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ABSTRACT vii

Title: Covering All Lines Intersecting a Convex Domain
Author: Marek Sterzik
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Supervisor: Doc. RNDr. Pavel Valtr Dr.
Supervisor’s e-mail address: valtr@kam.mff.cuni.cz

Abstract: For a given covnex body we try to find the shortest
possible set (optionally admitting some prescribed properties)
meeting all lines meeting the given body. The size of the covering
set is measured by the Hausdorff 1-dimensional measure λ1. In
the first chapter there is given an introduction to the problem. In
the second chapter we discuss the upper bound for the minimal
covering set. In the third chapter we discuss the existence and
properties of the minimal covering. In the fourth chapter we
show some lower bounds for the size of a covering. In the fifth
chapter we study some related topics and a generalization of the
problem.
Keywords: lines, convex domain, Hausdorff measure, Steiner
tree, opaque covering

Název práce: Pokrýváńı sečen konvexńı oblasti
Autor: Marek Sterzik
Katedra (ústav): katedra aplikované matematiky
Vedoućı bakalářské práce: Doc. RNDr. Pavel Valtr Dr.
e-mail vedoućıho: valtr@kam.mff.cuni.cz

Abstrakt: Pro danou konvexńı oblast v rovině se snaž́ıme nalézt
co možná nejkratš́ı množinu (nav́ıc volitelně splňuj́ıćı předepsané
vlastnosti), která prot́ıná všechny př́ımky, které prot́ınaj́ı danou
oblast. Velikost pokrývaćıch množin měř́ıme Hausdorffovou 1-
dimenzionálńı mı́rou λ1. V prvńı kapitole je podán úvod do
problému. Druhá kapitola se zabývá problémem horńıho odhadu
velikosti minimálńı pokrývaćı množiny. Třet́ı kapitola se zabývá
existenćı a vlastnostmi nejmenš́ıho pokryt́ı. Ve čtvrté kapitole je
rozeb́ırán problém dolńıho odhadu pro velikost pokryt́ı. V páté
kapitole jsou studovány daľśı souvislosti a zobecněńı problému.
Kĺıčová slova: sečna, konvexńı oblast, Hausdorffova mı́ra, Steiner̊uv
strom
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Chapter 1

Introduction

1.1 Motivation

A phone company needs to repair a buried cable, which was dam-
aged when doing earthwork on a given convex area. The cable is
about four feet under the ground and straight. But because of
missing documentation and the construction mess, nothing more
is known. Not even the place where the cable was damaged. The
task is to find the cable (any point of it) with minimal effort for
the diggers.

More formally, for a given convex domain D ⊆ R
2 we ask for

a set T ⊂ R
2, such that T meets all lines which meets D, and T

is minimal in some sence. It is possible to take only such sets T ,
which have a special form. For example only (finite) unions of
line segments can be allowed (when the diggers are able only to
dig straight trenches). In this case, the size of T , which we try to
minimize is the sum of lengths of the line segment. In all cases,
the size of T will be measured by the Hausdorff 1-dimensional
measure, which is an natural extension of measuring lengths of
arcs.

1.2 Overview of the problem

In [FMP84] Faber, Mycielski and Pedersen showed, that the min-
imal curve meeting all lines meeting a unit circle has lenght π+2.

1



2 CHAPTER 1. INTRODUCTION

The shortest curve is shown in figure 1.1.

Figure 1.1: The shortest curve, which meets all lines meeting a
circle

Later, in [FM86] Faber and Mycielski introduced the general
problem studied in this paper. They also showed, that there
exist a minimal covering of any compact set in the plane among
these with at most n connected components. For this theorem
(theorem 5) there is given the same proof as in [FM86], but it is
explained in more details. This theorem can be easy modified to
the statement, that for a compact set in the plane there exists
a minimal covering among all being unions of at most n line
segments. This is stated in theorem 6.

In [FM86] Faber and Mycielski also introduced the shortest
known opaque coverings for a triangle or for a square. And also
for other convex compact sets. They showed, that the minimal
connected opaque covering of a polygon is the Steiner tree of the
vertices of the polygon. They also showed that the minimal cov-
ering of a polygon may be disconnected. The following figure
shows the minimal connected covering and the minimal known
(not necessarily connected) covering of a square. But the ques-

a. b.

Figure 1.2: (a.) The minimal connected covering of a square.
(b.) The minimal known covering of a square.
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tion, if there exists a covering of a triangle, which is shorter than
the shortest connected covering is still open. The answer to this
question (as shown in the second section of chapter 3) will also
give some results for the structure of the minimal opaque covering
of an arbitrary polygon.

Techniques for the lower bound were introduced in [FMP84].
In this paper they are introduced in a different way, in terms of
a measure on all lines in the plane. But both concepts are equiv-
alent. More about measures on lines can be found in [San04].

In this paper are also introduced some new lower bounds,
which idea cames from the basic lower bound. The basic lower
bound cannot be used for general λ1-measurable coverings, 1 but
only for countable unions of arcs. It is possible to make the lower
bound more general, allowing all λ1-measurable coverings, but
then only a weaker bound can be proven. The basic lower bound
says, that every opaque covering of a convex body has lenght at
least half of the perimeter of the convex body. when allowing all
λ1-measurable coverings, the constant 1/2 has to be replaced by
1/π. If the constant 1/π is the best possible is not known.

When trying to make a stronger lower bound, one can try to
replace the canonical measure µ on all lines in the basic lower
bound by an another measure ν. We will show, that (except
some special cases) this generalization will never be better than
the basic bound.

Also a generalization for all λ1-measurable coverings can be
made with an arbitrary measure ν on the lines.

Chapter 5 introduces two new views on the problem. It seems
to be dificult to find the minimal covering in general. Therefore
in the first section we handle, what can be said when the number
of connected components is bounded. A theorem, which says
that in a minimal covering with unions of line segments with
two connected components the two components can be separated
by a line. This also cannot be generalized for more than two
components.

In the second section of chapter 5 the notion of opaque cover-
ing is generalized requiring, that every line meets the covering set,

1meaning all sets in the plane, which are measurable with the Hausdorff
1-dimensional measure
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not only once, but at least n times. We show, that the problem
is trivial for n even and is never trivial for n odd.

