
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Karel Mašek

Interoperability between component-based and
service-oriented systems

Department of Software Engineering
Supervisor: RNDr. Petr Hnětynka, Ph.D.

Study Program: Informatics, Software systems

Chtěl bych poděkovat vedoucímu práce RNDr. Petru Hnětynkovi, Ph.D. za rady a
užitečné připomínky, provázející tvorbu této práce. Dále, velké poděkování rodině a

blízkým za podporu během psaní práce a po čas studia. Díky za Javu a podporu
spolupracovníkům ze společnosti Sun Microsystems.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použitím
citovaných pramenů. Souhlasím se zapůjčováním práce.

V Praze dne 8.8.2008 Karel Mašek

Contents
1. Introduction..8

1.1. Component-based systems...8
1.2. SOA-based systems..9
1.3. Interoperability...10
1.4. Goals of the thesis...10
1.5. Structure of the text..11

2. Background..12
2.1. SOFA2 component system...12

2.1.1. Component model...13
2.1.2. Control part of components..14
2.1.3. Utility interface pattern...15

2.2. OSGi Service Platform...16
2.2.1. The Framework...16
2.2.2. Bundles...18
2.2.3. Service model...19

3. Integrating SOFA2 and OSGi...21
3.1. Embedding OSGi Framework..21
3.2. Extending SOFA2 meta-model...22
3.3. Service Tracker aspect..23
3.4. ServicePublisher aspect..24
3.5. OSGi Service Tracker controller..24

3.5.1. Service Proxy..26
3.5.2. Service Events Listener...29

3.6. OSGi Service Publisher controller...30
3.6.1. Proxy bundle...32

3.7. Cushion...34
3.7.1. Command osgi..34

4. The usage and use cases...37
4.1. Using OSGi services...37

4.1.1. Service Listener interface...38
4.1.2. UPnP robot example...39

4.2. Publishing SOFA2 interfaces as OSGi services...42
4.2.1. Dictionary service example...43

4.3. Remoting for OSGi...46
5. Related work..47

5.1. Spring Framework and OSGi...47
6. Conclusion and future work...50

6.1. Goals review...50
6.2. Future work...51

7. References..52
. Appendix A: Content of the CD...54
. Appendix B: OSGi deployment dock...55

List of figures
Figure 1: publish-find-bind pattern..10
Figure 2: SOFA2 runtime environment..13
Figure 3: SOFA2 application example...14
Figure 4: Utility interface example..15
Figure 5: OSGi architectural overview..16
Figure 6: Interaction between layers in the Framework...17
Figure 7: Bundle state diagram..19
Figure 8: OSGi Service model...20
Figure 9: Embedding OSGi Framework..22
Figure 10: Service Tracker control interface..23
Figure 11: Service Publisher control interface...24
Figure 12: OSGi Service Tracker controller..26
Figure 13: Service Proxy handling a method invocation...28
Figure 14: SOFAServiceListener interface..29
Figure 15: RegistrationListener interface...30
Figure 16: Service Publisher aspect...31
Figure 17: Using OSGi services...37
Figure 18: SOFAServiceListener interface..39
Figure 19: UPnP robot example...40
Figure 20: Publishing OSGi services...43
Figure 21: Dictionary service example..44
Figure 22: Remoting for OSGi services...46

Název práce: Interoperabilita mezi komponentovými a servisně orientovanými systémy
Autor: Karel Mašek
Katedra (ústav): Katedra sofwarového inženýrství
Vedoucí diplomové práce: RNDr. Petr Hnětynka, Ph.D.
e-mail vedoucího: Petr.Hnetynka@dsrg.mff.cuni.cz

Abstrakt:

Pro vývoj a návrh rozsáhlých softwarových systémů, se používají převážně dva
přístupy: komponentový a servisně-orientovaný návrh. V systémech, kde se oba přístupy
kombinují, je interoperabilita (t.j. jejich vzájemná spolupráce) klíčovou vlastností.

Cílem práce je navrhnout a experimentálně implementovat řešení pro interoperabilitu
mezi komponentovým systémem SOFA2 a servisně orientovanou platformou OSGi.

Výsledné řešení je založené na použití aspektů a annotací. Annotace slouží k
deklarativnímu označení komponent, které využívají (t.j. volají nebo publikují) OSGi
servisy. Naopak, pomocí aspektů se označeným komponentům poskytne OSGi
funkcionalita, t.j. kontrolní logika. Kromě komponentového systému SOFA2, byla
podpora pro OSGi přidána i do nástroje, který slouží pro vývoj SOFA2 aplikací.
Navržené řešení je použitelné nejen pro integraci SOFA2 a OSGi, ale i obecně pro
komponentové a servisně-orientované systémy.

Klíčová slova: interoperabilita, komponentové systémy, servisně-orientované systémy

Title: Interoperability between component-based and service-oriented systems
Author: Karel Mašek
Department: Department of Software Engineering
Supervisor: RNDr. Petr Hnětynka, Ph.D.
Supervisor's e-mail address: Petr.Hnetynka@dsrg.mff.cuni.cz

Abstract:

The component-based and service-oriented development have become commonly used
techniques for building high quality, evolvable, large systems in a timely and affordable
manner. In this setting, interoperability is one the essential issues, since it enables the
composition of heterogeneous components and services.

The aim of the thesis is to analyze possibilities of interoperability between the SOFA2
component system and the OSGi Service Platform, and based on that propose and
implement a solution for mutual collaboration.

The actual integration is based on the use of aspects and annotations. The issues
connected with the runtime service management (e.g. binding/unbinding services) are
handled by the control part of components using the aspects. While, the annotations serve
for specifying service-enabled SOFA2 components in a declarative way. The OSGi
support is incorporated in both the SOFA2 runtime environment and the tool for
developing SOFA2 components. Furthermore, the outlined approach is general and can
be easily reused for integrating other SOA-based systems as well.

Keywords: interoperability, component-based systems, service-oriented systems

mailto:Petr.Hnetynka@mff.cuni.cz
mailto:Petr.Hnetynka@mff.cuni.cz

Chapter 1: Introduction

1 Introduction
Designing and implementing a large scale, evolvable, enterprise software system is a

challenging task. The component-based and service-oriented development are the two
key techniques for building such a system in timely and affordable manner. In this
setting, interoperability is one the essential issues, since it enables the composition of
heterogeneous components and services, developed by different people, at different
times, and possibly with different uses in mind.

The component-based development (CBD) [1] provides support for building software
systems through the composition and assembly of software components. It has become a
commonly used approach in many software engineering domains, such as enterprise and
web-based systems, desktop and graphical applications, and recently in the embedded
system domain. Unlike former development techniques, components allow for specifying
services provided by them, as well as, services required from other components and/or
the environment. Thanks to this, components has brought easier reuse, integration and
rapid development of application.

Currently, there are many component-based systems used both in industry and
academia. The industrial component systems, such as EJB [2] and CCM [3], are typically
relatively mature. They provide stable runtime environment, convenient user interface to
control the life-cycle of component-based applications, etc. On the other hand, they don't
address advanced features like the hierarchical component model, multiple
communication styles, composition verification, support for seamless distribution, etc.
Such advanced features are addressed mostly by the academical component systems (e.g.
SOFA2 [4] and Fractal [5]).

The service-oriented architecture (SOA) [6] is another paradigm for building software
systems. The functionality is grouped around business processes and packaged as
interoperable services. It promotes a loose coupling of services to minimize their
dependencies, thus reducing the risk that a change in one part of an application will force
a change in other parts. The SOA paradigm is implemented by many systems (e.g.
WebServices [7], OSGi [8], etc.) that are commonly used in the production environment.
It has found use in enterprise and web-based applications, in various module systems, in
embedded system, etc. Furthermore, the SOA paradigm is heavily used in the enterprise
integration domain.

1.1 Component-based systems

The component-based development (CBD) has gained recognition as the key
technology for building large scale enterprise systems. The main goal is to significantly
increase software reusability and shorten time to market. It has found use in many
software engineering domains, such as distributed and web-based systems, desktop and

6

Chapter 1: Introduction

graphical applications, and recently in the embedded system domain. It provides support
for building software systems through the composition and assembly of software
components. Unlike former development techniques, components allow for specifying
services provided by them, as well as, services required from other components and/or
the environment. Thanks to this, components has brought easier reuse, integration and
rapid development of application.

There are many definitions of what a component is. Typically, a component is
considered to be a black-box software entity with well-defined interfaces and behavior
that can be reused in different contexts and without knowledge of its internal structure.
The set of component features, composition rules, etc. is referred to as a component
model.

From the composition point of view, component models can be divided into two
categories – flat and hierarchical component models. Unlike the flat ones, the hierarchical
component models allow for building composite components – a component is
hierarchically composed of other components. In this case, a component can be viewed as
a gray-box entity with an internal structure (i.e. a number of interconnected sub-
components).

Currently, there are many component-based systems used both in industry and
academia. The flat component systems, such as EJB [2] and CCM [3], are typically
relatively mature. They provide stable runtime environment, convenient user interface to
control the life-cycle of component-based applications, etc. On the other hand, they don't
address advanced features like the hierarchical component model, multiple
communication styles, composition verification, support for seamless distribution, etc.
Such features are addressed mostly by the academical component systems (e.g. SOFA2
[4] and Fractal [5]).

1.2 SOA-based systems

Service Oriented Architecture (SOA) is an architectural style for building software
systems and applications. It utilizes services as the fundamental units of functionality. A
service exposes its functionality through a well-defined interface, which is then used by
service clients and other services to invoke the service. The service implementation and
the interface are usually decoupled.

The service-oriented design facilitates seamless integration of distributed systems that
are built on various platforms and technologies. Further, it pushes focus on software
reusability and development efficiency.

