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Abstract:
Classic textual compression methods work over the alphabet of characters

or alphabet of words. For languages with rich morphology as well as for
compression of smaller files it can be advantageous to use an alphabet of
syllables. For some compression methods like the ones based on Burrows-
Wheeler transformation the syllable is a reasonable solution also for large
files - even for languages having quite simple morphology.

Although the main goal of our research is the compression over the alpha-
bet of syllables, all implemented methods can compress also over the alpha-
bet of words. For small files we use the LZW method and Huffman coding.
These methods were improved by the use of initialized dictionary containing
characteristic syllables specific for given language. For the compression of
very large files we implemented the project XBW allowing combination of
compression methods BWT, MTF, RLE, PPM, LZC, and LZSS. We have
also tried to compress XML files that are not well-formed.

When compressing over a large alphabet, it is necessary to compress also
the used alphabet. We have proposed two solutions. The first one works
well especially for small documents. We initialize the compression method
with a set of characteristic syllables whereas other syllables are coded when
necessary character by character. The second solution is intended for com-
pression of larger documents. The alphabet of used syllables is encoded as a
compressed trie what significantly reduces the space necessary for encoding
of the alphabet.

Keywords: text and XML compression, syllable and word based compres-
sion, Burrows-Wheeler transformation.



Thanks to Prof. RNDr. Jaroslav Pokorný CSc. for his helpfulness while su-
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Chapter 1

Introduction

There are usually two reasons for the use of various compression methods
- either they serve to decrease hard drive space usage or they decrease the
necessary bandwidth for network file transfers.

Given the current increase in overall storage capacity, the issue of com-
pressing files to save hard drive space for the average user becomes limited
to the lossy compression of images, sound or video. There are still certain
special areas, for example web search engines, where the problem still exists,
since they archive web pages from the majority of the internet. In our the-
sis, one of the problems we examined was data compression for the Egothor
search engine [45].

The second reason is usually decreasing the used bandwidth during net-
work transfers. For the common user, this problem is still actual, for example
when he is charged for the amount of data transferred. Using compression in
this area can also be profitable for the Internet Service Provider by decreas-
ing the outgoing data flow, which can otherwise be very limiting. For this
reason, even the compression of very small files becomes important, which
was another of the cases examined in this thesis.

There is a third reason for using a compression. Due to its relative recent
appereance, it is not usually mentioned. If the compression method is fast
enough, compression can be used to speed up the process of reading very large
files from hard drives. Since most of today’s CPUs can decompress files in
less time than the difference between loading compressed and uncompressed
file from the hard drive. Usually, these methods do not achieve the best
compression ratio but these methods are very fast, for example gzip [44] or
compress [107]. Compression methods proposed in this thesis are focusing
on achieving the maximal possible compression ratio, and therefore are not
particularly suited for this application.

Compression can be divided into two groups - lossy and lossless. During
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CHAPTER 1. INTRODUCTION 8

lossy compression, there is a part of the original information which is lost,
but which is also not important due to the specifics of the given format. For
example, in audio or video compression it is the information which cannot be
perceived by the human ear or eye. When using high amount of compression,
it is usually the information the loss whose is the least distracting. On the
other hand, in lossless compression the compressed file is, upon decompres-
sion, identical to the original file. In the compression of text files, lossless
compression is always used. For XML [115] compression, partly lossy com-
pression is usually used. The information contained within the XML file is
unchanged, but the formatting is lost, which does not matter as much. For
the purpose of this thesis, by compression we always mean lossless compres-
sion, unless explicitly stated otherwise.

1.1 Topics of Research

In this thesis, we were examining four main topics of the text compression.
Each of them has different problems and their solution uses different com-
pression methods. The topics are not, however, completely distinct and
independent. The results of one topic have been used in another one.

1. Small text file compression: The file size is ranging from single
kilobytes to tens of kilobytes, rarely up to single megabytes. Files of
this size are compressed not to save hard drive space, but mostly to
save bandwidth during their transfer, for example across the internet.
Web pages are usually between 10 and 20 KB large, according to [78],
and they contain large amounts of text. Small file compression methods
can therefore be used as the basis for web page compression.

2. Large text file compression: The file size is approximately 20
MB. Files of this size were chosen because files of similar size are being
used by the Egothor search engine [45], storing 1000 web pages in single
file. Since Egothor has to store a vast amount of data downloaded from
the internet, it is having difficulties with hard drive space. By using
a suitable compression method, the number of stored web pages with
the current drive capacity can be significantly increased.

3. Text XML file compression: While the first two topics examined
pure text compression and the possibility of using the methods for web
page compression was mentioned, this topic is directly concerned with
it. Web pages are mostly written in the HTML format [116], often
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containing lots of errors from the HTML norm. In this section, we
need to examine the compression of non-well-formed XML.

When we want to compress each web page separately, we will be using
the knowledge gained in the first topic. On the other hand, when we
want to compress a larger number of pages as a single file, we will uti-
lize the methods from the second section. At first, we were designing
compression methods for well-formed XML, later we turned our atten-
tion to compressing non-well-formed XML, which can in turn be used
to compress HTML files.

4. Large alphabet compression: In this thesis we study the meth-
ods of syllable-based and word-based compression. When we use syl-
lables or words as source units (elements of the alphabet, which will
be used for the file compression), we have to transmit the information
about the elements of the alphabet between the encoder and the de-
coder. For the compression purposes we can understand the alphabet
as a set of elements, so we do not need to know how they are ordered.
The ordering is created during the encoding and it must be respected
during the decoding, explicitly or implicitly. The alphabet has to be
attached to the encoded message for the transfer between the encoder
and decoder. It is useful to compress it as much as possible, which is
also examined in this topic. The results from this section will improve
the results achieved by the compression methods from topics 2 and 3.

1.2 Publications

The content of this thesis was published in [1] through [21]. For easier
orientation, articles written by the author were put in the beginning of
the reference list. For the same reason his works are sorted by publish-
ing date and not alphabetically. It is therefore easy to determine, without
searching the references, what was the author involved in. From the list
of published works, 17 of them are in peer reviewed conference proceedings
[2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21], six of those in IEEE
([3, 11, 12, 19, 20, 21]) and one in LNCS [18]. Another article is in the IJIT
journal [10].

In Master thesis [1], we have examined the theoretical basis of syllable-
based compression and defined the problems that needed solving. We have
also created, implemented and tested LZWL and HuffSyll algorithms. Ex-
tract from this work was published [2].
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Another work [3] was focused on the right configuration of the charac-
teristic words and syllables sets used by LZWL and HuffSyll algorithms for
initialization. Extended version of this article was published as a technical
report [4]. Edited Czech version was published in [17].

In another article [5] we have introduced compression algorithms (TD1,
TD2 and TD3) based on compressing a set of strings, whose usage was
planned for the XBW algorithm. The algorithm was based on encoding
the structure of the trie in which the strings were stored. We have encoded
the number of children for each node, the distance from its left sibling and
one bit that determined whether the given string belonged into the set or not.
Along with this article we have published methods XMillSyl and XMLsyl [6]
and their results for small XML files. These methods combined XML and
text compression.

Following that, we have published an article about a compression method
for large XML files, based on Burrows-Wheeler Transformation [7]. Journal
article [10] is an improvement of this concept. In article [8] we have exam-
ined the properties of XMillSyl and XMLSyl algorithms and other methods
for XML compression on large files in non-well-formed format. Article [9]
contains selected interesting facts about syllable-based compression. Article
[11] is an abstract of the article [5] about methods for compression of a set
of strings.

Article [12] offers a comparison of various approaches to small and medium
text file compression using Burrows-Wheeler transformation. While in the
case of the smallest files, letter-based compression was the best approach, for
larger files, syllable-based approach was better. Word-based compression was
also examined, however it did not excel in any category. Extended version
of this article was published as [13].

Article [14] examines suitable inflation of the characteristic syllables and
words sets, which are used to initialize the HuffSyll and LZWL methods.

XBW Project studied the compression of large, non-well-formed XML
files. The basis for XBW was the Burrows-Wheeler transformation, but for
subsequent phases of compression, besides the usual combination of MTF and
RLE, also dictionary methods LZC and LZSS or statistical method PPM.
We can also decide whether large output should be encoded using arithmetic
coding or Huffman coding. The project is freely downloadable [15]. Source
codes, executables and documentation, including measured results, are avail-
able. Description of the project and its results were published in [16, 18].
Different types of algorithms for Burrows-Wheeler transformation over large
alphabet used in XBW are described in [19].

A new statistical lossless compression method called MultiStream com-
pression, created by Kochánek, is desribed in [20, 21]. This method was
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added into XBW. We used advantage of this modular system for testing this
method.

1.3 Contents of the Thesis

In Chapter 2, we gather the basic definitions from the area of lossless compres-
sion and described the principles of the most common compression methods.

In Chapter 3, we describe works related to the topics of the research. This
chapter concludes the already known facts, all other chapters are author’s
original research.

In Chapter 4 we explain the motivation behind the research of the syllable-
based compression. We also state the problems which need to be solved.
Then we define certain concepts, for example: letter, consonant, vowel, word,
decomposing words into syllables. We have included examples of algorithms
for the decomposition process.

Chapter 5 examines the compression of small text files up to 5 MB of
size. We have introduced two syllable-based compression methods, LZWL
and HuffSyllable, and compared the results with the results of word-based
compression methods.

Chapter 6 studies the compression of small XML files, comprising mostly
of text. We join the principles of XML compression with the principles of
word- and syllable-based compression. We have also introduced compression
methods XMillSyl and XMLSyl.

Compression methods working over large alphabet (syllables, words) must
be able to transmit this alphabet in some form between the encoder and the
decoder. In Chapter 7, we describe certain approaches to this problem,
more thoroughly examining the semi-adaptive and adaptive with a static
initialization approaches.

Chapter 8 examines the compression of large text files in non-well-formed
XML format. The core of this chapter is the description of the XBW software
project.



Chapter 2

Lossless Compression

There exist many books, papers, and technical reports [79, 36, 27, 65, 70,
89, 88] giving the overview about the basic definitions and notions of data
compression. There are described also the principles of the most important
compression methods. Our goal is not the detailed description of the known
methods, we will give the brief overview about the ideas. We will focus to
the methods of the lossless compression as lossy compression of the text has
less importance than it has for multimedia.

The basic definitions from the compression domain are in Chapter 2.1.
Chapter 2.2 describes different types of methods used in compression: static,
semi-adaptive, and adaptive. The basic classification of compression meth-
ods is in Chapter 2.3. Chapter 2.4 describes basic statistical compression
methods, Chapter 2.5 basic dictionary methods. Chapter 2.6 describes ba-
sic transforms used in compression. Chapter 2.7 is dedicated to the integer
compression. Chapter 2.8 describes word-based compression methods.

There are many methods that can be included in Chapters 2.4 - 2.7, but
we describe methods used in the following parts of this thesis only.

2.1 Basic Definitions

This chapter collects basic definitions from the compression area. We recall
the ones from the original sources [70, 93] and also their later interpretations
[109, 38].

Definition 2.1 (Alphabet):
Let Σ be a finite nonempty set of characters, then Σ is called alphabet.

The cardinality of Σ is denoted as |Σ|.

12
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Definition 2.2 (String):
A sequence of characters α = α1...αn, αi ∈ Σ is called string over alphabet

Σ. The length of α is |α| = n. Symbol λ 6∈ Σ is called empty string. We
denote the set of all finite strings over alphabet Σ (including the empty string
λ) by Σ∗, and the set of all nonempty strings over Σ by Σ+.

Definition 2.3 (Substring):
Let α = α1...αn, αi ∈ Σ and β = β1...βm, βi ∈ Σ. If ∃h ≥ 0 for

i = 1, ...,m : βi = αi+h then β is a substring of α. If h = 0 then β is a prefix
of α, if h = n−m then β is a suffix of α.

Definition 2.4 (Concatenation):
Let α = α1...αn, αi ∈ Σ and β = β1...βm, βi ∈ Σ and γ = γ1...γm+n, γi ∈

Σ. If for i = 1, ..., n : αi = γi and for i = 1, ...,m : βi = γn+i then the string
γ is a concatenation of the strings α and β, we denote γ = α · β.

Definition 2.5 (Code):
The code K is a triple K = (S,C, f), where S is a finite set of source

units, C is a finite set of code units, and f is a mapping from S to C+. The
mapping f assigns to every source unit from S just one codeword from C+.
The string α = α1, ..., αn, αi ∈ S, is called message.

A codeword consists of a sequence of code units. Two distinct source
units should be never assigned to the same codewords, therefore f has to be
an injective mapping.

The set of source units is usually an alphabet. We can understand the
set of source units also as n-tuples of the characters called n-grams. For the
text compression methods the set of source units can be the set of words,
syllables, or other groups of characters. We called these sets of source units
as alphabets of n-grams, words, syllables. If we know the set of source units
before the start of the compression and the set of source units is reasonably
small (having e.g. up to 256 items), then we can talk about the compression
over a small alphabet, in the opposite case we talk about the compression
over a large alphabet.

Definition 2.6 (Uniquely Decodable):
We say that a string α ∈ C+ is uniquely decodable with respect to f , if

there is at most one message β ∈ S+ such that f(β) = α. Similarly, the
code K = (S,C, f) is uniquely decodable, if all strings in C+ are uniquely
decodable with respect to f .
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Definition 2.7 (Prefix Code):
The code K is said to be a prefix code, if it has a prefix property, which

requires that no codeword is a proper prefix of any other codeword.

Prefix codes represent an important and frequently used class of codes,
since they are uniquely decodable. The class of uniquely decodable codes does
not offer any further compression opportunities, any hope for minimizing
the average codeword length, than the class of prefix codes (see e.g. [36],
Chapter 5.5).

Definition 2.8 (Encoding and Decoding):
The conversion of the original messages to the encoded (or compressed)

messages is referred to as coding or encoding. In the reverse process, decod-
ing, the compressed messages are decoded (or decompressed) to reproduce
the original messages. The corresponding algorithms are called encoder (or
compressor) and decoder (or decompressor), respectively.

The compression ratio gives an average number of bits required for en-
coding a single character of 8-byte alphabet.

Definition 2.9 (Compression Ratio):

Let ν =
Size of compressed data

Size of original data

We define compression ratio as ν ∗ 8.

Definition 2.10 (Entropy of Unit):
Let S = {x1, x2, . . . , xn} be the set of source units. Let pi be the proba-

bility of occurrence of source unit xi, 1 ≤ i ≤ n. The entropy of unit xi is
then:

Hi = − log2 pi bits.

Definition 2.11 (Entropy of Message):
Let S = {x1, x2, . . . , xn} be the set of source units. Let pi be the prob-

ability of occurrence of source unit xi, 1 ≤ i ≤ n. The entropy of a source
message X = xi1xi2 . . . xik from S+ is then:

H(X) = −
k∑

j=1

pij log2 pij bits.
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Both definitions of entropy are from Shannon’s work [93] from 1948. En-
tropy of a message is a measure of quantity of the information encoded in the
message. The larger entropy of a message is the higher information quantity
it has.

In general, it is not possible to know the entropy of message, so we have
estimate the entropy. The estimate of the entropy depends on our assump-
tions about the structure of the message. It is impossible to compress a
message by lossless statistical method to be smaller than its entropy.

2.2 Source Modeling

The development of data compression algorithms for a variety of data can be
divided into two phases. The first phase is usually referred to as modeling.
In this phase we try to extract information about any redundancy that exists
in the data and describe the redundancy in the form of model. The second
phase is called coding. A description of the model and a ”description” of
how the data differ from the model are encoded, generally using a binary
alphabet.1

For example: a compression method for a sequence of integers a1, ..., an

can use the model ai = i ∗ 50. If a message is 48, 100, 150, 201, 249 then the
message is coded into -2, 0, 0, 1, -1.

Compression works with an assumption that the data corresponds to some
model and the data is compressed based on the model. The more similar to
the model the data is, the better compression ratio can be achieved. It is
necessary that both coder and decoder use the same model to ensure that
the file can be decoded. Models are usually divided into three groups: static,
semi-adaptive and adaptive.

Static model is usually constructed for a particular type of file, mostly
based on analysis of characteristic attributes of the given file. Coder and
decoder then use this model without modifying it. Also the model is not
affected by the input file. Problems may arise in case the input file does
not conform to the model, for example, if we have a model for text files and
the input file is compressed video. It is possible that substantial expansion
instead of compression may happen in this case.

Semi-adaptive model most often requires two-pass compression method.
The model is constructed at the first pass through the file and then, at
the second pass, the file is compressed using this model. Model has to be
encoded and transferred from coder to decoder which causes some overhead.

1This paragraph is taken from [89].
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This overhead can be bigger than the size of the original document while
compressing very small documents.

Adaptive model is constructed by both coder and decoder based on the
already processed part of the file. The advantage is that the model does not
need to be transferred from coder to decoder. A disadvantage is that the
model is not able to learn on the very small files and thus the compression
result is not usually very good. Adaptive models are also usually quite slower
than the other two types.

2.3 Compression Methods

Compression methods are usually divided into two groups: statistical meth-
ods (Chapter 2.4) and dictionary-based methods (Chapter 2.5). There are
also methods for compression of integer numbers (Chapter 2.7) and also
various transformations (Chapter 2.6) that can be used along with other
compression methods, but often also independently.

Another way to divide compression methods is based on the size of used
alphabet. The oldest methods work with single characters, the newer ones
work with character sequences of fixed length (n-grams). In case of text
compression, there are also word-based (see Chapter 2.8) and syllable-based
methods.

2.4 Statistical Methods

Statistical compression methods work with the probability of occurrence of
individual characters from the alphabet. These probabilities can be deter-
mined statically, adaptively or semi-adaptively. During the compression,
individual elements of the input alphabet are read and a probability of occur-
rence of every such element in the given model is found out. This probability
is coded into the output file.

