraints requires

c̃90 − c̃88 = λV
21λ

V
22, (3.2.50)

L̃9 = −FV λV
21√

2
−
√

2GV λV
22 + 2M2λV

21λ
V
22, (3.2.51)

F 2 = FV (GV −
√

2M2λV
21)− 2

√
2λV

22(GV M2 −
√

2M4λV
21). (3.2.52)

For q2 → 0 we can write

F(q2) = 1 +
q2

F 2

(
FV GV

M2
+ 2L̃9

)
(3.2.53)

+
q4

F 2

(
4(c90 − c88)−

√
2

M2
(FV λV

21 + 2GV λV
22) +

FV GV

M4

)
q4 +O(q6)

Taking into account the conditions (3.2.50)-(3.2.52) we obtain the same form of the formfactor

(3.2.44) as in the vector formalism together with the same relations for LECs.

First order formalism

The contributing Lagrangian is here just the sum of LV and LR, LRV = LR + LV . For the

formfactor we obtain the more general result as in the previous cases

F(q2) =1− fV gV

F 2

q4

q2 −M2
− 1

F 2

q2

q2 −M2

(
FV − 2

√
2q2λV

22

)(
GV −

√
2q2λV

21

)

+
gV

MF 2

q4

q2 −M2

(
FV − 2

√
2q2λV

22

)
+

fV

MF 2

q4

q2 −M2

(
GV −

√
2q2λV

21

)

+
2L9q

2

F 2
+

4(c90 − c88)q
4

F 2
(3.2.54)
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In the high energy limit for q2 →∞ we have

F(q2) =
4q4

F 2

(
c̃90 − c̃88 − λV

21λ
V
22 −

fV λV
21 + 2gV λV

22

2
√

2M

)
(3.2.55)

+
q2

F 2

{
(FV − 2

√
2M2λV

22)gV

M
− fV gV + 2L̃9 +

fV (GV −
√

2M2λV
21)

M

+
√

2FV λV
21 + 2

√
2λV

22(GV −
√

2M2λV
21)

}

+

{
1− fV gV M2

F 2
+

fV M(GV −
√

2M2λV
21)

F 2
+

gV M(FV − 2
√

2M2λV
22)

F 2

+
2
√

2M2λV
22(GV −

√
2M2λV

21)

F 2
− FV GV

F 2
+

√
2FV M2λV

21

F 2

}
+O

(
1

q2

)

The compatibility with high energy constraints requires

c̃90 − c̃88 = λV
21λ

V
22 +

fV λV
21 + 2gV λV

22

2
√

2M
, (3.2.56)

L̃9 = − FV λV
21√

2
−
√

2λV
22(GV −

√
2M2λV

21) +
fV gV

2

+
(FV − 2

√
2M2λV

22)gV

2M
+

fV (GV −
√

2M2λV
21)

2M
, (3.2.57)

F 2 = fV gV M2 − fV M(GV −
√

2M2λV
21)− gV M(FV − 2

√
2M2λV

22)

− 2
√

2M2λV
22(GV −

√
2M2λV

21) + FV GV −
√

2FV M2λV
21. (3.2.58)

For q2 → 0 we can write

F(q2) =1 +
q2

F 2

(
FV GV

M2
+ 2L̃9

)
+

q4

F 2

{
fV gV

M2
− (FV gV + GV fV )

M3
(3.2.59)

+ 4(c̃90 − c̃88) +
FV GV

M4
−
√

2FV λV
21 + 2

√
2GV λV

22

M2

}
+O(q6)

Again, we obtain the same relations for LECs as in the vector and the antisymmetric tensor

formalisms.

We continue our discussion of Green functions in χT focusing on the more complicated case

of the three point correlator.

3.3 〈V V P 〉 correlator

This correlator was already studied in [11, 9, 26]. We enlarge this study by taking account

the complete O(p6) Lagrangian in the antisymmetric tensor formalism and we also include the

calculations in the first order formalism. The result can be then applied for many processes, ie.

π → 2γ.
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General properties

The definition of the correlator in the momentum representation is

(ΠV V P )abc
µ (p, q) =

∫
d4x

∫
d4yei(p·x+q·y)〈0|T [V a

µ (x)V b
ν (y)P c(0)|0〉. (3.3.1)

Denoting r = −p− q we can write the Ward identities in the form

−ipµ(ΠV V P )abc
µν = ifabd〈0|T Ṽ d

ν (p + q)P c(0)|0〉 + ifacd〈0|T Ṽ b
ν (q)P d(0)|0〉 = 0 (3.3.2)

where

(ΠV P )cdµ = 〈0|T Ṽ c
µ (p)P d(0)|0〉, (3.3.3)

which is identically zero. The similar calculation can be done for the second independent mo-

mentum. As a result, we obtain

pµ(ΠV V P )abc
µν = qν(ΠV V P )abc

µν = 0 (3.3.4)

Together with the invariance under P and C transformation we get the structure,

(ΠV V P )abc
µν = ǫµναβpαqβdabcFV V P (p2, q2, r2) (3.3.5)

with the four-vector r = −p − q and formfactor F(p2, q2, r2) is symmetric under p ↔ q. The

OPE calculations can be found in the appendix, in the high energy limit we have

lim
λ→∞

∫
d4x d4y eiλpx+iλqy〈0|T [V a,µ(x)V b,ν(y)P c(0)]|0〉 (3.3.6)

=
1

λ2

B0F
2
0 dabc

2
ǫµναβpαqβ

p2 + q2 + (p + q)2

p2q2(p + q)2
+O

(
1

λ4
, αs

)

which means that the formfactor FV V P must satisfy the relation

FV V P (λ2p2, λ2q2, λ2r2) =
B0F

2
0

2λ4

p2 + q2 + r2

p2q2r2
+O

(
1

λ6

)
(3.3.7)

The χPT Lagrangian is here enlarged by the Wess-Zumino term LWZ

L(4)
χPT = iL11〈χ−

(
Dµuµ +

i

2
χ−

)
〉 − L12〈

(
Dµuµ +

i

2
χ−

)2

〉, (3.3.8)

L
(4)
WZ = −

√
2NC

8π2F
dabcǫµναβ〈Φ∂µvν∂αvβ〉, (3.3.9)

L(6)
χPT = icW

7 ǫµνρσ〈χ−fµν
+ fρσ

+ 〉+ cW
22ǫµνρσ〈uµ{Dγfγν

+ , fρσ
+ }〉. (3.3.10)

(3.3.11)

The formfactor for χPT yields

Fχ
V V P (p2, q2, r2) = 32B0c

W
7 −

8B0c
W
22 (p2 + q2)

r2
− NCB0

8π2r2

(
1− 4(L11 − L12)r

2

F 2

)
(3.3.12)

In the low energy limit we have

Fχ
V V P ((ǫp)2, (ǫq)2, (ǫr)2) = − 1

ǫ2

NCB0

8π2r2
+ 32B0c

W
7 (3.3.13)

− 8B0c
W
22 (p2 + q2)

r2
+

NCB0(L11 − L12)

2π2F 2
+ ǫ2 32B0c

W
22 (p2 + q2)

F 2
+O(ǫ2)

and this relation will be useful in the matching it with the result calculated in RχT.
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Figure 3.4: Diagram topologies contributing to VVP correlator.

Resonance contribution

Vector formalism

In the vector formalism we have the following O(p6) resonance Lagrangians

L(6)
V = − fV

2
√

2
〈V̂µνf

µν
+ 〉+ hV ǫµναβ〈V µ{uν , fαβ

+ 〉, (3.3.14)

L(8)
V =

1

2
σV ǫαβµν〈{V̂ µν , V α}uβ〉 (3.3.15)

where we have explicitly introduced also one of the contributing O(p8) terms that has the

analogue in the O(p6) term in the first order formalism. The formfactor then reads

FV
V V P (p2, q2, r2) =

B0

r2

{
− 2σV f2

V p2q2

(p2 −M2)(q2 −M2)
+

4
√

2p2hV fV

(p2 −M2)

}
(3.3.16)

+ 32B0c̃
W
7 −

8c̃W
22B0(p

2 + q2)

r2
− NCB0

16π2r2

(
1− 4(L̃11 − L̃12)r

2

F 2

)
+ (p↔ q)

Figure 3.5: Diagrams in vector formalism.

In the high energy region we have

limλ→∞FV
V V P ((λp)2, (λq)2, (λr)2) = (3.3.17)

λ2 32B0(L̃11 − L̃12)c̃
W
22 (p2 + q2)

F 2
+

B0NC(L̃11 − L̃12)

2π2F 2

+ 32c̃W
7 B0 −

8B0c̃
W
22 (p2 + q2)

r2
+

B0

λ2

(
−4σV f2

V

r2
+

8
√

2hV fV

r2
− NC

8π2r2

)

+
B0

λ4

(
4fV (

√
2hV − fV σV )(p2 + q2)M2

p2q2r2

)
+O

(
1

λ6

)
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By setting some relations between the coupling constants we can satisfy the high energy

constraints up to the order 1/λ2 but the condition proportional to 1/λ4 can be satisfied in no

way. Therefore, the result in the vector formalism is not consistent with high energy constraints

and no saturation of χPT LECs can be found.

Antisymmetric tensor formalism

The Lagrangian in the antisymmetric tensor formalism that contribute to the 〈V V P 〉 correlator

is much richer than in the vector case so there is a chance that some relations between coupling

constants allow us to satisfy the high energy constraints.

L(4)
R =

FV

2
√

2
〈Rµνf

µν
+ 〉, (3.3.18)

L(6)
R =

c1

M
ǫµνρσ〈{Rµν , fρα

+ }Dαuσ〉+ c2

M
ǫµνρσ〈{Rµα, fρσ

+ }Dαuν〉

+
ic3

M
ǫµνρσ〈{Rµν , fρσ

+ χ−〉+
c4

M
ǫµνρσ〈Rµν [fρσ

− , χ+]〉

+
c5

M
ǫµνρσ〈{DαRµν , fρα

+ }uσ〉+ c6

M
ǫµνρσ〈{DαRµα, fρσ

+ }uν〉

+
c7

M
ǫµνρσ〈{DσRµν , fρα

+ }uα〉

+iλV
21〈RµνDαDα(uµuν)〉+ λV

22〈RµνDαDαfµν
+ 〉 (3.3.19)

The result in this formalism has the form

FR
V V P (p2, q2, r2) = (3.3.20)

B0

{
2(FV − 2

√
2λV

22p
2)(FV − 2

√
2λV

22q
2)

(d1 − d3)r
2 + d3(p

2 + q2)

(p2 −M2)(q2 −M2)r2

+
16d2(FV − 2

√
2λV

22p
2)2

(p2 −M2)(q2 −M2)
+

16
√

2c3(FV − 2
√

2λV
22p

2)

M(p2 −M2)

− NC

16π2r2

(
1− 4(L̃11 − L̃12)r

2

F 2

)
+

2
√

2

M
(FV − 2

√
2λV

22p
2)×

× r2(c1 + c2 − c5) + p2(−c1 + c2 + c5 − 2c6) + q2(c1 − c2 + c5)

r2(p2 −M2)
(3.3.21)

+ 32c̃W
7 −

8c̃W
22 (p2 + q2)

r2
− NC

16π2r2

(
1− 4(L̃11 − L̃12)r

2

F 2

)}
+ (p↔ q)
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Figure 3.6: Diagrams in antisymmetric tensor formalism.

In the high energy region we have

limλ→∞FR
V V P ((λp)2, (λq)2, (λr)2) = B0 ×

{

λ2 32c̃W
22 (L̃11 − L̃12)

F 2

+
1

λ0

[
p2 + q2

r2

(
32d3(λ

V
22)

2 +
16(c6 − c5)λ

V
22

M
− 8c̃W

22

)
+ 32(λV

22)
2(d1 + 8d2 − d3)

−16λV
22

M
(c1 + c2 + 8c3 − c5) + 32c̃W

7 +
NC(L̃11 − L̃12)

2π2F 2

]

+
1

λ2

[
p2 + q2

p2q2

{
2
√

2

(
FV

M
− 2
√

2λV
22M

)
(c1 + c2 + 8c3 − c5)

− 8
√

2MλV
22

(
FV

M
− 2
√

2λV
22M

)
(d1 + 8d2 − d3)

}

+
p4 + q4

p2q2r2

{
2
√

2

(
FV

M
− 2
√

2λV
22M

)
(c1 − c2 + c5)

− 8
√

2λV
22Md3

(
FV

M
− 2
√

2MλV
22

)}

+
1

r2

{
− 4
√

2

(
FV

M
− 2
√

2λV
22M

)
(c1 − c2 − c5 + 2c6)

−16
√

2MλV
22d3

(
FV

M
− 2
√

2λV
22M

)
− NC

8π2

}]

+
1

λ4

[
1

p2q2

{
4(FV − 2

√
2λV

22M
2)2(d1 + 8d2 − d3)

}

+
p2 + q2

p2q2r2

{
4(F 2

V − 6
√

2FV λV
22M

2 + 16(λV
22)

2M4)

− 2
√

2M2

(
FV

M
− 2
√

2λV
22M

)
(c1 − c2 − c5 + 2c6)

}

+
p4 + q4

p4q4

{
2
√

2M2

(
FV

M
− 2
√

2λV
22M

)
(c1 + c2 + 8c3 − c5)

− 8
√

2λV
22M

3

(
FV

M
− 2
√

2λV
22M

)
(d1 + 8d2 − d3)

}

+
p6 + q6

p4q4r2

{
2
√

2M2

(
FV

M
− 2
√

2λV
22M

)
(c1 − c2 + c5 − 4λV

22Md3)

}]}

+O
(

1

λ6

)
(3.3.22)
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To fulfill the high energy conditions we have to demand

c1 = −4c3 (3.3.23)

c2 = −4c3 + c5 (3.3.24)

c6 = c5 −
NCM

64
√

2π2FV

(3.3.25)

d1 = −8d2 −
NCM2

64π2F 2
V

+
F 2

4F 2
V

(3.3.26)

d3 = − NCM2

64π2F 2
V

+
F 2

8F 2
V

(3.3.27)

λV
22 = 0 (3.3.28)

c̃W
7 = −NC(L̃11 − L̃12)

64π2F 2
(3.3.29)

c̃W
22 = 0. (3.3.30)

If these conditions are satisfied, the result simplifies to

FR
V V P (p2, q2, r2) =

B0F
2

2

p2 + q2 + r2 − NC

4π2
M4

F 2

(p2 −M2)(q2 −M2)r2
(3.3.31)

which coincides with the lowest meson dominance (LMD) approximation developed in [26, 9].

FR
V V P ((ǫp)2, (ǫq)2, (ǫr)2) = − 1

ǫ2

B0NC

8π2r2
+

F 2

2M4
+

p2 + q2

r2

(
F 2

2M4
− NC

8π2M2

)

+ ǫ2

{
p4 + q4

r2

(
F 2

2M6
− NC

8π2M4

)
+

p2q2

r2

(
F 2

M6
− NC

8π2M4

)
+ (p2 + q2)

F 2

2M6

}
+O(ǫ4)

(3.3.32)

and comparing with the χPT prediction up to O(1) we finally get the relations

cW
7 = −NC(L11 − L12)

64π2F 2
+

F 2

64M4
, (3.3.33)

cW
22 =

NC

64π2M2
− F 2

16M4
. (3.3.34)

The relation (3.3.33) confirms the well known fact that the O(p4) constants L11 and L12 can be

effectively included in the O(p6) constant cW
7 . The reason is that the corresponding operators

are proportional to the classical O(p2) equations of motion and can be removed by means of the

field redefinition.

First order formalism

The Lagrangian in the first order formalism up to O(p6) is identical with the sum of Lagrangians

from the vector and the antisymmetric tensor formalisms (up to O(p6)). Moreover, we have one
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mixing term that is analogous of the O(p8) interaction term in the Proca field Lagrangian that

was already mentioned. So we can write

LRV = L(4)
R + L(6)

R + L(6)
V +

1

2
MσV ǫαβµν〈{V α, Rµν}uβ〉 (3.3.35)

The result for the formfactor then reads

Figure 3.7: Diagrams in first order formalism. The thick line represents the sum of double line

(antisymmetric tensor fields) and thin line (vector fields).
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where

FV (q2) = FV − fV
q2

M
− 2
√

2λV
22q

2 (3.3.37)
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In the high energy region we have

lim
λ→∞

FRV
V V P ((λp)2, (λq)2, (λr)2) = B0 ×
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Now the situation is little bit different from the situation discussed in [A] where the coupling fV

had to be zero in order to satisfy the high energy constraints. In this calculation we have taken

into account the complete O(p6) Lagrangian and it is possible to preserve the nonzero value of

this constant. Moreover, on the contrary to the antisymmetric tensor formalism we do not have

to set the λV
22 constant to zero, it is in some sense compensated by the constant fV . Finally, we

obtain

λV
22 = − fV

2
√

2M
(3.3.39)

c1 = −4c3 (3.3.40)

c2 = −4c3 + c5 (3.3.41)

c6 = c5 − hV −
NCM

64
√

2π2FV

(3.3.42)

d1 = −8d2 +
σV

2
− NCm2

64π2F 2
V

+
F 2

4F 2
V

(3.3.43)

d3 =
σV

2
− NCm2

64π2F 2
V

+
F 2

8F 2
V

(3.3.44)

c̃W
7 = −NC(L̃11 − L̃12)

64π2F 2
(3.3.45)

c̃W
22 = 0. (3.3.46)

Applying these constraints on the result we find the same relations of LEC as in the antisym-

metric tensor formalism.

In the first order formalism, the bad high energy behavior connected with the vector formal-

ism (fV ) is canceled by the similar unsuitable behavior from the antisymmetric tensor formalism

(λV
22).