There are many common principles and patterns used throughout different SOA
implementations. An example of such a principle is loose coupling of services that
minimizes service dependencies, thus reducing the risk that a change in one part of an
application would force changes in other parts. On the other hand, one of the most

7

Chapter 1: Introduction

essential patterns is the publish-find-bind pattern, depicted in Figure 1.

The publish-find-bind pattern
describes the relationship among service
providers, consumers and a service
registry. A service provider can publish
services in the service registry. A service
consumer (client) then queries the
registry to find appropriate service. In
response, the consumer gets a service
handle, e.g. a service reference or URL.
The handle it used for binding the service
in order to invoke it, later on.

The SOA paradigm is employed by many software systems and platforms (e.g.
WebServices [7], the OSGi Service Platform [8]) that are commonly used in the
production environment. It has found use in wide range of software engineering domains,
from enterprise and web-based applications to embedded systems. Furthermore, the SOA
is heavily used in the enterprise integration domain (e.g. JBI [9]).

1.3 Interoperability

Interoperability is a property referring to the ability of diverse systems to work
together, exchange data and make use of the data that has been exchanged. In terms of
software systems, this is achieved by using a common set of exchange formats,
interaction patterns and the same protocols.

In a high-level view, the SOA and CBD paradigms are similar to each other in many
senses [10] – both a service and component have a well-defined interface, their internal
structure is not visible to their environment, and they can be reused in different contexts.
Despite of the similarities, each approach has different targets though many of them
overlap.

The SOA paradigm is preferable for exposing some coarse-grained functionality
(through services). While, components are suitable for providing finer-grained business
logic. Both approaches may be combined in heterogeneous software systems (e.g. for
wrapping a legacy system). Therefore interoperability is an essential issue.

1.4 Goals of the thesis

The general goal is to design and implement a solution to provide interoperability
between the SOFA2 component system and the OSGi Service Platform. In more details,
the thesis sets out the following goals:

8

Figure 1: publish-find-bind pattern

Chapter 1: Introduction

(g1) Mutual interoperability

SOFA2 components can both access and publish OSGi services.

(g2) Seamless integration

It should be easy for SOFA2 components to use and incorporate OSGi services.

(g3) Handle service dynamics

Provide means to deal with the dynamic nature of OSGi services.

(g4) General approach

The proposed solution should be general so that the principles can be easily reused
when integrating other SOA-based systems.

1.5 Structure of the text

Chapter one overviews the basic aspects of component-based and service-oriented
systems. And presents the goals of the thesis.

Chapter two examines relevant parts of the SOFA2 component system and the OSGi
Service Platform with respect to mutual interoperability.

Chapter three presents the proposed solution to provide interoperability between the
SOFA2 component system and the OSGi Service Platform. It starts with showing the
architectural overview of the integration and the way how the OSGi Framework is
incorporated in the SOFA2 runtime. Next, it describes the newly introduced annotations
that serve for specifying service-enabled components in a declarative way. Further, it
examines the actual runtime interaction between OSGi services and SOFA2 interfaces.
Finally, it describes the OSGi support offered by cushion, the command-line tool for
developing SOFA2 components.

Chapter four demonstrates using OSGi services in practice. The presented examples
to illustrate (in a step-by-step manner) how to create and set up a SOFA2 component in
order to enable the component to access and publish OSGi services.

Chapter five discusses the related work.

Chapter six presents a summary of the thesis and evaluates the goals. Suggestions for
the future work are also mentioned.

9

Chapter 2: Background

2 Background
This chapter describes the SOFA2 component system and the OSGi Service Platform

in more details. Particularly, it examines features that are relevant to mutual
interoperability.

2.1 SOFA2 component system

SOFA2 is a component based system that employs a hierarchical component model.
Apart from that, it supports many advanced features like multiple communication styles,
dynamic component updates, support for versioning, seamless distribution, clearly
separated functional and control parts of components, support for SOA concepts,
composition and behavior verification, etc. SOFA2 is an academic component based
system, developed by the Distributed Systems Research Group [11] at Charles University
in Prague. The prototype implementation, written in Java, is available as an open-source
software.

A component is described by its frame and architecture. A frame is a black-box view
of the component. It defines the provided and required interfaces. On the other hand, the
frame is implemented by an architecture that serves as a gray-box view of the component.
It specifies the internal structure of the component – the subcomponents and the bindings
among their interfaces.

A SOFA2 application is executed in a distributed environment that consists of a
number of deployment docks. A deployment dock is a component container hosted on a
particular computer and providing the runtime environment for executing SOFA2
components. An application can span several deployment docks. The assignment of
components to a particular deployment dock is done during the deployment.

Apart from the deployment docks, the SOFA2 runtime environment contains also a
repository that serves as a storage of meta-data (component descriptions, deployment
plans, etc.) and the code of components. The repository is used throughout the whole
application life-cycle, namely the development, assembly, deployment and execution
phases. All entries stored in the repository are versioned. The versioning model used in
SOFA2 is described in [12].

An example of a SOFA2 application with respect to the runtime environment is
depicted in Figure 2.

10

Chapter 2: Background

2.1.1 Component model

The component model and all its features are defined using a meta-model [13]. The
meta-model directly serves for the component specification, instead of an ADL1. The
specification stored in the repository and used throughout the application life-cycle.

Being a hierarchical model, it allows components to be hierarchically nested.
Components can be either primitive or composite. A composite component is built of
other components, while a primitive one contains no subcomponents.

The core element is the frame, which specifies the provided and required interfaces.
Each interface has an interface type that is specified by its signature and the code-bundle.
The signature is a fully qualified class name of the interface. While, the code-bundle
holds the interface's classes (the interface class and the method types). In addition to the
type, the interface has other attributes. The communication-style and communication-
feature attributes allow for specifying the way components (via the interface) can
communicate. Moreover, the interface can specify its cardinality (single or collection),
contingency (optionally or mandatory connected) and connection type. The connection
type has to possible values – normal or utility. For more details, see below.

The frame is implemented by an architecture. A single architecture can implement
several frames, as well as, a frame can be implemented by several architectures. The
architecture of a composite component specifies the subcomponents and the bindings
among them. The bindings are performed using connectors [14] that are dynamically

1 Architecture Description Language

11

Figure 2: SOFA2 runtime environment

Chapter 2: Background

generated at deployment time.

On the other hand, the architecture of a primitive component is empty and the
component directly implements the corresponding frame. The implementation (Java
classes) is stored in the repository as a code-bundle.

An example of a SOFA2 application
with respect to frames and
architectures is depicted in Figure 3.

Aside from that, frames and
architectures can have properties,
which are name-value pairs. They are
used for component parametrization at
deployment time.

Moreover, annotations allow to
annotate frames and interfaces with
additional information. For example,
they can be used for specifying non-
functional features.

The interface type, frame and
architecture elements, as well as, code-bundles are stored in the SOFA2 repository.

2.1.2 Control part of components

In addition to business interfaces (i.e. provided and required interfaces), components
have so-called control interfaces that correspond to the non-functional features of the
component, like life-cycle management, introspection, etc. They are not usually accessed
by the application logic, but rather by the runtime environment.

The control part of components in SOFA2 is modular and extensible. It is based on
usage of aspects. The general idea of this approach is described in [15]. The control part
of a component is modeled as composed of microcomponents. The microcomponent
model is flat (i.e. microcomponents cannot be hierarchically nested) with no advanced
features (distribution, connectors, etc.). Additionally, to avoid recursion, a
microcomponent doesn't have any extensible or structured control part.

On the top of that, microcomponents are organized into aspects. An aspect represents
a consistent extension of the control part. It defines what microcomponents to instantiate
and how to incorporate them into the existing control part. Furthermore, it may introduce
a new control interface to provide another entry point to the control part of the
component.

12

Figure 3: SOFA2 application example

Chapter 2: Background

2.1.3 Utility interface pattern

Although, the SOFA2 is a component based system, it incorporates a basic support for
services and eventually allows for service-oriented architectures (SOA). It allows
marking interfaces as utility interfaces, and relaxes on some rules for handling such
interfaces – a required utility interface may be freely bound and unbound at runtime, etc.
Moreover, the reference to a utility interface can be freely passed among components and
the connection to the interface is established orthogonally to the architecture hierarchy.
An example of using the utility interface is shown in Figure 4.

13

Figure 4: Utility interface example

Chapter 2: Background

2.2 OSGi Service Platform

The OSGi Service Platform [8] is a Java-based dynamic module system that employs a
service-oriented paradigm for the module collaboration. It was developed by the OSGi
Alliance, which is a non-profit open standards organization founded in March 1999. A
software system is partitioned into a number of reusable and manageable modules that
can be composed into an application and deployed. Initially, the specification was
targeted at embedded Java and network devices. However it has found use in everything
from mobile phones to cars, and recently even in enterprise applications.

The core of the specification is the
Framework. It defines modules (called bundles),
their life-cycle model, service registry, security
model and execution environment.

On top of the Framework, the specification
defines a number of standard services [16]. For
example, services to control the Framework,
system services (like logging, preferences, etc.),
protocol services (e.g. http, UPnP) and many
more. At the time of writing, the latest release of
the specification was Release 4.1 in May 2007.

 The architectural overview of the OSGi
Framework is depicted in Figure 5.

The OSGi platform is dynamic. The
Framework manages bundles' installation,

uninstallation and updates at runtime (i.e. without having to restart the Framework). It is
service-oriented, bundles can dynamically publish services. While, other bundles can
query the services through the OSGi Service Registry.

Services are used for the communication between bundles inside a single JVM2. A
bundle can register any number of services – it uses the fully qualified name of the
service interface when registering a service. Other bundles can track a service to become
available (or otherwise) and respond accordingly. As services are for intra-JVM
communication, the service calls are plain method invocations.

