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Abstrakt

Název práce: Generováńı náhodného výběru s předepsanými vlastnostmi s aplikacemi v bankovnictv́ı
Autor: Alexander Voronin
Katedra: Katedra pravděpodobnosti a matematické statistiky
Vedoućı rigorózńı práce: RNDr. Petr Franěk, Ph.D., Česká Spořitelna, a.s.
e-mail vedoućıho: PFranek@csas.cz

Abstrakt: Tato práce se zabývá hledáńım algoritmu pro generováńı náhodných veličin s
předem danými vlastnostmi. Jsou provedeny analýzy srovnáńı algoritmů a na jej́ıch základě
byl vybrán pro nás optimálńı algoritmus. A protože se zaměř́ıme na generováńı náhodných
veličin default̊u a vysvětluj́ıćıch proměnných default̊u, tak je d̊uraz při hledáńı algoritmu
kladen na zachováńı závislost́ı těchto veličin. Dále hledáme optimálńı velikost generovaného
vzorku při zachováńı vlastnosti generované veličiny. Na konci této práci aplikujeme zkoumané
techniky na reálná data z banky.
Kĺıčová slova: copula, generováńı, struktura závislosti, defaulty

Abstract

Title: Generating of Random Samples with Given Properties and Application to Banking
Author: Alexander Voronin
Department: Department of Probability and Mathematical Statistics
Supervisor: RNDr. Petr Franěk, Ph.D., Česká Spořitelna, Inc.
Supervisor’s e-mail address: PFranek@csas.cz

Abstract: The work concerns the searching for the algorithm for generating of the random
variables with the given properties. There are made analyses of comparisons of the algo-
rithms, and the optimal algorithm was chosen based on it. Since we focus on generating of
random variables of defaults and explanatory variables of defaults, it concentrates mainly on
the conservation of the dependence of these variables. Further we are looking for the optimal
sample size of the generated samples under conservation of the required properties. And in
the last Chapter we have applied the surveyed techniques to the real data.
Keywords: copulas, generating, dependence structure, defaults
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Notation

X a random vector (in general, of a dimension n)
modeling explanatory variable

X the arithmetic mean of X

E[X] the mean value of random variable X

I a closed interval [0, 1]

X ∼ L(µ, σ2) the random variable X has the distribution L(µ, σ2)
with a mean value µ and the variance σ2

F [−1] a quasi-inverse of the function F

U(0, 1) the standard uniform distribution

En(µ, Σ, g) n-variate elliptical distribution with a mean µ,
the correlation matrix Σ and the characteristic generator g(.)

≡d an equality in distribution

(X)t the transposed vector or matrix

RD the real data

GD the generated data

d.f. degrees of freedom
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Chapter 1

Introduction

There are many methods to describe economics. Some processes can be described exactly:
time spent in a front line, chances of winning a lottery, etc. But we need to describe other
processes, like granting a credit or development of prices of securities. In real world most of the
processes couldn’t be described exactly. Using different theories, experience and knowledge
we bring in several models. Then there is a decision to make: which of the models should be
used and why. For example, simulation is used to make decisions like that.

Every model has input and output data. When we fix input data - our purpose is to reach
output data of a chosen model that is close to real value of the observed process. We also
need to minimize the amount of input data needed to calibrate the model at the same time.
For instance one of the main problems of creating reliable rating models is amount of input
data. See more [7].

The final model should be very well checked and tested. First of all observed model should
correspond with data from previous period, if nothing noticeable has happened that could
influence a model during the observation time. If we don’t have enough available data samples
we cannot say anything about the model. On the contrary if real data is developing differently
than the model has predicted, we have to find reasons that led to it and adjust that model
according to it.

One of the mostly used means of verifications is simulation. Both input and output data
can be simulated. This type of simulation is often used in different sectors.

In year 2004 a group of scientists used simulation to find out the origin of 35 meters high
waves. There are many other reasons why simulation is used more and more often in all
different directions of modern science.

We will estimate and improve parameters of a model using simulation. Simulation may
also help us to answer question in the credit field: how much data is enough to create a
reliable rating instrument?

There are different types of simulation but we are going to work with simulation of a
random vector with specified properties. But we can’t take simulation data from the tops of
our heads. It has to correspond with reality. It means that it should have similar properties
as described data in reality. As it was mentioned before we can’t include all the properties,
so we have to choose the most substantial ones.

In statistics every random value has following properties: specified mean value, given
variance and specified correlations with other random values. A generalization of the first
two values can be a marginal distribution.

Main purpose of this thesis is solving the following general problem:
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generating n-variate random vectors (X1, . . . , Xn),
where Xi ∼ Li has required marginal distribution function with cor(Xi, Xj) = σi,j given

correlation coefficient for i, j ∈ {1, . . . , n}.
Then we can add to our basic goal some other conditions, e.g. pre-described default rate

dependence on different factors Xi.
After generating random vectors it may be applied to finding an optimal sample size.
There are a lot of different ways of solving this problem. We will use a tool called a copula.

It is a statistical tool that has been popular for about 20 last years. It has very wide range
of properties that allow generating n-variate vectors with a fixed correlation structure very
fast and easy. If there are some specific marginal distributions, the certain kind of copu-
las (Archimedean copulas) may generate even more accurate vectors and sample correlation
matrix.

So, we see on different algorithms using copulas, we will discuss which kinds are better or
worse for our purposes and how the parameters of copulas might change the generated vectors
and why. After analyzing we choose the optimal copula.

Then we estimate from the data we have from one of the Czech banks the empirical
distribution functions and the dependence structure. Then we will generate vectors with
given empirical distributions and dependence structure (not just correlation matrix) with the
optimal copula and check whether they satisfy these conditions.
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Chapter 2

Copula

In this chapter we define the copula and state its basic definitions and properties. The main
book about copulas is [10]. The further information is also in [15] and [12].

In the first sections we establish a definition of the copula and show the two most important
theorems. An explanation of reasons why copulas are so widely used in generating is developed
in the second section. After that we get acquainted with different families of copulas and
discuss advantages and disadvantages of these families. The discussion about families of
copulas can be found in [11], and [4] concerns about elliptical copulas.

2.1 Definitions and Properties

We begin with the definition and some basic properties which can help us to understand the
ideas of copula as a useful tool we will work with.

Theorem 2.1.1 Let H be an univariate distribution function. Then the quasi-inverse H [−1]

of H is defined as
H [−1](x) = inf{a|H(a) ≥ x}.

If H is continuous and strictly increasing, then H [−1] = H−1, where H−1 is an inverse of H.

Lemma 2.1.1 Let H be an univariate distribution function. Then

• If U ∼ U(0, 1), then H [−1](U) ∼ H,

• If G ∼ H [−1], then H(G) ∼ U(0, 1).

Proof See [9].

Suppose we have n-dimensional random vector X = (X1, . . . , Xn) with the joint distribu-
tion function F and with continuous marginal distributions. Denote the marginal distributions
as F1, . . . , Fn. If Xi has a distribution function Fi, then Fi(Xi) has a standard uniform distri-
bution (see Lemma 2.1.1). Then the joint distribution function of a random vector X could
be written as

F (x1, . . . , xn) = P(F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn)) =

= C(F (x1), . . . , F (xn),
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where C is the joint distribution function with standard uniform marginals. The function C
is called the copula of the random vector X. This explains the origin of the name copula: the
function C couples together the marginals to the joint distribution function.

After introducing the idea behind it we illustrate the formal definition of copula.

Definition 2.1.1 An n-dimensional copula is a distribution function of random vector Xn

with uniform marginals.

If n = 2 we say C is a copula, and when n > 2 it is called an n-copula.
Another definition of a copula is:

Definition 2.1.2 An n-dimensional copula is a function C : Rn → [0, 1] with following prop-
erties:

• C(0, . . . , 0, ui, 0, . . . , 0) = 0, for every ui ∈ [0, 1], i ∈ {1, . . . , n},

• C(1, . . . , 1, ui, 1, . . . , 1) = ui, for every ui ∈ [0, 1], i ∈ {1, . . . , n},

• for every (u1, . . . , un), (v1, . . . , vn) ∈ [0, 1]n such that ui ≤ vi for every i ∈ {1, . . . , n}

VC =
2

∑

i1=1

. . .
2

∑

in=1

(−1)i1+...+inC(a1i1 , . . . , anin) ≥ 0, (2.1)

where aj1 = uj and aj2 = bj for every j ∈ {1, . . . , n}.

The equivalent expression of the sum (2.1) is a condition P(a1 ≤ X1 ≤ b1, . . . , an ≤ Fn ≤
bn) ≥ 0.

An n-copula C induces a probability measure on [0, 1]n via Vc([0, 1]× [0, 1]× . . .× [0, 1]) =
C(u1, . . . , un). The function Vc is called the C-volume of the rectangle [a1, b1]× [a2, b2]× . . .×
[an, bn].

A function that satisfies the first property is called grounded.
The third property - the sum (2.1) - describes the analog of a non-decreasing one-dimensional
function. A function with this property is thus called n-increasing. For example, the function
max(u, v) is not 2-increasing function: it is enough to substitute u1 = u2 = 0 and v1 = v2 = 1
for Vc. On the other hand, the function min(u, v) is 2-increasing.

As can be easily seen, a copula in fact is a multivariate distribution function with univariate
marginals restricted to the n-cube.

The following theorem, due to A. Sklar, is basic in the theory of copulas and is the
foundation of the most applications to the theory of probability and statistics. Sklar’s theorem
shows the role copula plays in the relationship between multivariate distribution functions
and their univariate marginals. It states that C is a distribution function and even defines its
unique property.

Theorem 2.1.2 (Sklar’s Theorem) Let H is an n-dimensional distribution function with
marginals F1, . . . , Fn. Then there exists an n-copula C such that for all X ∈ R

n
, where

R = R ∪ {±∞}
H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (2.2)

5



If F1, . . . , Fn are all continuous, then C is unique otherwise, C is uniquely determined on
RanF1 × . . . × RanFn, where RanFi is a range of the Fi. Conversely, if C is an n-copula
and F1, . . . , Fn are distribution functions, then the function H defined by (2.2) is a joint
distribution function with marginals F1, . . . , Fn.

Proof The proof of Sklar’s Theorem is quite easy, but long. For example, it can be found
in [10].

If marginals are continuous, then C is called a unique copula, but if they are not, we say
that C is a possible copula of distribution function F .

Now using the quasi-inverses of distribution functions we can rephrase the Sklar’s Theorem
as follows.

Corollary 2.1.1 Let H be a distribution function with marginals F1, . . . , Fn and F
[−1]
1 , . . . , F

[−1]
n

be quasi-inverses of F1, . . . , Fn, respectively. Then there exists an n-copula C such that for
any u ∈ [0, 1]n

C(u1, . . . , un) = H(F
[−1]
1 (u1), . . . , F

[−1]
n (un)) (2.3)

When all marginals are continuous, then above corollary gives us a method of constructing
copulas from joint distribution function.

The copula from the (2.3) is called the copula of F1, . . . , Fn and denoted as C or CF1,...,Fn

when we need to explicitly emphasize the marginals of copula.
Now we will illustrate this corollary on an example published by [5].

Example 2.1.1 (Gumbel’s bivariate exponential distribution )
Let H be the joint distribution function given by

Hθ(x, y) =

{

1 − e−x − e−y + e−(x+y+θxy), x ≥ 0, y ≥ 0 ;
0, otherwise;

where θ ∈ I is a parameter. Then the marginal distribution functions are

F (x) = 1 − e−x G(y) = 1 − e−y

and the quasi-inverses functions are

F−1(u) = −ln(1 − u) G−1(v) = −ln(1 − v)

for all (u, v) ∈ I. A copula according to the corollary 2.1.1 is following:

Cθ(u, v) = Hθ(F
−1(u), G−1(v))

= u + v − 1 + (1 − u)(1 − v)e−θln(1−u)ln(1−v).