There are many results in this area and it is not easy to find
the authors of some of them. So, at least, we want so say, what
definitions or results are introduced in this paper. In chapter 3
the definition of the opaque hull O(T ) is introduced. In chapter
4 the generalizations of the basic lower bound (namely theorems
18, 21 and 24) are also introduced in this paper. All definitions
and results from chapter 5 are introduced in this paper as well.

1.3 Formal definitions

Let L denote the set of all lines in the plane. If D ⊆ R
2, then

the set of all lines intersecting D let be denoted by L(D).

Definition 1. A set D ⊆ R
2 is (opaque) covered by T ⊆ R

2 if
L(D) ⊆ L(T ). In other words, every line l, such that l ∩ D 6= ∅
has an non-empty intersection with T also.

We are asking for in some sense minimal T , such that D is
covered by T . The measured size of T will be in all cases the
Hausdorff 1-dimensional measure λ1 of T , which is defined as

λ1(T ) := lim
δ→0

(

inf

{

∞
∑

i=0

diam Bi T ⊆
∞
⋃

i=0

Bi, diamBi ≤ δ for all i

})

,

where all Bi are balls. This also means, that λ1(T ) we obtain
taking all coverings of T with a set of balls. Every set of balls
has the size of the sum of diameters of all balls. The size of T is
then obtained from the infimum over all coverings with all balls
smaller than δ taking δ → 0.

The measure λ1 is an extension of measuring lengths of arcs.
If T is an arc, then λ1(T ) is the length of T .

We do not allow every possible T ⊆ R
2, but only these, which

are from a given fixed set system S ⊆ P(R2). In all cases we
require T to be λ1-measurable. We may also require additional
restrictions. For example we may require that every possible T
has at most n connected components. An another important
examble is to take T as a countable, finite, or bounded union of
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line segments. It is also possible to combine this requirements.
For examble S can be the system of all unions of 18 line segments
with at most 3 connected components. Most important for us are
systems of unions (finite or infinite) of line segments.

In the whole paper we are trying to hold the notation, that
D is the set, which we want to cover, T is the covering set and
S is the system of allowed coverings.

Definition 2. Let S be a system of some λ1-measurable subsets
of the plane. For a given set D ⊆ R

2 we define the covering
number CS(D) as

CS(D) := inf
{

λ1(T ) T ∈ S and T covers D
}

We may also require, that T ⊆ D. If this holds, then T is an
inner covering of D. As in the definition above, we can define
the inner covering number

IS(D) := inf
{

λ1(T ) T ∈ S, T ⊆ D and T covers D
}

.
We are mainly interested in the case D being a ,,simple” set.

At least, D (or every connected component of D) should be con-
vex. The main point of interest will be only sets D being poly-
gons. However, other sets will be studied as well.

This definitions can be also generalized to higher dimensions.
But this is not a subject of this paper. The reader can find more
about this case in [Bra92].
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Chapter 2

The upper bound

In this chapter we will study the upper bound for CS(D) or
IS(D). We will show, that the perimeter of a convex body D
is an upper bound for a general convex set D. Then we show,
that if D is a convex polygon and S is the system of countable
unions of line segments forming a connected set, then IS(D) is
equal to the length of the Steiner tree of the vertices of D. We
also show, that the Steiner tree is only an upper bound for CS(D)
or when omiting the condition of connectedness in the definition
of S.

For a general polygon there is one upper bound. It is obvious
that the boundary of a polygon opaque covers it. More, we can
omit one edge of the boundary and the set remains an opaque
covering. This gives the result:

Observation 3. For S being the set of unions of line segments
and D ⊆ R

2 being convex it holds CS(D) < P (D) and also
IS(D) < P (D). 1

Some upper bound for a given fixed polygon D can be found
by finding an opaque covering of D.

If we require, that the covering sets should be connected (i.e.
S is the set of unions of line segments with just one connected
component), we can find the minimal inner covering. How to find
it says the next observation.

1P (D) denotes the perimeter of D

7



8 CHAPTER 2. THE UPPER BOUND

Observation 4. Let D be a convex polygon and let T be a con-
nected set such that all vertices of D are in T . Then T opaque
covers D.

Proof. For a contradiction let l be a line meeting D and not
meeting T . Let l+ and l− be the open half-planes given by l. Let
V be the set of all vertices of D. Since V ⊆ T , it is l ∩ V = ∅. It
is also l+ ∩ V 6= ∅ and l− ∩ V 6= ∅, since it would be l ∩ D = ∅
othervise. Since l does not meet T , it is T = (l+ ∩ T )∪ (l− ∩ T ).
But both, l+ ∩T and also l−∩T are (in T ) open non-empty sets.
So T is not connected, which is a contradiction.

This observation tells us, that instead of finding some opaque
covering of D we can search for some set connecting all vertices
of D.

For inner coverings holds, that every inner covering of D must
contain all vertices of D. Therefore the following holds: T is
an inner connected covering of D if and only if T ⊆ D and T
connects all vertices of D.

If we search for coverings being (at most) countable unions of
line segments, then finding an inner covering of D means exactly
finding the Steiner tree of the vertices of D. The Steiner tree
of a finite number of vertices is a set T being a finite union of
linesegments connecting this vertices and having minimal length.

The Steiner tree exists for all finite set of vertices and has
finite number of line segments. Therefore it is minimal in the set
of finite and also countable unions of line segments.

The problem of finding the Steiner tree is NP-hard. It is also
more known about Steiner trees. The reader can find more in
the book [HRW92]. The only thing important for us is, that the
Steiner tree exists for every finite set of vertices and finding the
Steiner tree is algorithmically solvable.

Figure 2.1 shows the Steiner tree for triangles and for the
square.

Note that the Steiner tree is only equal to the minimal inner
connected opaque covering. When we omit the requirement of
inner coverings, there are polygons (especially regular polygons
with at least 6 vertices) where there exist a connected opaque
covering, which is shorter than the Steiner tree of the vertices
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a. b. c.

Figure 2.1: The Steiner tree for (a.) a triangle with all angles
less than 2π/3, (b.) a triangle with one angle at least 2π/3, (c.)
a square.

of the polygon. This is because the result of Du, Hwang and
Chao (the reader can find it in [HRW92]). The result tells, that
for n ≥ 6 the Steiner tree of the vertices of the regular polygon
with n vertices is its boundary without one edge. But obviously,
there is one connected opaque covering, which is shorter than the
Steiner tree. It is shown on figure 2.2.

a. b.