2.2.1 The Framework

The core part of the OSGi Service Platform specification is the Framework. It
provides a standardized execution environment to bundles. The functionality of the
Framework is divided in the following layers:

2 Java virtual machine

14

Figure 5: OSGi architectural
overview

Chapter 2: Background

● Security layer

● Module layer

● Life Cycle layer

● Service layer

● Actual services

The layering and the interaction
between layers is shown in Figure 6.

The Security Layer is an optional
layer. The rest of the layers make use
of the Security Layer to provide a
fine-grained controlled environment.
The security model is based on Java 2
Security Architecture [17].

The Module Layer deals with modularity. It defines a module system that addresses
some of the shortcomings of the standard Java modularization and deployment model.
The Framework defines a unit of modularization, called a bundle. There are strict rules
for sharing packages between bundles and hiding packages from other bundles. Bundles
must specify what packages they export and import. A bundle can specify a version for
each package being exported and a version range for packages being imported by the
bundle. Bundles are resolved at runtime. The resolution process ensures that all bundle's
dependencies are satisfied. All these features allow to keep implementations private and
expose API's only.

On the top of that, the Life Cycle Layer provides a dynamic runtime model for
bundles. It defines how bundles are installed, started, stopped and uninstalled.
Furthermore, an installed bundle can be updated anytime. A bundle can register event
listeners and get notified of other bundles' life-cycle events. The events are delivered
either synchronously or asynchronously.

The Service Layer provides a dynamic service model for the communication between
bundles. It contains the Service Registry, which is used for registering service and
querying for services. A bundle can register any number of services – it uses the fully
qualified name of the service interface when registering a service. Furthermore, a service
can be registered with the set of key/value properties. Both the service name and
properties can be used when querying the Service Registry.

The OSGi Service Platform specifies a number of execution environment profiles to
run on different target devices. The Java Profiles, like J2SE, CDC, MIDP etc. are all valid

15

Figure 6: Interaction between layers in the
Framework

Chapter 2: Background

execution environments. Bundles that are restricted to run in a certain execution
environments can enforce the Framework's execution profile.

In addition to normal bundles, the Framework presents itself as a System Bundle. The
system bundle usually registers services that can be used by other bundles to control the
Framework, such as the Package Admin and Permission Admin services.

2.2.2 Bundles

In OSGi, bundles are units of functionality, modularity and deployment. A bundle is
packaged as a simple JAR3 file. It is comprised of Java classes, the bundle's manifest file
and other resources.

A bundle carry its settings and descriptive information about itself in the manifest file.
The Framework defines several OSGi manifest headers such as Export-Package and
Bundle-Classpath. The headers can specify a bundle's name, exported and imported
packages, dependencies on some other bundles, required execution environment, etc.

Many bundles may share a single JVM. Within the virtual machine, bundles can hide
packages and classes, as well as, share them with other bundles. For the purpose, each
bundle uses its own class-loader.

From a bundle point of view, the bundle's visibility consists of:

● parent class loader (normally java.* packages from the JVM class-path)

● imported packages

● exported packages

● required bundles

● bundle's class path (private packages)

● attached fragments

A bundle is started though its Bundle Activator. The manifest file specifies the class
that implements the BundleActivator4 interface. The start() and stop() methods are
called when a bundle is started and stopped, respectively.

Bundle state

A bundle can be in one of the following states:

● INSTALLED – the bundle has been successfully installed

● RESOLVED – all bundle dependencies are resolved, the bundle is either ready
to be started or has stopped

3 Java ARchive
4 org.osgi.framework.BundleActivator

16

Chapter 2: Background

● STARTING – the bundle is being started

● ACTIVE – the bundle has been successfully activated and is running

● STOPPING – the bundle is being stopped

● UNINSTALLED – the bundle has been uninstalled and cannot move into
another state

The bundle states and transitions between the stated are shown in Figure 7. Note, the
full and dashed lines represent the explicit and automatic transitions, respectively.

2.2.3 Service model

The Service Layer defines a dynamic collaborative service model. It implements one
of the key SOA5 patterns – the publish-find-bind pattern, see Sect. 1.2. The Framework
defines the Service Registry to store service registrations. Bundles can register any
number of services and query the registry for services. Furthermore, a bundle can register
an event listener and explicitly track life-cycle events of services. The interaction
between bundles and the Service Registry is depicted in Figure 8.

In fact, OSGi services are simple Java object. The service model allows bundles to
share objects between each other.

5 Service Oriented Architecture

17

Figure 7: Bundle state diagram

Chapter 2: Background

To register a service, the following is needed:

● service name – the fully qualified name of the service interface

● service object – the service implementation

● properties – a map of key/value pairs

Both the service name and properties may
be used when querying the Service Registry.
The OSGi makes a heavy use of filter
expressions to query services. The syntax is
based on the LDAP search filters as defined in
[18].

The Framework sends out service events to
report registrations, unregistrations and
property changes of services. Bundles can
register a service listener to get notified when
a service event is fired.

A service reference provides access to a
service properties but not the actual service
object. The service object must be acquired
through a bundle's execution context.

Implementing the ServiceFactory interface
allows the registering bundle to customize the
service object for each using bundle.

18

Figure 8: OSGi Service model

Chapter 3: Integrating SOFA2 and OSGi

3 Integrating SOFA2 and OSGi
This chapter presents the proposed solution to provide interoperability between the

SOFA2 component system and the OSGi Service Platform. It starts with showing the
architectural overview of the integration. And the way the OSGi Framework is
incorporated into the SOFA2 runtime.

Further, it describes the newly introduced annotations, which are used with SOFA2
components (i.e. their frames and interfaces). The frame annotations serve for specifying
components that directly access and/or publish OSGi services. While, the interface
annotations are used to mark out the interfaces that serve for accessing services, and
those to be published as services.

Next, it examines the actual runtime interaction between OSGi services and SOFA2
interfaces. The service management issues (e.g. binding/unbinding services) are handled
by the control part of components. In more details, the SOFA2 runtime applies (based on
the frame annotations) corresponding aspects and provides components with the OSGi
functionality (through the OSGi controller).

Method invocations (on the annotated interfaces) are handled by a Service Proxy,
which acts as a mediator between the interface and OSGi services. The services behind
the proxy may come and go dynamically. It is up to the corresponding OSGi controller to
keep the proxy up-to-date so that it reflects the availability (or otherwise) of the service.

Finally, it describes the OSGi support that is provided by cushion, the command-line
tool for developing SOFA2 components.

3.1 Embedding OSGi Framework

A SOFA2 application comprises a number of components. Components are hosted by
deployment docks that provide the runtime environment and serve as component
containers. In order to support the OSGi-enabled SOFA2 components, a new type of
deployment dock has been added. To provide the OSGi runtime, the dock launches an
embedded instance of the Framework when it starts. The launching scripts are included in
the SOFA2 distribution. For more details, see Appendix B.

There are many implementations of the OSGi Service Platform specification, from
open-source to commercial ones. They differ in the portion of the specification that they
implement (e.g. number of services), as well as, in maturity, stability and licensing. Based
on that, the Apache Felix was an obvious choice.

Apache Felix is an open-source implementation of the OSGi R4 Service Platform
specification [8]. It includes the Framework functionality and a set of standard services.
The Felix project is a community effort to provide the full-compliant implementation of
the OSGi specification. Currently, a larger portion of the specification is implemented

19

Chapter 3: Integrating SOFA2 and OSGi

and the Framework functionality is very stable. Furthermore, Felix's license is compatible
with the license used by SOFA2.

An example of a SOFA2 application is depicted in Figure 9. It shows two deployment
docks – the dock A provides support for OSGi-enabled components (C1 and C2), and the
dock B that hosts standard SOFA2 components (C3 and C4). The OSGi services (S1 and
S2) are accessed through dedicated SOFA2 interfaces. The provided interface (C1) makes
the service (S1) accessible to the component (C3) that resides in the dock B (not
embedding OSGi). While, the required interface serves for accessing the service (S2) by
the component (C2) itself. The service management issues, like binding services, are
described later on.

3.2 Extending SOFA2 meta-model

In order to specify service-enabled components, several new annotations have been
introduced in the SOFA2 meta-model. They are used with frames and their business
interfaces. The newly introduced annotations are as follows:

● @ServiceTracker

● @ServicePublisher

● @Service

● @Publish

The @ServiceTracker and @ServicePublisher annotations are used with frames to
specify the SOFA2 components that access and publish services, respectively. The

20

Figure 9: Embedding OSGi Framework

Chapter 3: Integrating SOFA2 and OSGi

annotations are utilized by the SOFA2 runtime to apply corresponding aspects and to
provide components with the desired functionality. The controller that implements the
aspect and thus the underlying service registry is determined by the type attribute. For
example, the @ServiceTracker(type=”osgi”) annotation is used with the components that
access OSGi services.

The @Publish annotation is used with SOFA2 interfaces to mark out the ones that are
to be published as services (e.g OSGi services). The annotation may carry a map of
key/value properties, which are then used when registering the service. Note, the
@Publish annotations are valid only within @ServicePublisher annotated frames.

The @Service annotation is used with SOFA2 interfaces to mark out the ones that
serve for accessing services (e.g. OSGi services). The annotation attributes carry the
interface configuration and specify the set of target services. The name attribute specifies
a service name; the optional attribute, filter, is used for further constraining the set of
target services. As services may become unavailable at any time, the timeout attribute
specifies the time (in milliseconds) to wait up for the service to become available again.
Note, the @Service annotations are valid only within @ServiceTracker annotated frames.

3.3 Service Tracker aspect

The Service Tracker aspect has been introduced to provide components with the
control logic to manage services (e.g. binding/unbinding) and to enable components to
access service through their interfaces (i.e. the @Service annotated ones). The aspect is
applied (by the SOFA2 runtime) to components with the @ServiceTracker annotated
frames. The affected components are supplied with the Service Tracker control interface
(Fig. 10) and a controller that
implements the aspect (based on the
type attribute). The control interface
is used to direct the controller's life-
cycle.