Statistical compression methods can be divided based on the order of
compression. The order determines how many preceding characters are taken
into account for calculating the probability of actual character. Model is
called 0-order if it does not take into account any preceding characters. If
the model takes into account x preceding characters, it is called x-order.

The most important representatives of statistical compression methods
are Huffman coding, arithmetic coding and also Prediction by Partial Match-
ing.
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2.4.1 Huffman coding

Huffman coding [54] is statistical compression method that assigns codes of
fixed size (usually a number of bits) to individual characters. Huffman coding
generates optimal prefix code. If all probabilities of occurrence of individual
characters from the alphabet are negative powers of two, then each encoded
character has size of its entropy. In other cases the size of each encoded
character is lower than its entropy plus one bit.

Codes for every character are stored in the binary tree called Huffman
tree in which edges are labeled with characters 0 and 1. The code for any
character can be determined by traversing the tree from the root to the leaf
that corresponds to this character.

Static Huffman Coding

In case of static or semi-adaptive version, character counts are known before
constructing the Huffman tree. These characters are sorted in ascending or-
der according to their counts. In every step, the two elements A and B with
the lowest counts in the list are chosen. New node C is created with count
equal to sum of counts of nodes A and B. A and B become children of the
node C. Node C is inserted into the sorted list to the appropriate position.
This procedure is repeated until only one element remains in the list. Huff-
man tree constructed in the presented way can be used for compression of
the input file.

Maintaining a sorted list of alphabet symbols during the construction of
the Huffman tree is not only way to go. Actually, using a binary heap is
better in the worst case.

Adaptive Huffman Coding

When using the adaptive version [59], we start with a tree that contains only
one node, which represents escape symbol. Escape symbol is used for insert-
ing new characters that have not occurred in the tree yet. When inserting
new node, we have to create new node A that represents this character and
also new node B that represents escape symbol. Both nodes A and B will
have weight 1 and node C representing original escape symbol becomes their
parent. Weight of node A is increased according to the procedure described
in the following paragraph. This procedure is also used for the elements that
were already present in the tree.

The update procedure requires that the nodes be numbered in a fixed
order. The largest node count is given to the root of the tree. As we progress
deeper into the tree from the root, the number are decremented. The smallest
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number is assigned to the escape symbol. The set of nodes with the same
count makes up a block. When increasing count of the character, the node N
representing this character is moved rightmost in the group of nodes with the
same count. The node can not change position with its parent. Afterwards,
count of this character is increased and the whole procedure is repeated
recursively for the parent of N . Recursion stops in the root.

2.4.2 Arithmetic coding

Arithmetic coding is most often used in its adaptive version [74]. The idea of
arithmetic coding is to represent the input file as a number from interval [0,1).
Arithmetic coding usually achieves better compression ratio than Huffman
coding because characters are not assigned with codes of fixed size length.

Suppose we have a string composed of characters over some finite alpha-
bet. Suppose that pi is the probability of the i-th character in the alphabet,
and that variables L and R are initialized to 0 and 1 respectively. Value L
represents the smallest binary value consistent with a code representing the
characters processed so far, and Rrepresents the product of the probabilities
of those characters. To encode the next character, which (say) is the j-th of
the alphabet, both L and R must be refined: L is replaced by L+R

∑j−1
i=1 pi

and R is replaced by R · pj, preserving the relationship between L, R, and
the characters so far processed.

At the end of the message, any binary value between L and L + R will
unambiguously specify the input message. We transmit the shortest such
binary string.

2.4.3 Prediction by Partial Matching

Prediction by Partial Matching (PPM) [33] is adaptive statistical method
that makes use of contexts of variable order. The context is a finite sequence
of characters preceding the current character. The length of the sequence is
called an order of the context. The context model keeps information about
count of characters’ appearances for the context.

This method tries to encode the character according to context of the
highest order k it was constructed for. If this is not possible because the
character has not occurred in such context yet, then it switches to the lower
order context k − 1 using escape mechanism. In the worst case, usually at
the beginning of compression, it can get to the order -1, where all characters
have the same probability. Context order, which the character was encoded
in, is denoted as n.
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Compressed character is added to the context of order n+1 and its count
is increased in all contexts of order 0 to n.

In PPM, accent is put to find appropriate probability to model usage
of the escape symbol. PPMA and PPMB methods were introduced in the
original article. There are many enhancements to the basic method, such as
PPMC [72], PPMD [53], PPMII [95], and [96].

2.5 Dictionary-Based Methods

Dictionary-based methods are mostly adaptive and they update the phrase
dictionary during compression. The method then searches for the longest
match of some phrase in the dictionary with prefix of the non-coded part
of the document. Dictionary-based methods are especially suitable for files
with many repetitious long strings (max. 5-15 characters), for example text
files.

There are two main types of dictionary-based methods. One type is based
on the LZ77 method [117], the second on LZ78 method [118]. LZ77 method
has the dictionary represented in the encoded part of the document in form
of sliding window of fixed size length, which gradually moves to the right. On
the contrary, LZ78 method constructs the dictionary explicitly. In every step
of compression, one phrase is extended - one that was used for compression.
It is extended with one character that follows it in the non-coded part of the
document

There are a lot of enhancements to both methods, for example LZW [112],
that is an enhancement to LZ78, and LZSS [100], that enhances LZ77.

2.5.1 LZW

Algorithm LZW [112] is a dictionary compression character-based method
based on LZ78. The algorithm uses a dictionary of phrases, which is repre-
sented by a trie data structure. Phrases are numbered by integers according
order of adding.

In the initialization step the dictionary is filled up with all characters
from the alphabet. In each next step it is searched for the maximal string
S, which is in the dictionary and matches a prefix of still non-coded part of
the input. The number of phrase S is then sent to the output. Actual input
position is moved forward by the length of S. A new phrase F is created by
concatenating of S and actual character in the input. The phrase F is added
to the dictionary.
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Only one complicated situation can occur in decoding phase. We can
receive a number of a phrase which is not in the dictionary. In this case we
can create that phrase by a concatenation of the last added phrase with its
first character.

LZC method [50] is a slightly modified method described above. Codes
with increasing code length is used to code number of the phrase. The
second enhancement is cleaning the dictionary if the compression ratio starts
to deteriorate. Some or all phrases are removed from the dictionary.

2.5.2 LZSS

Algorithm LZSS [100] is a dictionary compression character-based method
based on LZ77. Similarly to LZ77, we also have dictionary of phrases rep-
resented by a sliding window that gradually moves to the right. The com-
pression method searches for the longest match of non-coded part of the
document with some string S in the sliding window.

LZ77 method outputs always ordered triple 〈D,L,N〉 where D is distance
between the string S in the sliding window from the beginning of the window,
L is the length of S and N is the character that follows in the non-coded
part of the document just after S.

Disadvantage of LZ77 is that it is necessary to output needlessly long
codes in case there is no match, i.e. the string S is of zero length. The LZSS
enhancement consists in the fact that some minimal length of the string S is
chosen - in case the string is shorter than the minimal length, only the first
character N is coded and the rest of the string is tried to be extended in the
next step of the algorithm. It can be determined whether D and L or N is
output using one bit. Thus the output is always either triple 〈0, D, L〉 or the
pair 〈1, N〉.

In case the string S had zero length, the first characterN in the non-coded
part is coded using the pair 〈1, N〉

2.6 Transformations

There are many other transformations. Some of them are independent com-
pression methods (e.g. RLE), the other just transform the data to the form
that is more suitable for other compression methods (e.g. BWT).

The combination of transformations BWT + MTF + RLE is the most
commonly used for compression. Individual transformations are described in
more detail.
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2.6.1 Burrows-Wheeler Transformation

In a BWT [29] step we transform the input stream into a “better” output
stream. The “better” stream means achieving some better final compression
ratio. Obviously the transform should be reversible, otherwise we could lose
some information. Specifically we achieve a partial grouping of the same
input characters.

A A L A B A M
A B A M A A L
A L A B A M A
A M A A L A B
B A M A A L A
L A B A M A A
M A A L A B A

Table 2.1: Burrows-Wheeler transformation for input S = ”ALABAMA”.
The output: L = ”MLABAAA” and I = 2

BWT takes as input a string S of N characters S[0], ..., S[N − 1] selected
from an ordered alphabet X of characters. To illustrate the technique, we
also give a running example, using the string S = ”ALABAMA”, N = 7,
and the alphabet X = ”A”, ”B”, ”L”, ”M”. BWT consists of two steps: sort
rotations and find last characters in rotations.

Sort rotations: We form a conceptual N×N matrix M whose elements
are characters, and whose rows are the rotations (cyclic shifts) of S, sorted
in lexicographical order. At least one of the rows of M contains the original
string S. Let I be the index of the first such row, numbering from zero. In
our example, the index I = 2 and the matrix M is in Table 2.1.

Find last characters in rotations: Let the string L be the last column
of M , with characters L[0], ..., L[N − 1] (equal to M [0, N − 1], ...,M [N −
1, N − 1]). The output of the transformation is the pair 〈L, I〉. In our
example, L = ”MLABAAA” and I = 2.

Usually, not the whole matrix is used in practice, but we need only a few
arrays. Individual algorithms for sorting rotations differ in their time and
space complexity. One of these algorithms is for example [92].

2.6.2 Move to Front

BWT output string usually contains long sequences of identical characters
and thus BWT is most commonly followed by Move to Front (MTF) trans-
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formation [28], which translates every character to an integer denoting how
many different preceding characters followed since its last occurrence in the
string.

Algorithm works in the following way. Suppose a numbered list of al-
phabet elements, then MTF reads these input elements and writes their list
order. As soon as the element is processed it is moved up to the front of the
list. This way, a string of characters containing long sequences of zeroes and
also other identical characters are obtained. An advanced approach using
splay trees instead of ordered lists is desribed in [56].

Example 2.12 MTF transformation

input: c c c a b b b b a b

starting alphabet: a b c

final alphabet: b a c

output: 2 0 0 1 2 0 0 0 1 1

2.6.3 Run Length Encoding

To the result string of MTF we usually apply Run Length Encoding (RLE)
transformation, which replaces long sequences of identical characters with
single symbol. The replacement takes place only if the sequence is longer
than some minimal threshold. It is usually worthless to replace less than
three identical characters. This method is very often reduced to replace
only sequences of zeroes, so sequences of other identical characters remain
unchanged. The result is usually coded using Huffman or arithmetic coding.

The replacement of sequence of zeroes (with minimal length of two) with
special symbol Nx, where x is length of the sequence, is introduced in the
following example.

Example 2.13 RLE transformation

input: 0 0 0 0 0 5 2 2 0 0 1 0 0 0 2

output: N5 5 2 2 N2 1 N3 2

2.7 Coding of Integers

We have used Elias codes [40] alpha, beta, gamma and delta in our work.
There is also omega code, which we have not used.
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Definition 2.14 (alpha code):
Let x be an integer greater or equal to one. Then α(x) is defined by the

following formula.

α(1) = 1

α(x) = 0 · α(x− 1) for x > 1

Definition 2.15 (beta code):
Let x be an integer greater or equal to one. Then β(x) is defined by the

following formula. If β is supplemented with zeroes from the left so that it
has length n, we get n-bit binary code. If the first bit from β code is omitted,
we get β′.

β(1) = 1

β(2x) = β(x) · 0 for x > 1

β(2x+ 1) = β(x) · 1 for x > 1

Definition 2.16 (gamma code):
Let x be an integer greater or equal to one. Then γ(x) is permutation of

γ′(x), in which every bit from code α(|β(x)|) is followed by bit from β′(x)
code.

γ′(x) = α(|β(x)|) · β′(x)

Definition 2.17 (delta code):
Let x be an integer greater or equal to one. Then δ(x) is defined by the

following formula.

δ(x) = γ(|β(x)|) · β′(x)

2.8 Word-based Methods

The word-based methods [73] require to divide the input document into a
stream of words and non-words. The words are usually defined as longest
alphanumeric strings in a text, while the non-words are the remaining frag-
ments. This definition of words and non-words implies that one can assume
that the elements of the two groups are alternated regularly. In practice the
words length is often limited by some constant value. Longer words are bro-
ken up and the resulting parts are interleaved with a special empty word of an
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opposite type (word versus non-word). For instance, if a long word is divided
into two parts, then the parts are interleaved with an empty non-word.

Next, another heuristic called the spaceless model approach [76] can be
also used. The word is often followed by a special non-word space. So we
can skip over the space without any encoding. If the word is not followed
with the non-word space, then the coder inserts special symbol for ”Missing
space”. The right decompression is guaranteed, one must only ensure that
two successive words are interleaved with the space in a decoder.

Extensive and closely described overview of word-based methods can be
found in [97]. This overview was also a primary inspiration for this sub-
chapter. There are word-based variants of all main groups of compression
algorithms, mostly in a large number of implementations with various en-
hancements, for example: word-based Huffman encoding [51, 87], word-based
LZW [52, 38], word-based BWT [55, 39], word-based PPM [73, 24].

In the further part of the thesis, we use the term word model, which
differs from the one described in this chapter. Contrary to the usual division
to words and non-words, we distinguish five types of words (lower, upper,
mixed, special, and numeral), see def. 4.5.



Chapter 3

Related Works

Some of general compression methods mentioned in chapters 2.4 to 2.8 can
be considered as related works. But real related work to this thesis is only
one [110], mentioned in section 3.1.

However, in this section we will mention works related to particular sub-
jects dealt with this work. There are related works: language dependent
methods, compression of small text files, compression of XML and compres-
sion of set of strings.

3.1 Syllable-based Compression

There are two kinds of source units being used for text compression: char-
acters (letters) and words. We suppose that there is yet another kind of
source units: syllables. In some languages the words are naturally divided
into syllables (e.g. Czech, Russian, German) while in the others it is harder
to recognize them (e.g. English). It is therefore reasonable to expect that syl-
lable compression would be more successful for the languages where syllables
are naturally used than for the others.

Term syllable-based compression was firstly used in the article [110], how-
ever in a slightly different meaning that is used in this thesis. The authors
used genetic algorithms for finding syllables. They denoted group of let-
ters containing one vowel as syllable, if this group was frequent in Turkish.
These syllables were replaced by one symbol in textual document. It was
actually compression over union of letters and syllables. The authors used
static Huffman coding.

25
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3.2 Language Dependent Methods

There is number of works that improve text compression based on the reg-
ularities that occur in English. Extensive and closely described overview of
word-based methods can be found in [97]. This overview was the primary
inspiration for this chapter, similarly to the previous chapter.

One of the examples of these works are articles, where authors improved
compression ratio in Burrows-Wheeler transformation, when they used fol-
lowing order of letters in the alphabet for lexicographic sorting:

AEIOUBCDGFHRLSMNPQJKTWVXYZ described in [31],

SNLMGQZBPCFMRHAOUIYXVDKTJE described in [23].

This preprocessing can increases lengths of null sequences produced in
MTF phase and increases effect of RLE.

Another group of works deal with replacing common clusters of letters
(n-grams) in English text with one symbol [104]. A static initialization of
PPM method is used in Shkarin’s program Durilca [94].

Nevertheless, these methods are usually unusable for files in other than
English languages and they usually worsen the compression. The solution
might inhere in separately determining statistics for every language and pass-
ing the language of document into compression program. Translations be-
tween encodings would be necessary for languages that use diacritics. This
approach is not common since majority of authors is from English speaking
countries. An exception is the work desribed in Chapter 3.2.1.

3.2.1 Words Replacing Methods

Two preprocessing methods are described in the work [97]. Word Replac-
ing Transformation (WRT) is an English text preprocessing algorithm. It
exploits the redundancy in English texts by using a fixed dictionary of En-
glish words. WRT transforms an input text by matching words in this text
with words in the dictionary and replacing such words with a pointer into
the dictionary. The pointer is represented by the codeword, which is shorter
and easier to compress using universal compression algorithms than the orig-
inal word. WRT combines several well-known preprocessing techniques: the
static word replacement, the capital conversion, the n-gram replacement, and
the EOL coding.

The extension of WRT called Two-level Word Replacing Transformation
(TWRT) uses several dictionaries for different languages (English, German,
Polish, Russian, French) and their various encodings (ASCII, iso, cp).
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Moreover, TWRT automatically recognizes multilingual text files. TWRT
also includes the fixed-length record aligned data preprocessing and the DNA
sequence preprocessing, which were not implemented in WRT.

The biggest advantage of TWRT is, that it can be used in combinations
with other universal lossless compression methods, including the powerful
ones: PAQ [67] or PPMonstr [96].

3.3 Small Text Files Compression

Compression of small text files is quite untraditional subject of research.
Common compression methods do not specialize on it and they achieve bad
results. Statistical methods seem to be a suitable solution for very small files
(cca 50B), while the model is trained on natural texts. A method based on a
static version of PPM is introduced in [83]. In [62] a statistic model based on
sequence of variously pruned suffix trees is used for compression. Description
of both methods is almost literally adopted from respective articles.

3.3.1 Compression of Text for mobile phones

The paper [83] details a method for lossless compression of short files larger
than 50 Bytes. The method uses arithmetic coding and context modeling
with a low-complexity data model. A data model that takes 32 KB of RAM
already cuts the data size in half (compression ratio 4 bits per character).
The compression scheme just takes a few pages of source code, is scalable
in memory size, and may be useful in sensor or cellular networks to spare
bandwidth. As the authors demonstrated the method allows for battery
savings when applied to mobile phones.

