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Abstract

This thesis is devoted to an empirical study of lexical association measures and their
application to collocation extraction. We focus on two-word (bigram) collocations
only. We compiled a comprehensive inventory of 82 lexical association measures and
present their empirical evaluation on four reference data sets: dependency bigrams
from the manually annotated Prague Dependency Treebank, surface bigrams from the
same source, instances of surface bigrams from the Czech National Corpus provided
with automatically assigned lemmas and part-of-speech tags, and distance verb-noun
bigrams from the automatically part-of-speech tagged Swedish Parole corpus. Col-
location candidates in the reference data sets were manually annotated and labeled
as collocations and non-collocations. The evaluation scheme is based on measuring
the quality of ranking collocation candidates according to their chance to form col-
locations. The methods are compared by precision-recall curves and mean average
precision scores adopted from the field of information retrieval. Tests of statistical sig-
nificance were also performed. Further, we study the possibility of combining lexical
association measures and present empirical results of several combination methods
that significantly improved the performance in this task. We also propose a model
reduction algorithm significantly reducing the number of combinedmeasures without
a statistically significant difference in performance.

Keywords: collocations, multiword expressions, collocation extraction, multiword
expression extraction, lexical association measures, machine learning, empirical evaluation
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Otakar Smrž, Miroslav Spousta, Drahomı́ra Spoustová, and Pavel Straňák.
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Chapter 1

Introduction

1.1 Word association

Word association is a popular word game based on exchanging words that are in some

way associated together. The game is initialized by a randomly or arbitrarily chosen

word. A player then finds another word associated with the initial one, usually the

first word that comes to his or her mind, and writes it down. A next player does the

same with this word and the game continues in turns until a time or word limit is met.

The amusement of the game comes from the analysis of the resulting chain of words

– how far one can get from the initial word and what the logic behind the individual

associations is. An example of a possible run of the gamemight be this word sequence:

dog, cat, meow, woof, bark, tree, plant, green, grass, weed, smoke, cigarette, lighter, fluid.1

Similar concepts are commonly used in psychology to study a subconscious mind

based on subject’s word associations and disassociations, and in psycholinguistics to

study the way knowledge is structured in the human mind, e.g. by word association

norms measured as subject’s responses to words when preceded by associated words

(Palermo and Jenkins, 1964). “Generally speaking, subjects respond quicker than nor-

mal to the word nurse if it follows a highly associated word such as doctor” (Church

and Hanks, 1989).

Our interest in word association is linguistic and hence we use the term lexical as-

sociation to refer to association between words. In general, we distinguish between three

types of association betweenwords: collocational association restricting combination

of words into phrases (e.g. crystal clear, cosmetic surgery, weapons of mass destruction),

1examples from http://www.wordassociation.org/

1



2 CHAPTER 1. INTRODUCTION

semantic association reflecting semantic relationship between words (e.g. sick – ill,

baby – infant, dog – cat), and cross-language association corresponding to potential

translations of words between different languages (e.g.maison (FR) – house (EN), baum

(GER) – tree (EN), květina (CZ) – flower (EN)).

In the word association game and the fields mentioned above, it is a human mind

what directly provides evidence for exploring word associations. In this work, our

source of such evidence is a corpus – a collection of texts containing examples of

word usages. Based on such data and its statistical interpretation, we attempt to

estimate lexical associations automatically by means of lexical association measures

determining the strength of association between two or more words based on their

occurrences and cooccurrences in a corpus. Although our study is focused on the

association on the collocational level only, most of these measures can be easily used

to explore also other types of lexical association.

1.1.1 Collocational association

The process of combining words into phrases and sentences of natural language is

governed by a complex system of rules and constraints. In general, basic rules are

given by syntax, however there are also other restrictions (semantic and pragmatic)

that must be adhered to in order to produce correct, meaningful, and fluent utterances.

These constrains form important linguistic and lexicographic phenomena generally

denoted by the term collocation. They range from lexically restricted expressions

(strong tea, broad daylight), phrasal verbs (switch off, look after), technical terms (car oil,

stock owl), and proper names (New York, Old Town), to idioms (kick the bucket, hear

through the grapevine), etc. As opposed to free word combinations, collocations are

not entirely predictable only on the basis of syntactic rules. They should be listed in

a lexicon and learned in the same way as single words are.

Components of collocations are involved in a syntactic relation and tend to cooc-

cur (in this relation) more often than would be expected. This empirical aspect dis-

tinguishes them from free word combinations. Collocations are often characterized

by semantic non-compositionality – the exact meaning of a collocation cannot be

(fully) inferred from the meaning of its components (kick the bucket), syntactic non-

modifiability – their syntactic structure cannot be freely modified, e.g. by changing

the word order, inserting another word, or changing morphological categories (poor

as a church mouse vs. *poor as a big church mouse), and lexical non-substitutability –

collocation components cannot be substituted by synonyms or other related words
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(stiff breeze vs. *stiff wind) (Manning and Schütze, 1999, Chapter 5). Another property

of some collocations is their translatability into other languages: a translation of a

collocation cannot generally be performed blindly, word by word (e.g. the two-word

collocation ice cream in English should be translated as one word zmrzlina, or perhaps

as zmrzlinový krém (rarely) but not as ledový krém which would be a straightforward

word-by-word translation).

1.1.2 Semantic association

Semantic association between words is, in a sense, a broader concept then colloca-

tional association because in this type of association no grammatical boundedness

between words is required. It is concerned with words that are used in similar con-

texts and domains – word pairs whosemeanings are in some kind of semantic relation.

Compiled information of such type is usually presented in the form of a thesaurus

and includes the following types of relationships: synonyms with exactly or nearly

equivalent meaning (car – automobile, glasses – spectacles), antonymswith the opposite

meaning (high – low, love – hate), meronyms with the part-whole relationship (door –

house, page –book), hyperonyms based on superordination (building – house, tree – oak),

hyponymsbased on subordination (lily – flower, car –machine), and perhaps otherword

combinations with even looser relations (table – chair, lecture – teach).

Semantic association is closest to the process involved in the word gamementioned

in the beginning of this chapter. Although presented as a relation between words

themselves, the actual association exists between their meanings (concepts). Before

a word association emerges in the human mind, the initial word is semantically dis-

ambiguated and only one selected sense of the word participates in the association,

e.g. theword bark has different meaning in association withwoof and tree. For the same

reason, semantic association exists not only between single words but also between

multiword expressions constituting indivisible semantic units (collocations).

Similarly to collocational association, semantically associated words cooccur in

the same context more often than would be expected, but in this case the context is

understood as a much wider span of words and, as we have already mentioned, no

direct syntactic relation between the words is necessary.

1.1.3 Cross-language association

Cross-language association correspond to possible translations of a word in one lan-

guage to another. This information is usually presented in a form of a bilingual
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dictionary, where each word with all its senses is provided with all its equivalents in

the other language. Although every word (in one of its meanings) usually has one or

two common and generally accepted translations sufficient to understand itsmeaning,

it can be potentially expressed by a larger number of (more or less equivalent but in

a certain context entirely adequate) options. For example, the Czech adjective důležitý

is in most dictionaries translated into English as important or significant, but in a text

it can be translated also as: considerable, material, momentous, high, heavy, relevant, solid,

considerably, live, substantial, serious, notable, pompous, responsible, consequential, gutty,

great, grand, big, major, solemn, guttily, fateful, grave, weighty, vital, fundamental,2 and pos-

sibly also as other options depending on context. Not even a highly competent speaker

of both languages could not be expected to enumerate them exhaustively. Similarly

to the case of semantic association, dictionary items are not only single words but

also multiword expressions which cannot be translated in a word-by-word manner

(collocations).

Cross-language association can be acquired not only from the human mind, it can

also be extracted from examples of already realized translations, e.g. in the form of

parallel texts – where texts (sentences) are placed alongside their translations. In such

data, associated word pairs (translation equivalents) cooccur more often that would

be expected in the case of non-associated (random) pairs.

1.2 Motivation and applications

A monolingual lexicon enriched by collocations, a thesaurus comprised of semanti-

cally related words, and a bilingual dictionary containing translation equivalents –

all of these are important (and mutually interlinked) resources not only for language

teaching but in a machine-readable form also for many tasks of computational linguistics

and natural language processing.

The traditional manual approaches to building these resources are in many ways

insufficient (especially for computational use). The major problem is their lack of ex-

haustiveness and completeness. They are only “snapshots of a language”.3 Although

modern lexicons, dictionaries, and thesauri are developed with the help of language

corpora, utilization of these corpora is usually quite shallow and reduced to analysis

of the most frequent and typical word usages. Natural language is a live system and

no such resource can perhaps be ever be expected to be complete and fully reflect

actual language use. All these resources must also deal with the problem of domain

2translations from http://slovnik.seznam.cz/
3quote by Yorick Wilks, LREC 2008, Marrakech, Morocco
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specificity. Either they are general, domain-independent and thus in special domains

usable only to a certain extent, or they are specialized, domain-specific and exist only

for certain areas. Considerable limitations lie in the fact that the manually built re-

sources are discrete in character, while lexical association, as presented in this work,

should be perceived as a continuous phenomenon. Manually built language resources

are usually reliable and contain a small number of errors andmistakes. However, their

development is an expensive and time-consuming process.

Automatic approaches extract association data on the basis of statistical interpre-

tation of corpus evidence (by lexical association measures). They should eliminate (to

a certain extent) all the mentioned disadvantages (lack of exhaustiveness and com-

pleteness, domain-specificity, continuousness). However, they heavily rely on the

quality and extent of the source corpora the associations are extracted from. Com-

pared to manually built resources, the automatically built ones contain certain errors

and this fact must be taken into account in the tasks these resources are applied. The

following passages we will present some tasks that can make use of such resources.

Applications of lexical association measures

Generally, collocation extraction is the most popular application of lexical association

measures and quite a lot of significant studies have been published on this topic,

e.g. (Dunning, 1993; Smadja, 1993; Pedersen, 1996; Weeber et al., 2000; Schone and

Jurafsky, 2001; Pearce, 2002; Krenn, 2000; Bartsch, 2004; Evert, 2004). In computational

lexicography, automatic identification of collocations is employed to help human

lexicographers in compiling lexicographic information (identification of possible word

senses, lexical preferences, usage examples, etc.) for traditional lexicons (Church and

Hanks, 1990) or for special lexicons of idioms or collocations (Klégr et al., 2005; Čermák

et al., 2004), used e.g. in translation studies (Fontenelle, 1994a), bilingual dictionaries,

or for language teaching (Smadja et al., 1996; Haruno et al., 1996; Tiedemann, 1997;

Kita and Ogata, 1997; Baddorf and Evens, 1998). Collocations play an important role

in systems of natural language generationwhere lexicons of collocations and frequent

phrases are used during the process of word selection in order to enhance fluency

of the automatically generated text (Smadja and McKeown, 1990; Smadja, 1993; Stone

and Doran, 1996; Edmonds, 1997; Inkpen and Hirst, 2002).

There are two principles applicable for word sense disambiguation: First, a word

with a certain meaning tends to cooccur with different words than when it is used

in another sense, e.g. bank as a financial institution occurs in context with words
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like money, loan, interest, etc., while bank as land along the side of a river or lake

occurs with words like river, lake, water, etc. (Justeson and Katz, 1995; Resnik, 1997;

Pedersen, 2001; Rapp, 2004). Second, according to Yarowsky’s (1995) “one sense per

collocation”hypothesis, all occurrences of aword in the same collocation have the same

meaning, e.g. the sense of the word river in the collocation river bank is the same across

all its occurrences. There has also been some research on unsupervised discovery

of word senses from text (Pantel and Lin, 2002; Tamir and Rapp, 2003). Association

measures are used also for detecting semantic similarity between words, either on

a general level (Biemann et al., 2004) or with a focus to specific relationships, such as

synonymy (Terra and Clarke, 2003) or antonymy (Justeson and Katz, 1991).

An important application of collocations is in machine translation. Collocations

often cannot be translated in a word-by-word fashion. In translation, they should

be treated rather as lexical units distinct from syntactically and semantically regular

expressions. In this environment, association measures are employed in the identi-

fication of translation equivalents from sentence aligned parallel corpora (Church

and Gale, 1991; Smadja et al., 1996; Melamed, 2000) and also from non-parallel corpora

(Rapp, 1999; Tanaka and Matsuo, 1999). In statistical machine translation, associa-

tion measures are used over sentence aligned, parallel corpora to perform bilingual

word alignment to identify translation pairs of words and phrases (or more complex

structures) stored in the form of translation tables and used for constructing possible

translation hypotheses (Mihalcea and Pedersen, 2003; Moore et al., 2006).

Application of collocations in information retrieval has been studied as a nat-

ural extension of indexing single word terms to multiword units (phrases). Early

studies were focused on small domain-specific collections (Lesk, 1969; Fagan, 1987;

Fagan, 1989) and yielded inconsistent and minor performance improvement. Later,

similar techniques were applied over larger, more diverse collections within the Text

Retrieval Conference (TREC)4 but still with only minor success (Evans and Zhai, 1996;

Mittendorf et al., 2000; Khoo et al., 2001). Other studies were only motivated by infor-

mation retrievalwith no actual application presented (Dias et al., 2000). Recently, some

researchers have attempted to incorporate cooccurrence information in probabilistic

models (Vechtomova, 2001) but no consistent improvement in performance has been

demonstrated (Alvarez et al., 2004; Jiang et al., 2004). Despite these results, using collo-

cations in information retrieval is still of relatively high interest (Arazy andWoo, 2007).

Collocational phrases have also been employed also in cross-lingual information re-

trieval (Ballesteros and Croft, 1996; Hull and Grefenstette, 1996). A significant amount

4http://www.trec.org/
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of work has been done in the area of identification of technical terminology (Anani-

adou, 1994; Justeson and Katz, 1995; Fung et al., 1996; Maynard and Ananiadou, 1999)

and its translation (Dagan and Church, 1994; Fung and McKeown, 1997).

Lexical association measures have been applied to various other tasks from which

we select the following examples: named entity recognition (Lin, 1998), syntactic con-

stituent boundary detection (Magerman and Marcus, 1990), syntactic parsing (Church

et al., 1991; Alshawi and Carter, 1994), syntactic disambiguation (Basili et al., 1993),

discourse categorization (Wiebe and McKeever, 1998), adapted language modeling

(Beefermam et al., 1997), extracting Japanese-English morpheme pairs from bilingual

terminological corpora (Tsuji and Kageura, 2001), sentence boundary detection (Kiss

and Strunk, 2002b), identification of abbreviations (Kiss and Strunk, 2002a), computa-

tion of word associations norms (Rapp, 2002), topic segmentation and link detection

(Ferret, 2002), discoveringmorphologically relatedwords based on semantic similarity

(Baroni et al., 2002) and possibly others.

1.3 Goals, objectives, and limitations

This thesis is devoted to lexical association measures and their application to collo-

cation extraction. The importance of this research was demonstrated in the previous

section by the large range of applications in natural language processing and com-

putational linguistics where the role of lexical association measures in general, or

collocation extraction in particular, is essential. This significance was emphasized

already in 1964 at the Symposium on Statistical Association Methods ForMechanized Docu-

mentation (Stevens et al., 1965), where Giuliano advocated better understanding of the

measures and their empirical evaluation (as cited by Evert (2004), p. 19):

[First,] it soon becomes evident [to the reader] that at least a dozen

somewhat different procedures and formulae for association are suggested

[in the book]. One suspects that each has its own possible merits and

disadvantages, but the line between the profound and the trivial often

appears blurred. One thing which is badly needed is a better understand-

ing of the boundary conditions under which the various techniques are

applicable and the expected gains to be achieved through using one or

the other of them. This advance would primarily be one in theory, not

in abstract statistical theory but in a problem-oriented branch of statistical

theory. (Giuliano, 1965, p. 259)
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[Secondly,] it is clear that carefully controlled experiments to evaluate

the efficacy and usefulness of the statistical association techniques have

not yet been undertaken except in a few isolated instances . . . Nonetheless,

it is my feeling that the time is now ripe to conduct carefully controlled

experiments of an evaluative nature, . . . (Giuliano, 1965, p. 259).

Since that time, the issue of lexical association has attracted many researchers and

a number of works have been published in this field. Among those related to collo-

cation extraction we point out especially: Chapter 5 in (Manning and Schütze, 1999),

Chapter 15 by McKeown and Radev in (Dale et al., 2000), theses of Krenn (2000), Vech-

tomova (2001), Bartsch (2004), Evert (2004), and Moirón (2005). Our work attempts to

enrich the current state of the art in this field in by achieving the following goals:

1) Compilation of a comprehensive inventory of lexical association measures

The range of various association measures proposed to estimate lexical association

based on corpus evidence is enormous. They originate mostly in mathematical statis-

tics, but also in other (both theoretical and applied) fields. Most of them were tar-

geted mainly for collocation extraction, e.g. (Church and Hanks, 1990; Dunning, 1993;

Smadja, 1993; Pedersen, 1996). The early publicationswere devoted to individual asso-

ciation measures, their formal and practical properties, and to the analysis of their ap-

plication to a corpus. The first overview text appeared in (Manning and Schütze, 1999,

Chapter 5). It described the three most popular association measures (and also other

techniques for collocation extraction). Later, other authors, e.g. Weeber et al. (2000),

Schone and Jurafsky (2001), and Pearce (2002), attempted to describe (and compare)

multiple measures. However, none of them, at the time our research started, had as-

pired to compile a comprehensive inventory of possible lexical association measures.

A significant contribution in this direction was made by Stephan Evert, who set up

a web page to “provide a repository for the large number of association measures that

have been suggested in the literature, together with a short discussion of their math-

ematical background and key references”5. This effort, however, has focused only on

measures applied to 2-by-2 contingency tables representing cooccurrence frequencies

ofword pairs, see details in (Evert, 2004). Our goal is to provide amore comprehensive

list of measures without this restriction. Such measures should be applicable to deter-

mine various types of lexical association but our key application and main research

interest are in collocation extraction. The theoretical background to the concept of

5http://www.collocations.de/
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collocation and principles of collocation extraction from text corpora are covered in

Chapter 2, and the inventory of lexical association measures is presented in Chapter 3.

2) Acquisition of reference data for collocation extraction

At the time we started our research, no widely acceptable evaluation resources for

collocation extraction were available. In order to evaluate our experiments we were

compelled to develop appropriate gold standard reference data sets on our own. This

comprised several important steps: to specify the task precisely, select a suitable

source corpus, define annotation guidelines, perform annotation by multiple subjects,

and combine their judgments. The entire process and details of the acquired reference

data sets are discussed in Chapter 4.

3) Empirical evaluation of association measures for collocation extraction

A request for empirical evaluation of association measures in specific tasks was made

already by Giuliano in (1965). Later, other authors also emphasized the importance of

such evaluation in order to determine “efficacy and usefullness” of different measures

in different tasks and suggested various evaluation schemes for comparative evalua-

tion of collocation extraction methods, e.g. Kita et al. (1994) or Evert and Krenn (2001).

Empirical evaluation studies were published e.g. by Pearce (2002) and Thanopoulos et

al. (2002). A comprehensive study of statistical aspects of word cooccurrences can be

found in Evert (2004) or Krenn (2000).

Our evaluation scheme should be based on ranking, not classification, and it should

reflect the ability of association measure to rank potential collocations according to

their chance to form true collocations (judged by human annotators). Special attention

should be paid to statistical significance tests of the evaluation results. Evaluation

experiments, their results, and comparison are described in Chapter 5.

4) Combination of association measures for collocation extraction

The major contribution of our work lies in the investigation of the possibility for com-

bining associationmeasures intomore complexmodels and thus improve performance

in collocation extraction. Our approach is based on application of supervisedmachine

learning techniques and the fact that different measures discover different colloca-

tions. This novel insight into the application of association measures for collocation

extraction is explored in Chapter 6.
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Limitations

In this work, no special attention is paid to semantic and cross-language association as

discussed earlier in this chapter. We focus entirely on collocational association and the

study of methods for automatic collocation extraction from text corpora. However, the

inventory of association measures presented in this work, the evaluation scheme, as

well as the principle of combining associationmeasures can be easily adapted and used

for other types of lexical association. As can be judged from the volume of published

works in this field, collocation extraction has been the most popular application of

lexical association measures. The high interest in this field is also expressed in the

activities of the ACL Special Interest Group on the Lexicon (SIGLEX) and the long

tradition of workshops focused on problems related to this field.6

Further, our attention is restricted exclusively to two-word (bigram) collocations –

primarily for the limited scalability of somemethods to higher-order n-grams and also

for the reason that experiments with longer expressions would require processing of

a much larger corpus to obtain enough evidence of the observed events. For example,

the Prague Dependency Treebank (see Chapter 4) contains about 623 000 different depen-

dency bigrams – about 27 000 of them occur with frequency greater then five, which

we consider sufficient evidence for our purposes. The same data contains more then

twice as many trigrams (1 715 000), but only half the number (14 000) occurring more

than five times.

The methods we propose in our work are language independent, although some

language-specific tools are required for linguistic preprocessing of source corpora

(e.g. part-of-speech taggers, lemmatizers, and syntactic parsers). However, the eval-

uation results are certainly language dependent and cannot be easily generalized for

other languages. Mainly due to time and source constraints, we perform our experi-

ments only on a limited selection of languages: Czech, Swedish, and German.

Somepreliminary results of this research have already beenpublished (Pecina, 2005;

Pecina and Schlesinger, 2006; Cinková et al., 2006; Pecina, 2008a; Pecina, 2008b).

6ACL 2001 Workshop on Collocations, Toulouse, France; 2002 Workshop on Computational Ap-
proaches to Collocations, Vienna, Austria; ACL 2003 Workshop on Multiword Expressions: Analysis,
Acquisition and Treatment, Sapporo, Japan; ACL 2004Workshop onMultiword Expressions: Integrating
Processing, Barcelona, Spain; COLING/ACL 2006Workshop onMultiword Expressions: Identifying and
Exploiting Underlying Properties, Sydney, Australia; EACL 2006 Workshop on Multi-word-expressions
in a multilingual context, Trento, Italy; 2006 Workshop on Collocations and idioms: linguistic, computa-
tional, and psycholinguistic perspectives, Berlin, Germany; ACL 2007Workshopon aBroaderPerspective
on Multiword Expressions, Prague, Czech Republic; LREC 2008 Workshop, Towards a Shared Task for
Multiword Expressions, Marrakech, Morocco.



Chapter 2

Theory and Principles

This chapter is devoted to the theoretical background to collocations and principles

of collocation extraction from text corpora. First, we present the notion of colloca-

tion based on the work of F. Čermák who introduced this concept into Czech lin-

guistics (1982). It is followed by an overview of various other approaches to this

phenomenon presented from the perspective of theoretical and also applied linguis-

tics. In the second half of the chapter, we describe details of the process of collocation

extraction employed in the experimental part of this thesis.

2.1 Notion of collocation

The term collocation is derived from the Latin collorale (to place side by side, to co-

locate). In linguistics it is usually related to co-location of words, and the fact that

they can not be combined freely and randomly only by the rules of grammar. It is

a borderline phenomenon ranging between lexicon and grammar and as such it is

quite difficult to define and treat systematically. The folowing sections are intended to

illustrate the diverse notions of collocation advocated by various researchers.

2.1.1 Lexical combinatorics

Although in traditional linguistics, lexis (vocabulary) and grammar (morphology and

syntax)were perceived as separate anddistinct components of a natural language, they

are nowadays considered inseparable and completely interdependent. Syntactic rules

are not the only restrictions imposed on arranging words into meaningful expressions

11
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and sentences. Čermák (2006) emphasizes that semantic rules are thosewhich primar-

ily govern the combination of words. These rules determine semantic compatibility,

i.e. whether a lexical combination is meaningful or not (or to what extent), which

combinations are (proto)typical and most frequent, which are common and ordinary,

marginal and abnormal, orwhich are impossible. Syntax then plays only a subordinate

role in the process of lexical selection. Omitting the semantic rules generally leads to

grammatically correct but meaningless expressions and sentences. As a well-taken ex-

ample, Čermák (2006) gives the famous sentence composed byNoamChomsky (1957):

Colorless green ideas sleep furiously. Each word combination in this sentence (and thus

the sentence itself) is grammatically correct but nonsensical in meaning1.

In general, the ability of a word to combine with other words in text (or speech) is

called collocability. It is governed by both semantic and grammatical (and pragmatic)

rules and expressed in terms of paradigms – sets of words substitutable (functionally

equivalent) in a specific context (as a combination with a given word). It can be

specified either intensionally – by a description of the same syntactic and semantic

properties, which forms valency or extensionally – by enumeration, where no summary

specification can be applied. On this basis, Čermák and Holub (1982, p. 10) defined

collocation as a realization of collocability in text, and later (2001) as a “meaningful

combinationofwords [...] respecting theirmutual collocability andalso compatibility”.

Naturally, different words have a different degree of collocability (examples from

Čermák, 1982): On one hand, words like be, good, and thing can be combined with

a wide range of otherwords and only general (syntactic) rules are required for produc-

ing correct expressionswith such words. On the other hand, the collocability of words

like bark, cubic, and hypertension is more restricted and knowledge of these (semantic)

constraints is quite useful (togetherwith the general rules) to produce a more cohesive

text. Furthermore, there are words that can be combined with only one or a select few

others; their knowledge (lexical and pragmatic) is absolutely essential for their correct

usage in language, and they cannot be used otherwise (no general rules apply).

The scale of collocability ranges from free word combinations whose component

words can be substituted by anotherword (i.e. synonym)without significant change in

the overallmeaning and if omitted, they can not be easily predicted from the remaining

components, to idiomswhose semantics can not be inferred from the meanings of the

components. Čermák’s notion of collocation based on mutual collocability and com-

patibility spans a wide range of this scale. The resarch in natural language processing

1Although the expression green ideas can nowadays have a figurative meaning and be interpreted as
ideas that are ”environmentally friendly.”
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is usually focused on the narrower concept: word combinations with extensionally

restricted collocability – in literature described as significant (Sinclair, 1966), habit-

ual, fixed, anomalous and holistic (Moon, 1998), unpredictable, mutually expected

(Palmer, 1968), mutually selective (Cruse, 1986), or idiosyncratic (Sag et al., 2002).

2.1.2 Historical perspective

The idea of collocation was first introduced into linguistics by Harold E. Palmer (1938),

an English linguist and teacher. As a concept, however, collocations were studied by

Greek Stoic philosophers as early as in the third century B.C. They believed that “word

meanings do not exist in isolation, andmay differ according to the collocation in which

they are used” (Robins, 1967). Palmer (1938) defined collocations as “successions of

two or more words the meaning of which can hardly be deduced from a knowledge

of their component words” and pointed out that such concepts “must each be learnt

as one learns single words”, e.g. at least, give up, let alone, as a matter of fact, how do you

do. See also (Palmer and Hornby, 1937). Collocations as a linguistic phenomenonwere

studied mostly in British linguistics (Firth, Halliday, Sinclair) and rather neglected in

structural linguistics (Saussure, Chomsky).