The open() and close() methods
are called (by the SOFA2 runtime)
when the component is started and
stopped, respectively.

The controller that implements the aspect and thus the underlying service registry is
determined by the type attribute of the @ServiceTracker annotation. Frame properties
may carry additional configuration for the controller (e.g. the URL of the service
registry). For information about the OSGi Service Tracker controller, see Sect. 3.5.

The set of services being tracked (i.e. a service is bound when becomes available and
vice versa) by a single @Service annotated interface is determined by the annotation
attributes. The name attribute specifies a service name – only services registered (in the

21

public interface MIServiceTracker {
 void open();
 void close();
}

Figure 10: Service Tracker control interface

Chapter 3: Integrating SOFA2 and OSGi

service registry) under the given name are tracked; the optional filter attribute is used for
further constraining the set of target services, e.g., by the service properties. The timeout
attribute is used to configure the time to wait up for a service to become available before
failing.

When the controller is active (the open() method was called), it is supposed to find
suitable services (specified by the @Service annotations) and bind them to the
corresponding interfaces. The controller should release all the services when the close()
method is called.

3.4 Service Publisher aspect

The Service Publisher aspect has been introduced to provide components with the
control logic to publish/unpublish their interfaces as services. The aspect is applied (by
the SOFA2 runtime) to components with the @ServicePublisher annotated frames. The
affected components are supplied with the Service Publisher control interface (Fig. 11)
and a controller that implements the aspect (based on the type attribute). The control
interface is used by the SOFA2 runtime to direct the controller's life-cycle.

The publish() and unpublish()
methods are called (by the SOFA2
runtime) when the component is
started and stopped, respectively.

The set of interfaces that are to
be published as services (e.g.
OSGi services) is determined by
the @Publish annotations.

The controller that implements the aspect and thus the service registry that is used for
publishing services, is determined by the type attribute of the @ServicePublisher
annotation. Frame properties may carry additional configuration for the controller. For
information about OSGi Service Publisher controller, see Sect. 3.6.

When the controller is started (the publish() method was called), it is supposed to
publish the @Publish annotated interfaces as services in the underlying service registry.
The service implementation is provided by the corresponding SOFA2 component. The
controller is supposed to unpublish all the services when the unpublish() method is called.

3.5 OSGi Service Tracker controller

The OSGi Service Tracker controller provides the implementation for the Service
Tracker aspect. It handles the runtime interaction between SOFA2 interfaces and OSGi
services, e.g. binding and unbinding services. A component is provided with the
controller, when its frame is annotated with @ServiceTracker(type=”osgi”) annotation.

22

public interface MIServicePublisher {
 void publish();
 void unpublish();
}

Figure 11: Service Publisher control interface

Chapter 3: Integrating SOFA2 and OSGi

 The controller implements the Service Tracker control interface (Fig. 10). It is used
by the SOFA2 runtime for starting and shutting down the controller. The open() method is
called to start tracking and binding suitable services. On the contrary, the close() method
stops the controller and it releases all services that have been bound.

The @Service annotations determine the set of interfaces that serve for accessing
services. While, the annotation attributes specify the services to be tracked by the
controller. A service is made accessible via the corresponding @Service annotated
interface, either a provided or required one. A provided interface makes a service
accessible to other SOFA2 components. While, the required ones serve for accessing
services by the component itself.

Every @Service annotated interface is backed up by a Service Proxy and a Service
Tracker objects. The proxy handles method invocations on the interface and makes sure
that the matching service method is invoked. While, the tracker keeps track of services as
they come and go and updates the proxy accordingly.

The set of services being tracked by a single tracker instance is determined by the
attributes of the corresponding @Service annotation. The service name is specified by the
name attribute; the filter attribute specifies an LDAP6 filter expression for further
constraining the set of target services. The filter matches services based on their
properties.

The controller makes use of the OSGi ServiceTracker7 utility class [16], for the
purpose of tracking services. The Framework sends out a service event and notifies the
corresponding ServiceTracker instance when a service is registered/unregistered.
The tracker binds/unbinds the service and updates the related proxy accordingly. So that
it reflects the availability (or otherwise) of the service.

It is possible for a component to explicitly track related service events by
implementing the SOFAServiceListener interface, see below.

The overall view of the OSGi Service Tracker controller is depicted in Figure 12. It
shows a primitive SOFA2 component, the component's frame is annotated with the
@ServiceTracker(type=”osgi”) annotation. The interfaces A and B are annotated with the
@Service(name=”A”) and @Service(name=”B”) annotations, respectively. They serve
for accessing OSGi services (registered under service names A and B) and for providing
them to other SOFA2 components. Furthermore, the component implements the
SOFAServiceListener interface get notified of related service events.

In respect of the OSGi runtime, there are two bundles, the bundle A and B. The bundle
A registers a service under the service name A. The service is being used by the bundle B.

6 Lightweight Directory Access Protocol
7 org.osgi.util.tracker.ServiceTracker

23

Chapter 3: Integrating SOFA2 and OSGi

 When the component is started, the SOFA2 runtime calls the controller's open()
method and the underlying ServiceTracker instances start tracking services that are
registered under the service names A and B.

As the service A is already registered in the OSGi Service Registry, the corresponding
tracker is notified. It binds the service and sets up the Service Proxy A with the service
object A. The component is notified of the event, by calling the bind() method.

Method invocations on the interface A are handled by the Service Proxy A. When a
method is invoked, the proxy inspects the service object A, it finds the matching service
method and invokes it. The return value is returned as the result of the method invocation.

As there are no services registered under the service name B, the Service Proxy B is
not set up. The method invocations on the interface B will fail with an unchecked
exceptions, see below.

3.5.1 Service Proxy

The method invocations on a @Service annotated interface are handled by the Service
Proxy. It acts as a mediator between the interface and a matching service. When a method
is invoked, the proxy inspects the service object (if the service is available), finds the
matching service method, invokes it, and returns the return value as the result of the
method invocation. Furthermore, the proxy deals with method types (method parameters,
return values and exceptions) when invoking service methods. It makes a heavy use of

24

Figure 12: OSGi Service Tracker controller

Chapter 3: Integrating SOFA2 and OSGi

the Java Reflection API, for the purpose.

In order to support component versioning and to prevent class name clashes, the
SOFA2 uses byte-code manipulation when uploading classes to the SOFA2 repository
[4]. The classes that are stored in the repository are renamed. Therefore the class names
of non-primitive8 method types used by a service (in the OSGi runtime) differ from the
types used by the corresponding interface (in the SOFA2 runtime). These types cannot be
used directly and a special care must be taken when dealing with them.

When an interface method is invoked, the proxy inspects the method parameters and
makes a copy of the non-primitive ones so that the copies are instances of the service
types. The service method is invoked with the new set of parameters. On the other hand,
the return value and exceptions are dealt with right after the service method is invoked, to
make sure they match the types used by the interface.

The replication process (i.e. making a copy) involves creating a new instance of the
resulting type and copying the member attributes (public, private and protected) from the
original. Similarly for Java arrays, it creates a new array and copies the elements one-by-
one. Every type being copied has to provide a public no-argument constructor in order to
create a new instance of the type.

The whole process of handling a method invocation and cloning the method types is
depicted in Figure 13. It shows handling a method invocation on the interface A, which
is annotated with the @Service(name=”A”) annotation.

Assuming that the service A is registered in the OSGi Service Registry, the OSGi
Service Tracker controller has set up the Service Proxy A with the service object A.

Let the method signature be as follows:

Complex add(Complex a, Complex b);

The method adds up two complex numbers and returns the result (as a complex
number). The Complex type is a simple POJO9 that represents a complex number. In the
SOFA2 repository, the type is stored as the ComplexSOFA2 class, for simplicity.

When the method add() is invoked (on the interface A), the invocation is handled by
the Service Proxy A. It replicates the method parameters (instances of ComplexSOFA2) so
that the new parameters are instances of the Complex type. Further, it invokes the
matching service method add() on the service object A using the new set of parameters.
As the return value is an instance of the Complex type, it needs to be replicated, as well.
The proxy creates a new instance of the ComplexSOFA2 type and copies all the member
attributes from the return value. The newly created instance is returned as the result of the
method invocation.

8 Not Java primitive types (wrapper classes) and Strings
9 Plain Old Java Object

25

Chapter 3: Integrating SOFA2 and OSGi

The Service Proxy acts as a mediator between the interface and a set of matching
services. The services behind the proxy may come and go dynamically. It is up to the
corresponding Service Tracker to keep track of them (e.g. bind a service when available)
and set up the proxy accordingly.

When no matching service is available the proxy gets disabled and method
invocations on the corresponding interface will fail with an unchecked exception,
ServiceUnavailableException10. However the timeout attribute (of the
@Service annotation) may be used to configure the time (in milliseconds) to wait up for a
service to become available before failing the invocation.

The proxy gets enabled when there's at least one service matching the interface
settings. If there are multiple services, registered under the service name (and matching
the filter expression, optionally), the service with the highest ranking is used. The proxy
is set up with the service object and it serves as the target of method invocations.

There's yet another way to handle unavailability of services. A primitive component
can implement the @Service annotated interface by itself. This way a method invocation
on the interface will not fail (when no matching service is available), but is handled by
the component. This feature can be useful when testing SOFA2 applications that make

10 org.objectweb.dsrg.sofa.osgi.ServiceUnavailableException

26

Figure 13: Service Proxy handling a method invocation

Chapter 3: Integrating SOFA2 and OSGi

use of OSGi services, since the services may not be available at the time of testing.

3.5.2 ServiceListener interface

Service events are used by the OSGi Framework to report registrations, unregistrations
and property changes of services. The controller makes use of service events (through
Service Trackers) to keep track of services and to update proxies accordingly. So that
they reflect the availability (or otherwise) of services.