We end this section with some examples of copulas that will be interesting for us. Some
of them will be parametrical copulas. We also refer to them as families of copulas. The next
chapter will provide more detailed description.
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Example 2.1.2 (Gaussian copula) The Gaussian or normal copula is expressed by

CGa
θ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1 − θ2)
exp

{−(u2 − 2θuv + v2)

2(1 − θ2)

}

du dv, (2.4)

where θ ∈ (−1, 1) and Φ is the univariate standard normal distribution function. The Gaus-
sian copula has a standard normal marginal distribution functions with a correlation coefficient
θ. The normal copula can be constructed in any dimensions because of property of multivariate
normal distribution and expression (2.4).

This section is finished with the theorem about partial derivation of copula.

Theorem 2.1.3 Let C be an n-copula. Then for any i ∈ {1, . . . , n} and any
(u1, . . . , ui−1, ui+1, . . . , un) ∈ I the partial derivation ∂C/∂ui exists for almost all ui, and for
such u,

0 ≤ ∂

∂ui
C(u) ≤ 1. (2.5)

Furthermore, the functions uj → ∂C(u)/∂ui, j 6= i are defined and nondecreasing almost
everywhere on I.

The word ”almost” is referred to the Lebesgue measure. This result will be needed in
section 3.1.

2.2 Dependence

We have mentioned basic properties of copulas. But today copulas are so popular because of
their dependence properties.

Let’s state lemma about Fréchet-Hoeffding bounds.

Lemma 2.2.1 Let C be a copula. Then for every u ∈ [0, 1]n,

Cl(u) = max (u1 + . . . + un + 1 − n, 0) ≤ C(u)

≤ min (u1, . . . , un) = Cu(u)

Cl is called the Fréchet lower bound and Cu is called the Fréchet upper bound. The bounds
Cl and Cu are copulas themselves for n = 2, whereas for n > 2 only Cu is.

The Cl copula is a distribution function of (U, 1−U)t and Cu of (U, U)t, where U ∼ U(0, 1).
As it is shown on the Picture 2.1, the distribution (U, 1−U)t lies on the diagonal between

points (1, 0) and (0, 1), whereas copula Cu has its mass on the diagonal between (0, 0) and
(1, 1). Then it is called that Cl and Cu have a perfect positive and a perfect negative dependence
respectively.

For n ≥ 2 Cu is called Fréchet upper bound copula while for n = 2 Cl is called Fréchet
lower bound copula. A third important copula is the product copula

Cπ(u1, . . . , un) =

n
∏

i=1

ui. (2.6)
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Figure 2.1: Graphs of copulas Fréchet lower Cl and upper Cu bound copulas and Product
copula Πn
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Random variables generated by this copula are independent, and therefore this copula is
known as independence copula as well and is referred to as Πn. The product copula is the
third copula on the Picture 2.1.

The following theorem is one of the most important properties of theory of copulas. The
invariance property is widely used in generating, modeling and especially in study of depen-
dence. It’s probably the reason of popularity of copulas in these research areas.

Theorem 2.2.1 (Invariance property) Let X1, . . . , Xn be continuous random variables
with n-copula CX1,...,Xn

. Assume that α1, . . . , αn are strictly increasing function on R → R.
Then

CX1,...,Xn
= Cα1(X1),...,αn(Xn). (2.7)

Proof Let Fi an Gi, denote the distribution functions of Xi and αi(Xi), i ∈ {1, . . . , n},
respectively. Since αi are strictly increasing,

Gi(x) = P[αi(Xi) ≤ x] = P[Xi ≤ αi
−1(x)] = Fi(αi

−1(x)),

for all i ∈ {1, . . . , n}. Therefore, for any xi ∈ Rn, i ∈ Rn, i ∈ {1, . . . , n}, we get

Cα1(X1),...,αn(Xn) = Cα1(X1),...,αn(Xn)(G1, . . . , Gn) =

= P[α1(X1) ≤ x1, . . . , αn(Xn) ≤ xn] =

= P[X1 ≤ α−1
1 (x1), . . . , Xn ≤ α−1

n (xn)] =

= CX1,...,Xn
(F1(α1

−1(x1)), . . . , Fn(αn
−1(xn))) =

= CX1,...,Xn
(G1(x1), . . . , Gn(xn)).

The random variables Xi are continuous on I, accordingly, CX1,...,Xn
= Cα1(X1),...,αn(Xn) on In.

�

The theorem asserts that CXY is invariant under strictly increasing transformations of X
and Y.

There is a generalized version of this property where parametrical functions are not just
strictly increasing but decreasing, too. An overview of that topic could be found in [15] or [10].

Sklar’s theorem and invariance property (Theorems 2.1.2 and 2.2.1) may be summarized
by saying that copulas have an ability to keep their dependence structure independently on
transformations of their marginals. In other words, copulas are dependent on dependence
structure of its distribution only.

For example, assume 2-dimensional continuous random variable X with marginals F1 and
F2. Furthermore, suppose that G1 and G2 are univariate distributions, and G

[−1]
1 and G

[−1]
2

are their quasi-inverses. As we know from Lemma 2.1.1, the F1(X1) is an (0, 1)-uniform

distributed. Then G
[−1]
1 (F1(X1)) is a random variable with distribution G1. Therefore (G

[−1]
1 ◦

F1) is a strictly increasing function - it’s α1 from the labels of the theorem of invariance

property above, and vectors ((G
[−1]
1 ◦ F1), (G

[−1]
1 ◦ F1)) and (F1, F2) have the same copula.

The Invariance property is a very useful property and one of the most important theoretical
results in this work. It helps us in the next section which is about generating.

Example 2.2.1 (Frank family) Further interesting example of one-parametrical copula is
Frank family of copulas. It is given by

Cθ(u, v) = −1

θ
ln

(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)

, (2.8)
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where θ ∈ (−∞,∞)\{0}. This copula belongs to the Archimedean copulas, and it will be
further discussed in the section 2.3.2.

2.3 Classes of copulas

Now we will discuss 2 important families of copulas: Archimedean and elliptical, their form
and basic properties.

2.3.1 Elliptical copulas

In this subsection we will briefly describe elliptical distributions, and then have a closer look
at elliptical copulas, their properties and methods of construction.

Definition 2.3.1 (Elliptical distributions) The n-dimensional random vector X has an
elliptical distribution if and only if for any t ∈ Rn the characteristic function ϕX(t) =
E(exp(it′X)) has the representation

t → φg(t; µ, Σ, ϑ) = exp(it′µ)g(t′Σt; ϑ),

where Σ is a symmetric positive semidefinite n × n-matrix, g(·, ϑ) : [0,∞] → R, ϑ ∈ Rm and
µ ∈ Rn.

Here the matrix Σ denotes scales and correlations between random variables of vector
X, µ is a parameter vector and g(·, ϑ) is a characteristic generator. If X has the elliptical
distribution with these parameters, it is denoted as X ∼ En(µ, Σ, g).

Elliptical distributions are symmetric and unimodal but are not constrained regarding
kurtosis. They are called so due to contour lines having elliptical shapes. In fact, all elliptical
copulas are affine extensions of normal copula, and have the elliptical contours of distributions.
Differences between them are in the shapes of these elliptical contours.

The knowledge of the distribution of X does not completely determine the elliptical rep-
resentation. It uniquely determines µ but Σ and g are only determined up to a positive
constant. The matrix Σ can be chosen in such way that it is directly interpretable as the
covariance matrix of X, although this is not always so.

Let X have an elliptical distribution. Then X ≡d µ + AY, where Σ = AAt and Y is
a random vector and characteristic generator of Y is g. Hence, Y ≡d R ∗ u, where u is
uniformly distributed and R is a random variable independent of u. If E[R2] < ∞, then
E[X] = µ and cov[X] = AAt

E[R2]/n. If we use a new characteristic generator ĝ(u) := g(u/c)
with c = n/E[R2], we ensure that cov[X] = Σ. More detailed proof is in [4].

Hence, in the elliptical world it is true that elliptical distributions are uniquely determined
by its mean µ, covariance matrix Σ and its characteristic generator g(u). Alternatively the
dependence structure of the copula of a continuous elliptical distribution is fully described by
the correlation matrix and its type.

For further information, see [6] or [4].
The typical representative of this family is the Gaussian copula from Example 2.1.2. It is

easy to get the another expression of Gaussian n-copula with correlation matrix R from (2.4)
and Theorem 2.1.2:

CGa
R (u) = Φn

R(Φ−1(u1), . . . , Φ
−1(un)),
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where Φn is a distribution function of n-variate standard normal distribution.
For example, from [1] we know the normal distribution is a limit case of a Student’s

t-distribution where degrees of freedom are going to ∞. So, that’s how we are getting to
the second well-known copula by creating it from t-distribution – t-copula, which takes the
following form

Ct
ν,R(u) = Cn

ν,R(t−1
ν (u1), . . . , t

−1
ν (un)), (2.9)

where Cn
ν,R denotes the joint distribution function of an unbiased multivariate t-distribution

with ν degrees of freedom and correlation matrix R, tν is the distribution function of a
univariate standard t-distribution with ν degrees of freedom and t−1

ν is its inverse.
As we will see later, the advantage of elliptical copulas lies in the fact that it is easy to

sample from it. On the other hand, they mostly have a very difficult closed form and many
parameters.

2.3.2 Archimedean copulas

In this subsection we will mention a family of copulas known as Archimedean copulas. These
copulas have very wide range of applications because of their easy construction, nice properties
and the great variety of families of copulas belonging to this class.

Archimedean copulas are more popular than elliptical ones, but don’t have some useful
properties like elliptical do.

Let’s begin from the product copula. Applying log on both sides we get

log Cπ(u, v) = log(u) + log(v).

If we now solve this equation for C, we get the following copula

Cπ(u, v) = ϕ[−1](ϕ(u) + ϕ(v)), (2.10)

where as ϕ we denoted (log) or (− log). This copula is called Archimedean copula. ϕ is a
generator of Archimedean copula, and ϕ[−1] is its pseudo-inverse.

In fact, just (− log) is a generator, (log) is not and it becomes a generator by transformation
of the product copula or the generator in such a way that the generator in (2.10) will be the
strictly decreasing function.

A famous class of Archimedean copula is copula of the Clayton family.

C(u, v) = max
(

[u−θ + v−θ − 1]−1/θ, 0
)

, (2.11)

and its generator is

ϕθ(t) =
1

θ
(t−θ − 1),

where parameter θ ∈ [−1,∞)\{0}.
As we could see on 2 examples, ϕ is a continuous, strictly decreasing function from I →

[0,∞] such that ϕ(1) = 0. If, further, ϕ(0) = ∞ the generator is called a strict generator and
ϕ[−1] = ϕ−1.
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Not every generator has as nice expression as above, therefore for solving ϕ(C(u, v)) =
ϕ(u) + ϕ(v) we need to define the ”inverse” of ϕ. The only problem is in point 0, so the
pseudo-inverse of generator ϕ is the function ϕ[−1] : [0,∞] → I such that

ϕ[−1](t) =

{

ϕ−1(t), 0 ≤ t ≤ ϕ(0);
0, ϕ(0) ≤ t ≤ ∞.

Before we establish necessary and sufficient conditions that can be used as generators of
an Archimedean n-copula for n ≥ 2, a new definition must be stated.

Definition 2.3.2 A function h(t) is completely monotonic on the interval J if it is contin-
uous there and has derivatives of all orders which alternate in sign, i.e., if it satisfies

( − 1)k dk

dtk
h(t) ≥ 0,

for all t ∈ J , and k = 0, 1, 2, . . ..

