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likosti alespoň cn, kde n je počet vrcholů grafu G? Zabýváme se také problémem pro
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Dále podáváme charakterizaci grafů, které jsou ekvivalentní v přepnutí nějakému K1,2-
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Abstract: Seidel’s switching is a graph operation which makes a given vertex adjacent
to precisely those vertices to which it was non-adjacent before, while keeping the rest
of the graph unchanged. Two graphs are called switching-equivalent if one can be
made isomorphic to the other by a sequence of switches. In this thesis, we study the
computational complexity the problem S(P ) for a certain graph property P : given a
graph G, determine if G is switching-equivalent to a graph having P . First, we give an
overview of known results, including both properties P for which S(P ) is polynomial,
and those for which S(P ) is NP-complete. Then we show the NP-completeness of the
following problem for each c � (0, 1): determine if a graph G can be switched to contain
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1. Introduction

This thesis studies the computational complexity of several problems related to Seidel’s
switching of graphs. Seidel’s switching is a graph operation which makes a given vertex
adjacent to precisely those vertices to which it was non-adjacent before, while keeping
the rest of the graph unchanged. Two graphs are called switching-equivalent if one can
be made isomorphic to the other by a sequence of switches.
The concept of Seidel’s switching was introduced by the Dutch mathematician

J. J. Seidel in connection with algebraic structures, such as systems of equiangular
lines, strongly regular graphs, or the so-called two-graphs. Seidel laid the foundations
of the theory of switching in his work [19–22]. Since then, switching has been studied
by many others. In this thesis, we rely mainly on the results of Ehrenfeucht, Hage,
Harju, Rozenberg [3–4, 7–9] and Kratochvíl [14–16]. Apart from the algebraic struc-
tures, consequences of switching arise in other research fields as well; for example,
Seidel’s switching plays part in Hayward’s polynomial-time algorithm for solving the
P3-structure recognition [10].
In Chapter 2, we introduce the notation and definitions used throughout the thesis.

We define Seidel’s switching together with several related notions, and present its most
useful elementary properties. Then we address the key problem: given a graph G,
determine if G is switching-equivalent to a graph possessing a certain property P . This
problem is denoted by S(P ), and in the following chapters we study the computational
complexity of S(P ) for various properties P .
Chapter 3 lists several common graph properties P for which deciding S(P ) is

known to be polynomial. The complexity of recognizing the properties themselves
varies; some of them, such as bipartiteness or triangle-freeness, can be recognizable in
polynomial time, while the others, like Hamiltonicity, are NP-complete.
In Chapter 4, we focus on NP-complete problems related to switching, mostly

on the problems S(P ) that are NP-complete. First we give an overview of known
results, among them we mention the results for cliques: the problem S(“containing a
k-clique”) is polynomial for each fixed k, but NP-complete if k is a part of the input.
In Section 4.5 we extend this by showing that S(“containing a clique of size at least
cn”) is NP-complete even for a fixed c � (0, 1). Besides the NP-completeness results,
in Section 4.6 we show the hardness of approximation of the switching versions of the
maximum clique and chromatic number.
In Chapter 5, we examine the complexity of S(“being H-free”) for several fixed

graphs H. Polynomial-time decision algorithms are known for this problem if H has
at most three vertices or is isomorphic to a P4. In Section 5.2 we show that if H is
isomorphic to a claw, then the problem is polynomial as well.
Chapter 6 is devoted to characterizations of various switching problems by forbid-

den induced subgraphs. We give an overview of such known characterizations, and
focus on those of S(“being H-free”) for several graphs H. In Section 6.5 we give such
a characterization for H isomorphic to K1,2.

5



2. Basic notions

2.1 Preliminaries

For a set A, let
�
A
�
be the cardinality of A. The difference of two sets A and B is

denoted by A � B, and for the symmetric difference of A and B we write A � B. The
symbol N stands for the set of all positive integers � 1, 2, . . . � and N0 represents the set
of all non-negative integers � 0, 1, 2, . . . � .
A graph is a pair G = (VG, EG), where VG is a nonempty set and EG � (VG

2 ) is a set
of two-element subsets of VG. We call the elements of VG vertices and the elements
of EG edges. Unless defined otherwise, by n we denote the number of vertices of the
currently discussed graph. All graphs considered are finite, undirected, and without
loops or multiple edges.
Two vertices u, v �

VG are called adjacent if � u, v � �
EG, and non-adjacent

otherwise. The neighborhood of a vertex v is the set NG(v) of all vertices adjacent to
v. The degree of v is defined by dG(v) =

�
NG(v)

�
. When it is clear which graph is

considered, we write only N(v), d(v) etc. We call a vertex isolated if it has degree zero.
A graph is k-regular if all its vertices have degree k.
A graph H is a subgraph of a graph G, if VH � VG and EH � (VH

2 ) � EG. The
subgraph H is an induced subgraph of G, written H � G, if EH = (

VH

2 ) � EG. For
a set A � VG we call the graph (A, (

A
2) � EG) the subgraph of G induced by A and

denote it by G[A]. If an isomorphic copy of H is an induced subgraph of G, we shall
for simplicity say that G contains H as an induced subgraph or just that G contains
H. We say that a graph G is H-free if it does not contain H.
For a vertex v �

VG, the subgraph of G induced by V �	� v � is denoted by G 
 v.
The disjoint union of two graphs G and G′ is denoted by G+G′.
A graph G = (V, (V2)) is called a complete graph and denoted by Kn. A complete

subgraph on k vertices is called a k-clique. A cycle of length n is denoted by Cn, a
path of length n is denoted by Pn. We say that a graph with n vertices and no edges is
discrete and denote it by In. We call a graph bipartite if it can be partitioned into two
vertex sets A and B such that both the sets induce discrete subgraphs; and complete
bipartite if it is bipartite and each vertex of A is adjacent to all vertices of B. By Km,n

we denote the complete bipartite graph having
�
A
�
= m and

�
B
�
= n.

2.2 Seidel’s switching

Definition 2.1. Let G be a graph. Seidel’s switch of a vertex v � VG results in a graph
called S(G, v) whose vertex set is the same as of G and the edge set is the symmetric
difference of EG and the full star centered in v, i. e.,

VS(G,v) = VG

ES(G,v) = EG ��� xv : x �
VG, xv

�
EG � ) �
� xv : x �

VG, x �= v, xv �� EG � .
6



It is easy to observe that the result of a sequence of vertex switches in G de-
pends only on the parity of the number of times each vertex is switched. This allows
generalizing switching to vertex subsets of G.

Definition 2.2. Let G be a graph. Then the Seidel’s switch of a vertex subset A � VG

is called S(G,A) and

S(G,A) = (VG, EG ��� xy : x �
A, y

�
VG � A � ).

The concept of Seidel’s switching was introduced by the Dutch mathematician
J. J. Seidel in connection with symmetric structures, such as systems of equiangular
lines, strongly regular graphs, or the so-called two-graphs. A two-graph, as we mention
later, is equivalent to a switching class of graphs.
The following (and many more) basic observations and lemmas about Seidel’s

switching can be found in [7].

Observation 2.3. Let G be a graph and A, B two of its vertex subsets. Then

(1) S(G, � ) = S(G,VG) = G,
(2) S(G,A) = S(G,VG � A),
(3) S(S(G,A), A) = G,
(4) S(S(G,A), B) = S(S(G,B), A) = S(G,A � B),
(5) S(G,A)[A] = G[A] (switching A does not modify edges within A),
(6) S(G,A) = S(G,A).

Lemma 2.4. Let A and B be vertex subsets of a graph G. Then S(G,A) = S(G,B)
if and only if A = B or A = VG � B.
Proof. If A = B or A = VG � B, then by Observation 2.3 the graphs S(G,A) and
S(G,B) are equal.
If S(G,A) = S(G,B), then S(S(G,A), A) = S(S(G,B), A), and by Observa-

tion 2.3, G = S(G,A � B). That can be true only if A � B is empty or equal to
VG, which means that A = B or A = VG � B. ¤

Definition 2.5. We say that two graphs G and H are switching equivalent (denoted
by G � H) if there is a set A � VG such that S(G,A) is isomorphic to H. The set

[G] = � S(G,A) : A � VG �
is called the switching class of G.

Note that � is an equivalence relation on graphs, and switching classes are the
equivalence classes of � for graphs on a fixed set of vertices VG (not considering iso-
morphism), as shown by Seidel [20–21].

Lemma 2.6. For a graph G on n vertices, the switching class [G] contains 2n−1

graphs.

Proof. There are 2n subsets of VG and by Lemma 2.4 each two different subsets A
and B yield a different switch, except for the case when A = VG � B. So we have 2n−1
different switches of G. ¤

7



Lemma 2.7. Let G be a graph, v
�
VG and A � VG ��� v � . Then there exists a unique

graph H
� [G] such that the neighbors of v in H are the vertices of A.

Proof. In the graph S(G,NG(v) � A), the neighbors of v are exactly vertices in A. So
the graph S(G,NG(v) � A) has the desired property.
On the other hand, if A is the neighborhood of v in any graph H = S(G,B) for a

set B not containing v, then for any vertex u �
NG(v) � A it holds that u �

B, and for
any vertex u �� NG(v) � A it is true that u �� B. Thus B equals NG(v) � A. Similarly,
if v � B we get that B = VG � (NG(v) � A); switching both these sets yields the same
graph. ¤

The following theorem is a variant of Lemma 2.7; it is a consequence of a theorem
proved by Zaslavsky [24].

Theorem 2.8. Let G be a graph. For each tree T on VG, there exists a unique graph
H

� [G] having T as its spanning subgraph.
Colbourn and Corneil [2] (and independently Kratochvíl et al. [15]) proved that

deciding whether two graphs are switching equivalent is an isomorphism-complete prob-
lem. However, it is simple to find out if a graph is equal (not only isomorphic) to an
element of a given switching class due to the following criterion [20].