A primitive SOFA2 component can explicitly track related service events by
implementing SOFAServiceListener11 interface, see Figure 14. The component is
notified whenever one of the Service Proxies changes its state, e.g a matching service
becomes available and is bound (or otherwise).

The method bind() is called, when a service becomes available and the corresponding
Service Proxy is set up using the service object. The service name (as registered in the
OSGi Service Registry) and service reference are passed as arguments of the call. The
service reference encapsulates the service properties and other meta-information.

When a service (used by some Service Proxy) is unregistered and there's no suitable
replacement for the service. The corresponding proxy gets disabled and the component is
notified by calling the unbind() method. It lets the component know that the service is not
available anymore and calls on the interface would fail.

On the other hand, if one of the services is unregistered and there are other services
that can replace it. Then, the service with the highest ranking is bound and the
corresponding proxy is set up. The component is notified by calling rebind() method. The
service reference of the service being unregistered, as well as, the new one are passed as
arguments of the call. So the component can keep track of stale references. The rebind()
method informs the component that the service implementation has changed even though
the service availability has not.

The modified() method is called when one of the services have changed the properties.

11 org.objectweb.dsrg.sofa.osgi.SOFAServiceListener

27

public interface SOFAServiceListener {

 void bind(String service, ServiceReference reference);
 void rebind(String service, ServiceReference reference,

 ServiceReference stale);
 void unbind(String service, ServiceReference reference);
 void modified(String service, ServiceReference reference);
}

Figure 14: SOFAServiceListener interface

Chapter 3: Integrating SOFA2 and OSGi

3.6 OSGi Service Publisher controller

The OSGi Service Publisher controller provides the implementation for the Service
Publisher aspect. It handles the management of OSGi service (i.e. registering and
unregistering services). A component is provided with the controller, when its frame is
annotated with @ServicePublisher(type=”osgi”) annotation.

The controller implements the Service Publisher control interface (Fig. 11) to direct
the controller's life-cycle. The methods publish() and unpublish() are called by the
SOFA2 runtime when the component starts and stops, respectively. The set of interfaces
to be published as OSGi services is determined by @Publish annotations used with
frame's interfaces.

The @Publish annotation may carry a map of key/value properties that are to be used
when registering the service in the OSGi Service Registry. All the keys and values must
be Java Strings; except for the service.ranking property that has an integer value. The
service.ranking is used by the Framework when querying the Service Registry – the
service with the highest ranking is returned when there are multiple matching services.

When the controller is started (the publish() method was called), it registers the
@Publish annotated interfaces as OSGi services. The service implementation is provided
by the corresponding SOFA2 component. On the other hand, the controller is unregisters
all the services that have been registered when stopped (the unpublish() method is called).

Each @Publish annotated interface has a corresponding Proxy Bundle (Sect. 3.6.1).
The Proxy bundle resides in the OSGi Framework and is used by the controller for
registering and unregistering the interface as OSGi service. It consists of the interface
type's (used by the interface) classes and a manifest file, which specifies the bundle.
Furthermore, the Proxy bundle exports the classes of the corresponding interface type so
that other bundles in the Framework can import them and use the service.

When the controller is initialized, it starts all the Proxy bundles that correspond to the
@Publish annotated interfaces and the bundles register themselves within the SOFA2
runtime via the RegistrationListener interface (Fig. 15). The registrations are
then used by the controller to register/unregister corresponding OSGi services.

The register() method is
called (by the controller) to
register an OSGi service.
The service implementation
and properties are passed
as arguments of the call.

To unregister services,
the controller calls the
unregister() method.

28

public interface RegistrationListener {
 boolean register(Object impl,
 Dictionary properties);
 boolean unregister(Object impl);
}

Figure 15: RegistrationListener interface

Chapter 3: Integrating SOFA2 and OSGi

Every OSGi service registered by the controller is backed up by a Service Proxy. It
handles method invocations on the service (in OSGi) and acts as a mediator between the
service and the service implementation that is provided by the corresponding SOFA2
component. In a nutshell, method invocations are handled the same way as on @Service
annotated interfaces – only the other way round, see Sect 3.5.1.

The overview of the OSGi Service Publisher controller is depicted in Figure 16.

It shows a primitive SOFA2 component. The component has several business
interfaces and is annotated with @ServicePublisher(type=”osgi”) annotation. The
required interface A is annotated with the @Publish annotation and serves for publishing
services. Services are registered in the OSGi registry under the service name A.

In respect of the OSGi runtime, there are two bundles. The Proxy Bundle A –
corresponding to the interface A. And a consumer bundle that is tracking services being
registered under the service name A. Note, the interface A being shared between the
bundles. The Proxy bundle exports classes, while the consumer bundle imports them. The
consumer makes use of classes when invoking the service A.

The Proxy bundle A gets started when the controller is initialized. It registers itself
within SOFA2 runtime through the RegistrationListener interface (Fig. 15). The
registration is looked up by the controller (when publish() method is called) and used for
registering (by calling register() method) the service A. The service implementation is
provided by the component that is bound to the interface A.

29

Figure 16: OSGi Service Publisher controller

Chapter 3: Integrating SOFA2 and OSGi

When the service A is registered, the consumer bundle gets notified and binds the
service. When the service is invoked, the method invocation is handled by the
corresponding Service Proxy A. It invokes the matching interface method (using the
component that is bound to the interface A). In fact, the interface A got registered in the
OSGi registry as the service A.

3.6.1 Proxy bundle

Proxy bundles have been introduced in order to allow the OSGi Service Publisher
controller to register and unregister OSGi services. Each @Publish annotated interface
has a corresponding Proxy bundle. The Proxy bundle has to be installed in the OSGi
Framework prior to registering the service (i.e. starting the corresponding SOFA2
component). For information about creating Proxy bundles, see Sect. 3.7.1.

A Proxy bundle consists of interface type's classes and a manifest file, which specifies
the bundle. The bundle's implementation (activator) is provided by the SOFA2 runtime
(i.e. imported). Basically, it implements the RegistrationListener interface and
registers the bundle within the SOFA2 runtime when started.

An example of a Proxy bundle's manifest file is shown below.

The manifest headers used by a Proxy bundle are as follows:

● Service-Name – the service name used for registering services

30

Manifest­Version: 1.0

Bundle­ManifestVersion: 2

Created­By: SOFA2 cushion exporter

Bundle­SymbolicName: foo.IPublish_vfunbox_E_0_E_0

Bundle­Activator:
org.objectweb.dsrg.sofa.osgi.ProxyActivator

Export­Package: foo

Import­Package:

org.osgi.framework;version="1.3.0",
org.objectweb.dsrg .sofa.osgi

Service­Name: foo.Publish

Proxy­Version: _vfunbox_E_0_E_0

Chapter 3: Integrating SOFA2 and OSGi

● Proxy-Version – the interface type's version

● Export-Package – exported packages (i.e. the interface type's classes)

● Bundle-SymbolicName – unique name of the Proxy bundle

31

Chapter 3: Integrating SOFA2 and OSGi

3.7 Cushion

Cushion is a command line tool for developing SOFA2 components. It is not included
in the SOFA2 distribution but delivered as a separate archive. The tool can be
downloaded from the SOFA2 web site, see [19].

It provides a number of useful commands that are utilized throughout the development
life-cycle. Namely, there are commands to support the component development (creating
new frames, architectures and interface types), application assembly and deployment. The
full list of commands can be found in the usage documentation, see [20].

The general usage of cushion is as follows:

cushion cmd arg1 arg2 ...

The cmd argument specifies the command to be executed; while the rest of the
arguments are passed to the command when being executed.

In order to provide support for developing OSGi-enabled applications, cushion has
been extended in several ways. First, the current cushion commands have been extended
to support the newly introduced annotations, see Sect. 3.2. Secondly, the osgi command
has been introduced. It enables to manage and configure the OSGi Framework.
Moreover, it is used for importing service interfaces into the SOFA2 repository and for
exporting SOFA2 interfaces as bundles (i.e. Proxy bundles).

Apart from the command line interface, there is a GUI12 tool built over cushion [21]. It
is based on the Eclipse platform and allows the visual development of SOFA2
applications.

3.7.1 Command osgi

The osgi command enables management and configuration of the OSGi Framework.
For this purpose, it provides several actions.

The general usage is as follows:

cushion osgi action arg1 arg2 ...

The action argument specifies the action to be executed. If the argument is not
provided, all available actions are printed out. To get a short description of the actions,
use cushion help osgi.

The Framework configuration that is used for performing the action, is specified in the
cushion configuration file.

The actions provided by the osgi command are as follows:

12 Graphical User Interface

32

Chapter 3: Integrating SOFA2 and OSGi

Action shell :

Usage: cushion osgi shell

Starts a text-based user interface (or GUI) shell for interacting with the OSGi
Framework. The location of bundles providing the shell can be configured via
SHELL_BUNDLE and SHELLUI_BUNDLE variables in the cushion configuration file.
The default configuration uses the Felix TUI Shell. However it can be easily reconfigured
to provide a GUI shell, instead.

The shell bundles are installed when the Framework is started, and uninstalled
afterwards. The shell action makes use of the Framework event listener to be notified
when the Framework is shutting down.

The Felix TUI shell provides means to interact with the OSGi Framework. It offers
many handy commands for managing the Framework. Bundles can be
installed/started/stop/uninstalled and updated. Moreover, you can list all the installed
bundles and registered services, a bundle's headers and exported packages, etc. To get a
description of available commands, type help into the shell. The Framework is shut
down by running shutdown command.

Action service :

Usage: cushion osgi service name

● name – a fully qualified service name

Prints out a list of methods (in the form of a Java interface) implemented by a service
that is registered under the given name. This may be useful for getting details about
available services. While, the Java interface can be used for creating interface types,
manually. For example, when a component uses only a subset of service methods. The
full print of a service interface is created by using import action.

Action services :

Usage: cushion osgi services [filter]

● filter – an LDAP filter expression

Prints out available services that match the filter expression. If the filter expression is
not provided, it prints out all available services.