If h(t) is completely monotonic on [0,∞) and there exists c > 0 such that h(c) = 0, then
h(t) is identically 0 on [0,∞). Let ϕ is a generator of an Archimedean n-copula. If ϕ[−1]

is completely monotonic, then it is positive on [0,∞), i.e. ϕ is a strict generator and then
ϕ[−1] = ϕ−1.

Theorem 2.3.1 Let ϕ : [0, 1] → [0,∞] be a continuous and strictly decreasing function such
that ϕ(1) = 0 and ϕ(0) = ∞ and let ϕ−1 be the inverse of ϕ. Then the function

C : [0, 1]n → [0, 1]

given by
C(x1, . . . , xn) = ϕ−1(ϕ(x1) + . . . + ϕ(xn)) (2.12)

is an n-copula if and only if ϕ−1 is completely monotonic on [0,∞).

Proof See [10].

Nelsen in [10] (page 91) notes that for n = 2 it is not required for a generator ϕ to be
completely monotonic but just a convex function. As a consequence, ϕ doesn’t need to be a
strict generator, hence equality ϕ[−1] = ϕ−1 can not be assumed, and then we have to assume
a pseudo-inverse of ϕ — ϕ[−1].

Example 2.3.1 Let ϕ(t) = − ln t for t ∈ I, ϕ satisfies the condition ϕ(0) = +∞, thus it is a
strict generator. Then ϕ[−1](u) = ϕ−1(u) = exp(−u), and under (2.12) we get

C(x1, . . . , xn) = ϕ[−1](ϕ(x1) + . . . + ϕ(xn)) =

= exp
(

− [(− ln x1) + . . . + (− ln xn)]
)

=
n

∏

i=1

xi = Π(x1, . . . , xn).

Accordingly, the product copula (2.6) is a strict Archimedean copula.
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Our basic purpose is to generate random vectors. There are many methods of generating
with Archimedean copulas.

Here we show one with a distribution function of copula C(u, v). Let’s begin with 2
following theorems.

Theorem 2.3.2 Let C be an Archimedean copula generated by ϕ and let

KC(t) = VC({(u, v) ∈ [0, 1]2 | C(u, v) ≤ t}),

where VC is defined in Definition 2.1.2.
Then for any t ∈ [0, 1],

KC(t) = t − ϕ(t)

ϕ′(t+)
. (2.13)

Theorem 2.3.3 Let ϕ is a generator function of the copula C. Then the joint distribution
function H(s, t) of the random variables S = ϕ(U)/[ϕ(U) + ϕ(V )] and T = C(U, V ) is given
by H(s, t) = sKC(t) for all (s, t) ∈ [0, 1]2. Hence S and T are independent, S is uniformly
distributed on [0, 1].

For proofs of these theorems, see [10].
The corollary of the last theorem is an instruction how to generate with Archimedean

copulas, which will be studied in the next section.
But why is this family of copulas called Archimedean?
At first, let’s remind an Archimedean axiom for positive real numbers:

Let a, b ∈ R, then there exists n ∈ N such that na > b. An Archimedean copula has a very
same property on the interval [0, 1] where it is assigned to a number C(u, v) ∈ [0, 1] to the
numbers u, v ∈ [0, 1].

Let u ∈ [0, 1]. Then define the C − powers un
C as

u1
C = u,

un+1
C

= C(u, un
C).

We can now state the analogue of Archimedean axiom for copulas:
Let C be an Archimedean copula. Then for any u, v ∈ [0, 1], there exists a positive integer n
such that un

C
< v.

2.3.3 The other classes of copulas

There are other classes of copulas, like extremal, Marshall-Olkin or quasi-copulas, but they
have specific conditions (for example, on marginal distributions). We need to solve a general
case that’s why these copulas will not be studied here. For more information, see for example
[2] or [10].

2.4 Summary

In this chapter we got acquainted with copulas and discussed the two most important theorems
needed to solve the problem stated in section 1 - the Sklar’s Theorem 2.1.2 and Invariance
property 2.2.1.
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In section 2.3 were presented two basic classes of copulas, stated theirs properties and
showed some typical families of each classes. Now we have the theoretical knowledge for
introducing method of generation specific to different classes of copulas.
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Chapter 3

Generating

In previous section we explained the theoretical background of copulas and stated their ele-
mentary properties. But as it was said at the beginning of this work, we selected copulas as
a mean to generating of random samples with given properties. In this chapter we describe
the effective algorithms for random variate generating with copulas. After that the numeric
study is used to choose the optimal copula for generating. It is based on the main book about
copulas [10] and other information sources [8] or [12].

We begin this chapter with a general algorithm of generating with all copulas. Then
there are mentioned different methods of generating for different families of copulas, their
advantages and disadvantages. In the further section there is a short discussion about the
dependence measure - what kind is better and why. The main references about it are [12]
and [3]. In the end of the chapter is made comparisons which copula is better and which
distributions will we use in generating.

3.1 General algorithm

Every family of copulas has different type of algorithms depending on specific properties of
the family. A general algorithm which can be used to generate all types of copulas will be
presented in this section. However, this algorithm is bad in the sense of speed and efficiency
in most cases.

Let C be an n-copula. Then denote

Ck(u1, . . . , uk) = C(u1, . . . , uk, 1, . . . , 1),

for k = 1, . . . , n, a k-dimensional marginals of C, where C1(u1) = u1 and Cn(u1, . . . , un) =
C(u1, . . . , un).
Let U1, . . . , Un denote the uniform distributions on [0, 1] with joint distribution function C.
Generally, Ui can denote any distributions, but joint distribution function must be C.

The conditional distribution of Ui given the values U1, . . . , Ui−1, is given by the following
formula

Ci(ui|u1, . . . , ui−1) = P{Ui ≤ ui|U1 = u1, . . . , Ui−1 = ui−1} = (3.1)

=
∂i−1Ci(u1, . . . , ui)

∂u1, . . . , ∂ui−1
/
∂i−1Ci−1(u1, . . . , ui−1)

∂u1, . . . , ∂ui−1
. (3.2)
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The equality (3.1) is clear. Then by applying Sklar’s theorem 2.1.2 and using the relation
between the distribution function and the density, we can derive the copula:

f(x1, . . . , xn) =
∂n(C(F1(x1), . . . , Fn(xn)))

∂F1(x1) . . . Fn(xn)

n
∏

i=1

fi(xi), (3.3)

where f is the density of X and fi are the marginal distributions of Xi.
After the substitution (3.3) to the the equality (3.1) we get the required result (3.2).
The expression (3.2) makes sense, when numerator and denominator of it exist and the

denominator is not zero.
This fact leads us to a basement of the algorithm of random variables generating called

the standard construction. This algorithm generates random vector u = (u1, . . . , un) from
common copula C.

Algorithm 1 1. Simulate a random variate u1 from U(0, 1),

2. Simulate a random variate u2 from C2(.|u1),
...

i. Simulate a random variate ui from Ci(.|u1, . . . , ui−1),
...

n. Simulate a random variate un from Cn(.|u1, . . . , un−1),

If we denote each random variable we get in algorithm above as A1, . . . , An, we can make
sure that the random vectors

(

A1, C−1
2 (A2|A1), . . . , C−1

n

(

An|A1, C−1
2 (A2|A1), C−1

3 (A3|A1, C−1
2 (A2|A1)), . . .

)

)t

have the distribution function C.
But as it was said at the beginning of this section, this common method of generating

from common copula has some disadvantages.
Let’s look at the standard construction closer. In the ith step (except 1st one) of algorithm

we know the values uj, j < i, and want to find a random value ui. After generating q ∼ U(0, 1)
we have ui = C−1

i (q|u1, . . . , ui−1). Then we get ui by numerical rootfinding of the equation
q = Ci(ui|u1, . . . , ui−1).

This algorithm is useful when Ci(ui|u1, . . . , ui−1) has a closed form (and therefore no nu-
merical rootfinding is required), in the other case we need to find other ways of generating.
Let’s show one copula with closed form.

Example 3.1.1 We want to generate a random vector from the copula C(u, v) = (u−θ +v−θ−
1)−1/θ, for θ > 0, and it looks almost like the Clayton copula (2.11)), but it is not. Then using
the notation of the algorithm

C2(v|u) =
∂C
∂u

(u, v) = −1

θ
(u−θ + v−θ − 1)−1/θ−1(−θu−θ−1)

= (uθ)(−1−θ)/θ(u−θ + v−θ − 1)−1/θ−1

= (1 + uθ(v−θ − 1))(−1−θ)/θ.
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The solution of the equation q = C2(v|u) for v is

C−1
2 (q|u) =

(

(q
−θ

1+θ − 1)u−θ + 1
)−1/θ

,

and equals a variable v, i.e C−1
2 (q|u) = v too.

Hence the algorithm of generating a random vector (u, v)t from this copula C is

1. Simulate 2 independent random variates u, q ∼ U(0, 1),

2. Set v =
(

(q
−θ

1+θ − 1)u−θ + 1
)−1/θ

,

3. (u, v)t is required random vector.

3.2 Using specific types of copulas for generating

There are many families of copulas having different properties that are used in different
situations. Therefore there are many ways to generate a random sample with them. And
because the standard construction can be a little slow, we will discuss the most useful and
popular ways of generating in this section.

3.2.1 Generating with elliptical copulas

We begin with elliptical copulas. This family of copulas has multivariate elliptical distributions
mentioned in the previous section.

There are many kinds of elliptical copulas but the most popular are the normal copula
and the t-copula.

Normal copula

The normal copula (expression (2.1.2)) is used in cases where there is a very little information
about the distributions in the problem. It may be caused by the fact that we can’t find out
all factors having influence on our variable. For example it’s used in problems of measure of
defaults, in latent variables model or estimations of Collateralized Debt Obligations (known
as CDO).

The normal copula has a multivariate normal distribution. And because an elliptical dis-
tribution is uniquely determined by its mean, covariance matrix and the type of its marginals
(tν , normal, etc.), the Gaussian copula is uniquely determined by its dependence matrix Σ
and knowledge of its type (Pearson, Kendall etc.).

Suppose we have a multivariate distribution H , with marginals F1, . . . , Fn and dependence
structure defined by the covariation matrix Σ, and we want to simulate random vectors using
normal copula.

First, Σ should be a strictly positive definite matrix, so there exists a matrix L, which
satisfies Σ = L ∗ Lt. If Y1, . . . , Yn ∼ N (0, 1) are independent, then

µ + LY ∼ Nn(µ, Σ).
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One of the choices is a Cholesky decomposition of Σ. There is a lower triangular matrix
L, such LLt = Σ. The following algorithm simulates normal copula with marginals F1, . . . , Fn

and covariation matrix Σ:

Algorithm 2 1. Find Cholesky decomposition L of Σ,

2. Simulate n independent random variable Y = (y1, . . . , yn) ∼ N (0, 1),

3. Set X = LY,

4. Set A = Φ(X), where Φ is a distribution function of standard multivariate normal
distribution Nn(0, 1),

5. Set ui = F−1
i (ai), for i ∈ {1, . . . , n},

Let’s look at the algorithm above a little closer. The first 3 steps are making a multivariate
normal distribution X ∼ Nn(µ, Σ). In the 4th step a sample of the normal copula is made.

There were two conditions on this algorithm: dependence structure and marginals. It is
clear that condition of marginals is satisfied due to steps (4) and (5) of this algorithm.

Now we shall remind an invariance property of copulas (Theorem 2.2.1). It asserts CXY is
invariant under strictly increasing transformations of X and Y. And F−1

i is strictly increasing
function. And A is a random vector of the normal copula CGa

R (more (2.1.2)). Summarizing
this we observe that the vector u in 5th step of algorithm above has the same dependence
structure as the normal copula, i.e. has the required dependence structure. And that is what
we wanted to prove.