3.4 Summary of the chapter

First, we have briefly reminded the general properties of Green functions and the operator

product expansion.

Then we have done the explicit calculation of 〈PP 〉 and 〈V V 〉 correlators, we have applied

the high energy constraints and we have found the saturation of the O(p6) LEC c93. The study

of the vector formfactor was already briefly mentioned in [B]. Here it provides us with the

interesting relations between the constant F and O(p4) LEC L9 and the difference c90 − c88 of

O(p6) constants.

More tricky example of the three point Green function is 〈V V P 〉 correlator that was already

discussed in [11, 9] and [A]. We have concluded that the high energy constraints cannot be satis-

fied in the vector formalism up to O(p6) there is an inconsistency with the high energy behavior

dictated by OPE. In the antisymmetric tensor formalism, we have repeated the calculation done
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in [11] and [A] with the more general Lagrangian containing all contributing O(p6) terms but

we have found that this extra term (with coupling λV
22) did not survive the restriction from the

high energy constraints. However, we have found the relations for the O(p6) LECs cW
22 and cW

7 .

Some interesting facts have been observed in the first order formalism. The result presented in

[A] required to set fV = 0 in order to preserve the compatibility with OPE but in this more

general case we can preserve fV nonvanishing and we find the relation between this coupling

from the vector formalism and O(p6) coupling λV
22 from the antisymmetric tensor formalism.

As a result, we can sum up this chapter: we have found the case where the compatibility of

the vector field formalism with the high energy constraints is not preserved and we have also

seen the nontrivial implication of the first order formalism.



CHAPTER 4

Compton-like scattering of Goldstone bosons

In this chapter we continue in studying processes within the framework of Resonance Chiral

Theory. Now, we focus on the example of the four-point correlator 〈V V PP 〉 that was already

briefly mentioned in [27] but the detailed study is still missing. In the beginning we study

the general properties of this correlator and its symmetries, then we restrict ourselves to the

Compton-like process with the external legs of the pseudoscalar bosons which is the simplified

version of the general case. Then we calculate the contribution of resonances to this process in

the vector formalism up to O(p6) and in the antisymmetric tensor formalism up to O(p4). We

also mention some aspects of the result in the antisymmetric tensor formalism up to O(p6), but

we skip the complete calculation because it is extremely long. The results will be then compared

with the high energy constraints and some relations between coupling constants will be found.

4.1 Motivation

This chapter is motivated by the conjecture in [27] that for π0 Compton scattering the antisym-

metric tensor formalism violates the Froissart bound while the vector formalism preserves it. In

this paper it was taken into account just one interaction term with the coupling hV in the vector

formalism and the analogous term in the tensor formalism (one of the terms with the coupling

ci).
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4.2 Definition

The 〈V V PP 〉 correlator is the four point Green function, its definition in momentum represen-

tation has the form

Gabcd
µν (p, q, r; s) = 〈0 | T Ṽ a

µ (p)Ṽ b
ν (−q)P̃ c(r)P d(0) | 0〉 (4.2.1)

=

∫
d4xd4yd4zeip·x−iq·y+ir·z〈0 | TV a

µ (x)V b
ν (y)P c(z)P d(0) | 0〉

where the conservation of momenta indicates s = p + r − q. The on-shell matrix element of the

Compton-like process in the chiral limit can be written as

Aabcd
µν (p, q, r; s) = 〈φc(r) | T Ṽ a

µ (p)V b
ν (0) | φd(s)〉 (4.2.2)

= − lim
r2,s2→0

r2s2F−2
0 B−2

0 〈0 | T Ṽ a
µ (p)Ṽ b

ν (−q)P̃ c(r)P d(0) | 0〉

where the pseudoscalar density satisfies

〈0|P a(0)|φb(s)〉 = F0B0δ
ab (4.2.3)

and |φa(p)〉 represents the Goldstone boson state. The amplitude of the Compton-like scattering

of the Goldstone bosons is then

iMabcd
λκ (p, q, r; s) = lim

p2,q2→0
ε∗µ(p, λ)εν(q, κ)Aabcd

µν (p, q, r; s). (4.2.4)

4.3 Symmetry properties

Now, we discuss the symmetry properties of Gabcd
µν (p, q, r, s) and Aabcd

µν (p, q, r, s) including Bose

symmetry, gauge symmetry and the Ward identities.

Bose symmetry and crossing symmetry

Bose symmetry for the correlator reflects the symmetries under the interchange of V a
µ (p) ↔

V b
ν (−q) or φc(r)↔ φd(−s). Then the corresponding relations are

Gabcd
µν (p, q, r; s) = Gabdc

µν (p, q,−s;−r) = Gbadc
νµ (−q,−p, r; s) (4.3.1)

Analogously, Bose symmetry and crossing give

Aabcd
µν (p, q, r; s) = Aabdc

µν (p, q,−s;−r) = Abacd
νµ (−q,−p, r; s). (4.3.2)

SU(3) symmetry

Resonance Chiral Theory is SU(3) invariant so all the correlators must show this symmetry.

Let us therefore study the group structure of the correlator and find the basis of invariant group
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tensors. As it was shown in [D] the group structure is the linear combinations of the invariant

tensors

〈T σ(a)T σ(b)〉〈T σ(c)T σ(d)〉
〈T σ(a)T σ(b)T σ(c)T σ(d)〉

where σ is some permutation. The detailed discussion can be found in [D] and in the appendix

C. The basis of tensors is

T abcd
1 = δabδcd (4.3.3)

T abcd
2,3 = δacδbd ± δadδbc (4.3.4)

T abcd
4 = fablf cdl (4.3.5)

T abcd
5 = dabldcdl (4.3.6)

The correlators can then be expanded as

Gabcd
µν (p, q, r; s) =

5∑

i=1

Gµν(p, q, r; s)(i)T abcd
i

Aabcd
µν (p, q, r; s) =

5∑

i=1

Aµν(p, q, r; s)(i)T abcd
i

Ward identities

Let us now apply the Ward identities in the momentum representation on the general case of

the four point correlator

−ipµGabcd
µν (p, q, r; s) = ifabl〈0|T Ṽ l

ν (p− q)P c(r)P d(0)|0〉
+ifacl〈0|T Ṽ b

ν (−q)P̃ l(r + p)P d(0)|0〉
+ifadl〈0|T Ṽ b

ν (−q)P̃ c(r)P d(0)|0〉 (4.3.7)

Analogously for the Compton-like scattering we obtain

−ipµAabcd
µν (p, q, r; s) = ifabl〈φc(r) | V l

ν (0) | φd(s)〉 (4.3.8)

iqνAabcd
µν (p, q, r; s) = if bal〈φc(r) | V l

µ(0) | φd(s)〉 (4.3.9)

The right hand side of these identities is nothing else than the vector formfactor with one

Goldstone boson in the initial state and one in the final state. The structure of such a matrix

element is

〈φc(r)|V l
ν (0)|φd(s)〉 = if cdl(r + s)νFV ((r − s)2) (4.3.10)

where FV (p2) is related to the vector formfactor from chapter 3 as FV (p2) = −F(p2). We

see that only the term Aµν(p, q, r; s)(4) survives the contraction with the momentum pµ. This

means,

−ipµAµν(p, q, r; s)(i) = 0 for i 6= 4 (4.3.11)

−ipµAµν(p, q, r; s)(4) = −(r + s)νFV ((r − s)2) (4.3.12)
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and similarly for second momentum qν

iqνAµν(p, q, r; s)(i) = 0 for i 6= 4 (4.3.13)

iqνAµν(p, q, r; s)(4) = −(r + s)µFV ((r − s)2) (4.3.14)

4.4 Lorentz structure

Let us now focus on the Lorentz structure of the result. The conservation of momenta has the

form p + r = q + s. Let us take the momenta p, q and k = r + s as independent. Generally,

there are six independent invariants: p2, q2, r2, s2 and

S = (p + r)2 = (q + s)2 =
1

4
(k + p + q)2 (4.4.1)

T = (p − q)2 = (r − s)2 (4.4.2)

U = (p − s)2 = (q − r)2 =
1

4
(k − p− q)2 (4.4.3)

with S + T + U = p2 + q2 + r2 + s2. For our purpose r2 = s2 = 0 (in the chiral limit) and the

only independent invariants are now p2, q2, S, U . T can be expressed as T = p2 + q2 − S − U .

The independent transverse structures satisfy pµLi
µν = qνLi

µν = 0

L1
µν = qµpν − (p · q)gµν (4.4.4)

L2
µν = (q · k)pνkµ + (p · k)qµkν − (q · k)(p · k)gµν − (p · q)kµkν (4.4.5)

L3
µν = q2pµpν + p2qµqν − p2q2gµν − (p · q)pµqν (4.4.6)

L4
µν = p2(q · k)qνkµ + q2(p · k)pµkν − (q · k)(p · k)pµqν − p2q2kµkν (4.4.7)

L5
µν = p2q2 [(p · k)qµkν − (q · k)pνkµ] + (q · k)(p · k)

[
q2pµpν − p2qµqν

]

+(p · q)
[
p2(q · k)qνkµ − q2(p · k)pµkν

]
(4.4.8)

General structure

We have already seen that the Ward identities for k = r + s and T = (r − s)2 have the form

−ipµAabcd
µν = −fablf cdlkνFV (T ). (4.4.9)

The solution of the Ward identities can be divided into two parts. The first one vanishes after

contracting with pµ and is constructed from the transverse structure Li
µν . The second one is

responsible for the right hand side of 4.4.9. Finally, using also the relation (p · k) = (q · k) =

(S − U)/2 we can write

Aabcd
µν (p, q, r; s) =

5∑

i=1

Aµν(p, q, r; s)iT abcd
i − i

2FV (T )

S − U
fablf cdlkµkν (4.4.10)

=
5∑

i=1

5∑

j=1

A(p2, q2, S, U ;T )ijT
abcd
i Lj

µν − i
2FV (T )

S − U
fablf cdlkµkν
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where we have introduced the formfactors A(p2, q2, S, U ;T )ij that posses no Lorentz and group

structure. Under crossing symmetry φc(r)↔ φd(s) we obtain

Aabcd
µν (p, q, r; s) = Aabdc

µν (p, q,−s;−r) (4.4.11)

=

5∑

i=1

5∑

j=1

A(p2, q2, U, S;T )ijT
abdc
i Lj

µν(p, q,−k)− i
2FV (T )

S − U
fablf cdlkµkν

=

5∑

i=1

5∑

j=1

ε(i)A(p2, q2, U, S;T )ijT
abcd
i Lj

µν(p, q, k)− i
2FV (T )

S − U
fablf cdlkµkν .

The resulting symmetry relations for the formfactors are

A(p2, q2, S, U ;T )ij = ε(i)A(p2, q2, U, S;T )ij (4.4.12)

where ε(1) = ε(2) = −ε(3) = −ε(4) = ε(5) = 1. Analogously, Bose symmetry V a
µ (p) ↔ V b

ν (q)

implies

Aabcd
µν (p, q, r; s) = Abacd

νµ (−q,−p, r; s) (4.4.13)

=
5∑

i=1

5∑

j=1

A(q2, p2, U, S;T )ijT
bacd
i Lj

νµ(−q,−p, k)− i
2FV (T )

S − U
fablf cdlkµkν

=

5∑

i=1

5∑

j=1

ε(i)η(j)A(q2, p2, U, S;T )ijT
abcd
i Lj

µν(p, q, k) − i
2FV (T )

S − U
fablf cdlkµkν

which means

A(p2, q2, S, U ;T )ij = ε(i)η(j)A(q2, p2, U, S;T )ij (4.4.14)

where η(1) = η(2) = η(3) = η(4) = −η(5) = 1 while the crossing symmetry gives further

A(p2, q2, S, U ;T )ij = η(j)A(q2, p2, S, U ;T )ij . (4.4.15)

Helicity amplitudes

For further calculation it is useful to introduce the helicity amplitudes. The result derived in

[D] reads

Mabcd
λκ (p, q, r; s) =

1

2
F ∗

µν(p, λ)Fµν(q, κ)Mabcd
1 (S,U ;T )− F ∗

µν(p, λ)Fµρ(q, κ)kνkρMabcd
2 (S,U ;T )

− 2FV (T )

S − U
fablf cdl (ε∗(p, λ) · k) (ε(q, κ) · k) (4.4.16)

where

Fµν(l, σ) = −i (lµεν(l, σ)− lνεµ(l, σ)) (4.4.17)

iMabcd
j (p2, q2, S, U ;T ) =

6∑

i=1

A(0, 0, S, U ;T )ijT
abcd
i . (4.4.18)
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Further for external on-shell legs we have p2 = q2 = 0 and, therefore we can write in CMS

1

2
F ∗

µν(p, λ)Fµν(q, κ) = −1

2
δλ,−κT (4.4.19)

−F ∗
µν(p, λ)Fµρ(q, κ)kνkρ = −δλκSU +

1

4
δλ,−κT 2 (4.4.20)

(ε∗(p, λ) · k) (ε(q, κ) · k) = −1

2
λκ

TU

S
(4.4.21)

The final result for the helicity amplitudes in CMS

Mabcd
±± (p, q, r; s) =− SUMabcd

2 (S,U ;T ) + TU
FV (T )

S(S − U)
fablf cdl (4.4.22)

Mabcd
±∓ (p, q, r; s) =− 1

2
TMabcd

1 (S,U ;T ) +
1

4
T 2Mabcd

2 (S,U ;T )

− TU
FV (T )

S(S − U)
fablf cdl (4.4.23)

These expressions will be very useful in the future when we will compare the calculated results

with the high energy constraints.

4.5 The high energy constraints

The Ward identities and the other symmetry properties indicate the conditions that are satisfied

automatically without any other constraints on the coupling constants. On the contrary, the high

energy constraints are not intrinsically contained in the results and do not have to be satisfied

in all cases. The compatibility with these constraints shows the right high energy behavior of

the theory.

Operator product expansion

The OPE reflects the high energy behavior of QCD. At the leading order in αs we can write for

p→ λp, q → λq, λ→∞ and r, s fixed

Aabcd
µν (λp, λp + r − s, r; s) = − i

λ
fablf cdl[pµkν + pνkµ − (p · k)gµν ]

FV (T )

p2
+ O

(
1

λ2
, αs

)
(4.5.1)

The more symmetric form can be obtained when introducing the kinematic quantities k = r+s,

∆ = r − s, Σ = p + q. Then we have for Σ→ λΣ and k,∆ fixed

Aabcd
µν (

1

2
(λΣ −∆),

1

2
(λΣ + ∆),

1

2
(k + ∆);

1

2
(k −∆)) = (4.5.2)

− 2i

λ
fablf cdl[Σµkν + Σνkµ − (Σ · k)gµν ]

FV (T )

Σ2
+ O

(
1

λ2
, αs

)
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The leading behavior for Li
µν in the large λ limit reads

L1
µν =

λ2

4

(
ΣµΣν − Σ2gµν

)
+ O(λ) (4.5.3)

L2
µν =

λ2

4

[
(k · Σ)(Σµkν + Σνkµ − (Σ · k)gµν − Σ2kµkν

]
+ O(λ) (4.5.4)

L3
µν =

λ4

16
Σ2
(
ΣµΣν − Σ2gµν

)
+ O(λ3) (4.5.5)

L4
µν = −λ4

16

(
Σµ(k · Σ)− Σ2kµ

) (
Σν(k · Σ)− Σ2kν

)
+ O(λ3) (4.5.6)

L5
µν =

λ5

32
(k · Σ)

[
Σ2(Σ2 + (k · Σ))(kµ∆ν + kν∆µ) (4.5.7)

−Σ2(Σ ·∆)(Σµkν + Σνkµ) + 2(Σ ·∆)(k · Σ)ΣµΣν

]
+ O(λ4)

The constraints on the level of formfactors A(p2, q2, S, U ;T )ij can be found in appendix C.

Froissart bound

The Froissart bound is a high energy condition for four particle processes. The application on

the Compton-like scattering helicity amplitudes Mabcd
λκ (p, q, r; s) is detailed discussed [D]. The

results are

|Mabcd
λκ (S,−S; 0)| . const. S ln2 S (4.5.8)

|Mabcd
λκ (S,−S − T ;T )| < const. S ln3/2 S for T ≤ 0 fixed (4.5.9)

These results make the implications for the constraints for the formfactors A(p2, q2, S, U, T )ij

A(0, 0, S,−S; 0)i2 . const.
1

S
ln2 S (4.5.10)

A(0, 0, S,−S − T ;T )i2 < const.
1

S
ln3/2 S for T ≤ 0 fixed (4.5.11)

A(0, 0, S,−S − T ;T )i1 < const. S ln3/2 S for T ≤ 0 fixed (4.5.12)

This is the last note on the general properties of the Compton-like scattering process. Let

us now focus on the concrete calculations of the formfactors.

4.6 χPT contribution

First, we do the calculation in pure χPT without resonances. Let us assume only the leading

O(p2) Lagrangian

L(2)
χ =

F 2

4
〈uµuµ + χ+〉. (4.6.1)

There are only two possible Feynman diagrams that contribute.
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Figure 4.1: Contributing diagrams in pure χPT.

Helicity amplitudes

The results for the formfactors can be found in appendix. The amplitudes Mabcd
i (S,U ;T ) are

then

Mabcd
1 (S,U ;T ) =

(S + U)

2SU
(T1 − T2 + 3T5) +

(U − S)

2SU
T4 (4.6.2)

Mabcd
2 (S,U ;T ) = − 1

SU
(T1 − T2 + 3T5) +

(S + U)

SU(S − U)
T4 (4.6.3)

In O(p4) χPT we have FV (T ) = −1 and the helicity amplitudes are

Mabcd
±± (S,U, T ) = (T1 − T2 + 3T5) +

T

S
T4 (4.6.4)

Mabcd
±∓ (S,U, T ) = −T

S
T4 (4.6.5)

Constraints

Now we apply the Froissart bound on the previous results of the helicity amplitudes. Taking

the limit S →∞, T = konst

Mabcd
±± (S;T ) = (T1 − T2 + 3T5) +O

(
1

S

)
(4.6.6)

Mabcd
±∓ (S;T ) = −T

S
T4 +O

(
1

S2

)
(4.6.7)

which means that the constraints coming from the Froissart bound are automatically satisfied.