The filter expression matches services based on their properties. The syntax of the
filter expression is defined in [18].

33

Chapter 3: Integrating SOFA2 and OSGi

Action import :

Usage: cushion osgi import service interface

● service – a fully qualified service (interface) name

● interface – an interface type

Imports the given service interface into the SOFA2 repository. The resulting interface
type can be used by SOFA2 components to access OSGi services that are registered under
the service name. For more information about using OSGi services, see Sect 4.1.

First, a transitive closure of the service interface is formed. The types occurring in the
service interface are observed by a static code analysis, using ASM.

The transitive closure consist of:

● service interface class

● method types (parameters and return types)

● exceptions

● inner classes

● super class

● implemented interfaces

Classes from java.* and org.osgi.* packages are excluded from the whole
process since it is assumed that they belong to the execution environment.

Next, the interface type's signature (i.e. the fully qualified name of the interface) is
updated and the transitive closure is used as the code-bundle. Finally, the interface type is
stored in the SOFA2 repository. The interface type became a self-contained print of the
service interface.

Action export :

Usage: cushion osgi export interface

● interface – an interface type

Exports the interface type as a Proxy bundle (see Sect. 3.6) and installs it into the
OSGi Framework. The Proxy bundle is used by the OSGi Service Publisher controller for
registering/unregistering services.

The command creates the Proxy bundle and stores it in the SOFA2 repository. It
consists of the interface type's classes and a manifest file that specifies the bundle.
Furthermore, the bundle export the interface classes (the interface and method types) so
that other bundles in the Framework can import them.

34

Chapter 4: Usage and use cases

4 Usage and use cases
This chapter demonstrates using and publishing OSGi services in practice. Further, it

presents several examples and step-by-step guides to illustrate how to create and set up a
SOFA2 component in order to access and publish OSGi services.

Finally, it shows how to set up a SOFA2 application to achieve seamless remoting for
OSGi services.

4.1 Using OSGi services

A SOFA2 component is enabled to access OSGi services by using the
@ServiceTracker(type=”osgi”) annotation with its frame. In more details, based on the
frame annotation, the SOFA2 runtime applies the Service Tracker aspect and provides the
component with the OSGi functionality though the corresponding OSGi controller, see
Sect. 3.5. In order to access OSGi services, the component has to be hosted by a
deployment dock embedding the OSGi Framework, see Sect. 3.1.

OSGi services are accessed through dedicated business interfaces, both provided and
required. The required ones serve for accessing services by the component itself. While,
the provided ones are used for providing services to other SOFA2 components that may
reside in different deployment docks (Fig. 17).

The @Service annotation is used with interfaces to mark out the ones that serve for
accessing OSGi services. The annotation attributes determine the set of target services for
each of the interface. The name attribute specifies a service name – only services

35

Figure 17: Using OSGi services

Chapter 4: Usage and use cases

registered under the given name can be bound to the interface; the optional attribute,
filter, specifies an LDAP filter expression that is used for further constraining the set of
target services based on the service properties.

The example below matches Http services having a “port” property equal to 80.

Method invocations on a @Service annotated interface are handled by a corresponding
Service Proxy (see Sect. 3.5.1). It acts as a mediator between the interface and one of the
matching services. If there are multiple services registered under the service name (and
optionally matching the filter expression), the one with the highest ranking is used. It is
up to the corresponding controller to bind/unbind services and set up proxies accordingly.

When no matching service is available, method invocations on the interface will fail
with an unchecked exception, ServiceUnavailableException13. The timeout
attribute (of the @Service annotation) can be used to configure the time in milliseconds
to wait up for a service to become available before failing the invocation.

Every interface has an interface type, which specifies the interface methods, signature,
method types, etc. It stands to reason that the interface type (used by a @Service
annotated interface) has to match (i.e. methods and types) the corresponding service
interface. The component developer is provided with the cushion osgi import
command for importing a service interface into the SOFA2 repository as an interface
type, see Sect 3.7.1 for details.

4.1.1 ServiceListener interface

It is possible for a primitive component to explicitly track availability (or otherwise) of
related services by implementing SOFAServiceListener interface, see Figure 18.
The component is notified whenever a Service Proxy changes the state, e.g a service
becomes available and is bound to one of the interfaces.

The method bind() is called, when a service becomes available and the corresponding
Service Proxy gets set up. The service name (as registered in the OSGi Service Registry)
and service reference are passed as arguments of the call. The service reference
encapsulates the service properties and other meta-information.

When a service (used by some Service Proxy) is unregistered and there's no suitable
replacement for the service. The corresponding proxy gets disabled and the component is
notified by calling the unbind() method. It lets the component know that the service is not

13 org.objectweb.dsrg.sofa.osgi.ServiceUnavailableException

36

@Service(name=”org.osgi.service.http.HttpService”,
 filter=”(port=80)”)

Chapter 4: Usage and use cases

available anymore and further method invocations on the interface will fail.

On the other hand, if one of the services is unregistered and there are other services
that can replace it. The service with the highest ranking is bound and the corresponding
proxy is set up. The component is notified by calling rebind() method. Both of the service
references, the old one and the new one, are passed as arguments. So that the component
can keep track of stale references. The rebind() method informs the component that the
service implementation has changed even though the service availability has not.

The modified() method is called when one of the services have changed the properties.

4.1.2 UPnP robot example

The following example demonstrates using OSGi services in practice. The step-by-
step guide shows how to create and and set up a SOFA2 component in order to access an
OSGi service. The component implementation is left out for simplicity.

The application, shown in Fig. 19, consists of a single SOFA2 component that makes
use of an OSGi service to control a sample UPnP14 robot. The component resides in a
deployment dock with an embedded OSGi Framework. The Framework contains the
UPnP driver bundle that discovers the UPnP robot and makes it available via the robot
service (upnp.device.robot). The service is then used by the SOFA2 component to
control the robot.

14 Universal Plug-and-Play

37

public interface SOFAServiceListener {

 void bind(String service, ServiceReference reference);
 void rebind(String service, ServiceReference reference,

 ServiceReference stale);
 void unbind(String service, ServiceReference reference);
 void modified(String service, ServiceReference reference);
}

Figure 18: SOFAServiceListener interface

Chapter 4: Usage and use cases

Steps

1. Launch the SOFA2 repository, see the SOFA2 usage documentation.

2. Create a new directory, which will be used for developing the application and
change to it.

3. First, create an empty interface type to hold the service interface.

cushion new interface initial foo.RobotService

The command creates a new (empty) interface type and generates an ADL file
(adl.xml) with the interface type definition. The file is created in the
foo.RobotService directory.

4. Next, import the service interface into the SOFA2 repository

cushion osgi import upnp.device.robot foo.RobotService

It creates a self-contained print of the service interface (upnp.device.robot) and
stores it in the SOFA2 repository using the foo.RobotService interface type.

The interface type definition looks like this:

38

<?xml version="1.0" encoding="UTF­8"?>

<itf­type name="foo.RobotService"

signature="upnp.device.robot" />

Figure 19: UPnP robot example

Chapter 4: Usage and use cases

The service interface classes are stored in the repository as the code-bundle of the
interface type. Note, the signature attribute that is set to the service interface class
name.

5. Create the component's frame, foo.FTester

cushion new frame initial foo.FTester

This creates an empty frame in the repository and generates the ADL file that should
be filled in. The frame defines a required interface (with the type previously created).
The interface will serve for accessing the robot service by the component. The ADL
file is shown below.

Note, the service-tracker attribute of the <frame> tag, it represents the
@ServiceTracker annotation used with the frame. The attribute value is used as the
type attribute of the annotation.

The @Service annotation is specified with the <service> element. The attributes
determine the set of target services. As shown in the ADL file above, a suitable service
has to be registered under the service name upnp.device.robot and the name
property must equal to Marvin.

6. Next, create the component's architecture, foo.ATester

cushion new architecture initial foo.ATester

This creates an architecture for the component and generates the ADL file that should
be filled in. The component is primitive thus the architecture is empty. It specifies the
frame that the component implements, and the Java class that implements the
component. The ADL file is shown below. Though the implementation is left out for
simplicity.

39

<?xml version="1.0" encoding="UTF­8"?>

<frame name="foo.FTester" service­tracker="osgi">

 <requires name="service"

 itf­type="sofatype://foo.RobotService"

 <service name="upnp.device.robot"

 filter=”(name=Marvin)” />

 </requires>

</frame>

Chapter 4: Usage and use cases

6. Commit all changes in the ADL files into the repository

cushion commit

Note, without any parameters, it commit changes in all working elements.

Now, the component is created and stored in the SOFA2 repository. Next, you need to
provide the component's implementation, create the assembly descriptor and deployment
plan; setup the runtime environment and finally launch the application.

4.2 Publishing SOFA2 interfaces as OSGi services

A SOFA2 component is enabled to publish OSGi services by using the
@ServicePublisher(type=”osgi”) annotation with its frame. In more details, based on the
frame annotation, the SOFA2 runtime applies the Service Publisher aspect and provides
the component with the OSGi functionality though the corresponding OSGi controller,
see Sect. 3.6. In order to publish OSGi services, the component has to be hosted by a
deployment dock embedding the OSGi Framework, see Sect. 3.1.

The interfaces that are to be published as OSGi services are marked out with the
@Publish annotation. The services are registered in the deployment dock (in the OSGi
Framework) where the component resides. The service implementation is provided either
by the component itself or by some other SOFA2 component, depending on whether the
corresponding interface is provided or required one. This allows a SOFA2 component to
publish OSGi services in a different deployment dock than the one that hosts the
component. An example of publishing SOFA2 interfaces as OSGi services is depicted in
Figure 20.