T-copulas

Another well-known member of elliptical distributions is the t-distribution.
We say that X has an n-variate t-distribution with ν degrees of freedom with mean µ, for

ν > 1, and with covariance matrix ν
ν−2

Σ, for ν > 2, if

X ∼ µ +

√
µ√
S

Y, (3.4)

where µ ∈ R
n, S ∼ χ2

ν , Y ∼ Nn(0, Σ), and S and Y are independent.
The t-copula C can be written as

Ct
ν,R(u) = tnν,R(t−1

n (u1), . . . , t
−1
n (un)), (3.5)

where R is the correlation matrix of Σ, i.e. Rij = Σij/
√

ΣiiΣjj for all i, j ∈ {1, . . . , n}, and
tnν,R denotes the distribution function of t-distribution (3.4). And t−1

n is a margin of tnν,R, and
all these marginals are equal.

If we want to generate a random vector with marginals F1, . . . , Fn and the correlation
matrix R (or the covariation matrix Σ), then the expression (3.4) gives us an easy idea of
algorithm of random generating with t-copulas

Algorithm 3 1. Find Cholesky decomposition L of Σ,

2. Simulate n independent random variables Y = (y1, . . . , yn) ∼ N (0, 1),
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3. Set X = LY,

4. Simulate random variables Z ∼ χ2
ν independent of X,

5. Set A = X√
Z

ν

,

6. Set B = tν(A),

7. Set ui = F−1
i (bi), for i ∈ {1, . . . , n}.

The vector in the 6th step of the algorithm above is a random vector of t-copula Ct
ν,R with

ν degrees of freedom and the covariation matrix Σ. The 7th step uses the invariance property
2.2.1 to make a required marginal distribution.

The reason, why this algorithm generates vectors with given correlation structure, is the
invariance property 2.2.1. It was explained more in the previous subsection.

It is also very important to realize that the Gaussian and t-copulas are copulas of elliptical
distributions, but they are not elliptical distributions themselves. Therefore we can use the
t-copula with 1 and 2 degrees of freedom for generating, though the t-distribution with the
same degrees of freedom has no variance.

Before some basic graphs and differences between different kinds of copula will be shown,
we conclude a theoretical part of the algorithms of elliptical copulas described in this sub-
section by saying that generating with elliptical n-copulas is fast and easy to implement and
generally doesn’t require any special conditions on correlation matrix or on the shape of
marginal distributions.

3.2.2 The other types of elliptical copulas

There are other types of elliptical copulas, but they are mostly created by transformations of
the two basic types of copulas (i.e. normal or t-copula). We don’t need them in our work,
the further information about nonstandard types of elliptical copulas is in [4].

Examples

We conclude this section by showing graphics of a normal copula (2.1.2), t-copulas with 3 and
10 degrees of freedom.

All copulas are standard copulas (2-dimensional copulas) having the normal marginal dis-
tribution N(1, 3) and the exponential marginal distribution with parameter 1. The correlation
coefficient we want generate with is 0, 7.

On the first picture 3.1 is the normal copula. The sample correlation coefficient is 0, 69.
On the second picture 3.2 is a t-copula with 3 degrees of freedom. It looks almost like

the previous one. However, this one has more extreme values. That is the big advantage (or
sometimes disadvantage) of t-copula comparing to the normal copula. The sample correlation
coefficient is 0, 64.

On account of the algorithms in sections 3 and 2, the generated copula does not depend
on marginal distributions.
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Figure 3.1: The bivariate normal copula with correlation 0, 7.
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Figure 3.2: The bivariate t-copula copula with 3 degrees of freedom with correlation 0, 7.
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3.2.3 Generating with Archimedean copulas

There are many different algorithms of generating with Archimedean copulas. They have one
common property - they are easy to generate. On the other side, there are different algorithms
of generating for different families of Archimedean copulas. Of course there are some common
methods for the families with the same specific character.

Here we will show one way of using the application of the theorem 2.3.3. We want to
generate (u, v)t with joint distribution function C, which is an Archimedean copula with a
generator ϕ.

Algorithm 4 1. simulate s, q ∼ U(0, 1), s and q are independent,

2. set t = K−1
C

(q), where KC is a distribution function of C(u, v) defined in theorem, 2.3.2

3. u = ϕ[−1](sϕ(t)), v = ϕ[−1]((1 − s)ϕ(t)).

The proof that this algorithm yields the desired result can be found in [12]. This algorithm
is simple, but generating the general n-variate Archimedean copula with it is very complicated
because of the explicit expression of the distribution function of copula.

Generating with Archimedean copulas requires at first knowledge of a generator function,
and then a knowledge of certain marginal distributions. But we want find an algorithm
at first and then use it for generating different distributions. That is the reason, why the
Archimedean copulas can’t be used for our purpose.

More information about this or other kinds of generating will appear in [8] or [12].

3.3 Measure of dependence’s problem

The main purpose of this work is solving the following problem:
generating n-variate random vectors (X1, . . . , Xn) with required marginal distribution and
given correlation coefficients cor(Xi, Xj) for i, j ∈ {1, . . . , n}.

Until now we have studied methods how to generate vectors with fixed marginal dis-
tribution and correlation coefficients of some kind. And there are many different kinds of
correlation, the most popular are Pearson’s, Kendall’s or Spearman’s.

The theory about copulas, for example the invariance property (2.2.1) states that generated
vectors have the required correlation. But in practise it doesn’t work so well.

In statistics the linear correlation (Pearson’s coefficient) is frequently used as a measure
of dependence. It is explained in [12] that

() ... most random variables are not jointly elliptically distributed and using
linear correlation as a measure of dependence in such situation might prove very
misleading..

In general we can say that since copulas use non-linear dependence structure, using the
linear correlation coefficient can lead to the wrong results. Furthermore, linear correlation is
not defined if variance of X and Y is infinite.

Due to the quote and notes above, we need to work with more robust correlation coefficient.
That can be, for example, Kendall’s τ or Spearman’s ρ. There are many books and articles
devoted to this problem - refer for example to [3].
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A big advantage of rank correlations matrices is an invariance under strictly increasing
transformations of the vector components (not just strictly increasing linear transformations
as by Pearson’s). But for using these more modern correlation matrix, we need to be able
to compute Kendall’s or Spearman’s coefficients or at least relationships between them and
Pearson’s correlation. In sense of copula, Kendall’s τ and Spearman’s ρ can be expressed only
in terms of C of (X, Y ) like ( [10])

τK(X, Y ) = τK(C) = 4

∫∫

[0,1]2
C(u, v)dC(u, v)− 1,

ρS(X, Y ) = ρS(C) = 12

∫∫

[0,1]2
uvdC(u, v)− 3

= 12

∫∫

[0,1]2
C(u, v)dudv − 3.

Let X and Y be random variables and F and G be strictly increasing functions. From
Theorem 2.2.1 follows that C(X, Y ) = C(F (X), G(Y )). It is equivalent to (F (X), G(Y )) ∼ C,
and then we get

τK(X, Y ) = τK(F (X), G(Y )),

ρS(X, Y ) = ρS(F (X), G(Y )).

The following theorem asserts a relation between Kendall’s correlation matrix and linear
correlation matrix R for nondegenerate elliptical distributions, so Kendall’s can be estimated
from R.

Theorem 3.3.1 Let X ∼ En(µ, R, φ) is a elliptical multivariate random variable with P(Xi =
µi) < 1 and P(Xj = µj) < 1. Then

τK(Xi, Xj) = (1 −
∑

x∈R

(P(Xi = x))2)
2

π
arcsin(Rij), (3.6)

where the sum extends over all atoms of the distribution of Xi. If rank(R) ≥ 2, then the
expression (3.6) simplifies to

τK(Xi, Xj) = (1 − (P(Xi = x))2)
2

π
arcsin(Rij).

Proof See [12].

For us it is an important corollary saying that if P(Xi = x) = 0 for all i, what is true for
e.g. multivariate t and normal distributions with strictly positive correlation matrix Σ, then
for all i, j

τ(Xi, Xj) =
2

π
arcsin(Rij). (3.7)

For elliptical copulas the Kendall’s τ is an efficient estimator of covariance.
All theoretical considerations above may be summarized by saying that Kendall’s τ is

better for our purpose.
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3.4 Numeric study

Now we know the different algorithms for generating random samples with given marginal
distributions and given correlation matrix. But for solving our basic problem we need to
know the only algorithm that is the best or optimal in some way. In this section we will make
comparisons that will help us to choose the best algorithm.

The statistical software R version 2.6.0 (more in [13] or [14]) is used for all the numeric
studies in this work.

3.4.1 The choice of a training set

We have discussed algorithms with two groups of copulas - Archimedean and elliptical copulas.
We explained that both of these families have their advantages and disadvantages. And our
goal is to decide which one has more advantages, and which one we will choose to solve the
basic problem.

So let’s remind some basic facts about these two families.
Elliptical copulas don’t require very much information about the situations they are used

in. In general, they are used in situations when we don’t know anything else. That is one of
the reasons why they have recently been so popular in generating of courses and defaults of
funds or other commercial papers recently. In addition to that their simplicity and analytical
manageability are other important reasons of its popularity.

On the other side, generating with Archimedean copulas means knowing further details
of the model. Thus, we may use a better model for generating which can include more
properties closer to the reality. And that is the main advantage of this family of copula. It
may be a disadvantage too, because we must exactly know the initial conditions and in terms
of it choose a particular kind of Archimedean copula. It means that everything depends on
choosing a generator.

There is one more special property of Archimedean copula - for generating we use an
inverse of the distribution function of copula C, and for general n-multivariate copula it could
have very non-trivial inverse.

On account of the remark above, we can state that Archimedean copulas don’t come
in useful for generating a random sample with required dependence structure and marginal
distributions. It means we should concentrate on elliptical copula.

We know that there are two famous groups of elliptical copulas - normal and t-copula.
Normal copula CGa

R has multivariate normal distribution with mean equal to 0 and covariation
matrix Σ. There are no other options. In contrast to Gaussian copula, the t-copula Ct

ν,R can
have many representations because it depends on its degrees of freedom. We know that normal
and t-copulas have a relation between them - Ct

ν,R converges to CGa
R if ν → ∞. In practice

it means that if a number of degrees of freedom is higher than 10, the t-copula behaves as a
Gaussian one.

Now our purpose is to decide which elliptical copula is the best or optimal one. Before we
begin with comparisons, we need to make clear which meaning of a copula is better than the
other one? What is the criterion for choosing? To explain this, let’s go back to our basic goal.
We want to generate a random sample with given marginals and correlation structure. Hence,
these two conditions could be our criteria that assess the effectiveness of all algorithms.

Algorithms of generating with elliptical copulas were made in a way that guarantees re-
quired marginals for sufficient number of repetitions (the theoretical proof follows from the
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last two steps of the algorithms in section 3.2.1). The statistical verification of this claiming
is in the further sections.

Another possibility is to choose by a correlation match, i.e. the correlation matrix of
samples generated by the copula is the closest to the correlation matrix we generate from.

The required marginals are guaranteed, therefore a correlation matrix is our criterion.
For our purpose, we will generate the first data set (all marginals and parameters are

fictitious): a 7 dimensional vector X with marginals Multinomial distribution with val-
ues (0, 5, 10, 15) and probabilities (0.22, 0.6, 0.08, 0.01), Multinomial distribution with values
(−5, 2, 8, 14, 20, 26, 32, 38, 46, 52) and probabilities (10, 10, 20, 5, 5, 5, 30, 5, 5, 5), Gamma(1),
Beta(1, 0.5), Exp(10), N(0, 5), Logistic(1, 5).

The table 3.1 shows the Pearson correlation matrix used for generating.