The authors discussed the statistical coding technique prediction by par-
tial matching (PPM), which employs a statistical context model and an arith-
metic coder. The authors intended to develop and to apply a low-complexity
version of PPM that demands for low memory, is conceptually very simple,
and can compress very short data sequences starting from 50 Bytes. The
authors have selected the PPMC version of PPM as a basis for their research
investigations because it gives good compression while it is conceptually sim-
ple. The authors developed a library for the design of low-complexity context
models and applied the library to design and evaluate a context model for
embedded systems. This model already achieves reasonable compression re-
sults for short messages with 32 KB RAM when appropriate statistical data
is preloaded. For construction of a static model the authors used the text
file book2 from [26] with the model sizes 32, 64, 128, and 256 KB.
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3.3.2 Compression Using Optimal Tree Machines

The paper [62] discusses a lossless data compression method that uses fixed
Tree Machines to encode data. A general Tree Machine is a special suffix
trie where a context string is associated with each node, which is the suffix
of the string of any of its descendants. The root node corresponds to the
empty string. Each node contains a list of characters that have occurred in
the context of that node with their occurrence counts.

The idea is to create a sequence of Tree Machines and a robust escape
method aimed at preventing expansion of the encoded string for data whose
statistics deviate from those represented by the machines. The resulting
algorithm is shown to have superior compression of short files compared to
other methods.

Optimal Tree Machine is created by pruning some nodes from TM. For
every context in TM, whole path from the root to the node representing this
context is traversed. If the special value called Local Order Estimation [84]
is for some node better than this value for the whole following context, then
the contexts is cut from the tree in this place.

We gradually obtain sequence of trees with different level of pruning. A
static model consisting of sequence of trees sorted from the most pruned to
the least pruned is used for compression. During compression phase, if it is
not possible to encode the character using some tree, an escape sequence as
an transition to a less pruned tree is used.

3.4 XML Compression

Interesting thirty page comparison of compression methods for XML is pre-
sented in article [77]. However, we describe the methods more briefly.

There are many algorithms which compress XML data. One of the
first available was XMill [66]. Many other successors are based on simi-
lar principles, i.e. XMLPPM [32]. Some algorithms also add new features:
XGrind [108] and XPress [71] are able to query the compressed data struc-
ture, but this ability worses compression ratio.

Articles that use document scheme description languages to achieve better
compression ratio are also interesting. For example, DTD is used in [102],
or Relax NG schema in [64]. One can considerably reduce the set of possible
tags and attributes that can follow in a particular context. However, these
methods do not achieve any substantial improvement for documents with
mainly textual character and cannot be used neither to compress non-well-
formed documents, nor to compress non-valid documents
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A serious problem of all methods mentioned above is that they require
well-formed XML document as an input, whilst much of the practical data
contains certain amount of errors. Further, these methods are mainly aimed
to XML documents with high ratio of tags. These methods are not usually
quite successful in case of documents consisting mainly of text.

3.5 Set of Strings Compression

One of the subjects of this thesis is also a problem how to encode set of
strings. This is useful for coding dictionaries of various kinds of source units,
in case of syllable-based compression with various compression methods, since
the dictionary must be passed between the coder and the decoder. We will
address this in more detail in Chapter 7.

The word-based compression methods known to the author do not care
about the compression of the used dictionary, as it is for large compressed
bodies in comparison to the encoded message quite small. Simple methods
used in word-based methods for the compression of the used dictionary are
desribed in Chapter 7.4.1.

The issue of efficient compression of a set of strings is solved in the papers
mentioned below. Complex methods like applying combination of prefix
and suffix compression (like in [25] or [35]) seems to be useful especially for
dictionaries with long elements (what is not the case of syllables, the average
length of a syllable is 3 characters). Other compression methods (like the one
proposed by Maly in [68]) are based on the knowledge of limited alphabet
that cannot be applied when compressing also non alphabetical elements.

3.5.1 Main Memory Methods

There are several methods for storing a set of strings in the main memory.
These methods are usually focused on reduction of time used for searching
a string in the set. The secondary goal of these methods is reduction used
memory for storing the whole set. These methods can be used as a part of
applications such as spelling checkers, word games, and database indexes.

Minimal Acyclic Deterministic Finite Automata

Minimal acyclic deterministic finite automata (ADFAs) [37] can be used as
a compact representation of finite string sets with fast access time. Creating
them with traditional algorithms of deterministic finite automata minimiza-
tion is a resource hog when a large collection of strings is involved. The
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authors popularized an efficient but little known algorithm for creating min-
imal ADFAs recognizing a finite language. The algorithm is presented for
three variants of ADFAs, its minor improvements are discussed, and minimal
ADFAs are compared to competitive data structures.

LZ Trie and Dictionary Compression

The idea of LZ trie compression [85] is following. Merging equivalent states in
a trie to produce a deterministic finite automata with multiple initial states
effectively reduces redundancy in a trie by substituting all identical repeated
branches with only one. However, this may still leave a number of repeated
identical subsections of a trie. The authors proposed to replace each repeated
subsection with pointers to its first occurrence. If a pointer is smaller in size
than the replaced part, then overall size is reduced according to LZ77. Hence
the name LZ trie.

Burst Trie

There is proposed a new data structure, the burst trie [49], that has signif-
ficant advantages: it requires no more memory than a binary tree; it is as
fast as a trie; and, while not as fast as a hash table, a burst trie maintains
the strings in sorted or near-sorted order. The authors described burst tries
and explored the parameters that govern their performance. The authors
experimentally determined good choices of parameters, and compared burst
tries to other structures, with a variety of data sets. These experiments
shown that the burst trie is particularly effective for the skewed frequency
distributions common in text collections, and dramatically outperforms all
other data structures for the task of managing strings while maintaining sort
order.



Chapter 4

Syllable-Based Compression

This chapter is mostly based on the author’s Master thesis [1] and author’s
publications [2, 4, 14].

Common universal compression methods decompose the text into single
characters or n-grams of these characters, and use them to compress the file.
For text compression, word-based methods are often used. These methods
decompose the document into a sequences of words (sequences of alphanu-
meric characters) and non-words (sequences of other characters), and call
these new elements the alphabet. This new alphabet is used to compress the
whole document.

Syllable-based compression has, unlike word-based compression, many
specifics, see 4.1. Informal definition of the notion of ”syllable” is given in
Chapter 4.2. Decomposition of text into words is easy and unambiguous;
dividing words into syllables, however, is often ambiguous and brings many
complications, described in Chapter 4.3. Formal definition of ”syllable” can
be found in Chapter 4.4. In Chapter 4.5, we have defined Czech and En-
glish languages using our formalism. In Chapter 4.6, we have proposed four
universal algorithms for the decomposition of words into syllables.

4.1 Languages and Syllables

Understanding the structure of coded message can be very helpful in design-
ing new compression method. In our case the coded message is a text in
natural language. Its structure is determined by the characteristic of the
particular language. One linguistic aspect is the morphology. There are lan-
guages like English having simple morphology where only a few word forms
can be derived from one stem. There are also languages with rich morphology

31
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(like Czech, German, Turkish, or Russian) where from a single stem several
tens of word forms can be derived.

Languages with richer morphology tend to creating new words and word-
forms by concatenating the root of the word with one or several prefixes
or suffixes. On the other hand in languages like English the same effect is
achieved by accumulating words. In the first category of languages we may
find (thanks to their agglutinative nature) many rather long words composed
of higher number of syllables. Such words are not very common in English.
We can expect, that syllable-based compression will give better results on
the first group of languages.

We will demonstrate it on some examples from Czech and English. The
English verb take has only following 5 forms: take, takes, taking, took, taken.
Czech verb vźıt, which corresponds to the English verb take, has following
24 forms: vźıt, vźıti, vezmu, vezmeš, vezme, vezmeme, vezmete, vezmou, vzal,
vzala, vzalo, vzali, vzaly, vezmi, vezměme, vezměte, vzat, vzata, vzato, vzati,
vzaty, vzav, vzavši, vzavše. Another difference is in creation of words with
similar meaning and negations. In English there are used combinations of
more words for getting different meaning, for example get on, get off. The
negation in English is formed by combination with word not, for example
not get on. In Czech prefixes and suffixes are used instead. To the English
forms get on, get off, not get on correspond the Czech ones nastoupit, vys-
toupit, nenastoupit. In Czech we can create from the verb skočit (jump in
English) using prefixes 10 following similar verbs: přeskočit, nadskočit, pod-
skočit, poskočit, odskočit, rozskočit, naskočit, vskočit, uskočit, vyskočit. For
each of these verbs we can create their antonyms by using prefix ne: neskočit,
nepřeskočit, nenadskočit, nepodskočit, neposkočit, neodskočit, nerozskočit, ne-
naskočit, nevskočit, neuskočit, nevyskočit. For each of these 22 verbs there
exist about 23 different grammatical forms. So from this one word skočit we
can derive over 500 similar words, but these words are composed from only
a few tens of syllables.

4.2 Syllables

What is actually a syllable? Usually it is presented as a phonetic phe-
nomenon. American Heritage Dictionary [106] gives us the following defi-
nition: ’A unit of spoken language consisting of a single uninterrupted sound
formed by a vowel, diphthong, or syllabic consonant alone, or by any of these
sounds preceded, followed, or surrounded by one or more consonants.’

As the decomposition of words into syllables is used in data compression,
it is not necessary to decompose words into syllables always grammatically
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correctly. It is sufficient if the decomposition produces groups of letters
that occur quite frequently. We therefore use the following simplified defi-
nition that is not equivalent with the above mentioned definition. ’Syllable
is a sequence of sounds, which contains exactly one maximal subsequence
of vowels.’ This definition implies that the number of syllables in a word
is equal to the number of maximal sequences of vowels in the same word.
For example, the word famous contains two maximal sequences of vowels:
a and ou, so this word is created from two syllables: fa and mous. Word
pour contains only one maximal sequence of vowels ou, so the whole word is
composed from one and only syllable.

Decomposition of words into syllables is used for example for text for-
matting when we want to split word exceeding an end of line. Disadvantage
of this way is that we cannot decompose all words and some words must be
left unsplitted.

One of the reasons why we selected syllables is that documents contain
less unique syllables than unique words. Exemplary Czech document (Karel
Čapek: Hordubal [41]) with the size of 195 KB contains 33,135 words where
8,071 of them are distinct and 61,259 syllables where 3,187 of them are dis-
tinct. English translation of the Bible [113] with the size of 4MB contains
767,857 words where 13,455 of them are distinct and 1,073,882 syllables where
5,604 of them are distinct. More results you can see in Chapter 7.5.3, Table
7.5 or in Master thesis [1], Chapter 2.5.1, Table 1.

4.3 Problems in Decomposition of Words into

Syllables

Decomposition of words into syllables is not always unique. To choose the
correct decomposition of a word, we must often know the origin of that word.
Some problems will be demonstrated on selected Czech words. We supposed
that for compression it is sufficient to use some approximation of correct
decomposition of words into syllables. We supposed that this approximation
should only have a small negative effect on reached compression ratio.

The word Ostrava is an example of non-uniqueness of decomposition of
words into syllables: its correct decompositions are Os-tra-va and Ost-ra-va.
Generally sequence of letters st is often a source of ambiguity of decomposi-
tion of Czech words to syllables.

An example of a variant decomposition of similar sequences of letters,
which is caused by origin of words, is words oblet́ı and obreč́ı, that have first
two letters same. Word oblet́ı (will fly around) was created by adding prefix
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ob to the word let́ı (flies). Word obreč́ı (will cry over) was created by adding
prefix o to the word breč́ı (cries). So the word oblet́ı is decomposed into
ob-le-t́ı, word obreč́ı is decomposed into o-bre-č́ı. A big group of problems is
brought by words of foreign origin and their adapted forms.

Sometimes it can be quite difficult to recognize the real number of syl-
lables in a given word. Although the word neuron is a prefix of the word
neuronit, these words have different decompositions into syllables. Word
neuron is decomposed to neu-ron, word neuronit is decomposed to ne-u-ro-
nit. In the first case the sequence of letters neu is composed by one syllable,
in the second case it is composed from two syllables.

In German we face to the following problems: The lower-case letter ’ß’
becomes, when turned into upper-case, two following letters ’SS’. German
uses for a description of a single vowel one to four characters what complicates
recognition of the syllable boundaries.

Full correctness of decomposition of words into syllables can be reached
only at the price of very high effort. For the use in compression it is not
important whether the decomposition is absolutely correct, but whether the
produced groups of letters are frequent enough.

4.4 Definition of Syllable

This chapter formalizes the process of splitting the input document into the
sequence of syllables. We suppose that the document is written in some
natural language. Our formalization has to be strong enough to be able
to process also a document that can be in a random binary form. We will
formally split this random binary file into the syllables, but these syllables
will not be from any natural language.

We have to determine which symbols are upper-case, lower-case letters,
digits and other special characters for each natural language. We need to
determine a specific context role for each symbol. This context is affected by
the symbol on the left and on the right from the determined symbol.

Role of the letter can be vowel, consonant, vowel followed by consonant or
consonant followed by vowel. We define all these properties in the language
definition (see def. 4.7). Our language definition can be an approximation
of the natural language only.

Our syllable definition (see def. 4.8) uses only the information gathered
from the language definition. Any syllable in the natural language fulfils this
definition. On the contrary this definition is fulfilled by many strings that
are not a syllable in the given natural language. This is because we have to
be able to decompose a random binary file too.
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There are two groups of the algorithms splitting the words to syllables.
Universal algorithms use the information from the language definition and
do not use any other properties of the given natural language. Specific algo-
rithms use the properties of the given natural language.

Definition 4.1 (Types of Characters):
Let Σ be an alphabet (see def. 2.1).
Let ΣLetter ⊆ Σ be set of letters, then ΣNonLetter = Σ\ΣLetter is called set

of non-letters.
Let ΣDigit ⊆ ΣNonLetter be set of digits, then ΣSpecial = ΣNonLetter\ΣDigit is

called set of special characters.

Definition 4.2 (Types of Letters):
Let Σ be an alphabet, ΣLetter be a set of letters, and ΣLower ⊆ ΣLetter be set

of lower-case letters. Then ΣUpper = ΣLetter\ΣLower is called set of upper-case
letters.

If there exists a bijection ψ : ΣLower → ΣUpper, then ΣLetter is called correct
set of letters.

The set of letters is correct for most of natural languages, but there are
exceptions, for example German. The lower-case letter ’ß’ becomes ’SS’,
when turned into upper-case.

Further in this thesis, we will be working with correct sets of letters only,
so as not to complicate the theory. In practice, designing algorithms for
non-correct sets of letters is discouraged, since it only serves to increase their
time complexity without practically any improvement of correctness.

If we want to use our syllable theory for the given language, we have to
turn its set of letters artificially into a correct set, which can slightly worsen
the compression ratio, but must not affect the decompression process.

A letter can have different roles, according to context (see def. 4.3). The
roles of letters correspond with sounds during pronunciation of letters. We
recognize two types of sounds: vowel and consonant.

A pair of sounds, where the first sound is a vowel followed by the second
sound, which is a consonant will be of type 〈vowel, consonant〉.

A pair of sounds, where the first sound is a consonant followed by the
second sound, which is a vowel will be of type 〈consonant, vowel〉.

Let LetterRoles be a set {vowel, consonant, 〈vowel, consonant〉 ,
〈consonant, vowel〉}
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Definition 4.3 (Role of Letter in Given Context):
Let ν ∈ ΣLetter, ω ∈ LetterRoles, µ, π ∈ (ΣLetter ∪ {λ}).
Let φ : (Σ ∪ {λ})× ΣLetter × (Σ ∪ {λ}) → LetterRoles be a function.
If φ(µ, ν, π) = ω then ν has the role of ω in the context µ, π.
The letter µ is called left context of ν, the letter π is called right context

of ν.

Notation:
Let ω ∈ LetterRoles. Since expressions like letter ν has the role ω in

the context µ, π are too formal and long, we use sometimes the simplified
notation letter ν has the role ω for better understanding.

We say that function φ determines if the given letter is a vowel or a
consonant.

It is probable that there exist languages where we do not need to know
the context µ, π to decide if letter ν has the role vowel or consonant. In
both Czech and English the use of context is necessary.

In Czech the letters r and l can be used as vowels or as consonants ac-
cording their context. If µ or π are consonants, then ν = r (respectively
ν = l) has the role vowel (examples: mlčet, vrtat), in the opposite case it has
the role consonant (examples: mluvit, vrátit).

In English the letter y in context of two vowels has the role consonant
(example: buying).

In English words of type trying has y the role 〈vowel, consonant〉, so y
is pronounced as a vowel sound followed by a consonant sound.

In Russian some letters (for example E) can have role 〈consonant, vowel〉.
We suppose that one letter on the left side and one letter on the right

side is a sufficient context for Czech and for most of English words. This
context is also sufficient for other languages.

Definition 4.4 (Blocks of Vowels and Consonants):
Let α = α1 . . . αn, αi ∈ ΣLetter, and β = β1 . . . βm, βi ∈ ΣLetter. Let β

be a substring of α. We determine for each αi its role in the context αi−1,
αi+1 according the definition 4.3. We use the context λ, α2 for α1, we use the
context αn − 1, λ for αn. Because β is a substring of α, we know the role of
each βi.

If βi has the role consonant in its context for i = 1, . . . ,m, then β is
called block of consonants.

If β1 has the role vowel or 〈consonant, vowel〉 & βm has the role vowel
or 〈vowel, consonant〉 & βi has the role vowel for i = 2, . . . ,m− 1, then β is
called block of vowels.
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Definition 4.5 (Words):
Let Σ be an alphabet, ΣLower be a set of lower-case letters, ΣUpper be a set

of upper-case letters, ΣDigit be a set of digits, and ΣSpecial be a set of special
characters. Let α = α1, . . . , αn, αi ∈ Σ. If one of the following cases is valid,
then α is called a word over alphabet Σ.