The @Publish annotation can carry a map of key/value properties that are used when
registering the service in the OSGi Service Registry. All the keys and values are restricted
to be Java Strings; except for the service.ranking property that has to have an integer
value. The service.ranking is used by the Framework when querying the Service Registry
– the service with the highest ranking is returned when there are multiple matching
services.

40

<?xml version="1.0" encoding="UTF­8"?>

<architecture name="foo.ATester"

 frame="sofatype://foo.FTester"

 impl="..." />

Chapter 4: Usage and use cases

Each @Publish annotated interface has a corresponding Proxy Bundle (Sect. 3.6.1)
that resides in the OSGi Framework and is used (by the controller) for publishing the
interface as an OSGi service. Furthermore, the Proxy bundle exports the classes of the
corresponding interface type so that other bundles in the Framework can import them and
use the service.

The Proxy bundles that correspond to the @Publish annotated interfaces of a SOFA2
component, have to be created and installed (by the component developer) in the OSGi
Framework, prior to starting the component. The component developer is provided with
the cushion osgi export command. The command creates a Proxy bundle for an
interface type and installs it into the OSGi Framework, see Sect. 3.7.1 for details.

4.2.1 Dictionary service example

The following example demonstrates publishing OSGi services in practice. The step-
by-step guide shows how to set up a SOFA2 component in order to publish some of its
interfaces as OSGi services. The component implementation is left out for simplicity.

The application, shown in Fig. 21, consists of a single SOFA2 component. It
implements a simple dictionary interface and publishes the interface as an OSGi service.
The purpose of the example, let the dictionary interface be as follows:

41

Figure 20: Publishing OSGi services

public interface DictionaryService {

String translate(String word);

}

Chapter 4: Usage and use cases

Steps

1. Launch the SOFA2 repository, see SOFA2 usage documentation.

2. Create a working directory for the application and change to it.

3. First, create an interface type for the dictionary interface.

cushion new interface initial foo.Dictionary

The command creates an empty interface type and generates an ADL file (adl.xml)
with the interface type definition.

Note, the signature attribute that specifies the class name of the dictionary interface,
see above.

4. Create the component's frame, foo.FDictionary

cushion new frame initial foo.FDictionary

This creates an empty frame in the repository and generates the ADL file that should
be filled in. The frame defines a provided interface (with the type previously created).
The ADL file is shown below.

42

Figure 21: Dictionary service example

<?xml version="1.0" encoding="UTF­8"?>

<itf­type name="foo.Dictionary"

signature="foo.sample.DictionaryService" />

Chapter 4: Usage and use cases

Note, the service-publisher attribute of the <frame> tag, it represents the
@ServicePublisher annotation. The @Publish annotation is specified with the
<publish> element. The <property> elements specify the service properties.

5. Next, create the component's architecture, foo.ADictionary

cushion new architecture initial foo.ADictionary

This creates an architecture for the component and generates the ADL file that should
be filled in. The component is primitive so the architecture is empty. It specifies the
frame that the component implements; and the Java class that implements the
component. The implementation is left out, for simplicity.

6. Commit all changes in the ADL files into the repository

cushion commit

Note, without any parameters, it commit changes in all working elements.

7. Provide the implementation of the interface type and the component

43

<?xml version="1.0" encoding="UTF­8"?>

<architecture name="foo.ADictionary"

 frame="sofatype://foo.FDictionary"

 impl="..." />

<?xml version="1.0" encoding="UTF­8"?>

<frame name="foo.FDictionary" service­publisher="osgi">

 <provides name="service"

 itf­type="sofatype://foo.Dictionary"

 <publish>

<property name="lang" type=”English”>

 </publish>

 </provides>

</frame>

Chapter 4: Usage and use cases

8. At last, create a Proxy bundle for the foo.Dictionary interface type

cushion osgi export foo.Dictionary

This command creates a proxy bundle for the interface type and installs it into the
OSGi Framework.

The component is now created, set up and stored in the SOFA2 repository. All that is
left is to create the assembly descriptor and the deployment plan; setup the runtime
environment and finally launch the application.

4.3 Remoting for OSGi services

OSGi services allow for the communication between bundles within a single OSGi
Framework. Considering the OSGi support that has been built in the SOFA2 (i.e. the
ability to access and publish OSGi services by SOFA2 components), OSGi services can
take advantage of the SOFA2 distributed runtime environment and work in a distributed
setting. An example of a SOFA2 application that is set up to provide an OSGi service
across deployment docks is shown in Figure 22.

The deployment dock A embedding the OSGi Framework hosts a SOFA2 component
(C1) with the frame annotated with the @ServiceTracker annotation. The component
provides access to the service A (registered by the Bundle A) through the provided
interface annotated with the @Service annotation. In the deployment dock B, the
component C2 with the @ServicePublisher annotated frame binds the provided interface
to its required interface annotated with the @Publish annotation.

When the component C2 starts, it publishes the service A in the local OSGi
Framework (i.e. in the deployment dock B) and thus provides the service A to the Client
Bundle. The bundle is able to use the service even though it resides in a different OSGi
Framework than where the service was originally registered.

44

Figure 22: Remoting for OSGi services

Chapter 5: Related work

5 Related work
This chapter overviews the OSGi support provided by the Spring Framework.

Eventually, it discusses differences in the OSGi support provided by the Spring and the
SOFA2 component model.

5.1 Spring Framework and OSGi

The Spring Framework is an open source full-stack Java application Framework [22].
It provides a lightweight container and a non-invasive programming model enabled by
the use of dependency injection, aspect-oriented programming, POJOs15, etc. On the other
hand, OSGi offers a dynamic application execution environment in which
components(bundles) can be installed, updated, or removed at runtime. It has excellent
support for modularity and versioning, see Sect. 2.2.

The OSGi support [23] makes it possible to write Spring applications that can be
deployed in an OSGi execution environment, and that can take advantage of the services
offered by other bundles in the OSGi Framework.

In Spring, the primary unit of modularity is an application context, which contains a
number of bean (objects managed by the application context). Application contexts can
be configured in a hierarchy, such that a child context can see beans defined in a parent.
The Spring concepts of exporters and factory beans are used for exporting references to
beans outside of the application context, and to inject references that are defined outside
of the application context.

The integration with the OSGi happens at the module and service levels. A Spring
application context is modeled as an OSGi bundle. While, Spring beans represent OSGi
services.

An application context is configured using one or more XML configuration files that
are placed in the META-INF/spring folder in the bundle. Optionally, the Spring-Context
manifest header can be used for specifying the configuration. The configuration files
define beans and related OSGi services.

Spring will automatically create an application context whenever a bundle with a
Spring-Context manifest header or resources in the META-INF/spring folder is activated.
For this purpose, it uses the org.springframework.osgi.extender bundle, which resides in
the OSGi Framework.

OSGi services are represented as Spring beans. An application context's configuration
defines the beans that are to be published as OSGi services, and those that are injected
with a proxy reference to access OSGi services.

15 Plain Old Java Object

45

Chapter 5: Related work

Using OSGi services

The <osgi:reference> element is used to define a bean that acts as a proxy to an
OSGi service (or set of services). The required attributes are id – which defines the name
of the local bean; and interface – specifies the fully qualified (OSGi) service name.
Furthermore, you can specify the following optional attributes:

● filter – an OSGi filter expression to constrain the set of target services

● depends-on – ensures that the named dependency is instantiated before the bean

● cardinality – allows a reference cardinality to be specified (0..1, 1..1, 0..n, 1..n).
For references with cardinality 0..n or 1..n, the element resolves to a collection
with elements of the interface type.

Spring gives you a constant object reference for the bean that is defined by the
<osgi:reference> element (either a proxy or Spring-managed collection). The
services behind the reference may come and go dynamically.

Method invocations on a service reference may fail at any time with an unchecked
ServiceUnavailableException (e.g. the bundle providing the service has been stopped).
By specifying the timeout attribute in the element, the proxy can be configured to wait up
to a given milliseconds for a service to become available before failing.

Furthermore, it is possible to explicitly track the availability (or otherwise) of OSGi
services backing a service reference by specifying one or more listeners – using the
nested <osgi:listener> elements.

Exporting Spring beans as OSGi services

A bean is registered as an OSGi service using the <osgi:service> element. The
ref attribute specifies the bean to be registered, and the interface attribute defines the
interface name that the bean is to be registered under. The element may optionally include
one or more nested <osgi:service­property> elements to specify the service
properties used when registering the service. Furthermore, as an alternative to OSGi
ServiceFactory interface, the bean may implement Spring's FactoryBean interface.

Apart from the ability to access and publish OSGi services, Spring provides support
(i.e. defines elements) for some of the standard OSGi services, like Configuration Admin
service and Initial Provisioning [16].

Considering the OSGi support provided by the Spring Framework and SOFA2
component model, the set of supported features is comparable. Though there is no
support for reference cardinality and OSGi service factories in the SOFA2, yet. The main
difference is in the runtime execution environment for components. Spring-enabled

46

Chapter 5: Related work

bundles are executed (with other bundles) in the OSGi Framework. While, SOFA2
components are hosted by a deployment dock embedding the OSGi Framework.

For accessing OSGi services, both the SOFA2 and Spring use a Service proxy that
mediates the invocation. In addition to that, SOFA2 deals with methods types
(parameters, return values and exceptions) when handling a method invocation.
Considering the SOFA2 distributed runtime environment, it is easy to set up a SOFA2
application to achieve seamless remoting for OSGi services.

47

Chapter 6: Conclusion and future work

6 Conclusion and future work
In the thesis, a solution providing interoperability between the SOFA2 component

system and the OSGi Service Platform has been described.

The proposed solution is based on aspects and annotations. The annotations serve for
specifying service-enabled components and interfaces in a declarative way. While, the
aspects provide the components with the OSGi functionality – through the corresponding
OSGi controllers.

Furthermore, the OSGi support is incorporated in the tool for developing SOFA2
components. It supports for the newly introduced annotations and provides means to
interact with the OSGi Framework.