For T = 0 we have

Mabcd
±± (S) = (T1 − T2 + 3T5) +O

(
1

S

)
(4.6.8)

Mabcd
±∓ (S) = 0 (4.6.9)

and this result also satisfies given constraints.

We can also easily see that the high energy constraints coming from OPE and the results

calculated in χPT up to O(p2) (see appendix C) are not compatible.



4.7 Resonance contribution 65

4.7 Resonance contribution

In the following section we will study the contribution of vector resonances to the Compton-like

scattering. For simplicity, in the following we neglect the contribution from O(p4) and O(p6)

Goldstone boson Lagrangians because the corresponding coupling constants are usually assumed

to be small at the resonance scale.

Topology of graphs with resonances

Before starting to do the calculations in the concrete formalism we first draw all possible diagrams

with the vector resonance exchange that can appear. See figure 4.2.

Figure 4.2: Diagram topologies contributing resonance exchanges of Compton pion scattering

process.

Vector formalism

The interaction Lagrangian for vector resonances in the vector formalism up to O(p6) that is

important for this process has the form

L(6)
V =− fV

2
√

2
〈V̂ µνf+µν〉 −

igV

2
√

2
〈V̂ µν [uµ, uν ]〉

+ iαV 〈V µ[uν , f−µν ]〉+ βV 〈V µ[uµ, χ−]〉+ hV εµναβ〈V µ{uν , fαβ
+ }〉 (4.7.1)

There are only four possible Feynman diagrams that contribute (see figure 4.3.).



66 Compton-like scattering of Goldstone bosons

Figure 4.3: Contributing diagrams in the vector formalism (up to crossing).

Helicity amplitudes

For the vector formalism we have

FV (T ) = −1 +
fV gV

F 2

T 2

T −M2
.

The amplitudes calculated in this formalism read

Mabcd
1 (S,U ;T ) =

(S + U)

2SU
(T1 − T2 + 3T5) +

(U − S)

2SU
T4 −

2h2
V (S − U)(4M2 + S + U)

3F 2(M2 − S)(M2 − U)
(2T3 − 3T4)

(4.7.2)

− 2h2
V (−6SM2 − 6UM2 + S2 + U2 + 10SU)

3F 2(M2 − S)(M2 − U)
(T1 + T2 − 3T5)

(4.7.3)

Mabcd
2 (S,U ;T ) = − 1

SU
(T1 − T2 + 3T5) +

(S + U)

SU(S − U)
T4 +

4h2
V (S + U − 2M2)

3F 2(M2 − S)(M2 − U)
(T1 + T2 − 3T5)

(4.7.4)

+
4h2

V (S − U)

3F 2(M2 − S)(M2 − U)
(2T3 − 3T4) +

4fV gV (S + U)

F 2(S − U)(M2 − T )
T4

The helicity amplitudes are

Mabcd
±± (S,U, T ) = − 4h2

V SU(S + U − 2M2)

3F 2(M2 − S)(M2 − U)
(T1 + T2 − 3T5) (4.7.5)

− 4h2
V SU(S − U)

3F 2(M2 − S)(M2 − U)
(2T3 − 3T4) +

fV gV UT (2S − T )

F 2S(M2 − T )
T4 + (T1 − T2 + 3T5) +

T

S
T4

(4.7.6)

Mabcd
±∓ (S,U, T ) = −h2

V T
[
2M2(2S + 2U)− S2 − S(T + 9U)

]

3F 2(M2 − S)(M2 − U)
(T1 + T2 − 3T5) (4.7.7)

+
4h2

V M2T (S − U)

3F 2(M2 − S)(M2 − U)
(2T3 − 3T4)−

fV gV T (S + U)

F 2S(T −M2)
T4 +

T

S
T4 (4.7.8)
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High energy constraints

Taking the limit S →∞, T = konst

Mabcd
±± (S;T ) = −

{
8h2

V

3F 2
(2T3 − 3T4)−

2fV gV T

F 2(T −M2)
T4

}
S +O(S0) (4.7.9)

Mabcd
±∓ (S;T ) =

8h2
V T

3F 2
(T1 + T2 − 3T5) +O

(
1

S

)
(4.7.10)

For T = 0 we obtain

Mabcd
±± (S) = −

{
8h2

V

3F 2
(2T3 − 3T4)

}
S +O(S0) (4.7.11)

Mabcd
±∓ (S) = O

(
1

S

)
(4.7.12)

The Froissart bound is satisfied automatically without any additional constraints on the coupling

constants.

Application of the high energy constraints from OPE can be found in appendix C. Here

we can see that the constraints are very strict and cannot be nontrivially satisfied (without

including additional contact terms or other types of resonances).

Antisymmetric tensor formalism up to O(p4)

The interaction Lagrangian in the antisymmetric tensor formalism up to the order O(p4) has

the following form

L(4)
R = − FV

2
√

2
〈Rµνf+µν〉 −

iGV

2
√

2
〈Rµν [uµ, uν ]〉 (4.7.13)

Helicity amplitudes

As was presented in chapter 3 the vector formfactor calculated in the antisymmetric tensor

formalism is

FV (T ) = −1 +
FV GV

F 2

T

T −M2
. (4.7.14)

The amplitudes in this formalism yield

Mabcd
1 (S,U ;T ) =− 2FV GV

F 2M2
(T1 − T2 + 3T5) +

(S + U)

2SU
(T1 − T2 + 3T5) +

(U − S)

2SU
T4

Mabcd
2 (S,U ;T ) =− 1

SU
(T1 − T2 + 3T5) +

(S + U)

SU(S − U)
T4 −

4FV GV

F 2(M2 − T )(S − U)
T4 (4.7.15)

The helicity amplitudes are

Mabcd
±± (S,U, T ) =

FV GV U(2S − T )

F 2S(M2 − T )
T4 + (T1 − T2 + 3T5) +

T

S
T4 (4.7.16)

Mabcd
±∓ (S,U, T ) =

FV GV T

F 2M2
(T1 − T2 + 3T5)−

FV GV T 2

F 2S(M2 − T )
T4 −

T

S
T4 (4.7.17)
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Figure 4.4: Contributing diagrams in antisymmetric tensor formalism (up to crossing). In

comparison with the vector formalism there is no diagram with the resonance exchange in S

and U channels.

High energy constraints

Taking the limit S →∞, T = konst in the expressions for the helicity amplitudes we obtain

Mabcd
±± (S;T ) = −

{
2FV GV

F 2(M2 − T )
T4

}
S +O(S0) (4.7.18)

Mabcd
±∓ (S;T ) =

FV GV T

F 2M2
(T1 − T2 + 3T5) +O

(
1

S

)
(4.7.19)

For T = 0 we obtain

Mabcd
±± (S) = −2FV GV

F 2M2
T4S +O(S0) (4.7.20)

Mabcd
±∓ (S) = 0 (4.7.21)

As a result, Froissart bound is satisfied without any additional coupling constant constraints. If

we add the analogue of the hV term from the vector formalism (as it was proposed in [27]) we

obtain the O(p6) interaction term (with coupling c6 which gives rise to the diagram with the

resonance exchange in S and U channels). Including this term the Froissart bound is explicitly

violated, as it will be seen in the next subsection.

The OPE high energy constraints cannot be again nontrivially satisfied (the proof can be

found in appendix C).

Antisymmetric tensor formalism to O(p6)

The resonance Lagrangian in the antisymmetric tensor formalism up to O(p6) is very rich,

many terms contribute to this process and the complete expressions for the formfactors shall

take plenty sheets of paper. Therefore, we will not investigate the high energy constraints
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coming from OPE. However, we know the result from O(p4) case where these constraints are

not nontrivially satisfied. The situation would not be better here and we hardly would obtain any

nontrivial equation between coupling constants. Also the expressions for the helicity amplitudes

are very long and we focus now only on the limits that can be used for applying the Froissart

bound.

Figure 4.5: Contributing diagrams in antisymmetric tensor formalism.

Froissart bound

The helicity amplitudes in the limit S →∞ and T = 0 are

Mabcd
±± (S;T ) = (4.7.22)

−
{[

M2(−c1 + c2 + c5 + 2c7)
2 + 2d3(d1 + d3)F

2
V

]

3F 2M6
(T1 + T2 − 3T5)

+

√
2FV (−c1 + c2 + c5 + 2c7)d4

3F 2M5
(T1 + T2 − 6T3 + 9T4 − 3T5)

}
S3

−
{

1

6F 2M4

[
T (−c1 + c2 + c5 + 2c7)

2 − 2M2(−c1 + c2 + c5 − 2c6)
2

−d3(d1 + d3)F
2
V

]
(T1 + T2 − 3T5) +

T

2F 2M4
(−c1 + c2 + c5 + 2c7)

2(2T3 − 3T4)

− 3
√

2d3FV

3F 2M3
(c1 − c2 − c5 + 2c6)(T1 + T2 − 3T5)

+

√
2FV

3F 2M5

[
(c1 − c2 − c5 + 2c6)M

2d3 − 4(−c1 + c2 + c5 + 2c7)Td4

]
(2T3 − 3T4)
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+
F 2

V

F 2M4
(λV V

3 + λV V
4 )(T2 − 2T5) +

2F 2
V λV V

5

3F 2M4
(2T1 − 3T4 + 3T5)

− FV

3
√

2F 2M2
[8λ13 − 4λ14 − 4λ15 − 3(2λ16 + λ18 + 4λ19)]T1

− FV√
2F 2M2

(−4λ14 − 4λ15 + 2λ16 + λ18 + 4λ19)T2

− FV√
2F 2M2

[4λ13 + 8λ14 + 8λ15 − 3(2λ16 + λ18 + 4λ19)] T5

+
d3(d1 + d3)F

2
V T

12F 2M6
(2T1 + 2T2 + 6T3 − 9T4 + 6T5)

}
S2 +O(S)

Mabcd
±∓ (S;T ) = (4.7.23)

−
{[

2TM2(−c1 + c2 + c5 + 2c7)
2 − Td3(d1 + d3)F

2
V

]

6F 2M6
(T1 + T2 − 3T5)

−
√

2(−c1 + c2 + c5 + 2c7)Td4FV

3F 2M5
(3T1 + 3T2 − 2T3 + 3T4 − 9T5)

}
S2

−
{

2T

3F 2M4

[
M2(−c1 + c2 + c5 − 2c6)

2 + T (−c1 + c2 + c5 + 2c7)
2
]
(2T3 − 3T4)

−
√

2TFV

3F 2M5

[
(c1 − c2 − c5 + 2c6)d3M

2 + 2(−c1 + c2 + c5 + 2c7)Td4

]
(T1 + T2 − 3T5)

−
√

2TFV

3F 2M5

[
3(c1 − c2 − c5 + 2c6)M

2d3 − 2(−c1 + c2 + c5 + 2c7)Td4

]
(2T3 − 3T4)

+
T

2F 2M4
(GV −

√
2Tλ21)

[
8M2FV λV V

7 + 4
√

2M4λ7 + 3
√

2F 2
V κV

]
T4

(4.7.24)

+
FV T√
2F 2M2

(4λ17 − λ18 + 4λ21)T4 +
Td3(d1 + d3)F

2
V

24F 2M6
(4M2 − T )(2T3 − 3T4)

− T 2d3(d1 + d3)F
2
V

6F 2M6
(T1 + T2 − 3T5) +

F 2
V T

3F 2M4
(λV V

3 − λV V
4 )T1

}
S +O

(
S0
)

For T = 0 we obtain

Mabcd
±± (S) = (4.7.25)

−
{[

M2(−c1 + c2 + c5 + 2c7)
2 + 2d3(d1 + d3)F

2
V

]

3F 2M6
(T1 + T2 − 3T5)

+

√
2FV (−c1 + c2 + c5 + 2c7)d4

3F 2M5
(T1 + T2 − 6T3 + 9T4 − 3T5)

}
S3
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−
{
− 1

3F 2M2
(−c1 + c2 + c5 − 2c6)

2(T1 + T2 − 3T5)

−
√

2d3FV

3F 2M3
(c1 − c2 − c5 + 2c6)(3T1 + 3T2 − 2T3 + 3T4 − 9T5)

+
F 2

V

F 2M4
(λV V

3 + λV V
4 )(T2 − 2T5) +

2F 2
V λV V

5

3F 2M4
(2T1 − 3T4 + 3T5)

− FV

3
√

2F 2M2
[8λ13 − 4λ14 − 4λ15 − 3(2λ16 + λ18 + 4λ19)] T1

− FV√
2F 2M2

(−4λ14 − 4λ15 + 2λ16 + λ18 + 4λ19)T2

− FV√
2F 2M2

[4λ13 + 8λ14 + 8λ15 − 3(2λ16 + λ18 + 4λ19)]T5

− d3(d1 + d3)F
2
V

6F 2M4
(T1 + T2 − 3T5)

}
S2 +O(S)

Mabcd
±∓ (S) = O

(
S0
)

(4.7.26)

In order to kill M±± ≈ S3 terms we have to demand

−c1 + c2 + c5 + 2c7 = 0, (4.7.27)

d1 + d3 = 0. (4.7.28)

In order to kill M±± ≈ S2 terms we obtain the additional relations

c1 − c2 − c5 + 2c6 = 0, (4.7.29)

λV V
5 = 0, (4.7.30)

8λ13 − 4λ14 − 4λ15 − 3(2λ16 + λ18 + 4λ19)

−
√

2FV

M2
(λV V

3 + λV V
4 ) = 0, (4.7.31)

−4λ14 − 4λ15 + 2λ16 + λ18 + 4λ19 +
2
√

2FV

M2
(λV V

3 + λV V
4 ) = 0. (4.7.32)

The constraints (4.7.27) - (4.7.29) are compatible with those found in the case of 〈V V P 〉
correlator. The other relations have no analogue in the previous calculations.

4.8 Summary of the chapter

In this chapter, we have investigated the process of Compton-like scattering (the four point

correlator 〈V V PP 〉 with on-shell Goldstone bosons). In the beginning we have discussed the

properties of this process including all symmetries and the general form of the formfactor and

their transformation relations.
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Next, we have turned to the concrete computation of Feynman diagrams in RχT. The results

for the formfactors in the vector formalism up to O(p6) and the antisymmetric tensor formalism

up to O(p4) can be found in the appendix C. Then we have computed the helicity amplitudes

corresponding to these results, some fragments from the antisymmetric tensor formalism up

to O(p6) are also included. Then we have applied the OPE high energy constraints and the

Froissart bound. It is shown in appendix C that none of the results could non-trivially satisfy

the OPE constraints. The Froissart bound is automatically satisfied in the vector formalism and

in the antisymmetric tensor formalism up to O(p4), in the antisymmetric tensor formalism up

to O(p6) some additional constraints on coupling constants must be set.

In the end, we mention some possibilities how to satisfy the high energy constraints for the

case of this process.

• We can add some O(p6) local contact terms or higher order terms with vector resonances

that save the high energy behavior.

• Of course, the result is incomplete because we take into account only vector resonances.

Maybe if we would include all types of resonances then the result would be already com-

patible with the high energy constraints.



CHAPTER 5

Renormalization of propagators

In this chapter we are focusing on the calculating loops in Resonance Chiral Theory. The

renormalization procedure can lead to the presence of special type of counterterms that are

responsible for the propagation of additional degrees of freedom. We will see that this really

happens in the antisymmetric tensor and in the first order formalisms, the vector formalism is

free of this feature (probably because we restrict only up to O(p6) Lagrangians).

First, we mention some basics of renormalization in RχPT and then we focus on the very

interesting example of the resonance propagator. We will study in more details (than in chapter

2) the properties of the propagators in all three formalisms and we will find the reasons why

the new degrees of freedom, which were frozen at the tree level, could appear after the renor-

malization. Finally, we will do the complete renormalization procedure and we will find the

concrete forms of the counterterm couplings, i.e. the coefficients of the beta functions. This

will explicitly show that the new terms responsible for the propagation of the new degrees of

freedom are generated in the RχT.

5.1 Tools of renormalization procedure

Feynman integrals and counterterms

The detailed discussion of Feynman integrals is done in the appendix A. In the following we will

be interested only in the infinite parts of the Feynman integrals, so for our purpose we can write

A0(M
2) =

M2

16π2
λ∞ (5.1.1)

B0(p
2,M2

1 ,M2
2 ) = − 1

16π2
λ∞ (5.1.2)



74 Renormalization of propagators

with

λ∞ =
2µd−4

d− 4
+ γE − ln 4π − 1 (5.1.3)

where γE = 0.577 . . . is the Euler constant and µ is the renormalization scale.

These infinities will be canceled by the contribution of counterterm Lagrangian

Lct =
∑

i

AiOi (5.1.4)

where Oi are operators and the bare coupling constants Ai have the form

Ai = Γiλ∞ + Ar
i (µ) (5.1.5)

and the finite part Ar
i (µ) renormalized at scale µ satisfies the renormalization group equation

µ
∂

∂µ
Ar

i (µ) = −Γi. (5.1.6)

In the following we will calculate the infinite parts of Ai, i.e. the constants Γi.

Power counting

There are more types of power countings which can be used for our purpose:

• Chiral powercounting: This is a very similar way to that used in the Chiral Perturbation

Theory. The diagrams are hierarchized by the Weinberg formula

D = 2 + 2L +
∑

V

(DV − 2) (5.1.7)

where DV is the chiral order of the vertex. The resonance fields are of order R,V = O(1)

and their masses M = O(p). But we are not in the low energy region as in χPT and

therefore, this expansion is not physically meaningful.