An important contribution to the theoretical research of collocations was made by

John R. Firth who used the concept of collocation in his study of lexis to define amean-

ing of a single word (Firth, 1951; Firth, 1957). He introduced the term meaning by

collocation as a new mode of meaning of words and distinguished it from both the

“conceptual or idea approach to the meaning of words” and “contextual meaning”.

Uniquely, he attempted to explain it at the syntagmatic, not the traditional paradig-

matic, level (by semantic relations such as synonymyor antonymy)2. With the example

dark night, he claimed that one of themeanings of night is its collocability with dark, and

one of the meanings of dark is its collocability with night. Thus, a complete analysis

of the meaning of a word would have to include all its collocations. In (1957, p. 181),

he defined “collocations of a given word” as “statements of the habitual or customary

places of that word.” Later (1968), he used a more famous definition and described

collocation as “the company a word keeps”.

Firth’s students and disciples, known as Neo-Firthians, further developed his the-

ory. They regarded lexis as complementary to grammar and used collocations as the

basis for a lexical analysis of language alternative to (and independent from) the gram-

2The paradigmatic relationship of lexical items consists of sets of words belonging to the same class
that can be substituted for one another in a certain grammatical and semantic context. The syntagmatic
relationship of lexical items refers to the ability of a word to combine with other words (collocability).
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matical analysis. They argued that grammatical description does not account for all

the patterns in a language, and promoted the study of lexis on the basis of corpus-

based observations. Halliday (1966) defined collocation as “a linear co-occurrence

relationship among lexical items which co-occur together” and introduced the term

set as “the grouping of members with like privilege of occurrence in collocation”. For

example, bright, hot, shine, light, and come out belong to the same lexical set, since they

all collocate with the word sun (Halliday, 1966, p. 158).

Sinclair (1966) also regardedgrammar and lexicon as “twodifferent interpenetrating

aspects”. Hedealt with quite general “tendencies” of lexical items to collocatewith one

anotherwhich “ought to tell us facts about language that cannot be got by grammatical

analysis”. He introduced the following terminology for the structure of collocations:

a node as the item whose collocations are studied, a span as the number of lexical

items on each side of a node that are considered relevant to that node, and collocates

as the items occurring within the span. He even argued that “there are virtually no

impossible collocations, but some are much more likely than others” (1966, p. 411) but

later distinguished between casual collocations and significant collocations that “occur

more frequently than would be expected on the basis of the individual items”. In

(1991, p. 170), he defined collocation directly as “occurrence of two or more words

within a short space of each other in a text”, where “short space” is suggested as

a maximum of four words intervening together. He also added that “Collocations can

be dramatic and interesting because unexpected, or they can be important in the lexical

structure of the language because of being frequently repeated.”

Halliday and Hasan (1967, p. 287) described collocation as “a cover term for the

cohesion that results from the cooccurrence of lexical items that are in some way or

other typically associated with one another, because they tend to occur in similar

environments” and gave examples such as: sky – sunshine – cloud – rain or poetry –

literature – reader – writer – style, etc.

Mitchell (1971) considered lexis and grammar as interdependent, not separate and

discrete, but forming a continuum. He argued for the “oneness of grammar, lexis and

meaning” (p. 43) and suggested collocations “to be studiedwithin grammatical matri-

ces [which] in turndepend for their recognition on the observation of collocational sim-

ilarities” (p. 65). By the grammatical matrices he understood patterns such as adjective

– noun, verb – adverb, or verb – gerund. Fontenelle (1994b), on the other hand, perceived

the concept of collocation as “independent of grammatical categories: the relationship

which holds between the verb argue and the adverb strongly is the same as that holding

between the noun argument and the adjective strong” (Fontenelle, 1994b, p. 43).



2.1. NOTION OF COLLOCATION 15

2.1.3 Diversity of definitions

The disagreement on the notion of collocation among different linguists is quite re-

markable not only in historical context but also in current research. Noneof the existing

definitions of collocation is commonly accepted either in formal or computational lin-

guistics. In general, the definitions are based on five fundamental aspects, which we

will address in the following passages (cf. Moon (1998) and Bartsch (2004)):

1) grammatical boundedness,

2) lexical selection,

3) semantic cohesion,

4) language institutionalization,

5) frequency and recurrence.

1) Grammatical boundedness

By grammatical boundedness we mean a (direct) syntactic relationsip between com-

ponents of collocation. This criterion was omitted in early studies on collocations.

Sinclair’s concept of collocation presented in the previous section (Sinclair, 1966) sug-

gests that all occurrences (including those not grammatically bounded) of two or more

words can be considered collocations. More notably, Halliday’s and Hasan’s (1967)

definition describing words which ”tend to occur in similar environments“ directly

implies that collocations do not necessarily appear as grammatical units with a specific

word order, e.g. hair, comb, curl, wave or candle, flame, flicker (see also above). Halliday

and Hasan (1967, p. 287) even emphasized that they are ”largely independent of the

grammatical structure“. For such classes of words that are “likely to be used in the

same context” (semantically related but not syntactically dependent) Manning and

Schütze (1999, p. 185) suggested to use the terms association or co-occurrence, e.g. doc-

tor, nurse, hospital. In his later work, Hasan (1984) rejected his previous definition of

collocation as too broad and used the term lexical chain for this concept.

The grammatical aspect became important in the notion of collocation based on

lexical collocability (see below). Also Kjellmer (1994, p. xiv) explicitly defined col-

locations as “reccuring sequences that are grammatically well formed”. Similarly,

Choueka (1988) used the expression “a syntactic and semantic unit” in his definition of

collocation. Although, most of the current definitions are not explicit about grammati-

cal boundedness, they usually assume that collocations form grammatical expressions

implicitly.
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2) Lexical selection

The process of lexical selection in natural language production (generation) is closely

related to collocability (expressing the ability of words to be combined with other

words, see Section 2.1.1). Collocations (as opposed to freeword combinations) are often

characterized by restricted (or preferred) lexical selection, i.e. not-easily-explainable

patterns of word usage (Manning and Schütze, 1999, p. 141). For example, Meals will

be served outside on the terrace, weather permitting. vs. *Meals will be served outside on the

terrace, weather allowing. Although to allow and to permit have very similar meanings,

in this combination, only permitting is correct. For the same reason (examples from

Manning andSchütze,1999): stiff breeze is correct but *stiffwind is not, strong tea is correct

and *powerful tea not, although powerful drugs and strong cigarette are correct too.

Constrained lexical selection (morpho-syntactic preference) is what distinguishes

free word combinations from collocations, which Bahns (1993, p. 253) depicted as

“springing to mind in such a way as to be said to be psychologically salient”. Kjellmer

(1991, p. 112) claimed that “the occurrence of one of the words in such combination

can be said to predict the occurrence of the other(s)”. Similarly Bartsch (2004, p. 11)

claimed that “the choice of one of the constituents appears to automatically trigger

the selection of one or more other constituents in their immediate context” and “block

the selection of other lexical items that, according to their meaning and morpho-

syntactic properties, appear to be eligible choices in the same expression”. Bartsch

(2004, p. 60) also discussed directionality of the process of co-selection, but for the

notion of collocation it seems not important.

3) Semantic cohesion

The criterion of semantic cohesion reflects the semantic transparency or opacity (com-

positionality or non-compositionality) of word combinations. Many researchers use

cohesion to distinguish between idioms and collocations as different lexical phenom-

ena. Benson (1985, p. 62) clearly stated that “the collocations [...] are not idioms:

their meanings are more or less inferrable from the meanings of their parts”. Idioms

do not reflect the meanings of their component parts at all, whereas the meaning of

collocations does reflect the meanings of the parts (Benson et al., 1986, p. 253).

Cruse (1986, p. 37–41) also distinguished between collocations and idioms. He

perceived idioms as “lexically complex” units, constituting a “single minimal semantic

constituent”, “whose meaning cannot be inferred from the meaning of its parts”.

He used the term collocation to “refer to sequences of lexical items which habitually

co-occur, but which are nonetheless fully transparent in the sense that each lexical



2.1. NOTION OF COLLOCATION 17

constituent is also a semantic constituent” an gave examples such as fine weather,

torrential rain, light drizzle, and high winds. He also added that they are “easy to

distinguish from idioms; nonetheless they do have a kind of semantic cohesion – the

constituent elements are, to varying degrees, mutually selective”. The cohesion is

especially evident when “the meaning carried by one (or more) of the constituent

elements is highly restricted contextually, and different from its meaning in more

neutral contexts”. He also introduces “bound collocations” as expressions “whose

constituents do not like to be separated” and “transitional area bordering on idiom”

(e.g. foot the bill and curry flavour).

Fontenelle (1994b) stated that collocations are both “non-idiomatic expressions” as

well as “non-free combinations”. He characterized idiomatic expressions by “the fact

that they constitute a single semantic entity and that theirmeaning is not tantamount to

the sum of the meanings of the words they are made up of” (e.g. to lick somebody’s boots

which is neither about licking nor about boots). To illustrate the difference between

collocations and free-combinations he gave an example of adjectives sour, bad, addled,

rotten, and rancid that all can be combined with nouns denoting food, but they are

no freely interchangeable. Only sour milk, bad/addled/rotten egg, and rancid butter are

correct collocations in English. Other combinations such as *rancid egg, *sour butter,

and *addled milk are unacceptable.

Some researchers, however, do not explicitly exclude idioms from collocations –

Wallace (1979) even perceived collocations (and proverbs) as subcategories of idioms.

Carter (1987, p. 58) considered idioms and fixed expressions as subclasses of collo-

cations. He described idioms as “restricted collocations which cannot normally be

understood from the literal meaning of the words which make them up” such as have

cold feet and to let the cat out of the bag. He argued that among collocations there are also

other fixed expressions, such as as far as I know, as a matter of fact, and if I were you that

are not idioms but are also “semantically and structurally restricted”.

Similarly, Kjellmer (1994, p. xxxiii) used collocation as an inclusive term and pre-

sented idiom as a “subcategory of the class of collocations” defined as “a collocation

whose meaning cannot be deduced from the combined meanings of its constituents”.

Choueka (1988) also included idioms in his definition of collocation: “[A collocation

expression] has a characteristics of a syntactic and semantic unit whose exact and

unambiguous meaning or connotation cannot be derived directly from the meaning

or connotation of its components.” Manning and Schütze (1999, p. 151) claimed that

“collocations are often characterized by limited compositionality“ and that ”idioms

are the most extreme examples of non-compositionality. Also Čermák (2001) explicitly

conceived idioms as a subtype of collocations (see Section 2.1.4).
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4) Language institutionalization

Language institutionalization is a process bywhich a phrase becomes “recognized and

accepted as a lexical item of the language” (Bauer, 1983). Institutionalized phrases,

originally fully compositional and free word combinations, become significant and

idiosyncratic by their frequent and consistent usage (particularly in comparison with

other alternative lexicalizations of the same concept). Baldwin andVillavicencio (2002)

illustrate this phenomenon on the example of machine translation: “There is no partic-

ular reason why one could not say computer translation [...] but people do not.“ Bauer

(1983) gave examples such as telephone booth (correct in American English) vs. tele-

phone box (correct in British English), salt and pepper, etc. Institutionalized phrases are

domain-dependent – they can be adopted only within a certain domain and not else-

where, e.g. carriage return in computer science, or white water in outdoor sports, etc.

5) Frequency of occurrence

Frequency of occurrence plays an important role in many attempts to describe and de-

fine collocations. Benson et al. (1986, p. 253) characterized collocation as being “used

frequently”, Bartsch (2004) defined collocations as “frequently recurrent, relatively

fixed syntagmatic combinations of two or more words”. Frequency is closely related

to institutionalization but it is difficult to be quantified. Kjellmer’s (1987, p. 133) re-

striction on sequences “of words that occur more than once in identical form and is

grammatically well-structured” is apparently insufficient. The key issue is corpus rep-

resentativeness – which is, in general, insufficient and therefore no absolute constraint

can be imposed on a phrase as a frequency limit to become recognized as a collocation.

Sinclair (1991) defined a collocation as the “occurrence of two or more words within

a short space of each other in a text” that makes potentially any cooccurrence of two

or more words a collocation – which is also questionable.

Some more statistically motivated definitions are not based on the absolute fre-

quency of occurrence but rather on its statistical significance, where frequency of

component words is also taken into account: Church and Hanks (1989) defined a col-

location as “a word pair that occurs together more often than expected”, McKeown

and Radev (2000) as “a group of words that occur togethermore often than by chance”,

Kilgarriff (1992, p. 29) as words co-occuring “significantly more often then one would

predict, given the frequencyof occurence of eachword taken individualy”, and Sinclair

(1966, p. 411) defined significant collocations as combinations occuring “more frequently

than would be expected on the basis of the individual items”. This approach is fun-

damental for methods of automatic collocation extraction but it also deals with the

problem of a limited corpus representativeness and data sparsity in general.
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2.1.4 Typology and classification

Several attempts have been made to design a topology or classification of collocations

and related concepts. All of them are closely tied to the definition of the studied

concept and the criteria used for its classification. We present four representative

approaches to illustrate the diversity of the notion of collocation among theoretical

and also applied linguists.

Lexical combinations by Čermák (2001)

Čermák (2001; 2006), in accordance with his notion of collocation (see Section 2.1.1),

attempted to classify lexical combinations by twobasic linguistic distinctions: stableness

(stable – unstable, langue – parole, system–text) and regularity (regular – irregular) into

the types shown below. This classification, compared to others, is quite systematic.

Apparently, not all combinations are considered to be collocations, but the collocations

do subsume idioms. Čermák also emphasized that the typesA and B are not absolutely

distinct and introduced the C type as the boundary case betwen type A1a and B3a.

A)Langue 1. regular a) terminological collocations (multiword technical terms)

cestovnı́ kancelář (travel agency), kyselina sı́rová (sulphuric acid)

b) proprial collocations (multiword proper names)

Kanárské ostrovy (Canary Islands), Velká Británie (Great Britain)

2. irregular idiomatic collocations (idioms and phrasemes)

ležet ladem (lie fallow), jen aby (just to)

B)Parole 3. regular a) common collocations (gram.– semantic combinations)

letnı́ dovolená (summer vacation), snadná odpověd’ (easy answer)

b) analytical form combinations (analytical forms)

šel by (would go), byl zapsán (was subscribed)

4. irregular a) individual metaphoric collocations (authors’ metaphors)

třeskutě vtipný (bitingly funny), virové hrátky (viral games)

b) random adjacent combinations (adjacent occurrences)

uvnitř bytu (inside [an] apartment), že v (that in)

c) other combinations (babble)

C)Langue/Parole 5. common established collocations (boundary typeA1a-B3a)

umýt si ruce (wash hands), nastoupit do vlaku (board [the] train)
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Word combinations by van der Wouden (1997)

Van der Wouden (1997, 8–9) used the following categorization of word combinations

based on semantic cohesion (cf. also Benson et al., 1986). Here, collocations occupy

a relatively narrow part of the scale but among the other types they are denoted as

fixed expressions as opposed to free combinations.

1) free combinations–whose components combinemost freelywithother lexical items

a murder + verbs, such as to analyze and to describe

2) collocations – loosely fixed combinations between idioms and free combinations

to commit a murder

3) transitional combinations – between idioms and collocations, more frozen than or-

dinary collocations and, unlike idioms, these combinations seem to have amean-

ing close to that suggested by their component parts

to catch one’s breath

4) idioms – relatively frozen,meanings donot reflect themeaning of their components

to kick the bucket

5) proverbs/sayings – usually more frozen than idioms but form complete sentences

a friend in need is a friend indeed

6) compounds – totally frozen with no possible variations

definite article

Fixed expressions and idioms by Moon (1998)

Moon (1998, p. 19–21) worked with the term “fixed expressions and idioms” (FEIs).

She stated that ”no clear classifications [of FEIs] are possible” and suggested that

”it should be stressed that FEIs are non-compositional (to some extent); collocations

and idioms represent two large and amorphous subgroups of FEIs on continuum;

transformational deficiencies are a feature of FEIs but not criterial; and discoursally or

situationally constrained units should be considered FEIs.”Her topologywas based on

the identification of the primary reasons why each potential FEI might be ”regarded

lexicographically as a holistic unit: that is, whether the string is problematic and

anomalous on grounds of lexicogrammar, pragmatics, or semantics”. This typology

has three macrocategories anomalous collocations, formulae, and metaphors, each

divided into finer grained subcategories.
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A) anomalous collocations (problems of lexicogrammar)

1. ill-formed collocations – syntagmatically or paradigmatically aberrant

at all, by and large

2. cranberry collocations – idiosyncratic lexical component

in retrospect, kith and kin

3. defective collocations – idiosyncratic meaning component

in effect, foot the bill

4. phraseological collocations – occurring in paradigms

in/into/out of action, on show/display

B) formulae (problems of pragmatics)

1. simple formulae – routine compositional strings with a special discourse

function; alive and well, you know

2. sayings – quotations catch-phrases, truism

an eye for an eye; a horse, a horse, my kingdom for a horse

3. proverbs (literal/metaphorical) – traditional maxims with deontic functions

you can’t have your cake and eat it, enough is enough

4. similes – institutionalized comparisons

as good as gold, live like a king

C) metaphors (problems of semantics)

1. transparent metaphors – expected to be decoded by real-world knowledge

behind someone’s back, pack one’s bags

2. semi-transparent metaphors – special knowledge required for decoding

on an even keel, pecking order

3. opaque metaphors – absolutely-compositional

bite the bullet, kick the bucket

Multiword expressions by Sag et al. (2002)

Sag et al. (2002, p. 2) definedmultiword expressions (MWEs) “roughly as idiosyncratic

interpretations that cross word boundaries (or spaces)” and stated that the “problem

of multiword expressions is underappreciated in the field at large” and later “MWEs

appear in all text genres and pose significant problems for every kind of NLP.” As

the main problems, Sag at al. mentioned “overgeneration”, when no attention is paid

to collocational preferences in language generation (e.g. *telephone cabinet instead of

telephone box in British or telephone booth in American), and “idiomaticity” leading to



22 CHAPTER 2. THEORY AND PRINCIPLES

missinterpretation of idiomatic and metaphoric expressions (e.g. kick the bucket). The

terminology used in the proposed classification is adopted from Bauer (1983).

The term collocation is not used at any level of the classification. It is used to refer

to “any statistically significant cooccurrence, including all forms of MWE as described

above and compositional phraseswhich are predictably frequent (because of realworld

events or other nonlinguistic factors).” For example: sell and house appear more often

than one can predict from the frequency of the two words, but “there is no reason to

think that this is due to anything other than real world facts.”

A) lexicalized phrases – have at least partially idiosyncratic syntax or semantics, or

contain ’words’ which do not occur in isolation:

1. fixed expressions – immutable expressions that defy conventions of grammar

and compositional interpretation, e.g. by and large, in short, kingdom come,

every which way; they are fully lexicalized and undergo neither morphosyn-

tactic variation (cf. *in shorter) nor internal modification (cf. *in very short)

2. semi-fixed expressions – adhere to strict constraints on word order and com-

position, but undergo some degree of lexical variation, e.g. in the form of

inflection, variation in reflexive form, and determiner selection

a) non-decomposable idioms – kick the bucket, trip the light

b) compound nominals – car park, attorney general, part of speech

c) proper names – San Francisco, Oakland Riders

3. syntactically-flexible expressions – exhibit a much wider range of syntactic

variability

a) verb-particle constructions – write up, look up, brush up on

b) decomposable idioms – let the cat out of the bag, sweep under the rug

Idioms such as spill the beans, for example, can be analyzed as being

made up of spill in a reveal sense and the beans in a secret(s) sense,

resulting in the overall compositional reading of reveal the secret(s)

c) light verbs – make a mistake, give a demo

B) institutionalized phrases – syntactically and semantically compositional but sta-

tistically idiosyncratic, they occur with remarkably high frequency (in a given

context), e.g. traffic light.
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2.1.5 Conclusion

There is no commonly accepted definition of collocation and we do not aim to cre-

ate one. Based on Čermák’s notion of compatibility and collocability (Section 2.1.1),

we understand collocation as a meaningful and grammatical word combination con-

strained by extensionally specified restrictions and preferences. This approach has

two important aspects: First, it restricts collocations only to meaningful grammatical

expressions, and therefore combinations of incompatible words (e.g. yellow idea) and

combinations of words without direct syntactic relationship (e.g. doctor – nurse) cannot

form collocations. Second, combination of words in a collocation must be governed

not only by syntactic and semantic rules but also by some other restrictions that cannot

be based on the description of syntactic and semantic properties of the components –

they must be specified explicitly by enumeration (i.e. extensionally).

This approach is quite similar to that preesnted by Evert (2004). His notion of

collocation is based on the definition by Choueka (1988) saying that “[A collocation

expression] has a characteristics of a syntactic and semantic unit whose exact and

unambiguous meaning or connotation cannot be derived directly from the meaning

or connotation of its components.” Evert added only an explicit criterion that should

help to distinguish between collocational and non-collocational expressions: “Does it

deserve a special entry in a dictionary or lexical database of the language?” and de-

fined collocation as “a word combination whose semantic and/or syntactic properties

cannot be fully predicted from those of its components, and which therefore has to be

listed in a lexicon” (Evert, 2004, p. 9), which only emphasizes the extensional character

of collocations – to be enumerated, listed in a lexicon.

Also, in a similar manner to Evert (2004), we use collocation as “a generic term

whose specific meaning can be narrowed down according to the requirements of

a particular research question or application” (Evert, 2004, p. 9). However, each ex-

periment presented in this work is performed on a specific data set and bounded with

a particular definition of the studied concept (or its subtype) and thus it is always clear

what phenomenon we deal with.

The presented notion of collocation is possibly interchangable with the concept

of multiword expression (MWE) that has became commonly prefered and accepted

by many authors and researchers. Baldwin (2006) defined it as an expression that is

“1) decomposable into multiple simplex words and 2) lexically, syntactically, seman-

tically, pragmatically and/or statistically idiosyncratic”. Mainly for historical and

traditional reasons, we keep using the term collocation in this work.
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2.2 Collocation extraction

Collocation extraction is a traditional task of corpus linguistics. The goal is to extract

a list of collocations from a text corpus. Generally, it is not required to identify

particular occurrences (instances, tokens) of collocations, but rather to produce a list of

all collocations (types) appearing anywhere in the corpus – a collocation lexicon. The

task is often restricted to a particular subtype or subset of collocations (defined e.g. by

grammatical constraints), but we will deal with it in a general sense. The first research

attempts in this area are dated back to the era of “mechanized documentation” (Stevens

et al., 1965). Thefirstwork focusedparticularly on collocation extractionwaspublished

by Berry-Rogghe (1973), and later followed by studies by Choueka et al. (1983), Church

and Hanks (1990), Smadja (1993), Kita et al. (1994), Shimohata et al. (1997), and many

others, especially in the last ten years (Krenn, 2000; Evert, 2004; Bartsch, 2004)

In the following sections we will briefly discuss the basic principles of collocation

extraction and then, in more detail, we will describe individual steps of the whole

extraction process. The reference corpus we will use in our examples in this section is

thePragueDependencyTreebank, version 2.0 (PDT), described indetail later in Section 4.2.

2.2.1 Extraction principles

Methods for collocation extraction are based on several different extraction principles.

These principles exploit characteristic properties of collocations and are formulated as

hypotheses (assumptions) aboutword occurrence and cooccurrence statistics extracted

from a text corpus. Mathematically, they are expressed as formulas that determine the

degree of collocational association between words. These formulas are commonly

called lexical association measures. In this thesis, we focus our attention onmeasures

based on the following extraction principles:

1) Collocation components occur together more often than by chance

The simplest approach to discover collocations in a text corpus is counting – if two

words occur together a lot, then that might be the evidence that they have a special

function that is not simply explained as a result of their combination (Manning and

Schütze, 1999, p. 153). The assumption that collocations occur more frequently than

arbitrary combinations is reflected in many definitions of collocation (see Section 2.1.3)

but in practice it presents certain difficulties:
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First, natural language contains some highly frequent word combinations that are

not considered collocations, e.g. various combinations of function words (words with

little lexical meaning, expressing only grammatical relationships with other words).

For example, the most frequent word combination (with a direct syntactic relation

between components) in PDT is by měl (would have) with frequency 2 124, while the

most frequent combination that can be considered a collocation is Česká republika (Czech

Republic) occurring only 527 times. Such “uninteresting” combinations should be

identified and eliminated during the extraction process.

Second, high frequency of certain word combinations can be purely accidental –

very frequent words are expected to occur together a lot just by chance, even if they

do not form a collocation. For example, the expression nový zákon (new law) is among

the 35 most frequent adjective-noun combinations although it is not a collocation (not

surprisingly, the words nový (new) and zákon (law) are indeed very frequent; in PDT,

the word nový (as masculine inanimate) occurs 777 times and the word zákon occurs

1575 times – both are among the most frequent adjectives and nouns).

The basic principle of collocation extraction is based on distinguishing between

random (free) word combinations that occur together just by chance, and those that are

not accidental and possibly form collocations. Herein, not only the frequency of word

cooccurrences but also the frequencies of words occurring independently are taken

into account. The corpus is observed as a sequence of randomly and independently

generated word bigrams (a random sample), and their joint and marginal occurrence

frequencies are then employed in various association measures to estimate howmuch

the word cooccurrence is accidental.

One class of associationmeasures using this principle is based on statistical hypoth-

esis testing: The null hypothesis is formulated such that there is no association between

the words beyond chance occurrences. The association measures are, in fact, the test

statistics used in these hypothesis tests. Other classes of measures using this princi-

ple are likelihood ratios (expressing how much more likely one hypothesis is against

the other), and other (mostly heuristic) measures of statistical association or measures

adopted from other fields, such as information theory (Church et al., 1991) and others.

2) Collocations occur as units in an information-theoretically noisy environment

While the previous principle deals with the relationship of words inside collocations,

in this approach we analyse the outside relationships of collocations, i.e. words which

immediately precede or follow the collocation in the text stream (immediate contexts).
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By determining the entropy of these contexts, we can discover points in the word

streamwith either low or high uncertainty (disorder) what the next (or previous) word

will be. “Points with high uncertainty are likely to be phrase boundaries, which in

turn are candidates for points where a collocation may start or end, whereas points

with low uncertainty are likely to be located within a collocation.” (Manning and

Schütze, 1999, p. 181). In other words, entropy inside collocations is expected to be

lower (low uncertainty, high association) and outside collocations to be higher (high

uncertainty, low association). Methods based on this principle has been employed

e.g. by Evans and Zhai (1996), Shimohata et al. (1997), and Pearce (2002).