Theorem 2.9. (Seidel) Let G = (V,E), H = (V,E ′) and x �
V . Then G

� [H] if
and only if for all triples T = � x, y, z � � V , the parity of the number of edges in G[T ]
equals that of H[T ].

For comparison we introduce the definition of a two-graph.

Definition 2.10. A two-graph is a pair (X,V ), where X is a set of vertices and V a
set of three-element subsets of X, having the property that any four-element subset of
X contains an even number of members of V .

For a graph G, there is a corresponding two-graph on the same vertex set whose
set of triples consists of the sets of three vertices that induce an odd number of edges
of G. It is an immediate consequence of Theorem 2.9 that two graphs are switching-
equivalent if and only if they yield the same two-graph. Moreover, there is a one-to-one
correspondence between two-graphs and switching classes: every two-graph yields a
non-empty switching class [20]. A survey of structural properties of two-graphs can be
found in [20–22].

2.3 The complexity of Seidel’s switching

Let P be a graph property. We consider the following problem S(P ): determine
whether a given graph G is switching-equivalent to a graph possessing the property P .
In other words, S(P ) is the problem of finding out if the switching class [G] contains a
graph having P . We want to study the computational complexity of S(P ) for various
properties P .
Clearly, if recognizing a property P is in NP, then deciding S(P ) is also in NP.

For an input graph G, it is possible to guess a vertex subset A and then check in
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non-deterministic polynomial time if the graph S(G,A) has the property P . We shall
deal only with properties which are in NP.
As usual, we say that a property P is polynomial, if recognizing P for a graph on

n vertices can be done in time polynomial in n, and NP-complete, if recognizing P is
NP-complete. Additionally, Kratochvíl et al. [15] propose to call a property P� switching-polynomial, if it is polynomial to decide S(P ),� switching-NP-complete, if it is NP-complete to decide S(P ), and� switching-trivial, if any graph is switching-equivalent to a graph possessing P ,

or none is.

By Lemma 2.6, there are 2n−1 graphs in [G] for a graph G on n vertices. So testing
all graphs in [G] separately for possessing the property P would require exponential
time. However, there exist properties for which it is polynomial to decide S(P ); there
are even some for which S(P ) is polynomial, but P itself is NP-complete. As observed
by Kratochvíl et al. [15] and Ehrenfeucht at al. [4], there is no correlation between the
complexity of the problem S(P ) and the complexity of the property P itself. For exam-
ple, Kratochvíl et al. [15] proved that the property “containing a Hamiltonian path”
is switching-trivial and the property “containing a Hamiltonian cycle” is switching-
polynomial (for more details, see Section 3.3). However, the properties “containing
a Hamiltonian path” and “containing a Hamiltonian cycle” themselves are well known
to be NP-complete [6].
The property “being a regular graph”, on the other hand, is an example of a poly-

nomial but switching-NP-complete property, and “being a k-regular graph” (for a
fixed k) is a both polynomial and switching-polynomial one. The property “being
3-colorable” is both NP-complete and switching-NP-complete [16].
In Chapter 3, and partially in Chapters 5 and 6, we give an overview of several

switching-polynomial properties. Switching-NP-complete properties are discussed in
Chapter 4.

9



3. Several switching-polynomial

properties

In this chapter we summarize known results regarding switching-polynomial properties.

3.1 Graphs of bounded minimum degree

The property “being a k-regular graph” (for a fixed k), mentioned in Section 2.3, is
an example of a both polynomial and switching-polynomial property. More generally,
it is true that if P is a polynomial property such that the minimum degree of graphs
possessing P is bounded by a constant, then P is switching-polynomial, too, as stated
by the following theorem [16].

Theorem 3.1. (Kratochvíl) Let � be an isomorphism-closed class of graphs such that
every graph of � contains a vertex of degree at most k, for some fixed number k. If �
can be recognized in polynomial time, then it can also be decided in polynomial time if
an input graph is switching-equivalent to a graph belonging to � . More precisely, this
can be decided in time � (nk+3p(n)), where p(n) is the worst case time complexity of
recognizing graphs of � .
The proof of Theorem 3.1 yields an algorithm to find for a graph G a graph in

[G] ��� . The algorithm tries all � (n) choices for the vertex v of degree at most k,
and for the chosen vertex it tries all of the possible � (nk) neighborhoods of v. Such
a neighborhood choice defines a unique graph H � [G] (as observed by Lemma 2.7)
and for the graph H it then just checks if H � � .
It is easy to see that a similar statement can be proved for properties P such that

the maximum degree of graphs having P is at least n 
 k (where n is the number of
vertices and k is fixed), i. e. for properties with maximum degree bounded from below.
Theorem 3.1 implies that being a tree, acyclic graph, planar graph, outerpla-

nar graph, graph of bounded genus, graph of bounded tree-width are all switching-
polynomial properties.

3.2 Eulerian graphs

We call a graph even or odd, if all the degrees of its vertices are even or odd, respectively.
We say that a graph G is Eulerian, if it contains a closed walk visiting each edge of G
exactly once. It is well-known that a graph is Eulerian if and only if it is connected
and even. Hage et al. [8] found a polynomial-time algorithm to decide the problem
S(“being an Eulerian graph”). The algorithm is based on the following results.

Theorem 3.2. (Seidel [19]) Let G be a graph with an odd number of vertices. Then
[G] contains a unique even graph.

Theorem 3.3. (Ehrenfeucht, Hage, Harju, Rozenberg [4]) Let G be a graph with
an even number of vertices. Then either [G] contains no even and no odd graphs, or
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exactly half of its graphs are even while the other half are odd.

Theorem 3.4. (Hage, Harju, Welzl [8]) Let G be a graph with an even number of
vertices and such that [G] contains an even graph. Then [G] contains an Eulerian
graph unless [G] contains a complete graph.

Hence for a graph G with an odd number of vertices, the algorithm finds the unique
even graph in [G], and checks whether or not it is connected. The unique even graph
can be obtained by switching the set of vertices which have odd degree in G.
For a graph G with an even number of vertices, the algorithm checks if [G] contains

an even graph, which is true if and only if G is an even graph or an odd graph; and
then it determines if [G] contains a complete graph, which occurs if and only if G is a
complete bipartite graph. All this can be done in time � (n2).
Apart from the algorithm, Theorem 3.2 is interesting on its own, because it tells

us that every graph having an odd number of vertices can be obtained from an even
graph by switching. The connection of even graphs to switching has also been studied
by Mallows and Sloane [17] who proved that the number en of even graphs on n vertices
equals the number of switching classes on n vertices. The explicit formula for en was
given by Robinson [18]:

en = �
(σ)

2ν(σ)−λ(σ)�
i i

σiσi!
,

where the sum goes over all ordered n-tuples σ = (σ1, . . . , σn) such that n = � i iσi

and

ν(σ) = �
i<j

σiσj gcd(i, j) + �
i

i

�
σ2i + σ2i+1 +

�
σi

2 ��� ,
λ(σ) = �

i

σi 
 sgn � �
i

σ2i+1 � ,
where gcd(i, j) stands for the greatest common divisor of i and j.

3.3 Hamiltonian and pancyclic graphs

We say that a path (cycle) is a Hamiltonian path (cycle) of a graph G if it contains all
vertices of G. Deciding if a switching class contains a graph with a Hamiltonian path,
and if it contains a graph with a Hamiltonian cycle can be done in polynomial time, as
proved by Kratochvíl et al. [15]. An algorithm follows immediately from the following
simple characterizations.

Theorem 3.5. Every graph is switching-equivalent to a graph containing a Hamilto-
nian path.1

Theorem 3.6. A graph G is switching-equivalent to a graph containing a Hamil-
tonian cycle if and only if it is not a complete bipartite graph on an odd number of
vertices.

1Theorem 3.5 is also a consequence of Theorem 2.8 – an arbitrary Hamiltonian path can be chosen as

the acyclic spanning subgraph T .
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These results have been extended to graph pancyclicity by Ehrenfeucht et al. [3].
A graph on n vertices is called pancyclic if it has a cycle of length i for all i = 3, . . . , n.
Note that pancyclicity is a stronger property than Hamiltonicity, because each pan-
cyclic graph contains a cycle of length n. The characterization is similar to that of
Theorem 3.6, except that it excludes complete bipartite graphs on an even number of
vertices.

Theorem 3.7. (Ehrenfeucht, Hage, Harju, Rozenberg) For each graph G = (V,E)
on n � 3 vertices, [G] contains a pancyclic graph if and only if G is not a complete
bipartite graph.

3.4 K1,2-free graphs

Kratochvíl et al. [15] found an algorithm which runs in time � (n3) and decides if a
given graph can be switched not to contain an induced K1,2.
The idea of the algorithm is to switch the input graph G so that it makes an

arbitrarily chosen vertex v isolated, then remove v and remove every vertex for which
there exists an adjacent vertex with the same neighborhood. Then the graph G is
switching-equivalent to a K1,2-free graph if and only if the reduced graph is a star (a
complete bipartite graph K1,m for m � 0) or a discrete graph.
3.5 Triangle-free graphs and P3-structures

We call a graph triangle-free, if it contains no induced K3. An algorithm for switching
to triangle-free graphs has been found by Hayward [10] in connection with the P3-
structure recognition.

Definition 3.8. A Pk of a graph G is a set of k vertices of G that induces a Pk.
A Pk-structure of a graph G, written Pk(G), is the set of all Pks of G. We say that
a k-uniform hypergraph H is realizable if there exists a graph G such that Pk(G) = EH .