If αi ∈ ΣLower for i = 1, . . . , n, word α is called lower-case.
If αi ∈ ΣUpper for i = 1, . . . , n, word α is called upper-case.
If |α| > 1 & α1 ∈ ΣUpper & αi ∈ ΣLower for i = 2, . . . , n, word α is called mixed.
If αi ∈ ΣDigit for i = 1, . . . , n, word α is called numeric.
If αi ∈ ΣSpecial for i = 1, . . . , n, word α is called other.

Numeric words and other words are called together words from non-letters.
Lower-case, upper-case, and mixed words are called words from letters.

There are five types of words in total, three being composed of letters, one
of numbers and the last one of special characters, which are neither letters nor
numbers. In word-based compression, words are usually [114] divided into
words (composed of letters and numbers) and non-words (composed of other
characters). Non-words correspond with our last group (composed of neither
letters nor numbers), words then correspond with the other four groups.

This division of alphanumeric strings is proving to be very efficient in
the compression of a set of strings, which we need to encode the set of used
words or syllables at any given moment. Further, it is useful in statistical
compression methods, since they are able to follow the model of a natural
sentence more precisely.

Definition 4.6 (Decomposition into Words):
Let Σ be an alphabet and α = α1 . . . αn, αi ∈ Σ. Let β1, ..., βm are words

over alphabet Σ. Let γi = βi · βi+1 and γi is not a word over alphabet Σ for
i = 1, . . . ,m−1. Let α = β1 · ... ·βm. Then 〈β1, ..., βm〉 is called decomposition
of the string α into words.

It follows from definitions 4.5 and 4.6 that pro each string its decompo-
sition into words exists.

It follows from definitions 4.5 and 4.6 that decomposition of strings into
words is almost unique. There is an exception when at least one lower-case
letter follows after two ore more upper-case letters (example CDs), but this
case is very rare in natural languages.

There exist two algorithms of decomposition of strings into words. Both
algorithms differ only in solving that exception. The algorithm A1 (see alg. 1)
creates an upper-case word and a mixed word from this string (example C
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Algorithm 1 Decomposition into words, algorithm A1

1: input message M = αi...αn, αi ∈ Σ
2: output decomposition M into words
3: S = 1 /*begin of word*/
4: for i = 2, ..., n do
5: if αi ∈ ΣDigit then
6: if αi−1 /∈ ΣDigit then
7: output(ω = αS...αi−1)
8: S = i
9: end if

10: else if αi ∈ ΣSpecial then
11: if αi−1 /∈ ΣSpecial then
12: output(ω = αS...αi−1)
13: S = i
14: end if
15: else if αi ∈ ΣUpper then
16: if αi−1 /∈ ΣUpper then
17: output(ω = αS...αi−1)
18: S = i
19: end if
20: else if αi ∈ ΣLower then
21: if αi−1 /∈ ΣLower and (αi−1 /∈ ΣUpper or S 6= i− 1) then
22: output(ω = αS...αi−1)
23: S = i
24: end if
25: end if
26: end for
27: output(ω = αS...αn)
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and Ds). The algorithm A2 creates an upper-case word and a lower-case
word from this string (example CD and s).

Definition 4.7 (Language):
A language L is an ordered 6-tuple (Σ,ΣLetter,ΣDigit,ΣLower, φ, A), where

• Σ is an alphabet.

• ΣLetter is a correct set of letters. (see def. 4.2)

• ΣDigit is a set of digits.

• ΣLower is a set of lower-case letters.

• φ : (Σ ∪ {λ}) × ΣLetter × (Σ ∪ {λ}) → LetterRoles is a function
which according definition 4.3 specifies whether letter ν in context µ,
π ∈ (Σ ∪ {λ}) has the role of a vowel, consonant, vowel followed by
consonant or consonant followed by vowel.

• A is an algorithm which for each string α = α1 . . . αn, αi ∈ Σ finds
some decomposition of α into words.

Definition 4.8 (Syllable):
Let L = (Σ,ΣLetter,ΣDigit,ΣLower, φ, A) be a language.

• Let α, γ are λ or blocks of consonant, β is λ or block of vowels of
maximal length 3. Let ω = α · β · γ. If ω is a word over alphabet Σ,
then ω is syllable of the language L.

• Let ω be a word from non-letters, then ω is syllable of the language L.

It follows from the definition 4.8 that each syllable is also a word. So
we will recognize (according Def. 4.5) five types of syllables: other sylla-
bles, numeric syllables, lower-case syllables, upper-case syllables, and mixed
syllables.

For example, the string xxAxx is not word (according Def. 4.5), because it
contains upper-case letter between two lower-case letters. Therefore it cannot
be (according Def. 4.8) syllable. This string must be decomposed into words
xx a Axx (according Def. 4.5) and then it can be decomposed into syllables.

Definition 4.9 (Decomposable Words):
Let L = (Σ,ΣLetter,ΣDigit,ΣLower, φ, A) be a language and α be a word

from letters (see def. 4.5).
If α contains at least one block of vowels, then α is called word decom-

posable into syllables, else α is called non-syllable word.
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Definition 4.10 (Decomposition into Syllables):
Let L = (Σ,ΣLetter,ΣDigit,ΣLower, φ, A) be a language. Let α = α1 . . . αn,

αi ∈ ΣLetter be a word decomposable into syllables. Let β1, ..., βm be syllables
of the language L. Let α = β1 ·...·βm and γi = βi ·βi+1. If γi is not a syllable of
the language L for i = 1, . . . ,m−1. Then 〈β1, ..., βm〉 is called decomposition
of word α into syllables.

Definition 4.11 (Algorithms of Decomposing):
Let L = (Σ,ΣLetter,ΣDigit,ΣLower, φ, A) be a language. Let P be an al-

gorithm whose input is a message M decomposed into words α1, ..., αn over
alphabet Σ by the algorithm A. Let for all αi the following conditions are
valid.

• If αi is a word decomposable into syllables, then the algorithm returns
a decomposition of the word αi into syllables.

• If αi is a non-syllable word, numeric word, or other word, then the
algorithm returns the word αi.

The algorithm P is called algorithm of decomposition into syllables for lan-
guage L.

Definition 4.12 (Universal and Specific Algorithms):
Let P be an algorithm of decomposition into syllables for a language L1,

• If P is an algorithm of decomposition into syllables for all languages
L, then we say that P is a universal algorithm of decomposition into
syllables.

• If there exist a language L2 for which P is not algorithm of decompo-
sition into syllables, then we say that P is specific algorithm of decom-
position into syllables.

4.5 Examples of Languages

We will consider two examples of languages: English and Czech. Czech
language has larger set of letters in comparison with English, because some
letters have diacritical marks. The biggest differences between those two
languages are in definition of the function φ.
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Example 4.13
English language can be characterized as LEN = (Σ,ΣLetter,ΣDigit,ΣLower, φ, A)

where:

• Σ = character set

• ΣLetter = {a, . . . , z, A, . . . , Z} is a set of letters;

• ΣDigit = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is a set of digits;

• ΣLower = {a, . . . , z} is a set of lower-case letters;

• φ is defined as:

– Let M = {a, e, i, o, u, y, A,E, I, O, U, Y }.
– ∀µ, π ∈ Σ ∪ {λ}, ∀ν ∈M\{y, Y } : φ(µ, ν, π) = vowel

(a, e, i, o, u, A, E, I, O, U are always recognized as vowels);

– ∀µ, π ∈ Σ ∪ {λ}, ∀ν ∈ ΣLetter \M : φ(µ, ν, π) = consonant
all characters from ΣLetter\M are always recognized as conso-
nants);

– ∀µ, π ∈ (Σ\M) ∪ {λ}, ∀ν ∈ {y, Y } φ(µ, ν, π) = vowel
(y or Y is recognized as a vowel when surrounded by a consonant
or nothing);

– ∀µ ∈ (ΣLetter\M),∀ν ∈ {y, Y },∀π ∈M φ(µ, ν, π) = 〈vowel, consonant〉
(y or Y is recognized as a vowel followed by a consonant when they
are preceded by a consonant and followed by an initial vowel);

– ∀µ ∈M, ∀ν ∈ {y, Y },∀π ∈ Σ ∪ {λ} : φ(µ, ν, π) = consonant
(y or Y is recognized as consonant when preceded by an initial
vowel);

– ∀µ ∈ (Σ \ ΣLetter) ∪ {λ}, ∀ν ∈ {y, Y },∀π ∈M :
φ(µ, ν, π) = consonant
(y or Y is recognized as consonant when it is at the beginning of
a word and when followed by an initial vowel).

• A = A1 (see alg. 1)
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Example 4.14
Czech language can be characterized as LCZ = (Σ,ΣLetter,ΣDigit,ΣLower, φ, A)

where:

• Σ = character set;

• ΣLetter = {a,. . . ,z,A,. . . ,Z,á,č,ď,é,ě,́ı,ň,ó,̌r,̌s,̌t,ú,̊u,ý,ž,Á,Č,Ď,É,Ě,́I,Ň,Ó,Ř,Š,
Ť,Ú,Ů,Ý,Ž} is a set of letters;

• ΣDigit = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is a set of digits;

• ΣLower = {a,. . . ,z,á,č,ď,é,ě,́ı,ň,ó,̌r,̌s,̌t,ú,̊u,ý,ž} is a set of lower-case let-
ters;

• φ is defined as:

– LetM = {a,á,e,é,ě,i,́ı,o,ó,u,ú,̊u,y,ý,A,Á,E,É,Ě,I,́I,O,Ó,U,Ú,Ů,Y,Ý}.
– ∀µ, π ∈ Σ ∪ {λ}, ∀ν ∈M : φ(µ, ν, π) = vowel

(all initial vowels are always recognized as vowels);

– ∀µ ∈ ΣLetter \M, ∀ν ∈ {r, l, R, L}, ∀π ∈ (Σ ∪ {λ})\M :
φ(µ, ν, π) = vowel
(l, r, L, R are recognized as vowels only when preceded by a con-
sonant and followed by nothing or by a consonant);

– else φ(µ, ν, π) = consonant
(in all other cases the letter is recognized as a consonant);

• A = A1 (see alg. 1)

4.6 Algorithms of Decomposition

We describe four universal algorithms of decomposition into syllables (see
alg. 2): universal left PUL, universal right PUR, universal middle-left PUML,
and universal middle-right PUMR. These four algorithms are called algorithms
of class PU. Inputs of these algorithms are messageM and language L. These
algorithms are composed from two phases. The first one is an initialization
common for all algorithms of the class PU. The second one is different for
each algorithm.

• In the initialization phase we decompose the message M into words by
algorithm A. Algorithm of class PU is processing single words.

• Words from non-letters are automatically declared as syllables.
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Algorithm 2 Decomposing into syllables

1: input langauge L = (Σ,ΣLetter,ΣDigit,ΣLower, φ, A) and message M =
αi...αn, αi ∈ Σ

2: output decomposition M into syllables
3: decompose M into words ω1, ..., ωm by A
4: for i = 1, ..., n do
5: Let ωi = ωi1...ωik

6: if ωi is word from non-letters then
7: output(ωi), continue
8: end if
9: for j = 1, ..., k do determine role ωij by function φ endfor

10: find maximal blocks of vowels βi1, ..., βip in word ωi

11: find maximal blocks of consonants γi1, ..., γir in word ωi

12: if p < 2 then
13: output(ωi), continue
14: end if
15: if γir is a suffix of ωi then
16: βip = βip · γir

17: remove γir from list of maximal blocks of consonants, r = r − 1
18: end if
19: if γi1 is a prefix of ωi then
20: βi1 = γi1 · βi1

21: remove γi1 from list of maximal blocks of consonants, r = r − 1
22: end if
23: for j = 1, ..., r do
24: Let γij = γij1 ...γijh

/*βij is the first block of vowels before γij in ωi

and βi(j+1) is the first block of vowels after γij in ωi*/
25: if algorithm is PUL then
26: βij = βij · γij

27: else if algorithm is PUR then
28: βi(j+1) = γij · βi(j+1)

29: else if algorithm is PUMR or (algorithm is PUML and h = 1) then
30: βij = βij · γij1 ...γijbh/2c

31: βi(j+1) = γijbh/2c+1
...γijh

· βi(j+1)

32: else if algorithm is PUML and h 6= 1 then
33: βij = βij · γij1 ...γijdh/2e

34: βi(j+1) = γijdh/2e+1
...γijh

· βi(j+1)

35: end if
36: end for
37: for j = 1, ..., p do output(βij) endfor
38: end for
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• For each word ωi from letters and for each letter ωij in ωi the function
φ decides if ωij has the role of consonant or vowel.

• Maximal blocks (blocks that cannot be extended) of vowels βij and
maximal blocks of consonats γij are found afterwards. Blocks of vowels
longer than three are usually not in natural languages, so maximal
length of block of vowels is set to 3. For each block of vowels we must
keep in memory its begin and end.

• The number of syllables of ωi is equal to the number of maximal blocks
of vowels p. If ωi have none or one block of vowels, then the whole ωi

is marked as one syllable. If ωi have at least two blocks of vowels, then
syllables will be created by adding consonants to blocks of vowels.

• Consonants γi1, which are in ωi before first block of vowels, are added
to this block βi1. Consonants γir, which are in the word following the
last block of vowels, are added to this block βip.

Particular algorithms of class PU are different in the way of adding con-
sonants, which are between two blocks of vowels. They are named according
to to the ways of the adding.

• Universal left PUL adds all consonants between blocks of vowels to the
left block.

• Universal right PUR adds all consonants between blocks of vowels to
the right block.

• Universal right PUMR in the case of 2n (even count) consonants between
blocks adds to both blocks n consonants. In the case of 2n + 1 (odd
count) consonants between blocks it adds to the left block n consonants
and to the right block n+ 1 consonants.

• Universal right PUML in case of 2n (even count) consonants between
blocks adds to both blocks n consonants. In the case of 2n + 1 (odd
count) consonants between blocks it adds n + 1 consonants to the left
block and n consonants to the right block. The only exception from
this rule is the case when between blocks it is only one consonant, this
consonant is added to the right block.
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Example 4.15
We will decompose word priesthood into syllables. We are using language

LEN. Blocks of vowels are (in order of appearance): ie, oo.

correct decomposition into syllables: priest-hood
universal left PUL: priesth-ood
universal right PUR: prie-sthood
universal middle-left PUML: priest-hood (correct form)
universal middle-right PUMR: pries-thood



Chapter 5

Small Text Files Compression

Small text files were the first task in our research of syllable-based compres-
sion. We have chosen them because we expected that syllable-based com-
pression could handle the small files better than the word-based compression.
As the file size increased, we expected this chance to decrease. Our expecta-
tion was that with the smallest files, character-based compression would be
the best, with larger files, syllable-based compression, and word-based com-
pression would be the most efficient for the largest files. Finding the exact
division points of these changes was also our priority.

The next step was to pick the suitable compression methods for the imple-
mentation. We have decided to pick one example of statistical compression
methods and one example of dictionary compression methods. We have de-
cided to design and implement syllable-based variants of LZW and Huffman
Coding methods. In this phase, we were mostly interested to see whether
syllable-based methods can in some cases achieve a better compression ra-
tio than word-based methods or not and we did not consider time or space
complexity too much. This chapter is based on our works [1, 2, 4].

The last part of this chapter 5.3.1 examines the possibility of compressing
small files using Burrows-Wheeler Transformation. It is related to the rest
of the chapter only by being focused on syllable-based compression of small
text files. This part was written based on our previous articles [13, 12].

5.1 Introduction

Text compression methods are usually optimized for large or very large text
files. In practice it is usually necessary to compress (collections of) smaller
files like newspaper articles, mail messages, etc.

As the syllables are somewhere between characters and words, it is rea-
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sonable to expect that the syllable compression could be advantageous some-
where between character compression and word compression – it is, on middle-
sized files.

Knowledge of the structure of the coded message can be very useful for
the design of a successful compression method. When compressing text doc-
uments, the structure of messages depends on the language used. We can
expect that documents written in the same language could posses a similar
structure.

The similarity of languages can be seen considering many aspects. Lan-
guage classification can be made, for example, according to their use of fixed
or free word order or whether they have a simple or rich morphology.

The languages with rich morphology include for example Czech or Ger-
man. In these languages a syllable is a natural element logically somewhere
between a character and a word. Words are often composed from two or
more syllables.

5.2 Methods with Static Initialization

Related works are described in Chapters 3.2 and 3.3. Character-based meth-
ods [83, 62, 94] use static initialization and archieve good results for small
files. These methods are usually trained only for English documents. Pre-
processing methods [104, 97] replace each n-gram (or word) in the file by a
single codeword.

We suppose that the input text for the compression is structured into
the sentences and described by the follwoing rules: A sentence begins with
a mixed word (first letter is an upper-case letter, other letters are lower-
case) and ends with the other word (from non-alphanumeric characters),
which contains a dot. Inside the sentences lower-case words and other words
alternate regularly. If the sentence begins with upper-case word, then inside
the sentence upper-case words and other words alternate regularly. Numeric
words appear rarely and are usually followed by other words.

After the decomposition of words into the syllables there will occur a
problem, we describe it in the following paragraph. Each word has a different
count of syllables. Lower-case word is usually followed by other word, whereas
lower-case syllable can be followed not only by other syllables but also by
another lower-case syllable.

To improve a compression over the alphabet of syllables (or words) we
have created a sets of characteristic syllables for each language. More de-
tails will be given in section 7.5. Syllables from those sets are used for the
initialization of the compression algorithms. When coding the alphabet of
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a given document, we can code only syllables that are not from the sets of
characteristic syllables. This is especially useful for smaller documents; on
larger files the effect is rather lower.