Figure 2.2: (a.) The Steiner tree of the regular hexagon. (b.)
The shortest known connected opaque covering of the regular
hexagon.

Also when omiting the requirement being a connected cover-
ing, the Steiner tree becomes an upper bound only. There exist
coverings of convex polygons which are shorter than the size of
the Steiner tree of the vertices of the polygon. In all cases, the
minimal covering which does not have to be connected is not
known. A covering with lower size then the Steiner tree for the
square is shown on figure 2.3.
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Figure 2.3: The best known opaque covering for the square



Chapter 3

The minimal covering

In this chapter we will study the properties of a minimal covering.
In the first section we will study the existence of the minimal
covering and in the second section we will study some cases how
does a minimal covering look like (if it exists).

3.1 Existence of the minimal covering

In general, it is not clear, if there exists a minimal opaque cover-
ing of a given convex domain. It may depend on the choice of S.
In this section we will mention some theorems, which show the
existence for some choices of S.

Theorem 5 (Faber, Mycielski [FM86]). Let S be the system of
all λ1-measurable sets in the plane with at most n connected com-
ponents. Then for every compact set D ⊆ R

2 there exists a set
T ∈ S, such that λ1(T ) = CS(D).

Proof. Let γ := CS(D). By the presumption of the theorem there
exists a sequence {Ti}

∞
i=0 of sets from S, such that

lim
i→∞

λ1(Ti) = γ.

We have to find some set T ∈ S, such that T covers D and
λ1(T ) = γ. For each i ∈ N order the connected components of Ti

in some way (which is not important, but will be choosen later
just for comfort). Then the j-th component (in the given order)

11



12 CHAPTER 3. THE MINIMAL COVERING

of Ti let be denoted by Tij. Without lost of generality we may
assume, that Ti has exactly n connected components.

By choosing a suitable subsequence of {Ti}
∞
i=0, we can assume,

that for each 0 ≤ j < n dist(Tij, D) is bounded or

lim
i→∞

dist(Tij, D) = ∞.

By choosing a suitable order of the connected components, we can
find some m ≤ n, such that dist(Tij, D) is bounded for j < m
and is unbounded (has an infinite limit) for m ≤ j < n.

By another choosing an appropriate subsequence we can as-
sume, that for every j such that m ≤ j < n the angles of all
lines intersecting D and Tij converges to some angle αj. This
means, that for every ǫ > 0 there exists some i0, such that for
each i ≥ i0 the angle of any line intersecting D and Tij is in the
interval (αj − ǫ, αj + ǫ).

Finally we can assume by choosing an appropriate subse-
quence, that for j < m the sequence {Tij}

∞
i=0 converges to some

closed set T ∗
j . We assume the convergence in the Hausdorff dis-

tance of sets defined as

dH(X,Y ) := max{sup
x∈X

dist(x, Y ), sup
y∈Y

dist(X, y)}.

Then limi→∞ λ1(Tij) = λ1(T
∗
j ). Taking T := T ∗

0 ∪ T ∗
1 ∪ ... ∪

T ∗
m−1 we have λ1(T ) ≤ γ.

We claim, that T covers D. For a contradiction, let l be a
line, which intersects D, but does not intersect T . The angle of
l must be equal to some angle αj for m ≤ j < n (otherwise l
intersects infinitely many sets Tij for some j < m, but then l
must intersect T ∗

j too, since T ∗
j is the limit of Tij and closed).

Since T is compact (it is bounded and closed), the distance
between T and l is non-zero. Fix some x ∈ l ∩ D and take the
function f(α) := dist(T, lxα) where lxα is the line meeting x and
having angle α. Then f is continuous, since T is compact. But
that means if dist(T, l) is non-zero, then dist(T, lxα) is non-zero
for all α ∈ (αj − ǫ, αj + ǫ) for a suitable ǫ > 0, so there infinitely
many such angles α. This is a contradiction with the presumtion
having only finitely many such angles.
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Note, that generalizing the theorem to countably many con-
nected components cannot be done in an easy way. The point,
where this proof fails is at the end when supposing T to be com-
pact. T as a union of infinitely many closed sets does not have
necessarily be closed.

Since the λ1-size of T 1 is equal to the λ1-size of T , one could
take T as the covering set. T really covers D, but the number of
connected components of T can be uncountable.

An example of a set T with countably many connected compo-
nents such that T has uncountably many connected components
can be constructed as follows. For each i ∈ N let li be defined
inductively. Let l0 be the closed interval [0, 1]. Define li as

li = li−1 ∩

(3i−1)/2
⋃

j=0

[
2j

3i
,
2j + 1

3i
].

This corresponds to the sets converging to the Cantor’s set. That
means, that the intersection of all sets li is the Cantor’s set. Now
we can embed the sets li in the plane such that the y-coordinate
of li will be 1/(i + 1). The set is shown in figure 3.1.

Figure 3.1: The two-dimensional Cantor’s set

So T has countably many connected components. We can
write T = T ∪ C, where C is the standard Cantor’s set with the
y-coordinate 0. C is uncountable and totally disconnected. More-
over no point of C is in the same connected component as any
point of T . So T has uncountably many connected components.

Theorem 6. Let S be the system of all unions of at most n line
segments. Then for every compact set D ⊆ R

2 there exists a set
T ∈ S, tuch that λ1(T ) = CS(D).

Proof. We can proceed as in the proof of theorem 5, because
every line segment is a connected component. We only need to

1T denotes the topological closure of T
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show, that we can choose the subsequence in such way, that line
segments converge to line segments in the Hausdorff distance.
But this is obvious.

It is easy to see, that theorem 5 and also theorem 6 holds for
inner coverings as well.

3.2 Properties of minimal coverings

Once, the minimal covering exists, we can study how does it look
like.

Definition 7. For a given set T ⊆ R
2 we can define the opaque

hull of T , O(T ), as the maximal set D, which is opaque covered
by T :

O(T ) :=
⋃

{

D ⊆ R
2 L(D) ⊆ L(T )

}

Since the union of sets opaque covered by T is opaque covered
by T as well, the definition is correct.

Here are some simple properties of O(T ):

1. T ⊆ O(T )

2. O(O(T )) = O(T )

3. Every connected component of O(T ) is convex.

Properties 1 and 2 are obvious. To see, that property 3 holds,
we need to realize, that

O(T ) = R
2 \

⋃

l∈L\L(T )

l =
⋂

l∈L\L(T )

(R2 \ l).