The P3-structure recognition problem, posed by Chvátal, is the following: Given
a 3-uniform graph H = (V, T ), find a graph G such that P3(G) = T , or report that
no such graph exists. Chvátal also posed an analogous problem regarding P4-structure
recognition. A polynomial-time algorithm for P4-structure recognition has been found
by Hayward et al. [11]; Hayward [10] found an � (n3)-time algorithm for P3-structure
recognition, using a connection between P3-structures and two-graphs stated in a the-
orem equivalent to the following one.

Theorem 3.9. Let H be a connected 3-uniform hypergraph, and suppose that H is
the P3-structure of a graph G. Then G is I3-free if H is a two-graph, and if H is not
a two-graph, then G is unique and contains at least one of the three graphs on at most
five vertices, whose P3-structure is uniquely realizable.

As mentioned in Section 2.2 on page 8, a two-graph can be viewed as the set
of vertex triples that induce an odd number of edges in a graph. Equivalently, the
complementary two-graph is an IP3-structure of a graph, where the IP3-structure is a
set of triples that induce I3s or P3s, three-vertex subgraphs with an even number of
edges. So two-graphs and P3-structures differ mainly in the triples that induce I3s.
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Hayward’s algorithm, in case that the input hypergraph H is a two-graph, finds
a graph F with H as the corresponding complementary two-graph. Then, using a re-
duction to 2-SAT, it finds a vertex subset A so that the switch S(F,A) is I3-free, or
decides that no such set A exists.
But if the algorithm finds an I3-free switch S(F,A) of the graph F , then S(F,A)

is triangle-free; hence, equivalently, the algorithm finds a triangle-free switch of the
graph F , since S(F ,A) = S(F,A) by Observation 2.3. The algorithm works for any
graph F in time � (n3).
Independently of this result, Hage et al. [8] also found a � (n3)-time algorithm for

switching to triangle-free graphs that also works by means of a reduction to 2-SAT.

3.6 Bipartite graphs

Hage et al. [8] found a polynomial-time algorithm for determining whether a graph is
switching-equivalent to a bipartite graph. This algorithm works by means of a reduc-
tion to the 2-SAT problem, too.

Theorem 3.10. (Hage, Harju, Welzl) Deciding if a switching class contains a bipar-
tite graph or not can be done in time cubic in the number of vertices in the graph.

As shown by Hage in [7], graphs with a bipartite switch are 4-colorable. The above
algorithm, as a by-product, yields a 4-coloring; so it can also be used as an algorithm
for finding a 4-coloring for graphs which have a bipartite switch.
It is easy to see that if a switching class contains a complete bipartite graph (or

a discrete graph, which is a special case), then it consists only of complete bipartite
graphs. It has also been proved in [8] that a graph is (switching-equivalent to) a com-
plete bipartite graph if and only if it does not have an induced K3 nor K2 +K1.

13



4. NP-complete problems for

switching classes

In this chapter, we focus on NP-complete problems related to switching. First, we give
an overview of known results. Then in Section 4.5 we prove the NP-completeness of
the problem � �"!$#&%('*) cn ),+.-/!$02143 , and in Section 4.6 we show the hardness of approxi-
mation of � �"!$#&%('*)6587&9&),+�-/!:0;143 and � �"!$#&%('*)6+�'4<>=2?@7A#*!:%B)DC�1;?@E(3F< .
4.1 General results

We shall deal with NP-complete problems for switching classes, mainly with switching-
NP-complete properties. It was mentioned in Section 2.3 that the NP-completeness of
the problem S(P ) for a property P does not imply that the property P itself is NP-
complete. However, the following theorem by Kratochvíl et al. [15] says that once we
know a switching-NP-complete property, we are sure that there are properties which
are both NP-complete and switching-NP-complete.

Theorem 4.1. (Kratochvíl, Nešetřil, Zýka) Let P be a property such that S(P ) is
NP-complete. Then S(S(P)) is NP-complete as well.

There is another general theorem that yields many NP-completeness results for
switching classes. We first define several notions that appear in the forthcoming theo-
rem.

Definition 4.2. Let P be a property that is preserved under isomorphisms. We say
that P is� nontrivial, if there exists a graph G not having P , and there are arbitrarily large

graphs having P ;� switching-nontrivial, if P is nontrivial and there exists a switching class G such
that no graph in G possesses P ;� hereditary, if all induced subgraphs of G have the property P whenever G has.

Theorem 4.3. (Ehrenfeucht, Hage, Harju, Rozenberg [4]) Let P be a switching-
nontrivial hereditary property. Then the following problem for instances (G, k) with
k � �

VG

�
is NP-hard: does the switching class [G] contain a graph H that has an

induced subgraph H[A] with
�
A
� � k and such that H[A] has the property P? If

recognizing P is in NP, then the corresponding problem is NP-complete.

For example, “being a complete graph” is a switching-nontrivial hereditary prop-
erty. As a consequence we get the following corollary.

Corollary 4.4. For instances (G, k), the problem of deciding if the graph G is switch-
ing-equivalent to a graph containing a clique of size at least k is NP-complete.

If k is fixed (not part of the instances), then the clique problem can be solved
by testing all induced subgraphs of size k. The switching class [G] contains a graph
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H with a k-clique if and only if at least one induced subgraph of G on k vertices is
switching-equivalent to a clique, and that can be determined in polynomial time.
However, in Section 4.5 we extend Corollary 4.4 by proving that the problem of

deciding if an input graph G can be switched to contain a clique of size at least cn is
also NP-complete, where c is a fixed constant in (0, 1) and n is the number of vertices
of G.
The following are some more examples of switching-nontrivial hereditary properties:

being a discrete graph, a bipartite graph, a complete bipartite graph, an acyclic graph,
a planar graph, a chordal graph; having the chromatic number χ(G) � l, where l is
a fixed integer. For each of these properties, Theorem 4.3 yields an NP-completeness
result. But note that this does not mean that the properties themselves are switching-
NP-complete; indeed, some of them have been proved to be switching-polynomial, see
Chapter 3.

4.2 The embedding problem

Definition 4.5. We say that a graph H can be embedded into a graph G, denoted
H ↪H G, if H is isomorphic to a subgraph of G. We write H ↪H [G], if H ↪H S(G,A)
for some A � VG.

The embedding problem for graphs is known to be NP-complete [6], and Ehren-
feucht et al. [4] proved that it remains NP-complete for switching classes. The following
theorems are consequences of Corollary 4.4.

Theorem 4.6. (Ehrenfeucht, Hage, Harju, Rozenberg) The embedding problem H ↪H
[G] for switching classes is NP-complete for instances (H,G) of graphs.

Theorem 4.7. (Ehrenfeucht, Hage, Harju, Rozenberg) For an instance (G,H, k) of
graphs G and H on the same domain D of size n and an integer k with 3 � k � n 
 1,
the problem whether there is a set X � D with

�
X
� � k such that H[X] � [G[X]] is

NP-complete.

They further prove that the problem of embedding a switching class into another,
[H] ↪H [G] for instances (H,G), is NP-complete as well. Note, however, that it is easy
to decide if a given graph H is a subgraph of a graph in [G] – it suffices to apply
Lemma 2.7.

4.3 Three-colorability of graphs

Given a graph G, we call a function c : VG H C (for some set C of colors) a proper
coloring of G if for all � uv � �

EG it is true that c(u) �= c(v). A graph G is called
k-colorable if there is a proper coloring of G that uses only k colors.
The problem of deciding if a given graph is 3-colorable, is well-known to be NP-

complete [6]. Ehrenfeucht et al. [4] show that the problem stays NP-complete for
switching classes – the problem of deciding whether a switching class [G] contains a
3-colorable graph H, is NP-complete as well.
Kratochvíl [16] further proves that it is NP-complete to decide if an input graph is

switching-equivalent to a 3-colorable graph of maximum degree at most 4. Note that

15



“being a 3-colorable graph of maximum degree at most 4” is a property with bounded
minimum degree; but it is NP-complete [6], in contrast with the properties mentioned
in Section 3.1.

4.4 Switching to regular graphs

The problem of switching to regular graphs has been studied by Kratochvíl [16]. He
proved it to be NP-complete using a reduction to the problem of balancing biregular
bipartite graphs, which is related to a variant of hypergraph bicoloring problem.
Here a graph is called balanced if its vertices can be colored by two colors (say black

and white) so that every vertex has the same number of white and black neighbors. A
bipartite graph is (k, r)-biregular if every vertex in one bipartition class has degree k
and every vertex in the other bipartition class has degree r.

Theorem 4.8. (Kratochvíl) For every q � 3, m � 3 and 1 � k � m 
 1, deciding
(k-in-m)-colorability of q-regular m-uniform hypergraphs is NP-complete.

Theorem 4.9. (Kratochvíl) For all p, q � 2, it is NP-complete to decide if a (2p, 2q)-
biregular bipartite graph is balanced.

Theorem 4.10. (Kratochvíl) Let G be a (2p, 2q)-biregular bipartite graph with n >
2(p+ q) vertices. If p �= q, then G is switching-equivalent to a regular graph if and only
if G is balanced. The resulting graph is then n

2 -regular.

Theorem 4.11 follows immediately from Theorem 4.9 and Theorem 4.10.

Theorem 4.11. (Kratochvíl) Deciding if an input graph is switching-equivalent to a
regular graph is NP-complete.

On the other hand, the problem of deciding if a graph is switching-equivalent to
a k-regular graph (for a fixed k) is polynomial, see Section 3.1.

4.5 Searching for a switch with a cn-clique

Definition 4.12. Given a real number c � (0, 1), we define the problem � �"!$#&%('*) cn )%>-/!:0;143 as follows: decide whether the given graph G is switching-equivalent to a graph
containing a clique of size at least cn.