X1 X2 X3 X4 X5 X6 X7

X1 1.00 −0.50 −0.41 −0.19 0.42 −0.06 −0.40
X2 −0.50 1.00 0.79 0.75 −0.15 0.68 0.77
X3 −0.41 0.79 1.00 0.88 −0.44 0.86 0.97
X4 −0.19 0.75 0.88 1.00 −0.19 0.92 0.88
X5 0.42 −0.15 −0.44 −0.19 1.00 −0.32 −0.45
X6 −0.06 0.68 0.86 0.92 −0.32 1.00 0.86
X7 −0.40 0.77 0.97 0.88 −0.45 0.86 1.00

Table 3.1: The Pearson correlation matrix of data

Each result in this chapter is made for 5 different correlation matrices and for 5 different
sets of marginals. We are going to talk just about the results of input data (the random vector
and correlation matrices) described above. The results of the other input data are mentioned
only if they are quite different.

Before we go further, let R denote the given Pearson correlation matrix and ρij is its
correlation coefficient at the place i, j. Let cor(X) denote the sample Pearson correlation
matrix and cor(X)ij is its correlation coefficient at the place i, j. The lower index G, resp.
t, on X means the vectors generated with Gaussian, resp. with t-copulas, sometimes if it is
necessary, numbers - degrees of freedom - will be added to the index.

3.4.2 Comparison criteria

As we have just said we need to use some theoretical instruments to compare the accuracy of
the sample correlation matrix and decide which copula is better. So, we use the 3 following
comparison criteria:

1. the 1-norm distance defined by

D1(X) =
∑

i,j

|cor(X)ij − ρij|

2. the Euclidean metric defined by

D2(X) =

√

∑

i,j

(cor(X)ij − ρij)2
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3. infinity-norm distance defined by

D3(X) = max
i,j

|cor(X)ij − ρij |

All these criteria are metrics in Rn.
Let A and B be some different copulas, then let D

A,n
i , i ∈ {1, 2, 3} denotes the vector of n

different values of Di(X), where X is generated with copula A. We want to find out, whether
the vector D

A,n
i is same as a vector D

B,n
i or not for i ∈ {1, 2, 3}.

It is used the Student’s t-test (with equal sample sizes). Statistically speaking, we test a
H0 : E[DA

i ] = E[DB
i ] against H1 : E[DA

i ] > E[DB
i ], where DA

i is a random variable having the
distribution function of D

A,n
i . It means, we think the correlation matrices generated with A

copulas are closer in sense of metric to R than correlation matrices generated with B copulas.
We reject the null hypothesis on the significance level α = 0.05, if

D
A,n
i − D

B,n
i

√

S2
An

+ S2
Bn

√
n ≥ t2(n−1)(1 − α), (3.8)

where n is a sample size, tn(α) is a quantile of t-distribution with n d.f. and S2
An

is a sample

variance of D
A,n
i .

The conditions of the t-test must be satisfied: D
A,n
i and D

B,n
i are independent, D

A,n
i ∼

L(µ1, σ
2), D

B,n
i ∼ L(µ2, σ

2), σ > 0. Further σ2 < ∞, since Di(X) is the metric.
Note that every test in this work is made on the significance level 0.05, if it is not stated

otherwise.

3.4.3 Normal or t-copula

In this subsection we present advantages and disadvantages of sample correlation matrices
with normal and t-copulas. That’s why we begin our study with comparisons of sample
correlation matrices of vectors generated with normal and t-copulas. The Pearson correlation
coefficient is considered as a correlation coefficient here.

The 1-norm distance

We begin our comparison with the 1-norm distance. The histograms of this metrics for
different families of copula are in the picture 3.3. There are no big visual differences between
them.

Let’s study H0 : E[DYG

1 ] = E[D
Xt1

1 ] against H1 : E[D
Xt1

1 ] < E[DYG

1 ], we get 20.2 ≥ 1.64,
hence we reject the H0. Therefore the correlation structure of YG is further (in sense of the
first metric) from the R than Xt1 from the R.

Testing the correlation structure of YG with the correlation structures of Xtk , k ∈ {1, 2, 3, 5,
7, 9, 11} gives the same result. So, generating with t-copula is more accurate than with normal
copula.

If we test which t-copula is better, we get that there is no significant difference between

generating with t-copula with 1 and 2 d.f. But if we test the hypothesis E(D
Yt9

,n
1 −D

Xt1
,n

1 ) = 0,
we reject H0. The results of other tests look very similar - it means that correlation matrices
of vectors generated with t-copula with lower degrees of freedom are closer to R than the
other ones.
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Normal copula
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Figure 3.3: The histograms of
∑

i,j |cor(X)i,j − ρij | for different copulas
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The Euclidean metric

The second metric is the Euclidean metric. At first, we will show the histograms of this metric
for different families of copula - the picture 1 in the appendix. We may have doubts again
that Euclidean metric gives the same results for different copulas. Therefore we make the
t-test.

At first, we test the hypothesis H0 : E[DYG,n
2 ] = E[D

Xt1
,n

2 ] against H1 : E[D
Xt1

,n
2 ] < E[DYG,n

2 ].
We get 23.6 > t10000(0.95) = 1.64, where tn(0.95) is the quantile function of the t-distribution.
So, we reject the H0 and confirm the claim that the Euclidean metric of Y

G has bigger mean
value than of Yt1 .

The other test may show that the vectors generated with t-copula with one and two degrees
of freedom have the significantly smaller mean values. And there is no significant difference
between means of metric of correlation matrices t-copula with one and two d.f.

The infinity-norm distance

The third comparison criterion is the maximal absolute value of a difference between R and
correlation matrices generated with different families of copulas. The histograms of these
values of normal and t-copulas with 1, 2, 3, 5, 11 degrees of freedom are in the appendix in the
picture 2.

There are some interesting results: we see that cor(X)G has big mean value. And the best
results of the criterion gives us the correlation matrix generated with t-copula with 1 degrees
of freedom. As the degrees of freedom of t-copulas grow, the results decrease.

For confirming this claim we use the t-test. Let’s test H0 : E[DYG,n
3 ] = E[D

Xt1
,n

3 ] against

H1 : E[D
Xt1

,n
3 ] < E[DYG,n

3 ]. On the significant level 0.05 we reject the null hypothesis against

alternative hypothesis that the mean value of D
Xt1

,n
3 is smaller than the mean value of D

YG,n
3 .

In the same way, we can statistically show that every cor(Xtk), k ∈ {1, 2, 3, 5} has smaller mean
value than cor(YG). But there is no significant difference between cor(YG) and cor(Xtk) for
k > 6.

Naive metric

The last ”metric” we use is rather naive than mathematical. The results are in the table
3.2. The correlation matrices of the vectors generated with the normal and t-copulas with
different degrees of freedom are compared using different count of repetitions.

For example, the red value 29% in this table means that 2000 pairs of vectors XG with
normal and vectors Xt with t-copula with 3 degrees of freedom were generated. Then we
compare the matrices | cor(XG)−R | and | cor(Xt)−R | (where R is positive definite matrix
we generate from), and compute how many elements of the first matrix are smaller than the
relevant elements of the second matrix. And the red value 29% is an average value.

In other words, 29% says that in mean there are just 29% percents of all elements of
correlation matrix of XG which are closer to R than elements of Xt to R.

Moreover, the table 3.2 shows that the higher the sample size is - the more accurate the
vectors generated with t-copulas are. The next observation may be the fact that cor(Xt)
generated with t-copulas with higher degrees of freedom are more accurate than the one with
lower d.f.
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Sample size
100 500 2000 5000 10000 20000 50000

1 37 35 35 34 34 31 28
2 36 32 30 28 26 26 23

Degrees of freedom 3 36 32 29 25 25 22 21
of t-copula 5 38 32 29 26 24 23 20

7 39 34 30 27 26 23 21
8 37 34 30 27 24 23 21
11 39 36 32 30 27 26 22

Table 3.2: All numbers inside of a table are percentages that denote how often are the sam-
ple correlation matrices generated with normal copula closer to R than correlation matrices
generated with t-copula (with a view to degrees of freedom and sample sizes)

Conclusion

Summarizing this, we can say that the random vectors generated with t-copula with lower
degrees of freedom (like 1 or 2) have the correlation matrices which are the closest (in meaning
of described metrics) to the given correlation matrix. But this result is not new. We have
talked about that in the subsection 3.2.1. A more complete background and results may be
obtained in [12].

Author has found no hypothesis that tests whether a correlation matrix is equal to a given
matrix under general different distributions. We use the comparisons above for deciding the
optimal copula for generating.

Since the other data sets gave the very same results, we decide for the t-copula with 1
degrees of freedom.

3.4.4 The optimal sample size

The optimal sample size for generating vectors with t-copula with 1 d.f. is left to find . Our
purpose is to generate it in a such way that the sample correlation matrix will be close to the
given R and increasing of sample size doesn’t improve their distance. There were generated
vectors with 7 different sample sizes that were measured by 3 metrics: in picture 3 is 1-norm
metric, in picture 4 is the Euclidean metric and in the picture 5 is the infinity norm distance.
All pictures are in the appendix. All histograms show that the minimum for generating is
5000.

I remind that there are two discrete marginal random variables in our training set. And
the minimum 5000 samples were established in case of discrete or more exactly, multinomial
distributions. And why are we talking about this? Because the multinomial distribution
makes trouble in sample correlation matrix - however, the binomial distribution behaves the
same way as other distributions (it is also approximately normal for large n and p not too
close to 1 or 0).

If there are generated vectors without multinomial marginal distributions, then we get the
following histograms of metrics: picture 7 for the Euclidean metric, picture 8 for the infinity
norm and picture 6 for the 1-norm distance. All pictures are in the appendix.

Now can the means of metrics of correlation matrices generated with t-copula with 1 d.f.
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be compared to the given correlation matrix R. This comparison has been made in the table
3.3 depending on the sample sizes and on whether one of the marginal distributions is the
multinomial one.

Summarizing this, we can recommend that if X does not have any multinomial marginal
distributions, the sample size can be from 1000 to 1500.

Maximal distance

Sample sizes
100 500 2000 5000 10000 20000 50000

mean value with multinomial 0.20 0.15 0.13 0.13 0.13 0.13 0.13
of X without multinomial 0.17 0.10 0.09 0.09 0.09 0.09 0.09

Euclidean distance

Sample sizes
100 500 2000 5000 10000 20000 50000

mean value with multinomial 0.62 0.47 0.44 0.43 0.43 0.43 0.43
of X without multinomial 0.51 0.32 0.27 0.25 0.25 0.25 0.24

1-norm distance

Sample sizes
100 500 2000 5000 10000 20000 50000

mean value with multinomial 2.85 2.18 2.00 1.97 1.94 1.94 1.92
of X without multinomial 2.26 1.48 1.25 1.19 1.15 1.14 1.12

Table 3.3: The comparisons of the mean values of the metrics cor(X)−R, where the vectors X

are generated with t-copula with 1 d.f. with different sample sizes, with multinomial marginal
distributions and without them.

3.5 The choice of random distributions

There are many random distributions that are used in different situations, for different pur-
poses and functions. For solving the problem, described in the first chapter, we should decide
which one will we use.

At first, we can begin with distributions that are good, necessary or useful.
For solving our problem, we will surely need the normal distribution. It belongs to the

most common distributions that are used everywhere. It is reasonable to suppose that the
normal distribution will play a very big role in generating of ”random people”.

Of course, we should add to our ”portfolio of distributions we use” the continuous uniform
distribution. It is a basic distribution.

The third distribution will be the gamma distribution. It may be used for expressing wages,
heights of book-debt of population or many other things. This kind of distribution is useful
for another interesting property: applying it, we may easily get a few related distributions,
for example, the most important for us are the exponential and χ2

ν .
The next distribution that is needed, is the binomial one (or in general, multinomial). It is

very important distribution, since it allows us to work with discrete random variables. Some

29



variables, like sex, a number of children or city aren’t continuous, hence it is useful to include
it to the distributions we can use.