In this chapter the cumulative criterion has been used. Sets of character-
istic syllables was created from syllables occurring in more than 1/65,000 of
all occurrences of all syllables throughout the entire collection for the given
language. Let us call this set C65. We created similar sets of frequent words
for word-based versions of our algorithms too.

Sizes of sets of characteristic syllables are approximately 50 KB, Sizes of
sets of characteristic syllables are approximately 100 KB.

Algorithm 3 LZWL compression

1: input message M
2: output encoded M
3: initialize dictionary with empty syllable and characteristic syllables of

given language
4: OldString = empty syllable
5: NewString = empty syllable
6: Syllable = empty syllable
7: while not end of M or Syllable is not empty do
8: if NewString + Syllable is in the dictionary then
9: NewString = NewString + Syllable

10: Syllable = next syllable from M
11: else
12: if NewString is empty syllable then
13: output(the code of empty syllable)
14: output(encoded Syllable by character-by-character method)
15: add Syllable to the dictionary
16: Syllable = empty syllable
17: else
18: output(the code for NewString)
19: if OldString is not empty syllable then
20: FirstSyllable = first syllable of NewString
21: add OldString + FirstSyllable to the dictionary
22: end if
23: end if
24: OldString = NewString
25: NewString = empty syllable
26: end if
27: end while
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5.2.1 LZWL

Algorithm LZW [112] is a character-based dictionary compression method.
We call the syllable-based version of this method LZWL. Algorithm LZWL
can work with syllables obtained by any algorithm of decomposition into
syllables, but it can be used for words too. The word-based version of LZW
compression is described in [39].

We will provide a brief description of the classic LZW method [112]. The
algorithm is using a dictionary of phrases, which is represented by a trie data
structure. Phrases are numbered by integers according order of the addition.

In the initialization step the dictionary is filled up with all characters
from the alphabet. In each next step it is searched for the maximal string
S, which is in the dictionary and matches a prefix of still non-coded part of
the input. The number of phrase S is then sent to the output. Actual input
position is moved forward by the length of S.

Decoding has only one situation for solving. We can receive a number
of a phrase which is not in the dictionary. In this case we can create that
phrase by a concatenation of the last added phrase with its first character.

The syllable-based version (see Algorithm 3) is working over an alphabet
of syllables. In the initialization step we add to the dictionary an empty
syllable and all lower-case syllables from the set of characteristic syllables.

Finding string NewString, coding its number and concatenating is ana-
logical to the character-based version, only that the string NewString is a
string of syllables. It is possible that the string NewString can be an empty
syllable. In that case we must get from the file one syllable called Syllable
and encode Syllable by character-by-character coding algorithm.

5.2.2 HuffSyllable (HS)

HuffSyllable (see Algorithm 4) is a statistical compression method based
on the adaptive Huffman coding which uses the structure of sentence in a
natural language. The idea of this algorithm was inspired by HuffWord [114].
Algorithm HuffSyllable can work with syllables obtained by all algorithms of
decomposition into syllables mentioned above. This algorithm can be used
for words too.

An addaptive Huffman tree [59] coding syllables of a given type is built
for each type of syllables (lower-case, upper-case, mixed, numeric, other). In
the initialization step of the algorithm we add to the Huffman tree for lower-
case syllables all syllables and their frequencies from the sets of characteristic
syllables.

In each step of the algorithm expected type of actually processed syllable
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Algorithm 4 HuffSyllable compression

1: input message M
2: output encoded M
3: initialize data structures
4: while not end of M do
5: Syllable = next syllable from M
6: Type = type of Syllable
7: ExpectedType = expected type of Syllable
8: if ExpectedType 6= Type then
9: output(escape sequence for correct type)

10: end if
11: if Syllable is unknown then
12: output(escape code for new node in Type Huffman tree)
13: output(encoded Syllable by unknown-syllable coding algorithm)
14: insert Syllable to the Type Huffman tree
15: else
16: output(code of Syllable in Type Huffman tree)
17: end if
18: increment weight of Syllable in Type Huffman
19: if necessary, reorganize the Type Huffman tree
20: end while
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previous type of syllable Expected syllable

lower-case lower-case
upper-case upper-case
mixed lower-case
numeric other
other syllable without dot, last syllable from let-
ters is not upper-case

lower-case

other syllable with dot, last syllable from letters
is not upper-case

mixed

other, last syllable from letters is upper-case upper-case

Table 5.1: Expected types of syllables according type of previous syllable.

Syllable is calculated. If Syllable has different type than it is expected,
an escape sequence is generated. Syllable Syllable is then encoded by the
Huffman tree corresponding to the syllable type. The calculation of the
expected type of syllable uses information from the encoded part of input.

We need to know the type of last syllable. If the last syllable is other
syllable, then it is known that this syllable contains a dot and that the type
of the last syllable is a syllable from letters, see Table 5.1.

5.2.3 Coding New Syllable.

Although we have sets of characteristic syllables, sometimes we receive syl-
lable K, which is not from this sets and we have to encode it. The first way
is to encode K as code of length of K followed by the codes of individual
characters from the syllable. The second (and better) way is to encode K as
code of syllable type followed by code of length of K and codes of individual
characters. We use the second way, because domain of coding function for
distinct characters is given by the type of syllable and as it is smaller than
in the first way. Numeric syllables are coded differently.

Encoding type of syllable depends on types of previous syllable and other
criteria as in HuffSyllable. Length of codes for each types are 1, 2, 3, and 4.
Average code length is 1.5 bits.

For the encoding length of syllables are used two static Huffman trees,
the first one for syllables from letters and the second one for other syllables.
Trees are initialized from statistics received from text documents.

For the encoding distinct characters there are used two adaptive Huffman
trees, the first one for syllables from letters and the second one for other
syllables.
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Numeric syllables are coded differently from other types of syllables. We
discover that numbers in text are naturally divided into a few categories. The
first category contains small numbers (1–100), the second category represents
year (1800–2000), in the third category there are very large numbers (for
example 5,236,964) that usually have separated groups of digits to blocks
by three. But these large numbers are decomposed into numeric words and
other words. So we set maximal length of numeric word to 4, longer numeric
words are split. For coding number of digits 2-bits binary coding is used.
For coding distinct digits binary coding is used.

5.2.4 Experiments

For testing there were used two sets of documents in plain text format. The
first set contains 69 documents in Czech with total size of 15 MB. Most of
these documents were received from [41]. The second set contains 334 docu-
ments in English with total size of 144 MB. In this set there are documents
from project Gutenberg [82] and bible.txt from Canterbury corpus [113].
From each file form project Gutenberg there were removed first 12 KB of
information about project because it was the same in all documents.

We have used the set C65 for the initialization of the compression algo-
rithms LZWL and HuffSyllable during the testing.

We have compared following methods: word-based and 4 syllable-based
versions of HuffSyllable (HS) and LZWL, adaptive character-based Huffman
coding (FGK), adaptive word-based arithmetic coding (ACM), bzip2, and
compress 4.0. We have compared the combination of preprocessing word-
based method WRT and compress 4.0 on English documents. WRT was
run with parameter -0, (optimal for LZ77, other parameters are optimal for
BWT, PPM, PAQ).

5.2.5 Results

We created two syllable-based compression methods that use static initial-
ization with sets of characteristic syllables and the model of alternation of
syllable types in sentences. The first method is based on LZW algorithm,
the second on Huffman coding. The experimental results of these algorithms
confirm our predictions, that tested syllable-based algorithms outperformed
their character-based counterparts for both tested languages. Comparison of
word-based and syllable-based versions of Huffman and LZW codings led to
the result that in English the word-based versions of both algorithms outper-
form their syllable-based counterparts and in Czech the results are ambigu-
ous: for Huffman coding word-based version outperformed syllable-based
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File size 5 KB 50 KB 100 KB 500 KB 2000 KB
Method 50 KB 100 KB 500 KB 2000 KB 5000 KB
LZWL+PUL 3.31 3.09 2.87 2.64 2.37
LZWL+PUR 3.36 3.14 2.92 2.69 2.39
LZWL+PUML 3.32 3.10 2.88 2.65 2.38
LZWL+PUMR 3.32 3.10 2.89 2.66 2.38
LZWL(words) 3.22 3.03 2.86 2.62 2.36
compress 4.0 3.79 3.57 3.34 3.27 3.08
HS+PUL 3.23 3.18 3.15 3.10 2.97
HS+PUR 3.30 3.26 3.22 3.18 3.03
HS+PUML 3.26 3.22 3.19 3.15 3.02
HS+PUMR 3.27 3.23 3.20 3.16 3.02
HS(words) 2.65 2.58 2.52 2.38 2.31
ACM(words) [74] 2.93 2.74 2.55 2.35 2.27
FGK [59] 4.59 4.60 4.60 4.58 4.54
bzip2 [91] 2.86 2.60 2.40 2.21 2.03
WRT [97] 2.80 2.69 2.58 2.44 2.60

Table 5.2: Comparison of compression ratio in bits per character on English
documents

File size 5 KB 50 KB 100 KB 500 KB 2000 KB
Method 50 KB 100 KB 500 KB 2000 KB 5000 KB
LZWL+PUL 4.14 3.83 3.59 3.34 —
LZWL+PUR 4.07 3.77 3.56 3.32 —
LZWL+PUML 4.07 3.77 3.56 3.31 —
LZWL+PUMR 4.07 3.77 3.55 3.31 —
LZWL(words) 4.56 4.19 3.99 3.69 —
compress 4.0 4.35 4.08 3.90 3.81 —
HS+PUL 3.97 3.89 3.89 3.81 —
HS+PUR 3.86 3.79 3.80 3.75 —
HS+PUML 3.86 3.79 3.80 3.74 —
HS+PUMR 3.87 3.79 3.80 3.75 —
HS(words) 3.71 3.51 3.43 3.21 —
ACM(words) 3.83 3.50 3.29 3.14 —
FGK 4.97 4.95 5.00 4.99 —
bzip2 3.42 3.10 2.88 2.67 —

Table 5.3: Comparison of compression ratio in bytes per character on Czech
documents
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one, for LZW coding the syllable-based one outperformed the word-based
one.

There are strong inter-syllable correlations between words, which are ob-
viously lost in zero order syllable model. This leads to poor results of syllable-
based version of HuffSyllable.

Word-based preprocessing method WRT (in combination with compress
4.0) was more successful than our word-based LZWL. The explanation can
be following: LZWL is using the set of characteristic words of the size 100
KB, WRT is using dictionary of words of the size 1 MB.

5.3 Methods without Static Initialization

5.3.1 Burrows-Wheeler Transformation

Although it is generally accepted that Burrows-Wheeler Transformation [29]
is not suited to small files, we decided to conduct our own measurements
using out small file set. The BWT algorithm was originally implemented
for large file compression [10], where it proved well, so we were interested to
see how it would fare with small files. Since it was implemented for large
files, however, it does not use, for example, characteristic syllables set but a
method of compressing the set of used syllables as a whole (see Chapter 7.4).

The Burrows-Wheeler Transformation is an algorithm that takes a block
of text as input and rearranges it using a sorting algorithm. The output can
be compressed with another algorithms such as bzip. To compare different
ways of document parsing and their influence on BWT, we decided to deal
with natural units of the text: characters, syllables and words; and compare
these approaches with each other and also with the methods that divide the
text into unnatural units – N-grams.

In our measurements we found out that depending upon the language,
words have 5–6 characters and syllables 2–3 characters in average. There-
fore 3-grams were chosen to conform to the syllable length and 5-grams to
correspond to average words length.

If we want to compare different BWT for various ways of text file parsing,
it is necessary to use an implementation modified only in document parsing;
the rest of compression method will stay unchanged.

5.3.2 Technical Details

Documents are devided into blocks and the blocks are compressed separately.
The Block size is a very important parameter of BWT. If the blocks are larger,
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then results are better. For example, in bzip2 algorithm [91], the maximum
block size is 900 KB. We decided to choose the block size so that any doc-
ument up to 5MB could be considered as a single block. This approach is
fairly-minded since e.g. word-based methods will not be favoured by consid-
ering the document as one block whilst character-based methods would split
the text into several blocks.

Our implementation of BWT method consists of these steps:

1. Division into the source units: characters, words, syllables or n-
grams (see Table 5.4)

2. Encoding of the set of used source units - see Chapter 7.4.

3. Burrows-Wheeler transformation (BWT) - see Chapter 2.6.1

4. Move to Front transformation (MTF) - see Chapter 2.6.2

5. Run Length Encoding of null sequences (RLE) - see Chapter 2.6.3

6. Huffman coding - see Chapter 2.4.1

We parsed an input document into 3-grams and 5-grams, words, syllables,
characters. Examples of parsing the string ’consists of’ are introduced in
Table 5.4.

parsing source units
orginal "consists of"

letters "c", "o", "n", "s", "i", "s", "t", "s", " ", "o", "f"

3-grams "con", "sis", "ts ", "of"

5-grams "consi", "sts o", "f"

syllables "con", "sists", " ", "of"

words "consists", " ", "of"

Table 5.4: Examples of parsing string ”consists of” into words, syllables,
letters, 3-grams and 5-grams

5.3.3 Experiments

We compared the compression effectivity using BWT of characters, syllables,
words, 3-grams and 5-grams. Testing procedures proceeded on commonly
used text files of different sizes (1 KB - 5 MB) in various languages: English
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(EN), Czech (CZ), and German (GE). The results are in Table 5.5 and was
published in [13].

Each of tested languages (EN, CZ, GE) had its own plain text testing
data. Testing set for Czech language contained 1000 random news articles
selected from PDT [81] and 69 books from eKnihy [41]. Testing set for
English contained 1000 random juridical documents from [30] and 1094 books
from Gutenberg project [82]. For German, we used 184 news articles from
Sueddeutche [101] and 175 books from Gutenberg project [82].

5.3.4 Results

The primary goal was to compare the character-based, syllable-based, and
word-based compression. For files sized up to 200 KB, the character-based
compression appears to be optimal; for files 200 KB - 5 MB syllable-based
compression is the most effective. The used language affects the results.
English has a simple morphology: in the large documents the difference be-
tween words and syllables is insignificant. In languages with rich morphology
(Czech, German) words are still about 10% worse then syllables, even on the
large documents. Language type influence on compression is detailed in [2].

As the second aim we tried to compare the syllable-based compression
with 3-gram-based and word-based compression with 5-gram-based compres-
sion. Syllables as well as words are natural language units therefore we sup-
posed that using them will be more effective than using 3-grams and 5-grams.
These assumptions were confirmed. Natural units were the most effective for
small documents, where the improvement is 20 - 30 %. By increasing the doc-
ument size efficiency falls to 10 - 15 % for documents of size 2 - 5 MB.

5.4 Conclusion

We compared character-based, syllable-based, and word-based versions of
three different types of algorithms (LZW, adaptive Huffman coding, and
BWT). We tested these methods on few thousands of small files (with the
size up to 5 MB) in Czech and English language (BWT was tested for Ger-
man language too). Our implementations of syllable-based and word-based
versions of LZW (called LZWL) and adaptive Huffman coding (called Huff-
Syllable) use initialization with characteristic syllables or words of the given
language. This advantage is helpful on very small files (up to 5 - 10 KB),
but the effect of this initialization is decreasing with the size of the file.

The main goal was determine for each pair of the compression method
and the language what kind of source units is the best for different sizes of
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— File size 100 B 1 KB 10 KB 50 KB 200 KB 500 KB 2 MB
Lang. Method 1 KB 10 KB 50 KB 200 KB 500 KB 2 MB 5 MB
CZ Characters 5.715 4.346 3.512 3.200 2.998 2.846 —–
CZ Syllable 6.712 4.996 3.765 3.280 3.003 2.825 —–
CZ Word 7.751 6.111 4.629 3.871 3.476 3.149 —–
CZ 3-gram 8.539 6.432 4.629 3.851 3.463 3.166 —–
CZ 5-gram 10.104 8.415 6.566 5.448 4.796 4.265 —–
EN Characters 5.042 3.018 2.552 2.647 2.513 2.336 2.066
EN Syllable 5.974 3.267 2.647 2.685 2.486 2.282 1.996
EN Word 6.323 3.651 2.969 2.944 2.668 2.382 2.014
EN 3-gram 7.740 4.571 3.421 3.148 2.823 2.530 2.136
EN 5-gram 9.358 6.293 4.877 4.367 3.769 3.246 2.530
GE Characters 4.545 3.853 2.914 2.629 2.491 2.323 2.416
GE Syllable 5.591 4.671 3.201 2.724 2.505 2.295 2.354
GE Word 6.343 5.491 3.679 3.119 2.865 2.545 2.608
GE 3-gram 6.813 5.583 3.760 3.117 2.820 2.525 2.519
GE 5-gram 8.545 7.429 5.324 4.320 3.744 3.237 3.004

Table 5.5: Comparison of different input parsing strategies for Burrows-
Wheeler transform. Values are in bits per character.

tested documents. This results can be found in Chapters 5.2.5 and 5.3.4. We
can summary these results as follows: The best results for the files up to 5 -
50 KB are achieved by word-based version of HuffSyllable. The best results
for files between 5 - 50 KB and 200 - 500 KB are achieved by character-
based version of BWT. The best results for files larger than 200 - 500 KB
are achieved by syllable-based version of BWT. The exactly sizes of files are
different for each language.



Chapter 6

Small Textual XML Files
Compression

The eXtensible Markup Language (XML) [115] is a simple text format for
structured text documents. XML provides flexibility in storing, processing
and exchanging data on the Web. However, due to their verbosity, XML
documents are usually larger in size than other exchange formats containing
the same data content. One solution of this problem consists of compressing
XML documents. Because XML is a text format, it is possible to compress
XML documents with existing text compression methods. These methods
are more effective, when XML documents have simple structure and long
text content. Methods designed for compression of common XML files (see
section 3.4) are the other way how to compress these files.