Theorem 4.13. The problem � �I!$#*%>'*) cn )J%(-/!:0;143 is NP-complete for any c � (0, 1).
Proof. We prove the theorem in two steps: first we prove the statement for rational
numbers c only; then we extend it to numbers c which are irrational. In the first step,
we show the NP-hardness of the problem by reducing SAT to it, whereas in the second
step we reduce 3-SAT. Both SAT and 3-SAT are well known to be NP-complete [6].
Finally, we prove that the problem is in NP by finding a polynomial-size certificate.
Suppose that c is rational and equal to p

q , where p, q
�

N, and p < q. We have an
instance of SAT: a formula ϕ in CNF with k clauses and l occurrences of literals, and
ask if ϕ is satisfiable. Without loss of generality we can assume that k < l and k � 2.
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L of size l

K of size
pl + p− k

Z of size
(q − p− 1)(l + 1) + k + 1

Fig. 4.1. The graph Gp,q(ϕ).

Let G = Gp,q(ϕ) be a graph constructed in the way illustrated in Figure 4.1. The
vertices of G are VG = L � K � Z, where L, K, Z are pairwise disjoint and�

L
�
= l,�

K
�
= pl + p 
 k,�

Z
�
= (q 
 p 
 1)(l + 1) + k + 1.

The edges of G are defined as follows:� K induces a clique and every vertex in K is adjacent to all vertices in L and no
vertex in Z.� Every vertex in Z is adjacent to all vertices in L and nothing more.� Vertices of L represent occurrences of literals in ϕ. Two vertices l1, l2 � L are
adjacent if and only ifK l1 and l2 occur in different clauses andK they are not in the form l1 = L l2 nor l2 = L l1.

Lemma 4.14. Let j be an integer. The graph Gp,q(ϕ)[L] contains a clique on j
vertices if and only if the formula ϕ contains j clauses that are all satisfiable at the
same time.
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Proof. If there are j clauses in ϕ that are simultaneously satisfied by a valuation
v, then we can pick from each of them one literal which is true in v; these literals
correspond to pairwise adjacent vertices – a clique of size j.
On the other hand, assume that G[L] contains a clique of size j. Then the j

corresponding literals cover j clauses and all can be true at the same time. Hence all
the j clauses are simultaneously satisfiable. ¤

Lemma 4.14 immediately gives us the following corollary.

Corollary 4.15. The formula ϕ is satisfiable if and only if Gp,q(ϕ)[L] contains a clique
of size k (where k is the number of clauses in ϕ).

Let us now consider cliques of size pl+p in the whole graph – either in the original
graph G or in its switches. Note that

n =
�
L � K � Z � = l + (pl + p 
 k) + ((q 
 p 
 1)(l + 1) + k + 1) = ql + q

pl + p
n
=
pl + p
ql + q

=
p(l + 1)
q(l + 1)

=
p

q
= c,

therefore cliques of size pl + p are exactly cn-cliques.

Lemma 4.16. The following statements are equivalent for G = Gp,q(ϕ).

(a) The graph G[L] contains a k-clique.
(b) The graph G contains a (pl + p)-clique.
(c) There exists a set A � VG such that S(G,A) contains a (pl + p)-clique.

Proof. First we prove that (a) implies (b). Any clique in G[L] forms a larger clique
together with all vertices of K. So, if G[L] contains a k-clique, then G[L � K] contains
a clique of size k + (pl + p 
 k) = pl + p.
Obviously (b) implies (c), because if the graph G contains a (pl + p)-clique, it

suffices to take A = � for S(G,A) to contain a (pl + p)-clique as well.
To prove that (c) implies (a), suppose that there is a set A � VG so that S(G,A)

contains a (pl+ p)-clique; let us denote the vertex set of such a clique by C. The set C
does not contain more than two vertices of Z, because they are pairwise non-adjacent
in G and in S(G,A) they induce a bipartite graph.
From the assumptions k > l and k � 2 it follows that l > 2, and p � 1, so pl+p > 2.

Therefore C contains some vertices of L or K. But all vertices of Z are non-adjacent
in G and have the same neighborhood in G[L � K]; surely all vertices in Z � C have
the same neighborhood in S(G,A)[C] (otherwise C would not induce a clique). But
then either (Z � C) � A or (Z � C) � A = � , so switching A does not affect edges inside
S(G,A)[Z � C] and any two vertices in S(G,A)[Z � C] are non-adjacent. Therefore C
contains at most one vertex of Z.
Since 1 +

�
K
�
= 1+ (pl+ p 
 k) < pl+ p, the clique C contains at least one vertex

of L. But then it cannot contain both vertices of K and Z, because in the graph G
they have the same neighborhood in L and there is no edge between K and Z. Also,
the set C cannot consist only of vertices of L, because pl+p > l. Therefore C contains
one of the following:� pl + p 
 1 (which is at least k) vertices of L and one vertex of Z� at least k vertices of L and at least one vertex of K.
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at least k vertices of L

one vertex
v ∈ (K ∪ Z)

Fig. 4.2. What we have in S(G,A).

In both cases, C contains k vertices of L, and a vertex v of K � Z. Since C induces
a clique in S(G,A), the vertex v is adjacent to all other vertices in C. But in G, by
definition, the vertex v is adjacent to all vertices of L, too. So switching A cannot have
changed any edge connecting v and the k vertices, which means that either all these
k + 1 vertices are in A or none of them is. But then they induce a (k + 1)-clique in G
as well, and G[L] contains a k-clique, which we wanted to prove. ¤

Corollary 4.15 and Lemma 4.16 together give us that ϕ is satisfiable if and only if
there exists a set A � VG such that S(G,A) contains a (pl + p)-clique. But we have
already shown that pl+ p = cn; and clearly a graph contains a clique of size exactly cn
if and only if it contains a clique of size at least cn. That concludes the reduction. The
graph Gp,q(ϕ) with q(l + 1) = � (l) vertices and � (l2) edges can surely be constructed
in time polynomial in the size of ϕ.
Hence the problem � �"!$#&%('*) cn ),+.-/!$02143 is NP-hard for rational constants c. Obvi-

ously, it is in NP – a polynomial-size certificate is the vertex subset to induce a clique of
the appropriate size. Given such a set A, we pick one vertex w �

A and switch the rest
so that w is adjacent to all others. Then by Lemma 2.7, it suffices to check if A really
induces a clique; all that can be done in polynomial time. So � �"!$#&%('*) cn ),+�-/!:0;143 is
NP-complete for any rational constant c � (0, 1).
To prove the NP-completeness of � �"!$#&%('*) cn ),+.-/!$02143 for irrational numbers c as

well, we use a theorem of Arora et al. proved in [1] (and restated in this way in [23] as
Lemma 29.10).

Theorem 4.17. (Arora, Lund, Motwani, Sudan, Szegedy) There exists a polynomial
time transformation T from 3-CNF to 3-CNF and a constant ε > 0 such that� If ψ is satisfiable, then T (ψ) is satisfiable.� If ψ is not satisfiable, then at most 1 
 ε fraction of the clauses of T (ψ) are

simultaneously satisfiable.

Our aim is to do a reduction from an instance ψ of 3-SAT. We will use the graph
Gp,q, like in the previous part of the proof; this time for the transformed formula T (ψ)
and for numbers p and q such that p

q is sufficiently close to the irrational number c. Then
we examine the relationship between cn-cliques and p

q -cliques in the resulting graph.
To show that some suitable numbers p and q exist, we will make use of Lemma 4.18,
which is a variant of Dirichlet’s Theorem, and Lemma 4.19.

Lemma 4.18. For any real number α
� [0, 1], any ε > 0 and r �

R there exists
n
�

N such that n > r and � nα � < ε (where � nα � stands for the decimal fraction of
nα).
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Proof. Without loss of generality we can assume that ε < α and α � (0, 1). We prove
by induction that for each k �

N0 there exists nk
�

N such that� nkα �M� α

2k

and nk+1 > nk for all k. Then we take n = nk for k � max � r, log2(αε ) � .
We set n0 = 1, because � 1 N α ��� α

1 . Now assume that we already have nk for some
k � 0 and want to find nk+1. Let β = � nkα � ; we want to get an integer m so that� mβ �O� β

2 and m > 1. If β = 0, then clearly the inequality � mβ �O� β
2 holds for any

integer m, so we can set m = 2. Otherwise we consider the number P 1β Q β. It is clear
that P 1β Q β � 1; in case of an equality we have that �*P 1β Q β � = 0, while P 1β Q is nonzero.
Hence m can be either P 1β Q or any its integral multiple larger than 1.
The remaining case is that β > 0 and P 1β Q β < 1. Then 1 < R 1β S β < β+1, and after

subtracting 1 we get that

(4.1) TIU 1
β V β W < β.

We want m to be an integer such that � mβ ��� β
2 . Note that R 1β S > 1, since P 1β Q > 0

for any β � (0, 1). So suppose that m cannot be R 1β S , because �*R 1β S β � > β
2 . Then we

define

δ = β + 1 
XU 1
β V β.

The assumption �*R 1β S β � > β
2 together with (4.1) imply that δ

� (0, β
2 ). Similarly like

before we obtain the inequalities P β
2δ Q δ � β

2 and
β
2 �YR β

2δ S δ. Moreover, it is surely true
that R β

2δ S � (1 + P β
2δ Q ); hence

(4.2)
β

2
�ZU β
2δ V δ � β.

Now we set

m = [.U β
2δ V [	U 1

β V 
 1 \ + 1 \ .
It is clear that such an m is larger than one, and by substituting δ according to its
definition, it can be easily verified that

(4.3) mβ = U β
2δ V 
XU β

2δ V δ + β.
By plugging the inequalities of (4.2) into (4.3), we obtain

U β
2δ V � mβ �]U β

2δ V + β

2
,

which immediately gives us that � mβ �^� β
2 , and that is what we wanted. It now

remains to set nk+1 = mnk and verify that � nk+1α ��� α
2k+1
. Indeed, we have that

� nk+1α � = � mnkα � = � mβ � < β

2
=

� nkα �
2

� α
2k

2
=

α

2k+1
,
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where the last inequality holds by the induction hypothesis. In all considered cases,
we chose m to be larger than one, hence nk+1 > nk, and we are done. ¤

Lemma 4.19. For each irrational c
� (0, 1) and ε > 0 there exist p, q � N such that

p
q

� (0, 1) and
c
� [_[ 1 
 ε

4p
\ p

q
,
p

q
\ .