These were necessary distributions, we must be able to work with. But our goal is to
generate random samples as well as we can. Therefore we choose a few more.

The beta and the logistic distributions are the two remaining distributions that we will
use for generating.

¿From further results of our numeric study follows that the other distributions, like log-
normal or Cauchy, give bad results - a big dispersion of sample correlation coefficients or,
moreover, unbiased, i.e. the mean values of 10000 sample correlations of lognormal and the
other random variables are about ∼| 0.4 | higher than a specified correlation.

Note that the multinomial distribution gives the biggest dispersion from all distributions.
So, the less multinomial distributions are generated, better accuracy we have.

Summarizing this, we can use the following distributions:

• uniform distribution,

• normal distribution,

• exponential distribution,

• beta distribution,

• gamma distribution,

• logistic distribution,

• discrete binomial (multinomial) distribution.

These distributions are the only ones we will use for our further work.

3.6 Summary

Now we summarize all information of our study.
The best for our purpose is the generating with t-copula with 1 degrees of freedom. The

allowed marginal distributions are uniform, normal, exponential, beta, gamma, logistic and
discrete multinomial distributions.

It is enough to generate 1500 vectors to stabilize the sample correlation matrix if there
is no marginal multinomial distribution. Otherwise, it is recommended to generate at least
about 5000 vectors.
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Chapter 4

Application

In this section we will study the real data we have. At first we will discuss them and make
an analysis of an expected potential of every variable. On the basis of these results we choose
about 6 the most potential variables. Then we will use some transformation and helpful
functions to find marginal distributions. At the end the dependence structure between them
will be calculated.

4.1 Data

The data we have are related to applicants for a credit product. It came from one of the
Czech banks.

We have 1225 samples with 15 parameters. The parameters are the age, number of chil-
dren, number of other dependents, an existence of a home phone, applicant’s income, spouse’s
income, applicant’s employment status (i.e. private or public sector, or military or student,
etc.), residential status (owner, tenant furnished etc.), value of home, mortgage balance out-
standing, outgoings on mortgage or rent, outgoings on loans, outgoings on hire purchase,
outgoings on credit cards, and the last parameter is good/bad indicator that denotes the
defaults.

Now we can start studying the data and try to find any outlying points or find out
normality or non-normality.

At first if we realize what kind of data we have, we can’t expect normality of our data and
normality of some joint distributions neither. But we don’t know anything about existing
outlying points. In the 1st chapter we have determined our basic goal which is generating
with the given correlation matrix and marginal distributions. But outlying points could make
our decision about sampling marginal distribution difficult.

In the next subsection we will study every marginal distribution and theirs outlying points
separately.

For completeness the basic descriptive statistics of all variables are shown in the appendix
(in the table 1).

4.1.1 The choice of generated variables

The data have 15 parameters, including the successful credit repayment. But not every pa-
rameter gives us new information about the possibility to repay. For every parameter will be
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made analysis about its potential. This analysis can appear either from the data or we can
decide basing on an intuition or a guess. If the parameter is chosen, then the deeper analysis
of it will be made in the next subsection. If it is not, then the reasons will be stated.

The age of the applicant

The first parameter is The age of the applicant. It is widely known that it is one of the most
important variables determining repayment ability. So, it is our first variable which will be
generated.

The number of children

The second surveyed parameter is The number of children. That is one of five discrete
parameters in the data.

The basic summary can be seen in the contingency table 2 in the appendix that shows
how much cases of different number of children we have in our data, and how it depends on
the result of credit application.

Without any loss of generality we may combine the applicants with 5 and 4 children.
We are now able to test a hypothesis, whether Good/bad indicator and Number of Children

are independent. After using the χ2-test of independence we get that a critical value is
χ2

4(0.05)
.
= 9.49 and it is bigger than χ2-statistic

.
= 4.18. Therefore, we don’t reject the null

hypothesis that there is no relationship between repayment and the number of children.
The visual data validation is clearly seen from the table 3, where expected values are

calculated on the basis of marginal distributions of surveyed two variables (i.e. under the null
hypothesis) and the table 2, which are in the appendix.

It means that there is no reason to generate this parameter because it gives no information
explaining the defaults. The probability of a success is 0.74 no matter what the number of
children is.

The number of other dependents

The next parameter is The number of other dependents.
We claim again that this variable bring us no new information: the correlation between

Number of other dep. and Number of children is > 0.98. Hence, a generating of this variable
is useless.

Phone owner

The third discrete parameter is Phone owner.
We make a contingency table again, when a dependence between Phone owner and the

result is - the table 4 in the appendix.
The χ2-test testing, whether Phone owner is independent on Good/bad indicator, does

not reject the null hypothesis on the significance level 0.05. So, that parameters is useless
too.
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Spouse’s income and Applicant’s income

Now we have two continuous parameters Spouse’s income and Applicant’s income. The income
is surely one of the most important (according to the risk managers of the banks it is the
most important) factor in the repayment of a credit. Therefore both parameters should be
generated.

Applicant’s employment status

One of two last discrete parameter is Applicant’s employment status. It can be one of the
following statuses: government, housewife, military, private sector, public sector, retired, self
employed, student, unemployed, others and no response.

In the table 4.1 is shown the comparison between the Employment status and Good/bad
indicator. After the adding the status Others to Private and statuses No response and Un-
employed to Retired (statuses with the similar rate (Good indicator \ bad indicator)), our
table satisfies the condition ni.n.j/n > 5, where ni. denotes the column marginal totals and
n.j denotes the row marginal totals, n = 1225 is the grand total. Now the condition about
the limit distribution is satisfied, and it can be made the χ2-test. The statistic of it is
45 > 15 = χ2

8(0.95), so the table shows contingency between the two variables. It means, this
variable is useful for us and should be generated.

Residential status

The last discrete parameter is Residential status. There are 5 statuses in our data: owner,
tenant, furnished, tenant, unfurnished, with parents.

The dependence Good/bad indicator on Residential status is on the following contingency
table 5 in the appendix.

The p-value of χ2-test is 0.32, and we don’t reject the independence of the variables on
significance level 0.05. So, we may claim that generating of this variable gives us nothing new.

Value of home

The ninth parameter is Value of home. The p-value of the Kolmogorov-Smirnov test about,
whether a distribution of the parameter is the uniform distribution, is 0.134. Based on the
discussion with risk management in a bank, we found that the value of home has an influence
on the capital liability, but not on the repayment ability. Hence, this variable is for our
purpose useless.

Mortgage balance outstanding

How much debt do people have? The answer on this question gives us this parameter.
If we see in the appendix in the table 6, and make the χ2-test, we get the p-value =

0.26. Hence, we don’t reject the hypothesis about the independence of Mortgage balance
outstanding and the Good/bad indicator.

And moreover, at the first glance it can be strange, but it has almost the same distribution
like the previous parameter, and the correlation coefficient between them is 0.64. It could be
caused by the dependence of a house value on a mortgage. In advanced countries the most
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people buy houses on a mortgage. So, the generating of this variable gives no information
explaining the defaults.

Outgoings

The further parameters are Outgoings on mortgage or rent, Outgoings on Loans, Outgoings
on Hire Purchase and Outgoings on credit cards. Of course they use for a calculation of
applicant’s creditworthiness as his potential costs. On the other hand, they belong to the
less important factors. The most values of these outgoings are equal zero in our data, and
distributions of outgoings also look very similar

That were the reasons, why only 1 parameter of all outgoings will be generated. It is
Outgoings on mortgage or rent. At first, it has the smallest number of zero values of all of
outgoings. Secondly, it is very often the biggest cost of the household budget and thirdly it
says much about a solvency of applicant as a regular cost.

Good/bad indicator

The last parameter is an indicator saying whether the credit were payed. All parameters
before now were explanatory variables, and this indicator is a response variable. Good means
the paid-up credit and Bad is a default.

4.1.2 The fitting of marginal distributions

In the last subsection we dealt with each parameter separately. We said that the following 6
variable will be generated: Good/bad indicator, Age, Applicant’s income, Spouse’s income,
Applicant’s employment status and Outgoings on mortgage and rent. We will study these
variables now.

We will try to find theoretical distribution functions being up to our samples, make tests
that will help us with verifying it, and may be make small discussions about variables.

For determination of the parameters of cumulative distribution functions, like a rate in the
exponential distribution, or a shape and a scale in the gamma distribution, the MLE-fitting
(Maximum-Likelihood Fitting of Univariate Distributions) is used, more information can be
found in [1].

Unfortunately, most of surveyed marginal distributions have the shape of some ”standard”
distribution (like normal, beta etc.), but its domain is bigger than a domain of a ”standard”
distribution.

For example: the variable X ∼ B(1, 2) has Beta distribution, so X ∈ [0, 1]. The surveyed
variable Y has the same shape of density like X, but Y ∈ [0, c]. So Y = c ∗ X, where c > 0
is a constant. The distribution of the Y is FY (y) = FX(y/c). The question is how to find the
constant c?

There are two methods:
if X has the Beta distribution (like in our example), then we denote c = maxi(Xi), where Xi

are the samples. But if X has other distribution, like gamma or exponential, then we can not
use this method.

Hence, we make a little trick - we use a helpful function: it finds such c that the expression
Dn = supx |FXn(x/c) − FY (x)| takes the minimum for all parameters of Y , where FY (x) is a
distribution function of Y , and FXn(x) denotes a sample distribution function of X. The Dn
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Figure 4.1: The histogram of Age of applicants

is the Kolmogorov-Smirnov statistic. By the Glivenko-Cantelli theorem, if Dn converges to 0
almost surely, then the sample FXn(x/c) comes from the distribution FY (x).

After the c is known, we use the MLE-fitting for the variable FXn(x/c).
Before we go any further, let Xi, i ∈ 1, . . . , 6 denote the random variable with the em-

pirical distribution function Fn(Xi), let Yi, i ∈ 1, . . . , 6 denote the random variable with the
distribution function F (Yi), which is the estimated Fn(Xi) . Then let the estimate that is
got as a result of our function, will be called as the KSFE (Kolmogorov-Smirnov Function
Estimate) in this work. We have 4 numbers as a result of this function: 1st and 2nd mean the
chosen parameters of the distribution function, 3rd is the Kolmogorov-Smirnov distance for
the chosen parameters and 4th number is c.

Age

The first variable is Age of applicant.
At first, the histogram is on the picture 4.1.
Let’s try to find the CDF. The histogram predicts possible beta distribution with bigger

first parameter α and smaller second β. We need to find the constant c described above.
With a view to a discussion above, let c = maxi(Xi) = 87

The parameters of X1/87 estimated by the maximum likelihood function is (2.3, 0.9), or
the equivalent statistical expression:

X1 = 20 + 87 ∗ Z, (4.1)
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Histogram of Spouse’s income
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Figure 4.2: The histogram of Spouse’s income

where Z ∼ Beta(0.9, 2.3).
What is left is to show statistically that X1 and Y1 don’t differ. We know that 0.034 is

the greatest discrepancy between the observed X1 and expected cumulative distributions Y1,
and the approximative critical value of Kolmogorov-Smirnov test on significance level 0.05 is
D∗

1225(0.05)
.
= 0.038 and it is greater than 0.034. Hence, Kolmogorov-Smirnov test doesn’t

reject the null hypothesis that the variable X1 and the expected variable Y1 have the same
distribution function.

Spouse’s income

The second variable is Spouse’s income.
The histogram of the income is on the picture 4.2. The most values are less than 5000,

and we have few values bigger than 20000.
There are 908 zero-values of Spouse’s income, and 6 values bigger than 20000, so if we

make another histogram of random variable X2, but with constraints 0 < X2 ≤ 20000, we get
another much nicer histogram 4.3. The shape of 4.3 reminds us one of famous distribution -
the gamma distribution.