But every connected component of O(T ) lies in exactly one of
two open half-planes forming R

2 \ l. But this is convex. So
every connected component is an intersection of convex sets and
therefore convex.

Observation 8. Let T ⊆ R
2 be a minimal opaque covering of

some D ⊆ R
2. Then every S ⊆ T is a minimal opaque covering

of O(S).
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Proof. For a contradiction let S ′ be a covering of O(S), such that
λ1(S

′) < λ1(S). Then taking T ′ := (T \ S) ∪ S ′ we have

λ1(T
′) < λ1(T ).

We claim, that T ′ also opaque covers D, which will be a contra-
diction.

Let l ∈ L be a line meeting D. Then l meets also T . If l
meets T \S, we are done. So let l meets S. But then l also meets
S ′, since S ′ opaque covers S. But S ′ ⊆ T ′. So l meets T ′ and D
is opaque covered by T ′.

In the remaining part of the section we will study only the
case when S is the system of unions of line segments and D is a
polygon.

Some properties of the minimal covering of any polygon de-
pends (using observation 8) on the properties of the minimal
covering of a triangle. Recall, that the minimal known opaque
covering of the triangle is shown in figure 2.1.

For the triangles and their minimal coverings the following
holds:

Theorem 9. 1. If the minimal covering of a triangle with all
angles less than 2π/3 is its Steiner tree, then the minimal
covering of any triangle with angles less or equal 2π/3 is
its Steiner tree.

2. If the minimal covering of a triangle with one angle greater
or equal 2π/3 is its Steiner tree, then the minimal covering
of any triangle with the same biggest angle is its Steiner
tree.

Proof. It follows imediately from observation 8 and the fact, that
the opaque covering is preserved by the similarity.

The following theorem gives the relationship between the min-
imal opaque covering of the triangle and any polygon:

Theorem 10. Let S be the system of countable unions of line
segments. Let D be a convex polygon and let T ∈ S be the mini-
mal opaque covering of D. Then the following holds:
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1. If in T there exist 3 line segments meeting at one point, 2

then the minimal covering of any triangle with all angles
less or equal 2π/3 is its Steiner tree.

2. If in T there exist 2 line segments meeting at one point,
3 then the minimal covering of any triangle with an an-
gle equal to the angle given by the two line segments is its
Steiner tree.

Proof. As in the preceding theorem, it follows imediately from
observation 8 and the fact, that the opaque covering is preserved
by the similarity.

2then they have to meet in such way, that the angles of adjacent line
segments is exactly 2π/3

3then they have to meet in such way, that the angle they contain must
be at least 2π/3



Chapter 4

The lower bound

This chapter will show some lower bounds for CS(D) or IS(D).
The first section gives a simple lower bound, which holds for S
being all λ1-measurable sets. A less general, but stronger lower
bound can be done using a measure (called µ) on the set of lines
L. Using this, we will show, that CS(D) ≥ P (D)/2 if S is the
system of countable unions of line segments. We also show that
CS(D) ≥ P (D)/π for general λ1-measurable sets. This is the
subject of the second section. The last, third, section shows, how
can be the lower bound from section 2 generalized replacing the
measure µ by an another (arbitrary) measure ν.

4.1 A simple lower bound

Definition 11. Let D be a convex set in the plane. Let α be a
direction; α ∈ [0, π). The diameter of D in direction α (denoted
by diamα(D)) is defined as

diamα(D) = sup
{

|(x − y)uα| x, y ∈ D
}

,

where uα is a unit vector of direction α.

In other words, diamα(D) is the size of the orthogonal pro-
jection of D to any line with direction α. If D is convex, then
the projection is an interval.

The equation

diam(D) = sup
α∈[0,π)

(diamα(D))

17
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holds for any convex set D.

Lemma 12. Let D be a convex set in the plane. then for each
α ∈ [0, π) there is CS(D) ≥ diamα(D) for any possible system S.

Proof. It is sufficient to show the lemma for the system S of
all λ1-measurable subsets of R

2. Let X ∈ S be a set covering
D. We show, that λ1(X) ≥ diamα(D). Let π be an orthogo-
nal projection from the plane to a line with direction α. Then
π(D) ⊆ π(X) and π(D) is an interval on the line. Let B be a
system of balls, which cover 1 X (from the definition of λ1(X)).
Then the union of π(B) = {π(B)|B ∈ B} contains π(X). Since
diam(B) = diam(π(B)) for each B ∈ B, so λ1(X) ≥ λ1(π(X)).
But λ1(π(X)) ≥ λ1(π(D)) = diamα(D).

4.2 A better lower bound

For a better lower bound we need some definitions. The set of
all lines L can be divided into sets Lα for α ∈ [0, π), where Lα is
the set of all lines having direction α. Thus

L =
⋃

α∈[0,π)

Lα.

For each α ∈ [0, π) we can define a measure µα on Lα
2 as

µα(L) = λ1((
⋃

L) ∩ lα+π/2),

where lα is some fixed line of direction α. That means, that lα+π/2

is some fixed line orthogonal to the direction α. In other words,
µα(L) is obtained as the λ1 measure of the projection of L to a
line orthogonal to α. Each line projects to exactly one point in
lα+π/2.

µα can be also viewed as a measure on L meaning that for
L ⊆ L it is

µα(L) = µα(L ∩ Lα)

1not in sence of opaque covering
2in fact on some subset of P(Lα) called the measurable sets on Lα, which

is not important for us since all ,,interesting” sets will be measurable
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Observation 13. µα is a measure on Lα.

Now we can construct a measure µ on L as

µ(L) =

π
∫

0

µα(L ∩ Lα) dα.

Then µ is a translation-invariant and rotation-invariant measure
on L. By a translation-invariant (rotation-invariant) measure µ
on L we mean that for L ⊆ L it holds

µ(L) = µ(τ(L)),

where τ is some translation (rotation) on R
2 (and also on L).

Lemma 14. Let s be a line segment. Then µ(L(s)) = 2λ1(s).

Proof. Let l := λ1(s). Since µ is rotation-invariant, it is sufficient
to take a line segment parallel to the x-axis. Then µα(L(s) ∩
Lα) = l sin α. Thus

µ(L(s)) =

π
∫

0

l sin α dα = 2l = 2λ1(s)

Lemma 15. Let D be a convex polygon. Then µ(L(D)) = P (D).