Proof. We shall find an integer p such that the interval ( pc 
 ε
4c ,

p
c ) contains another

integer q. We want p to satisfy the condition

(4.4) ` p
c a < ε

4c
,

and additionally we request that

(4.5) p >
ε

4(1 
 c) .
It is true that � p

c � = � p � 1c �b� , the number � 1c � lies in the interval [0, 1), and surely
ε
4c > 0; hence Lemma 4.18 for α = � 1c � , ε′ = ε

4c and r =
ε

4(1−c) ensures the existence of
such a p.
Then we set q = P pc Q and verify that it is really an integer in the interval ( pc 
 ε

4c ,
p
c ).

The number p
c is irrational, so we have q <

p
c . The fact that P pc Q = p

c 
c� p � 1c �b� , and (4.4)
together give us the other inequality q > p

c 
 ε
4c .

Moreover, from (4.5) we obtain

p

c

 ε

4c
> p,

so any integer q in the interval ( pc 
 ε
4c ,

p
c ) is larger than p, and thus

p
q

� (0, 1). Also,
by rewriting the inequalities q < p

c and q >
p
c 
 ε

4c we get the desired inequality

[ 1 
 ε

4p
\ p

q
< c <

p

q
.

¤

Let c be an irrational number in (0, 1), let ε be the constant from Theorem 4.17,
and p, q the integers given by Lemma 4.19 for ε and c. We take an instance ψ of 3-SAT
and construct the graph G = Gp,q(T (ψ)) in the same way as in the previous part of
the proof. Let us again denote the number of clauses of T (ψ) by k. The number of
occurrences of literals is l = 3k and n stands for the number of vertices of G.
If ψ is satisfiable, we have again by Corollary 4.15 that G[L] contains a k-clique,

and by Lemma 4.16 the graph G contains a (pl + p)-clique, which is a p
qn-clique. We

shall show that if ψ is not satisfiable, then for any set A � VG the graph S(G,A) does
not contain a clique of size larger than (1 
 ε

4p)
p
qn. We limit ourselves to instances ψ

such that (1 
 ε)k > 1 and pl+ p 
 εk � 2, which we can do without loss of generality.
Let us first show the following lemma.
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Lemma 4.20. Let ψ be a formula such that (1 
 ε)k > 1 and pl + p 
 εk � 2. If ψ
is not satisfiable, then for any set A � VG the graph S(G,A) does not contain a clique
of size larger than pl + p 
 εk.
Proof. Suppose that for some A � VG we have a clique on a vertex set C in S(G,A)
and the size of the clique is larger than pl + p 
 εk. Then (similarly as in the proof
of Lemma 4.16) we get that the set C does not contain more than two vertices of Z,
because they are pairwise non-adjacent in G and in S(G,A) they induce a bipartite
graph.
Since

�
C
�
is more than two, then C contains some vertices of L or K. But all

vertices of Z are non-adjacent in G and have the same neighborhood in G[L � K];
surely all vertices in Z � C have the same neighborhood in S(G,A)[C] (otherwise C
would not be a clique). But then either (Z � C) � A or (Z � C) � A = � , so switching A
does not affect edges inside S(G,A)[Z � C], and any two vertices in S(G,A)[Z � C] are
non-adjacent. Therefore C contains at most one vertex of Z.
The set C contains at least one vertex of L, because

1 +
�
K
�
= 1 + (pl + p 
 k) < (1 
 ε)k + pl + p 
 k = pl + p 
 εk.

But then C cannot contain both vertices of K and Z, because in G they have the same
neighborhood in L and there is no edge between K and Z.
By Lemma 4.14, every clique in L corresponds to

�
C � L � clauses which are simulta-

neously satisfiable. Hence by Theorem 4.17, the maximum clique size in L is (1 
 ε)k,
which is not enough for C, since

(1 
 ε)k < (1 
 ε)k + pl + p 
 k = pl + p 
 εk,
hence C cannot consist only of vertices of L. Therefore C consists of one of the
following:� more than pl+ p 
 εk 
 1 (which is larger than (1 
 ε)k) vertices of L, and one

vertex of Z� more than (1 
 ε)k vertices of L, and pl + p 
 k vertices of K.
In both cases, C contains more than (1 
 ε)k vertices of L, and a vertex v from K

or Z. Since C induces a clique in S(G,A), the vertex v is adjacent to all other vertices
in C. But in G, by definition, v is adjacent to all vertices of L, too. So switching A
cannot have changed any edge connecting v and the other vertices, which means that
either all the vertices are in A or none of them is. But then they induce a clique of size
larger than (1 
 ε)k in G[L] as well. As we have already shown, the maximum clique
size in G[L] is (1 
 ε)k, which is a contradiction. ¤

By Lemma 4.20, if ψ is not satisfiable, then the maximum clique size in S(G,A)
for any A is pl + p 
 εk. But

εk

n
=

εk

q(l + 1)
=

εk

q(3k + 1)
� ε

4q
=

ε

4p
N p
q
,

so the maximum clique size divided by n is

pl + p 
 εk
n

=
p(l + 1)
q(l + 1)


 εk

q(l + 1)
� p

q

 ε

4p
N p
q
= [ 1 
 ε

4p
\ p

q
.
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We have chosen the numbers p, q so that

c
� [_[ 1 
 ε

4p
\ p

q
,
p

q
\ ,

hence the maximum clique ratio matches the lower bound of the interval containing c.
To sum it all up, we have shown that� if ψ is satisfiable, then there exists an A � VG such that S(G,A) contains

a clique of size p
qn, which is at least cn,� if ψ is not satisfiable, then for no set A � VG the graph S(G,A) contains a clique

of size more than (1 
 ε
4p)

p
qn, especially of size at least cn.

Hence ψ is satisfiable if and only if G can be switched to contain a clique of size
at least cn. The graph Gp,q(T (ψ)) with q(l + 1) = � (l) vertices and � (l2) edges can
be constructed in polynomial time. That concludes the polynomial-time reduction of
3-SAT to � �I!$#*%>'*) cn )6+�-/!:0;143 for an irrational constant c, and also the proof that the
problem is NP-hard.
Again, � �I!$#*%>'*) cn )6+�-/!:0;143 is in NP – a polynomial-size certificate is the vertex

subset to induce a clique of the appropriate size. Given such a set A, we pick one vertex
w
�
A and switch the rest so that w is adjacent to all others. Then by Lemma 2.7 it

suffices to check if A really induces a clique; all that can be done in polynomial time.
So the problem � �I!$#*%>'*) cn )6+�-/!:0;143 is NP-complete for all constants c � (0, 1),

which completes the proof. ¤

4.6 Hardness of approximation for switching

problems

In addition to the NP-completeness results, we also get the hardness of approximation
of several switching problems. We show that for the problems discussed below, allowing
switching of the input graph does not make any significant difference in the size of the
approximated quantity. So the non-approximability results are analogous to those for
the original problems without switching.
We consider the following problems (all having a graph G as the instance).5d7&9&),+.-/!:0;143 What is the size of a largest clique in G?� �I!$#*%>'*),587&9&),+.-/!$02143 What is the size of a largest clique in S(G,A) over

all A � VG?+.'4<>=2?@7A#&!:%B),C�1;?_E(3F< What is the minimum number of colors needed to
color G properly?� �I!$#*%>'*),+.'4<>=2?@7A#*!$% )DC�1;?_E>3A< What is the minimum number of colors needed to
color properly at least one of S(G,A) for A � VG?

Claim 4.21. Let α � 1. If there is a polynomial-time α-approximation algorithm
for � �"!$#&%('*)6587&9*)6+�-/!:0;143 , then there also exists a polynomial-time 2α-approximation
algorithm for 587&9&)6+�-/!:02143 .
Proof. Suppose that � is a polynomial-time α-approximation algorithm for � �"!$#&%('*)5d7&9&),+.-/!:0;143 . Let G be a graph, M the size of a largest clique in G, let MS be the

23



size of a largest clique in the graphs S(G,A) over all vertex subsets A, and k =
� � (G) � .

Since � is an α-approximation algorithm, we have that
k � 1

α
MS.

Let A be a set for which S(G,A) contains the clique C = � (G) of size k. Note that if
we know the vertices of C, we can in polynomial time find such a set A according to
Lemma 2.7; for any vertex v � C, we can set A = C � NG(v).
Clearly, one of A and VG � A, say A, contains at least half of the vertices of C. By

Observation 2.3, S(G,A)[A] = G[A]; hence C ′ = A � C is a clique in G of size at least
1
2k. Surely MS � M , because G also counts as its switch S(G, � ). Therefore�

C ′
� � 1
2
k � 1
2α
MS � 1

2α
M,

so C ′ is a clique in G of size within the approximation factor, and we are done. ¤

Similarly we prove an analogous result regarding the approximation of the chro-
matic number. Note that � �I!$#*%>'*),587&9&),+�-e!$0;143 and 587&9&),+.-/!:0;143 are maximiza-
tion problems, while � �"!$#&%('*)6+�'4<>=2?@7A#*!:%B)DC�1;?@E(3F< and +.'4<>=2?@7A#&!:%B),Cf1;?@E(3F< are
minimization ones, so the inequalities are reversed. The proof is similar to that of
Lemma 4.22 (see Lemma 3.30 in [7]).