Using the KSFE we get 4 following numbers:

[1] 1.400000e+00 7.000000e-01 4.832866e-02 3.750000e+03

c is equal 3750, and MLE gives us the following result:

X2 = 3750 ∗ Z21 ∗ Z22, (4.2)
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Histogram of Spouse’s income in (0,20000]
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Figure 4.3: The histogram of Spouse’s income in interval (0, 20000]

where Z21 ∼ Bi(1, 0.74), Z22 ∼ Gamma(1.6, 0.7) and Z21, Z22 are independent. Also, X2

could we analyze as a multiple of two variables and constant c: a binomial distribution Z1

with values (0, 1) and P(Z21 = 0) = P(Z21 = 0) = 0.74
.
= 908/1225, multiplied by c = 3750

and by gamma distribution Z22 with parameters k = 1.6 and θ = 0.7.
The Kolmogorov-Smirnov statistic of ML estimate is 0.101 and the approximative critical

value of Kolmogorov-Smirnov test on significance level 0.05 is D∗
317(0.05)

.
= 0.078. Hence,

Kolmogorov-Smirnov test reject the null hypothesis that a given data set could have been
drawn from a given distribution. The Kolmogorov-Smirnov statistic for KSFE is 0.048 that
is not enough to reject the null hypothesis. But the MLE is more important for us.

In the picture 4.4 we can see the established and empirical distribution functions.
Note that an explicit form of distribution function of X2 is very complicated, hence there

is used a little trick in generating. A vector Z ∼ 3750 ∗ Gamma(1.6, 0.7) is generated and
then the each element of Z is multiplied by Z2 ∼ Bi(1, 0.74). The resultant variable has a
required distribution.

Applicant’s income

The next variable is Applicant’s income. It is the most important data in application of
credit.

We can assert that studying of this variable will be the very similar as studying of Spouse’s
income, so we may try to make the same steps.

The histogram 4.5 looks like the histogram of Spouse’s income 4.2, but doesn’t have so
much zero income - just 206.
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Histogram of Applicant’s income
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Figure 4.5: The histogram of Applicant’s income

Applying KSFE on the Spouse’s income data without zero points, we get:

[1] 3.000000e+00 9.000000e-01 2.741837e-02 7.800000e+03

Then the maximal likelihood estimate with c = 7800 is X3 = 7800 ∗ Y3, where Y3 ∼
Gamma(2.9, 1). The MLE and KSFE are in the picture 4.6.

The Kolmogorov-Smirnov statistic of MLE is 0.11, and a critical value on the significance
level 0.05 is 0.043. So, in this case the test again rejects the null hypothesis. If it were tested
the KSFE, it would have not been rejected on the significance level 0.05.

Applicant’s employment status

One of two lase discrete variable is Applicant’s employment status. It can be one of the
following statuses: government, housewife, military, private sector, public sector, retired, self
employed, student, unemployed, others and no response.

In the table 4.1 we can see that we have too little values of N (=No response), U (=Un-
employed) and O (=Others) and some others. It will be good to reduce a number of statuses.

After combining statuses with similar probability of default we get 3 groups:

1. Government and Others,

2. Public sector, Private sector, Self employed, Military and Student,

3. Housewife, Unemployed, No Response and Retired.
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Employment status
Total

P Self M O Priv Retired St Unempl Gov HW N
Good/bad Good 22 88 17 5 413 55 86 4 187 21 4 902
indicator Bad 8 36 6 1 118 49 37 4 44 16 4 323

Total 30 124 23 6 531 104 123 8 231 37 8 1225

Table 4.1: The Employment status vs. Good/bad indicator

The result of configuration is interesting, but not surprising.
In first group are 831 members with mean probability of a successful repayment 0.75, in

second - 157 with 0.53, and in third - 237 with 0.82.
Summarizing, the variable X4 has the multinomial distribution with probabilities (0.68, 0.12, 0.2).

Outgoings on mortgage or rent

The further variable is Outgoings on mortgage or rent.
As it is usual in outgoings, there are almost half zero-points - 526. A lot of people (or even

most of them) have no outgoings on mortgage or any other loans because they don’t want to
be in debt.

After eliminating zero values, we use our programme to find a distribution that is close to
empirical one. KSFE gives us the following result:

[1] 2.600000e+00 1.140000e+01 0.04738909 3.150000e+03

This time we will approximate with beta distribution. c = 3150, and then MLE is X5 =
3150 ∗ Z51 ∗ Z52, where Z51 ∼ Bi(1, 0.57), Z52 ∼ Beta(1.7, 8) and Z51, Z52 are independent.

The graphical illustration is on the picture 4.7.
The approximation with Y5 distribution has the Kolmogorov-Smirnov statistic 0.079, it is

bigger than the critical value 0.051, hence the Kolmogorov-Smirnov tests rejects that this two
variables have the same distribution.

Good/bad indicator

There is one variable left. This is the binomial distribution with the probability of success
(P(X7 = 0)) is 0.74. The Good/bad indicator could be expressed as X6 ∼ B(1, 0.26).

4.1.3 Estimate of the correlation matrix R

Now we know, which variables Xi will be generated and also which marginal distributions
have Xi. Therefore a sample correlation matrix of Xi is left to find.

In the previous chapter it was noticed that we will generate with the Pearson correlation
matrix - it is shown on the table 4.2.
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X1 X2 X3 X4 X5 X6

X1 1.00 −0.11 −0.18 −0.06 0.05 −0.11
X2 −0.11 1.00 0.12 0.01 0.13 −0.06
X3 −0.18 0.12 1.00 0.06 −0.03 −0.01
X4 −0.06 0.01 0.06 1.00 0.39 −0.19
X5 0.05 0.13 −0.03 0.39 1.00 −0.07
X6 −0.11 −0.06 −0.01 −0.19 −0.07 1.00

Table 4.2: The estimated Pearson correlation matrix of chosen variables

4.2 Summary

We have found 6 marginal distributions and the correlation matrix. Now we know what kind
of marginal distributions will be generated, what dependence structure is between them, and
in the previous chapter we have chosen the t-copula with 1 d.f. for generating. Moreover,
because here we have two discrete variables about 5000 sample sizes are recommended.
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Chapter 5

Generation and verification

In the previous chapters we concerned the methods of generating with copulas, then we found
the optimal copula in the sense of metrics and the sample size. Further we analyzed the
real data. And in this chapter will we combine our present results: at first, samples with
the marginal distributions and correlation matrix from the last chapter are generated. Then
become verifications, whether these samples have the required marginal distributions, whether
they also have the required correlation matrix and whether the generated defaults have the
same distribution as the training set.

The most results in this chapter are based on the methods or technics from the previous
chapters.

5.1 Generating samples

Before we begin, let Yi, i ∈ {1, . . . , 6} be random variables with required marginal distribu-
tion, Xi, i ∈ {1, . . . , 6} be random variables the sample marginal distributions created by
simulation. Further, let R be the required correlation matrix.

We want to generate the sample using the t-copula with one degree of freedom. The
marginal distributions of Y are more described in the section 4.1.2. The correlation matrix
R is in the table 4.2.

The sample size of each sample is 5000. There are also made 10000 samples.
We repeat that the significance level is 0.05, if it is not stated otherwise.

5.2 Verification

There are three conditions of samples that should be satisfied:

1. distribution of Xi is equal to Yi, for all i

2. the sample correlation matrix cor(X) is ”close” enough to R

3. the distribution of defaults (variable Good/bad indicator) is for every Xi the same as
for every Yi

The first condition is absolutely clear. The second one says that some metric of (cor(X)−
R) should be close to zero. We use the same metrics as before: the 1-norm distance, the
Euclidean metric and the infinity-norm distance.
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The third condition requires the same amount of defaults for Yi and Xi on the same
segment of a domain of ith distribution function.

5.2.1 Equality of marginal distributions

The first condition that generated samples have to be satisfied is the equality of marginal
distributions. The Kolmogorov-Smirnov test is used to verify it. And because we made 10000
samples, there is showed the means and medians of p-values of tests for every variable on the
table 5.1.

Variable
X1 X2 X3 X4 X5 X6

Mean 0.51 0.52 0.50 0.89 0.50 0.94
Median 0.51 0.52 0.51 0.99 0.50 0.99

Table 5.1: The mean value and median of p-values of Kolmogorov-Smirnov test for every
variable

The most of p-values of Kolmogorov-Smirnov test for X4, resp. X6, were 0.999. These
ones are the multinomial variables with three, resp. two, possible outcomes and for a sample
size 5000 is the Kolmogorov-Smirnov statistic incredible small.

The results of this table confirm our claim that the generated samples have the required
marginal distributions.

5.2.2 Correlation matrix

The second condition we have is an accuracy of sample correlation matrix.
We have generated 10000 samples, hence there are 10000 sample correlation matrices, and

therefore we may make the confidence intervals of each correlation coefficient.
In the table 5.2 the confidence intervals and the mean of the sample correlation coefficients

are compared with the given correlation coefficients. We see that the most given correlations
are in the confidence interval, and just 4 are out. And just 2 of them are far enough from it
- it is the correlation coefficients the cor(X4, X5) and cor(X4, X6). I remind that X4 is the
multinomial distribution, and we have said that multinomial distributions make bad results
in correlations.

And since the distribution X6 is the multinomial too, the results of the table 5.2 are better,
than we could expected.

We can also make the histograms of metrics of differences of correlation matrices we
use before and compare it with the results of the metrics of differences correlation matrices
generated in the section 3.4.

The histogram of the 1-norm metric is in the picture 5.1. The mean value is 1.65. When
we made research about which copula is better, we made the histograms of 1-norm metric
for t-copula with 1 d.f. and the sample size 5000 (picture 6 in the appendix). But if these
histograms are compared, the first one has smaller value. Moreover, if we tested the hypothesis
whether mean values of both distributions are the same or the first one is smaller, then on
the significant level 0.05 the t-test would rejected the null hypothesis.
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X2 X3 X4 X5 X6

X1
(−0.12,−0.5) (−0.18, 0.09) (−0.13,−0.06) (−0.03, 0.05) (−0.15,−0.09)
−0.08;−0.11 −0.13;−0.18 −0.9;−0.06 0.01; 0.05 −0.12;−0.11

X2
(0, 0.08) (0, 0.6) (0.2, 0.9) (−0.06, 0.01)
0.05; 0.12 0.02; 0.01 0.05; 0.13 −0.01;−0.06

X3
(0.04, 0.1) (−0.03, 0.04) (−0.01, 0.6)
0.07; 0.06 0.01;−0.03 0.03;−0.01

X4
(0.18, 0.24) (−0.07,−0.12)
0.21; 0.39 −0.1;−0.19

X5
(−0.07, 0)

−0.03;−0.07

Table 5.2: The sample confidence intervals (upper line), the mean of the sample correlation
coefficients (first number in the lower line) and the given correlation coefficients (the second
number in the lower line). The confidence interval is red marked, if the required correlation
coefficient is out the confidence interval

It means, in the sense of this metric are the correlation matrices of samples closer to R
than the samples we have generated in the section 3.4.

The next metric is the Euclidean metric. The histogram of it is on the picture 5.2. The
mean value and a median are equal 0.22. This histogram could be compared with one of
the histogram on the picture 7 in the appendix, where is written Sample size 5000. This
histogram has the mean value 0.24 and a median 0.22. Because 1.55 ≤ 1.64 = t−1

n (0.95), the
t-test does not reject that mean values of two metrics are the same.