There are different types of text compression: text compression by char-
acters and text compression by words. There is also a new method: text
compression by syllables [2]. There were known two syllable-based methods
when we were working on this chapter. The first one is LZWL (see section
5.2.1), and the second one is HuffSyllable (see section 5.2.2). Since single
text compression is not able to discover and utilize the redundancy in the
structure of XML, we combine syllable-based compression methods with idea
of methods used for XML compression.

Syllable-based compression achieves good results on the medium-sized
text documents. Since the majority of XML documents are of that size,
we suppose that the syllable-based method can give good results on XML
documents, especially on documents with and relatively long character data
a simple structure (small amount of elements and attributes) and relatively
long text content.

In this chapter we propose two syllable-based compression methods for
XML documents. The first method, XMLSyl, replaces XML tokens (element
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tags and attributes) by special codes in input document and then compresses
this document using a syllable-based method. The second method, XMillSyl,
incorporates syllable-based compression into the existing method for XML
compression XMill. XMLSyl and XMillSyl are compared with a non-XML
syllable-based method and with other existing methods for XML compres-
sion.

This chapter is based on our work [6].

6.1 XMLSyl

Our goal was to modify the syllable-compression method to compress XML
documents efficiently. We attempted to modify existing syllable-based method
so, that it treats XML tokens (element tags and attributes) as single syllables
instead of decomposing them into many syllables. There were two possibili-
ties to compel the syllable-based method to treat XML tokens as syllables:

1. Modify parser used in the syllable-based method and combine it with
an XML parser, so that it can recognize XML tokens and treat them
as a single syllable.

2. Replace XML tokens with bytes in the input document and then com-
press such a document with an existing syllable-based method.

We decided to implement the second way because this implementation allows
us to make some future improvements easily. For example, we may compel
the syllable-based method to assign codes with minimal length to XML to-
kens by adding this single bytes to the set of charactrersitic syllables (7.5).
This improvement is impossible in the first variant. The encoding of XML
tokens is inspired by existing XML compression methods like XMLPPM [32],
XGrind [108], XPress [71], XMill [66].

6.1.1 Architecture and Principles of XMLSyl

The architecture of XMLSyl is shown in Figure 6.1. It has four major mod-
ules: the SAX Parser [69], the Structure Encoder, the Containers and the
Syllable Compressor. First, the XML document is sent to the SAX Parser.
Next the parser decomposes document into SAX events (start-tags, end-tags,
data items, comments and etc.) and forwards them to the Structure Encoder.

The Structure Encoder encodes the SAX events and routes them to the
different Containers. There are three containers in our implementation:
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SAX Parser

Structure Encoder

Element Container Data and Structure Container

XML Document

Attribute Container

Compressed XML document

Syllable Compressor Syllable Compressor Syllable Compressor

Figure 6.1: The Architecture of XMLSyl

1. Element Container: The Element Container stores the names of all
elements that occur in an XML document. The Structure Encoder
also uses the Element Container as the dictionary for encoding XML
structure.

2. Attribute Container: The Attribute Container stores the names of
all attributes which occur in an XML document. The Structure En-
coder also uses the Attribute Container as the dictionary for encoding
XML structure.

3. Structure and Data Container: The Structure and Data Container
stores an XML document, in which all meta-data are replaced with
special codes. The encoding process is presented in section 3.2.

When a document is parsed and separated into the containers completely,
the contents of the containers are sent to the Syllable Compressor. It com-
presses the content of each container separately using syllable-based com-
pression and sends the result to the output.

We have not written the SAX parser by ourselves, rather we have used
the Expat parser[105] which is an open-source SAX parser written in C.

6.1.2 Encoding the Structure of XML document

The structure of XML document is encoded in XMLSyl as follows. Whenever
a new element or attribute is encountered, its name is sent to the dictionary
and the index of the element is sent to the Data and Structure Container.
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Two different dictionaries are used for attributes and elements: the Element
Dictionary and the Attribute Dictionary. The Attribute Container operates
as the Attribute Dictionary and the Element Container as the Element Dic-
tionary. Whenever an end tag is encountered a token END_TAG is sent to the
Data and Structure container. Whenever a character sequence is encoun-
tered, it is sent to the Data and Structure Container without changes. Start
and end of character sequences are indicated by special tokens. We distin-
guish four different character sequences: value of attribute, value of element,
comment, and white spaces between tags, if white spaces are preserved.

To illustrate the encoding process, consider the encoding of the following
small XML document:

<book>

<title lang="en">XML</title>

<author>Brown</author>

<author>Smith</author>

<price currency="EURO">49</price>

</book>

<!-- Comment-->

First, the XML document is converted into a corresponding stream of SAX
events:

startElement("book")

startElement("title",("lang","en"))

characters("XML")

endElement("title")

startElement("author")

characters("Smith")

endElement("author")

startElement("author")

characters("Brown")

endElement("author")

startElement("price","currency","EURO")

characters("49")

endElement("price")

endElement("book")

comment("Comment")

The tokens in the SAX event stream are sent to the Structure Encoder. It
encodes them and sends them to their corresponding containers. When the
book start element token is encountered, the string book is sent to the Element
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Element Container
element index
book E0
title E1
author E2
price E3

Attribute Container
attribute index
lang A0
currency A1

Data and Structure Container
<book> <title lang="en"> XML </title>

E0 E1 A0 en END_ATT CHAR XML END_CHAR END_TAG

<author> Brown </author> <author>

E2 CHAR Brown END_CHAR END_TAG E2

Smith </author> <price currency="EURO">

CHAR Smith END_CHAR END_TAG E3 A1 Euro END_ATT

49 </price> </book> <!--Comment-->

CHAR 49 END_CHAR END_TAG END_TAG CMNT Comment END_CMNT

Figure 6.2: Content of containers

Container since this element name was not encountered before. An index
E0 is assigned to this entry. This index is sent to the Data and Structure
Container. The same operation is executed for title start element. String title
is sent to The Element Container and an index E1 is assigned to it. The index
E1 is sent to the Data and Structure Container. The element title has the
attribute lang. The attribute name is sent to the Attribute Container and the
index A0 is assigned to it. The index A0 is sent to the Data and Structure
Container. Then the attribute value ”en” is sent without a modification to
the Data and Structure Container. The ”en” attribute is followed by the
token END_ATT, signaling the end of the attribute value. When an element
value such as ”XML” is encountered, the token CHAR, signaling the beginning
of a character sequence, the data value and then the token END_CHAR are all
sent to the Data and Structure Container. Finally, all the end tags are
replaced by the token END_TAG. When a comment event is encountered, the
code CMNT is put into the Data and Structure Container. The comment is
also sent to the container and is enclosed by END_CMNT code. The final state
of all containers is shown in Figure 6.2.

In this example we have ignored white spaces between tags, e.g. <book>

and <title>, so the decompressor then produces a standard indentation.
Optionally, XMLSyl can preserve the white spaces. In that case, it stores
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the white spaces as the sequence of characters in the Data and Structure
Container between tokens WS and END_WS.

6.1.3 Containers

The containers are the basic units for grouping XML data. The Attribute
Container holds attribute names and the Element Container holds element
names. As long as the number of all element and attribute names in any
XML document is not high, this two containers are kept in main memory.
During parsing, the containers size increases as the container is filled with
entries. Each entry in the Element container is assigned a byte in the range
00-A9. These bytes are used for encoding the element names. Each entry in
the Attribute container is assigned a byte in the range AA-F9. These bytes
are used for encoding the attribute names. The residual 6 bytes are reserved
for special codes like CHAR, END_TAG etc. In most cases, 170 (or 80) bytes are
enough to encode element (or attribute) names. If the number of elements
(or attributes) are greater than 170 (or 80), entries are encoded with two
bytes, then tree and so on.

There is another situation with The Data and Structure Container. We
do not know the size of the input XML document. The size of XML document
can be so big, that document will not fit into memory, and it is not possible
to increase the size of container endlessly. Therefore, the container consists
of two memory block of constant size. The content of the first memory block
is compressed, as soon as the container is filled. We do not compress two
blocks at once, because the context of the second memory block is used for
compression of the first one. After the compression, the compressed content
of the first block is sent to the output and the first block swaps its purpose
with the second one. Now the first block is filled with data. When it is full,
the second block is compressed, and so on.

6.1.4 The Syllable Compressor

The Syllable Compressor compresses the Structure and Data Container first
and sends the output to the output file. Then the Attribute Containers are
compressed and sent to the output file and finally the same happens with
the Element Container. LZWL is used for the compression of data. HuffSyll
could be also chosen, but the performance is worse, so we decided to use only
LZWL.
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Figure 6.3: Architecture of XMillSyl

6.2 XMillSyl

This chapter introduces our second syllable-based XML method, XMillSyl.
This second method incorporates syllable-based compression with the ex-
isting method for XML compression of XMill [66]. XMill has two main
principles in order to optimize XML compression:

• separating structure from data content, and

• grouping Data values with related semantics in the same ”container”.

Each data container is then compressed individually with gzip [44]. In XMill-
Syl, containers are compressed with LZWL.

We do not suppose that XMillSyl method gives better results than XMill
because gzip compression performs better than LZWL. We have implemented
XMillSyl in order to compare the power of XMLSyl with the power of two
main principles of XMill.

6.2.1 Implementation

We did not write our implementation of XMill method. We decided to use
existing sources of XMill [66].

XMill operates as follows: a SAX parser parses the XML file and the SAX
events are sent to the core module of the XMill called the path processor.
It determines how to map tokens to containers: element tag names and
attribute names are encoded and sent to the structure container, while the
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Size Lang Description

elts 103919 English Periodic table of the elements in XML
pcc 2600257 English Formal proofs transformed to XML
stats 869059 English One year statistics if baseball players
tal 1364576 English Safe-annotated assembly language converted to XML
tpc 313193 English The XML representation of the TPC_D benchmark database.

Size Lan Description

errors 153530 English "The Comedy of Errors" marked up as XML
hamlet 314677 English "The Tragedy of Hamlet, Prince of Denmark" marked up as XML
antony 289865 English "The Tragedy of Antony and Cleopatra" marked up as XML
much_ado 220495 English "Much Ado about Nothing" marked up as XML
ch00 13916 English "DocBook: The Definitive Guide" in DocBook format (1)
ch01 55015 English "DocBook: The Definitive Guide" in DocBook format (2)
ch02 160728 English "DocBook: The Definitive Guide" in DocBook format (3)
ch03 27799 English "DocBook: The Definitive Guide" in DocBook format (4)
ch04 137440 English "DocBook: The Definitive Guide" in DocBook format (6)
ch05 67142 English "DocBook: The Definitive Guide" in DocBook format (7)
glossary 24701 English "DocBook: The Definitive Guide" in DocBook format (8)
howto 42853 English "DocBook V5.0, Transition Guide" in DocBook format.
hledani 16429 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (1)
komunikace 50881 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (2)
navihace 18495 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (3)
robot 25405 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (4)
xml 28467 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (5)
rur1 59609 Czech "R.U.R" marked up as XML.

V set2 Murkup menshe chem 50% I harakter dannych tekstovyj=> 
pokazyvajet horoshije rezultaty.

Table 6.1: The data set DS1.

data values are sent to various data containers, according to their semantic.
Finally, the containers are gzipped independently and stored on disk.

We have modified compression and decompression functions (operating
on containers) in the way they compress and decompress the data containers
with the syllable-based method (see Figure 6.3). Moreover we have modified
the syllable-based method so that it can work with the containers of XMill
implementation instead of a file stream.

XMillSyl discerns the difference between small and large containers. Since
LZWL is not suitable for extremely small data, the small containers are
compressed with gzip. The structure container is also gzipped in XMillSyl.
The large containers are compressed with LZWL.

6.3 Experiments

To show the effectiveness of XMLSyll and XMillSyl, we compared the per-
formance of this two compression methods with one representative of XML
compression methods XMill and the syllable-based method LZWL (see sec-
tion 5.2.1).

6.3.1 XML Data Sources

XMLSyl and XMillSyl were tested on two data sets that cover a wide range
of XML data formats and structures. The first data set (DS1) is shown in
Table 6.1. It contains English XML documents with different inner structure.
It includes regular data that has regular markup and short character data
content (elts, stats, weblog, tpc). It also includes irregular data, that has
irregular markup (pcc, tall).

The second data set (DS2) is shown in Table 6.2. It contains textual XML
documents of simple structure with long character data content. It contains
five stage plays marked up as XML, four in English and one in Czech. It also
contains data in DocBook format in Czech and in English.
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Size Lang Description

elts 103919 English Periodic table of the elements in XML
pcc 2600257 English Formal proofs transformed to XML
stats 869059 English One year statistics if baseball players
tal 1364576 English Safe-annotated assembly language converted to XML
tpc 313193 English The XML representation of the TPC_D benchmark database.

Size Lan Description

errors 153530 English "The Comedy of Errors" marked up as XML
hamlet 314677 English "The Tragedy of Hamlet, Prince of Denmark" marked up as XML
antony 289865 English "The Tragedy of Antony and Cleopatra" marked up as XML
much_ado 220495 English "Much Ado about Nothing" marked up as XML
ch00 13916 English "DocBook: The Definitive Guide" in DocBook format (1)
ch01 55015 English "DocBook: The Definitive Guide" in DocBook format (2)
ch02 160728 English "DocBook: The Definitive Guide" in DocBook format (3)
ch03 27799 English "DocBook: The Definitive Guide" in DocBook format (4)
ch04 137440 English "DocBook: The Definitive Guide" in DocBook format (6)
ch05 67142 English "DocBook: The Definitive Guide" in DocBook format (7)
glossary 24701 English "DocBook: The Definitive Guide" in DocBook format (8)
howto 42853 English "DocBook V5.0, Transition Guide" in DocBook format.
hledani 16429 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (1)
komunikace 50881 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (2)
navihace 18495 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (3)
robot 25405 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (4)
xml 28467 Czech "Inteligentní podpora navigace na WWW s využitím XML" in DocBook (5)
rur1 59609 Czech "R.U.R" marked up as XML.

V set2 Murkup menshe chem 50% I harakter dannych tekstovyj=> 
pokazyvajet horoshije rezultaty.Table 6.2: The data set DS2.

Some data was distributed with the XMLPPM [32] and the Exalt [109]
method while others were found on Internet [61], [111]. All Czech documents
use Windows-1250 encoding.

6.3.2 Compression Performance Metrics

The compression ratio is defined in definition 2.9. We compare XMillSyl
and XMLSyl compression ratios with those of XMill. The compression ratio
factor shows normalization of the compression ratio of XMillSyll or XMLSyl

CRLZWL CRXmill CRXMillSyl CRFXMillSyll CRXMLSyl CRFXMLSyl 1
1 elts 1,04 0,47 0,54 1,15 0,72 1,53
2 pcc 0,22 0,02 0,03 1,50 0,04 2,00
3 stats 0,67 0,33 0,40 1,21 0,39 1,18
4 tal 0,36 0,09 0,12 1,33 0,15 1,67
5 tpc 1,82 1,05 1,54 1,47 1,60 1,52

Average 0,82 0,39 0,53 1,33 0,58 1,58

CRLZWL CRXmill CRXMillSyl CRFXMillSyll CRXMLSyl CRFXMLSyl
1 errors 1,98 1,83 2,00 1,09 1,83 1,00
2 hamlet 1,96 1,91 2,00 1,05 1,85 0,97
3 antony 1,84 1,79 1,88 1,05 1,69 0,94
4 much_ado 1,88 1,80 1,89 1,05 1,77 0,98
5 ch00 3,28 2,69 3,00 1,12 2,88 1,07
6 ch01 2,69 2,20 2,43 1,10 2,46 1,12
7 ch02 1,76 1,43 1,70 1,19 1,57 1,10
8 ch03 2,90 1,87 2,70 1,44 2,08 1,11
9 ch04 2,09 1,66 1,78 1,07 1,83 1,10

10 ch05 2,28 1,81 2,03 1,12 2,04 1,13
11 glossary 2,07 1,64 1,84 1,12 1,89 1,15
12 howto 6,69 2,30 2,50 1,09 2,59 1,13
13 hledani 3,79 3,13 3,62 1,16 3,40 1,09
14 komunikace 3,25 2,65 2,93 1,11 3,01 1,14
15 navihace 3,79 3,14 3,68 1,17 3,44 1,10
16 robot 3,43 2,86 3,22 1,13 3,04 1,06
17 xml 3,74 3,23 3,69 1,14 3,30 1,02
18 rur1 2,33 2,07 2,37 1,14 2,15 1,04

Average 2,88 2,22 2,51 1,13 2,38 1,07

ch 1,84 1,61 1,78 1,11 1,70 1,06 1,11
books 1,71 1,79 1,75 0,98 1,66 0,93
ch+books 1,80 1,74 1,76 1,01 1,72 0,99

3,13 2,63 2,81 1,07 2,93 1,11 0,935943
2,83 2,32 2,51 1,08 2,60 1,12 0,924303
2,78 2,28 2,47 1,08 2,57 1,13 0,923077
2,58 2,14 2,30 1,07 2,40 1,12 0,930435
2,49 2,15 2,32 1,08 2,34 1,09 0,926724
2,40 2,07 2,22 1,07 2,25 1,09 0,932432
2,30 1,97 2,17 1,10 2,15 1,09 0,907834
2,21 1,90 2,08 1,09 2,06 1,08 0,913462
2,17 1,89 2,10 1,11 2,03 1,07 0,9
2,07 1,80 2,01 1,12 1,93 1,07 0,895522
1,98 1,73 1,93 1,12 1,84 1,06 0,896373
1,92 1,68 1,88 1,12 1,79 1,07 0,893617
1,89 1,65 1,85 1,12 1,76 1,07 0,891892
1,88 1,64 1,83 1,12 1,74 1,06 0,896175