Lemma 4.22. (Hage, Harju) Let G be a graph with χ(G) = k. Then for all switches
G′ = S(G,A) of G, k/2 � χ(G′) � 2k.
Claim 4.23. Let α � 1. If there is a polynomial-time α-approximation algorithm for� �I!$#*%>'*),+.'4<>=2?@7A#*!$% )DC�1;?_E>3A< , then there is also a polynomial-time 2α-approximation
algorithm for +�'4<*=2?@7A#*!:% )DC�1;?@E(3F< .
Proof. Suppose that there is a polynomial-time α-approximation algorithm � for� �I!$#*%>'*),+.'4<>=2?@7A#*!$% )DC�1;?_E>3A< . Let G be a graph, χ = χ(G), let χS be the minimum
chromatic number of S(G,A) over all vertex subsets A, let c be the coloring � (G), and
k the number of colors used in c. Since � is an α-approximation algorithm, we have
that

k � αχS.

Let A be a set for which S(G,A) can be properly colored by c. Such a set A can be
constructed from c in the following way: to each vertex v we assign a boolean variable
xv, and for each vertex pair u, v such that c(u) = c(v), we form a condition� (xu g xv) & ( L xu g L xv) if u and v are adjacent in G or� (xu g L xv) & ( L xu g xv) if they are not.

The conjunction of all these conditions is an instance of 2-SAT, and any its sat-
isfying valuation corresponds to a set A = � v �

V (G) : xv = 1 � with the property
that S(G,A) is properly colored by c. Since c is a proper coloring, we know that such
a valuation exists; moreover, it can be found in time polynomial in the number of
vertices, and the 2-SAT instance can be constructed in polynomial time, too.
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Suppose that c1, . . . , ck are the colors used by c. We define k other colors c
′

1, . . . , c
′

k,
a coloring

c′(v) := T c(v) if v � A
(c(v))′ if v �� A,

and observe that c′ is a proper coloring of G.
Surely χS � χ, because G also counts as its switch S(G, � ). We have that c′ uses

k′ colors, where
k′ = 2k � 2αχS � 2αχ,

so the number of colors used by c′ is within the approximation factor. ¤

Let us combine Claim 4.21 and Claim 4.23 with known results regarding the hard-
ness of approximation of 587&9&),+.-/!:0;143 and +.'4<>=h?_7A#&!:%B),C�1;?_E>3A< . H̊astad [12] proved
that for any ε > 0, there is no polynomial-time n1−ε-approximation algorithm for 5d7&9&)+.-/!:0;143 , unless NP = co-RP. A similar result has been proved by Feige and Kilian [5]
for +�'4<>=h?_7A#&!:% )DC�1;?_E>3A< . They show that for any ε > 0, there is no polynomial-time
n1−ε-approximation algorithm for +�'4<>=h?_7A#&!:% )DC�1;?_E>3F< , unless NP = co-RP. We
conclude the following corollary.

Corollary 4.24. Let ε > 0. Unless NP = co-RP, there is no polynomial-time ap-
proximation algorithm for � �"!$#&%('*)6587&9*)6+�-/!:0;143 nor � �"!$#*%>'*),+.'4<>=2?@7A#*!$% )DC�1;?_E>3F<
within the factor n1−ε.

Proof. Suppose that for a certain ε > 0, there exists a polynomial-time n1−ε-approx-
imation algorithm for one of the problems, say � �"!$#&%('*)6587&9*)6+�-/!:0;143 (the case of� �I!$#*%>'*),+.'4<>=2?@7A#*!$% )DC�1;?_E>3A< is analogous). Then by Claim 4.21, there is a poly-
nomial-time 2n1−ε-approximation algorithm for 587&9&),+.-/!:0;143 . Clearly, if n is large
enough, then 2n1−ε < n1−ε/2; hence there is also a polynomial-time n1−ε/2-approximat-
ion algorithm for 587&9&),+.-/!:0;143 , which is a contradiction. ¤
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5. Switching to H-free graphs

In this chapter, we examine the complexity of the problem S(“beingH-free”) for several
fixed graphs H. Polynomial-time decision algorithms are known for this problem if H
has at most three vertices or is isomorphic to a P4. In Section 5.2 we show that if H
is isomorphic to a claw, then the problem is polynomial as well.

5.1 General observations

Let H be a graph. For H fixed, it is easy to decide if a given graph G can be switched
to contain H as an induced subgraph. It suffices to try all induced subgraphs of G on�
VH

�
vertices and test them according to Lemma 2.7 for being switching-equivalent to

H. It is clear that if an induced subgraph of G can be switched to contain H, then the
same is true for the whole graph G. This leads to the following observation.

Observation 5.1. For each graph H the problem S(“containing H”) can be solved in
time polynomial in the size of the input graph.

In this chapter, we examine the opposite problem: is the graph G switching-
equivalent to a graph not containing H as an induced subgraph? For this problem
there is no such simple general observation. However, all known results for several
particular graphs H yield polynomial-time algorithms. No graph H is known for which
S(“being H-free”) is NP-complete, and it is not clear if such a graph exists.
By Observation 2.3, for a set A � VG it is true that S(G,A) = S(G,A). So the

graph S(G,A) is H-free if and only if the graph S(G,A) is H-free. That gives us
another observation.

Observation 5.2. If an algorithm � decides whether an input graph G is switching-
equivalent to an H-free graph, then the algorithm � for the input graph G also decides
whether G is switching-equivalent to an H-free graph.

Hence, in the following text, we shall identify the algorithm that solves the problem
for a graph H with the one that solves it for H.
For K2 (and I2), the problem is simple: K2-free graphs are discrete, and graphs

switching-equivalent to discrete graphs are exactly complete bipartite graphs, as men-
tioned in Section 3.6 on page 13. Switching to triangle-free (and I3-free) graphs is
discussed in Section 3.5 on page 12, and for switching to K1,2-free (and (K1+K2)-free)
graphs, see Section 3.4 on page 12. That covers all graphs H on at most three vertices.
As for graphs on four vertices, a polynomial-time algorithm for switching to P4-free

graphs follows from the characterization of such graphs given in Section 6.2 on page 30.
In Section 5.2, we show that the problem of switching to K1,3-free (and (K1+K3)-free)
graphs can be decided in polynomial time, too.
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any even number of vertices

one or three
vertices

the root or
all nails

everything but one nail
or one nail

one or three
vertices

two nonadjacent
vertices

any two vertices

all vertices, none,
or two neighbours

all vertices
or no vertex

Fig. 5.3. Dangerous graphs and switching between them.

5.2 Switching to a claw-free graph in polynomial

time

In this section, we show that it is polynomial to decide if a given graph can be switched
to a claw-free graph.

Theorem 5.3. Given a graph G, we can in polynomial time find a set A � VG such
that S(G,A) is claw-free, or find out that no such A exists.

Definition 5.4. We call a graph on four vertices a dangerous graph if it is switching-
equivalent to a claw. We say that the vertex of degree three in a claw is the root of
the claw; vertices of degree one are nails of the claw.

Lemma 5.5. All the dangerous graphs (up to isomorphism) are the claw K1,3 itself,
the four-cycle C4 and four isolated vertices I4. By switching an even number of vertices
in a dangerous graph, we obtain� a claw from a claw� a non-claw from a non-claw.
By switching an odd number of vertices in a dangerous graph, we obtain� a claw from a non-claw� a non-claw from a claw.
Proof. All possible switches between the graphs K1,3, C4, and I4 are demonstrated in
Figure 5.3. A case analysis of the switches follows.
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Switching four or zero vertices does not modify the graph, therefore it does not
change the property of being a claw; it remains to consider switching one, two or three
vertices. Switching any two vertices of a claw creates a claw. Switching the root or all
nails of a claw yields an I4, and switching one nail or everything but one nail yields
a C4. Thus switching any vertex subset of a claw results in one of K1,3, C4, and I4,
and those are really all the dangerous graphs (up to isomorphism). Moreover, we get
a claw from a claw if and only if we switch an even number of its vertices.
Switching one or three vertices in a C4 gives us a claw. By switching two adjacent

vertices we get a C4, and by switching two non-adjacent vertices we obtain an I4. Thus
we get a claw from a C4 if and only if we switch an odd number of vertices.
Switching one or three vertices in an I4 yields a claw, whereas switching two yields

a C4. Again, a claw arises from an I4 if and only if an odd number of vertices are
switched. ¤

Corollary 5.6. Let G be a graph and A � VG. Then S(G,A) is claw-free if and only
if for every dangerous induced subgraph H of G the following is true:� �

V (H) � A � is odd if H is a claw,� �
V (H) � A � is even if H is a not claw.

Proof. By Lemma 5.5, switching such an A creates a non-claw from every (dangerous)
claw and a non-claw from every dangerous non-claw. But a claw can arise only from
a dangerous graph; therefore switching A destroys all claws and creates no new one.
Conversely, if a set A yields a claw-free switch, then by Lemma 5.5 it contains an

odd number of vertices out of every dangerous claw, and an even number of vertices
out of every dangerous non-claw. ¤

Proof. (of Theorem 5.3) We show that vertex subsets with the desired properties can
be described by a system of linear equations over GF (2) with � (n) variables and � (n4)
equations. Solutions of such an equation system can be computed, for example, by the
Gaussian elimination in time � (n6). In particular, it can be decided in time � (n6)
whether a solution of such a system exists. The equations, too, can be constructed in
polynomial time.
We compute in GF (2). To every vertex v �

VG we assign a variable xv, and for
every dangerous subgraph H on vertices vi, vj, vk, vl, we form an equation

xvi
+ xvj

+ xvk
+ xvl

= 1

if H is a claw or
xvi
+ xvj

+ xvk
+ xvl

= 0

if H is not a claw. Clearly, we get at most (n4) = � (n4) equations in this way.
Every assignment of values to the variables yields a vertex subset

A = � v � VG : xv = 1 � .
The equations express parity requirements for the size of the intersection of A and
dangerous subgraphs. Then, according to Corollary 5.6, the solutions of this system
correspond to all vertex subsets A such that S(G,A) is claw-free. ¤
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6. Characterizations by forbidden

induced subgraphs

In this chapter, we study characterizations of various switching problems by a list of
forbidden induced subgraphs. First, we summarize known results, and in Section 6.5
we give such a characterization for S(“being K1,2-free”).