• Expansion in 1/NC : This is the theoretically well-founded solution based on the expansion

in the underlying theory - large NC QCD. The index of the vertex dV (of order O(NdV

C ))

is

dV = 1− n(V )

2
−O(V ) (5.1.8)

where n(V ) is the number of mesons in the vertex and O(V ) is the additional suppression

(O(V ) = 0 at the leading order, O(V ) = 1 at subleading etc.). We classify the graphs and

the counterterms using the parameter

d =
∑

V

dV = 1− 1

2
E − L−

∑

V

O(V ) (5.1.9)

However, there is a problem with the terms with higher derivatives which are not sup-

pressed in this power counting.
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• Combined expansion: We will use it in the following.

We introduce the parameter δ so that

p = δ1/2 → O(pD) = O(δD/2) (5.1.10)

1

NC
= δ → O(ND

C ) = O(δ−D) (5.1.11)

(5.1.12)

The index of a given diagram is then

∆ =
1

2
D − d. (5.1.13)

Substituting for D and d we obtain the analogue of the Weinberg formula for the combined

power counting

∆ = 1 + L +
∑

V

(∆(V ) − 1) (5.1.14)

with

∆(V ) =
1

2
DV − 1 +

n(V )

2
+ O(V ). (5.1.15)

In the calculation we will use all three power countings described in this subsection. The

corresponding indices will be written under the diagrams. If we restrict ourselves with the

calculations up to the given order ∆max we have to include all the diagrams and counterterms

with ∆ ≤ ∆max.

5.2 Propagator in vector formalism

General properties

Let us start with a Lagrangian of Proca field that can be written in the form

LV = −1

4
〈V̂µν V̂ µν〉+ 1

2
M2〈VµV µ〉+ Lint (5.2.1)

and introduce the usual longitudinal and transverse projectors

PL
µν =

pµpν

p2
(5.2.2)

P T
µν = gµν −

pµpν

p2
. (5.2.3)

Without any additional assumption on the form and symmetries of the interaction part of the

Lagrangian Lint, we can expect the following general form of the complete two-point 1PI Green

function

Γ(2)
µν (p) = (M2 − p2 + ΣT (p2))P T

µν + (M2 + ΣL(p2))PL
µν (5.2.4)
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which corresponds to the propagator

∆µν(p) = − 1

p2 −M2 − ΣT (p2)
P T

µν +
1

M2 + ΣL(p2)
PL

µν . (5.2.5)

The poles of such a propagator are situated at p2 = M2
V,S where M2

V is given by the solutions of

M2
V −M2 − ΣT (M2

V ) = 0, (5.2.6)

M2
S + ΣL(M2

S) = 0. (5.2.7)

Assume (5.2.6) is satisfied for p2 = M2
V > 0, the poles of this type then correspond to spin-one

one particle poles,

∆µν(p) =
ZV

p2 −M2
V

(
−gµν +

pµpν

M2

)
+ O(1) (5.2.8)

=
ZV

p2 −M2
V

∑

λ

ε(λ)
µ (p)ε(λ)∗

ν (p) + O(1)

where

ZV =
1

1− Σ′T (M2
V )

(5.2.9)

and where ε
(λ)
µ (p) are the usual spin-one polarization vectors. The corresponding spin-one par-

ticle state |p, λ, V 〉 couples to the Proca field as

〈0|Vµ(0)|p, λ, V 〉 = |ZV |1/2ε(λ)
µ (p). (5.2.10)

At least one of these states is expected to be perturbative in the sense that its mass and coupling

to Vµ can be written as

M2
V = M2 + δM2

V (5.2.11)

ZV = 1 + δZV , (5.2.12)

where δM2
V and δZV are small corrections vanishing in the free field limit. In the same limit

ΣT (p2) = 0 and the other possible solutions of (5.2.6) corresponding to the additional spin-one

one particle poles decouple. There are also another type of possible poles given by (intrinsically

nonperturbative) solutions of (5.2.7). Suppose that the last condition is satisfied by p2 = M2
S >

0. Such a pole

∆µν(p) =
ZS

p2 −M2
S + i0

pµpν

M2
S

+ O(1) (5.2.13)

where

ZS =
1

Σ′L(M2
S)

(5.2.14)

corresponds to the spin-zero one particle state |p, S〉 which couples to Vµ as

〈0|Vµ(0)|p, S〉 = ipµ
|ZS |1/2

MS
. (5.2.15)
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For the free field case this scalar mode is frozen and does not propagate according to the special

form of the Proca field Lagrangian. Therefore, in the limit of the vanishing interaction the extra

scalar state decouples. Without any additional assumptions on the symmetries of the interaction

Lagrangian we can therefore expect appearance of the additional propagating degrees of freedom.

We see that the scalar mode will propagate only in the case ΣL(p2) 6= 0 and when this

formfactor has explicit momentum dependence. The original free field Lagrangian has strictly

ΣL(p2) = 0 but the counterterms necessary to be included in the renormalization procedure can

lead to the non-trivial momentum dependence.

It was shown in [E] that the propagating scalar degrees of freedom are either ghosts or

tachyons. The detailed study of the interpretation of this phenomenon is still missing.

One loop contribution

The interaction Lagrangian in the vector formalism up to O(p6) is for our purpose

LV = − igV

2
√

2
〈V̂ µν [uµ, uν ]〉+ 1

2
σV εαβµν〈{V α, V̂ µν}uβ〉 (5.2.16)

The possible diagrams that contribute to the renormalization of vector resonance can be seen

in the picture 5.1. The infinite part of the result is then

Figure 5.1: Vector propagator one loop diagrams in vector formalism.

ΣT (p2) =
g2
V p6λ∞

16π2F 4
+

5σ2
V p4λ∞

18π2F 2
− 5M2p2σ2

V λ∞
6π2F 2

, (5.2.17)

ΣL(p2) = 0. (5.2.18)

Restricting ourselves to ∆ = 3 (D = 4) we obtain the complete result

ΣT (p2) =
5σ2

V p4λ∞
18π2F 2

− 5M2p2σ2
V λ∞

6π2F 2
(5.2.19)

ΣL(p2) = 0 (5.2.20)

Counterterms

The renormalization procedure requires to include the counterterms which kill the infinities in

the results. The complete Lagrangian, which is necessary for the renormalization if we restrict
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ourselves to the order ∆ = 3, has the form

Lct
V =

δM2

2
〈VµV µ〉 (5.2.21)

+
ZV

4
〈V̂µν V̂ µν〉+ YV

2
〈(DµV µ)2〉 (5.2.22)

+
XV 1

4
〈{Dα,Dβ}Vµ{Dα,Dβ}V µ〉+ XV 2

4
〈{Dα,Dβ}Vµ{Dα,Dµ}V β〉

+
XV 4

2
〈D2Vµ{Dµ,Dβ}Vβ〉+ XV 5〈D2VµD2V µ〉

+
XV 3

4
〈{Dα,Dβ}V β{Dα,Dµ}Vµ〉 (5.2.23)

Only sums XV ≡ XV 1 + XV 5, X ′
V ≡ XV 1 + XV 2 + XV 3 + XV 4 + XV 5 are relevant for our

calculations. The counterterms contribute to the self-energies as

ΣT
ct(p

2) = δM2 + p2ZV + p4XV , (5.2.24)

ΣL
ct(p

2) = δM2 − p2YV + p4X ′
V . (5.2.25)

Sum of the one loop contribution and the counterterms contribution must vanish

ΣT,L(p2) + ΣT,L
ct (p2) = 0 (5.2.26)

that leads to the relations

δM2 = (δM2)r(µ), (5.2.27)

YV = Y r
V (µ), (5.2.28)

X ′
V = X ′r

V (µ), (5.2.29)

ZV =
5M2σ2

V λ∞
6π2F 2

+ Zr
V (µ), (5.2.30)

XV = − 5σ2
V λ∞

18π2F 2
+ Xr

V (µ). (5.2.31)

We see that the infinite parts of YV and X ′
V vanish. This means that we can fix the renormalized

couplings Y r
V (µ) = X ′r

V (µ) = 0 independently on the scale. Consequently, no additional degrees

of freedom are generated in the vector formalism.

5.3 Propagator in antisymmetric tensor formalism

General properties

In this case the situation is quite analogous to the vector formalism. Let us write the Lagrangian

in the form

L = −1

2
〈(∂µRµν)(∂ρRρν)〉+

1

4
M2〈RµνRµν〉 + Lint. (5.3.1)



5.3 Propagator in antisymmetric tensor formalism 79

and introduce the projectors

ΠT
µναβ =

1

2

(
P T

µαP T
νβ − P T

ναP T
µβ

)
(5.3.2)

ΠL
µναβ =

1

2
(gµαgνβ − gναgµβ)−ΠT

µναβ (5.3.3)

Again with completely general Lint we can assume the following general form of the complete

two-point 1PI Green function

Γ
(2)
µναβ(p) =

1

2
(M2 + ΣT (p2))ΠT

µναβ +
1

2
(M2 − p2 + ΣL(p2))ΠL

µναβ (5.3.4)

implying the propagator of the form

∆µναβ(p) = − 2

p2 −M2 − ΣL(p2)
ΠL

µναβ +
2

M2 + ΣT (p2)
ΠT

µναβ (5.3.5)

with the poles at p2 = M2
V,A satisfying

M2
V −M2 −ΣL(M2

V ) = 0 (5.3.6)

M2 + ΣT (M2
A) = 0. (5.3.7)

Assuming that the solution of (5.3.6) satisfies M2
V > 0, the propagator behaves at this pole

according to

∆µναβ(p) =
ZV

p2 −M2
V

pµgναpβ − pνgµαpβ − (α↔ β)

M2
V

+ O(1)

=
ZV

p2 −M2
V

∑

λ

u(λ)
µν (p)u

(λ)
αβ (p)∗ + O(1) (5.3.8)

where

ZV =
1

1− Σ′L(M2
V )

(5.3.9)

and the wave function u
(λ)
µν (p) is expressed in terms of the spin-one polarization vectors as

u(λ)
µν (p) =

i

MV

(
pµε(λ)

ν (p)− pνε
(λ)
µ (p)

)
. (5.3.10)

The pole corresponds therefore to the spin-one state |p, λ, V 〉 which couples to Rµν as

〈0|Rµν(0)|p, λ, V 〉 = |ZV |1/2u(λ)
µν (p). (5.3.11)

Analogously to the Proca case, at lest one of these poles is expected to be perturbative, i.e.

M2
V = M2 + δM2

V (5.3.12)

ZV = 1 + δZV (5.3.13)

with small corrections δM2
V and δZV vanishing in the free field limit; the other solutions decouple

in this limit.
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Provided there exists a solution of (5.3.7) for which M2
A > 0, we get at this pole

∆µναβ(p) =
ZA

p2 −M2
A

(
gµαgνβ +

pµgναpβ − pµgνβpα

M2
A

− (µ↔ ν)

)
+ O(1)

=
ZA

p2 −M2
A

∑

λ

w(λ)
µν (p)w

(λ)
αβ (p)∗ + O(1) (5.3.14)

where

ZA =
1

Σ′T (M2
A)

(5.3.15)

w(λ)
µν (p) = ũ(λ)

µν (p) =
1

2
εµναβu(λ)αβ(p). (5.3.16)

These poles correspond to the spin-one particle states |p, λ,A〉 with opposite intrinsic parity

which couple to the antisymmetric tensor field as

〈0|Rµν(0)|p, λ,A〉 = |ZA|1/2w(λ)
µν (p). (5.3.17)

This degree of freedom is frozen in the free propagator due to the specific form of the free

Lagrangian and it decouples in the limit of the vanishing interaction. As in the Proca field case,

the additional degrees of freedom can be ghosts or tachyons.

One loop contribution

The Lagrangian contributing to the one loop correction of the propagator is

LR =
iGV

2
√

2
〈Rµν [uµ, uν ]〉+ iλV

21〈RµνD2(uµuν)〉+ d1ǫµνασ〈Dβuσ{Rµν , Rαβ}〉

+ d3ǫρσµλ〈uλ{DνRµν , Rρσ}〉+ d4ǫρσµα〈uν{DαRµν , Rρσ}〉 (5.3.18)

Figure 5.2: Tensor propagator one loop diagrams in antisymmetric tensor formalism.

The infinite parts of the result are

ΣT (p2) =

{
− 5p6

18π2F 2M2
d4(d3 + d4)−

5p4

36π2F 2
(d3 + d4)(3d3 − 5d4) (5.3.19)

− 5p2M2

12π2F 2
[2d1(d1 + d3 + d4)− 3(d3 + d4)(3d3 − d4)]−

5M4

6π2F 2
d1(d1 − d3 − d4)

}
λ∞
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ΣL(p2) =

{
p8λ2

21

8π2F 4
−
√

2p6GV λ21

8π2F 4
+

p4G2
V

16π2F 4
(5.3.20)

+
5M2p2

6π2F 2

[
(d3 + d4)(d1 + 3d3 − d4)− d2

1

]
− 5M4

6π2F 2
d1(d1 − d3 − d4)

}
λ∞

Restricting ourselves just to ∆ = 3 (D = 4) we obtain

ΣT (p2) =

{
− 5p6

18π2F 2M2
d4(d3 + d4)−

5p4

36π2F 2
(d3 + d4)(3d3 − 5d4) (5.3.21)

− 5p2M2

12π2F 2
[2d1(d1 + d3 + d4)− 3(d3 + d4)(3d3 − d4)]−

5M4

6π2F 2
d1(d1 − d3 − d4)

}
λ∞

ΣL(p2) =

{
p4G2

V

16π2F 4
+

5M2p2

6π2F 2

[
(d3 + d4)(d1 + 3d3 − d4)− d2

1

]
− 5M4

6π2F 2
d1(d1 − d3 − d4)

}
λ∞

(5.3.22)

Counterterms

We take into account all possible counterterms contributed to the diagrams up to the order

∆ = 3 and four derivatives1. The basis of these terms was already found in [13]

L(0)
R = δM2〈RµνRµν〉, (5.3.23)

L(2)
R = 2ZR〈DαRαµDβRβµ〉+ YR〈DαRµνDαRµν〉, (5.3.24)

L(4)
R = XR1〈D2Rµν{Dν ,Dσ}Rµσ〉+

X2R

2
〈{Dν ,Dα}Rµν{Dσ ,Dα}Rµσ〉

+
X3R

2
〈{Dσ ,Dα}Rµν{Dν ,Dα}Rµσ〉+ WR1〈D2RµνD2Rµν〉

+
WR2

4
〈{Dα,Dβ}Rµν{Dα,Dβ}Rµν〉 (5.3.25)

Only the sums XR = XR1 + XR2 + XR3 and WR = WR1 + WR2 are relevant. Then the

counterterms contribute to the self-energies as

ΣT
ct(p

2) = 4(δM2 + p2YR + p4WR), (5.3.26)

ΣL
ct(p

2) = 4(δM2 + p2ZR + p2YR + p4XR + p4WR). (5.3.27)

1The counterterms with six derivatives have not been classified yet.
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Killing the infinities to the order p4 in momenta we demand

XR = − 1

576π2F 4

[
20(3d3 − 5d4)(d3 + d4)F

2 + 9G2
V

]
+ Xr

R(µ), (5.3.28)

ZR = − 5M2

48π2F 2
(d3 + d4)(4d1 − 3d3 + d4) + Zr

R(µ), (5.3.29)

WR =
5

144π2F 2
(d3 + d4)(3d3 − 5d4) + W r

R(µ), (5.3.30)

YR =
5M2

48π2F 2
[2d1(d1 + d3 + d4)− 3(d3 + d4)(3d3 − d4)] + Y r

R(µ), (5.3.31)

δM2 =
5M4

24π2F 2
d1(d1 − d3 − d4) + (δM2)r(µ) (5.3.32)

The non-vanishing infinite parts of YR and WR indicate the non-trivial running of the corre-

sponding renormalized couplings. This prevents us from fixing the finite parts of these couplings

to zero. Consequently, this leads to the appearance of spin-1 particles with opposite parity as

the propagating degrees of freedom in the antisymmetric tensor formalism.