Proof. Let s0, s1, ..., sn−1 be the line segments forming the bound-
ary of D. Let l0, l1, ..., ln−1 be the lenghts of the line segments.

Then almost every line from L(D) 3 crosses exactly two dis-
tinct segments si, sj. Therefore in the sum

n−1
∑

i=0

µ(L(si))

almost every line from L(D) is calculated two times. Therefore

n−1
∑

i=0

µ(L(si)) = 2µ(L(D)).

3that means every line except a set of measure zero



20 CHAPTER 4. THE LOWER BOUND

But by lemma 14 we have

n−1
∑

i=0

µ(L(si)) =
n−1
∑

i=0

2li = 2P (D)

which gives the result.

Lemma 15 also holds for general bounded convex sets. The
proof can be found in [San04].

Theorem 16. Let S be the system of countable unions of line
segments and let D be a convex polygon. Then CS(D) ≥ 1

2
P (D).

Proof. Let T ∈ S be a set covering D. We show, that λ1(T ) ≥
1
2
P (D). Since T opaque covers D, it holds L(D) ⊆ L(T ). There-

fore, using lemma 15, it is µ(L(T )) ≥ P (D). Since T =
⋃∞

i=0 si,
where all si are line segments, it is L(T ) =

⋃∞
i=0 L(si). Therefore

using the basic properties of a measure (which can be found for
example in [LM05]) it holds

∞
∑

i=0

µ(L(si)) ≥ µ(L(T )) ≥ P (D).

By lemma 14 it is µ(L(si)) = 2λ1(si) and therefore

λ1(T ) =
∞
∑

i=0

λ1(si) =
1

2

∞
∑

i=0

µ(L(si)) ≥
1

2
P (D).

Note, that if D is not a line segment, then in the proof of
theorem 16 the equality will never hold. Therefore, λ1(S) >
1
2
P (D). The equality would be possible only in the case, that

almost all lines crosses exactly one line segment si. But if D is not
a line segment, there exist i 6= j such that µ(L(si) ∩ L(sj)) > 0.

It is also possible to make a lower bound when S is the system
of all λ1-measurable sets. The bound is given by the following
lemma:

Lemma 17. Let T ⊆ R
2 be a λ1-measurable set. Then µ(L(T )) ≤

πλ1(T ).
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Proof. Let B =
{

Bi i = 0, ..., n − 1
}

be a system of balls,
which covers T (as in the definition of λ1(T )). Then also

⋃

B
opaque covers T . Therefore it is

L(T ) ⊆
n−1
⋃

i=0

L(Bi).

Therefore

µ(L(T )) ≤
n−1
∑

i=0

µ(L(Bi)).

Since it is µ(L(Bi)) = π · diam(Bi), it holds

µ(L(T )) ≤ π
n−1
∑

i=0

diam(Bi).

Since λ1(T ) is at least the infimum over all coverings of balls, it
holds µ(L(T )) ≤ πλ1(T ).

The following theorem is an easy consequence:

Theorem 18. Let S be the system of all λ1-measurable sets in
the plane. Let D be a covex polygon. 4 Then CS(D) ≥ 1

π
P (D).

Proof. Let T be an opaque covering of D. Then it is µ(L(T )) ≥
µ(L(D)). By lemma 17 it is πλ1(T ) ≥ µ(L(D)). Therefore it is

λ1(T ) ≥
1

π
µ(L(D)) =

1

π
P (D).

The statement theorem immediately follows.

Note, that it is unclear, if in lemma 17 the constant π is the
best possible. For T being a (at most) countable union of line
segments, the constant can be replaced by 2. Also for many other
curves the lemma holds with constant 2. But if the lemma holds
with constant 2 for all λ1-measurable sets is not clear.

4As stated in the note below the proof of lemma 15, D can be also an
arbitrary convex bounded set.
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4.3 Generalizing the lower bound

A generalized lower bound for CS(D) can be done proceeding the
same way as in theorem 16, but using an another measure ν on L.
In the first approach we will target only on translation-invariant
bounded measures.

By a bounded measure on L we mean a measure ν, such that
ν(L(D)) < ∞ whenever D ⊆ R

2 is a bounded set.

Two properties of translation-invariant bounded measures are
given by the following two lemmas. The proof of both lemmas is
not hard, but quite technical.

Lemma 19. Let ν be a translation-invariant bounded measure
on L. Then ν(L({x})) = 0 for each x ∈ R

2.

Proof. First we prove, that there is no line l, such that ν({l}) > 0.
For a contradiction, let l be such a line. Any line parallel with l
have a non-zero measure, since ν is translation-invariant. There-
fore, if s is a line segment not parallel with l, it is ν(L(s)) = ∞,
since L(s) contains infinitely many lines parallel with l. There-
fore ν is not bounded, which is a contradiction.

Now, we can prove the lemma. For a contradiction, let ν(L({x})) >
0. for some x ∈ R

2. Then, since ν is translation-invariant, it is
ν(L({y})) = ν(L({x})) > 0 for each y ∈ R

2. Let l be a line
and let s be a line segment liyng on l. Since ν({l}) = 0, it is
ν(L({x}) \ {l}) = ν(L{x}) > 0. But it is

L(s) =

(

⋃

x∈s

(L({x}) \ {l})

)

∪ {l}.

So L(s) is a union of infinitely many disjoint sets with the same
non-zero measure and therefore ν(L(s)) = ∞. Therefore ν is
not bounded, which is a contradiction. Therefore the lemma
holds.

This lemma says, that a translation-invariant bounded mea-
sure has no singular points. By a singular point we mean some
x ∈ R

2 such that ν(L({x})) > 0.
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Lemma 20. Let ν be a translation-invariant bounded measure
on L. Let s, t be line segments of the same direction, such that
λ1(t) = 1. Then ν(L(s)) = λ1(s) · ν(L(t))

Proof. Let l := λ1(s). First, we prove the lemma for l rational.
Let l = p

q
. Let r be a line segment of the same direction as s and

t with length p. Then we can write

r =

q−1
⋃

i=0

si =

p−1
⋃

i=0

ti,

where each si is a copy of s and each ti is a copy of t. In both
cases, the copies are obtained by translation. For i 6= j there is
|si ∩ sj| ≤ 1 and |ti ∩ tj| ≤ 1.