6.1 Remarks

In Section 2.3 we mention several switching-polynomial properties. There are yet some
more properties that are known to be switching-polynomial – these are properties P
such that S(P ) can be characterized by a finite set of forbidden induced subgraphs. It
is clear that such a characterization yields a polynomial-time decision algorithm.
A simple example of such a characterization is the one of S(“being discrete”) or

S(“being complete bipartite”) mentioned in Section 3.6. A graph can be switched
to a discrete graph if and only if it does not contain an induced K3 nor K1 + K2.
Equivalently, such graphs can be switched to a complete bipartite graph, as shown by
Hage et al. [8].
Now suppose that P is a hereditary property (recall that a property P is hereditary

if all induced subgraphs of a graph G have the property P whenever G has). If there
exists an induced subgraph of a graph G that cannot be switched to posses P , then
neither G can. So S(P ) is hereditary as well, and the badness of a graph is always
caused by a bad induced subgraph. A set of forbidden induced subgraphs for S(P ) can
be obtained as the set of all bad graphs, or the set of all minimal bad graphs. But such
a set may be infinite. That is also the case of the S(“being acyclic”) characterization
(see Section 6.3). The most useful cases are those when the set is finite and reasonably
small.
Conversely, if a property is shown to be equivalent to not containing any bad

induced subgraph, which is hereditary, then the property itself is hereditary.
In the following sections, several known characterizations by forbidden induced

subgraphs are listed. Some of them, instead of S(P ), characterize switching classes
whose all graphs have a certain property.

6.1.1 Remarks on switching to H-free graphs

In Chapter 5, we examine the complexity of S(“being H-free”) for fixed graphs H. We
give an overview of several graphs H for which the property is switching-polynomial;
in fact, all known results for particular graphs H yield polynomial-time algorithms. No
graph H is known for which S(“being H-free”) is NP-complete.
For some of those graphs H, a characterization of S(“being H-free”) by a finite list

of forbidden subgraphs has been found. These are the graphs K2, I2 (due to Hage et
al. [8]), and P4 (due to Hertz [13]). In Section 6.5 we extend them by K1,2.
Again, there is a relation between results for H and for H. It has been mentioned

in Chapter 5 that for a graph G the graph S(G,A) is H-free if and only if the graph
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S(G,A) is H-free (by Observation 2.3). That gives us the following observation.

Observation 6.1. Let n be an integer, and H, F1, . . . , Fn graphs. The following
statements are equivalent:

(1) For every graph G, the switching class [G] contains an H-free graph if and only
if Fi �� G for any i = 1, . . . , n.

(2) For every graph G, the switching class [G] contains an H-free graph if and only
if Fi �� G for any i = 1, . . . , n.

Hence a finite list of forbidden subgraphs for H also yields one of the same size for
H; and the result for K1,2 also gives a list for K2 +K1. In case of the triangle K3 and
the claw K1,3, the corresponding polynomial-time algorithms exist (see Section 3.5 on
page 12 and Section 5.2 on page 27), but the lists of forbidden induced subgraphs are
not known to be finite. Moreover, it seems that there is not a reasonably short list
for either of them. According to the computational results, both lists soon grow to
enormous size, which we find interesting in view of the fact that the list for K1,2 has
ten graphs only, and the graphs K3 and K1,2 differ just in one edge.
On the other hand, no graph H is known such that the appropriate list of forbidden

induced subgraphs is infinite; that allows one to believe that the list is finite for everyH.

6.2 Perfect graphs and P4-free graphs

A graph is called perfect if for every induced subgraph G, the chromatic number χ(G)
equals the clique number ω(G). A set of forbidden induced subgraphs for graphs whose
all switches are perfect was found by Hertz [13]. The forbidden graphs are shown in
Figure 6.4.

a C5 a bull a gem an anti-gem

Fig. 6.4. Forbidden induced subgraphs for perfectness of a switching class.

Theorem 6.2. (Hertz) For a switching class i , the following statements are equiva-
lent:

(1) i contains only perfect graphs.
(2) Every graph in i is C5-free, bull-free, gem-free and anti-gem-free.
(3) Some graph in i is P4-free.
Theorem 6.2 gives a characterization of graphs switching-equivalent to a P4-free

graph. Since C5, bull, gem and anti-gem together are (up to isomorphism) a switching
class, then a graph G is C5-free, bull-free, gem-free and anti-gem-free if and only if
every graph in [G] is C5-free, bull-free, gem-free and anti-gem-free, too. Hence if G
does not contain any of these four graphs, then, according to Theorem 6.2, i = [G]
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contains a P4-free graph. And vice versa, if a graph in i = [G] is P4-free, then G does
not contain any of the forbidden induced subgraphs.
Therefore switching classes containing a P4-free graph can be characterized by four

forbidden induced subgraphs on five vertices.

6.3 Acyclic graphs

Switching classes containing acyclic graphs have been examined by Hage and Harju in
[9]. They have found a characterization of such classes by a list of forbidden induced
subgraphs. Apart from the cycles Cn for n � 7, there are only finitely many graphs
in the list, each having at most nine vertices. They prove that there are 905 forbid-
den subgraphs partitioned into 27 switching classes (up to isomorphism and excluding
switches of cycles Cn). A computer program was employed to obtain this result.
The infinite list of forbidden subgraphs does not immediately give us an efficient

recognition algorithm. However, it is polynomial to decide S(“being acyclic”), since
“being acyclic” is a property of bounded minimum degree (see Section 3.1).

6.4 Perfect codes

Definition 6.3. Given a graph G, a set C � VG is called a t-perfect code in G if and
only if the sets St(u) = � v : v � VG & d(u, v) � t � for all u �

C form a partition of VG,
i. e., if for every v � VG there is exactly one u

�
C such that d(u, v) � t.

Definition 6.4. We say that a switching class i is t-codeperfect if eachH � i contains
a t-perfect code.

Kratochvíl [14] shows that a switching class [G] is 1-codeperfect if and only if G
contains none of the seven graphs depicted in Figure 6.5 as an induced subgraph.

Fig. 6.5. Forbidden induced subgraphs for 1-codeperfect switching classes.

Note that a 1-perfect code in a graph G is also a perfect dominating set for G. (A
set C � VG is dominating if for all v

�
VG either v

�
C or v is adjacent to a vertex in

C, and a dominating set C is perfect if each vertex v �
VG � C is adjacent to exactly one

vertex of C.) Hence the forbidden induced subgraphs in Figure 6.5 also characterize
switching classes containing only graphs with perfect dominating sets.
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6.5 Switching classes containing a K1,2-free
graph

In this section, we give a characterization of switching classes containing a K1,2-free
graph by ten forbidden induced subgraphs, each having five vertices. This character-
ization, however, does not bring any improvement for the algorithmic recognition of
switching classes containing a K1,2-free graph; checking all induced subgraphs on five
vertices requires time Ω(n5), whereas the already known algorithm of Kratochvíl et al.
[15] runs in time � (n3). This algorithm is described in section 2.3 on page 8.
The characterization is interesting in view of the question whether for all graphs H

the list of forbidden induced subgraphs for S(“being H-free”) is finite. We show that
for H = K1,2, it is.

Theorem 6.5. A graph G is switching-equivalent to a K1,2-free graph if and only if
G does not contain any of G1, . . . , G10 as an induced subgraph.

G1 G2 G3 G4

u v

y
x z

Fig. 6.6. Forbidden graphs switching-equivalent to G1.

G5 G6 G7

G8 G9 G10

u

v x y z

Fig. 6.7. Forbidden graphs switching-equivalent to G5.

Lemma 6.6. The graphs G1, G2, G3, G4 are (up to isomorphism) all the graphs
switching equivalent to G1. None of them can be switched to a K1,2-free graph.

Proof. Since being switching-equivalent is an equivalence relation, it suffices to ex-
amine all the possible switches of G1. Without loss of generality the set A of switched
vertices is of size at most two (otherwise we switch A′ = VG � A instead of A, which
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gives us the same resulting graph). By switching one vertex in G1 we obtain a G2.
By switching two adjacent vertices in G1 we get a G3, and switching two non-adjacent
ones gives us a G4.
It remains to show that none of the graphs G1, G2, G3, G4 can be switched to a

K1,2-free graph; in other words, the switching class of G1 does not contain a K1,2-free
graph. Indeed, none of G1, G2, G3, G4 is K1,2-free, as can be seen in Figure 6.6. ¤

Lemma 6.7. The graphs G5, . . . , G10 are (up to isomorphism) all the graphs switch-
ing equivalent to G5. None of them can be switched to a K1,2-free graph.

Proof. Similarly as in the proof of Lemma 6.6, we examine all the possible switches
of G5 and without loss of generality we switch at most two vertices. By switching u
we get a G5. By switching one of v, x we get a G6. Switching one of y, z produces a
G7. Switching u and one of v, x yields a G7. By switching u and one of y, z we get a
G6. By switching v and x we get a G8. Switching y and z produces a G9 and, finally,
switching one of v, x and one of y and z creates a G10.
It remains to show that none of the graphs G5, . . . , G10 can be switched to a K1,2-

free graph. Again, as observed in Figure 6.7, none of the elements of this switching
class is K1,2-free. ¤

Lemma 6.8. Let G′ be a graph not containing any of G1, . . . , G10 as an induced
subgraph. Then G′ is switching-equivalent to a K1,2-free graph.