The corpus is again interpreted as a sequence of randomly (and independently)

generated words. For each collocation candidate we estimate probability distribution

of words occurring in its immediate contexts (left and right) and determine its lexical

association based on measuring entropy of these contexts.

3) Collocations occur in different contexts to their components

Limited compositionality is a typical property of collocations – the meaning of a collo-

cation cannot be fully inferred from the meanings of its components. In other words,

meaning of a collocation must (to some extent) differ from the “union” of the mean-

ing of its components (see Section 2.1.3). Traditional examples of this property are

idiomatic expressions (e.g. kick the bucket – there is no bucket nor kicking in the meaning

of this idiom).

A typical way of modeling senses in natural language processing is by empirical

contexts, i.e. by a bag of words occurring within a specified context window of a word

or an expression. The more different the contexts are, the higher the chance is that

the expression is a collocation (Zhai, 1997). Lexical association measures based on this

principle are adopted from mathematics (vector distance), information theory (cross-

entropy, divergence) and from the field of information retrieval (vector similarity).

A major weakness of most lexical association measures lies in their unreliability

whenapplied to low frequencydata. They either assumewordoccurrenceprobabilities

to be approximately normally distributed (e.g. t-test), which is not true in general

(Church and Mercer, 1993) and unensurable to assume when dealing with frequencies

aroundfive or less. Or they are just sensitive to estimates that are inaccurate due to data

sparseness (e.g. Pointwise mutual information), see (Manning and Schütze, 1999, p. 181).
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Other extraction principles

Various other extraction principles have been proposed, however, they are not of

our interest in this work – they either require additional linguistic resources or they

are not based on measuring lexical association. For example, Manning and Schütze

(1999, Chapter 5) described a technique based on analysis of the mean and variance

of distance between the components of word combinations. Pearce (2002) exploited

another characteristic property of collocation – non-substitutability and measured

whether collocation components can be replaced by their synonyms, where Wordnet

(Fellbaum, 1998) was used as a source of such (lexical) synonyms. Several researchers

have also attempted to extract collocations (and their translations) from bilingual

parallel corpora, e.g. Ohmori and Higashida (1999) or Wu and Zhou (2003).

2.2.2 Extraction pipeline

Automatic collocation extraction is usually performedas a process consisting of several

steps, called the extraction pipeline (Evert and Kermes, 2003; Krenn, 2000):

First, the corpus as a collection of machine-readable texts in one language is lin-

guistically pre-processed – morphologically and syntactically analyzed and disam-

biguated. Second, all collocation candidates (potential collocations) are identified and

their occurrence statistics extracted from the corpus. Third, the candidates are filtered

to improve precision (based on grammatical patterns and/or occurrence frequency).

Fourth, a lexical association measure is chosen and applied to the occurrence statistics

obtained from the corpus. Finally, the collocation candidates are classified according

to their association scores and a certain threshold – candidates above this threshold

are classified as collocations and candidates below the threshold as non-collocations.

There is no principled way of finding the optimal classification threshold (Inkpen

and Hirst, 2002) – it depends primarily on the intended application (whether high

precision or broad coverage is preferred) and is usually set empirically. To avoid this

step, the task of collocation extraction is usually reformulated as ranking collocation

candidates – the goal is not to extract a discreet set of collocations from a given corpus,

but instead to rank all potential collocations according to their degree of association so

that the most associated ones are concentrated at the top of the list. This approach to

collocation extraction will be applied in the rest of our work. The extraction pipeline

for bigram collocation extraction will be described in detail in the following sections,

and lexical association measures will be presented separately in the next chapter.
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2.2.3 Linguistic preprocessing

By linguistic preprocessing we mean the analysis and disambiguation at the level of

morphology and surface syntax. Higher levels of linguistic processing (e.g. deep syn-

tax) are not useful since we are interested only in the association at the lexical level.

In this step, information about word base forms, morphological categories, and sentence

syntax is obtained in order to identify collocation candidates and all their occurrences

– regardless of inflectional variance and sentence position.

Formally, a source corpus W is expected in the form of a linearly ordered set

of n word tokens wi identified as contiguous, non-overlapping strings vi over an

alphabet Σ distinguished by their position i = 1, . . . , n in the corpus, so the i-th word

token wi is a pair 〈i, vi〉. The ordering of W is defined by the natural ordering of the

positions. The items vi are called word forms and the set of all possible word forms is

called the vocabulary V.

W = {w1, . . . , wn} , wi := 〈i, vi〉, vi ∈ V ⊂ Σ∗, i = 1, . . . , n.

During morphological analysis and disambiguation, each word tokenwi from W is

assigned (by mapping φ) a (basic) word type u (from a set of all such word types U ).

The word types define equivalence classes of word tokens based on inflection, so all

inflectional variants are assigned the same value u. We denote ui as the word type

assigned to the word token wi.

φ : W → U, ui := φ(wi), i = 1, . . . , n.

Technically, each u∈U is usually a pair 〈l, t〉 where l is a lemma – a word base form

as it appears in the lexicon L – and t is a tag from the tag set T specifying detailed

morphological characteristics (e.g. derivational) shared by all the inflectional variants.

u = 〈l, t〉, l ∈ L, t ∈ T.

Theword types are defined to conflate all word tokens not only with the sameword

base form but also with the same lexical meaning – which may not be fully reflected in

the word base form. Details strongly depend on the system employed for encoding

the morphological information in the corpus. For example, in the Czech system

used in PDT, the information about the morphological categories negation or grade

(degree of comparison) which are considered derivational and which discriminate

word meanings, is encoded in the tag, not in the lemma. For this reason, e.g. the word

types of nebezpečný (insecure) and nejvyššı́ (highest) must be encoded as 〈bezpečný, 1N〉
(secure, 1stgrade, negative) and 〈vysoký, 3A〉 (high, 3rdgrade, affirmative), respectively (for

details, see also Section 4.2.1).
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During syntactic analysis and disambiguation, each word tokenwi from the corpus

W is assigned (by a function δ applied to its index i) an index j of its head word wj

(in terms of dependency syntax, wj governs wi) and (by a mapping α) the analytical

function a (from the set A of all possible analytical functions enriched by a special

value HEAD, see details bellow) specifying the type of syntactic relation between the

word token and its head word. The head word of a word token wi is either another

word token wj , i 6= j from the same sentence, or the value NULL if wi is the root of the

sentence (j = 0). We denote ai as the analytical function assigned to theword tokenwi.

δ : {1, . . . , n} → {0, . . . , n}, δ(i) 6= i,

α : W → A, ai := α(wi), i = 1, . . . , n.

In order to identify word tokens that are not only inflectional variants but also

have the same syntactic function, eachword tokenwi can be assigned (by amappingϕ)

an extendend word type 〈ui, ai〉, which consists of its word type ui and its analytical

function ai.

ϕ : W → U×A, ϕ(wi) = 〈ui, ai〉, ui = φ(wi), ai = α(wi), i = 1, . . . , n.

For technical reasons, we also define a special extendedword type that can be assigned

(by amapping ϕ′) to any word tokenwi and consists of its word type ui and the special

value of analytical function ai = HEAD. This extendedword type will be used to label

head words appearing in a dependency relation with other words.

ϕ′ : W → U×A, ϕ(wi) = 〈ui,HEAD〉, ui = φ(wi), i = 1, . . . , n.

Generally, linguistic preprocessing is not necessarily required for collocation ex-

traction, especially when working with languages with simple morphology (such as

English) and if we focus e.g. only on fixed adjacent and non-modifiable collocations.

However, if we have to deal with complex morphology (e.g. in Czech) and if we

want to extract syntactically bounded word combinations with free word order, this

information is quite useful.

Linguistic information can also be used in the subsequent steps of the extraction

pipeline for filtering collocation candidates (see Section 2.2.6) and to construct ad-

ditional features in methods combining statistical and linguistic evidence in more

complex classification and ranking models (see Chapter 6).
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2.2.4 Collocation candidates

Collocation candidates represent the set of all potential collocations appearing in the

corpus, i.e. the word combinations that satisfy some basic requirements imposed on

collocations (e.g. components to be in a direct syntactic relation or to occur within

a given distance in the text). Collocation candidates are examined with respect to the

degree their components are associated, and ranked according to their strength of

association, as specified in the task description. The goal of this step of the extraction

pipeline is to identify all collocation candidates and their instances (occurrences) in

the corpus. First, we will describe this step on a general level, then with details of

specific approaches.

First, the corpus W is by some means transformed to a set B consisting of bigram

tokens bk = 〈wi, wj〉, i.e. pairs of word tokens from the corpus satisfying some given

conditions. Elements of B are indexed by k ∈ {1, . . . , N}, where N = |B|, although
the actual ordering of this set is not important.

B = {b1, . . . , bN}, B ⊂ W×W, bk = 〈wi, wj〉, k = 1, . . . , N.

Second, each bigram token bk from the set B is assigned (by a mapping Φ) a bigram

type c (from a set C∗ of all possible bigram types) defining equivalence classes of

bigram tokens based on inflection – all bigram tokens that differ only in inflection

are assigned the same bigram type c. Bigram types identified by Φ in B are called

collocation candidates and a set of all such bigram types is denoted by C . Each

bigram token is thus an instance of a collocation candidate. We denote ck as the

bigram type of the bigram token bk.

Φ : B → C∗, ck := Φ(bk), k = 1, . . . , N, C := Φ(B), C ⊂ C∗.

Third, a multiset (allowing repeated elements, also called a bag) D, referred to as

the candidate occurrence data (or candidate data), is acquired as a result of Φ applied

on all the elements from B, i.e. bigram types assigned to all bigram tokens. This data

serves as a basis for the extraction of occurrence statistics described in the following

section.
D = {c1, . . . , cN}, ck = Φ(bk), bk ∈ B, k = 1, . . . , N.

The collocation candidate data can be obtained in several alternative ways, depend-

ing on the level of linguistic preprocessing of the corpus. These ways differ in how the

set of bigram tokens B is constructed and how the mapping Φ is defined to produce

the elements of D. In the following paragraphs, we will describe three approaches we

employed in our experiments.
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Dependency bigrams

The generic notion of collocation presented in Section 2.1.5 requires collocations to

be syntactic units. In dependency syntax, as it is applied in PDT, this constraint can

be interpreted as the presence of a direct dependency relation between the collocation

components. Collocation candidates can then be identified as dependency bigrams.

The set Bdep then consists of dependency bigram tokens defined as pairs 〈wi, wj〉 of
word tokens from the corpus W in a direct dependency relation of a certain type and

in a certain word order.

Bdep = {〈wi, wj〉∈ W×W : i < j ∧ (j = δ(i) ∨ i = δ(j))} .

In general, word order can discriminate between the collocation candidates, and it

should be distinguished between bigrams with the first component as the head word

and the second one as the modifier and vice versa. For illustration, see the following

example: dependency bigrams velký výr and výr velký differ only in word order; the

component výr is in both the cases the head word and velký is its attribute but the

meanings of these expressions are different – the first refers to a big owl and the latter

denotes stock owl as a biological species. On the other hand, in some collocations, word

order is not that important: For example, naklepat maso (to tenderize meat) can occur

in this and also in the reverse word order: Petr naklepal maso and Maso jsem naklepal

včera are both correct sentences containing the collocation naklepat maso. Since it is not

clear how to determine when word order is important and when it is not, we decided

to preserve word order in all collocation candidates. This is done by the condition

i < j (the first component must always precede the second one in the corpus). For this

reason, dependency relations are possible in both directions, either j = δ(i) or i = δ(j).

The mapping Φdep that assigns to each bigram token from Bdep its bigram type is

for dependency bigrams defined by extended word types in the following way:

Φdep (〈wi, wj〉) =

{ 〈ϕ(wi), ϕ
′(wj)〉 for j = δ(i),

〈ϕ′(wi), ϕ(wj)〉 for i = δ(j).

One component of a dependency bigram appearing in a sentence always acts as

the head and the other one as the modifier. The head word, however, also participates

in another relation outside the bigram as a modifier. This relation is ignored in the

dependency bigram and the analytical function of the bigram head word is set to the

value HEAD (by the mapping ϕ′).
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Surface bigrams

Extracting the collocation candidates as dependency bigrams is quite a reasonable ap-

proach. It is guaranteed that each potential collocation is a syntactic unit. However,

the source corpus is expected to be syntactically analyzed and disambiguated in order

to identify such bigrams. If this is not the case, we can detect collocation candidates

heuristically, based just on the surface word order. We can assume that most colloca-

tions occur as adjacent word expressions that cannot be modified by the insertion of

anotherword, and identify bigram collocation candidates as surface bigrams – pairs of

adjacent words. The set Bsurf of surface bigram tokens is formally defined as follows:

Bsurf = {〈wi, wj〉∈ W×W : j = i + 1} .

The mapping Φsurf that assigns a surface bigram type to each surface bigram token

from Bsurf is defined by word types of both components in the following way:

Φsurf (〈wi, wj〉) = 〈φ(wi), φ(wj)〉 .

Distance bigrams

The constraint that collocation candidates are only adjacent word pairs might be too

restrictive. Obviously, it is not valid for certain types of collocations, such as support-

-verb constructions or verb–noun combinations in general. Collocations of these (and

perhaps other) types can often be modified by the insertion of another word and

their components can occur at various distances, as in the example naklepat maso (to

tenderize meat) mentioned earlier. In Czech, it can occur not only with free word order

but also with various distances between the components. These cases can, of course,

be captured by dependency bigrams, but if the syntactic information is not available

in the source corpus, we can identify collocation candidates as distance bigrams –

word pairs occurring within a given distance specified by a distance function db and

a threshold tb. The set Bdist is then defined by this formula:

Bdist = {〈wi, wj〉∈ W×W : i < j ∧ db(i, j) ≤ tb} .

The mapping Φdist that assigns a bigram type to each distance bigram token from

Bdist is then defined in the same way as for surface bigrams:

Φdist (〈wi, wj〉) = Φsurf (〈wi, wj〉) = 〈φ(wi), φ(wj)〉 .
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By one of the mentioned approaches, the candidate data D is constructed as follows:

〈B,Φ〉 ∈ {〈Bdep,Φdep〉, 〈Bsurf ,Φsurf 〉, 〈Bdist,Φdist〉},

D = {Φ(b1), . . . ,Φ(bN )}, bk ∈ B, k = 1, . . . , N, N = |B|.

The candidate data of dependency and surface bigrams are of approximately the same

size as the corpus (the number of bigram tokens roughly corresponds to the number of

word tokens in the corpus), but the candidate data of distance bigrams is larger, depend-

ing on the distance function and the threshold (usually set to 3–5 intervening words).

2.2.5 Occurrence statistics

In this step of the extraction pipeline, the occurrence statistics of bigrams and their

components are obtained from the candidate occurrence data D and the corpus W .

We assume that D is a multiset of generic bigram types (either dependency, surface, or

distance) whose components are generic word types (either basic or extended), elements

of U∗. For simplicity of notation, we further denote the elements of D as pairs 〈xk, yk〉:

D = {〈xk, yk〉 : k ∈ {1, . . . , N}} , xk, yk ∈ U∗

The statistics extracted for each collocation candidate (bigram type) 〈x, y〉 ∈ C

(for simpler notation further denoted as xy) and its components (word types) x, y from

the candidate data, range from simple frequency counts and contingency tables to more

complex models such as immediate or empirical contexts.

Frequency counts

The basic occurrence model consists of the frequency counts of the bigram xy, its

components x, y, and the size of the candidate data N = |D|.

f(xy) := |{k : xk = x ∧ yk = y}|
f(x∗) := |{k : xk = x}|
f(∗y) := |{k : yk = y}|

The bigram frequency f(xy) (also called the joint frequency) denotes the number

of pairs 〈xk, yk〉 = 〈x, y〉 in the canidate data D. The component frequencies f(x∗)
and f(∗y) (also called the marginal frequencies) denote the number of pairs where

the first component is x and pairs where the second component is y, respectively.

N denotes the number of all pairs in D. Evert (2004, p. 28) refers to the quadruple

(f(xy), f(x∗), f(∗y), N) as the frequency signature of the bigram xy.
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Contingency tables

A more detailed model of bigram occurrences has the form of an (observed) contin-

gency table. In addition, it also counts frequencies of pairs of the bigram components

x, y with words other than y and x, respectively. The contingency table contains four

cells with the following counts:

f(xy) := |{k : xk = x ∧ yk = y}|
f(xȳ) := |{k : xk = x ∧ yk 6= y}|
f(x̄y) := |{k : xk 6= x ∧ yk = y}|
f(x̄ȳ) := |{k : xk 6= x ∧ yk 6= y}|

These counts are organized in the table as depicted in Table 2.1. For a given bigram xy,

the counts are often denoted by the letters a, b, c, d or by the letter f indexed by

i,j ∈ {1, 2}. An example of a contingency table is shown in Table 2.2. It also illustrates

how the contingency table is constructed and what types of bigrams are counted in

which table cells.

a := f(xy) =: f11 b := f(xȳ) =: f12 f(x∗) =: f1

c := f(x̄y) =: f21 d := f(x̄ȳ) =: f22 f(x̄∗)

f(∗y) =: f2 f(∗ȳ) N

Table 2.1: Observed contingency table frequencies of a bigram xy, includingmarginal
frequencies summing over the rows and columns.

X = black X 6= black X = ∗

Y = market black market new market ∗ market

Y 6= market black horse new horse ∗ horse

Y = ∗ black ∗ new ∗ ∗ ∗

X = black X 6= black X = ∗

Y = market 15 38 53

Y 6= market 654 1 330 171 1 330 825

Y = ∗ 669 1 330 209 1 330 878

Table 2.2: An example of an observed contingency table for the bigram černý
trh (blackmarket). X,Y denotes the first and the second components of the bi-
grams. The frequencies refer to the occurrences of dependency bigrams in PDT.
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. . . součástı́ trhu, vznikl obratem černý trh s plyšovými medvı́dky a .

zabránit přı́sunu drog na domácı́ černý trh v hodnotě 32 milionu . . . .

stejnými jednotlivci i kompletnı́ černý trh . Jinými slovy, byla by . . .

. . . pomáhali pašovánı́ cigaret na černý trh do východnı́ho Německa.

. . . . . nájemnı́ch práv nezaručený černý trh . Libor Dellin, člen . . . . . . .

. . . . . . pašovaného zbožı́ a kypı́cı́ černý trh jsou toho výmluvným . . .

. Také napřı́klad tı́m, že vznikne černý trh , který je ke spotřebitelům

. . . . . . . nabı́dku a pak nastupuje černý trh . Za možnost přestupu na

. . . . . Řı́dı́ gangy, které kontrolujı́ černý trh a okrádajı́ cizince. Oba . . .

. . . .nájemného ” bylo a je omezit černý trh s byty, nestane se nic. . . . .

. . . . .nějak negativně tento černý trh naše hospodářstvı́? Je to . . . . . . . .

. . . . . inzeráty. Rozmohl se černý trh bytů a skutečné náklady na . . . . .

. . . . . jak se řı́ká na Arbatu, černý trh něco do sebe. Je - li hlad . . . . . . . .

. . . . .Naplno se již rozjı́ždı́ černý trh se vstupenkami. Na závod . . . . . .

. . starožitnostmi měl řı́dit, černý trh podporuje na straně jedné . . . . . .

. . . Našim lidem pro samý černý trh nezbýval čas na sex, a tak . . . . . . .

. . . unie však ukazujı́, že černý trh překonal stagnaci a piráti . . . . . . .

. . . . . . . . . ceny, funguje čilý černý trh dosud. Země bez chudých . . . . . .

. . . . novými zbraněmi. Na černý trh odhalený specialisty z útvaru . . .

. . . . . . . . se vlastně jedná o černý trh s byty. Připustil ovšem, že . . . . . .

Figure 2.1: Examples of a left (at the top) and a right (at the bottom) immediate context
(not underlined words in bold) of the expression černý trh (black market).

. . . . . oparu. Muž byl velmi malý, menšı́ než žena. Měl černý kabát se sametovým lı́mcem. Nevšı́mali si ho. Sedni

. . . . . rozsadili se kolem stolu. Kordič si sundal sako a černý vlčák mu ulehl oddaně k nohám. Po předchozı́m . . .

. . . zn. Hořčák přibyl ještě tuzemský rum a činže, zel černý plstěný klobouk brzo prázdnotou. Tehdy začal pan .

. . našla správnou odpověd’. Táhla za bı́lého a vzápětı́ černý svým poslednı́m tahem. V pořadı́ sto šedesátým . . . .

. . . Ani se o to nepokoušel. Náhle se před nı́m vynořil černý kůň. Na koni klidně seděla mladá policistka, světlé . .

. . . . jsou bı́lé. Zobák je u obou pohlavı́ v prostém šatě černý , u samice v době hnı́zděnı́ žlutý. Domovem tohoto .

. . . . v kapli. Ruce ve volném rukávu, umělá květina a černý klobouk na bı́lém stolku. Starý kněz vypı́ná pomalu

Poslanecké sněmovny. Na budově je zároveň vyvěšen černý prapor. Rozpočet armády v přı́štı́ch letech vzroste . . .

. . . zdravou reakci. A pak je tu ještě smı́ch. Humor tak černý , že se můžete jen smát. Smı́ch je poslednı́ výspa . . . .

. . . . ženy. Chodily zahalené od hlavy až k patě, jejich černý hábit měl jen dva otvory pro oči. Nesměly tehdy . . .

. miliónů dolarů. Ovlivňuje nějak negativně tento černý trh naše hospodářstvı́? Je to pouze ztráta na danı́ch . . . .

. .Maltské liry lze nakoupit pouze ve směnárnách, černý trh s valutami neexistuje. Na Maltě je v porovnánı́ s . . . .

operoval i ženu. A přece má, jak se řı́ká na Arbatu, černý trh něco do sebe. Je - li hlad nejlepšı́ kuchař, je . . . . . . . . .

. . přestal. V patách za krizı́ vstoupil do Bělehradu černý trh , pašovánı́ a zvýšená kriminalita. Překupnı́ci . . . . . . .

. . . . . . z toho obviněni. Řı́dı́ gangy, které kontrolujı́ černý trh a okrádajı́ cizince. Oba byli zbaveni funkcı́ a byl . . . .

drogové hysterii. Následkem toho neexistoval ani černý trh , protože nebylo na čem vydělávat. V roce 1957 bylo

. . . . .k rychlému zpracovánı́. Naplno se již rozjı́ždı́ černý trh se vstupenkami. Na závod na 5000 m v . . . . . . . . . . . . .

. . . na čelném mı́stě obchodu se zbraněmi. Zatı́mco černý trh se zbraněmi se pro celý svět stává čı́m dál tı́m většı́.

. . . . . v parlamentu. Věřı́m, že brzy bude regulovat černý trh s ohroženými druhy zvı́řat, mı́nı́. Promoravské . . . . .

. . . 100 tisı́c korun. Podle Piňose se vlastně jedná o černý trh s byty. Připustil ovšem, že právě v přı́padě bytového

Figure 2.2: Example of empirical contexts (not underlined words in bold) of the word
černý (black) and the expression černý trh (black market).
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Immediate contexts

Another approach to describe bigram occurrences is modeling occurrences of words

that appear in an immediate context of the bigram, i.e. words that immediately precede

or follow the bigram in the corpus. According to the second extraction principle

(page 25), composition of these contexts should also, in a sense, reflect the degree of

association between the bigram componets.

For this purpose, we formally define the left immediate context C l
xy and the right

immediate context Cr
xy of a bigram xy as multisets (also called bags of words) whose

elements are word types φ(wm) of word tokens wm ∈ W that appear at a particu-

lar position before (the left context) or after (the right context) an occurrence of the

bigram xy:

C l
xy = {um =φ(wm) : wm ∈ W ∧ ∃ i,j (Φ(〈wi, wj〉) = 〈x, y〉 ∧ m = i − 1)} ,

Cr
xy = {um =φ(wm) : wm ∈ W ∧ ∃ i,j (Φ(〈wi, wj〉) = 〈x, y〉 ∧ m = i + 1)} .

Empirical contexts

Occurrences of bigrams (and words) can also be described by a broader empirical

context which captures occurrences of words appearing not only in the immediate

contexts but also within a longer distance from a given bigram (or a word). This

approach is mainly used by lexical association measures based on the third extraction

principle (page 26).

Formally, for a given word type z ∈ U∗, we define a multiset Cx of word types

φ(wm) of word tokenswm from the corpusW that appear within a predefined distance

(determined by a distance function dc and a threshold tc) from an occurrence of the

word type z in the corpus; analogically we define Cxy for a bigram type xy ∈ C∗.

Cx ={um =φ(wm) : wm∈W∧ ∃i (φ(wi)=x ∧ dc(i,m) < tc)} ,

Cxy ={um =φ(wm) : wm∈W∧ ∃i,j (Φ(〈wi, wj〉)=〈x, y〉∧(dc(i,m)≤ tc∨ dc(j,m) ≤ tc))}.

Constructionof these contexts (immediate and empirical) is illustrated in Figures 2.1

and 2.2 on the next page. In the examples, the words are displayed as word tokens,

but actually, the contexts contain their word types.
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f POS bigram

2124 V:V být mı́t
1815 V:R být v
1362 P:J ten že
1344 J:V že být
1287 R:V v být
1196 V:P být ten
1165 V:J být a
1010 P:V ten být
985 V:R jı́t o
973 V:J být a
904 J:V a být
883 R:N v roce
841 V:V být moci
826 V:J být že
798 P:V který být
771 J:J že a
712 R:N v době
700 P:V se stát
675 J:R a v
661 R:N v přı́padě
627 V:R být na
627 R:J mezi a
620 D:J hodně než
618 V:V být být
618 P:V který mı́t
573 J:V že být
560 R:P o ten
543 V:R mı́t v
542 R:J v a
527 A:N Česká republika

f POS bigram

527 A:N Česká republika
488 N:N milión korun
242 A:N přı́štı́ rok
221 A:N loňský rok
220 A:N životnı́ prostředı́
210 A:N letošnı́ rok
190 A:N současná doba
182 N:N ministr zahraničı́
179 N:N miliarda korun
169 A:N Spojené státy
164 A:N minulý týden
162 A:N Evropský unie
156 N:N Václav Klaus
156 A:N druhá strana
156 A:N akciová společnost
155 N:N návrh zákona
155 A:N New York
152 N:N milión dolarů
150 A:N cenný papı́r
148 N:N konec roku
145 A:N státnı́ rozpočet
142 A:N politická strana
142 A:N akciová společnost
141 A:N trestný čin
130 A:N hlavnı́ město
129 A:N generálnı́ ředitel
128 A:N poslednı́ rok
126 A:N poslednı́ doba
121 A:N Komerčnı́ banka
120 N:N Václav Havel

Table 2.3: Part-of-speech filtering: the top collocation candidates from PDT ranked
by bigram frequency before filtering (left) and after filtering (right).