5.4 Propagators in first order formalism

General properties

In this case, we write the relation for the Lagrangian

L = M〈Vν∂µRµν〉+ 1

2
M2〈VµV µ〉+ 1

4
M2〈RµνRµν〉+ Lint. (5.4.1)

For this case the matrix of inverse propagators has the following general form

Γ
(2)
RR(p)µναβ =

1

2
(M2 + ΣT

RR(p2))ΠT
µναβ +

1

2
(M2 + ΣL

RR(p2))ΠL
µναβ (5.4.2)

Γ
(2)
V V (p)µν = (M2 + ΣT

V V (p2))P T
µν + (M2 + ΣL

V V (p2))PL
µν (5.4.3)

Γ
(2)
RV (p)µνα =

i

2

(
M + ΣRV (p2)

)
Λµνα (5.4.4)

Γ
(2)
V R(p)αµν =

i

2

(
M + ΣV R(p2)

)
Λt

αµν (5.4.5)

where ΣRV (p2) = ΣV R(p2) and

Λµνα = −Λt
αµν = pµgνα − pνgµα (5.4.6)

This implies propagators

∆RR(p)µναβ =
2

M2 + ΣT
RR(p2)

ΠT
µναβ + 2

M2 + ΣT
V V (p2)

D(p2)
ΠL

µναβ (5.4.7)

∆V V (p)µν =
1

M2 + ΣL
V V (p2)

PL
µν +

M2 + ΣL
RR(p2)

D(p2)
P T

µν (5.4.8)

∆RV (p)µνα = −i
M + ΣRV (p2)

D(p2)
Λµνα (5.4.9)

∆V R(p)αµν = −i
M + ΣV R(p2)

D(p2)
Λt

αµν (5.4.10)
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where

D(p2) = (M2 + ΣL
RR(p2))(M2 + ΣT

V V (p2))− p2(M + ΣRV (p2))(M + ΣV R(p2)). (5.4.11)

Let us now investigate the structure of the poles. These are situated at p2 = M2
V,A,S , being

solutions of

D(M2
V ) = 0 (5.4.12)

M2 + ΣT
RR(M2

A) = 0 (5.4.13)

M2 + ΣL
V V (M2

S) = 0. (5.4.14)

Assuming M2
V > 0, we get at this pole (as explained above)

∆RR(p)µναβ =
ZRR

p2 −M2
V

∑

λ

u(λ)
µν (p)u

(λ)
αβ (p)∗ + O(1) (5.4.15)

∆V V (p)µν =
ZV V

p2 −M2
V

∑

λ

ε(λ)
µ (p)ε(λ)∗

ν (p) + O(1) (5.4.16)

∆RV (p)µνα =
ZRV

p2 −M2
V

∑

λ

u(λ)
µν (p)ε(λ)

α (p)∗ + O(1) (5.4.17)

∆V R(p)αµν =
ZV R

p2 −M2
V

∑

λ

ε(λ)
α (p)u(λ)∗

µν (p) + O(1) (5.4.18)

where

ZRR =
M2 + ΣT

V V (M2
V )

D′(M2
V )

(5.4.19)

ZV V =
M2 + ΣL

RR(M2
V )

D′(M2
V )

(5.4.20)

ZRV =
M + ΣRV (M2

V )

D′(M2
V )

MV = ZV R =
M + ΣV R(M2

V )

D′(M2
V )

MV (5.4.21)

Note that, as a consequence of (5.4.14)

ZRRZV V = Z2
RV = Z2

V R, (5.4.22)

(remember ΣRV (p2) = ΣV R(p2)), therefore the pole p2 = M2
V > 0 corresponds to the spin-one

one-particle state |p, λ, V 〉 which couples to the fields as

〈0|Rµν(0)|p, λ, V 〉 = |ZRR|1/2u(λ)
µν (p) (5.4.23)

〈0|Vµ(0)|p, λ, V 〉 = |ZV V |1/2ε(λ)
µ (p) (5.4.24)

and at least one of these states is expected to be perturbative as above; the others decouple

when the interactions is switched off. The other possible poles, p2 = M2
S and p2 = M2

A are

analogical to the spin-zero and spin-one (opposite parity) states mentioned in the previous two

subsections, they correspond to the modes which are frozen at the leading order and decouple

in the free field limit. Again, without further information, all the additional states can be also

ghosts or tachyons.
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One loop contribution

The contributing Lagrangian in the first order formalism is

LRV =
iGV

2
√

2
〈Rµν [uµ, uν ]〉+ iλV

21〈RµνD
2(uµuν)〉 − igV

2
√

2
〈V̂ µν [uµ, uν ]〉 (5.4.25)

+ d1ǫµνασ〈Dβuσ{Rµν , Rαβ}〉+ d3ǫρσµλ〈uλ{DνRµν , Rρσ}〉

+ d4ǫρσµα〈uν{DαRµν , Rρσ}〉+ 1

2
MσV εαβµν〈{V α, Rµν}uβ〉

The self-energies have the form

ΣT
V V (p2) =

g2
V p6λ∞

16π2F 4
+

5σ2
V p4λ∞

72π2F 2
− 5M2p2σ2

V λ∞
24π2F 2

, (5.4.26)

ΣL
V V (p2) = 0. (5.4.27)

Figure 5.3: Vector propagator one loop diagrams in first order formalism.

Restricting ourselves to ∆ = 3 (D = 4) and taking into account also counterterms contribu-

tions we obtain the result

ΣT
V V (p2) =

5σ2
V p4λ∞

72π2F 2
− 5M2p2σ2

V λ∞
24π2F 2

(5.4.28)

ΣL
V V (p2) = 0 (5.4.29)

The self-energies can be written as

ΣT
RR(p2) =

{
− 5p6

16π2F 2M2
d4(d3 + d4)−

5p4

144π2F 2

[
σ2

V − 4σV (d3 + 3d4) + 4(d3 + d4)(3d3 − 5d4)
]

− 5p2M2

144π2F 2

[
24d1(d1 + d3 + d4)− 12(d3 + d4)(3d3 − d4) + 4σV (d3 + 9d4)− σ2

V

]

− 5M4

24π2F 2

[
4(d1 + σV )(d1 − d3 − d4) + σ2

V

]
}

λ∞ (5.4.30)

ΣL
RR(p2) =

{
λ2

21p
8λ∞

8π2F 4
− p6

√
2GV λV

21λ∞
18π2F 4

+
p4G2

V λ∞
16π2F 4

− 5σV d3p
4λ∞

18π2F 4
(5.4.31)

+
5M2p2

6π2F 2

[
(d3 + d4)(d1 + 3d3 − d4)− d2

1

]
+

5p2M2λ∞
72π2F 2

σV (σV + 8d3)

− 5M4

24π2F 2

[
4(d1 + σV )(d1 − d3 − d4) + σ2

V

]
}

λ∞
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Figure 5.4: Tensor propagator one loop diagrams in first order formalism. They ap-

pear only in mixed formalism. The thick line stands for both mixed propagators

.

Restricting to ∆ = 3 (D = 4) we get

ΣT
RR(p2) =

{
− 5p6

16π2F 2M2
d4(d3 + d4) (5.4.32)

− 5p4

144π2F 2

[
σ2

V − 4σV (d3 + 3d4) + 4(d3 + d4)(3d3 − 5d4)
]

− 5p2M2

144π2F 2

[
24d1(d1 + d3 + d4)− 12(d3 + d4)(3d3 − d4) + 4σV (d3 + 9d4)− σ2

V

]

− 5M4

24π2F 2

[
4(d1 + σV )(d1 − d3 − d4) + σ2

V

]
}

λ∞

ΣL
RR(p2) =

{
− p6

√
2GV λV

21λ∞
18π2F 4

+
p4G2

V λ∞
16π2F 4

− 5σV d3p
4λ∞

18π2F 4
(5.4.33)

+
5M2p2

6π2F 2

[
(d3 + d4)(d1 + 3d3 − d4)− d2

1

]
+

5p2M2λ∞
72π2F 2

σV (σV + 8d3)

− 5M4

24π2F 2

[
4(d1 + σV )(d1 − d3 − d4) + σ2

V

]
}

λ∞

The mixed self-energy has the form

ΣRV (p2) =

{
− gV λ21p

6

8
√

2π2F 4
− p4

144π2F 4M
(20d3σV F 2 − 9MgV GV ) (5.4.34)

− 5MσV (σV − 4d3)p
2

72π2F 2
− 5M3σV (2d1 − 2d3 − 2d4 − σV )

24π2F 2

}
λ∞
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Figure 5.5: Mixed propagator one loop diagrams. The thick line stands for mixed propagator

.

Restricting to ∆ = 5/2 (D = 3) we obtain

ΣRV (p2) =

{
− 5d3σV p4

36π2F 2M
− 5MσV (σV − 4d3)p

2

72π2F 2
(5.4.35)

− 5M3σV (2d1 − 2d3 − 2d4 − σV )

24π2F 2

}
λ∞ (5.4.36)

Counterterms

In the first order formalism we have to include both types of counterterms from the vector and

the antisymmetric tensor formalisms. Moreover, we have also the mixing terms in this case,

Lct
RV = L(1)

RV + L(3)
RV (5.4.37)

where

L(1)
RV = ZRV 〈Rµν V̂ µν〉, (5.4.38)

L(3)
RV = X1RV 〈DαRµνDαV̂ µν〉+ X2RV

2
〈DαRµαDβ V̂ µβ〉 (5.4.39)

Only the sum XRV = X1RV + X2RV is relevant in the calculations. The contribution to the

self-energy are

ΣRV (p2) = −2ZRV + 2p2XRV . (5.4.40)

In the following we denote δM2
V and δM2

R the coupling constant standing by the renormalized

mass term of V µ and Rµν . If δM2
V 6= δM2

R, this indicates the mass splitting of the resonance

fields.
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Matching of couplings in counterterms

Killing the infinities up to p4 we get

ZRV = −5M3σV (2d1 − 2d3 − 2d4 − σV )

48π2F 2
+ Zr

RV (µ), (5.4.41)

XRV =
5MσV (σV − 4d3)p

2

144π2F 2
+ Xr

RV (µ), (5.4.42)

δM2
V = (δM2

V )r(µ), (5.4.43)

YV = Y r
V (µ), (5.4.44)

X ′
V = (X ′

V )r(µ), (5.4.45)

ZV =
5M2σ2

V λ∞
24π2F 2

+ Zr
V (µ), (5.4.46)

XV = − 5σ2
V λ∞

72π2F 2
+ Xr

V (µ), (5.4.47)

ZR = − 5M2λ∞
576π2F 2

[
12(d3 + d4)(4d1 − 3d3 + d4) + σ2

V + 4σV (5d3 + 9d4)
]
+ Zr

R(µ), (5.4.48)

XR = − λ∞
576π2F 4

[
20(3d3 − 5d4)(d3 + d4)F

2 (5.4.49)

+5σ2
V F 2 − 60σV (d3 + d4) + 9G2

V

]
+ Xr

R(µ), (5.4.50)

δM2
R =

5M4

96π2F 2

[
4(d1 + σV )(d1 − d3 − d4) + σ2

V

]
+ (δM2

R)r(µ), (5.4.51)

YR =
5M2

576π2F 2
[24d1(d1 + d3 + d4) (5.4.52)

−12(d3 + d4)(3d3 − d4) + 4σV (d3 + 9d4)− σ2
V

]
, (5.4.53)

WR =
5

576π2F 2

[
σ2

V − 4σV (d3 + 3d4) + 4(d3 + d4)(3d3 − 5d4)
]

(5.4.54)

We have obtained not only the presence of spin-1 particles with opposite parity (that are

either tachyons or ghosts) but also the dynamical generation of the kinetic and the mass terms

for individual resonances V µ and Rµν where generally δM2
R 6= δM2

V . The interpretation of this

phenomenon is the task for future studies.

5.5 Summary of the chapter

In this chapter, we have discussed the question of the renormalization in Resonance Chiral

Theory and its application on the concrete example of the resonance propagators. First, we have

studied various possibilities of the power counting used in RχT and their disadvantages. Then we

have concentrated on the self-energies and the propagators of vector resonances calculated in all

three formalisms. Starting with the free field Lagrangians we have learned that at tree level only

physical particles are propagated. However, if we add some special terms into Lagrangian the
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other degrees of freedom, which were frozen at tree level, are now propagated too. Unfortunately,

these states have generally negative norm and refer to the appearance of ghosts in the spectrum.

We have done the one loop renormalization procedure restricting ourselves to the countert-

erms with maximally four derivatives and given ∆max and we have found the concrete forms of

the infinite parts of the counterterms couplings. In the vector formalism, no additional degrees

of freedom are generated because related coupling constants can be fixed to zero independently

on the renormalization scale. If we would enlarge the calculation up to the order O(p8), these

negative norm states would probably also appear. In the antisymmetric tensor and the first

order formalisms, this pathology is present already at the order O(p6).



CHAPTER 6

Conclusion

Resonance Chiral Theory is an effective theory for QCD for the intermediate energy region

which interpolates between the Chiral Perturbation Theory (the limit for low energies) and

perturbative regime of QCD in the limit of large NC (at high energies). In the general case it

would include the infinite tower of resonances in order to fully describe the spectrum of QCD

with NC → ∞, but the relevant simplification for energies 1GeV ≤ E ≤ 2GeV takes into

account only the lightest resonance in each channel.

In this thesis, we have restricted ourselves to the role of the vector resonances in the RχT.

We have introduced two usual ways how to describe these particles - using the vector and the

antisymmetric tensor fields. Then we have studied their equivalence and we have proposed also

the third possibility that combines both previous - the first order formalism. It provides us with

a method how to obtain the general effective chiral Lagrangian where no additional terms must

be given by hand (which is not true for the vector and the antisymmetric tensor formalisms).

In chapter 3 and 4, we have done the calculation of concrete correlators together with their

formal properties and the high energy constraints. As a result, we have first found the relations

between resonance Lagrangian coupling constants and then after matching with χPT we have

obtained the saturation of LECs. However, the more complicated example of Compton-like

scattering indicates that in some situations the high energy constraints are very strict and

cannot be non-trivially satisfied. Probably these lapses could be corrected if either other types

of resonances or additional local contact terms would be added.

In chapter 5 we have found that one loop corrections to resonance propagators give rise to

the problems relating with the possible appearance of ghosts (or tachyons) in the theory. The

renormalization procedure in the antisymmetric tensor and the first order formalisms needs a

presence of the new kinetic terms that lead to states with negative norm. Generally, it can
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probably happen also in the vector formalism if we include also O(p8) Lagrangian terms.



APPENDIX A

Theoretical background

A.1 Notation

In order to simplify some long expressions we use the same short hand notation as in [A]. All

used fields transform under adjoint representation of SU(3)V . Using the normalisation of [11] we

have Vµ = V a
µ T a where T a = λa/

√
2 and T 0 = 1/

√
3. The same is true about the antisymmetric

tensor fields and pseudoscalar fields, Rµν = Ra
µνT a and φ = φaT a 1. For sources v and p we

have p = paT a/
√

2 and vµ = va
µT a/

√
2

The dot in brackets means the contraction of group and tensor indices, e.g.

(A ·B) ≡ Aa
µBaµ, (A.1.1)

(V ·K · V ) ≡ V a
µ KabµνV b

ν . (A.1.2)

For generic tensors we employ ” : ” for a pair of contracted antisymmetric indices, i.e.

R : J ≡ RµνJ
µν (A.1.3)

We also use the symbol V̂ for an antisymmetric derivative of the vector field V , id. V̂ aµν =

DabµV bν −DabνV bµ and W for a derivative of the antisymmetric tensor field W aβ = Dab
α Rbαβ .

A.2 Some remarks on SU(3)

The group SU(3) plays an important role in the concept of the Standard model, especially in the

theories of strong interactions. In sixties it was used to construct the model of the Eightfold way

1The pseudoscalar mesons transform as an octet so there is no term φ0T 0



92 Theoretical background

where the particles were organized into multiplets corresponding to irreducible representations

of this group. However, it was evident that this symmetry (flavour SU(3)) is broken due to mass

differences among the particles in the multiplets. The fundamental theory of strong interactions,

QCD, is based on the local SU(3)C and possesses chiral SU(3)L×SU(3)R in the massless quark

limit. It is true only for massless quarks.

The element of the SU(3) group can be generally written in the form

U(Θ) = exp

(
−i

8∑

a=1

Θa λa

2

)
(A.2.1)

with eight real numbers Θa and eight linearly independent so-called Gell-Mann matrices satis-

fying

λa = λ†
a (A.2.2)

Tr(λaλb) = 2δab (A.2.3)

Tr(λa) = 0. (A.2.4)

An explicit form of the Gell-Mann matrices is

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 , λ3 =




1 0 0

0 −i 0

0 0 0


 ,

λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i

0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0


 ,

λ7 =




0 0 0

0 0 −i

0 i 0


 , λ8 =

√
1

3




1 0 0

0 1 0

0 0 −2


 (A.2.5)

For our purpose we introduce the T a matrices

T a =
λa

√
2
. (A.2.6)

Next we define structure constants of SU(3). The commutator of two T ’s matrices has the form

[T a, T b] =
√

2ifabcT c (A.2.7)

where fabc is totally antisymmetric object. The anticommutator is then

{T a, T b} =
2

3
δab +

√
2dabcT c (A.2.8)

with dabc being totally symmetric. The reverse relations are

fabc = −
√

2iTr
(
[T a, T b]T c

)
, dabc =

√
2Tr

(
{T a, T b}T c

)
(A.2.9)
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A.3 Feynman integrals

We use same convention as in [13]. To calculate loop integrals we use Passarino-Veltman reduc-

tions method. The divergencies of the integrals can be collected in the factor

λ∞ =
2µd−4

d− 4
+ γE − ln 4π − 1 (A.3.1)

where γE = 0.577 . . . is the Euler constant and µ is the renormalization scale.

The notation of corresponding Feynman integrals is then

A0(M
2) ≡

∫
dkd

i(2π)d
1

k2 −M2 + iǫ
=

M2

16π2

{
λ∞ + ln

M2

µ2

}
(A.3.2)

B0(p
2,M2

1 ,M2
2 ) ≡

∫
dkd

i(2π)d
1

(k2 −M2
1 + iǫ)[(p − k)2 −M2

2 + iǫ]
(A.3.3)

=− 1

16π2

[
λ∞ +

M2
1

M2
1 −M2

2

ln
M2

1

µ2
− M2

2

M2
1 −M2

2

ln
M2

2

µ2

]
+ J(p2,M2

1 ,M2
2 ),

where the the finite function J(p2,M2
1 ,M2

2 ) stands for

J(p2,M2
1 ,M2

2 ) =
1

32π2

{
2 +

[
M2

1 −M2
2

p2
− M2

1 + M2
2

M2
1 −M2

2

]
ln

M2
2

M2
1

(A.3.4)

− λ1/2(p2,M2
1 ,M2

2 )

p2
ln

[
(q2 + λ1/2(p2,M2

1 ,M2
2 ))2 − (M2

1 −M2
2 )2

(q2 − λ1/2(p2,M2
1 ,M2

2 ))2 − (M2
1 −M2

2 )2

]

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. Some useful particular cases of B0 integrals

are:

B0(p
2, 0, 0) = − λ∞

16π2
+ B̂0(p

2/µ2), (A.3.5)

B0(p
2, 0,M2) = − 1

16π2

{
λ∞ + ln

M2

µ2

}
+ J(p2, 0,M2), (A.3.6)

B0(p
2,M2,M2) = − 1

16π2

{
λ∞ + ln

M2

µ2
+ 1

}
+ B0(p

2,M2), (A.3.7)

with the finite parts

B̂0(p
2/µ2) =

1

16π2

{
1− ln

(
− p2

µ2

)}
, (A.3.8)

B0(p
2,M2) = J(p2,M2,M2) =

1

16π2

{
2− σM ln

(
σM + 1

σM − 1

)}
, (A.3.9)

J(p2, 0,M2) =
1

16π2

{
1−

(
1− M2

p2

)
ln

(
1− p2

M2

)}
(A.3.10)

where σM =
√

1− 4M2/p2.