H

F

EA

G

CB D

v1

v3v2

Fig. 6.8. Eight possibilities for a vertex’s neighborhood in a K1,2.

Proof. If G′ does not contain any K1,2, we are done. Otherwise we choose a K1,2
in G′, denote its vertex of degree two by v1 and the other ones v2 and v3. We divide
the remaining vertices of G′ into eight groups according to their neighborhood in v1,
v2, v3, as marked in Figure 6.8. Our aim now is to show that the groups A, B, C, E,
F , G are cliques, whereas D and H are disjoint unions of cliques.
In Figure 6.9, the upper left graph represents one of the forbidden situations: it

contains the fixed K1,2 with its vertices denoted by v1, v2, v3, and two vertices a, b
�
A

along with all the edges connecting any vertex of A to v1, v2, v3.
We want A to be a clique, so we want to prevent the case that a and b are not

adjacent. But the non-adjacency of a and b yields a forbidden graph G9, as shown
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v1

v3

v2

a

b

a

v2

v3

b

v1

A missing edge
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Fig. 6.9. Forbidden graphs created by missing edges in A, B or C.

v1

v3

v2

a

b

a
v2

v3 b

v1

A missing edge
{a, b} in E

creates a G5

v1

v3

v2

v1

v3

v2

a a

b b

A missing edge
{a, b} in F

creates a G7

A missing edge
{a, b} in G

creates a G7

a
v3

v2 b

v1

v1

v3v2

a

b

v1

v3

v2

a

b

a
v2

b c

v1

A K1,2 on
{a, b, c} in D
creates a G9

v1

v3

v2

a

b

A K1,2 on
{a, b, c} in H
creates a G7

c

a

v3

v2

c

b

c

Fig. 6.10. Forbidden graphs created by missing edges in E, F or G and by a K1,2 in D or H.

below – the lower left graph in Figure 6.9 is the same graph as the upper right one;
it is only redrawn to make its isomorphism to G9 more obvious. This proves that A
induces a clique in G′.
Figures 6.9 and 6.10 show the forbidden subgraphs created by a missing edge in A,

B, C, E, F , G, with each forbidden situation (or just a part of it) redrawn in the way
described above. By the assumptions, no forbidden subgraph is contained in G′, so we
conclude that all those groups induce cliques in G′.
The groups D and H need not be cliques; we just want each of them to be a disjoint

union of cliques. We prove this by showing that if any of D, H contains a K1,2 (and is
not a disjoint union of cliques), it creates a forbidden subgraph. These situations are
the last two cases of Figure 6.10. So D and H are disjoint unions of cliques.
We proceed by showing that the edges between vertices of different groups are as

shown in Figure 6.11. We shall for simplicity speak about adjacency of whole cliques
instead of single vertices.

Definition 6.9. We say that two cliques K1 and K2 are adjacent if all vertices of K1
are adjacent to all vertices of K2. We say that two cliques K1 and K2 are non-adjacent
if no vertex of K1 is adjacent to any vertex of K2.
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Fig. 6.11. Cliques and edges between them in a graph switching-equivalent to a K1,2-free graph.

The desired situation (depicted in Figure 6.11) is as follows:� Any group of A, B, C is adjacent to all groups on the right side except for E,
F , G, respectively, to which it is non-adjacent.� Any group of E, F , G is adjacent to all groups on the left side except for A, B,
C, respectively, to which it is non-adjacent.� The groups on the left side are pairwise non-adjacent. The groups on the right
side are pairwise non-adjacent as well.� Every clique in D is adjacent to all cliques in H except for at most one clique,
to which it is non-adjacent.� Every clique in H is adjacent to all cliques in D except for at most one clique,
to which it is non-adjacent.

Moreover, the vertex v1 has the same neighborhood (in the rest of the graph) as
vertices of A, and is adjacent to all of them; so we can add v1 to the clique A while
keeping all the desired adjacency properties of A. Analogously, we add v2 to F and v3
to G.
By examining all the possible cases, we show that an unwanted, or wanted but

missing edge would create a forbidden subgraph. Figures 6.12 and 6.13 show bad edges
between A and the other groups, and the forbidden graphs caused. Figures 6.14 and
6.15 show bad edges between B and the other groups; the cases for C and the other
groups are almost the same (only with v2 and v3 swapped). Figure 6.16 shows bad
edges between D and E, F , or G.
The forbidden edge situations between D and H are slightly more complicated. We

show that no two non-adjacent vertices in D (thus, belonging to two distinct cliques
in D) can be both non-adjacent to the same vertex of H (and symmetrically). The
converse would yield a G6, as shown in Figure 6.17.
Moreover, no two adjacent vertices in D (thus, belonging both to the same clique)

can have different neighborhood in H (and symmetrically). Otherwise we get a G10 or
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Fig. 6.12. Bad edges between A and B, C, D.
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A non-edge {a, h}
a ∈ A, h ∈ H
creates a G7

Fig. 6.13. Bad edges between A and E, F , G, H.

a G7, as shown in Figure 6.17. So all vertices of one clique of D or H have the same
neighborhood in the rest. And for every clique in D or H, there is at most one clique
in H or D non-adjacent to it, respectively. This proves that the adjacencies between
D and H are as depicted in Figure 6.11.
Figures 6.18 and 6.19 represent the remaining bad cases for edges between E, F ,

G, and H. That finishes the case analysis of edges in G′.
It remains to prove that the graph

G∗ = S(G′, A � B � C � D)
is a disjoint union of cliques. That is true by the following argument. The groups A
and E are non-adjacent in G′, so in G∗ they are adjacent, and form a clique together.
A is non-adjacent to the rest of G∗, and so is E. The same holds for B and F , C and G.
Since every clique of D is non-adjacent to at most one clique of H, in G∗ we have the
contrary: every clique of D is adjacent to at most one clique of H, together with which
it forms a clique in G∗ (non-adjacent to the rest of G∗). So G∗ = S(G′, A � B � C � D)
is really a disjoint union of cliques, which is a K1,2-free graph. ¤

Proof. (of Theorem 6.5) The theorem follows immediately from Lemmas 6.6, 6.7, and
6.8. ¤
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Fig. 6.14. Bad edges between B and C, D, E. The cases for C are analogous.
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Fig. 6.15. Bad edges between B and F , G, H. The cases for C are analogous.
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Fig. 6.16. Bad edges between D and E, F , and G.
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Fig. 6.17. Bad edges between D and H.
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Fig. 6.18. Bad edges between E and F , G, H.
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Fig. 6.19. Bad edges between F , G, and H.
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7. Concluding remarks

In Chapter 4, we have introduced several known NP-complete problems related to
switching, mostly the problems S(P ) that are NP-complete. Then we have extended
them by proving that S(“containing a clique of size at least cn”) is NP-complete even
for a fixed c. In Section 4.6, we have shown the hardness of approximation of the
switching versions of maximum clique and chromatic number.
In Chapter 5, we have examined the complexity of S(“being H-free”) for several

fixed graphs H. Polynomial-time decision algorithms are known for this problem, if
H has at most three vertices or is isomorphic to a P4. In Section 5.2 we have shown
that if H is isomorphic to a claw, then the problem is polynomial as well. Thus all
known results for particular graphs H give polynomial-time algorithms, which yields
the following problem.

Problem 7.1. Is there a graph H such that the problem S(“being H-free”) is NP-
complete?

The proof of Theorem 5.3 in Section 5.2 uses a reduction to a linear equation
system over GF (2). A similar reduction works for H isomorphic to a K1,2; however,
for K1,2 there is already a more efficient algorithm due to Kratochv́ıl at al. [15] (see
Section 3.4). It might be interesting to find out if a similar approach – possibly using
a larger finite field instead of GF (2) – works for some other graphs as well; we have
not found any.
In Chapter 6, we deal with characterizations of various switching problems by for-

bidden induced subgraphs. We focus on those of S(“being H-free”) for several graphs
H. Clearly, a characterization by a finite list of forbidden induced subgraphs yields a
polynomial-time recognition algorithm. However, a polynomial-time recognition algo-
rithm may exist even if the minimal list is infinite; but no such graph H is known.
The lists of minimal forbidden induced subgraphs are known for K2 and I2 (see

Section 3.6), K1,2 andK1+K2 (see Section 6.5), and P4 (see Section 6.2). In Section 6.5,
we have given the list for H isomorphic to K1,2; it consists of ten graphs, each having
five vertices.
In case of the triangle K3 and the claw K1,3, the corresponding polynomial-time

recognition algorithms exist (see Section 3.5 and Section 5.2), but the lists of forbidden
induced subgraphs are not known. Moreover, it seems that there is not a reasonably
short list for either of them. According to the computational results, both lists soon
grow to large size, which we find interesting in view of the fact that the list for K1,2
has ten graphs only, and the graphs K3 and K1,2 differ just in one edge. Also, the
minimal forbidden induced subgraphs for K1,2 all have five vertices; but for K3 we have
found hundreds of minimal forbidden induced subgraphs on nine or more vertices, and
even one on fifteen vertices (shown in Figure 7.20). For K1,3 there are also hundreds
of minimal forbidden induced subgraphs on nine vertices; the maximum number of
vertices for which we have found one is twelve.
This indicates that if an upper bound M for the number of vertices of a minimal

forbidden induced subgraph was found, a naive search through all graphs on at mostM
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Fig. 7.20. One of hundreds of minimal forbidden induced subgraphs for H = K3.

vertices would be nearly impossible. However, the lists may still be finite; the following
problem remains open.

Problem 7.2. Is there a graph H such that the list of minimal forbidden induced
subgraphs for the property “being switching-equivalent to an H-free graph” is infinite?
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