PMI f POS bigram

20.34 1 N:N Čchien Čchi
20.34 1 N:N Čaněk Gridoux
20.34 1 N:N ČLS JEP
20.34 1 N:N Áron Mónus
20.34 1 N:N škodlivost narkomanie
20.34 1 N:N šiška konifery
20.34 1 N:N šestka Davenportová
20.34 1 N:N Šan Čching
20.34 1 N:N Šalom Achšav
20.34 1 N:N L’uba Lauffová
20.34 1 N:N zúženı́ hrdla
20.34 1 N:N zvýrazněnı́ koloritu
20.34 1 N:N zplozenec Paynea
20.34 1 N:N zopakovánı́ seskoku
20.34 1 N:N znechucenı́ naladěnı́
20.34 1 N:N zjevenı́ démantu
20.34 1 N:N zbožnost cı́saře
20.34 1 N:N zavřenı́ tavı́rny
20.34 1 N:N zastánce vhodu
20.34 1 N:N zaměřovánı́ zlomek
20.34 1 N:N zadeček Chera
20.34 1 N:N výškař Ruffı́ni
20.34 1 N:N výstřednost slavı́ka
20.34 1 N:N výsev jařiny

PMI f POS bigram

17.53 7 N:N TTI Therm
17.53 6 N:N Guido Reni
17.34 8 N:N Buenos Aires
17.34 7 N:N Monte Carlo
17.34 7 A:N laskavé svolenı́
17.34 7 A:N AG Flek
17.34 6 A:N Tchaj wan
17.31 6 N:N AIK Stockholm
17.17 9 N:N Twin Peaks
17.17 9 N:N Kazimı́r Jánoška
17.17 7 A:N Geigerův čı́tač
17.17 6 N:N Karol Štěpánová
17.17 6 A:N Saudská Arábie
17.12 6 N:N cash flow
17.02 7 A:N Beastie Boy
16.98 7 A:N čtvrtletnı́ slosovánı́
16.95 6 N:N Kaučuk Kralupy
16.92 6 A:N Třinecké železárny
16.88 9 N:N tie break
16.88 9 N:N Four Seasons
16.88 7 A:N kochleárnı́ implantát
16.88 6 N:N Saccheriho čtyřúhelnı́k
16.88 6 N:N José Carreras
16.88 6 N:N Baruch Goldstein
16.85 8 A:N clearingové zúčtovánı́

Table 2.4: Frequency filtering: the top collocation candidates from PDT ranked by
Pointwise mutual information before filtering (left) and after filtering (right).
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2.2.6 Filtering candidate data

Filtering is often used to improve the precision of the extraction process by eliminating

such data as does not help discover true collocations or can bias their extraction. It can

be performed either before the occurrence statistics are obtained or after this step. Evert

(2004, p. 32–33) described these two approaches as token filtering and type filtering:

Token filtering is applied before the extraction of occurrence statistics and can be

understood as a set of additional constraints on the identification of bigram tokens in

the set B. Token filtering affects the candidate occurrence data D and the statistics

obtained from it. This step must be theoretically substantiated and must not bias

the occurrence models. Appropriately designed type filtering can even improve the

validity of assumptions requiredby certain extractionprinciples (e.g. the Independence

of randomlygeneratedwordpairs). According toEvert (2004, p. 33), it is quite adequate

e.g. to restrict the bigram tokens only to adjective-noun combinations, if we focus only

on collocations of this type, however, we cannot remove bigrams with certain general

adjectives that ”usually produce uninteresting results“. Such a step would decrease

marginal frequencies of nouns appearing in the affected bigrams which could unjustly

prioritize other combinations of these nouns in ranking. Quite reasonable, on the other

hand, is to restrict the bigram tokens only to combinations without punctuationmarks.

Type filtering is applied after the extraction of occurrence statistics and has no effect on

the candidate occurrence data D and the extracted statistics. It divides the collocation

candidates into subsets which are then handled separately. A typical case of type

filtering is the commonly used part-of-speech filtering based on themorphological in-

formation obtained during linguistic preprocessing, see e.g. (Justeson and Katz, 1995;

Manning and Schütze, 1999; Evert, 2004). With the knowledge of morphological char-

acteristics of collocation candidates and their components, we can identify those that

are not very likely to form collocations, and exclude them from further analysis. They

can be explicitly classified as non-collocations or, in the case of ranking, placed at the

end of the list or discard them entirely.

As an example, Table 2.3 shows the top 20 collocation candidates from PDT, ranked

by bigram frequency obtained before part-of-speech filtering (on the left), and the

top 20 candidates from the same set, obtained after the filter was applied where only

adjective-noun and noun-noun combinations were kept. The first table contains only

one true collocation Česká republika, which appears at the very bottom of the list (Czech

Republic). After the application of the filter, almost all top candidates, as they appear

in the other table, can be considered collocations.
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Another case of type filtering is frequency filtering. It is based on setting a limit

on the minimal frequency of collocation candidates before association measures are

applied. It is a well-known fact, that many association measures are unreliable when

applied to low-frequency data and that certain minimal frequency is required in order

to expect meaningful results. This issue was thoroughly studied by Evert in his thesis

(2004) where he demonstrated that ”it is impossible in principle to computemeaningful

association scores for the lowest-frequency data“ (p. 22, 95–108).

The effect of frequency filtering is illustrated in Table 2.4. The top positions in

the list of collocation candidates from PDT, ranked according to scores of Pointwise

mutual information, are occupied by bigrams whose components appear in PDT just

once, that is, in this bigram. There is no way to distinguish between collocations and

non-collocations in this list – from the perspective of statistics, they have the same

properties (occurrence frequency) and cannot be differentiated. The top candidates

obtained after applying the frequency filter that discarded candidates occurring 5 times

or less is shown on the right – almost all of them can be considered to be collocations.

Context filtering is a special case of filtering that can be employed during the

construction of empirical contexts. These structures are intended for modeling the-

semantics of collocation candidates and their components (see the third extraction

principle in Section 2.2.1). The way they are defined in Section 2.2.5 implies that they

contain types of all word tokens occurring within specified context windows which

also includes wordswith a little or no semantic content that do not determinemeaning

of a given bigram or word. In empirical contexts, such word tokens can be ignored.

This idea, however, cannot be applied to immediate contexts that model an immediate

word environment from an information-theoretical point of view, and therefore the

occurrence of all word tokens should be taken into account.
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Chapter 3

Association Measures

The last step of the extraction pipeline involves applying a chosen lexical association

measure to the occurrence and context statistics extracted from the corpus for all

collocation candidates and obtaining their association scores. A list of the candidates

ranked according to their association scores is then the desired result of the entire

process.

In this chapter, we introduce an inventory of 82 such lexical association measures.

Thesemeasures are based on the extraction principles described in Section 2.2.1 which

correspond to three basic approaches to determine collocational association: by mea-

suring the statistical association between the components of the collocation candidates,

by measuring the quality of context of the collocation candidates, and by measuring the

dissimilarity of contexts of the collocation candidates and their components.

For each of these approaches, we will first present its mathematical foundations

and then a list of the measures including their formulas and key references. We will

not discuss each of the measures in detail. An exhaustive description of many of them

(applied to collocation extraction)was published in the dissertation of Evert (2004) and

is also available on-line1. A general description (not applied to collocation extraction)

of other measures can be find e.g. in the thesis of Warrens (2008) or in the provided

references.

1http://www.collocations.de
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3.1 Statistical association

In order to measure the statistical association, the candidate occurrence data D ex-

tracted from the corpus is interpreted as a random sample obtained by sampling (with

replacement) from the (unknown) population of all possible bigram types xy ∈ C∗.

The random sample consists of N realizations (observed values) of a pair of discrete

random variables 〈X,Y 〉 which represent the component types x, y ∈ U∗. The popu-

lation is characterized by the occurrence probability (also called joint probability) of

the bigram types:

P (xy) := P (X = x ∧ Y = y).

The probabilities P (X = x) and P(Y = y) of the components types x and y are called

themarginal probabilities and can be computed from the joint probabilities as:

P (x∗) := P (X = x) =
∑

y′

P (X = x ∧ Y = y′),

P (∗y) := P (Y = y) =
∑

x′

P (X = x′ ∧ Y = y).

Similarly as for the occurrence frequencies, the population can also be described by

the following probabilities that can be organized into a contingency table (Table 3.1):

P (xy) := P (X = x ∧ Y = y)

P (xȳ) := P (X = x ∧ Y 6= y) =
∑

y′ 6=y

P (X = x ∧ Y = y′),

P (x̄y) := P (X 6= x ∧ Y = y) =
∑

x′ 6=x

P (X = x′ ∧ Y = y),

P (x̄ȳ) := P (X 6= x ∧ Y 6= y) =
∑

x′ 6=x,y′ 6=y

P (X = x′ ∧ Y = y′).

These probabilities are considered unknown parameters of the population. Any in-

ferences concerning these parameters can be made only on the basis of the observed

frequencies obtained from the random sample D.

P (xy) =: P11 P (xȳ) =: P12 P (x∗) =: P1

P (x̄y) =: P21 P (x̄ȳ) =: P22 P (x̄∗)

P (∗y) =: P2 P (∗ȳ) N

Table 3.1: A contingency table of the probabilities associated with a bigram xy.
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X = x X 6= x

Y = y F11 F12

Y 6= y F21 F22

Table 3.2: Random variables representing frequencies in a contingency table.

In order to estimate values of these probabilities for each bigram separately, we

introduce the random variables Fij , i, j ∈ {1, 2} that correspond to the values in the

observed contingency table of a given bigram xy as depicted in Table 3.2. These

random variables are defined as the number of successes in a sequence of N inde-

pendent experiments (Bernoulli trials) whether a particular bigram type (xy, xȳ, x̄y,

or x̄ȳ) occurs or not, and where each experiment yields success with probability Pij .

The observed values of a contingency table (f11, f12, f21, f22) can be interpreted as

the realization of the random variables (F11, F12, F21, F22) denoted by F. Their joint

distribution is amultinomial distributionwith parameters (N,P11, P12, P21, P22):

F ∼ Multi(N,P11, P12, P21, P22).

The probability of an observation of the values f11, f12, f21, f22, where
∑

fij =N , is the

following:

P (F11 =f11∧F12 =f12 ∧F21 =f21∧F22 =f22) =
N !

f11!f12!f21!f22!
·P f11

11 ·P f12

12 ·P f21

21 ·P f22

22 .

Each random variable Fij has then a binomial distribution with parameters (N,Pij):

Fij ∼ Bi(N,Pij).

Theprobability of observing the value fij is for these variables definedby the following:

P (Fij =fij) =

(
N

fij

)
P

fij

ij (1 − Pij)
N−fij .

The expected value andvariance for the binomially distributed variables are defined as:

E(Fij) = NPij , V ar(Fij) = NPij(1 − Pij).

In the same manner, we can introduce random variables Fi, i ∈ {1, 2} representing

the marginal frequencies f1, f2 that have binomial distribution with the parameters N

and P1, P2, respectively.
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Under the binomial distribution of Fij , the maximum-likelihood estimates of the

population parameters Pij that maximize the probability of the data (the observed

contingency table) are defined as:

p11 :=
f11

N
≈ P11, p21 :=

f21

N
≈ P21,

p12 :=
f12

N
≈ P12, p22 :=

f22

N
≈ P22.

And, analogically, themaximum-likelihood estimates of themarginal probabilities are:

p1 :=
f1

N
≈ P1 p2 :=

f2

N
≈ P2

The last step to measuring statistical association is to define this concept by the

notion of statistical independence. We say that there is no statistical association

between the components of a bigram type if the occurrence of one component has no

influence on the occurrence of the other one, i.e. the occurrences of the components (as

random events) are statistically independent.

In the terminologyof statistical hypothesis testing, this can be formulated as thenull

hypothesis of independence H0 where the probability of observing the components

together (as a bigram) is just the product of their marginal probabilities:

H0 : P = P1 · P2

We are then interested in those bigram types (collocation candidates) for which this

hypothesis can be (based on the evidence obtained from the random sample) rejected

in favor of the alternative hypothesis H1 stating the observed bigram occurrences

have not resulted from random chance:

H1 : P 6= P1 · P2

With the maximum-likelihood estimates p1 ≈ P1 and p2 ≈ P2, we can determine the

probabilities Pij under the null hypothesis H0 as:

H0 : P11 = p1 · p2,

P12 = p1 · (1−p2),

P21 = (1−p1) · p2,

P21 = (1−p1) · (1−p2).
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f̂(xy) =: f̂11 f̂(xȳ) =: f̂12 f̂(x∗) =: f̂1

f̂(x̄y) =: f̂21 f̂(x̄ȳ) =: f̂22 f̂(x̄∗)

f̂(∗y) =: f̂2 f̂(∗ȳ) N

Table 3.3: Expected contingency table frequencies of a bigram xy (under the null hy-
pothesis of independence).

Consequently, the expected values of the variables Fij that form the expected contin-

gency table under the null hypothesis H0 (Table 3.3) are:

H0 : E(F11) =
f1 · f2

N
=: f̂11, E(F12) =

f1 · (N−f2)

N
=: f̂12,

E(F21) =
(N−f1) · f2

N
=: f̂21, E(F22) =

(N−f1) · (N−f2)

N
=: f̂22.

There are various approaches that can be employed for testing the null hypothesis

of independence. Test statistics calculate the probability (p-value) that the observed

values (frequencies) would occur if the null hypothesis were true. If the p-value is too

low (beneath a significance level α, typically set to 0.05), the null hypothesis is rejected

in favor of the alternative hypothesis (at the significance level α) and held as possible

otherwise. In other words, the tests compare the observed values (frequencies) with

those that are expected under the null hypothesis and if the difference is too large, the

null hypothesis is rejected (again at the significance levelα). However, the test statistics

are more useful as methods for determining the strength of association (the level of

significance is ignored) and their scores are directly used as the association scores

for ranking. The statistical association measures base on statistical tests are Pearson’s

χ2 test (10), Fisher’s exact test (11), t-test (12), z score (13), and Poisson significance (14)

(the numbers in parentheses refer to Table 3.4).

More interpretable are likelihood ratios that simply express howmuch more likely

one hypothesis is than the other (H0 vs. H1). These ratios can also be employed to test

the null hypothesis in order to attempt rejecting it (at the significance level α) or not,

but it is more useful to use them directly to compute the association scores for ranking,

e.g. Log likelihood ratio (15).

Various other measures have been proposed to determine the statistical associ-

ation of two events (and its strength). Although they originate in all sorts of fields

(e.g. information theory) and are based on various principles (often heuristic), they can

be successfully used for measuring lexical association. All the statistical association

measures are presented in Table 3.4.
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# name formula reference

1. Joint probability p(xy) (Giuliano, 1964)

2. Conditional probability p(y|x) (Gregory et al., 1999)

3. Reverse cond. probability p(x|y) (Gregory et al., 1999)

4. Pointwise mutual inf. (MI) log p(xy)
p(x∗)p(∗y) (Church and Hanks, 1990)

5. Mutual dependency (MD) log p(xy)2

p(x∗)p(∗y) (Thanopoulos et al., 2002)

6. Log frequency biasedMD log p(xy)2

p(x∗)p(∗y) + log p(xy) (Thanopoulos et al., 2002)

7. Normalized expectation
2f(xy)

f(x∗)+f(∗y) (Smadja and McKeown, 1990)

8. Mutual expectation
2f(xy)

f(x∗)+f(∗y) · p(xy) (Dias et al., 2000)

9. Salience log p(xy)2

p(x∗)p(∗y) · log f(xy) (Kilgarriff and Tugwell, 2001)

10. Pearson’s χ2 test
∑

i,j
(fij−f̂ij)

2

f̂ij

(Manning and Schütze, 1999)

11. Fisher’s exact test
f(x∗)!f(x̄∗)!f(∗y)!f(∗ȳ)!

N !f(xy)!f(xȳ)!f(x̄y)!f(x̄ȳ)! (Pedersen, 1996)

12. t test
f(xy)−f̂(xy)√

f(xy)(1−(f(xy)/N))
(Church and Hanks, 1990)

13. z score
f(xy)−f̂(xy)√

f̂(xy)(1−(f̂ (xy)/N))
(Berry-Rogghe,1973)

14. Poisson significance
f̂(xy)−f(xy) log f̂(xy)+log f(xy)!

log N (Quasthoff and Wolff, 2002)

15. Log likelihood ratio −2
∑

i,j fij log
fij

f̂ij

(Dunning, 1993)

16. Squared log likelihood ratio −2
∑

i,j

log f2

ij

f̂ij

(Inkpen and Hirst, 2002)

17. Russel-Rao a
a+b+c+d (Russel and Rao, 1940)

18. Sokal-Michiner a+d
a+b+c+d (Sokal and Michener, 1958)

19. Rogers-Tanimoto a+d
a+2b+2c+d (Rogers and Tanimoto, 1960)

20. Hamann
(a+d)−(b+c)

a+b+c+d (Hamann, 1961)

21. Third Sokal-Sneath b+c
a+d (Sokal and Sneath, 1963)

22. Jaccard a
a+b+c (Jaccard, 1912)

23. First Kulczynsky a
b+c (Kulczynski, 1927)

24. Second Sokal-Sneath a
a+2(b+c) (Sokal and Sneath, 1963)

25. Second Kulczynski 1
2( a

a+b + a
a+c) (Kulczynski, 1927)

26. Fourth Sokal-Sneath 1
4( a

a+b + a
a+c + d

d+b + d
d+c) (Kulczynski, 1927)

27. Odds ratio ad
bc (Tan et al., 2002)

28. Yulle’s ω
√

ad−
√

bc√
ad+

√
bc

(Tan et al., 2002)

29. Yulle’s Q ad−bc
ad+bc (Tan et al., 2002)

30. Driver-Kroeber a√
(a+b)(a+c)

(Driver and Kroeber, 1932)
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# name formula reference

31. Fifth Sokal-Sneath ad√
(a+b)(a+c)(d+b)(d+c)

(Sokal and Sneath, 1963)

32. Pearson ad−bc√
(a+b)(a+c)(d+b)(d+c)

(Pearson:1950)

33. Baroni-Urbani a+
√

ad
a+b+c+

√
ad

(Baroni-Urbani and Buser, 1976)

34. Braun-Blanquet a
max(a+b,a+c) (Braun-Blanquet, 1932)

35. Simpson a
min(a+b,a+c) (Simpson, 1943)

36. Michael
4(ad−bc)

(a+d)2+(b+c)2
(Michael, 1920)

37. Mountford 2a
2bc+ab+ac (Kaufman and Rousseeuw, 1990)

38. Fager a√
(a+b)(a+c)

− 1
2 max(b, c) (Kaufman and Rousseeuw, 1990)

39. Unigram subtuples log ad
bc − 3.29

√
1
a + 1

b + 1
c + 1

d (Blaheta and Johnson, 2001)

40. U cost log(1 + min(b,c)+a
max(b,c)+a) (Tulloss, 1997)

41. S cost log(1 + min(b,c)
a+1 )−

1

2 (Tulloss, 1997)

42. R cost log(1 + a
a+b) · log(1 + a

a+c) (Tulloss, 1997)

43. T combined cost
√

U × S × R (Tulloss, 1997)

44. Phi
p(xy)−p(x∗)p(∗y)√

p(x∗)p(∗y)(1−p(x∗))(1−p(∗y))
(Tan et al., 2002)

45. Kappa
p(xy)+p(x̄ȳ)−p(x∗)p(∗y)−p(x̄∗)p(∗ȳ)

1−p(x∗)p(∗y)−p(x̄∗)p(∗ȳ) (Tan et al., 2002)

46. J measure max[p(xy) log p(y|x)
p(∗y) + p(xȳ) log p(ȳ|x)

p(∗ȳ) , (Tan et al., 2002)

p(xy) log p(x|y)
p(x∗) + p(x̄y) log p(x̄|y)

p(x̄∗) ]

47. Gini index max[p(x∗)(p(y|x)2 + p(ȳ|x)2) − p(∗y)2 (Tan et al., 2002)

+p(x̄∗)(p(y|x̄)2 + p(ȳ|x̄)2) − p(∗ȳ)2,

p(∗y)(p(x|y)2 + p(x̄|y)2) − p(x∗)2

+p(∗ȳ)(p(x|ȳ)2 + p(x̄|ȳ)2) − p(x̄∗)2]
48. Confidence max[p(y|x), p(x|y)] (Tan et al., 2002)

49. Laplace max[Np(xy)+1
Np(x∗)+2 , Np(xy)+1

Np(∗y)+2 ] (Tan et al., 2002)

50. Conviction max[p(x∗)p(∗y)
p(xȳ) , p(x̄∗)p(∗y)

p(x̄y) ] (Tan et al., 2002)

51. Piatersky-Shapiro p(xy) − p(x∗)p(∗y) (Tan et al., 2002)

52. Certainity factor max[p(y|x)−p(∗y)
1−p(∗y) , p(x|y)−p(x∗)

1−p(x∗) ] (Tan et al., 2002)

53. Added value (AV) max[p(y|x) − p(∗y), p(x|y) − p(x∗)] (Tan et al., 2002)

54. Collective strength
p(xy)+p(x̄ȳ)

p(x∗)p(y)+p(x̄∗)p(∗y) ·
1−p(x∗)p(∗y)−p(x̄∗)p(∗y)

1−p(xy)−p(x̄ȳ) (Tan et al., 2002)

55. Klosgen
√

p(xy) · AV (Tan et al., 2002)

Table 3.4: Statistical association measures.
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3.2 Context analysis

The second and the third extraction principle, described in Section 2.2.1, deal with

the concept of context. Generally, a context is defined as a multiset (bag) of word

types occurring within a predefined distance (also called a context window) from any

occurrence of a given bigram type or word type (their tokens, more precisely) in the

corpus. The main idea of using this concept is to model the average context of an

occurrence of the bigram/word type in the corpus, i.e. word types that typically occur

in its neighborhood. In this work, we will employ two approaches representing the

average context: by estimating the probability distribution of word types appearing

in such a neighborhood and by the vector space model adopted from the field of

information retrieval.

The four specific types of contexts used in thiswork are formally definedonpage 36.

In the following sections, wewill useCe to denote the context of an event e (occurrence

of a bigram typexy or aword type z) of any of those types (left/right immediate context

or empirical context). For simplicity of notation, elements of Ce are denoted by zk:

Ce = {zk : zk ∈ {1, . . . ,M}}, M = |Ce|, Ce ∈ {C l
xy, C

r
xy, Cx, Cxy}.

Probability distribution estimation

In order to estimate the probability distribution p(z|Ce) of word types z appearing

in Ce, this multiset is interpreted as a random sample obtained by sampling (with

replacement) from the population of all possible (basic) word types z ∈ U . The random

sample consists of M realizations of a (discrete) random variable Z representing the

word type appearing in the context Ce. The population parameters are the context

occurrence probabilities of the word types z ∈ U .

P (z|Ce) := P (Z = z).

These parameters can be estimated on the basis of the observed frequencies of word

types z ∈ U obtained from the random sample Ce by the following formula:

f(z|Ce) = |{k : zk ∈ Ce ∧ zk = z}|.

We introduce a random variable F that represents the observed frequencies of word

types in the context Ce which has a binomial distribution with parameters M and P .
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The probability of observing the value f for the binomial distribution with these

parameters is defined as:

P (F =f) =

(
M

f

)
P f (1 − P )M−f , where F ∼ Bi(M,P ).

Under the binomial distribution of F , the maximum-likelihood estimates of the

populationparametersP thatmaximize theprobability of the observed frequencies are:

p(z|Ce) :=
f(z|Ce)

M
≈ P (z|Ce)

Having estimated the probabilities of word types occurring within the context of

collocation candidates and their components, we can compute the association scores

of measures based on the second and third extraction principles, such as entropy, cross

entropy, and divergence and distance of these contexts, such as measures 56–62 and

63–76 in Table 3.5.

Vector space model model

The vector space model model (Salton et al., 1975; van Rijsbergen, 1979; Baeza-Yates

and Ribeiro-Neto, 1999) is a mathematical model used in information retrieval and

related areas for representing text documents as vectors of terms. Each dimension

of the vector corresponds to a separate term. The value of the term in the vector

corresponds to its weight in the document – if the term appears in the document, its

weight is greater then zero. In our case, the document is a context and the terms are

the word types from the set of all possible word types U .

Formally, for a contextCe we define its vectormodel ce as the vector of termweights

ωl,Ce
, where l = 1, . . . , |U |. The value of ωl,Ce

then represents the weight of the word

type ul in the context Ce.

ce =
〈
ω1,Ce

, . . . , ω|U |,Ce

〉
.

Several different techniques for computing term weights have been proposed. In

this work, we employ three of the most common ones:

In the boolean model, the weights have boolean values {0, 1} and simply indicate if

a term appears in the context or not. If the term occurs in the context at least once, its

weight is 1 and 0 otherwise.

ωl,Ce
= I(ul, Ce), I(ul, Ce) :=

{ 1 if f(ul|Ce) > 0,

0 if f(ul|Ce) = 0.
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The term frequencymodel (TF) is equivalent to the context probability distribution and

the term weights are computed as normalized occurrence frequencies. This approach

should reflect how important the term is for the context – its importance increases

proportionally to the number of times the term appears in the context.

ωl,Ce
= TF (ul, Ce), TF (ul, Ce) :=

f(ul|Ce)

M

The term frequency-document frequency model (TF-IDF) weights terms not only by

their importance in the actual context but also by their importance in other contexts.

The formula for computing term weights consists of two parts: term-frequency is the

same as in the previous case and document frequency counts all contexts where the

term appears. C ′
e denotes any context of the same type as Ce.

ωl,Ce
= TF (ul, Ce) · IDF (ul) IDF (ul) := log

|{C ′
e}|

|{C ′
e : ul ∈ C ′

e}|

The numerator in the IDF part of the formula is the total number of contexts of the

same type as Ce. The denominator corresponds to the number of contexts of the same

type as Ce containing ul.