Table 6.3: Compression ratio for the data set DS1 (in bits per bytes).
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CRLZWL CRXmill CRXMillSyl CRFXMillSyll CRXMLSyl CRFXMLSyl 1
1 elts 1,04 0,47 0,54 1,15 0,72 1,53
2 pcc 0,22 0,02 0,03 1,50 0,04 2,00
3 stats 0,67 0,33 0,40 1,21 0,39 1,18
4 tal 0,36 0,09 0,12 1,33 0,15 1,67
5 tpc 1,82 1,05 1,54 1,47 1,60 1,52

Average 0,82 0,39 0,53 1,33 0,58 1,58

CRLZWL CRXmill CRXMillSyl CRFXMillSyll CRXMLSyl CRFXMLSyl
1 errors 1,98 1,83 2,00 1,09 1,83 1,00
2 hamlet 1,96 1,91 2,00 1,05 1,85 0,97
3 antony 1,84 1,79 1,88 1,05 1,69 0,94
4 much_ado 1,88 1,80 1,89 1,05 1,77 0,98
5 ch00 3,28 2,69 3,00 1,12 2,88 1,07
6 ch01 2,69 2,20 2,43 1,10 2,46 1,12
7 ch02 1,76 1,43 1,70 1,19 1,57 1,10
8 ch03 2,90 1,87 2,70 1,44 2,08 1,11
9 ch04 2,09 1,66 1,78 1,07 1,83 1,10

10 ch05 2,28 1,81 2,03 1,12 2,04 1,13
11 glossary 2,07 1,64 1,84 1,12 1,89 1,15
12 howto 6,69 2,30 2,50 1,09 2,59 1,13
13 hledani 3,79 3,13 3,62 1,16 3,40 1,09
14 komunikace 3,25 2,65 2,93 1,11 3,01 1,14
15 navihace 3,79 3,14 3,68 1,17 3,44 1,10
16 robot 3,43 2,86 3,22 1,13 3,04 1,06
17 xml 3,74 3,23 3,69 1,14 3,30 1,02
18 rur1 2,33 2,07 2,37 1,14 2,15 1,04

Average 2,88 2,22 2,51 1,13 2,38 1,07

ch 1,84 1,61 1,78 1,11 1,70 1,06 1,11
books 1,71 1,79 1,75 0,98 1,66 0,93
ch+books 1,80 1,74 1,76 1,01 1,72 0,99

3,13 2,63 2,81 1,07 2,93 1,11 0,935943
2,83 2,32 2,51 1,08 2,60 1,12 0,924303
2,78 2,28 2,47 1,08 2,57 1,13 0,923077
2,58 2,14 2,30 1,07 2,40 1,12 0,930435
2,49 2,15 2,32 1,08 2,34 1,09 0,926724
2,40 2,07 2,22 1,07 2,25 1,09 0,932432
2,30 1,97 2,17 1,10 2,15 1,09 0,907834
2,21 1,90 2,08 1,09 2,06 1,08 0,913462
2,17 1,89 2,10 1,11 2,03 1,07 0,9
2,07 1,80 2,01 1,12 1,93 1,07 0,895522
1,98 1,73 1,93 1,12 1,84 1,06 0,896373
1,92 1,68 1,88 1,12 1,79 1,07 0,893617
1,89 1,65 1,85 1,12 1,76 1,07 0,891892
1,88 1,64 1,83 1,12 1,74 1,06 0,896175

Table 6.4: Compression ratio for the data set DS2 (in bits per bytes).

with respect to XMill. The compression ratio factor is defined as follows:

CRFXSyl =
CRXSyl

CRXMill

.

6.3.3 Experimental Results

The compression ratio statistics of two sets of XML documents are shown in
Table 6.3 and Table 6.4.

The syllable-based method performed worse on documents from the data
set DS1. On the other hand, both XMLSyl and XMillSyl shows great im-
provement comparing to LZWL. They compressed the input to 50-60% of
the size of the compressed file with LZWL.

On XML documents of the data set DS2, LZWL provides a reasonably
good compression ratio - on the average, about two-thirds that of XMill.
This confirms our prediction, that syllable-based compression is effective for
textual XML documents. Moreover our compression methods show even
greater improvement.
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On the document of the data set DS2, XMillSyl achieves about 15% and
XMLSyl is about 20% better compression ratio than LZWL. Compared to
XMill, both methods perform slightly worse. XMillSyl compresses about
13% and XMLSyl about 7% worse than XMill.

6.4 Conclusion

In this chapter we introduced syllable-based compression methods for XML
documents called XMLSyl and XMillSyl. We presented the architecture and
implementation of our methods and tested their performance on a variety of
XML documents. In our experiments, XMLSyl and XMillSyl were compared
with LZWL and XMill. Both methods are more suitable for textual XML
documents. XMill outperformed our methods only marginally. XMLSyl
performs better than XMillSyl. It implies that in our case encoding of XML
structure is more efficient than separating a structure from data and grouping
data values with related meaning. XMillSyl and XMLSyl show better results
for Czech language.

Results of our algorithms were much worse than we expected, so we de-
cided to stop working on this research. The compression ratio reached by our
methods was comparable or worse than the compression ratio reached by the
original method XMill. We did not optimize our methods for compression
speed, it was 3 - 5 worse than the compression speed of XMill. Moreover,
in section 3.4 are mentioned more powerful methods for XML compression
than is XMill. Some of these methods are able to query the compressed data
structure.

We focused on compression of non-well-formed XML files in our next
works, see Chapter 8.1.



Chapter 7

Large Alphabet Compression

We talk about a large alphabet in case of an alphabet of strings (words or
syllables). For compression methods working over large alphabet there has
to be a way, how to hand over this alphabet from coder to decoder. Usually
the encoded alphabet forms a part of the compressed file. While compressing
very large files, the size of the encoded alphabet is insignificant to the size
of the resulting output file. Efficient encoding is therefore not a considerable
matter in word compression area. On the other hand, if we take smaller files
into concern, the need for more efficient alphabet encoding grows. It could
happen, that the alphabet code would be even longer, than the encoded file
itself.

In this chapter there are three main approaches to large alphabet com-
pression introduced. We are speaking about static, semi-adaptive and adap-
tive approach. We have not yet come across a study containing an elaborate
comparison of these three concepts. Static approach is described in section
7.1, semi-adaptive in section 7.2 and finally fully adaptive in section 7.3.
Section 7.4 referrers to our trie based semi-adaptive method aimed for com-
pression of set of strings [5, 11]. New trend in large alphabet compression
research are discussed in section 7.5. This involves among others the adap-
tive method with static initialization. Inventing an effectual mechanism of
this initialization is one of the leading topics of this research.

7.1 Static Approach

When it comes to compression methods that operate on a small alphabet,
the alphabet is well known to both the coder and the decoder in advance.
It is formed just by the members of the character set. Although most of

69
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the texts do not contain more than one third of all available characters, the
compression ratio is not affected much by the redundant characters.

In case of syllables or words this philosophy cannot be directly applied,
as there are far too many strings, which match this definition. Clearly, their
number grows exponentially with the maximal possible token length. Only
a tiny minority of these strings are such, that form a word or a syllable in a
language. Therefore initializing the coder with all these strings would lead
to unacceptably long token codes. This could totally ruin the efficiency of
compression by producing compressed files larger, than their uncoded coun-
terparts.

This does not mean, that static initialization would be in general unsuit-
able for word-based [98] and syllable-based [110] compression. An indirect
technique can be applied. First a set of characteristic syllables (or words) is
created. The compression then uses joined set of these characteristic sylla-
bles (or words) and alphabet of characters. These methods are often called
as word or syllable based by their authors, but the qualification as hybrid
would probably suit them better.

7.2 Semi-adaptive Approach

Another possible approach is called semi-adaptive. This involves parsing
the whole document to obtain the set of used words or syllables. This set
does not need to be ordered. But this concept has one drawback; the input
file has to either be whole loaded into memory or processed twice. It is
used in XBW [15] method, because this method requires loading the input
into memory anyway, so that the Burrows-Wheeler transformation may be
performed. Hence using the semi-adaptive approach does not lay any extra
memory or processing time requirements.

Semi-adaptive alphabet compression is broadly used. Particular methods
are discussed among related works in Chapter 3.5

The class of semi-adaptive compression methods for compression a set of
string is represented by TD1, TD2 and TD3 [5, 11]. Their common principle
is to load the set of strings into trie data structure, which is then encoded as
whole. These methods are discussed in detail in Chapter 7.4.

7.3 Adaptive Approach

Last approach, we are going mention, is called adaptive. Its advantage is,
that the syllable or word may be encoded, whenever in the coding phase
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(usually in the time of the first appearance of the syllable in the coded file).
Its drawback is, that the encoding of strings one by one may be less efficient,
than encoding the whole set of strings together.

There are two ways how to encode a string. We can encode it using
alphabet of characters and a special terminating symbol indicating end of the
string, or we can encode the length of the string followed by its characters.

Adaptive methods can be improved significantly with the knowledge of
the language of the message to be compressed. A set of characteristic syllables
can be assembled and used in a compression process. There are two ways
how to use this set.

This set can be used during the initialization of the compression method,
the strings in the set do not need to be in the encoded form of the used
alphabet. This approach is called adaptive with static initialization and it has
been another topic of our research. It is described in more details in Chapter
7.5. This concept of set of characteristic strings was used in LZWL and
HuffSyll [2] compression methods, which were developed for the compression
of very small files. The main issue is a proper choice of syllables for the set
of characteristic syllables. This matter is also under our attention [3, 4, 14].

The other possibility is not using the set of characteristic syllables for
initialization, but for new syllable encoding later on. If we assign an unique
number (code) to each syllable in the set, then we get a dictionary. When
new syllable is encountered, the dictionary is searched and when the syllable
is present, its code from the dictionary is used.

Similar sets of charactersitic words can be made for word-based compres-
sion.

7.4 Set of Strings Compression

Compression methods working over large alphabet need transfer the used
alphabet (set of strings) as a part of the compressed message. The set of
strings needs to get some ordering, because we need to identify the strings
during the decompression phase. We do not need to encode the ordering
explicit, but we need to reconstruct them by a decoder. The best way is
transforming the set of strings into a dictionary of strings. We suppose that
a dictionary is a set of ordered pairs (string, number), where the string is
a string over an alphabet Σ and the number is an integer of the range 1–n
where n is the number (identifier) of the ordered pair in the dictionary.

This chapter describes a method of compressing the set of strings based
on the coding of the set by a trie and on effective encoding of the trie. During
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the encoding there is an unique number assigned to each string using depth-
first traversal of the trie. So the set is transformed into a dictionary.

We describe general methods TD1 and TD2 based on the encoding the set
of string by a trie and on following compression of the trie. There is also an
improvement, called TD3, applicable in the cases when the set of the strings
can be split into several parts containing different (easily recognizable) classes
of strings. The efficiency of the described methods is evaluated on the set
of string collected as words or syllables from Czech, English, and German
documents.

7.4.1 Existing Methods

Our research is focused on the text documents compression hence we will
provide a brief description of the methods used in this field.

It is quite common for the papers on word-based and syllable-based com-
pression methods that their authors give no big importance to the compres-
sion of the used alphabet as the alphabet often makes only a small part of
the compressed message. It is probably true for very large documents but
for middle-sized documents the importance of the alphabet size grows as the
alphabet takes larger part of the compressed message.

The following two approaches are the most widely used: The first ap-
proach is based on coding of a succession of strings (words or syllables) con-
tained in it. In the second approach the set of string is compressed as a whole.
All the strings are concatenated using special separators. The resulting file
is then compressed using some general method.

There are described more related works about the compression of a dic-
tionary in Chapter 3.5, but these methods was never (in works that we know)
used for the compression of the used alphabet.

Character-by-character compression – CD

We will describe a method published in [2] for the encoding of strings using a
partitioning of the strings into five categories, similarly to the method TD3
described below. Every string is encoded as a sequence of string type code,
string length code and by the codes of the individual characters. String
type is encoded using binary phase coding (c1), string length is encoded by
adaptive Huffman code (c2), and individual characters are coded also using
adaptive Huffman code (each class has its own Huffman tree – hence we
distinguish three different codes: letters by c3, numbers by c4, and other
characters by c5). Lower-case and upper-case letters use the same code value
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c3, they are distinguished by the syllable type. All adaptive Huffman trees are
initialized according language specification. Examples are given in Fig. 7.1.

code("to") = c1(mixed), c2(2), c3(’t’), c3(’o’)

code("153") = c1(numeric), c2(3), c4(’1’), c4(’5’), c4(’3’)

code(". ") = c1(other), c2(2), c5(’.’), c5(’0’)

Figure 7.1: An example of a coding a string by the CD method

It is not necessary to know the whole set of strings at the beginning. It
is possible to compress individual strings on the fly. It is then possible to
encode new string whenever they are encountered. Other methods discussed
in this paper need to compress the whole set of strings at once.

External Compression

Let us have a separator τ being not part of the used alphabet Σ. Let all the
strings over alphabet Σ forming the set S of strings that are concatenated
to a single string using the separator τ . The resulting string is then encoded
using an arbitrary compression method. In [55] the authors tried to encode
the set of words using gzip, PPM, and bzip2 methods and recognized as best
for this purpose bzip2. We tried to encode the set of strings using bzip2
[91] (in the tables denoted as BzipD – bzip compressed dictionary) and LZW
[112] (denoted in the tables as LZWD – LZW compressed dictionary).

Front Compression

Front compression is a method for compression of a lexicographically sorted
set S of strings ω1, ..., ωn, where ωi = ωi1...ωip. Let δi = δi1...δir is the
maximal common prefix of ωi−1 and ωi, δ1 = λ. The set S is encoded string
by string. Every string ωi is encoded as gamma code of r, gamma code of
p− r and characters ωi(r+1)...ωip.

Our methods TD1, TD2, TD3 desribed in Chapter 7.4.2 are derived from
the front compression method.

7.4.2 Trie-Based Compression

When designing the introduced methods TD1, TD2, and TD3 we decided to
represent the set of strings by a data structure trie [60, Section 6.3: Digital
Searching, pp. 492–512]. Trie T is a tree of maximal degree n, where n is the
size of the alphabet Σ and satisfies following conditions: The root represents
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an empty string. Let the string α be represented by the node A, the string
β represented by the node B. If the node A is father of the node B, then the
string β is created by concatenation of the string α and one character from
Σ. For all nodes A and B there exists a node C that represents common
prefix of strings α and β and this node is on both paths (including border
points) from the root to B and from the root to A.

The trie is created from the strings appearing in the set. Then the trie
is encoded. During this encoding there is a unique number assigned to each
string using depth-first traversal of the trie.

Basic Versions – TD1 and TD2

Our basic versions of set of strings compression are based on sharing common
prefixes of the strings. Individual strings are represented as the paths in a
trie representing the whole set. The compression is based on sharing common
prefixes and efficient encoding of the trie.

Node type: Coded inforrmation:

root

inner node

leaf

# of sons
gamma0

represents

single bit

distance

delta0

# of sons
gamma0

represents

single bit

distance

delta0

# of sons
gamma0

Figure 7.2: Different sequences of bits generated by different nodes

Trie compression of a set of strings (TD) is based on coding structure of
a trie representing the set. For each node in the trie we know the following:
whether the node represents a string (represents), the number of sons (count),
the array of sons (son), and the first character of an extension for each son
(extension). Basic version of such encoding (TD1) is given by a recursive
procedure EncodeNode in alg. 5 which traverse the trie by a depth first search
(DFS) method. For encoding the whole set of strings we run this procedure
on the root of the trie representing the set.
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Algorithm 5 Trie compression by TD1, TD2: procedure EncodeNode

1: input node of trie
2: output encoded node and its subtree
3: output(WriteGamma0(node.count)) /*we encode number of sons.*/
4: if node.count = 0 then return /*we are in list, recursion ends*/
5: if node.represents then
6: output(WriteBit(1)) /*node represents string from set*/
7: else
8: output(WriteBit(0)) /*node does not represent string from set*/
9: end if

10: previous = 0;
11: for i = 0, ..., node.count− 1 do
12: actual = reord(node.son[i].extension) /*we set reord to identity for

TD1, we set reord e.g. according frequency of the characters for TD2*/
13: distance = actual− previous /*we calculate distance between the son

and his left brother*/
14: output(WriteDelta0(distance))
15: EncodeNode(node.son[i]) /*recursive calling of procedure on the son*/
16: previous = actual
17: end for

In procedure EncodeNode we code only a number of sons and the dis-
tances between the extensions of sons. For non-leaf nodes we must encode
in one bit whether that node represents a string from the set (e.g. syllable or
word) or not. Leafs represent strings always, it is not necessary to code it.
Differences between extensions of the sons are given as distances of binary
values (function reorder is identity) of the extending characters. For coding
of a number of sons and the distances between them we use Elias gamma
and delta codes [40]. We have tested other Elias codes too, but we achieved
the best results for the gamma and delta codes. The numbers of sons and
the distances between them can reach the value 0, but standard versions of
gamma and delta codes starts from 1 what means that these codings do not
support this value. We therefore use slight modifications of Elias gamma
and delta codes: gamma0(x) = gamma(x+ 1) and delta0(x) = delta(x+ 1).

An example is given in Fig. 7.3. The example set contains the strings
".\n", "ACM", "AC", "to", and "the". Let us introduce the TD1 method by
coding the root of the trie representing our example set:

In the node we must first encode the number of its sons. Root has 3 sons,
hence we say that gamma0-code of the 3 (sons) is a string of bits ‘00001’ and
we write gamma0(3) = 00001.
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\n 10
?