The last metric is the infinity-norm metric. The histogram is on the picture 5.3. The
mean value is 0.19. Again we can compare it with the respective variable on the picture 8 in
the appendix, the mean value of it is 0.10. It is clear that the t-test rejects the hypothesis
about the equality of both variables.

Summarizing this, the given correlation coefficients are at most in the confidence intervals.
The multinomial marginal distribution X4 has two of four correlation coefficients that are out
of the confidence intervals.

We have also three metrics and three different results: one significantly proved that cor-
relation matrices of vectors generated in this chapter are better than correlation matrices
generated in the section 3.4. The second metric shows no difference between them, and the
third metric gives the opposite result than the first metric gives. On the other hand,

5.2.3 The frequencies of defaults

At last, there is required that the relationship between explanatory variables and default
indicator is kept in the generated samples.

For a verification of it the contingency table and then the χ2-test are used.

Age

Let’s see on the first variable The age. In the table 5.3 is the dependence of defaults in the
real and generated data.
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Figure 5.3: The histograms of maxi,j |(cor(X)i,j − ρij| for samples generated with t-copula
with 1 d.f.
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The age
≤ 30 30 − 40 40 − 50 50 − 65 65 − 75 75 ≤

% of defaults in real data 21 10 16 35 17 1
mean % of defaults in generated data 31 15 14 25 12 3

Table 5.3: The percentages of defaults in the real and generated data depending on the age
of an applicant

The p-value of the χ2-test is 0.25, it means we don’t reject the null hypothesis that the
the percentages of defaults are the same in the real and generated data.

Spouse’s income

The second variable is Spouse’s income. If we see whether the percentages of defaults in the
real and generated data are dependent, we get that the χ2-test’s p-value is 0.86. Therefore,
the null hypothesis about independence of defaults can not be rejected. The contingency
table is the table 5.4.

Spouse’s income
= 0 1 − 4000 4001 − 8000 8001 − 14000 14001 − 20000 20000 ≤

% of defaults
78 8 7 4 2 1

in real data
mean % of defaults

74 10 5 5 3 3
in generated data

Table 5.4: The percentages of defaults in the real and generated data depending on the
spouse’s income

Applicant’s income

The next variable we study is the Applicant’s income. The table of defaults is in the appendix,
table 7. And the p-value of the χ2-test is 0.14, it means we don’t reject the null hypothesis.

Applicant’s employment status

The only discrete variable is the Applicant’s employment status. The p-value of the χ2-test
is 0.61. So the null hypothesis hasn’t been rejected in this case either. The table of defaults
8 is in the appendix again.

Outgoings on mortgage or rent

The last variable is the Outgoings on mortgage or rent. The χ2-test doesn’t reject the null
hypothesis about the independence of the defaults in real and in generated data. The p-value
is 0.6. The table of defaults 9 is in the appendix.
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1st gr. 2nd gr. 3rd gr. 1st + 2nd gr. 1st + 3rd gr. 2nd + 3rd gr. all gr.

RD 25 % 47% 18% 28% 24% 29% 26%
GD 27 % 30% 26% 26% 27% 25% 26%

Table 5.5: The measure of defaults for different groups in RD and GD. An abbreviation ”gr”
in the table means group

5.2.4 The distribution of defaults

The last comparison the generated samples with the given data consists in the comparison
the relation the defaults to the total number of credits for each variable for the given and the
generated data. Mathematically speaking, we study the values

#(X6|Xi < n)

#(Xi < n)
,

where n ∈ {domain of Xi}, and #(Y > 0) denotes the amount of values Y , which are bigger
than zero.

If the these values for given data and the generated one will be close to each other for all
n, then the generated data reflect the default’s dependence too. If these values for one data
set will generate the line, then this data set gives no new information about the defaults. One
more remark, all histograms in this subsection don’t have zero points - just for a graphical
lucidity.

The first graph 5.4 shows that the most risk group of applicants is between 20− 25 years
old. The applicants, which are older than 30, have the same risk rate. The generated data
describe the defaults very exactly.

In the second graph 5.5 are the histograms of spouse’s income for RD and GD and the
measure of defaults to the total number of credits for RD and GD. We see that the measures
for RD and GD are almost the lines, which are very similar. That is very surprising result,
because it means that the spouse’s income does not depend on the repayment.

The next graph 5.6 describes the measures for the applicant’s income. It is seen that here
the measure of defaults depends on the level of the income. On the other side, the measure
of defaults in RD is not so similar with the measure of defaults in GD as in the previous
variables. But it is still close enough.

The further variable is the employment status. It is a discrete variable, so here we show the
table 5.5, which describes us, what happen with the defaults for different groups of statuses
(more about the groups of statuses is in the section 4.1.2). There are some bigger differences
in some groups. That can be caused by that that employment status is a discrete variable,
and as we said before, discrete variables may cause problems.

The last variable is the outgoings on mortgage/rent. The measures of defaults to the total
number of credits is on the picture 5.7.
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The results of this section shows that the generated vectors have the very similar default’s
structure as the real data.

5.3 Summary

At the beginning of this work we said that we want to generate the vectors that will have
the required marginal distributions and the given correlation matrix. In this section we have
done it and verified that these two conditions are satisfied.

Moreover, the generated vectors satisfy two more conditions: both of them concern to the
required defaults.
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Chapter 6

Conclusion

Through our work we have shown many different methods of generating with copulas. In all
the mentioned approaches we have concentrated on the study of different kinds of dependence
structures - the correlation dependence between the variables and the relationship between
explanatory variables and default.

In Chapter 2 we explained what are copulas and stated some properties and different
families of copulas. The two important theoretical results (the Sklar’s theorem 2.1.2 and
invariance property 2.2.1) which were referred in this Chapter, allowed us the formulation of
the two central results of this work: the algorithm of generating vectors with normal copula
and with t-copulas with ν degrees of freedom, which have the required marginal distributions
and the given correlation coefficients.

Then in Section 3.4 we made comparisons of results of these algorithms to find out the
only one algorithm.

Further, Chapter 4 was concerned by the analysis of the real data of defaults and the
variables, which influence the defaults.

Finally, using the copula we have generated these variables and checked if they have the
same dependence structures as the real data.

The results of this work may be applied in the many fields, especially in credit field to
generate vectors of defaults or non-defaults. On the other hand, we should be careful on
the minimal sample size and on the marginal distributions - as we have seen the dependence
structure can be biased due to multinomial marginals.

57



Acknowledgments
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Appendix

Histograms to the 3rd chapter
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Figure 1: The histograms of

√

(

∑

i,j (cor(X)i,j − ρij)
2
)

for different copulas
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Figure 2: The histograms of maxi,j |cor(X)i,j − ρij | for different families of copulas
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Figure 3: The histograms of
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i,j |cor(X)i,j − ρij | for t-copula with 1 d.f. and different sample
sizes
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Figure 4: The histograms of
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sample sizes

62



sample size 100

Maximal differences

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5

0
10

0
20

0
30

0
40

0

sample size 500

Maximal differences

F
re

qu
en

cy

0.10 0.15 0.20 0.25

0
10

0
20

0
30

0

sample size 2000

Maximal differences

F
re

qu
en

cy

0.10 0.15 0.20 0.25

0
10

0
20

0
30

0
40

0
50

0
60

0

sample size 5000

Maximal differences

F
re

qu
en

cy

0.10 0.14 0.18 0.22

0
10

0
20

0
30

0
40

0

sample size 10000

Maximal differences

F
re

qu
en

cy

0.10 0.14 0.18 0.22

0
10

0
20

0
30

0
40

0
50

0

sample size 20000

Maximal differences

F
re

qu
en

cy

0.10 0.14 0.18 0.22

0
10

0
20

0
30

0
40

0
50

0
60

0

sample size 50000

Maximal differences

F
re

qu
en

cy

0.12 0.14 0.16 0.18 0.20

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Figure 5: The histograms of maxi,j |cor(X)i,j−ρij | for t-copula with 1 d.f. and different sample
sizes
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Figure 6: The histograms of
∑

i,j |cor(X)i,j − ρij | for t-copula with 1 d.f. and different sample
sizes (without multinomial marginal distributions)
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Figure 7: The histograms of
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for t-copula with 1 d.f. and different

sample sizes (without multinomial marginal distributions)
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Figure 8: The histograms of maxi,j |cor(X)i,j−ρij | for t-copula with 1 d.f. and different sample
sizes (without multinomial marginal distributions)
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Tables for the 4th chapter

The Number Number of other Spouse’s Applicant’s Value
age of children dependents income income of home

Min 20 0 0 0 0 0
1st Qu. 27 0 0 0 9000 0
Median 35 0 0 0 19500 0
Mean 38.96 0.62 0.04 1990 21240 15690

3rd Qu. 48 1 0 1040 30600 28930
Max 87 5 2 50000 64800 64930

Mortgage balance Outgoings on Outgoings Outgoings Outgoings
outstanding mortgage or rent on loans on hire purchase on credit cards

Min 0 0 0 0 0
1st Qu. 0 0 0 0 0
Median 0 256 0 0 0
Mean 11230 342 121.90 28.72 39.60

3rd Qu. 20000 528 0 0 0
Max 64000 3800 28000 1600 2800

Phone owner

Yes No
1107 118

Good/bad indicator

Yes No
902 323

Applicant’s employment status

Amount
Government 231
Housewife 37
Military 23

Private sector 531
Public sector 30

Retired 104
Self employed 124

Student 123
Unemployed 8

Others 23
No response 8

Residential status

Amount
Owner 624

Tenant furnished 129
Tenant unfurnished 154

With parents 252
Other 66

Table 1: The descriptive statistics of every parameter
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Number of children
Total

0 1 2 3 4 5

Good/bad indicator
Good 596 110 137 39 17 3 902
Bad 224 37 45 15 2 0 323

Total 820 147 182 54 19 3 1225

Table 2: Contingency table of Number of Children vs. Good/bad indicator and theirs marginal
distributions

Number of children
0 1 2 3 more than 4

Good/bad indicator
Good 604 108 134 39.8 16.2
Bad 216 38.8 48 14.2 5.8

Table 3: The expected values under the independence of The number of children and Good/bad
indicator

Phone owner
Total

Yes No

Good/bad indicator
Good 822 80 902
Bad 285 38 323

Total 1107 118 1225

Table 4: The contingency table of Phone owner and Good/bad indicator and its marginal
distribution

Residential status
Total

Tenant furnished Owner With parents Tenant furnished
Good/bad Good 134 460 192 116 902
indicator Bad 61 164 60 38 323

Total 195 624 252 154 1225

Table 5: The Residential status vs. Good/bad indicator

Mortgage balance outstanding
= 0 1 − 15000 15001 − 30000 30001 − 40000 40001 − 50000 50000 ≤

Good/bad Good 510 144 78 50 38 82
indicator Bad 199 49 20 13 19 23

Table 6: The Mortgage balance outstanding vs. Good/bad indicator
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Tables for the 5th chapter

Applicant’s income
= 0 1 − 4000 4001 − 8000 8001 − 14000 14001 − 20000 20000 ≤

% of defaults
30 22 21 15 8 4

in real data
mean % of defaults

17 33 17 14 10 9
in generated data

Table 7: The percentages of defaults in the real and generated data depending on the appli-
cant’s income

applicant’s employment status
1stgroup 2ndgroup 3rdgroup

% of defaults in real data 68 13 19
mean % of defaults in generated data 69 9 22

Table 8: The percentages of defaults in the real and generated data depending on the appli-
cant’s employment status

Outgoings on mortgage or rent
= 0 1 − 500 501 − 1000 1001 − 1500 1501 − 2000 2000 ≤

% of defaults
53 24 17 4 1 1

in real data
mean % of defaults

43 30 16 9 1 1
in generated data

Table 9: The percentages of defaults in the real and generated data depending on the outgoings
on mortgage or rent
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