Any of the specified models can be used for quantifying similarity between two

contexts by comparing their vector representations. Several techniques have been

proposed, e.g. Jaccard, Dice, Cosine (Frakes and Baeza-Yates, 1992) but in our work, we

will employ two of the most popular ones:

The cosine similarity computes the cosine of the angle between the vectors. The

numerator is the inner product of the vectors, and the denominator is the product of

their lengths, thus normalizing the context vectors:

cos(cx, cy) =
cx · cy

||cx|| · ||cy ||
=

∑
ωl,x ωl,y√∑

ωl,x
2 ·

√∑
ωl,y

2
.

The dice similarity computes a similarity score on the basis of the formula given

bellow. It is also based on the inner product but the normalizing factor is the average

quadratic length of the two vectors:

dice(cx, cy) =
2 cx · cy

||cx||2 + ||cy ||2
=

2
∑

ωl,x ωl,y∑
ωl,x

2+
∑

ωl,y
2

These techniques combined with the different vector models are the basis of as-

sociation measures comparing empirical contexts of collocation candidates and their

components, such as measures 63–82 in Table 3.5.
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# name formula reference

56. Context entropy −∑
z p(z|Cxy) log p(z|Cxy) (Krenn, 2000)

57. Left context entropy −∑
z p(z|C l

xy) log p(z|C l
xy) (Shimohata et al., 1997)

58. Right context entropy −
∑

z p(z|Cr
xy) log p(z|Cr

xy) (Shimohata et al., 1997)

59. Left context divergence p(x∗) log p(x∗) − ∑
z p(z|C l

xy) log p(z|C l
xy)

60. Right context divergence p(∗y) log p(∗y) − ∑
z p(z|Cr

xy) log p(z|Cr
xy)

61. Cross entropy −∑
z p(z|Cx) log p(z|Cy) (Cover and Thomas, 1991)

62. Reverse cross entropy −
∑

z p(z|Cy) log p(z|Cx) (Cover and Thomas, 1991)

63. Intersection measure
2|Cx∩Cy |
|Cx|+|Cy| (Lin, 1998)

64. Euclidean norm
√∑

z(p(z|Cx) − p(z|Cy))2 (Lee, 2001)

65. Cosine norm
P

z p(z|Cx)p(z|Cy)
P

z p(z|Cx)2·
P

z p(z|Cy)2
(Lee, 2001)

66. L1 norm
∑

z |p(z|Cx) − p(z|Cy)| (Dagan et al., 1999)

67. Confusion probability
∑

z
p(x|Cz)p(y|Cz)p(z)

p(x∗) (Dagan et al., 1999)

68. Reverse confusion prob.
∑

z
p(y|Cz)p(x|Cz)p(z)

p(∗y)

69. Jensen-Shannon divergence 1
2 [D(p(z|Cx)||12 (p(z|Cx) + p(z|Cy))) (Dagan et al., 1999)

+D(p(z|Cy)||12 (p(z|Cx) + p(z|Cy)))]

70. Cosine of pointwiseMI
P

z MI(z,x)MI(z,y)√
P

z MI(z,x)2·
√

P

z MI(z,y)2

71. KL divergence
∑

z p(z|Cx) log p(z|Cx)
p(z|Cy) (Dagan et al., 1999)

72. Reverse KL divergence
∑

z p(z|Cy) log
p(z|Cy)
p(z|Cx)

73. Skew divergence D(p(z|Cx)||α p(z|Cy) + (1 − α) p(z|Cx)) (Lee, 2001)

74. Reverse skew divergence D(p(z|Cy)||α p(z|Cx) + (1 − α) p(z|Cy))

75. Phrase word coocurrence 1
2(

f(x|Cxy)
f(xy) +

f(y|Cxy)
f(xy) ) (Zhai, 1997)

76. Word association 1
2(

f(x|Cy)−f(xy)
f(xy) + f(y|Cx)−f(xy)

f(xy) ) (Zhai, 1997)

Cosine context similarity: 1
2(cos(cx, cxy) + cos(cy , cxy)) (Frakes, Baeza-Yates,1992)

77. in boolean vector space ωl,Ce
= I(ul, Ce)

78. in TF vector space ωl,Ce
= TF (ul, Ce)

79. in TF ·IDF vector space ωl,Ce
= TF (ul, Ce) · IDF (ul)

Dice context similarity: 1
2(dice(cx, cxy) + dice(cy, cxy)) (Frakes, Baeza-Yates,1992)

80. in boolean vector space ωl,Ce
= I(ul, Ce)

81. in TF vector space ωl,Ce
= TF (ul, Ce)

82. in TF ·IDF vector space ωl,Ce
= TF (ul, Ce) · IDF (ul)

Table 3.5: Context-dissimilarity association measures.
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Chapter 4

Reference Data

Gold standard reference data is absolutely essential for empirical evaluation. For many

tasks of computational linguistics and natural language processing (such as machine

translation or word sense disambiguation), standard and well designed reference data

sets are widely available for evaluation and development purposes, often developed

for shared task evaluation campaigns (e.g. the NIST MT Evaluation1 or Senseval2).

Since this has not been the case for the task of collocation extraction (at the time of

writing of this thesis) we decided to develop a complete testbed of our own. In the fol-

lowing sections, we describe requirements we imposed on such data, actual reference

data sets used in our experiments, and source corpora the data was extracted from.

The main set of our experiments was conducted on the Czech Prague Dependency

Treebank, a medium-sized corpus featuring manual morphological and syntactic an-

notation. In additional experiments, we used the Czech National Corpus, a much larger

data automaticaly processedby a part-of-speech tagger. In order to compare the results

with experiments on a different language, we also carried out some experiments on

the Swedish PAROLE corpus provided with automatic part-of-speech tagging.

4.1 Requirements

With respect to the nature of the task (ranking collocation candidates; see Chapter 2),

and the evaluation method (based on precision and recall; see Chapter 5) the reference

data should be composed of a set of collocation candidates indicated (annotated) as

1http://www.nist.gov/speech/tests/mt/
2http://www.senseval.org/
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true collocations and false collocations (non-collocations). The design and development

of the reference data is thus influenced by two main factors: 1) how and from where

to extract the candidate data and 2) how to perform the annotation.

4.1.1 Candidate data extraction

When choosing the source corpus and preparing the candidate data for annotation,

we considered the following requirements (or recommendations):

1. Czech, similar to many other languages, has very complex morphology. Ap-

propriate morphological normalization is required to conflate all morphological

variants of individual collocation candidates so all occurrences of a collocation

candidate in the source corpus are correctly recognized regardless of their actual

surface forms.

2. According to our notion of collocation (see Section 2.1.5), collocations are gram-

matically bounded. Syntactic information is required to identify collocation

candidates solely as syntactic units (and not as other non-syntactic word com-

binations). Also, each occurrence of a collocation candidate must be correctly

recognized regardless of its actual word order.

3. Tominimize the bias caused by underlying linguistic data preprocessing (such as

part-of-speech tagging, lemmatization, and parsing) the source corpus should be

provided with manual linguistic annotation (on a morphological and syntactic

level).

4. Most of the extraction methods assume normal distribution of observations or

become unreliable when dealing with rare events for other reasons (see Chap-

ter 3). The source corpus must be large enough to provide enough occurrence

evidence for sufficient numbers of collocation candidates.

5. Ideally, the annotation should be performed on a full candidate data extracted

from the corpus (e.g. all occurring n-grams) to avoid sampling (taking only

a subset of the full data) and potential problems with estimating performance

over the full data based on the sample estimation.

6. The amount of collocation candidates must be small enough that the annotation

process is feasible for a human annotator, and at the same time large enough to

provide good and reliable estimation of the performance scores.



4.2. PRAGUE DEPENDENCY TREEBANK 55

4.1.2 Annotation process

The annotation process should result in a set of collocation candidates, each judged

either as a true collocation or as a false collocation. The entire procedure must follow

a-priori established guidelines covering the following points:

1. Clear and exact definition of annotated phenomena must be provided. All the

participating annotators must share the same notion of these phenomena and be

able to achieve maximum agreement.

2. Subjectivity and other factors play an important role in the notion of collocation

and have a negative influence on the process quality. The annotation should be

performed independently by multiple annotators in parallel in order to estimate

the output quality and to minimize the subjectivity of the work by combining

annotators’ judgments.

3. There are many possible approaches to combine multiple annotators’ outcomes:

at least one positive judgment required, taking a majority vote, full agreement

required etc. Due to the nature of the annotated phenomena, this should also be

considered in advance.

4. There are two possible approaches to the actual annotation processs: Annotators

can assess each occurrence of a collocation candidate (as a token) with com-

plete knowledge of its current context, or judge collocation candidates as types

independently on their occurrences and without actual contextual information,

under the assumption that every occurrence of a given collocation is exclusively

true or false collocation.

4.2 Prague Dependency Treebank

To accomplish all requirements imposed in the previous section, we chose the Prague

Dependency Treebank 2.0 (PDT) as the source corpus of our candidate data. It is a mod-

erate sized corpus provided with manual morphological and syntactic annotation. By

focusing only on two-word collocations, PDT provides sufficient evidence of observa-

tions for a soundevaluation. Bydefault, thedata is divided into training, development,

and evaluation sets. We ignored this split and used all data annotated on the morpho-

logical and analytical layer: a total of 1 504 847 tokens in 87 980 sentences and 5 338

documents.
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4.2.1 Treebank details

The Prague Dependency Treebank has been developed by the Institute of Formal and

Applied Linguistics and the Center for Computational Linguistics, Charles University,

Prague3 and it is available fromLDC4 (catalognumberLDC2006T01). It contains a large

amount of Czech texts with complex and interlinked annotation on morphological,

analytical (surface syntax), and tectogrammatical (deep syntax) layer. The textmaterial

comprises samples fromdaily newspapers, aweekly businessmagazine, and a popular

scientific magazine. The annotation is based on the long-standing Praguian linguistic

tradition, adapted for the current computational linguistics research needs.5

Morphological layer

On the morphological layer, each word form (token) is assigned a lemma and a mor-

phological tag. Combination of the lemma and the tag uniquely identifies the word

form. Two different word forms differ either in their lemmas or in morphological tags.

A lemma has two parts. The first part, the lemma proper, is a unique identifier of

the lexical item. Usually it is the base form (e.g. first case singular for a noun, infinitive

for a verb, etc.) of the word, possibly followed by a number distinguishing different

lemmas, with the same base forms (different word senses). Second part is optional. It

contains additional information about the lemma (e.g. semantic or derivational infor-

mation). Amorphological tag is a string of 15 characters where every position encodes

one morphological category using one character. Description of the categories and

range of their possible values are summarized in Table 4.1. Details of morphological

annotation can be found in (Zeman et al., 2005).

Analytical layer

Analytical layer of PDT serves to encode sentence dependency structures. Each word

is linked to itsheadword and assigned its analytical function (dependency type). Ifwe

think of a sentence as a graph with words as nodes and dependency relation as edges,

the dependency structure is a tree – a directed acyclic graph having one root. Possible

values of analytical functions are listed in Table 4.2. Details of analytical annotation

can be found in (Hajič et al., 1997) and a small example of an annotated text in Table 4.3.

3http://ufal.mff.cuni.cz/
4http://www.ldc.upenn.edu/
5http://ufal.mff.cuni.cz/pdt2.0/
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position name description # values

1 POS Part of speech 12

2 SubPOS Detailed part of speech 60

3 Gender Gender 9

4 Number Number 5
5 Case Case 8

6 PossGender Possessor’s gender 4
7 PossNumber Possessor’s number 3

8 Person Person 4

9 Tense Tense 5
10 Grade Degree of comparison 3

11 Negation Negation 2
12 Voice Voice 2

13-14 Reserve1, 2 Reserve -

15 Var Variant, style 10

Table 4.1: Morphological categories encoded in Czech positional tags.

afun description

Pred Predicate, a node not depending on another node

Sb Subject
Obj Object

Adv Adverbial

Atr Attribute
AtrAtr An attribute of any of several preceding (syntactic) nouns

AtrAdv Structural ambiguity between adverbial and adnominal dependency
AdvAtr Dtto with reverse preference

AtrObj Structural ambiguity between object and adnominal dependency

ObjAtr Dtto with reverse preference
Atv Complement (determining), hung on a non-verb. element

AtvV Complement (determining), hung on a verb, no 2nd gov. node
Pnom Nominal predicate, or nom. part of predicate with copula be

Coord Coordinated node

Apos Apposition (main node)
ExD Main element of a sentence without predicate, or deleted item

AuxV Auxiliary verb be
AuxT Reflexive tantum

AuxR Reflexive pasive

AuxP Primary preposition, parts of a secondary preposition
AuxC Conjunction (subordinate)

AuxO Redundant or emotional item, ’coreferential’ pronoun

AuxZ Emphasizing word
AuxX Comma (not serving as a coordinating conjunciton)

AuxG Other graphic symbols, not terminal
AuxY Adverbs, particles not classed elsewhere

AuxK Terminal punctuation of a sentence

Table 4.2: Analytical functions and their description (Hajič et al., 1997).
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ID form lemma tag parentID afun

1 Zbraně zbraň NNFP1-----A---- 0 ExD

2 hromadného hromadný AANS2----1A---- 3 Atr

3 ničenı́ ničenı́ ˆ(*3it) NNNS2-----A---- 1 Atr

Table 4.3: Example of a text annotated on morphological and analytical layers.

form lemma full tag lemma proper reduced tag

Zbraně zbraň NNFP1-----A---- zbraň NF-A

hromadného hromadný AANS2----1A---- hromadný AN1A

ničenı́ ničenı́ ˆ(*3it) NNNS2-----A---- ničenı́ NN-A

Table 4.4: Morphological normalization of surface word forms. A normalized form
consists of a lemma proper (lemma without technical suffixes) and a reduced mor-
phological tag (positions 1, 3, 10, and 11 of the full tag).

4.2.2 Candidate data sets

Two collocation candidate data sets were obtained from the Prague Dependency Tree-

bank. Both were extracted from morphologically normalized texts and filtered by

a frequency filter and a part-of-speech filter. Details of these steps are as follows:

Morphological normalization

The usual role of morphological normalization is to canonize morphological variants

of words so that each word (lexical item) can be identified regardless of its actual

morphological form. This techniquehas been found tobevery beneficial in information

retrieval, for example, especially when dealing with morphologically rich languages

such as Czech (Pecina et al., 2008). Two basic approaches to this problem are: a)

stemming, where a word is transformed (usually heuristically) into its stem which

often does not represent a meaningful word, and b) lemmatization, where a word is

properly transformed into its base form (lemma) by means of morphological analysis

and disambiguation. For details see e.g. (Frakes and Baeza-Yates, 1992) or (Manning

et al., 2008).

The latter approach seemsmore reasonable in our case (manually assigned lemmas

are available in PDT) but it is not completely adequate. By transforming words only

into lemmas, we would lose important information about their lexical senses that we
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ID lemma proper reduced tag parentID afun

1 zbraň NF-A 0 Head

2 hromadný AN1A 3 Atr

3 ničenı́ NN-A 1 Atr

Table 4.5: Example of a normalized collocation candidate.

need to distinguish between the occurrences of different collocation candidates. For

examplenegation and grade (degree of comparison) significantly changewordmeanings

and differentiate between collocation candidates (eg. secure area vs. insecure area, big

mountain vs. (the) highest mountain). Indication of such morphological categories is not

encoded in the lemma but rather in the tag. With respect to our task, we decided to

normalize word forms by transforming them into a combination of a lemma (lemma

proper, in fact; the technical suffixes in PDT lemmas are omitted) and a reduced tag

that comprises the followingmorphological categories: part-of-speech, gender, grade, and

negation (highlighted in Table 4.1). For similar reasons and also in order to decrease

the granularity of collocation candidates, we simplified the system of Czech analytical

functions bymerging someof them into a single value. Details are depicted in Table 4.2,

where only the highlighted part of analytical funciton values is kept. An example of

morphological normalization is shown in Table 4.4.

Part-of-speech filtering

A part-of-speech filter is a simple heuristic that improves the results of collocation

extraction methods (Justeson and Katz, 1995): the collocation candidates are passed

through a filter which only lets through those patterns that are likely to be ’phrases’

(potential collocations). Similar approaches were used also by Ross and Tukey (1975)

and Kupiec et al. (1995). Our motivation for part-of-speech filtering is similar but

not quite identical. Justenson and Katz (1995) filtered the data in order to keep those

that are more likely to be collocations than others; for bigram collocation extraction

they suggest to use only patterns A:N (adjective–noun) and N:N (noun–noun). On the

other hand, we deal with a broader notion of collocation in our evaluation and this

constraint would be too constraining. We filter out candidates with part-of-speech

patterns that never form a collocation (at least in our data), in other words, we allow

all part-of-speech patterns that can possibly form a collocation. This step does not

effect the evaluation because it can be done prior to all extraction methods. A list of

the employed patterns is presented in Table 4.6. It was proposed congruently by our

annotators before the annotation process described in Section 4.2.3.
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POS pattern example translation

A:N trestný čin criminal act

N:N doba splatnosti term of expiration

V:N kroutit hlavou shake head

R:N bez problémů no problem

C:N prvnı́ republika First Republic

N:V zraněnı́ podlehnout succumb

N:C Charta 77 Charta 77

D:A volně směnitelný free convertible

N:A metr čtverečnı́ squared meter

D:V těžce zranit badly hurt

N:T play off play-off

N:D MF Dnes MF Dnes

D:D jak jinak how else

Table 4.6: Part-of-speech patterns for filtering collocation candidates (A – adjective,
N – noun, C – numeral, V – verb, D – adverb, R – preposition, T– particle).

Frequency filtering

To ensure the evaluation is not biased by low-frequency data, we limit ourselves only

to collocation candidates occurring in PDT more than five times. The less frequent

candidates do not meet the requirement for sufficient evidence of observations needed

by some methods used in this work (they assume normal distribution of observations

and become unreliable when dealing with rare events) and were not included in our

evaluation. While Moore (2004) clearly stated that these cases comprise the majority

of all the data (the well-known Zipfian phenomenon (Zipf, 1949)) and should not be

excluded from real-world applications, Evert (2004, p. 22) argues that ”it is impossible

in principle to compute meaningful association scores for the lowest-frequency data“.

PDT-Dep

Dependency trees from the treebank were broken down into dependency bigrams

(Section 2.2.4). From all PDT sentences, we obtained a total of 635 952 different depen-

dency bigram types (494 499 of themwere singletons). Only 26 450 of themoccur in the

data more than five times. After applying the frequency and part-of-speech pattern fil-

ter, we obtained a list of 12 232 collocation candidates (consisting of a normalized head

word and its modifier, plus their dependency type), further referred to as PDT-Dep.
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PDT-Surf

Although collocations form syntactic units by definition, it is also possible to extract

collocations as surface bigrams, i.e. pairs of adjacent words (Section 2.2.4) without

the guarantee that they form such units but under the assumption that a majority of

bigram collocations cannot be modified by the insertion of another word and in text

they occur as surface bigrams (Manning and Schütze, 1999, Chapter 5). In real-world

applications this approach would not require the source corpus to be parsed, which is

usually a time-consuming process accurate only to a certain extent. A total of 638 030

surface bigram typeswas extracted from PDT, 29 035 of which occurred more then five

times. After applying the part-of-speech filter, we obtained a list of 10 021 collocation

candidates (consisting of normalized component words), further referred to as PDT-

-Surf. 974 of these bigrams do not appear in the PDT-Dep test set (ignoring syntactic

information).

4.2.3 Manual annotation

Three educated linguists, familiar with the phenomenon of collocation, were hired to

annotate the reference data sets extracted from PDT. They agreed on a definition of

collocation adopted from Choueka (1988): “[A collocation expression] has the char-

acteristics of a syntactic and semantic unit whose exact and unambiguous meaning

or connotation cannot be derived directly from the meaning or connotation of its

components.” It requires collocations to be grammatical units (subtrees of sentence

dependency trees in case of dependency syntax used in PDT) that are not entirely pre-

dictable (semantically and syntactically). This definition is relatively wide and covers

a broad range of lexical phenomena such as idioms, phrasal verbs, light verb con-

structions, technical expressions, proper names, stock phrases, and lexical preferences.

Basically, the annotators had to judge whether each candidate could be considered

a free word combination (syntactically constrained) or not.

The dependency bigrams in PDT-Dep were assessed first. The annotation was

performed independently, in parallel, and without any knowledge of context. To

minimize the cost of the process, each collocation candidate was presented to each

annotator only once although it could appear in various different contexts. The anno-

tators were instructed to judge any bigram which could eventually appear in a context

where it has a character of collocation as a true collocation. For example, idiomatic ex-

pressions were judged as collocations although they can also occur in contexts where

they have a literal meaning. Similarly for other types of collocations. As a result,
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0 1 2 3 4 5

0 7 066 644 135 78 208 3

1 590 265 125 0 96 0

2 13 8 621 0 46 1

3 74 0 1 185 0 0

4 409 442 87 0 1075 7

5 25 3 2 2 15 6

0 1

0 7 066 1 068

1 1 111 2 987

Table 4.7: Confusion matrix of two annotators on the full set of collocation categories
(left) and on the merged categories 1-5 (right).

the annotators were relatively liberal in their judgments, but their full agreement was

required to mark a candidate as a true collocation in the reference data set. Prob-

lems could have arisen in cases where the annotators had poor knowledge of some

(e.g. technical) domain and could have misjudged certain less-known technical terms

from this domain. The Prague Dependency Treebank, fortunately, does not contain

such texts (see Section 4.2.1) and this sort of problems was not observed (according to

the annotators).

During the assessment, the annotators also attempted to distinguish between sub-

types of collocations, and classified each collocation into one of the following cate-

gories. This classification, however, was not intended as a result of the process (our

primary goal was binary classication) but rather as a way to clarify and simplify the

annotation. Any bigram that can be assigned to any of the categories was considered

a true collocation.

1. stock phrases, frequent unpredictable usages

zásadnı́ problém (major problem), konec roku (end of the year)

2. proper names

Pražský hrad (Prague Castle), Červený křı́ž (Red Cross)

3. support verb constructions

mı́t pravdu (to be right), činit rozhodnutı́ (make decision)

4. technical terms

předseda vlády (prime minister), očitý svědek (eye witness)

5. idiomatic expressions

studená válka (cold war), visı́ otaznı́k (lit. hanging question mark ∼ open question)

The surface bigrams from PDT-Surf were annotated in the same fashion but only

those collocation candidates that do not appear in PDT-Dep were actually judged.
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annotations fine grained binary

accuracy Fleiss’ κ accuracy Fleiss’ κ

A1–A2 72.1 0.49 79.5 0.55

A2–A3 71.1 0.47 78.6 0.53

A1–A3 75.4 0.53 82.2 0.60

A1–A2–A3 61.7 0.49 70.1 0.56

Table 4.8: Inter-annotator agreement pairwise and among all annotators (A1,A2,A3)
on PDT-Dep measured in terms of simple agreement (accuracy, in %) and the exact
Fleiss’κonall 6 categories 0–5 (fine-grained) andaftermerging categories 1–5 (binary).

Technically, we removed the syntactic information from PDT-Dep data and transfered

the annotations to PDT-Surf. If a surface bigram from PDT-Surf appears also in PDT-

-Dep, it is assigned the same annotation from all three annotators.

Inter-annotator agreement

The inter-annotator agreement on all the categories of collocations (plus a 0 category

for non-collocations) was relatively low: the simple percent agreement (accuracy)

between two annotators on PDT-Dep ranged from 71.1% to 75.4%̇ and Cohen’s κ6

ranged from 0.47 to 0.53. The exact Fleiss’ κ7 among all the three annotators was 0.49.

This demonstrates that the notion of collocation is very subjective, domain-specific,

and also somewhat vague. In our experiments we did not distinguish between dif-

ferent collocation categories – ignoring them (considering only two categories: true

collocations and false collocations) increased Fleiss’ κ among all the annotators to 0.56 (see

details in Tables 4.7 and 4.8). Multiple annotationwas performed in order to get amore

precise and objective idea about what can be considered a collocation by combining

independent outcomes of the annotators. Only those candidates that all three anno-

tators recognized as collocations (of any type) were considered true collocations (full

agreement required). The PDT-Dep reference data set contained 2 557 such bigrams

(21.02%) and PDT-Surf data set 2 293 (22.88%). For comparison of these reference data

sets see Figure 4.1.

6Weused this commonly accepted and robustmeasure that takes into account the agreement occurring
by chance (Cohen, 1960), although Krenn et al. (2004) argued against using it for linguistic annotations.

7An agreement measure for any numbers of annotators (Fleiss, 1971). For two annotators the exact
Fleiss’ κ reduces to Cohen’s κ (Conger, 1980).
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genre SYN2000 SYN2005

fiction 15 % 40 %

technical literature 25 % 27 %

newspapers, journals 60 % 33 %

Table 4.9: Distribution of main genres in SYN2000 and SYN2005.

4.3 Czech National Corpus

In an era of multi-billion word corpora, a corpus of the size of the PDT is certainly not

sufficient for real-world applications. We attempted to extract collocations also from

a larger data – a set of 242 million tokens from the Czech National Corpus. This data,

however, lacks any manual annotation, and hence we settled for automatic part-of-

-speech tagging (Hajič, 2004) and extracted collocation candidates as surface bigrams

similarly to the case of PDT-Surf.

4.3.1 Corpus details

The Czech National Corpus (CNC) is an academic project with the aim of building

up a large computer-based corpus, containing mainly written Czech.8 It consists of

two main parts: synchronous and diachronic. A number of various valuable corpora

are being developed within this project. Some of them have already been published

and are available for academic purposes. The data we used in our evaluation ex-

periments comprises two synchronous (containing contemporary written language)

corpora SYN2000 (ICNC, 2000) and SYN2005 (ICNC, 2005), each containing about 100

million running words (excluding punctuation).

SYN2000 was released to the public in 2000. It contains complete texts selected

to cover the widest range of literary genres. It contains contemporary written Czech

mostly from the period 1990-1999. SYN2005 was released in 2005. It is again a syn-

chronous but also a representative collection of texts (mostly from 1990-2004) reflecting

the current distribution of text genres. The distribution of main genres in the two cor-

pora is compared in Table 4.9.

8http://ucnk.ff.cuni.cz/
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units all tokens relevant tokens

tags 95.78 94.77

lemmas 97.21 96.30

lemmas + tags 94.14 92.52

reduced tags 98.15 97.83

lemmas + reduced tags 96.34 95.37

Table 4.10: Accuracy of a Czech state-of-the-art morphological tagger measured on
different units. By default, accuracy is measured on tags of all tokens. Relevant tokens
refer to words with part-of-speech used in the part-of-speech pattern filter described
in Section 4.2.2.