By lemma 19, ν has no singular point and therefore

q−1
∑

i=0

ν(L(si)) = ν(L(r)) =

p−1
∑

i=0

ν(L(ti)). (4.1)

But ν is translation-invariant, which means, that for each
possible i it is

ν(L(si)) = ν(L(s)) and ν(L(ti)) = ν(L(t)).

Therefore, using (4.1) it is

q · ν(L(s)) = ν(L(r)) = p · ν(L(t)),

which gives the result.
Now, let l be irrational. There exist an increasing sequence

{li}
∞
i=0 of rationals, converging to l. For each i we can find a

line segment si of length li, such that si ⊆ s. Therefore it is
ν(L(si)) ≤ ν(L(s)).

Since li is rational, it is ν(L(si)) = li · ν(L(t)). That means,
that for each i ∈ N there is li · ν(L(t)) ≤ ν(L(s)) and therefore

l · ν(L(t)) ≤ ν(L(s)).

The opposite inequality can be done similary using a decreas-
ing sequence of rationals and line segments containing s.



24 CHAPTER 4. THE LOWER BOUND

This lemma says, that the measure of all lines meeting a given
line segment depends lineary on the length of the line segment.
The linear coeficient depends only on the direction of the line
segment.

Let sα be a unit line segment of direction α. Define a function
f : [0, π] → R by the formula

f(α) := ν(L(sα)).

Since ν is bounded and has no singular point, f is bounded and
continuous. Therefore (and since dom(f) is compact) f has a
maximal and minimal value. Therefore we can define

Mν := max
{

ν(L(sα)) α ∈ [0, π]
}

mν := min
{

ν(L(sα)) α ∈ [0, π]
}

.

Theorem 21. Let S be the system of countable unions of line
segments. Let ν be a translation-invariant bounded measure on
L. Let D be a convex polygon and let s0, ..., sn−1 be line segments
forming the boundary of D. Then

CS(D) ≥
1

2Mν

n−1
∑

i=0

ν(L(si))

Proof. Let T =
⋃m−1

i=0 ti be a covering of D. Then L(D) ⊆ L(T ).
It is

ν(L(D)) =
1

2

n−1
∑

i=0

ν(L(si)),

and

ν(L(T )) ≤
m−1
∑

i=0

ν(L(ti)) ≤ Mν

m−1
∑

i=0

λ1(ti) = Mν · λ1(T ).

Therefore it is

Mν · λ1(T ) ≥
1

2

n−1
∑

i=0

ν(L(si)),

which gives the result.
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Corollary 22. Let S, ν and D be the same asi in theorem 21.
Then

CS(D) ≥
mν

2Mν

P (D).

Proof. It follows imediately from the fact that ν(L(si)) ≥ mνλ1(si).

Note, that theorem 16 and also lemma 12 (at least a special
case where not all systems S are allowed) are consequences of
theorem 21. Theorem 16 we get by choosing ν := µ and lemma
12 we get by choosing ν := µα.

Corollary 22 is not useful every time. This is since for ν := µα

it is mν = 0 and therefore it says only that CS(D) ≥ 0, which is
not a very interesting result.

Choosing ν := µ in theorem 16 is the best possible choice.
This is since

n−1
∑

i=0

ν(L(si)) ≤ Mν ·
n−1
∑

i=0

λ1(si),

but for ν = µ there holds an equality.
This does not mean, that all translation-invariant bounded

measures except µ are completely useless. In some cases it is
not possible to use the measure µ. For example when we are
trying to bound the total length of line segments contained in
some D0 ⊆ D (for the inner covering). Then we need, that the
measure of all lines meeting D0 and also D\D0 is zero since such
lines can be covered by some line segment in D\D0. In this cases
choosing µα for an appropriate α would be a good choice many
times.

This lower bound can be used in some cases, but it has some
essential limitations. For example, the covering set must be com-
posed from line segments and the measure has to be translation-
invariant. The translation-invariancy of the measure can be lim-
iting. The following lower bound will be based on more general
measures and will be usable for general λ1-measurable coverings,
but will be not as strong as the first one.

For an arbitrary measure ν on L we can define a parameter
Kν as

Kν := lim
δ→0

sup
B∈Bδ

ν(L(B))

diam(B)
,
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where Bδ is the set of all balls of diameter at most δ. We will be
interested only in measures, where Kν is finite. Such measures
obviously does not have singular points.

Note, that for the measure µ it holds Kµ = π.
Since for δ1 < δ2 it is Bδ1 ⊆ Bδ2 , Kν is the limit of an decreas-

ing sequence and therefore it exist every time.
The following lemma is the main part of the bound:

Lemma 23. Let T be a λ1-measurable set and let ν be a measure
on L such that Kν < ∞. Then ν(L(T )) ≤ Kνλ1(T ).

Proof. If λ1(T ) is infinite, then the lemma is trivial. So let λ1(T )
be finite.

We show, that for each ǫ > 0 it holds

ν(L(T )) ≤ (Kν + ǫ)λ1(T ).

So let ǫ be fixed. From the definition of Kν there exist δ such
that

sup
B∈Bδ

ν(L(B))

diam(B)
· λ1(T ) ≤ Kνλ1(T ) + ǫ.

Therefore it is sufficient to show, that for every δ > 0 and
every κ > 0 it holds

ν(L(T )) ≤ sup
B∈Bδ

ν(L(B))

diam(B)
· (λ1(T ) + κ).

This gives the result, since if the inequality holds for each
κ > 0, it holds also for κ = 0.

Let B =
{

Bi i = 0, ..., n − 1
}

be a system of balls, such
that B ⊆ Bδ and B covers T . We can choose B in such way, that

n−1
∑

i=0

diam(Bi) ≤ λ1(T ) + κ.

The theorem also reduces to show, that the following holds:

ν(L(T )) ≤ sup
B∈Bδ

ν(L(B))

diam(B)
·

n−1
∑

i=0

diam(Bi).
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Since Bi ∈ Bδ, it holds

sup
B∈Bδ

ν(L(B))

diam(B)
· diam(Bi) ≥

ν(L(Bi))

diam(Bi)
· diam(Bi) = ν(L(Bi)).

Therefore it is

sup
B∈Bδ

ν(L(B))

diam(B)
·

n−1
∑

i=0

diam(Bi) ≥
n−1
∑

i=0

ν(L(Bi)) ≥

≥ ν
(

L
(

⋃

B
))

≥ ν(L(T )).