The three-propagator Feynman integral is defined as

C0(q
2,M2

1 ,M2
2 ,M2

3 ) ≡ (A.3.11)
∫

dkd

i(2π)d
1

[(p1 − k)2 −M2
1 + iǫ][(p2 + k)2 −M2

2 + iǫ](k2 −M2
3 + iǫ)

,

where q = p1 + p2.
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A.4 OPE for Green functions

As was mentioned earlier, the interpolating fields for external sources in QCD are defined as

V a,µ(x) = q(x)γµ T a

√
2
q(x), (A.4.1)

P b(y) = iq(y)γ5 T b

√
2
q(y). (A.4.2)

In OPE calculation we will use the propagator of quark fields

S(x) =
xµγµ

2π2x4
(A.4.3)

〈PP 〉

The operator product expansion for the 〈PP 〉 correlator is

〈0|T [P a(x)P b(0)]|0〉 = −1

2
Tr

{
〈0|iS(−x)γ5T

a iS(x)γ5T
b|0〉

+ 〈0|iS(−x)γ5T
a : q(0)q(x)γ5T

b|0〉
+ 〈0| : q(x)q(0) : γ5T

a iS(x)γ5T
b|0〉

+ 〈0| : q(x)q(0)γ5T
a q(0)q(x) : γ5T

b|0〉
}

+O(αs) (A.4.4)

Calculating Dirac traces the leading contribution of this expression can be written in the form

〈0|T [P a(x)P b(0)]|0〉 = − 3δab

2π4x6
+O

(
1

x4
, αs

)
(A.4.5)

〈V V 〉

The operator product expansion for the 〈V V 〉 correlator is

〈0|T [V a
µ (x)V b

ν (0)]|0〉 = −1

2
Tr

{
〈0|iS(−x)γµT a iS(x)γνT b|0〉

+ 〈0|iS(−x)γµT a : q(0)q(x)γνT b|0〉
+ 〈0| : q(x)q(0) : γµT a iS(x)γνT b|0〉

+ 〈0| : q(x)q(0)γµT a q(0)q(x) : γνT b|0〉
}

+O(αs) (A.4.6)

Calculating Dirac traces the leading contribution of this expression can be written in the form

〈0|T [V a
µ (x)V b

ν (0)]|0〉 = −3δab

2

2xµxν − gµνx2

π4x8
+O

(
1

x6
, αs

)
(A.4.7)
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〈V V P 〉

The operator product expansion then reads

〈0|T [V a,µ(x)V b,ν(y)P c(0)|0〉 =〈0|T
(

qγµ T a

√
2
q

)
(x)

(
qγν T b

√
2
q

)
(y)

(
iqγ5 T c

√
2
q

)
(0)|0〉

=
−i

(
√

2)3
Tr

{
: q(0)q(y) : γνT b iS(y − x)γµT a iS(x)γ5T c

+ iS(−y)γνT b iS(y − x)γµT a : q(0)q(x) : γ5T c

+ iS(−x)γµT a iS(x− y)γνT b : q(0)q(y) : γ5T c

+ iS(−x)γµT a : q(y)q(x) : γνT b iS(y)γ5T c

+ iS(−y)γνT b : q(x)q(y) : γµT a iS(x)γ5T c

+ : q(x)q(0) : γµT a iS(x− y)γνT b iS(y)γ5T c

}
+O(αs) (A.4.8)

where we use the fact that only terms with two contractions can contribute due to properties of

traces of Dirac matrices. Calculating it to the leading order we get

〈0|T [V a,µ(x)V b,ν(y)P c(0)|0〉

=
B0F

2
0

6π4
dabcǫµναβ

[
xαyβ

x4(x− y)4
+

xαyβ

x4y4
+

xαyβ

y4(x− y)4

]
+O

(
1

x8
, αs

)
(A.4.9)

with −B0F
2
0 = 〈0|qq|0〉.

The OPE of Compton-like scattering is analogous to the case of 〈V V 〉 correlator calculated

to the next to leading order where the vacuum states are replaced by the external Goldsone

boson states.

The Fourier transformations of these results are presented in the main text are used for

determining of high energy constraints.



APPENDIX B

Feynman rules

In this appendix we provide the complete list of used Feynman rules.

Factor in Feynman rules

The generating functional can be written in the form

Z[v, a, p, s] = eiW [v,a,p,s] =

〈
0|T exp

{
i

∫
jV + jA + jP − jS

}
|0
〉

(B.0.1)

where W [v, a, s, p] is the generating functional of connected Green functions. By definition we

give for Green function

〈0|T (jV (xV1)...jV (xA1)...jS(xP1)...jP (xS1)...)|0〉

= (−i)#v+#p+#a−#s δ

δv
...

δ

δp
...

δ

δa
...

δ

δs
... (iW [v, a, s, p])

So for each vertex we have the sign rule

sign =
i

i#v+#p
. (B.0.2)

Factor i in numerator comes from iW . We can leave the factor in denominator just multiplying

the expression for the correlators by

sign of correlator =
1

i#v+#p
. (B.0.3)
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Chiral building blocks

In the concrete calculations it is neccesary to expand the usual chiral building blocks in terms

of fields, currents and densities and their derivatives. Generally we have the infinite number of

terms but for our purpose it is sufficient to take only few terms. By the definition

u = exp

(
i

Φ√
2F

)
≈ 1 + i

Φ√
2F
− Φ2

4F 2
− i

Φ3

12
√

2F 3
, (B.0.4)

u† = exp

(
−i

Φ√
2F

)
≈ 1− i

Φ√
2F
− Φ2

4F 2
+ i

Φ3

12
√

2F 3
(B.0.5)

Then we can write for the chiral building blocks

uµ = i(u†(∂µ − ivµ)u− u(∂µ − ivµ)u†)

≈ −
√

2

F
∂µφ +

√
2i

F
[vµ, φ] +

1

6
√

2F 3
{φ2, ∂µφ} − 1

3
√

2F 3
φ(∂µφ)φ, (B.0.6)

Γµ =
1

2

{
u†(∂µ − ivµ)u + u(∂µ − ivµ)

}

≈ 1

4F 2
[φ, ∂µφ]− ivµ +

i

4F 2
{vµ, φ2}, (B.0.7)

f+µν = ufµνu
† + u†fµνu

≈ 2(∂µvν − ∂νvµ)− 2i[vµ, vν ]−
1

2F 2
{∂µvν − ∂νvµ, φ2}+

i

2F 2
{[vµ, vν ], φ2}

+
1

F 2
φ(∂µvν − ∂νvµ)φ− i

F 2
φ[vµ, vν ]φ, (B.0.8)

f−µν = ufµνu
† − u†fµνu

≈
√

2i

F
[φ, ∂µvν − ∂νvµ] +

√
2

F
[φ, [vµ, vν ]] , (B.0.9)

χ+ = u†χu† + uχ†u

≈ 2
√

2B0

F
{p, φ} − B0

3
√

2F 3
{p, φ3} − B0√

2F 3
φ{p, φ}φ, (B.0.10)

χ− = u†χu† − uχ†u

≈ 4iB0p−
iB0

F 2
{φ2, p} − 2iB0

F 2
φpφ (B.0.11)

χ−µ = u†Dµχu† + uDµχ†u = ∇µχ+ −
i

2
{χ−, uµ} (B.0.12)

≈ 4iB0πµp + 4B0[vµ, p], (B.0.13)

χ+µ =
2
√

2B0

F
{πµ, p} − 2

√
2iB0

F
{φ, [vµ, p]}. (B.0.14)
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B.1 χPT vertices

In some results we use following simply notation

G1 = 2dabedcde +
4

3
δabδcd = 2T5 +

4

3
T1

G2(a, b, c, d) = −1

3
δabδcd + (δadδbc + δacδbd)− 2dabedcde = −1

3
T1 + T2 − 2T5

Vertex 1: pp

= −4iB2
0

[
2L8 − 2L11 + L12 −H2 − c91p

2
]
δab (B.1.1)

Vertex 2: vv

= 2i(L10 + 2H1 + 2c93p
2)(p2gαβ − pαpβ)δab (B.1.2)

Vertex 3: pφ

Φ

= iB0F

[
1− 4(L11 − L12)p

2

F 2

]
δab (B.1.3)

Vertex 5: vφφ

ΦΦ

=fabc(r − q)α

{
1 +

2L9p
2 − 4L12(r

2 + q2)

F 2

− 4c88p
4 − 8c90(q · r)p2

F 2

}

− fabcpα
2(q2 − r2)

F 2

[
L9 − 2c88p

2 − 4c90(q · r)
]

(B.1.4)

Vertex 4: vvφ

Φ

= − iNC

8π2F
ǫαβµνp

µqνdabc (B.1.5)
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Vertex 5: vvφφ (up to O(p2))

Φ Φ

= igαβ(facef bde + fadef bce) (B.1.6)

B.2 Vector formalism

Vertex 1 : V v

= −ifV δab(p2gµα − pαpµ) (B.2.1)

Vertex 2 : V φφ

Φ Φ

= −2gV

F 2
fabc [(p · r)sα − (p · s)rα] (B.2.2)

Vertex 3 : V V φ

Φ

=
2iσV

F
dabcǫαβµνrµ(q − p)ν (B.2.3)

Vertex 4 : V vφ

Φ

=
4
√

2ihV

F
dabcǫµαρσpρrσ (B.2.4)
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Vertex 5 : V pφ

Φ

=
4
√

2βV B0

F
fabcrα (B.2.5)

Vertex 6 : V V v

= fabc
[
gαβ(q − r)µ − gµαqβ + gµβrα

]
(B.2.6)

Vertex 7 : V vφφ

Φ Φ

=
i

2F 2
fabef cde

{
fV [gαµ(p · s)− γαµ(p · r) + pαrµ − pαsµ]

+4gV rαsµ − 4gV sαrµ

}

− i

2F 2
facef bde

{
4
√

2αV [gαµ(p · s)− pαsµ]

+fV [gαµ(p · q)− pαqµ] + 4gV (gαµ(s · q)− sαqµ]

}

− i

2F 2
fadef bce

{
4
√

2αV [gαµ(p · r)− pαrµ]

+fV [gαµ(p · q)− pαqµ] + 4gV (gαµ(r · q)− rαqµ]

}

(B.2.7)

Vertex 8 : V V vφ

Φ

=
2σV

F
ǫµαβρ

[
fadedbce(q − r)ρ + sρ(facedbde − fabedcde)

]

(B.2.8)
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Vertex 9 : V V pφ

Φ

= dadedbce 2iκV B0

F
gαβ + δadδbc 4iκV B0

3F
gαβ (B.2.9)

Vertex 10 : V vv

= fV fabc [(p− q)αgµν + (r − p)νgµα − (r − q)µgνα] (B.2.10)

Vertex 11 : V V vv

=ifacef bde(gµνgαβ − gµβgνα) + ifadef bce(gµνgαβ − gµαgνβ)

− 2ifabef cde(gµαgνβ − gναgµβ) (B.2.11)

Vertex 12 : V vvφ

Φ

= fadedbce 4
√

2hV

F
ǫµνασqσ − f bdedace 4

√
2hV

F
ǫµνασpσ

−fabedcde 4
√

2

F
ǫµνασsσ

Vertex 13 : V vpφ

Φ

=
4
√

2iβV B0

F
fadef bcegµα (B.2.12)



102 Feynman rules

B.3 Antisymmetric tensor formalism

Vertex 1 : Rv

=
1

2
δab(pαgµβ − pβgµα)(FV − 2

√
2λV

22p
2) (B.3.1)

Vertex 2 : Rvv

= i

(
FV

2
−
√

2λV
22r

2

)
fabc(gµαgνβ − gµβgνα) (B.3.2)

+
√

2iλV
7 fabc [gµν(pαqβ − pβqα) + gµβ(qαpν − (p · q)gαν)

−gµα(pνqβ − (p · q)gνβ) + qµ(pβgαν − pαgβν)]

Vertex 3 : Rvv

ϕϕ

=
i

F 2
fabc(rαsβ − rβsα)(GV −

√
2λV

21p
2) (B.3.3)

Vertex 4 : Rvπ

ϕ

=
2
√

2

MF
dabc [c1ǫαβρσpρrσrµ − c1ǫαβµσrσ(p · r) (B.3.4)

+c2ǫασρµpρrβrσ − c2ǫβσρµpρrαrσ − c5ǫαβµδr
δ(p · q)

+c5ǫαβρσqµpρrσ + c6ǫαρσµqβpσrρ − c6ǫβρσµqαpσrρ

−c7ǫαβµσqσ(p · r) + c7ǫαβσρq
ρpσrµ]

Vertex 5 : RRπ

ϕ
=

i

F
dabc [d1ǫαβγσrσrδ − d1ǫαβδσrσrγ + d1ǫγδασrσrβ

−d1ǫγδβσrσrα + d3ǫαβγσrσpδ − d3ǫαβδσrσpγ + d3ǫγδασrσqβ

−d3ǫγδβσrσqα + d4ǫγδασqσrβ − d4ǫγδβσqσrα + d4ǫαβγσpσrδ

−d4ǫαβδσpσrγ ] (B.3.5)
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Vertex 6 : Rvp

= −8
√

2c3

M
dabcǫαβσµpσ (B.3.6)

Vertex 7 : Rvvp

= −8ic3

M
fabedcdeǫµναβ (B.3.7)

Vertex 8 : RRp

= −8d2B0d
abcǫαβγδ (B.3.8)

Vertex 9 : RRv

=
1

4
fabc

{
qα(gβδgµγ − gβγgκδ)− qβ(gαδgµγ − gαγgµδ)

− rγ(gµαgβδ − gµβgαδ) + rδ(gβγgµα − gαγgµβ)

}

−λV V
7

2
fabc

{
pα(gβγgµδ − gβδgµγ)− pβ(gαγgµδ − gαδgµγ)

+ pγ(gβδgµα − gαδgµβ)− pδ(gµαgβγ − gαγgµβ)

}

(B.3.9)
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Vertex 10 : RRvv

=− i

4
facef bde

{
gµα(gβδgγν − gβγgνδ)− gµβ(gαδgγν − gαγgνδ)

}

− i

4
f bcefade

{
gνα(gβδgγµ − gβγgµδ)− gνβ(gαδgγµ − gαγgµδ)

}

+
iλV V

7

2
fabef cde

{
gµα(gβδgγν − gβγgνδ)− gµβ(gαδgγν − gαγgνδ)

}

− iλV V
7

2
fabef cde

{
gνα(gβδgγµ − gβγgµδ)− gνβ(gαδgγµ − gαγgµδ)

}

(B.3.10)

Vertex 11 : Rpφ

ϕ

=
2
√

2iB0λ
V
10

F
fabc(rαqβ − rβqα) (B.3.11)

Vertex 12 : Rvpφ

ϕ

=
2
√

2B0λ
V
10

F

[
fadef bce(gµαqβ − gµβqα)

+fabef cde(gµβsα − gµαsβ)
]

(B.3.12)

Vertex 13 : RRpφ

ϕ

=
iB0λ

V V
6

F

(
2dadedbce +

4

3
δadδbc

)
(gαγgβδ − gαδgβγ) (B.3.13)
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Vertex 14 : RRφφ

ϕ ϕ

=− i

F 2
(r · s)

{
gαγgβδ − gαδgβγ

}[
λV V

1 G1 + 2λV V
2 G2(a, c, b, d)

]

− i

2F 2

{
rα(sγgβδ − sδgγβ)− rβ(sγgαδ − sδgαγ)

}

×
[
λV V

3 G2(a, b, c, d) + λV V
4 G2(a, b, d, c) + 2λV V

5 G2(a, c, b, d)
]

− i

2F 2

{
sα(rγgβδ − rδgγβ)− sβ(rγgαδ − rδgαγ)

}

×
[
λV V

3 G2(a, b, d, c) + λV V
4 G2(a, b, c, d) + 2λV V

5 G2(a, c, b, d)
]

− i

8F 2
fabef cde

{
(s− r)α(qγgβδ − qδgβγ)− (s− r)β(qγgαδ − qδgαγ)

− (s− r)γ(pαgβδ − pβgαδ) + (s− r)δ(pαgβγ − pβgαγ)

}

(B.3.14)

Vertex 15 : Rvφφ

ϕ ϕ

=− FV

8F 2
(pαgµβ − pβgµα) [G1 − 2G2(a, d, b, c)]

+
GV

F 2
facef bde(sβgµα − sαgµβ) +

GV

F 2
fadef bce(rβgµα − rαgµβ)

− 2
√

2

F 2
(r · s)(pαgµβ − pβgµα)

[
λV

11G1 + λV
12G2(a, d, b, c)

]

−
√

2

F 2

{
pβ(rαsµ + rµsα)− gµβ [(p · s)rα + (p · r)sα]

}

×
[
λV

13G2(a, d, b, c) − λV
14G2(a, b, c, d) − λV

15G2(a, b, d, c)
]