6.1 Goals review

This section reviews the solution with respect to the goals that are outlined in the Sect.
1.4.

(g1) mutual interoperability

OSGi services are accessed through dedicated SOFA2 interfaces, which are marked
out with the @Service annotations. The service management issues (e.g.
binding/unbinding services) are handled by the corresponding OSGi Service Tracker
controller (Sect. 3.5).

The other way round, SOFA2 interfaces that are marked out with the @Publish
annotation get published as OSGi services. The service life-cycle is managed by the
corresponding OSGi Service Publisher controller (Sect. 3.6).

(g2) seamless integration

The proposed approach uses existing SOFA2 features, like aspects and annotations. It
introduces several new annotations (Sect. 3.2). The annotations are used for specifying
service-enabled components – the frame annotations; and interfaces – the interface
annotations. An obvious advantages of this approach is the possibility of mixing
normal business interfaces and service-enabled interfaces within a single SOFA2
component.

Moreover, the control logic (i.e. the OSGi functionality) and the business logic are
clearly separated, since the control logic resides in the control part of components.

(g3) handle service dynamics

Every @Service annotated interface is backed up by a Service Proxy (Sect. 3.5.1). It
handles method invocations and acts as a mediator between the interface and OSGi
services. The services behind the proxy may come and go dynamically. It is up to the

48

Chapter 6: Conclusion and future work

corresponding OSGi controller to keep the proxies up-to-date so that they reflect the
availability (or otherwise) of OSGi services.

Method invocations on a @Service annotated interface may fail at any time with an
unchecked exception, since the service may not be available at the time of invocation.
The timeout attribute of the @Service annotation can be used for configuring the time
(in milliseconds) to wait up for a service to become available before failing.

Furthermore, a primitive SOFA2 component can explicitly track related service events
(e.g. when binding/unbinding services) by implementing the service event listener
interface, see Sect. 3.5.2.

(g4) general approach

The outlined approach (i.e. based on aspects and annotations) is general and can be
easily reused for integrating other SOA-based systems. The controller that actually
implements the service-related aspect (see Sect. 3.3 and 3.4) is determined by the type
attribute of the frame annotation, which is used with the component. The frame
properties may carry additional configuration for the related controller. For example,
the URL of the service registry.

6.2 Future work

The solution doesn't employ some of the SOFA2 features (e.g. interface cardinality)
that are yet to be implemented. The future work might include support for such features.
For example, the interface cardinality can utilized for accessing services when there are
multiple services registered under the same name.

Another possible improvement might be to replace the service event listener interface
(Sect. 3.5.2) with a set of annotations, e.g. the @bind, @unbind, @rebind and @modified
annotations.

The OSGi support need to be incorporated in the GUI tool for the visual development
of SOFA2 applications [21]. It should support the newly introduced annotations and the
osgi command. Furthermore, it may offer handy features, like checking the validity of
annotation attributes (e.g. the filter expression).

49

Chapter 7: References

7 References

[1] Szyperski C., Murer S, Gruntz D.: Component Software: Beyond Object-Oriented
Programming, 2nd edition, 2002

[2] Sun Microsystems, JSR 220: Enterprise JavaBeans 3.0, May 2006
http://jcp.org/en/jsr/detail?id=220

[3] Object Management Group, Corba Component Model (CCM) V4.0, Jun 2006
http://www.omg.org/technology/documents/formal/components.htm

[4] Bures T., Hnetynka P., Plasil F.: Runtime Concepts of Hierarchical Software
Components, International Journal of Computer & Information Science, Vol. 8.,
Sep 2007

[5] Fractal component model,
http://fractal.objectweb.org/

[6] Krafzig D., Banke K., Slama D.: Enterprise SOA: Service-Oriented Architecture
Best Practices, 2004

[7] W3C, Web services,
http://www.w3.org/2002/ws/

[8] The OSGi Alliance, OSGi Service Platform Core Spec. R4, Version 4.1, Apr 2007
http://www.osgi.org/Specifications/

[9] Sun Microsystems, JSR 208: Java Business Integration (JBI), Aug 2005
http://jcp.org/en/jsr/detail?id=208

[10] Pei Breivold H., Larsson M.: Component-Based and Service-Oriented Software
Engineering: Key Concepts and Principles, 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications, 2007

[11] Distributed Systems Research Group, Charles University in Prague
http://dsrg.mff.cuni.cz/

[12] Hnetynka P., Plasil F.: Distributed Versioning Model for MOF, published by
Computer Science Press, ISBN 0-9544145-3-5, pp. 489-494, Jan 2004

[13] Bures T., Hnetynka P., Plasil F..: SOFA2 metamodel, Tech. Report No. 2005/11,
Department of Software Engineering, Charles University, Dec 2005

[14] Galik O., Bures T.: Generating Connectors for Heterogeneous Deployment,
ACM Press, New York, NY, ISBN 1-59593-204-4, pp. 54-61., Sep 2005

50

http://dsrg.mff.cuni.cz/
http://jcp.org/en/jsr/detail?id=208
http://www.osgi.org/Specifications/
http://www.w3.org/2002/ws/
http://fractal.objectweb.org/
http://www.omg.org/technology/documents/formal/components.htm
http://java.sun.com/products/ejb

Chapter 7: References

[15] Bures T., Mencl V.: Microcomponent-Based Component Controllers: A Foundation
for Component Aspects, in Proceedings of 12th Asia-Pacific Software Engineering
Conference (APSEC 2005), pp. 729-738, Dec 2005

[16] The OSGi Alliance, OSGi Service Platform Compendium R4, Version 4.1, Apr 2007
http://www.osgi.org/Specifications/

[17] Oaks S.: Java Security, O'Reilly, 2nd edition, 2001

[18] RFC 2254: The String Representation of LDAP Search Filters
http://www.faqs.org/rfcs/rfc2254.html

[19] SOFA2 component model,
http://sofa.objectweb.org/

[20] Cushion usage documentation,
http://sofa.objectweb.org/docs/cushion.html

[21] Pivoluska M.: Visual development of hierarchical components, Master thesis,
Charles University in Prague, June 2008

[22] Spring Framework,
http://www.springframework.org/

[23] Spring OSGi Specification v0.7,
http://www.springframework.org/osgi/specification

[24] Apache Felix,
http://felix.apache.org/

51

http://felix.apache.org/
http://www.springframework.org/osgi/specification
http://www.springframework.org/
http://sofa.objectweb.org/docs/cushion.html
http://sofa.objectweb.org/
http://www.faqs.org/rfcs/rfc2254.html
http://www.osgi.org/Specifications/

Appendix A: Content of the CD

Appendix A: Content of the CD
The content of the CD is as follows:

● Directory bin – launching scripts for starting the SOFA2 runtime and attached
examples

● Directory cushion – Cushion distribution

○ cushion/bin – launching scripts

○ cushion/conf – configuration files

○ cushion/jdoc – JavaDoc documentation

● Directory sofa – SOFA2 distribution

○ sofa/bin – launching scripts

○ sofa/bundles – example OSGi bundles

○ sofa/conf – configuration files

○ sofa/jdoc – JavaDoc documentation

○ sofa/_repdir – repository data

● Directory src – source files

○ src/sofa – SOFA2 source files

○ src/cushion – Cushion source files

● Directory thesis – electronic version of the thesis in the PDF format

● Directory workspace – example SOFA2 applications

○ workspace/bundles – source files for example bundles

○ workspace/serviceTester – example of using OSGi services

○ workspace/servicePublisher – example of publishing OSGi services

● File README – content of the CD and a guide for launching the examples

52

Appendix B: OSGi deployment dock

Appendix B: OSGi deployment dock
The sofa-dockosgi(.sh|.bat) script launches a deployment dock with an

embedded OSGi Framework (i.e. the Apache Felix).

There are two variants of the script:

● sofa-dockosgi.sh for UNIX-like systems

● sofa-dockosgi.bat for Windows systems

The general usage is as follows:

sofa­dockosgi(.sh|.bat) name

The dock name is passed as a parameter when launching the script. The Felix
configuration is specified in the SOFA2 configuration file – _setenv(.sh|.bat).
The FELIXCONF variable defines the location of the Felix configuration file. While, the
FELIXCACHE variable is used for setting up the bundle cache, see the Felix usage
documentation [24].

The sofa-caps(.sh|.bat) script is used to print out capabilities of deployment
docks (e.g. whether the dock runs an embedded instance of the OSGi Framework. The
first parameter specifies the name of the deployment dock. Without parameters, it prints
out capabilities of all running deployment docks.

53

	1Introduction
	1.1Component-based systems
	1.2SOA-based systems
	1.3Interoperability
	1.4Goals of the thesis
	1.5Structure of the text

	2Background
	2.1SOFA2 component system
	2.1.1Component model
	2.1.2Control part of components
	2.1.3Utility interface pattern

	2.2OSGi Service Platform
	2.2.1The Framework
	2.2.2Bundles
	2.2.3Service model

	3Integrating SOFA2 and OSGi
	3.1Embedding OSGi Framework
	3.2Extending SOFA2 meta-model
	3.3Service Tracker aspect
	3.4Service Publisher aspect
	3.5OSGi Service Tracker controller
	3.5.1Service Proxy
	3.5.2ServiceListener interface

	3.6OSGi Service Publisher controller
	3.6.1Proxy bundle

	3.7Cushion
	3.7.1Command osgi

	4Usage and use cases
	4.1Using OSGi services
	4.1.1ServiceListener interface
	4.1.2UPnP robot example

	4.2Publishing SOFA2 interfaces as OSGi services
	4.2.1Dictionary service example

	4.3Remoting for OSGi services

	5Related work
	5.1Spring Framework and OSGi

	6Conclusion and future work
	6.1Goals review
	6.2Future work

	7References
	Appendix A: Content of the CD
	Appendix B: OSGi deployment dock