From this lemma imediately follows the lower bound stated
in the next theorem.

Theorem 24. Let S be the system of all λ1-measurable sets and
let ν be a measure on L, such that Kν < ∞. Let D ⊆ R

2. Then
CS(D) ≥ ν(L(D))

Kν
.

Proof. If T is an opaque covering of D, then it is ν(L(T )) ≥
ν(L(D)). By lemma 23 it is ν(L(T )) ≤ Kνλ1(T ). The statement
of the theorem imediately follows.

This theorem can be easy made stronger for inner coverings.
For a measure ν on L and for a set D ⊆ R

2 we can define

KD
ν := lim

δ→0
sup

B∈BD

δ

ν(L(B))

diam(B)
,

where BD
δ is the set of all balls with diameter at most δ and

intersecting the set D.
Then the following theorem holds:

Theorem 25. Let S be the system of all λ1-measurable sets. Let
D ⊆ R

2. Let ν be a measure on L, such that KD
ν < ∞. Then

IS(D) ≥ ν(L(D))
KD

ν

.

The proof of this theorem can be easy done as a modification
of the proof of theorem 24. It is kept to the reader as an easy
exercise.
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Chapter 5

Some related topics

In this chapter we will introduce two related problems. In the first
section we will show the problem, how does look like the minimal
covering when only bounded number of connected components is
allowed for the opaque covering. We will show, that when there
are exactly two connected components in a minimal covering of a
set, then the components are separated by a line. In the second
section we will introduce a generalization of the opaque-covering
problem, where we require, that a line is not covered only by
one point (which is the ordinary case), but at least by n points,
where n is a given natural number. We will show, that the case
if n is even is quite simple to solve while the case when n is odd
is difficult and still open.

5.1 Covering with bounded number of

connected components

The question of finding a minimal opaque covering of a given
convex polygon seems to be difficult. But requiring connectivity
of the covering will simplify the problem, as shown in chapter
2. At least for inner coverings. One can therefore ask, what
will happen if we allow more, but a bounded nuber, of connected
components.

We will not answer the question, what is the minimal covering
of a convex body, but we will show a property of the minimal

29
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covering in the case of two connected components. The property
is given by the following theorem.

Theorem 26. Let S be the system of finite unions of line seg-
ments. Let T ∈ S be a minimal opaque covering of some bounded
set D ⊆ R

2. Let T have exactly two connected components T0

and T1 where none of them is a point. Then there exist a line
l ∈ L, such that T0 ⊆ l̄+ and T1 ⊆ l̄−, where l̄+ and l̄− denote
the closed half-planes given by l.

Proof. Let H0 be the convex hull of T0 and let H1 be the convex
hull of T1. Then both, H0 and also H1 are polygons. We show,
that the interiors of H0 and H1 does not intersect. Then there
exist a line l, which separates int(H0) and int(H1), since both sets
are convex and bounded. But such a line satisfy the requirements
from the statement of the theorem.

It remains to show, that int(H0) and int(H1) are disjoint. For
a contradiction, let x ∈ int(H0) ∩ int(H1). If H0 = H1, then we
are done, since T0 opaque covers D as well, but is shorter than
T0 ∪ T1.

If H0 6= H1, fix a direction and go from x in this direction
until you reach an edge of one of the polygons H0 and H1. It
is also possible to choose the direction in such a way, that we
reach only one edge (without lost of generality the edge of H0).
Otherwise it has to be H0 = H1. We found an edge e of H0,
which intersect the interior of H1.

Now, there are two possible cases: One endpoint of e lies in
the interior of H1 or H1 \ e has two components.

If one endpoint of e (which is a vertex of H0) lies in the interior
of H1, there exist a line segment s of T0 meeting this endpoint.
Removing a part of s, which is short enough we does not change
the opaque hull of T and therefore T still opaque covers D. But
T will become shorter by this operation. Therefore T was not
minimal and we are done.

If H1 \ e has two components, then in each of this component
lies a vertex of H1. Let this two vertices of H1 be denoted by
v0 and v1. The two endpoints of e let be denoted by w0 and
w1. It holds: {v0, v1} ⊆ T1, {w0, w1} ⊆ T0. Since T0 and T1 are
connected, there exist a path P0 connecting w0 and w1 and there
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exist a path P1 connecting v0 and v1. The paths cannot intersect,
since otherwise T consists of only one connected component. The
situation is shown on the following figure.

w0

w1

v0

v1

H0

H1

P0P1

But P1 has to intersect the edge e. Therefore v1 lies in the
interior of the polygon given by the path P0 and the edge e. But
this polygon is all contained in H0. Therefore v1 is a vertex of
H1, which lies in the interior of H0 and we can proceed as in the
first case.

It also seems to be, that this theorem holds as well for S
being the system of all λ1-measurable sets, but the proof of such
a theorem would be much more complicated in technical details.

Note, that generalizing this theorem for more than two con-
nected components in an easy way is not possible. An example
is given in figure 5.1. When a line separates two connected com-
ponents in the ,,flower”, there is one other component of the set,
which does not lie in any closed half-plane given by the line. If
this situation can happen for minimal coverings is unclear.

Figure 5.1: the flower
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5.2 Covering every line more than once

The definiton of opaque covering can be generalized in that way,
that we require, that every line is covered n times instead of
covering it only once. An exact definition of this can be:

Definition 27. A set D ⊆ R
2 is opaque n-covered by T ⊆ R

2

(for n ∈ N) if for every l ∈ L(D) it is |l ∩ T | ≥ n.

It seems to be useful to allow T to be a multiset. That means
that every point can be in T more than one time and |l ∩ T |
should be understood as the sum of all occuurrences of all points
of l in T .

If we deal with multisets, we need to modify the definition of
the λ1 measure accordingly. In the definition of λ1(T ) we took
a limit of sizes of some coverings of T with balls. We only need
to modify the definition of a covering with balls. A multiset
T is covered with a system of balls B if for every t ∈ T it is
|
{

B ∈ B t ∈ B
}

| ≥ n if n is the occurence of t in T . B may
be represented as a multiset as well, but this is not necessary. 1

The covering number and the inner covering number can be
then generalized as follows:

Definition 28. Let S be a system of multisets in the plane and
let D ⊆ R

2. The n-th covering number of D, Cn
S (D) is defined

as

Cn
S(D) := inf

{

λ1(T ) T ∈ S and T n−covers D
}

The n-th inner covering number of D, In
S (D) is defined as

In
S (D) := inf

{

λ1(T ) T ∈ S and T ⊆ D and T n−covers D
}

It is obvious that C1
S(D) = CS(D) and I1

S(D) = IS(D).
Theorems from chapter 4 can be generalized to n-coverings.