+

√
2

F 2

{
pα(rβsµ + rµsβ)− gµα[(p · s)rβ + (p · r)sβ]

}

×
[
λV

13G2(a, d, b, c) − λV
14G2(a, b, d, c) − λV

15G2(a, b, c, d)
]
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+

√
2λV

16

F 2
facef bde

{
sµ(rαpβ − rβpα) + (p · s)[gµα(p + r)β − gµβ(p + r)α]

}

+

√
2λV

16

F 2
fadef bce

{
rµ(sαpβ − sβpα) + (p · r)[gµα(p + s)β − gµβ(p + s)α]

}

+
2
√

2λV
17

F 2
facef bde

{
(p + r) · s (pαgµβ − pβgµα)

}

+
2
√

2λV
17

F 2
fadef bce

{
(p + s) · r (pαgµβ − pβgµα)

}

+

√
2λV

18

F 2
facef bde

{
(p + r) · p (sβgµα − sαgµβ) + (p + r)µ(pβsα − pαsβ)

}

+

√
2λV

18

F 2
fadef bce

{
(p + s) · p (rβgµα − rαgµβ) + (p + s)µ(pβrα − pαrβ)

}

+
2
√

2λV
19

F 2
facef bde

{
sβ(sµpα − (p · s)gµα)− sα(sµpβ − (p · s)gµβ)

}

+
2
√

2λV
19

F 2
fadef bce

{
rβ(rµpα − (p · r)gµα)− rα(rµpβ − (p · r)gµβ)

}

+

√
2λV

21

F 2
fabef cde(rαsβ − rβsα)(q − r − s)µ +

√
2λV

21q
2

F 2
facef bde(sβgµα − sαgµβ)

+

√
2λV

21q
2

F 2
fadef bce(rβgµα − rαgµβ) (B.3.15)

where

G1 = 2dabedcde +
4

3
δabδcd = 2T5 +

4

3
T1

G2(a, b, c, d) = −1

3
δabδcd + (δadδbc + δacδbd)− 2dabedcde = −1

3
T1 + T2 − 2T5

Vertex 16 : RRR

=
3
√

2iλV V V

8
fabc (gαλgβδgγκ − gαδgβλgγκ − gακgβδgγλ + gαδgβκgλγ

−gαλgβγgδκ + γαγgβλgκδ + gακgβγgλδ − gαγgβκgδλ)

(B.3.16)
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B.4 First order formalism

Vertex 1 : RV v

=
iM

2
fabc(gµαgβσ − gµβgασ) (B.4.1)

Vertex 2 : RV φφ

ϕ ϕ

= − M

4F 2
fabef cde [(s − r)αgβσ − (s− r)βgασ ] (B.4.2)

Vertex 3 : RV φ

ϕ

= −MσV

F
dabcǫαβσρr

ρ (B.4.3)

Vertex 4 : RV vφ

ϕ

= − iMσV

F
fadedbceǫµαβσ (B.4.4)



APPENDIX C

Compton scattering

In this appendix we propose some technical calculations that were not included in the main text

of thesis.

C.1 Basis of tensors

This gives 9 independent invariant tensors for general SU(N), we can choose the basis as

T abcd
1 = 〈T aT b〉〈T cT d〉

T abcd
2,3 = 〈T aT c〉〈T bT d〉 ± 〈T aT d〉〈T bT c〉

T abcd
4 = −1

2
〈[T a, T b][T c, T d]〉

T abcd
5 =

1

2
〈{T a, T b}{T c, T d}〉 − 2

3
〈T aT b〉〈T cT d〉

T abcd
6 = 〈T aT cT bT d〉+ 〈T aT dT bT c〉+ 1

2
〈{T a, T b}{T c, T d}〉

−2

3
〈T aT c〉〈T bT d〉 − 2

3
〈T aT d〉〈T bT c〉

T abcd
7 = − i

2
〈{T a, T b}[T c, T d]〉

T abcd
8 = − i

2
〈[T a, T b]{T c, T d}〉

T abcd
9 = −i〈T aT cT bT d〉+ i〈T aT dT bT c〉
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or, in terms of invariant tensors δab,fabc and dabc

T abcd
1 = δabδcd

T abcd
2,3 = δacδbd ± δadδbc

T abcd
4 = fablf cdl

T abcd
5 = dabldcdl

T abcd
6 = dacldbdl + dbcldadl

T abcd
7 = dablf cdl

T abcd
8 = fabldcdl

T abcd
9 =

1

2

(
facldbdl + daclf bdl − dadlf bcl − fadldbcl

)

For general SU(N) we the general result for Gabcd
µν (p, q, r; s) and Aabcd

µν (p, q, r; s) have the given

forms

Gabcd
µν (p, q, r; s) =

9∑

i=1

Gµν(p, q, r; s)(i)T abcd
i

Aabcd
µν (p, q, r; s) =

9∑

i=1

Aµν(p, q, r; s)(i)T abcd
i

For SU(3) we have the additional Cayley-Hamilton identity

0 = T aT bT c + T aT cT b + T cT aT b + T bT aT c + T bT cT a + T cT bT a

−T a〈T bT c〉 − T b〈T aT c〉 − T c〈T aT b〉 − 〈T aT bT c〉 − 〈T aT cT b〉

that helps us to express T abcd
6 in terms of other group structures

dabldcdl =
1

3
δabδcd +

1

3
(δadδbc + δacδbd)− (dadldbcl + dacldbdl).

T abcd
6 =

1

3
T abcd

1 +
1

3
T abcd

2 − T abcd
5

which reduces the number of independent group structures to eight. Moreover, the invariances

under C, P and T allow us to eliminate the structures T abcd
7 , T abcd

8 and T abcd
9 . As a result we

have five independent group structures T abcd
i , i = 1, 2, . . . 5. In some cases we will use the short

notation T q
i = T abcd

i .
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C.2 Formfactors

ChPT contribution

The list of the formfactors up to O(p2) is following

A(p2, q2, S, U)11 = − i(S + U)

2SU
, (C.2.1)

A(p2, q2, S, U)21 =
i(S + U)

2SU
, (C.2.2)

A(p2, q2, S, U)31 = 0, (C.2.3)

A(p2, q2, S, U)41 = − i(U − S)

2SU
, (C.2.4)

A(p2, q2, S, U)51 = −3i(S + U)

2SU
. (C.2.5)

A(p2, q2, S, U)12 =
i

SU
, (C.2.6)

A(p2, q2, S, U)22 = − i

SU
, (C.2.7)

A(p2, q2, S, U)32 = 0, (C.2.8)

A(p2, q2, S, U)42 = − i(S + U)

SU(S − U)
, (C.2.9)

A(p2, q2, S, U)52 =
3i

SU
. (C.2.10)

Other formfactors vanish identically.

Vector formalism

A(p2, q2, S, U)i1

A(p2, q2, S, U)11 =
2ih2

V

[
6M2(S + U)− S2 − U2 − 10SU − 2(2M2 − S − U)(p2 + q2)

]

3F 2(M2 − S)(M2 − U)

+
ifV (M2 − p2)q2

[
SU(2gV − fV + 2

√
2αV )− (S + U)q2gV

]

2F 2SU(M2 − p2)(M2 − q2)

+
ifV (M2 − q2)p2

[
SU(2gV − fV + 2

√
2αV )− (S + U)p2gV

]

2F 2SU(M2 − p2)(M2 − q2)

+
if2

V g2
V p4q4(S + U)

2F 4SU(M2 − p2)(M2 − q2)
− i(S + U)

2SU
(C.2.11)
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A(p2, q2, S, U)21 =
2ih2

V

[
6M2(S + U)− S2 − U2 − 10SU − 2(2M2 − S − U)(p2 + q2)

]

3F 2(M2 − S)(M2 − U)

+
ifV (M2 − p2)q2

[
(S + U)q2gV + SU(fV − 2gV − 2

√
2αV )

]

2F 2SU(M2 − p2)(M2 − q2)

+
ifV (M2 − q2)p2

[
(S + U)p2gV + SU(fV − 2gV − 2

√
2αV )

]

2F 2SU(M2 − p2)(M2 − q2)

+
if2

V g2
V p4q4(S + U)

2F 4SU(M2 − p2)(M2 − q2)
+

i(S + U)

2SU
(C.2.12)

A(p2, q2, S, U )31 =
4ih2

V (S − U)(4M2 + S + U − 2p2 − 2q2)

3F 2(M2 − S)(M2 − U)
(C.2.13)

A(p2, q2, S, U)41 =
2ih2

V (S − U)(4M2 + S + U − 2p2 − 2q2)

F 2(M2 − S)(M2 − U)

+
if2

V g2
V (S − U)p4q4

2F 4SU(M2 − p2)(M2 − q2)
+

ifV gV (S − U)
[
(M2 − p2)q4 + (M2 − q2)p4

]

2F 2SU(M2 − p2)(M2 − q2)
− i(U − S)

2SU

(C.2.14)

A(p2, q2, S, U)51 =
2ih2

V

[
6M2(S + U)− S2 − U2 − 10SU − 2(2M2 − S − U)(p2 + q2)

]

F 2(M2 − S)(M2 − U)

+
3ifV (M2 − p2)q2

[
−(S + U)q2gV + SU(−fV + 2gV + 2

√
2αV )

]

2F 2SU(M2 − p2)(M2 − q2)

+
3ifV (M2 − q2)p2

[
−(S + U)p2gV + SU(−fV + 2gV + 2

√
2αV )

]

2F 2SU(M2 − p2)(M2 − q2)

− 3if2
V g2

V p4q4(S + U)

2F 4SU(M2 − p2)(M2 − q2)
− 3i(S + U)

2SU
(C.2.15)

A(p2, q2, S, U)i2

A(p2, q2, S, U)12 =
4ih2

V (2M2 − S − U + p2 + q2)

3F 2(M2 − S)(M2 − U)

+
ifV gV

[
(M2 − q2)p4 + (M2 − p2)q4

]

F 2SU(M2 − p2)(M2 − q2)
+

if2
V g2

V p4q4

F 4SU(M2 − p2)(M2 − q2)
+

i

SU
(C.2.16)

A(p2, q2, S, U )22 =
4ih2

V (2M2 − S − U + p2 + q2)

3F 2(M2 − S)(M2 − U)
− ifV gV

[
(M2 − q2)p4 + (M2 − p2)q4

]

F 2SU(M2 − p2)(M2 − q2)

− if2
V g2

V p4q4

F 4SU(M2 − p2)(M2 − q2)
− i

SU
(C.2.17)

A(p2, q2, S, U )32 = −8ih2
V

[
(S − U)2 + (2M2 − S − U)(p2 + q2)

]

3F 2(S − U)(M2 − S)(M2 − U)
(C.2.18)
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A(p2, q2, S, U)42 =
4ih2

V

[
(S − U)2 + (2M2 − S − U)(p2 + q2)

]

F 2(M2 − S)(M2 − U)(S − U)

− i(S + U)p4q4f2
V g2

V

F 4(M2 − p2)(M2 − q2)SU(S − U)

− ifV gV

[
q4(M2 − p2) + p4(M2 − q2)

]
(S + U)

F 2(M2 − p2)(M2 − q2)SU(S − U)

− 4ifV gV

[
p4(M2 − q2) + q4(M2 − p2) + (M2 − p2)(M2 − q2)(S + U)

]

F 2(M2 − p2)(M2 − q2)SU(S − U)(M2 + S + U − p2 − q2)

+
7ifV gV M2

[
p2(M2 − q2) + q2(M2 − p2)

]

F 2(M2 − p2)(M2 − q2)(S − U)(M2 + S + U − p2 − q2)

+
ifV (fV − 2

√
2αV )

[
(M2 − q2)p2 + (M2 − p2)q2

]

2F 2(M2 − p2)(M2 − q2)(S − U)
− i(S + U)

SU(S − U)
(C.2.19)

A(p2, q2, S, U )52 =
4ih2

V (2M2 − S − U + p2 + q2)

F 2(M2 − S)(M2 − U)
+

3if2
V g2

V p4q4

F 4(M2 − p2)(M2 − q2)SU

+
3ifV gV

[
(M2 − p2)q4 + (M2 − q2)p4

]

F 2(M2 − p2)(M2 − q2)SU
+

3i

SU
(C.2.20)

A(p2, q2, S, U)i3

A(p2, q2, S, U)13 =
4ih2

V (2M2 − S − U)

3F 2(M2 − S)(M2 − U)
+

ih2
V (S − U)2(p2 + q2)

3F 2(M2 − S)(M2 − U)p2q2

−
√

2iαV (2M2 − p2 − q2)

F 2(M2 − p2)(M2 − q2)
+

if2
V g2

V p2q2

F 4(M2 − p2)(M2 − q2)
(C.2.21)

A(p2, q2, S, U)23 =
4ih2

V (2M2 − S − U)

3F 2(M2 − S)(M2 − U)
+

ih2
V (S − U)2(p2 + q2)

3F 2(M2 − S)(M2 − U)p2q2

+

√
2iαV (2M2 − p2 − q2)

F 2(M2 − p2)(M2 − q2)
− if2

V g2
V p2q2

F 4(M2 − p2)(M2 − q2)
(C.2.22)

A(p2, q2, S, U)33 =
2ih2

V (S − U)
[
(S + U − 2M2)(p2 + q2)− 4p2q2

]

3F 2p2q2(M2 − S)(M2 − U)
(C.2.23)

A(p2, q2, S, U )43 = − ih2
V (S − U)

[
(S + U − 2M2)(p2 + q2)− 4p2q2

]

F 2p2q2(M2 − S)(M2 − U)

+
ifV (fV − 2

√
2αV )

[
(M2 − p2)q2 + (M2 − q2)p2

]
(S − U)

8F 2p2q2(M2 − p2)(M2 − q2)

− ifV gV M2(S − U)
[
(M2 − p2)q2 + (M2 − q2)p2

]

4F 2(M2 − p2)(M2 − q2)p2q2(M2 + S + U − p2 − q2)
(C.2.24)

A(p2, q2, S, U )53 =
4ih2

V (S + U − 2M2)

F 2(M2 − S)(M2 − U)
− ih2

V (S − U)2(p2 + q2)

F 2p2q2(M2 − S)(M2 − U)

− 3
√

2ifV αV (2M2 − p2 − q2)

F 2(M2 − p2)(M2 − q2)
− 3if2

V g2
V p2q2

F 4(M2 − p2)(M2 − q2)
(C.2.25)
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A(p2, q2, S, U)i4

A(p2, q2, S, U )14 = − 2ih2
V (S + U)(p2 + q2)

3F 2p2q2(M2 − S)(M2 − U)
(C.2.26)

A(p2, q2, S, U )24 = − 2ih2
V (S + U)(p2 + q2)

3F 2p2q2(M2 − S)(M2 − U)
(C.2.27)

A(p2, q2, S, U)34 =
4ih2

V (2M2 − S − U)(S + U)(p2 + q2)

3F 2p2q2(M2 − S)(M2 − U)(S − U)
(C.2.28)

A(p2, q2, S, U)44 = −2ih2
V (2M2 − S − U)(S + U)(p2 + q2)

F 2(M2 − S)(M2 − U)p2q2

+
2if2

V g2
V p2q2

F 4(M2 − p2)(M2 − q2)(S − U)

− ifV (fV − 2
√

2αV )(S + U)
[
(M2 − q2)p2 + (M2 − p2)q2

]

4F 2(M2 − p2)(M2 − q2)(S − U)p2q2

+
ifV gV

(
2p2q2

[
2M2(p2 + q2 − 2M2)− p2q2

]
+ (S + U)M2

[
M2(p2 + q2)− 2p2q2

])

2F 2(M2 − p2)(M2 − q2)p2q2(M2 + S + U − p2 − q2)(S − U)

(C.2.29)

A(p2, q2, S, U )54 =
2ih2

V (S + U)(p2 + q2)

F 2p2q2(M2 − S)(M2 − U)
(C.2.30)

A(p2, q2, S, U)i5

A(p2, q2, S, U)15 =
4ih2

V (p2 − q2)

3F 2p2q2(M2 − S)(M2 − U)
(C.2.31)

A(p2, q2, S, U)25 =
4ih2

V (p2 − q2)

3F 2p2q2(M2 − S)(M2 − U)
(C.2.32)

A(p2, q2, S, U )35 = − 8ih2
V (2M2 − S − U)(p2 − q2)

3F 2p2q2(M2 − S)(M2 − U)(S − U)
(C.2.33)

A(p2, q2, S, U )45 = − 4ih2
V (S + U − 2M2)(p2 − q2)

F 2(M2 − S)(M2 − U)(S − U)p2q2

+
ifV (fV − 2

√
2αV )M2(p2 − q2)

2F 2(S − U)p2q2(M2 − p2)(M2 − q2)

− ifV gV M4(p2 − q2)

F 2(S − U)p2q2(M2 − p2)(M2 − q2)(M2 + S + U − p2 − q2)
(C.2.34)

A(p2, q2, S, U )55 = − 4ih2
V (p2 − q2)

F 2p2q2(M2 − S)(M2 − U)
(C.2.35)
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Antisymmetric tensor formalism up to O(p4)

A(p2, q2, S, U)i1

A(p2, q2, S, U)11 = − iF 2
V G2

V p2q2(S + U)

2F 4SU(M2 − p2)(M2 − q2)

− iFV GV

[
2SU(p2 + q2 − 2M2)− (S + U)(2p2q2 −M2p2 −M2q2)

]

2F 2SU(M2 − p2)(M2 − q2)
− i(S + U)

2SU
(C.2.36)

A(p2, q2, S, U)21 =
iF 2

V G2
V p2q2(S + U)

2F 4SU(M2 − p2)(M2 − q2)

− iFV GV

[
2SU(p2 + q2 − 2M2)− (S + U)(2p2q2 −M2p2 −M2q2)