4.3.2 Automatic preprocessing

SYN2000 and SYN2005 are not manually annotated, neither on the morphological nor

the analytical layer. Manual annotation of such an amount of data would be unfeasi-

ble. These corpora, however, are processed by a part-of-speech tagger (Spoustová et

al., 2007) and provided at least with automatically assigned morphological tags. On

the one hand, we do not want our evaluation to be biased by automatic linguistic pre-

processing (hence we chose the manually annotated PDT as the source corpus for our

main experiments), but on the other hand, we are interested in estimating the perfor-

mance of the methods in real-world applications where the availability of a large-scale

manually annotated data cannot be expected.

To better understand the possible bias caused by the automatic preprocessing tools,

let us now study their actual performance. The part-of-speech tagging of our CNC

data was performed by a hybrid tagger described in (Spoustová et al., 2007). It is

a complicated system based on a combination of statistical and rule-based methods.

Its expectedaccuracy (ratio of correctly assigned tags)measured on the PDT evaluation

test set is 95.68%. One of the statistical components used in this system is a state-of-

-the-art tagger based on discriminative training of Hidden Markov Models by the

Averaged Perceptron algorithm. This approach was first introduced by Collins (2002)

and for Czechmorphology implemented by Votrubec (2006). Its current (unpublished)

accuracy measured on full morphological tags (described in Section 4.2.1) is 95.78%.

For measuring the accuracy of taggers, lemmas are typically ignored. If we count

both the correctly assigned tags and lemmas, the accuracy will drop to 94.14%. The

accuracy evaluated on lemmas and reduced tags which were used in our experiments

(Section 4.2.2) is relatively high, a 96.34%̇ (Table 4.10).
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window span 1 2 3 4 5 6 7 8 9 Inf.

accuracy (%) 90.89 89.45 88.12 87.16 86.47 85.99 85.56 85.27 85.04 84.76

Table 4.11: Accuracy of a current Czech state-of-the-art dependency parser with
respect to the maximum span of a word and its head.

Based on this observation, we can assume that in an automatically tagged text

approximately one out of 28 randomly selected tokens is assigned a wrong tag and/or

lemma. Such a token, however, usually appears in more than one bigram. For surface

bigrams, only the first and the last token of a sentence affect one bigram: all other

tokens affect two different bigrams. In the case of dependency bigrams, only the root

and leaf tokens appear in one bigram, other tokens can appear in two or more bigrams

depending on the sentence tree structure. For both surface and dependency bigrams,

the average number of bigrams affected by one token depends on the sentence length

and is equal to 2(n − 1)/n, where n is the sentence length. For an average sentence

from the PDT data, which has 17.1 tokens, the number of bigrams affected by one

token equals 1.88. This implies that if one out of 28 tokens is not assigned a correct tag

and/or lemma (accuracy of 96.34 %), then approximately one out of 15 selectedbigrams

occurring in an automatically normalized text is misleading and contains an error (at

least in one of its components). More precisely, we can estimate the performance only

on words that pass through our part-of-speech filter (Section 4.2.2). Accuracy on such

data measured on lemmas and reduced tags is equal to 95.37%. Thus, we can assume

that approximately every 12th bigram occurrence contains an error. Details of the

accuracy are given in Table 4.10.

Both SYN2000 and SYN2005 are provided with automatic part-of-speech tagging

but no syntactic analysis. Although automatic dependency parsers for Czech do ex-

ist, they were not used to obtain automatic sentence dependency structures of the

data from CNC – mainly for reasons of time complexity. The state-of-the-art depen-

dency parser is based on McDonald’s maximum spanning tree approach (McDonald

et al., 2005) and enhanced by Novák and Žabokrtský (2007). Its accuracy (ratio of

correctly assigned head words and corresponding values of analytical function) mea-

sured on the evaluation test set from the PDT is 84.76%. This performance is much

higher if we analyze words only in a limited surface distance. If we focus only on

adjacent dependency bigrams, which are more likely to form collocations, the tagger’s

accuracy is almost 91%. As we allow more distant dependencies (less likely to form

collocations) the accuracy constantly decreases. See Table 4.11 for details.
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Figure 4.1: Distribution of Part-of-speech patterns (left) and collocation categories
assigned by one of the annotators (right) in the Czech reference datasets.

4.3.3 Candidate data set

CNC-Surf

From the total of 242 million tokens from SYN2000 and SYN2005, we extracted more

than 30 million surface bigrams (types) (Section 2.2.4). We followed the same proce-

dure as for the PDT reference data. After applying the part-of-speech and frequency

filters, the list of collocation candidates contained 1 503 072 surface bigrams. Manual

annotation of such an amount of datawas infeasible. Tominimize the cost, we selected

only a small sample of it – the already annotated bigrams from the PDT-Surf reference

data set, a total of 9 868 surface bigrams, further called CNC-Surf. All these bigrams

appear also in PDT-Surf, but 153 do not occur in the corpora more than five times.

CNC-Surf contains 2 263 (22.66%) true collocations – candidates that all three annota-

tors recognized as collocations (of any type). For comparison with the reference data

sets extracted from the PDT see Figure 4.1.

4.4 Swedish Parole corpus

So far, all the reference data sets presented in this work have been extracted from

Czech texts. In this section, we describe our last reference data set – Swedish support-

verb construction candidates obtained from the Swedish PAROLE corpus, containing

about 20 million words. This data differs not only in the language and the type

of collocations used, but also in the extraction procedure. Our motivation was to

evaluate methods for semi-automatic building of a Swedish lexicon of support-verb

constructions. Preliminary results of this work are described in (Cinková et al., 2006).
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4.4.1 Corpus details

The Swedish Parole corpus is a collection of modern Swedish texts comprising 20 mil-

lion running words. It belongs to Språkbanken, the set of corpora at Språkdata,

University in Gothenburg, Sweden.9 The corpus was built within the EU project

PAROLE (finished 1997), which aimed at creating a European network of language

resources (corpora and lexicons). It has automatic morphological annotation but lacks

of lemmatization. In order to deal with morphological normalization, an automatic

lemmatizer developed by Cinková and Pomikálek (2006) was employed to transform

all word forms into their lemmas.

4.4.2 Support-verb constructions

Support-verb constructions (SVCs) are combinations of a lexical verb and a noun

or a nominal group containing a predication and denoting an event or a state, e.g. to

take/make a decision, to undergo a change. From the semanticpoint of view, thenoun seems

to be part of a complex predicate rather than the object of the verb, whatever the surface

syntax may suggest (Cinková et al., 2006). The meaning of SVC is concentrated in the

predicate noun, whereas the semantic content of the verb is reduced or generalized.

The notion of SVC and related concepts has already been studied elsewhere, e.g. by

Grefenstette and Teufel (1995), Tapanainen et al. (1998), Lin (1999), McCarthy et al.

(2003), and Bannard et al. (2003).

Our interest in SVCs is mainly in the perspective of foreign language learners and

building a lexicon, see (Cinková et al., 2006). Although SVCs are easily understood

by foreign language learners, they pose substantial problems for foreign language

production (Heid, 1998) due to the unpredictability of the support verb. For example,

the predicate noun question in an SVC meaning to ask takes different support verbs

in Czech and in Swedish: Czech uses the verb položit (i.e. to put horizontally) while

Swedish uses the verb stålla (i.e. to put vertically). The translation equivalent to the

support verb is unpredictable, though the common semantic motivation can be traced

back. The unpredictability of the support verb places SVCs into the lexicon, while the

semantic generality of support verbs and their productivity move them to the very

borders of grammar (Cinková et al., 2006).

9http://spraakbanken.gu.se/PAROLE/
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4.4.3 Manual extraction

The reference data was obtained by the following manual extraction procedure. It was

inspired by several similar approaches, e.g. by Heid (1998), and comprises these steps:

1. extraction of word expressions whose morphosyntactic character suggests that

they are potential support-verb constructions,

2. subsequent manual elimination of non-collocations,

3. sorting of collocations into three groups: SVCs, quasimodals, and phrasemes.

Step 1 involved formulating several corpus queries and obtaining the results. The

queries basically varied the distance between the verb and the noun (ranging from 1

to 3). Some queries introduced article, number, and adjective insertion restrictions. To

ensure that the noun was the object of the verb, the verbs had to follow a modal or an

auxiliary verb.

In step 2, the collocation candidates were ordered according to their frequency in

the corpus. Each collocation interval (the distance between the noun and the verb)

was processed separately. Equally frequent collocation candidates were sorted alpha-

betically according to their verbs. This facilitated manual processing, as some very

frequent verbs could be instantly recognized as never forming support verbs, and

ignored in blocks, i.e. kåpa (to buy) or såga (to say).

Step 3 included a fine-grained semantic classification. Three groups were set at the

beginning: SVCs, quasimodals, and phrasemes. The SVCs group included collocations

with nouns denoting an event (also a state) or containing a predication, e.g. få hjålp

(to get help) and få betydelse (lit. to get significance - to become significant). In the SVCs

group, it is the event described by the predicate noun that actually ”takes place”. In

quasimodals, on the other hand, the verb and the predicate noun form one semantic

unit that resembles a modal verb (e.g. to get the chance to V = to start to be able to V

etc.) (Cinková and Kolářová, 2004) and must be completed by the event in question

(here marked as V). Phrasemes include frequent collocations in which the noun is not

a predicate noun and the meaning of the entire unit is idiomatic (e.g. ta hand om X , lit.

to take hand about X - to take care of X).

Naturally, this sorting was strongly based on intuition. Basically, the phraseme

and quasimodal groups also allow for nouns which do not contain any predication

(e.g. hand), while the ”pure SVCs” are intended to be denoting events and states. With

respect to this, we were not able to find a consistent solution for constructions like begå

en dummhet (lit. to commit a stupidity), which underspecify the given event.
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category w=2 w=3 w=4 w=2,3,4

0. non-collocations 7 320 7 080 2 119 15 735

1. phrasemes 63 24 8 79

2. quasimodals 24 14 8 31

3. support-verb constructions 557 559 232 1 182

all 7 964 7 677 2 367 17 027

Table 4.12: Distribution of collocation categories in the Swedish reference data set
with respect to the surface distance between collocation components.

PAR-Dist

The extraction procedure was designed and performed by Silvie Cinková and yielded

17 027 SVC candidates occurring at collocation intervals 1–3, out of which 15 735 were

classified as negative examples, not collocations of our interest. 1 182 collocations were

classified as SVCs, 21 were labeled as quasimodal, 79 were labeled as phrasemes. All

of these cases are considered true collocations in our experiments. Details are shown

in Table 4.12. This reference data set is further referred to as PAR-Distand detailed

comparison of the four reference data sets is shown in Table 4.13.

Crossvalidation split

For the purposes of significance testing (Section 5.1.3) and crossvalidation in our exper-

iments, all the data sets were split into seven stratified subsets (folds), each containing

the same ratio of true collocations (to ensure the prior probabilities of true collocations

are equal in all the folds). This number was chosen as a compromise between two

contradictory needs: 1) to have enough folds for a paired test of significance, and 2) to

have enough instances in each fold for reliable estimates of evaluation scores. Six

of the folds (called the evaluation folds) were used for six-fold cross validation and

estimation of average performance including significance testing (Chapter 5). The one

remaining fold (called the held-out fold) was put aside and used as held-out data in

additional experiments (Section 6.5).
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reference data set PDT-Dep PDT-Surf CNC-Surf PAR-Dist

morphology manual manual auto auto

syntax manual none none none

bigram types dependency surface surface distance

sentences 87 980 87 980 15 934 590 2 639 283

tokens 1 504 847 1 504 847 242 272 798 22 883 361

words (no punctuation) 1 282 536 1 282 536 200 498 152 20 240 346

bigram types 635 952 638 030 30 608 916 13 370 375

after frequency filtering 26450 29 035 2 941 414 ∗13 370 375

after part-of-speech filtering 12232 10 021 1 503 072 898 324

collocation candidates 12 232 10 021 9 868 17 027

data sample size (%) 100 100 0.66 1.90

true collocations 2 557 2 293 2 263 1292

baseline precision (%) 21.02 22.88 22.66 7.59

Table 4.13: Summary statistics of the four referencedata sets and their source corpora.
(∗ no frequency filter applied on PAR-Dist).
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Chapter 5

Empirical Evaluation

In this chapter, we present a comparative performance evaluation of the 82 associa-

tion measures discussed in Chapter 3. The evaluation experiments were performed

on the four data sets described in Chapter 4: dependency bigrams from the Prague

Dependency Treebank (PDT-Dep), surface bigrams from the same source (PDT-Surf),

instances of surface bigrams from theCzechNational Corpus (CNC-Surf), and distance

verb-noun combinations from the Swedish Parole Corpus (PAR-Dist).

In the first section, we will introduce our evaluation scheme based on precision

and recall. Then, we will evaluate performance of the association measures separately

on the individual data sets and attempt to compare the obtained results across the

different data sets.

5.1 Evaluation methods

From the statistical point of view, collocation extraction can be viewed as a classifica-

tion problem, where each collocation candidate from a given data setmust be assigned

to one of two categories: collocation or non-collocation. By setting a threshold, any as-

sociation measure becomes a binary classifier: the candidates with higher association

scores fall into one class (collocation), the rest into the other class (non-collocation).

Effectiveness of such a classifier can be visualized in the form of a confusion matrix

(Kohavi and Provost, 1998), also called a table of confusion, or a matching matrix. This

matrix contains information about the actual and predicted classifications done by the

classifier on a given data set. An example of a confusion matrix for a classifier of

collocations is shown in Table 5.1.

73
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predicted

collocation non-collocation

tr
u
e collocation TP FN

non-collocation FP TN

Table 5.1: A confusion matrix of prediction of collocations.

The rows in the confusion matrix represent instances of the true (gold standard)

classes and the columns represent instances of the predicted classes. The cells then con-

tain counts of the instances divided into four sets according to their true and predicted

classification as depicted in Table 5.1: true positives (TP) are correctly classified true

collocations, false negatives (FN) are misclassified true collocations, false positives (FP)

are misclassified true non-collocations, and true negatives (TN) are correctly classified

true non-collocations.

The performance of this classifier can be evaluated using the data in its confusion

matrix. A common evaluationmeasure is accuracy – the fraction of correct predictions,

i.e. the candidates that are correctly predicted either as collocations or non-collocations

(no distinction is made).

A =
TP + TN

TP + FN + FP + TN
, A ∈ 〈0, 1〉.

However, the prior probabilities of the two classes (the number of true collocations

vs. non-collocations) are usually unbalanced and in that case, the accuracy is not a very

representative evaluation measure of the classifier performance – the classifier can be

biased towards non-collocations. Since we are more interested in correct prediction

of collocations rather than non-collocations, several authors, e.g. Evert (2001), have

suggested precision and recall as more appropriate evaluation measures:

Precision is the fraction of positive predictions that are correct (correctly predicted

true collocations):

P =
TP

TP + FP
, P ∈ 〈0, 1〉.

Recall is the fraction of positives that are correctly predicted (true collocations correctly

predicted):

R =
TP

TP + FN
, R ∈ 〈0, 1〉.

These two evaluation measures are interdependent – by changing the classification

threshold (also called discrimination threshold), we can tune the classifier and trade

off between recall and precision, as illustrated in Figure 5.2
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collocation candidate PMI precision recall

Červený křı́ž 15.66 100.00 12.50

železná opona 15.23 100.00 25.00

řádová čárka 14.01 100.00 37.50

kupónová knı́žka 13.83 100.00 50.00

autor knihy 11.05 80.00 50.00

aritmetická operace 10.52 83.33 62.50

podavač papı́ru 10.17 85.71 75.00

nová kniha 10.09 75.00 75.00

kulatý stůl 7.03 77.77 87.50

nová vlna 6.59 70.00 87.50

čerpacı́ stanice 6.04 72.72 100.00

systém typu 3.54 66.66 100.00

centrum města 1.54 61.53 100.00

na dalšı́ 0.54 57.14 100.00

program v 0.35 53.33 100.00

úroveň je 0.25 50.00 100.00

Table 5.2: Precision-recall trade-off illustrated on a ranked list of collocation candi-
dates. The candidates are sampled from the PDT-Dep data set and ranked according
to Pointwise mutual information (4). The true collocations are in bold.

5.1.1 Precision-recall curves

Choosing the optimal classification threshold depends primarily on the intended ap-

plication and there is no principled way of finding its optimal value (Inkpen and

Hirst, 2002). Instead, we can measure the performance of association measures by

pairs of precision-recall scores within the entire interval of possible threshold values.

In this manner, individual association measures can be thoroughly compared by their

two-dimensional precision-recall curves visualizing the quality of ranking collocation

candidates without committing to a classification threshold. The closer the curve stays

to the top and right, the better the ranking procedure is.

Formally, the precision-recall curve is a graphical plot of recall vs. precision for

a classifier as its classification threshold is varied. The concept of the precision-recall

curve is closely related to a receiver operating characteristic (ROC) curve which compares

two operating characteristics computed also from the data of the confusion matrix – the

fraction of true positives (TPR = TP/(TP +FP )) vs. the fraction of false positives

(FPR=FP/(FP +TN)) as the criterion (threshold) changes (Fawcett, 2003).
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Figure 5.1: An example of vertical averaging of precision-recall curves. The thin
curves represent individual non-averaged curves obtained by Pointwise mutual infor-
mation (4) on six data folds, the thick one is vertically averaged.

ROC analysis is a popular diagnostic tool used to select optimal classification mod-

els. Originally, it was used in signal detection theory (in 1960s) but recently, it was

introduced also into areas such as machine learning and data mining. The precision-

recall (PR) curves are commonlyused for the evaluationofmethods innatural language

processing and information retrieval when dealing with unbalanced data sets (which

is also the case of collocation extraction) because they give a more informative picture

of the classifier’s performance. For amore detailed comparison of ROC and PR curves,

see e.g. the work of Davis and Goadrich (2006).

The precision-recall curves must be viewed as estimates of their true (unknown)

shapes from a (random) data sample (fold). As such they have a certain statisticall

variance andare sensitive todata. For illustration, see Figure 5.1 showingPRcurves ob-

tained on the six crossvalidation folds of PDT-Dep (each of the thin curves corresponds

to one data fold). In order to obtain a good estimation of their true shape we must ap-

ply some kind of curve averagingwhere all cross-validation foldswith precision-recall

scores are combined and a single curve is drawn. Such averaging can be done in three

ways (Fawcett, 2003): vertical – averaging precision at the same fixed levels of recall,

horizontal – averaging recall at the same fixed levels of precision, and combined – fixing

threshold, averaging bothprecision and recall. The averaged results are thenpresented

on a curve. Vertical averaging, as illustrated in Figure 5.1, worked reasonably well in

our case and was used in our further experiments. The thin curves are produced by

a single association measure on six separate data folds; the thick one is obtained by

vertical averaging and better characterizes the true performance on the whole data set.
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Figure 5.2: Crossvalidated and averaged precision-recall curves of some well-
performing association measures obtained on the PDT-Dep data set.

5.1.2 Mean average precision

The visual comparison of precision-recall curves is a powerful evaluation tool. How-

ever, it has a certain weak point: while a curve that predominates another one within

the entire interval of recall is evidently better (although it might not be significantly

better), when this is not the case, the judgment is not so obvious. Also the significance

testing of the difference on the curves is non-trivial – it should be done interval-wise by

comparing the curves globally on the whole interval of recall (Prchal, 2008), not only

point-wise by comparing the points of precision at fixed levels of recall independently of

each other (Evert, 2004). Instead of evaluating association measures directly by their

PR curves, we propose the average precision (AP) as a more appropriate evaluation

measure that can simply compare the evaluated methods by their overall perfor-

mance. This measure is adopted from information retrieval, where it is widely used

for comparing the performance between retrieval techniques or systems (Buckley and

Voorhees, 2000).

Formally, for a ranked list of collocation candidates, we define the average precision

as the mean of the precision scores obtained after each true collocation appears in the

list:
AP =

1

r

n∑

i=1

xipi, pm =
1

m

m∑

k=1

xk, xk∈{0, 1},

where r is the total number of true collocations in the fold, n is the total number of all

candidates in the fold, pm is the precision after m candidates in the ranked list, and xk

indicates if the kth candidate in the list is a true collocation (xk=1) or not (xk=0).
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The average precision can also be understood as the expected value of precision for

all possible values of recall, assuming uniform distribution of recall (all possible values

of recall are equally probable). In the example in Table 5.2, the average precisionwould

be computed from the precision scores highlighted in bold. Another interpretation of

the average precision is the area under the (PR) curve (AUC). Nevertheless, our approach

does not require the precision-recall values to be transformed into a (continuous) curve

in order to estimate the area under it.

Based on the average precision scores APj computed for N data folds, we define

the mean average precision (MAP) as the sample mean of these scores and use it as

the main evaluation measures in our work:

MAP =
1

N

N∑

j=1

APj

Note: In order to reduce the bias caused by the unreliable precision scores for low recall

and their fast changes for high recall (see again Figure 5.1), we limit the estimation of

AP to a narrower range of recall 〈0.1, 0.9〉 anduse this estimation in all our experiments.

5.1.3 Significance testing

Statistical tests of the difference between the rankingmethods are necessary to examine

whether the observed differences in the evaluation scores (MAP) are measurable or

whether they occur only by chance. Because MAP is averaged over a number of AP

values computed on the separate (independent) data folds, we can employ tests based

on estimating the error of this measure.

As we mentioned earlier, the precision-recall curves are quite sensitive to the data

and thus, we can expect differences in the AP values to be greater between data folds

than between methods. Therefore, when comparing two ranking methods, we should

analyze their AP difference for each matched pair of data folds (Di) rather than the

difference between AP values averaged over all the folds (D). This problem is usually

solved by the paired Student’s t-test which compares the average difference of AP

between two methods on the separate data folds to the variation of the difference

across the folds. If the average difference is large enough compared to its standard

error, then the methods are significantly different.

t =
D

SD/
√

N
, D =

1

N

N∑

i=1

Di, SD =

√√√√ 1

N − 1

N∑

i=1

(Di − D)2,
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where Di is the AP difference on the ith data fold, D is the average difference over all

folds (i = 1, . . . , N ), and SD is the sample standard deviation.

Although the t-test requires the differences to be normally distributed, itworks quite

well even if this assumption is not completely valid. However, as a non-parametric

alternative, we can apply thepairedWilcoxon signed-ranked testswhich is commonly

used in information retrieval. This test is more conservative and takes into account

only the sign of the difference and ignores the actual magnitude. The differences in AP

on each data fold are replaced with the ranks of their absolute values and each rank is

multiplied by the sign of the difference (Ri). The sum of the signed-ranks is compared

to its expected value under the assumption that the two groups are equal. For details

and description of other possible tests, see e.g. (Hull, 1993).

T =

∑N
i=1Ri√∑N
i=1R

2
i

, Ri = sign(Di) · rank|Di|.

5.2 Experiments

In order to evaluate the performance of the individual association measures, we per-

formed the following experiment on each of the four data sets introduced in Chapter 4.

For all collocation candidates, we extracted their frequency information (the observed

contingency tables) and context information (the immediate and empirical contexts)

from their source corpora as described in Section 2.2.5. The empirical contexts were

limited to a context window of 3 sentences (the actual one, the one preceding, and

the one following) and filtered to include only open-class word types as described in

Section 2.2.6. Based on this information, we computed the scores for all 82 association

measures for all the candidates in each evaluation data fold. Then, for each associa-

tion measure and each fold, we ranked the candidates according to their descending

association scores, computed values of precision and recall after each true collocation

appearing in the ranked list, plotted the averaged precision-recall curve, and com-

puted the average precision on the recall interval 〈0.1, 0.9〉. The AP values obtained

on the evaluation data folds were used to estimate the mean average precision as the

main evaluation measure. Further, we ranked the association measures according to

their MAP values in descending order and depicted the results in a graph. Finally, we

applied the paired Student’s and Wilcoxon test to the detected measures with statisti-

cally indistinguishable performance. The actual results are presented in the following

subsections.
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Figure 5.3: Sorted MAP scores of all association measures computed on PDT-Dep.
The dark bars correspond to the context-based association measures.

5.2.1 Prague Dependency Treebank

First, we evaluated the association measures on the PDT-Dep data set of dependency

bigrams extracted from the morphologically and syntactically annotated Prague De-

pendency Treebank, filtered by the part-of-speech and freqency filters as described

in Section 4.2. A baseline system ranking the PDT-Dep candidates randomly would

operate with the expected precision (and also MAP) of 21.02%, which is the prior

probability of a collocation candidate to be a true collocation. Precision-recall curves

of some well-performing methods are plotted in Figure 5.2. The best method evalu-

ated by the mean average precision is Cosine context similarity in boolean vector space (77)

with MAP=66.79%, followed by Unigram subtuple measure (39) with MAP=66.72% and

other 14 association measures with nearly identical performance (in terms ofMAP, see

Figure 5.3). They include some popular methods known to perform reliably in this

task, such as Pointwise mutual information (4), Mutual dependency (5), Pearson’s χ2 test (10),

Z score (13), or Odds ratio (27). Surprisingly, another commonly used method T test (12)

only achieved MAP=24.89% and performed slightly above the baseline. Although

the best association measure uses the empirical context information, most of the other

context-based methods are concentrated in the second half of the ranked list of the

association measures (indicated by dark-gray bars) and did not preform well.

The significance testswere applied on all pairs of the associationmeasures and their

results are visualized in Figure 5.4 in the form of a matrix of p-values for both types

of the test (the Student’s t-test on the left and Wilcoxon signed-rank test on the right).
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Figure 5.4: Visualization of p-values from the significance tests of difference (Student’s
t-test on the left and Wilcoxon signed-rank test on the right) between all methods
on PDT-Dep ranked according to their MAP. The gray points correspond to p-values
greater thanα=0.05 and indicate pairs of methodswith statistically indistinguishable
performance.

The dark points indicate pairs of measures with statistically indistinguishable MAP

(p ≥ 0.05), the white space indicates pairs that are statistically different (p < 0.05). The

bigdark square in the bottom left corner corresponds to the 16bestmeasuresmentioned

earlier. Almost all of them are statistically indistinguishable from one another (with

some exceptions). Further in the ranked list of association measures, we can observe

also other “clusters” of measures with statistically equal performance determined by

the dark squares on the diagonal. Ifwewant to compare the two statistical tests,we can

conclude that the Wilcoxon test is indeed more conservative (more pairs of asociation

measures are indistinguishable) but in general, the results are not very distinct.