Mainly theorem 16:

Theorem 29. Let S be the system of countable unions of line
segments and let D be a convex polygon. Then Cn

S(D) ≥ n
2
P (D).

1the results will be same
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Proof. By lemma 15 it is µ(L(D)) = P (D). We need to show,
that for each multiset T ∈ S which n-covers D we have

µ(Ln(T )) ≤
2

n
λ1(T ). (5.1)

By Ln(T ) we mean the set of all lines l ∈ L such that |l∩T | ≥ n.
That means the set of all by T n-covered lines.

The statement of the theorem imediately follows, since L(D) ⊆
Ln(T ). So the remaining part is to prove (5.1).

Let T be the multiset of line segments forming T . Thus,
⋃

T = T .
We can divide L to

L =
∞
⋃

i=0

Li ∪ L∞,

where Li is the set of lines intersecting T exactly n times. L∞ is
the set of all lines intersecting T infinitely many times. It is easy
to see, that all sets Li (and also L∞) are measurable.

First we prove, that µ(L∞) = 0. This holds by the follow-
ing argument: Every line in L∞ has with T an intersection of
uncountable size or countable size. If l ∈ L∞ has with T an
intersection of uncountable size, then there exist a line segment
s ∈ T , such that s ⊆ l. So there are only countably many such
lines and therefore such lines have measure zero. If l ∈ L∞ has
with T an intersection with countable size, then l has to intersect
infinitely many line segments from T . In other words, if we order
T arbitrarily, T = {s0, s1, ...}, then

l ∈
∞
⋃

i=N

L(si)

for N arbitrarily large. But it holds:

µ

(

∞
⋃

i=N

L(si)

)

≤
∞
∑

i=N

µ(L(si)) =
∞
∑

i=N

2λ1(si)

But

lim
N→∞

∞
∑

i=N

2λ1(si) = 0
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since λ1(T ) < ∞. Therefore the set of all lines having with T a
countable intersecition has measure zero as well. Therefore also
L∞ has measure zero, since it is a union of two sets of measure
zero.

Now, we can write

µ(Ln(T )) = µ

(

∞
⋃

i=n

Li

)

=
∞
∑

i=n

µ(Li) =
1

n

∞
∑

i=n

nµ(Li) ≤

≤
1

n

∞
∑

i=0

iµ(Li) =
1

n

∑

s∈T

µ(L(s)) =
2

n

∑

s∈T

λ1(s) =
2

n
λ1(T ).

For n even an observation can be made:

Observation 30. Let S be the system of countable unions of line
segments and let D be a convex polygon. Let n be even. Then
Cn

S(D) = n
2
P (D).

Proof. Since theorem 29 holds, it is sufficient to show the upper
bound. But this follows imediately from the fact, that taking
n/2 times the boundary of D n-covers D. In fact we need to take
every line segment forming the boundary n/2 times. Then the
vertices of D are n-covered as well.

Note, that observation 30 holds for S being the system of
finite unions of line segments as well.

For n odd the situation becomes more complicated. We can-
not take only one half of a point. 2 One upper bound can be
done as taking (n− 1)/2 times the boundary of D and one more
ordinary opaque covering. As shown in chapter 4, the size of this
opaque n-covering is never equal to the bound given before. Also
the size of any opaque n-covering is never equal to the bound
given before. This is the subject of the following theorem:

Theorem 31. Let S be the system of finite unions of line seg-
ments and let D be a convex polygon which is not a line segment.

2Taking one half of point could be possible in some weighted version of
the problem. But then the the problem becomes trivial.
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Let n be odd. Then there is no multiset T ∈ S, which opaque
n-covers D such that

λ1(T ) =
n

2
P (D).

Proof. Let T be an n-covering of D. In theorem 29 we showed
that λ1(T ) ≥ n

2
P (D). But the equalitiy is possible only when in

(5.1) there holds the equality. But this is possible only in the case
when in the inequality in the last part of the proof of theorem 29
there holds an equality. The remaining part is also to show, that
with the conditions of this theorem it holds

∞
∑

i=n

nµ(Li) <

∞
∑

i=0

iµ(Li)

But this inequality holds if and only if there exist some i 6= n,
such that µ(Li) 6= 0. Recall, that Li is the set of all lines meeting
T exactly i times. It remains to show, that there is some i 6= n
and a set L of nonzero measure meeting exactly i line segments
forming T .

Let C denotes the convex hull of T . Then C is a polygon
containing D and therefore not a line segment. Moreover, every
vertex of C is adjacent to some line segment forming T .

If there is some vertex v of C, which is adjacent with more
or less line segments of T than n, then we are done, since we can
take L as the set of lines meeting some ǫ-neighbourhood of v but
not meeting the rest of C. This is obviously a set of lines with
nonzero measure.

So let all vertices of C be adjacent with exactly n line seg-
ments. Fix two adjacent vertices v0, v1. Let s0, s1, s2 be the line
segments of the boundary of C adjacent with v0 and v1 as shown
in the following figure:

v0 v1

s0

s1

s2

Wihtout lost of generality we can choose v0 and v1 in such
way, that there are less than n/2 line segments of T adjacent
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with v0 and going along the edge s1. Therefore we can choose
a line segment t adjacent with v0 and going along the edge s0

such that all lines meeting t and an ǫ-neighbourhood of v1
3 meet

more than n/2 line segments of T adjacent with v0.
Now, there are two possibilities. If there are more than n/2

line segments adjacent with v1 and going along the edge s1, choose
t′ as the shortest such line segment. Otherwise choose t′ as the
a (short enough) line segment adjacent with v1 and going along
the edge s2. In both cases all lines meeting t and also t′ intersect
more than n/2 line segments of T adjacent with v0 and also more
than n/2 line segments of T adjacent with v1.

That means, that all lines meeting t and t′ intersect at least
(but without lost of generality exactly) n + 1 line segments of T ,
since n is odd. But the set of these lines has a non-zero measure.
Therefore taking L as the set of lines meeting t and t′ gives the
result.

3in fact meeting only the intersection of the ǫ-neighbourhood and C
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