]

2F 2SU(M2 − p2)(M2 − q2)
+

i(S + U)

2SU
(C.2.37)

A(p2, q2, S, U)31 = 0 (C.2.38)

A(p2, q2, S, U)41 = − iF 2
V G2

V p2q2(U − S)

2F 4SU(M2 − p2)(M2 − q2)
− iF 2

V (p2 − q2)

2F 2(M2 − p2)(M2 − q2)

− iFV GV (U − S)(M2p2 + M2q2 − 2p2q2)

2F 2SU(M2 − p2)(M2 − q2)
− i(U − S)

2SU
(C.2.39)

A(p2, q2, S, U)51 = − 3iF 2
V G2

V p2q2(S + U)

2F 4SU(M2 − p2)(M2 − q2)
+

3iFV GV (2M2 − p2 − q2)

F 2(M2 − p2)(M2 − q2)

− 3iFV GV (S + U)(M2p2 + M2q2 − 2p2q2)

2F 2SU(M2 − p2)(M2 − q2)
− 3i(S + U)

2SU
(C.2.40)

A(p2, q2, S, U)i2

A(p2, q2, S, U)12 = − iFV GV (2p2q2 −M2p2 −M2q2)

F 2SU(M2 − p2)(M2 − q2)
+

iF 2
V G2

V p2q2

F 4SU(M2 − q2)(M2 − p2)
+

i

SU

(C.2.41)

A(p2, q2, S, U)22 =
iFV GV (2p2q2 −M2p2 −M2q2)

F 2SU(M2 − p2)(M2 − q2)
− iF 2

V G2
V p2q2

F 4SU(M2 − q2)(M2 − p2)
− i

SU

(C.2.42)

A(p2, q2, S, U)32 = 0 (C.2.43)
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A(p2, q2, S, U)42 = − iF 2
V G2

V (S + U)p2q2

F 4SU(M2 − p2)(M2 − q2)(S − U)

− iFV GV

F 2SU(M2 − p2)(M2 − q2)(M2 + S + U − p2 − q2)(S − U)
×

{
M4(S + U)(p2 + q2)− 4M4SU −M2(S + U)(p4 + q4)

+ M2(p2 + q2)(S2 + U2) + 3M2SU(p2 + q2)− 4M2p2q2(S + U)

+ 2p2q2(S + U)(p2 + q2)− 2p2q2(S2 + U2 + SU)
}
− i(S + U)

SU(S − U)
(C.2.44)

A(p2, q2, S, U)52 = −3iFV GV (2p2q2 −M2p2 −M2q2)

F 2SU(M2 − p2)(M2 − q2)
+

3iF 2
V G2

V p2q2

F 4SU(M2 − q2)(M2 − p2)
+

3i

SU

(C.2.45)

A(p2, q2, S, U)i3

A(p2, q2, S, U)13 =
iF 2

V G2
V

F 4(M2 − p2)(M2 − q2)
(C.2.46)

A(p2, q2, S, U)23 = − iF 2
V G2

V

F 4(M2 − p2)(M2 − q2)
(C.2.47)

A(p2, q2, S, U)33 = 0 (C.2.48)

A(p2, q2, S, U)43 = − iF 2
V (p2 + q2)(U − S)

8F 2p2q2(M2 − p2)(M2 − q2)

− iFV GV (S − U)(M2p2 + M2q2 − 2p2q2)

4F 2(M2 − p2)(M2 − q2)p2q2(M2 + S + U − p2 − q2)
(C.2.49)

A(p2, q2, S, U)53 =
3iF 2

V G2
V

F 4(M2 − p2)(M2 − q2)
(C.2.50)

A(p2, q2, S, U)i4

A(p2, q2, S, U)14 = A(p2, q2, S, U)24 = A(p2, q2, S, U)34 = A(p2, q2, S, U)54 = 0 (C.2.51)

A(p2, q2, S, U)44 = (C.2.52)

− iFV GV

[
2p2q2(S + U + 4M2)−M2(S + U)(p2 + q2)− 4p2q2(p2 + q2)

]

2F 2(S − U)(M2 − p2)(M2 − q2)p2q2(M2 + S + U − p2 − q2)
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A(p2, q2, S, U)i5

A(p2, q2, S, U)15 = A(p2, q2, S, U)25 = A(p2, q2, S, U)35 = A(p2, q2, S, U)55 = 0 (C.2.53)

A(p2, q2, S, U)45 =
i(p2 − q2)F 2

V

2F 2(S − U)p2q2(M2 − q2)(M2 − p2)

− iM2FV GV (p2 − q2)

F 2(S − U)p2q2(M2 − p2)(M2 − q2)(M2 + S + U − p2 − q2)
(C.2.54)

C.3 Application of high energy constraints

The following asymptotical behaviour of formfactors for i 6= 4

A(p2, q2, S, U ;T )i1 = O

(
1

λ4

)
(C.3.1)

A(p2, q2, S, U ;T )i2 = O

(
1

λ4

)
(C.3.2)

A(p2, q2, S, U ;T )i3 = O

(
1

λ6

)
(C.3.3)

A(p2, q2, S, U ;T )i4 = O

(
1

λ6

)
(C.3.4)

A(p2, q2, S, U ;T )i5 = O

(
1

λ7

)
(C.3.5)

while for others

A(p2, q2, S, U ;T )41 = O

(
1

λ3

)
(C.3.6)

A(p2, q2, S, U ;T )42 = O

(
1

λ3

)
(C.3.7)

A(p2, q2, S, U ;T )43 = O

(
1

λ5

)
(C.3.8)

A(p2, q2, S, U ;T )44 = O

(
1

λ5

)
(C.3.9)

A(p2, q2, S, U ;T )45 = O

(
1

λ7

)
(C.3.10)

The results are compared with the OPE constraints (4.5.2). Therefore we write the form-

factors A(p2, q2, S, U ;T )ij in terms of the kinematic values Σ = p + q, ∆ = r − s.
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ChPT contribution O(p2)

A(λ2p2, λ2q2, S, U)11 =
4i

Σ2λ2
+O

(
1

λ4

)
(C.3.11)

A(λ2p2, λ2q2, S, U)21 = − 4i

Σ2λ2
+O

(
1

λ4

)
(C.3.12)

A(λ2p2, λ2q2, S, U)31 = 0, (C.3.13)

A(λ2p2, λ2q2, S, U)41 = −8i(k · Σ)

Σ4λ3
+O

(
1

λ5

)
, (C.3.14)

A(λ2p2, λ2q2, S, U)51 =
12i

Σ2λ2
+O

(
1

λ4

)
(C.3.15)

A(λ2p2, λ2q2, S, U)12 = − 16i

Σ4λ4
+O

(
1

λ6

)
, (C.3.16)

A(λ2p2, λ2q2, S, U)22 =
16i

Σ4λ4
+O

(
1

λ6

)
, (C.3.17)

A(λ2p2, λ2q2, S, U)32 = 0, (C.3.18)

A(λ2p2, λ2q2, S, U)42 =
8i

(Σ · k)Σ2λ3
+O

(
1

λ5

)
, (C.3.19)

A(λ2p2, λ2q2, S, U)52 = − 48i

Σ4λ4
+O

(
1

λ6

)
. (C.3.20)

Vector formalism

A(λ2p2, λ2q2, S, U)11 = − if2
V g2

V Σ2

4F 4
λ2 (C.3.21)

+

{
8ih2

V

3F 4
+

ifV (fV − 2
√

2αV )

F 2
− if2

V g2
V (3k2 + 8M2 − 2∆2)

4F 4

}
+O

(
1

λ2

)

A(λ2p2, λ2q2, S, U)21 =
if2

V g2
V Σ2

4F 4
λ2 (C.3.22)

+

{
8ih2

V

3F 4
− ifV (fV − 2

√
2αV )

F 2
+

if2
V g2

V (3k2 + 8M2 − 2∆2)

4F 4

}
+O

(
1

λ2

)

A(λ2p2, λ2q2, S, U)31 = −32ih2
V (k · Σ)

3F 2Σ2λ
+O

(
1

λ3

)
, (C.3.23)
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A(λ2p2, λ2q2, S, U)41 =
if2

V g2
V (k · Σ)

2F 4
λ (C.3.24)

+

{
16ih2

V (k · Σ)

F 2Σ2
+

if2
V g2

V (k · Σ)(k2 + 4M2 −∆2)

F 4Σ2
− 4ifV gV (k · Σ)

F 4Σ2

}
1

λ
+O

(
1

λ3

)
,

A(λ2p2, λ2q2, S, U)51 = −3if2
V g2

V Σ2

4F 4
λ2 (C.3.25)

−
{

8ih2
V

F 2
+

3if2
V g2

V (3k2 + 8M2 − 2∆2)

4F 4
− 3ifV (fV − 2

√
2αV )

F 2

}
+O

(
1

λ2

)

A(λ2p2, λ2q2, S, U)12 =
if2

V g2
V

F 4
+O

(
1

λ2

)
(C.3.26)

A(λ2p2, λ2q2, S, U)22 = − if2
V g2

V

F 4
+O

(
1

λ2

)
(C.3.27)

A(λ2p2, λ2q2, S, U)32 =
32ih2

V

3F 2(k · Σ)λ
+O

(
1

λ3

)
, (C.3.28)

A(λ2p2, λ2q2, S, U)42 = − if2
V g2

V (k · Σ)

2F 4k2
λ (C.3.29)

+

{
− 16ih2

V

F 2(k · Σ)
+

ifV gV (k2 − 2M2 + ∆2)

F 2(k · Σ)(M2 −∆2)
− ifV (fV − 2αV )

F 2(k · Σ)

− if2
V g2

V (3k2 + 8M2 − 2∆2)

2F 4(k · Σ)

}
1

λ
+O

(
1

λ3

)
,

A(λ2p2, λ2q2, S, U)52 =
3if2

V g2
V

F 4
+O

(
1

λ2

)
(C.3.30)
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A(λ2p2, λ2q2, S, U)13 =
if2

V g2
V

F 4
(C.3.31)

+

{
8ifV (

√
2αV F 2 + M2fV g2

V )

F 4Σ2
− 32ih2

V

3F 2Σ2

}
1

λ2
+O

(
1

λ4

)

A(λ2p2, λ2q2, S, U)23 = − if2
V g2

V

F 4
(C.3.32)

−
{

8ifV (
√

2αV F 2 + M2fV g2
V )

F 4Σ2
+

32ih2
V

3F 2Σ2

}
1

λ2
+O

(
1

λ4

)

A(λ2p2, λ2q2, S, U)33 =
128ih2

V (k · Σ)(k2 − 4M2 + 3∆2)

3F 2Σ6λ5
+O

(
1

λ7

)
, (C.3.33)

A(λ2p2, λ2q2, S, U)43 = (C.3.34)

−
{

4ifV gV (k · Σ)(k2 − 2M2 + ∆2)

F 2Σ4(M2 −∆2)
+

4ifV (fV − 2
√

2αV )(k · Σ)

F 2Σ4

}
1

λ3
+O

(
1

λ5

)
,

A(λ2p2, λ2q2, S, U)53 =
3if2

V g2
V

F 4
(C.3.35)

+

{
32ih2

V

F 2Σ2λ2
+

24ifV (
√

2αV F 2 + M2fV g2
V )

F 4Σ2

}
1

λ2
+O

(
1

λ4

)

A(λ2p2, λ2q2, S, U)14 = − 128ih2
V

3F 2Σ4λ4
+O

(
1

λ6

)
(C.3.36)

A(λ2p2, λ2q2, S, U)24 = − 128ih2
V

3F 2Σ4λ4
+O

(
1

λ6

)
(C.3.37)

A(λ2p2, λ2q2, S, U)34 = − 128ih2
V

3F 2(k · Σ)Σ2λ3
− 128ih2

V (3∆2 + 4k2 + 4M2)

3F 2(k · Σ)Σ4λ5
+O

(
1

λ7

)
, (C.3.38)

A(λ2p2, λ2q2, S, U)44 =
2if2

V g2
V

F 4(k · Σ)λ
(C.3.39)

+

{
64ih2

V

F 4(k · Σ)Σ2
+

4ifV (fV − 2
√

2αV )

F 2(k · Σ)Σ2
− 4ifV gV (k2 − 2M2 + ∆2)

F 2(k · Σ)Σ2(M2 −∆2)

+
16iM2f2

V g2
V

F 4(k · Σ)Σ2

}
1

λ3
+O

(
1

λ5

)
,
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A(λ2p2, λ2q2, S, U)54 =
128ih2

V

F 2Σ4λ4
+O

(
1

λ6

)
, (C.3.40)

A(λ2p2, λ2q2, S, U)15 = −1024ih2
V (∆ · Σ)

3F 2Σ8λ7
+O

(
1

λ9

)
(C.3.41)

A(λ2p2, λ2q2, S, U)25 = −1024ih2
V (∆ · Σ)

3F 2Σ8λ7
+O

(
1

λ9

)
(C.3.42)

A(λ2p2, λ2q2, S, U)35 = −1024ih2
V (∆ · k)

3F 2k2Σ6λ6
+O

(
1

λ8

)
, (C.3.43)

A(λ2p2, λ2q2, S, U)45 =
512ih2

V (∆ · k)

F 2k2Σ6λ6
+O

(
1

λ8

)
,

A(λ2p2, λ2q2, S, U)55 =
1024ih2

V (∆ · Σ)

F 2Σ8λ7
+O

(
1

λ9

)
(C.3.44)

Antisymmetric tensor formalism

A(λ2p2, λ2q2,S, U)11 = − 4i

F 4Σ2λ2

(
F 2

V G2
V − F 4

)
+O

(
1

λ4

)
(C.3.45)

A(λ2p2, λ2q2,S, U)21 =
4i

F 4Σ2λ2

(
F 2

V G2
V − F 4

)
+O

(
1

λ4

)
(C.3.46)

A(λ2p2, λ2q2,S, U)31 = 0, (C.3.47)

A(λ2p2, λ2q2,S, U)41 =

{
− 8i(k · Σ)

Σ4
+

8iF 2
V (k ·∆)

F 2Σ4
+

8iF 2
V G2

V (k · Σ)

F 4Σ4
− 16iFV GV (k · Σ)

F 2Σ4

}
1

λ3

+O
(

1

λ5

)
, (C.3.48)

A(λ2p2, λ2q2,S, U)51 = − 12i

F 4Σ2λ2

(
F 2

V G2
V − F 4

)
+O

(
1

λ4

)
, (C.3.49)

A(λ2p2, λ2q2,S, U)12 =

{
16i

F 4Σ4

(
F 2

V G2
V − F 4

)
− 32iFV GV

F 2Σ4

}
1

λ4
+O

(
1

λ6

)
, (C.3.50)

A(λ2p2, λ2q2,S, U)22 = −
{

16i

F 4Σ4

(
F 2

V G2
V − F 4

)
− 32iFV GV

F 2Σ4

}
1

λ4
+O

(
1

λ6

)
, (C.3.51)

A(λ2p2, λ2q2,S, U)32 = 0, (C.3.52)

A(λ2p2, λ2q2, S, U)42 =
2iFV GV

F 2(k · Σ)(∆2 −M2)λ
(C.3.53)

+

{
4iFV GV (k2 − 2M2 − 3∆2)

F 2(k · Σ)Σ2(M2 −∆2)
+

4iF 2
V

F 2(k · Σ)Σ2
− 8i

F 4(k · Σ)Σ2

(
F 2

V G2
V − F 4

)
}

1

λ3
+O

(
1

λ5

)
,

A(λ2p2, λ2q2, S, U)52 =

{
48i

F 4Σ4

(
F 2

V G2
V − F 4

)
− 96iFV GV

F 2Σ4

}
1

λ4
+O

(
1

λ6

)
, (C.3.54)
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A(λ2p2, λ2q2,S, U)13 =
16iF 2

V G2
V

F 4Σ4λ4
+O

(
1

λ6

)
, (C.3.55)

A(λ2p2, λ2q2,S, U)23 = −16iF 2
V G2

V

F 4Σ4λ4
+O

(
1

λ6

)
, (C.3.56)

A(λ2p2, λ2q2,S, U)33 = 0, (C.3.57)

A(λ2p2, λ2q2,S, U)43 =
8iFV GV (k · Σ)

F 2Σ4(M2 −∆2)λ3
(C.3.58)

+

{
16iF 2

V (k · Σ)

F 2Σ6
+

16iFV GV (k · Σ)(2M2 + ∆2)

F 2Σ6(M2 −∆2)

}
1

λ5
+O

(
1

λ7

)
,

A(λ2p2, λ2q2,S, U)53 =
48iF 2

V G2
V

F 4Σ4λ4
+

96iF 2
V G2

V (∆2 + 4M2)

F 4Σ6λ6
+O

(
1

λ8

)
. (C.3.59)

A(λ2p2, λ2q2,S, U)14 = A(λ2p2, λ2q2, S, U)24

= A(λ2p2, λ2q2, S, U)34 = A(λ2p2, λ2q2, S, U)54 = 0, (C.3.60)

A(λ2p2, λ2q2,S, U)44 =
8iFV GV

F 2(k · Σ)Σ2(M2 −∆2)λ3
+O

(
1

λ5

)
, (C.3.61)

A(λ2p2, λ2q2,S, U)15 = A(λ2p2, λ2q2, S, U)25

= A(λ2p2, λ2q2, S, U)35 = A(λ2p2, λ2q2, S, U)55 = 0, (C.3.62)

A(λ2p2, λ2q2,S, U)45 = (C.3.63)
{
− 128iF 2

V (∆ · k)

F 2k2Σ8
+

128iFV GV (∆ · k)(k2 − 2M2 + ∆2)

F 2k2Σ8(∆2 −M2)

}
1

λ8
+O

(
1

λ10

)
.
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