As the second experiment, we performed the same procedure on the the PDT-

-Surf data set of surface bigrams extracted from the Prague Dependency Treebank

(exploiting only the morphological information), and depicted the resulting MAP

scores of all association measures in Figure 5.5. For a better comparison, the methods

are sorted according to the results obtained on PDT-Dep. Extracting collocations as

surface bigrams seems to be more reasonable than as dependency bigrams. The MAP

scores of most association measures increased dramatically. The best performing

method was Unigram subtuple measure (39) with MAP=75.03% compared to 66.71%

achieved on the dependency bigrams (absolute improvement of 11.68%). This is

probably due to the non-directly-adjacent dependency bigrams not appearing in the

PDT-Surf data set: in most cases, they do not form collocations. Interestingly, this
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Figure 5.5: MAP scores of association measures obtained on PDT-Surf (bars) and
sorted by the descending MAP scores on PDT-Dep (square points).

improvement is not so significant for context-based association measures (see the

dark-gray bars in Figure 5.5). The best context-based measure on the dependency

bigrams (77) ended up as the 22nd on the surface data and its score increased only by

absolute 4.1%.

5.2.2 Czech National Corpus

The third experiment was performed analogously on the instances of PDT-Surf in the

Czech National Corpus – the CNC-Surf reference data set. The content of these two

data sets is almost the same, CNC-Surf shares 98.46% of the collocation candidates

with PDT-Surf. The main difference is in their source corpora. The data from the

Czech National corpus are approximately 150 times larger (in terms of the number of

tokens). The average frequency of candidates in PDT-Surf is 161 compared to 1 662 in

CNC-Surf.

The results are presented in Figure 5.6 and compared to those obtained on the PDT-

-Surf data set (again for a straightforward comparison). The effect of using a much

larger data set is positive only for certainmethods – surprisingly themost efficient ones.

A significant improvement (4.5 absolute percentage points on average) is observed

only for a few of the best performing association measures on PDT-Surf and also for

some other less efficient methods. Performance of other association measures did not

significantly change or it droppeddown. The twoabsolutewinners areUnigram subtuple

measure (39) with MAP=79.74% and Pointwise mutual information (4) with MAP=79.71%̇,

known to be very efficient on large corpora.
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Figure 5.6: MAP scores of association measures computed on CNC-Surf (bars) and
sorted by the descending scores of MAP on PDT-Surf (square points).

5.2.3 Swedish Parole Corpus

The PAR-Dist data set, on which we carried out this last experiment, differs in more

aspects. It contains support verb construction candidates extracted as distance bigrams

(allowing up to three words occurring within the distance between components) from

the 20 million word Swedish Parole Corpus. Also, no frequency filter was applied

to this data set. A baseline system ranking the PAR-Dist candidates randomly would

operate with the expected precision of 7.59%, which is significantly lower than for the

other data sets and thus the MAP of the association measures is expected to be lower.

SortedMAP scores of the associationmeasures are presented in descending order as

the square points in Figure 5.7. The best performing measures evaluated on this data

set are Michael’s coefficient (36) with MAP=18.88%, Piatersky-Shapiro’s coefficient (51) with

MAP=18.87%, and T-test (12) withMAP=18.66%. The scores are, of course, statistically

indistinguishable (the pairedWilcoxon signed rank test, α=0.05). The appearance of T-

test (12) among the best measures is quite suprising because it performed only slightly

above the baseline precision on other data sets. In fact, the results of other measures

are also remarkably different and many of the best performing measures on other data

sets appear in the tail (Figure 5.7).

The evaluation over the PAR-Dist data set might have been unfairly biased by the

low frequency candidates that were not filtered out by the frequency filter as was

the case with the other data sets. Hence, we applied the frequency filter to this set
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Figure 5.7: MAP scores of association measures computed on the frequency filtered
subset of the PAR-Dist data set (f > 5) (bars) and sorted by the descending scores of
MAP obtained on the full PAR-Dist set (square points).

and preserved only the candidates appearing in the corpus more than five times (the

same frequency threshold as for PDT-Dep, PDT-Surf, and CNC-Surf). The resulting

set contains 5 530 candidates including 763 true collocations (the baseline precision is

13.79%). MAP scores of this reduced data set are visualized as bars and compared to

the original ones (the square points) also in Figure 5.7.

Most of the association measures are indeed very sensitive to low frequency data

and theMAP scores on the filtered and the full PAR-Dist data set do not correlatemuch.

The best scores were achieved by Gini index (47), MAP=31.27%, Klosgen’s coefficient (55),

MAP=30.53%, and T-test (12), MAP=30.34%. The scores are insignificantly different.

Suprisingly, T-test (12) is again among the best measures. Compared to the best results

on the full PAR-Dist set (18.87%), theMAP scores of the best measures are greater than

what could be explained by the difference between the baseline precisions.

Figure 5.8 comparesMAP scores on the full PAR-Dist data set and the PDT-Dep data

set. It is evident that theperformance of the individualmeasures varies to a large extent

also in this case. While Pearson’s χ2 test (10) is the third worse method on PAR-Dist,

it is among the best (statistically indistinguishable) methods on PDT-Dep. On the

contrary, T-test (12) is in the group of the best (statistically indistinguishable) methods

on PAR-Dist, but on PDT-Dep, it is among the methods with the lowest MAP.
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Figure 5.8: MAP scores of association measures obtained on PDT-Surf (bars) and
sorted by the descending scores of MAP on PAR-Dist (square points).

5.3 Comparison

When comparing results on these data sets, we must be aware of the fact that the

baseline MAP scores on these data sets are not equal (21.02% for PDT-Dep, 22.88% for

PDT-Surf, 22.66% for CNC-Surf, and 7.59% for PAR-Dist) and their differences must

be taken into account during the analysis of the MAP scores on different data sets. In

most cases, these differences are relatively small compared to the differences in MAP

of association measures that were observed in our experiments.

The complete results of all the experiments described in this chapter (including

the significance tests) are presented in Appendix B. To make the picture even more

complete, we have visualized how the results vary on the data sets by drawing their

scatterplots in Figure 5.9. Each of the plots in the matrix contains the MAP of all

association measures obtained on one data set plotted against the MAP on another

data set. Each point represents two MAP scores of a particular association measure

on two data sets. Fully correlated MAP scores on two data sets would appear on

the diagonal of the corresponding plot. A certain correlation is observed between

the results on the PDT-Dep and PDT-Surf data sets and also between PDT-Surf and

CNC-Surf (which are most similar data set pairings). Significantly less correlated are

the MAP scores on CNC-Surf and PDT-Dep, and basically no correlation is observed

between the results obtained on the PAR-Dist and the other data sets.
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Figure 5.9: A matrix of scatterplots of MAP scores of all association measures com-
puted on the four data sets (PDT-Dep, PDT-Surf, CNC-Surf, and PAR-Dist). Each point
represents MAP scores of one measure on two of these data sets.

Based on this observation, we can conclude that the performance of association

measures on our data sets varies to a large extent and depends on every aspect of the

task, such as the type of collocations being extracted, the way the candidates were

obtained, the size of the source corpora, its language, etc.

Although we are not able to recommend a measure (or measures) that perform

successfully on any data (or task), the presented evaluation scheme can be effectively

used to choose such a measure (or measures) for any particular task (assuming a

manually annotated reference data set is available).



Chapter 6

Combining Association Measures

In this chapter, we propose combining association measures into more complex sta-

tistical models that can exploit the potential of the individual association measures to

discover different groups and types of associated words.

6.1 Motivation

It is quite natural to expect that the collocation extraction methods (especially those

based on different extraction principles) rank collocation candidates differently. In the

previous chapter, we used the mean average precision (MAP) as a measure of quality

of such a ranking. Methods that concentrate true collocations at the top of the list

were evaluated as better than those without this ability. Many measures achieved

very similar MAP scores for a given data set and were evaluated as equally good. For

example, Cosine context similarity in boolean vector space (77) and Unigram subtuple measure

(39) performed on PDT-Depwith statistically indistinguishable scores of MAP=66.79%

and 66.72%, respectively. In a more thorough comparison by precision-recall (PR)

curves, we observed that on PDT-Dep, the curve of Cosine context similarity (77) signif-

icantly predominates the curve of Unigram subtuple measure (39) in the first half of the

recall interval and vice versa in the second half, as depicted in Figure 5.2 (page 77).

This is a case where MAP is not a suitable metric for comparing the performance of

association measures. For a more detailed comparison we should analyze not only

their MAP but also their PR curves. Moreover, even if two methods have identical PR

curves, the actual ranking of collocation candidates can still vary a lot and different as-

sociation measures can prefer different types (or groups) of collocations above others.

Such non-correlated measures could perhaps be combined and eventually improve the

performance in ranking collocation candidates.

87
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Figure 6.1: Visualization of scores of two association measures. The dashed line
denotes a linear discriminant obtained by logistic linear regression. By moving this
boundary, we can tune the classifier output (a 5% stratified sample of the evaluation
data folds is displayed).

An example of existence of suchmeasures is shown in Figure 6.1. Association scores

of Pointwise mutual information (4) and Cosine context similarity (77) seem independent

enough to be (linearly) combined into one model and possibly achieve better per-

formance. In the following sections we will deal with models combining all the

association measures described in Chaper 3.

6.2 Methods

Formally, each collocation candidate xi can be empirically described by the feature

vector x
i = (xi

1, . . . , x
i
82)

T consisting of scores of all 82 association measures from Ta-

bles 3.4 and 3.5 in Chapter 3 and assigned a label yi∈{0, 1}which indicateswhether the

bigram is considered to be a true collocation (y = 1) or not (y = 0). We look for a ranker

function f(xi) determining the strength of collocational association between compo-

nents of collocation candidates (xi) and hence can be used for their ranking in the same

manner as the individual association measures. Performance of such a method could

be evaluated in the same way as the individual association measures: MAP scores

and PR curves. In this section, we briefly introduce several statistical-classification

methods and demonstrate how we used them as such rankers. For further details, see

e.g. Venables and Ripley (2002).
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6.2.1 Linear logistic regression

An additive model for a binary response is represented by a generalized linear model

(GLM) in a form of logistic regression:

logit(π) = β0 + β1x1 + . . . + βpxp,

where logit(π) = log(π/(1−π)) is a canonical link function for odds-ratio and π∈(0, 1)

is a conditional probability of a positive response given a vector x. The estimation

of β0 and βββ is computed by the maximum likelihood method which is solved by the

iteratively reweighted least squares algorithm. The ranker function in this case is defined

as the predicted value π̂ or equivalently (due to the monotonicity of the logit link

function) as the linear combination β̂0 + β̂ββ T
x.

6.2.2 Linear discriminant analysis

The basic idea of Fisher’s linear discriminant analysis (LDA) is to find a one-dimensio-

nal projection defined by a vector c so that for the projected combination c
T
x the ratio

of the between variance BBB to the within variance WWW is maximized. After the projection,

c
T
x can be used directly as a ranker.

max
c

c
TBBB c

cTWWW c
.

6.2.3 Support vector machines

For technical reasons, we now change the labels yi ∈ {−1,+1}. The goal in support

vector machines (SVM) is to estimate a function f(x) = β0 + βββ T
x and find a classifier

y(x) = sign
(
f(x)

)
which can be solved through the following convex optimization:

min
β0,βββ

n∑

i=1

[
1 − yi(β0 + βββT

x
i)

]+
+

λ

2
||βββ||2.

with λ as a regularization parameter. The hinge loss function L(y, f(x)) = [1 − yf(x)]+

is active only for positive values (i.e. bad predictions) and is therefore very suitable

for ranking models with β̂0 + β̂ββ T
x as a ranker function. Setting the regularization

parameter λ is crucial for both the estimators β̂0, β̂ββ and further classification (or rank-

ing). As an alternative to the often inappropriate grid search, Hastie (2004) proposed

an effective algorithm which fits the entire SVM regularization path [β0(λ),βββ(λ)] and

provided an option to choose the optimal value of λ. As an objective function, we used

the total amount of loss on training data rather than the number of false predicted

training instances.
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6.2.4 Neural networks

Assuming the most commonmodel of neural networks (NNet) with one hidden layer,

the aim is to find inner weights wjh and outer weights whi for

yi = φ0

(
α0 +

∑
whiφh(αh +

∑
wjhxj)

)
,

where h ranges over the units in the hidden layer. Activation functions φh and the

function φ0 are fixed. Typically, φh is taken as the logistic function φh(z) = exp(z)/(1+

exp(z)) and φ0 as the indicator function φ0(z) = I(z > ∆) with ∆ as a classification

threshold. For ranking, we simply set φ0(z) = z. Parameters of the neural networks

are estimated by the backpropagation algorithm. The loss function can be based either

on least squares or maximum likehood. To avoid problems with convergence of the

algorithm, we used the former one. The tuning parameter of a classifier is then the

number of units in the hidden layer.

The presented methods are originally intended for (binary) classification. For our

purposes, they are usedwith a small modification: In the training phase, they are used

as regular classifiers on two-class training data (collocations and non-collocations) to

fit the model parameters. In the application phase, no classification threshold applies

and for each collocation candidate, the ranker function computes a value which is

interpreted as the association score. Applying the classification threshold would turn

the ranker back into a regular classifier. The candidates with higher scores would fall

into one class (collocations), the rest into the other class (non-collocations).

6.3 Experiments

In this section, we will describe experiments with the presented models on the four

reference data sets described in Chapter 4. The resultswill be evaluated byMAP scores

and PR curves, and compared to the performance of the best individual measures

evaluated in Chapter 5.

Note: To avoid incommensurability of association measures in the experiments, we

used the most common preprocessing technique for multivariate standardization: the

values of each association measure were centered towards zero and scaled to a unit

variance. Precision-recall curves of all methodswere obtained by vertical averaging in

six-fold crossvalidation on the same reference data sets as in the earlier experiments.

Mean average precision was computed from the average precision values estimated

on the recall interval 〈0.1,0.9〉. In each cross-validation step, five folds were used for

training and one fold for testing.
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Figure 6.2: Precision-recall curves of selected methods combining all association
measures on the PDT-Dep data set, compared with curves of two best measures
employed individually on the same data set.

6.3.1 Prague Dependency Treebank

First, we studied the performance of the combination methods on the PDT-Dep ref-

erence data. All combination methods worked very well and gained a substantial

performance improvement in comparison with individual measures. The best result

was achieved by the neural network with five units in the hidden layer (NNet.5) with

MAP=80.93%, which is 21.17% relative and 14.08% absolute improvement compared

to the best individual association measures, such as Cosine context similarity in boolean

vector space (77) and Unigram subtuple measure (39). More detailed results are given in Ta-

ble 6.1 and precision-recall curves are depicted in Figure 6.2. We observed a relatively

stable improvement within the whole interval of recall. The neural network was the

onlymethodwhich performed better in its more complex variant (with up to five units

in the hidden layer). More complex models, such as neural networks with more than

five units in the hidden layer, support vector machines with higher order polynomial

kernels, quadratic logistic regression, or quadratic discriminant analysis, overfitted

the training data folds, and better scores were achieved by their simpler variants.

The results on thePDT-Surf data setwere similar. The bestmethodwas alsoNNet.5.

It achieved even higherMAP=84.84% but compared to the best performing individual

measure Unigram subtuple measure (39) with MAP=75.03%, the relative improvement

was only 12.43%.
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method averaged precision at MAP

R=20 R=50 R=80 R=〈0.1,0.9〉 +%

Neural Network (5 units) 91.00 81.75 70.22 80.87 21.08

Linear Logistic Regression 86.96 79.74 64.63 77.36 15.82

Linear Discriminant Analysis 85.99 77.34 61.44 75.16 12.54

Neural Network (1 unit) 82.47 77.08 65.75 74.88 12.11

Support Vector Machine (linear) 81.33 76.08 61.49 73.03 9.35

Cosine similarity (77)) 80.88 68.46 49.99 66.79 0.00

Unigram subtuples (39) 75.86 68.19 55.13 66.72 –

Table 6.1: Performance of methods combining all association measures on PDT-
Dep: averaged (over the data folds) precision at fixed points of recall and mean
average precision and its relative improvement (+%) compared to the best individual
association mesure (all values are in %).

6.3.2 Czech National Corpus

TheCNC-Surf data set provides amuchbetter estimationof the occurrenceprobabilities

of the collocation candidates and their components. Also the context information

extracted for the candidates in this data set from the Czech National corpus is much

more representative. The best individual association measures evaluated on CNC-

-Surf gained about 4.5% (absolute) compared to the results on PDT-Surf (the same

collocation candidates but frequency and context information extracted from themuch

smaller PragueDependencyTreebank). The bestmethod onCNC-Surf, Unigram subtuple

measure (39), achieved MAP=79.74% and NNet.5 combining all association measures

then increased this score to a remarkable 86.3%.

By taking the CNC-Surf data set as a representative sample of all collocation can-

didates from the whole Czech National Corpus (filtered by the same part-of-speech

and frequency filter) we can use this MAP score as an estimation of MAP that can be

achieved by this method on the full population of candidates from this corpus (which

is 1.5 million surface bigrams, see Table 4.13). Any portion of true collocations in this

population can be extracted by this neural networkwith the expected precision 86.3%.

If we limit ourselves to a specific recall, we can extract e.g. 20% of true collocations

with an expected precision of 94.07%, 50% of true collocations with an expected pre-

cision of 88.09% and 80% of true collocations with an expected precision of 75.62%

(these values are averaged precision scores at 20%, 50%, and 80% of recall obtained

by NNet.5 on CNC-Surf, respectively).
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Figure 6.3: MAP scores of methods combining all association measures obtained on
the reference data sets: PDT-Dep, PDT-Surf, CNC-Surf, and PAR-Dist. ’Best sAM’ and
’Best cAM’ refer to the best statistical association measure and context-basedmeasure
on each data set, respectivelly.

6.3.3 Swedish Parole Corpus

The comparison of the performance of all the combination methods on all the reference

data sets is depicted in Figure 6.3. NNet.5 was evaluated as the best performing

method also on the PAR-Dist reference data set. It achieved MAP=35.78%, which is,

compared to the best individual measure on the same data set, Michael’s coefficient(36),

with MAP=18.88%, a substantial improvement of 89.5% (relative). Based on the

suspicion that the evaluation on the (full) PAR-Dist data set (see also Section 5.2.3)

might be biased by the low frequent candidates, we limited another experiment to the

subset of candidateswith frequencygreater thanfive. ThebestMAPscore of individual

association measure (Gini Index (47)) was 31.27%. The same neural network model on

this subset achieved MAP=52.15% which is also quite a substantial improvement of

66.76% (relative).

Learning curves

Our next experiment is focused on the effect of using different amounts of data for

training the combination models. The experiments presented so far in this chapter

were based on six-fold crossvalidation (see Section 6.3) . They used five out of the

six evaluation folds for training (fitting model parameters) and one fold for testing

(predicting association strength). For example, in each crossvalidation step on PDT-
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Figure 6.4: The learning curve of the neural network with 5 units in the hidden layer
measured on the PDT-Dep reference data set.

-Dep, 8 737 data instances (collocation candidates labeled as collocations and non-

collocations) were used for training and other 1 747 for testing. The first question is

whether such an amount of training data is sufficient or whetherwewould profit from

having more data available for training. In case we have enough data for training, the

second question is whether its amount is not unnecessarily large and whether we can

train a well-performing model on less data.

We have repeated the experiment with NNet.5 on PDT-Depwith a varying propor-

tion of data used for training (the data used for testingdid not change). The experiment

ran over 100 iterations. It started with 1% of data used for training (87 instances) in

each of the six crossvalidation steps and in every subsequent iteration we added an-

other 1% of the data for training. TheMAP scores computed after each iteration of this

experiment are depicted in Figure 6.4. The resulting curve is called a learning curve

and is a commnon tool for the analysis of model performance in dependency on the

size of the training data. The beginning of the curve obtained byNNet.5 on PDT-Dep is

fairly steep and reaches 90% of its maximum value with only 5% of training data; with

15% of training data, it climbs up to 95%. 99% of the maximum MAP score can be

achieved with about 50% of training data.

We expect the learning curve to stay flat even when using more data, and thus

we can conclude that the amount of data we used in our experiments is sufficient.

Moreover, we can use significantly less data and train a very well-performing system

with as little as 15% of the original amount of the training data. The effect of using

more then approximately 60% of the data is within the statistical error.
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method PDT-Dep PDT-Surf CNC-Surf PAR-Dist

NNet.5 (AM+POS+DEP) 84.53 – – –

NNet.5 (AM+POS) 82.79 86.48 88.22 –

NNet.5 (AM) 80.87 84.35 86.30 35.78

Best AM 66.72 (77) 75.03 (39) 79.74 (39) 18.88 (36)

Baseline 21.02 22.88 22.66 7.59

Table 6.2: Summarization of the results achieved on each data sets by the best indi-
vidual association measure (Best AM) and by the best combination method (NNet.5)
using association measures (AM) and information about part-of speech pattern (POS)
and dependency type (DEP) – where applicable.

6.4 Linguistic features

In the following experiment, we attempted to improve the combination methods by

using some linguistic information extracted with the collocation candidates from the

source corpora, namely part-of-speech patterns and dependency types. This informa-

tion was incorporated into the models by binarization and dummy variables (Boros et

al., 1997) for each possible value of the part-of-speech pattern and dependency type,

indicating presence or absence of the value for each data instance (collocation candi-

date).

The linguistic information contributed to the models quite significantly. The MAP

scores of the best performing method (NNet.5) exploiting this kind of information on

the reference data sets are shown in Table 6.2. Using POS information improved the

MAP scores of NNet.5 approximately by 2% (absolute) on all Czech data sets (the

Swedish PAR-Dist contains only verb-noun combinations). Additional 2% (absolute)

were gained on PDT-Dep by exploiting the information on the dependency type (the

only data set containing this kind of information) and the best performing method

achieved MAP=84.53% which is a relative improvement of 25.94% compared to MAP

of the best individual measure.
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6.5 Model reduction

In the previous sections, we have demonstrated that combining association measures

is generally very reasonable and significantly helps in the task of ranking collocation

candidates. However, methods which employ all 82 association measures in linear

combination (or more complex models, such as the neural networks with multiple

units in the hidden layer) are unnecessarily complex (in the number of the variables

used). There are two problems:

First, some of the association measures are too similar (analytically or empirically)

– when combined they do not bring any new information and become redundant.

Such highly correlated measures make the training (fitting the models) quite diffi-

cult and should be eliminated. After applying principal component analysis (see e.g.

(Jolliffe, 2002)) to the all 82 association scores of collocation candidates from the PDT-

-Dep reference data, we observed that 95% of the total variance is explained by only 17

principal components and 99.9% is explained by 42 components. We should be able

to reduce the number of variables in our models significantly, possibly with a very

limited degradation of their performance.

Second, some of themeasures are improper for ranking collocation candidates at all

– they do not determine well the strength of association, bring unnecessary noise to

the combination models, and eventually, they can also hurt their performance. Also

such measures should be identified and removed from the model. In this section, we

will attempt to propose an algorithm, which reduces the combination models by re-

moving such redundant (in terms of correlation) and useless (in terms of effectiveness)

variables.

A straightforward, but in our case hardly feasible (due to the high number of the

model variables), approach would be an exhaustive search through the space of all

possible subsets of all the association measures. Another option is a heuristic step-

-wise algorithm iteratively removing one variable at a time until a stopping criterion

is met. Such algorithms are not very robust: they are particularly sensitive to data

and generally not recommended. However, we tried to minimize these problems by

initializing the algorithm by clustering similar variables and choosing one variable

from each cluster as a representative of variables with the same contribution to the

model. Thus we can remove the highly correlated variables and continue with the

step-wise procedure.
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Figure 6.5: Dendrogram visualizing hierarchical clustering of association measures
based on their correlation over the held-out data fold from PDT-Dep.

6.5.1 Algorithm

The proposed algorithm eliminates the model variables (association measures) based

on two criteria: linear correlationwith other variables andpoor contribution to efficient

ranking of collocation candidates.

First, a hierarchical clustering (Kaufman and Rousseeuw,1990) is employed in

order to group highly correlated measures into clusters. This clustering is based on

the similarity matrix formed by the absolute values of Pearson’s correlation coefficient

computed for each pair of association measures estimated from the held-out data fold

(independent from the evaluation data folds). This technique starts with each variable

in a separate cluster and merges them into consecutively larger clusters based on the

values from the similarity matrix until a desired number of clusters is reached or the

similarity between clusters exeeds a limit. An example of a complete hierarchical

clustering of association measures is depicted in Figure 6.5. If the stopping criterion is

set correctly the measures in each cluster have an approximately equal contribution to

the model. Only one of them is selected as a representative and used in the reduced

model (the other measures are redundant). The selection can be random or based

e.g. on the (absolute) individual performance of the measures on the held-out data

fold.

The reduced model at this point do not contain highly-correlated variables and can

be more easily fit (trained) to the data. However, these variables are not guaranteed

to have a positive contribution to the model. Therefore, the algorithm continues with

the second step and applies a standard step-wise procedure removing one variable in

each iteration, causing minimal degradation of the model’s performance measured by

MAP on the held-out data fold. The procedure stops when the degradation becomes

statistically significant – e.g. by the paired t-test or paired Wilcoxon signed-rank test.
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Figure 6.6: MAP scores (the lower curve) obtained after each iteration of the model
reduction process of NNet.5 on PDT-Dep initiated with 60 variables. The scores were
crossvalidated on the evaluation folds (the upper curve shows MAP scores on the
held-out fold used to select the variables to be removed).

6.5.2 Experiments

We tested the model reduction algorithm with NNet.5 (as the best performing combi-

nation method) on the PDT-Dep reference data set as follows: The initial hierarchical

clustering was stopped after merging the variables into 60 clusters (the number was

set experimentally). In each iteration step of the algorithm, we estimated performance

of the current model reduced by each variable (one by one) on the held-out data fold:

six crossvalidation models were trained as usual on five of the evaluation folds and

tested not on the sixth one but on the held-out fold (so the MAP score was estimated

from six different rankings of candidates from one data fold). The variable causing

minimal degradation of this score was selected and removed from the model. The

new model was evaluated as usual on all the evaluation folds and the obtained MAP

score was tested to be significantly worse then the one from the previous step. The

decision which variable to remove in each iteration was done independently of the

performance evaluation of the intermediate models.

Figure 6.6 displays the MAP scores of the intermediate models from the whole

process. It started with 60 variables, the best MAP was achieved by a model with 47

varibales. The MAP scores further oscillated around the same value until the model

had about 16 variables. Then, MAP dropped down a little after each iteration and

with less then 13 variables this degradation became significant (the paired Wilcoxon

signed-rank test, confidence level α = 0.05%) which is even smaller then the number

of principal components that explain 95% of the sample variance as mentioned earlier.
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Figure 6.7: Precision-recall curves of reduced NNet.5 models compared with the
curves of the full model and two best individual methods on PDT-Dep.

# association measure MAP

13. Reverse cross entropy (62) 22.98

12. First Kulczynsky coefficient (23) 63.21

11. S cost (41) 35.77

10. Left context entropy (57) 22.38

9. Reverse confusion probability (68) 35.53

8. Left context divergence (59) 53.14

7. Phrase word coocurrence (75) 28.94

6. Right context entropy (58) 23.05

5. Cosine context similarity in boolean vector space (77) 66.79

4. Dice context similarity in TF vector space (81) 28.98

3. Unigram subtuple measure (39) 66.72

2. Dice context similarity in TF ·IDF vector space (82) 56.51

1. Log frequency biased Mutual Dependency (6) 60.81

Table 6.3: Association measures (with their individual MAP scores) included in the
final model of the reduction algorithm applied to NNet.5 and PDT-Dep.

Precision-recall curves for some intermediate models are shown in Figure 6.7. We

can conclude that we were able to reduce the NNet.5 model to 13 variables without

a statistically significant difference in performance, MAP=80.18%. The final model

contained the association measures listed in Table 6.3 in the order in which theywould

be removed if the algorithm continued. They include measures across the entire

spectrum, based on different extraction principles, and with very different individual

performance. The precision-recall curves of these measures are depicted in Figure 6.8.
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Figure 6.8: Averaged precision-recall curves of the 13 measures included in the re-
duced combination model (NNet.5), obtained on the PDT-Dep data set.

Some of the measures/variables of the final model (e.g. 57, 58, 62) performed only

very slightly above the baseline when employed individually, however their contri-

bution to the model is perceptible – if any of them was removed from the model,

the model’s performance would drop significantly (measured by the paired Wilcoxon

signed-rank test at the confidence level α = 0.05%). If we let the model reduction

algorithm make one step more, it would remove the measure (62) with individual

MAP=22.98% (which is less then absolute 2% above the baseline) and the model’s

MAP would drop to 79.37% (which was confirmed to be a significant difference by

the paired Wilcoxon signed-rank test). If this difference (and the contribution of such

poorly performing measures) was not interpreted as “practically” significant and we

removed all measures with MAP less than 25% (57, 58, 62), the model’s MAP would

drop to 76.54 % – i.e. the three “poor” methods contribute to the model’s MAP by

almost 4% absolute.

We should emphasize that the model-reduction algorithm is very sensitive to data

and can very easily lead to different results depending on the task. However, we

employed the reduced NNet.5 models with the 13 variables on the other data sets and

it also performed very well, although in some cases, the differences are statistically

significant (see Table 6.4).
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PDT-Dep PDT-Surf CNC-Surf PAR-Dist

model full red full red full red full red

NNet.5 (AM+POS+DEP) 84.53 84.16 – – – – – –

NNet.5 (AM+POS) 82.79 82.51 86.48 86.33 88.22 87.58 – –

NNet.5 (AM) 80.87 80.18 84.35 83.81 86.30 85.01 35.78 33.19

Best AM 66.72 (77) 75.03 (39) 79.74 (39) 18.88 (36)

Baseline 21.02 22.88 22.66 7.59

Table 6.4: Comparison of theMAP scores of the full and reduced (13 variables)NNet.5
models on all the data sets. Significantly different scores are in bold.
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Chapter 7

Conclusions

In this work, we studied lexical association measures and their application to colloca-

tion extraction. First, we compiled a comprehensive inventory of 82 lexical association

measures for two-word (bigram) collocation extraction based on three different ex-

traction principles. These measures are divided into two groups: statistical association

measures and context-based association measures.

Second, we developed four reference data sets for the task of identifying colloca-

tion candidates. All of them consist of bigram collocation candidates. PDT-Dep and

PDT-Surf were extracted from the manually annotated Czech Prague Dependency Tree-

bank and differ only in the character of the bigrams: PDT-Dep consists of dependency

bigrams and PDT-Surf of surface bigrams. Both the setswere filtered by the same part-

of-speech pattern and frequency filters. Manual annotation was done exhaustively by

three annotators, true collocations were indicated in all the data. The CNC-Surf refer-

ence data setwas extracted from amuch larger data from theCzech National Corpus and

consists of surface bigrams also appearing in PDT-Surf. It can be considered as a ran-

dom sample from the full set of collocation candidates in this corpus filtered by the

same part-of-speech pattern filter and frequency filter as the PDT-Surf reference data.

The PAR-Dist reference data set is quite different. It consists of Swedish verb-noun

combinations manually extracted from the Swedish Parole corpus in a nonexhaustive

fashion with an indication of true support-verb constructions.

These four reference data sets were designed to allow comparison of effectiveness

of the association measures in different settings. On PDT-Dep and PDT-Surf, we com-

pared twoways of extracting collocation candidates (dependency vs. surface bigrams).

On PDT-Surf and CNC-Surf, we explored the effect of using a much larger source cor-
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pus (1.5 million vs. 242 million tokens). PAR-Dist complements these three sets with

the data that differs in more aspects: the language (Swedish vs. Czech), the way the

candidates were obtained (distance vs. dependency and surface bigrams), the type of

collocations being extracted (support verb constructions vs. general collocations), the

size of the source corpora (20million vs. 1.5million and 242million tokens), and finally,

the frequency filter (all candidates vs. those occurring more than five times).

We implemented all the 82 lexical association measures and evaluated their perfor-

mance in ranking collocation candidates over the four reference data sets by averaged

precision-recall (PR) curves andmean average precision (MAP) scores in six-fold cross val-

idation. The baseline scores were set as the expectedMAP of a system that would rank

the collocation candidates in each the reference data set randomly, which corresponds

to the prior probability of a collocation candidate to be a true collocation: 21.02% for

PDT-Dep, 22.88% for PDT-Surf, 22.66% for CNC-Surf, and 7.59% for PAR-Dist.

The best result on the PDT-Dep reference data was achieved by a context-based

method measuring Cosine context similarity in boolean vector space with MAP=66.79%

followed by 15 other association measures with statistically indistinguishable per-

formance. Extracting collocations as surface bigrams was observed to be the more

efficient approach (in terms of higher MAP). The results of almost all measures ob-

tained over thePDT-Surf reference data significantly improved: the bestMAP=75.03%

was achieved with Unigram subtuple measure followed by 13 other measures with sta-

tistically insignificant differences in MAP. The experiments carried out on the CNC-

-Surf reference data showed that processing of a larger corpus had a positive effect

on the quality of collocation extraction; the MAP score of the best measures, Unigram

subtuple measure and Pointwise mutual information, increased up to 79.7%. The results

on the PAR-Dist reference data set were remarkably different not only in the absolute

MAP scores of the best methods (Michael’s coefficient, Piatersky-Shapiro’s coefficient, and

T-test with statistically indistinguishable MAP=18.66–18.88%) but also in the relative

difference of their performance over the other data sets. For example, T-test, one of

the best measures on PAR-Dist, performed only slightly above the baseline across all

PDT-Dep, PDT-Surf, and CNC-Surf. These results demonstrate that performance of

lexical association measures strongly depends on the actual data and task. None of

the measures can be selected as the “best” measure that would perform efficiently on

any data set. However, the proposed evaluation scheme (based on MAP scores and

eventually also on PR curves) can be effectively used to choose such a measure (or

measures) for any particular task (if a manually annotated data is available).
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Further, we demonstrated that by combining association measures, we can achieve

a substantial performance improvement in ranking collocation candidates. The inven-

tory of the lexical association measures presented in this work are used as ranking

functions. Their scores are uncorrelated to such an extent that a linear combination

of all of them produces better association scores than any of the measures employed

individually. All investigated combination methods (Linear logistic regression, Linear

discriminant analysis, Support vector machines, andNeural networks) significantly outper-

formed all individual association measures on all the reference data sets. The best

results were achieved by a simple neural network with five units in the hidden layer.

ItsMAP=80.87% thatwas achieved on thePDT-Depdata set represents 21.53% relative

improvement with respect to the best individual measure on the same set. In the ex-

periments on the CNC-Surf data set, the same neural network achieved MAP=86.30%.

After adding linguistic features (information about part-of-speech and dependency

type) to this model, the MAP score on PDT-Dep increased to 84.53% (25.94% relative

improvement) and on CNC-Surf to 88.22%.

Moreover, we observed that it is not necessary to combine all the 82 association

measures, but only a small subset of about 13 selected measures that performs statis-

tically indistinguishably from the full model (with the neural network with five units

in the hidden layer, measured by MAP on PDT-Dep) is sufficient. This subset contains

measures from the entire spectrum, based on different extraction principles, and with

very different individual performance. Although, the combination of the 13 measures

is not guaranteed to be efficient also on other data sets, the proposed algorithm can

be easily used to select the right measures for any specific data set and task (assuming

a manually annotated data is available).

All the goals specified in Section 1.3 of this work were achieved. Performance

of lexical association measures in the task of ranking collocation extraction heavily

depends on many aspects and must be evaluated on particular data and task. Com-

bining association measures is meaningful and improves precision and recall of the

extraction procedure and substantial performance improvements can be achievedwith

a relatively small number of measures combined in a relatively simple model.
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Appendix A

MWE 2008 Shared Task Results

In this appendix, we describe our participation in theMWE 2008 evaluation campaign

focused on rankingMWEcandidates published in (Pecina, 2008a). The systemweused

for this shared taks differed in several aspects: we employed only 55 statistical associa-

tion measures (no context-based measures were used), the results were crossvalidated

in 7-fold crossvalidation and comparedbymean average precision (MAP) estimatedon

the full interval of recall 〈0, 1〉. We used the same combination methods and observed

significant performance improvement by combining multiple association measures.

A.1 Introduction

Four gold standard data sets were provided for the MWE 2008 shared task. The goal

was to re-rank each list such that the “best” candidates are concentrated at the top of the

list1. Our experimentswere carried out over only three data sets – those providedwith

corpus frequency data by the shared task organizers: German Adj-Noun collocation

candidates, German PP-Verb collocation candidates, and Czech dependency bigrams

from the Prague Dependency Treebank. For each set of experiments, we present the

best performing association measure (AM) and results of our own system based on

the combination of multiple association measures (AM).

1http://multiword.sf.net/mwe2008/
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category 1 2 3 4 5 6 total

Items 367 153 117 45 537 33 1252

Percent 29.3 12.2 9.3 3.6 42.9 2.6 100.0

Table A.1: Category distribution in German Adj-Noun data.

A.2 System overview

In our system, described in (Pecina and Schlesinger, 2006) and (Pecina, 2005), each col-

location candidate xi is described by the feature vector x
i = (xi

1, . . . , x
i
55)

T consisting of

the first 55 association scores from Table 3.4 (in Chapter 3 of this work) computed from

the corpus frequency data (provided by the shared task organizers), and assigned a la-

bel yi ∈ {0, 1}which indicateswhether the bigram is considered as true positive (y = 1)

or not (y = 0). A part of the data is then used to train standard statistical-classification

models to predict the labels. These methods are modified so that they do not pro-

duce 0–1 classification but rather a score that can be used (similarly as for association

measures) for ranking the collocation candidates (Pecina and Schlesinger, 2006). The

following statistical-classification methods were used in experiments described in this

appendix: Linear Logistic Regression (GLM), Linear Discriminant Analysis (LDA), Neural

Networks with 1 and 5 units in the hidden layer (NNet.1, NNet.5), and Support Vector

Machines (SVM).

For evaluation we followed a similar procedure that was described in Chapter 5

of this work. Before each set of experiments, each data set was split into seven

stratified folds, each containing the same ratio of true positives. Average precision

(AP), corresponding to the area under the precision-recall curve, was estimated for each

data fold and itsmeanwas used as themain evaluationmeasure -mean average precision

(MAP). The methods combining multiple association measures used 6 data folds for

training and one for testing (7-fold crossvalidation).
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1–2 1–2–3

Baseline 42.12 51.78

Best AM 62.88 (51) 69.14 (51)

GLM 60.88 70.62

LDA 61.30 70.77

NNet.1 60.52 70.38

NNet.5 59.87 70.16

SVM 57.95 64.24

Table A.2: MAP scores of ranking German Adj-Noun collocation candidates.

A.3 German Adj-Noun collocations

A.3.1 Data description

This data set consits of 1 252 German collocation candidates randomly sampled from

the 8 546 different adjective-noun pairs (attributive prenominal adjectives only) oc-

curring at least 20 times in the Frankfurter Rundschau corpus (Rundschau, 1994).

The collocation candidates were lemmatized with the IMSLex morphology (Lezius

et al., 2000), pre-processed with the partial parser YAC (Kermes, 2003) for data ex-

traction, and annotated by professional lexicographers with the following categories

(distribution is shown in Table A.1):

1. true lexical collocations, other multiword expressions,

2. customary and frequent combinations, often part of a collocational pattern,

3. common expressions, but no idiomatic properties,

4. unclear / boundary cases,

5. not collocational, free combinations,

6. lemmatization errors corpus-specific combinations.

A.3.2 Experiments and results

Frequency counts were provided for 1 213 collocation candidates from this data set.

We performed two sets of experiments on them. First, only the categories 1–2 were

considered true positives. There was a total of 511 such cases and thus the baseline
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items percentage

total 21796 100.0

TPs 1149 5.3

FVG 549 2.5

figur 600 2.8

in.fr30 5102 23.4

light.v 6892 31.6

Table A.3: Statistics of German PP-Verb data.

precision was quite high (42.12%). The highest MAP=62.88% achieved by Piatersky–

Shapiro coefficient (51) was not outperformed by any of the combination methods.

In the second set of experiments, the true positives comprised categories 1–2–3 (the

total of 628 items). The baseline precision was as high as 51.78%. The best association

measure was again Piatersky–Shapiro coefficient (51) but it was slightly outperformed by

most of the combination methods. The best one was based on LDA and achieved

MAP=70.77%. See detailed results in Table A.2.

A.4 German PP-Verb collocations

A.4.1 Data description

This data set comprises 21 796German combinations of a prepositional phrase (PP) and

a governing verb extracted from the Frankfurter Rundschau corpus (Rundschau, 1994)

and used in a number of experiments, e.g. (Krenn, 2000). PPs are represented by

the combination of a preposition and a nominal head. Both the nominal head and

the verb were lemmatized using the IMSLex morphology (Lezius et al., 2000) and

processed by the partial parser YAC (Kermes, 2003). See (Evert, 2004) for details of

the extraction procedure. The data was manually annotated as lexical collocations

or non-collocational by Brigitte Krenn (Krenn, 2000). In addition, a distinction was

made between two subtypes of lexical collocations: support-verb constructions (FVG),

and figurative expressions (figur), statistics for the data are shown in Table A.4.
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all in.fr30 light.v

Baseline 2.91 5.75 7.25

Best AM 18.26 (48) 28.48 (48) 43.97 (14)

GLM 28.40 26.59 41.25

LDA 28.38 40.44 45.08

NNet.1 30.77 42.42 44.98

NNet.5 30.49 43.40 44.23

SVM 14.15 27.51 32.10

TableA.4: MAPscores of rankingGer. PP-Verb support-verb construction candidates.

A.4.2 Experiments and results

On this data, we carried out several series of experiments. First, we focused on the

support-verb constructions and figurative expressions separately, then we attempted

to extract them without making this distinction. Frequency data were provided for

the total of 18 649 collocation candidates. Themain experimentswere performed on all

of them. Further, as suggested by the shared task organizers, we restricted ourselves

to a subset of 4 908 candidate pairs that occur at least 30 times in the Frankfurter Rund-

schau corpus (in.fr30). Similarly, additional experiments were restricted to candidate

pairs containing one of 16 typical light verbs. This was motivated by the assumption

that filtering based on this condition should significantly improve the performance

of association measures. After applying this filter, the resulting set contained 6 272

collocation candidates.

Support-verb constructions

The baseline precision for ranking only the support-verb constructions in all the data is

as low as 2.91%, while the bestMAP (18.26%) was achieved by Confidence measure (48).

Additional substantial improvement was achieved by all combination methods. The

best score (30.77%) was obtained by Neural Network with 1 unit in the hidden layer

(NNet.1). When we focused on the candidates occurring at least 30 times (baseline

precision 5.75%), the best individual associationmeasurewas again Confidence measure

(48) with MAP 28.48%. The best combination method was then Neural Network with

5 units in the hidden layer (NNet.5): MAP 43.40%. The best performing individual

association measure on the light verb data was Poisson significance measure (14) with

MAP as high as 43.97% (baseline 7.25%). The performance gain achieved by the
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all in.fr30 light.v

Baseline 3.16 5.70 4.56

Best AM 14.98 (48) 21.04 (51) 23.65 (12)

GLM 19.22 15.28 10.46

LDA 18.34 23.32 24.88

NNet.1 19.05 22.01 24.30

NNet.5 18.26 22.73 25.86

SVM 7.95 15.70 13.29

Table A.5: MAP scores of ranking German PP-Verb figurative expression candidates.

best combination method was not, however, so significant (45.08%, LDA). Details are

shown in Table A.4.

Figurative expressions

Ranking figurative expressions is more difficult. The best individual association mea-

sure on all the data is again Confidence measure (48) withMAP of only 14.98%, although

the baseline precision is a little bit higher then in the case of support-verb constructions

(3.16%). The best combination ofmultiple associationmeasures is obtained by Logistic

Regression (GLM) with MAP equal to 19.22%. Results for the candidates occurring

at least 30 times (baseline precision 5.70%) are higher: the best AM (Piatersky-Shapiro

coefficient (51)) with MAP 21.04% and LDA with MAP 23.32%. In the case of PP com-

binations with light verbs, the winning individual AM is t test (12) with MAP=23.65%,

and the best combinationmethod isNNet.5with 25.86%. Details are given inTableA.5.

Support-verb constructions and figurative expressions

The last set of experiments performed on the German PP-Verb data aimed at ranking

both support-verb constructions and figurative expressions without making any dis-

tinction between these two types of collocations. The results are shown in Table A.6

and are not very surprising. The best individual AM on all the candidates as well

as on the subset of frequent candidates was Piatersky-Shapiro coefficient (51) with MAP

31.17% and 43.85%, respectively. Poisson significance measure (14) performed best on

the candidates containing light verbs (63.59%). The best combination methods were

Neural Networks with 1 or 5 units. The most substantial performance improvement
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all in.fr30 light.v

Baseline 6.07 11.45 11.81

Best AM 31.17 (48) 43.85 (48) 63.59 (14)

GLM 44.66 47.81 65.37

LDA 41.20 57.77 65.54

NNet.1 44.71 60.59 65.10

NNet.5 44.77 59.59 66.06

SVM – 51.91 55.10

Table A.6: MAP scores of ranking German PP-Verb candidates of both support-verb
constructions and figurative expressions.

obtained by combining multiple association measures was observed on the set of all

candidates (no filtering applied).

A.5 Czech PDT-Dep collocations

A.5.1 Data description

The PDT data contains an annotated set of 12 232 normalized dependency bigrams

occurring in the manually annotated Prague Dependency Treebank 2.0 more than five

times and having part-of-speech patterns that can possibly form a collocation. Every

bigram is assigned to one of the six categories described below by three annotators.

Only the bigrams where all annotators agreed on them being collocations (of any type,

categories 1–5) are considered true positives. The entire set contains 2 572 such items.

0. non-collocations,

1. stock phrases, frequent unpredictable usages,

2. names of persons, organizations, geographical locations, and other entities,

3. support verb constructions,

4. technical terms,

5. idiomatic expressions.

Note: This data set is identical to the PDT-Dep reference data set described in Sec-

tion 4.2.1 of this work. However, the evaluation was performed over all seven cross-

validation folds (and thus the results are slightly different).
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AM AM+POS

Baseline 21.01

Best AM 65.63 (39)

GLM 67.21 77.27

LDA 67.23 75.83

NNet.1 67.34 77.76

NNet.5 70.31 79.51

SVM 71.44 74.38

Table A.7: MAP scores of ranking Czech PDT-Dep collocation candidates. The sec-
ond column refers to experiments using combination of association measures and
information about POS patterns.

A.5.2 Experiments and results

The baseline precision on this data is 21.02%. In our experiments, the best performing

individual association measure was Unigram subtuple measure (39) with MAP=65.63%.

The best method combining all association measures was Support Vector Machine

with MAP equal to 71.44%. After introducing a new (categorical) variable indicating

POS patterns of the collocation candidates and adding it to the combination methods,

the performance increased up to 79.51% (in case of the best method – NNet.5) .

A.6 Conclusion

The overview of the best results achieved by the individual association measures and

by the combination methods on all the data sets (and their variants) is shown in Ta-

ble A.8. With only one exception the combination methods significantly improved the

ranking of collocation candidates on all data sets. Our results showed that different

measures give different results for different tasks (data). It is not possible to recom-

mend “the best general associationmeasure” for ranking collocation candidates, as the

performance of the measures heavily depend on the data/task. Instead, we suggest

to use the proposed machine learning approach and let the classification methods do

the job and weight each measure appropriately for each specific task/data. It seems

that a neural network is probably the most suitable learner for this task, but the other

combination methods also performed well.
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data set var baseline best SAM best CAM +%

GR Adj-Noun 1-2 42.40 62.88 61.30 -2.51

1-2-3 51.74 69.14 70.77 2.36

GR PP-Verb FVG all 2.89 18.26 30.77 68.51

in.fr30 5.71 28.48 43.40 52.39

light.v 7.26 43.97 45.08 2.52

GR PP-Verb Figur all 3.15 14.98 19.22 28.30

in.fr30 5.71 21.04 23.32 10.84

light.v 4.47 23.65 25.86 9.34

GR PP-Verb all all 6.05 31.17 44.77 43.63

light.v 11.73 63.59 66.06 3.88

CZ PDT-Dep 21.01 65.63 70.31 7.13

+POS 21.01 65.63 79.51 21.15

Table A.8: Summary of the results obtained on all the data sets and their variants.
The last two columns refer to the best method combining multiple association mea-
sures and the corresponding relative improvement compared to the best individual
association measure. The last row refers to the experiment using a combination of
association measures and information about part-of-speech (POS) patterns.
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Appendix B

Complete Evaluation Results

This appendix contains an overview of the results of all evaluation experiments per-

formed in this work. For each data set, we present: 1) the MAP scores of all individual

association measures, 2) the results of significance tests of difference between all in-

dividual association measures (by the paired Student’s t-test and paired Wilcoxon

signed-ranked test), and 3) the MAP scores of combination of all association measures

in different models and their relative performance improvement compared to the best

individual measures.
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B.1 PDT-Dep
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Figure B.1: Sorted MAP scores of all individual association measures.
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Figure B.2: Significance tests of difference between all individual asociationmeasures
(the paired t-test on the left andpaired signed-rankWilcoxon test on the right, α=0.05).

AM +% AM+POS +% AM+POS+DEP +%

Baseline 21.01 – 21.01 – 21.01 –

Best AM (77) 66.79 0.00 66.79 0.00 66.79 0.00

GLM 77.36 15.82 79.77 19.43 82.07 22.88

LDA 75.16 12.54 78.00 16.79 82.07 22.88

SVM 73.03 9.35 77.55 16.10 79.01 18.29

NNet.1 74.36 11.33 78.28 17.20 82.01 22.79

NNet.5 80.87 21.08 82.79 23.96 84.53 25.56

Table B.1: MAP scores of combination of all association measures and their relative
performance improvement (+%) compared to the best individual measure.



B.2. PDT-SURF 119

B.2 PDT-Surf
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Figure B.3: Sorted MAP scores of all individual association measures.
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Figure B.4: Significance tests of difference between all individual asociationmeasures
(the paired t-test on the left andpaired signed-rankWilcoxon test on the right, α=0.05).

AM +% AM+POS +%

Baseline 22.88 – 22.88 –

Best AM (39) 75.03 0.00 75.03 0.00

GLM 79.67 6.18 78.91 5.17

LDA 79.47 5.92 82.56 10.03

SVM 77.58 3.40 81.09 8.08

NNet.1 79.1 5.43 82.44 9.87

NNet.5 84.35 12.43 86.40 15.15

Table B.2: MAP scores of combination of all association measures and their relative
performance improvement (+%) compared to the best individual measure.
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B.3 CNC-Surf
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Figure B.5: Sorted MAP scores of all individual association measures.
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Figure B.6: Significance tests of difference between all individual asociationmeasures
(the paired t-test on the left andpaired signed-rankWilcoxon test on the right, α=0.05).

AM +% AM+POS +%

Baseline 22.66 – 22.66 –

Best AM (39) 79.74 0.00 79.74 0.00

GLM 75.21 -5.69 85.13 6.76

LDA 82.75 3.77 84.54 6.01

SVM 80.51 0.97 81.41 2.10

NNet.1 83.07 4.17 85.26 6.92

NNet.5 86.30 8.23 88.22 10.64

Table B.3: MAP scores of combination of all association measures and their relative
performance improvement (+%) compared to the best individual measure.
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B.4 PAR-Dist
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Figure B.7: Sorted MAP scores of all individual association measures.
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Figure B.8: Significance tests of difference between all individual asociationmeasures
(the paired t-test on the left andpaired signed-rankWilcoxon test on the right, α=0.05).

AM +%

Baseline 7.59 –

Best AM (36) 18.88 0.00

GLM 34.24 81.35

LDA 32.79 73.68

SVM 31.94 69.17

NNet.1 34.52 82.82

NNet.5 35.78 89.50

Table B.4: MAP scores of combination of all association measures and their relative
performance improvement (+%) compared to the best individual measure.
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PAR-Dist (f >5)
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Figure B.9: Sorted MAP scores of all individual association measures.
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Figure B.10: Signif. tests of difference between all individual asociation measures
(the paired t-test on the left andpaired signed-rankWilcoxon test on the right,α=0.05).

AM +%

Baseline 13.79 –

Best AM (47) 31.27 0.00

GLM 47.87 53.09

LDA 48.11 53.85

SVM 47.12 50.68

NNet.1 48.28 54.39

NNet.5 52.15 66.76

Table B.5: MAP scores of combination of all association measures and their relative
performance improvement (+%) compared to the best individual measure.
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for retrieval weighting. Information Retrieval, 3(3):243–251.

Marı́a Begona Villada Moirón. 2005. Data-driven identification of fixed expressions and their

modifiability. Ph.D. thesis, University of Groningen.

Rosamund Moon. 1998. Fixed Expressions and Idioms in English. Clarendon Press, Oxford.

Robert C. Moore, Wen tau Yih, and Andreas Bode. 2006. Improved discriminative bilingual

word alignment. In ACL ’06: Proceedings of the 21st International Conference on Computational

Linguistics and the 44th annual meeting of the ACL, pages 513–520, Sydney, Australia.



BIBLIOGRAPHY 131

Robert C. Moore. 2004. On log-likelihood-ratios and the significance of rare events. In

Proceedings of the 2004 Conference on EMNLP, Barcelona, Spain.
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Univerzita, Brno.
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