. 46

M 77
?

C 67
?

A 65
?

e 101
?

h 104
?

t 116

o 111

������)

PPPPPPq

PPPPPPq

λ

Figure 7.3: Example of a set for TD1

Then we state that the already represented word (an empty string) is not
part of the set by writing a bit 0.

Value of the the first son is encoded as a distance between its value and
zero by delta0(46− 0) = 0100101111.

Then the first subtrie is encoded by a recursive call of the encoding pro-
cedure on the first son of the actual node.

When the first subtrie is fully encoded, we should specify what the second
son is. The difference between the first and the second son is 65− 46, hence
we write delta0(65− 46) = 000110011.

Then we encode the second subtrie and the third son and the subtrie
rooted in it. Now the whole node and all it subtries are encoded. As our
example node is the root, we have encoded the whole trie representing the
set of strings.

Version with Reordering – TD2

In TD1 version the distances between sons are coded according binary values
of the extending characters. These distances are encoded by Elias delta
coding representing smaller numbers by shorter codes and larger numbers by
longer codes. In the version TD2 we reorder the characters in the alphabet
according the types of the characters and their frequencies typical for given
language. In our example the characters 0–27 are reserved for lower-case
letters, 28–53 for upper-case letters, 54–63 for digits and 64–255 for other
characters. There are some examples in Table 7.1.

Improving the procedure TD1 by an adaptation of the reord function
from identity to a table closer to the order of the characters according their
frequency in the document (or in given class of the documents) we get TD2
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character ’e’ ’t’ ’a’ ’I’ ’T’ ’A’ ’0’ ’1’ ’2’ ’ ’ ’,’ ’.’
reord(character) 0 1 2 28 29 30 54 55 56 64 65 66

Table 7.1: An example of new ordering of the characters

method. As the more frequent characters are closer to each other, the en-
coding of their differences requires less space.

Let us demonstrate the differences between TD1 and TD2 methods on
our running example. The same set of strings is for TD2 method represented
by a different tree (Fig. 7.4) – in comparison to TD1. The difference between
the nodes ’h’ and ’o’ is 111− 104 = 7 by TD1 whereas by TD2 6− 3 = 3
giving shorter encoding.

λ

o 3

e 0
?

h 6
?

t 1

M 33
?

C 34
?

A 30
?

\n 76
?

. 66

������)

PPPPPPq

������)

Figure 7.4: Example of a set for TD2 and TD3

7.4.3 Text-Based Set of Strings

It is sometimes useful to partition the set of all strings into several disjoint
categories. It is possible that the join of the categories does not cover the set
of all possible strings over Σ. In this case it is necessary to ensure that the
input strings always fit in the given categories.

For the text compression purposes this requirement can be met e.g. by
a proper input string selection (partition of the input message into properly
formed subparts). Words and syllables are special types of such strings.

Version Using Types of Strings – TD3

Words and syllables are special types of strings. According [2] we recognize
these five types of words (and syllables): lower-case words (from lower-case
letters), upper-case words (from upper-case letters), mixed words (having the



CHAPTER 7. LARGE ALPHABET COMPRESSION 78

first letter upper-case and the following letters lower-case), numeric words
(from digits), and other words (from special characters). We know the type
of a coded string for some nodes in the trie (in Fig. 6 IsKnownTypeOfSons)
and we can use this information.

If a string begins with a lower-case letter (lower-case word or lower-case
syllable), the following letters must be lower-case too. In a trie each son of
a lower-case letter can be only a lower-case letter too. Similar situation is
for other words and numeric words. If a string begins with an upper-case
letter, we must look at the second character to recognize the type of the
string (mixed or upper). In our example (Fig. 7.4) we know for the nodes
’t’, ’o’, ’h’ and ’e’ that all their sons are lower-case letters.

In the new ordering described in the version TD2 it is given for each
character type some interval of the new orders. Function first returns for
each type of characters the lowest orders available for given character type.
Function first is described in Tab. 7.2.

type of characters lower-case letter upper-case letter digit other
first(type) 0 28 54 64

Table 7.2: Values of function first

We are counting and coding (Alg. 6, lines 15-17) the distances between
the sons. For the first sons of some nodes of a known type, we can use
function first and decrease the value of the distance and shorten the code.
We modify the version TD2 by a modifying of the line 9 and inserting the
lines 10 - 13 getting the version TD3.

We show the differences between TD3 and TD2 on our example (Fig. 7.4).
We start directly by the node ’t’. Here we must first encode the number

of the sons of this node (2), we write gamma0(2) = 011.
Then we state that the already represented word (string "t") is not a

part of the set by writing a bit 0.
Value of the first son of our node between its value (3) and zero (it is

the first son) is decreased by a value of the function first for a lower-case
letter (0). Encoded value is delta0(3 − 0 − 0) = 01100. Only lower-case
letters can occur in a subtrie of the node ’t’, so we can use the function
first. The encoded value is the same as in TD2 but there is a difference is in
the calculation.

Other codings are made accordingly.
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Algorithm 6 Trie compression by TD3: procedure EncodeNode3

1: input node of trie
2: output encoded node and its subtree
3: output(WriteGamma0(node.count)) /*we encode number of sons.*/
4: if node.count = 0 then return /*we are in list, recursion ends*/
5: if node.represents then
6: output(WriteBit(1)) /*node represents string from set*/
7: else
8: output(WriteBit(0)) /*node does not represent string from set*/
9: end if

10: if IsKnownTypeOfSons(node) then
11: previous = first(TypeOfCharacter(node.extension)) /*for the first son

of the node of a known type, we can modify previous and decrease the
value of the distance*/

12: else
13: previous = 0;
14: end if
15: for i = 0, ..., node.count− 1 do
16: actual = reord(node.son[i].extension) /*we set reord e.g. according

frequency of the characters*/
17: distance = actual− previous /*we calculate distance between the son

and his left brother*/
18: output(WriteDelta0(distance))
19: EncodeNode3(node.son[i]) /*recursive calling of procedure on the

son*/
20: previous = actual
21: end for
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7.4.4 Results

— File size 100 B 1 KB 10 KB 50 KB 200 KB 500 KB 2 MB
Lang. Method 1 KB 10 KB 50 KB 200 KB 500 KB 2 MB 5 MB
CZ PS 6.719 4.409 2.074 0.855 0.523 0.319 —–
CZ FC 4.077 2.346 0.983 0.374 0.225 0.136 —–
CZ LZWD 5.359 3.233 1.423 0.562 0.343 0.204 —–
CZ CD 3.741 2.432 1.130 0.461 0.284 0.169 —–
CZ BzipD 5.285 2.952 1.227 0.468 0.285 0.168 —–
CZ TD1 4.124 2.232 0.870 0.315 0.185 0.115 —–
CZ TD2 2.944 1.594 0.638 0.240 0.143 0.093 —–
CZ TD3 2.801 1.532 0.612 0.226 0.134 0.081 —–
EN PS 5.624 2.453 1.129 0.709 0.461 0.263 0.104
EN FC 3.659 1.327 0.551 0.311 0.189 0.105 0.041
EN LZWD 4.580 1.715 0.732 0.426 0.269 0.152 0.059
EN CD 2.983 1.287 0.583 0.360 0.234 0.133 0.052
EN BzipD 4.390 1.523 0.626 0.353 0.222 0.124 0.047
EN TD1 3.792 1.276 0.506 0.272 0.158 0.086 0.033
EN TD2 2.871 0.954 0.384 0.212 0.124 0.069 0.028
EN TD3 2.666 0.890 0.354 0.195 0.116 0.063 0.024
GE PS 5.820 4.410 1.877 0.993 0.593 0.356 0.171
GE FC 3.697 2.476 0.875 0.422 0.241 0.142 0.063
GE LZWD 4.259 2.995 1.139 0.580 0.345 0.202 0.104
GE CD 3.068 2.360 0.997 0.530 0.315 0.185 0.091
GE BzipD 4.127 2.689 0.949 0.479 0.285 0.166 0.087
GE TD1 3.952 2.539 0.832 0.377 0.207 0.122 0.045
GE TD2 3.020 1.914 0.627 0.284 0.157 0.097 0.035
GE TD3 2.730 1.805 0.599 0.275 0.150 0.086 0.033

Table 7.3: Set of syllables: Compression ratio (Compared with the size of a
whole file) in bits per character

We have tested three versions of the method compressing the set of us-
ing the trie data structure (TD – variants TD1, TD2, TD3), one method
compressing the dictionary character-by-character (CD), two methods using
external compressing methods for the concatenated directory items (LZWD,
BzipD), and front compression method (FC). As basic measure we have used
simple store of the strings in pascal format (length and characters; PS).

It is necessary to note that TDx methods assign to each string form the
set an unique identifier, so they transformation the set into dictionary.

We tested the sets of words and syllables for variously sized documents
written in the following three languages: English (EN), German (GE), and
Czech (CZ).

The best for the sets of syllables to be the method TD3 that outperformed
all other tested methods on all tested document sizes. For example, when
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— File size 100 B 1 KB 10 KB 50 KB 200 KB 500 KB 2 MB
Lang. Method 1 KB 10 KB 50 KB 200 KB 500 KB 2 MB 5 MB
CZ PS 7.245 6.390 4.969 3.360 2.809 2.162 —–
CZ FC 5.842 4.613 3.064 1.775 1.375 0.976 —–
CZ LZWD 5.984 4.549 3.076 1.934 1.557 1.161 —–
CZ CD 4.378 3.830 2.948 1.968 1.648 1.260 —–
CZ BzipD 5.784 4.045 2.559 1.582 1.255 0.921 —–
CZ TD1 8.443 6.520 4.146 2.250 1.713 1.178 —–
CZ TD2 5.935 4.531 2.874 1.550 1.176 0.814 —–
CZ TD3 5.781 4.462 2.844 1.534 1.167 0.800 —–
EN PS 5.734 3.310 2.057 1.604 1.314 0.860 0.375
EN FC 4.620 2.342 1.297 0.894 0.676 0.420 0.169
EN LZWD 4.699 2.195 1.203 0.872 0.687 0.443 0.189
EN CD 3.100 1.776 1.095 0.847 0.695 0.454 0.197
EN BzipD 4.508 1.915 1.002 0.714 0.563 0.361 0.154
EN TD1 6.320 3.144 1.698 1.108 0.813 0.498 0.191
EN TD2 4.526 2.142 1.144 0.753 0.554 0.341 0.132
EN TD3 4.219 2.062 1.110 0.734 0.544 0.333 0.128
GE PS 6.497 5.550 3.289 2.391 2.031 1.485 1.430
GE FC 5.108 4.117 1.983 1.319 1.064 0.733 0.660
GE LZWD 4.712 3.634 1.819 1.227 0.996 0.706 0.716
GE CD 3.582 3.091 1.787 1.293 1.096 0.799 0.789
GE BzipD 4.409 3.216 1.506 1.001 0.797 0.558 0.565
GE TD1 7.187 5.748 2.585 1.700 1.383 0.945 0.844
GE TD2 4.985 3.885 1.691 1.094 0.875 0.601 0.534
GE TD3 4.699 3.776 1.660 1.085 0.867 0.591 0.532

Table 7.4: Set of words: Compression ratio (Compared with the size of a
whole file) in bits per character

compressing a 10 KB document, TD3-compressed set takes about 770 bytes
whereas the second best method (CD) takes about 1450 bytes. In the case
of the compression of dictionaries of words the best-performing method has
been for small documents (up to 10 KB) CD, for middle-sized documents
BzipD, and for large documents TD3. The boundary between ‘middle-sized’
and ‘large’ documents is in this case dependent on the used language: for
Czech it was about 50 KB, for English about 200 KB and for German about
2 MB.

It seems that the success of the TD methods (TD3 inclusive) grows with
the average arity of the trie nodes. The syllables are short and the trie
representing a set of syllables is typically dense, hence the TD3 method has
been always the best.

German language has a lot of different and long word forms, the trie repre-
senting such set is quite sparse and therefore the TD3 method outperformed
other methods only for set of strings of very large documents.



CHAPTER 7. LARGE ALPHABET COMPRESSION 82

English typically uses less word forms than Czech and German. These
word forms are often shorter than the ones used in Czech and German. The
trie is then for smaller documents quite sparse and therefore our compression
method outperforms the other ones only for larger documents.

In Czech the documents are typically made form a lot of middle-sized
words and the tries (made from set of strings) are therefore quite dense. It
is the reason why the method has been so successful for the dictionaries of
Czech documents.

We also tested to compression of the set of strings by sharing suffixes
instead on prefixes. The results were on our tested documents sets very
similar to the prefix-sharing implementation.

7.4.5 Conclusion

We have proposed two universally applicable methods and one method ad-
vancing from a specific set of strings type. All the proposed methods repre-
sent the set of string by a trie data structure.

The better universal one (TD2) has compressed the set of syllables for
given files better than any other general tested methods have. It has been
outperformed only by the TD3 method which uses some additional knowl-
edge (specific for document compression) of the set of strings structure. Both
methods are also the most successful methods (in their categories) for com-
pression of set of words of large documents.

Such sets are used by many word-based and syllable-based compression
algorithms. Improving compression ratio of the set of strings improves (al-
though with smaller impact) the overall compression ratio of these methods.

The goal of this chapter was find some suitable semi-adaptive method
for the compression of the alphabet used by syllable-based or word-based
compression methods. TD3 method is more successful than other methods
commonly used in word-based methods.

Some improvements of TD3 method, called TD4A, ..., TD4H, TDAR, ...,
TD4HR are described in [63]. Elias codes are replaced by Huffman coding and
nodes with only one son are compress specially. Bitmap compression is used
on bits indicate whatever nodes represents elements of the set. Some of these
methods achieved compression ratio better than TD3. The improvement for
large files is up to 20-30 %. These results we will publish in the future.
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7.5 Sets of Characteristic Syllables

Text compression methods are usually applied on large files or collections of
large files. We suppose that it is interesting to search also for compression
methods effectively applicable on large collections of individually accessible
small files (i.e. without using tar to convert the collection to a large file or
creating ”solid” archive). For instance, in the WWW environment the access
to small or middle-sized html pages is necessary.

Many compression methods require some minimal file size to be useful
(effective enough). In the case of text documents this minimal file size is
given by the need of transfer the used alphabet between coder and decoder.
We suppose that for processing of a collection of small individually acces-
sible documents it is possible to improve the lower bound of compression
methods by a proper initialization of the compression dictionary. In case of
syllable-based compression we can choose some syllables which are frequently
used in given language and create from those strings the set of characteristic
syllables of a given language. Similar approach can be made for word-based
compression too, there we will have set of characteristic words.

7.5.1 Creating and Criteria

It is not easy to create a set of characteristic syllables of a given language.
Such sets may be then used as initial dictionaries for the different compression
methods. The set of characteristic syllables can have a crucial impact on the
achieved compression ratio: If there are too many syllables in this set, it
may happen that most of them are not used during the compression and the
codes of useful syllables are therefore unnecessarily big. The second extreme
occurs when the set of characteristic syllables is empty. Then each syllable
must be on its first occurrence encoded character by character what is rather
expensive. An optimal set of characteristic syllables is a compromise between
these two approaches.

The sets of characteristic syllables differ for different languages and for
different algorithms of partitioning words into syllables. The criteria for in-
clusion into the set are, however, uniform. The syllable or word included into
sets of characteristic syllables should be characteristic for a given language
(and a given algorithm of decomposing words into syllables). We have to de-
cide how many syllables we can put into the sets of characteristic syllables.
The criteria for syllables to be included into sets of characteristic syllables
are important.

The following two criteria seem to be reasonable:
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• cumulative criterion – the quotient of the number of syllable occur-
rences and that number for all syllables; and

• appearance criterion – in how many documents the syllable occurred
at least once.

• genetic algorithm criterion – set of characteristic syllables was assem-
bled using a genetic algorithm

For the creation of a set of characteristic syllables it is necessary to have
a sufficiently large set of testing documents that are by their contents char-
acteristic for the given language. Both the documents and the collection
should be of middle or large size to support better the appearance criterion.
When the set of testing documents is selected improperly, it can happen
that some rare words or syllables could be included into the set of charac-
teristic syllables what could make the set too large. It can also happen that
some words or syllables that are for the given language quite common would
not be included into the set of characteristic syllables. The influence of the
proper setting of set of characteristic syllables is important especially when
compressing small files. We have experimentally verified that there are quite
large differences in compression efficiency when different training sets were
used.

Using the compressed set of documents for setting up the set of charac-
teristic syllables can improve the compression ratio by up to 10% (comparing
the best method (GA) and the worst one (C65) on smallest files). At the
same time the set of characteristic syllables are reasonably small, up to the
size of 100 KB. However for each combination of language and hyphenation
algorithm there has to be one set of characteristic syllables. The creation
of the set takes some time, but luckily is performed only once and the re-
sulting set of characteristic syllables file can be distributed along with the
compression program.

7.5.2 Cumulative Criterion

In our work [2] the cumulative criterion has been used. The sets of character-
istic syllables were initialized with syllables occurring in more than 1/65,000
of all occurrences of all syllables (or words) throughout the whole collection
for given a language. Let us call this set C65.

It could happen that the set of characteristic syllables contained syllables
that were very frequent in just a few documents and did not occur in the
other documents. For example some main character of one book can have a
name, which contains some really rare syllables. Although these syllables are
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not very common in the given language, and although they have appeared
only in one single document of the training set, they would be included in
the set of characteristic syllables.

7.5.3 Appearance Criterion

In our work [4] the appearance criterion has been used. We suppose that it
is better to use the appearance criterion than cumulative criterion as it saves
more syllable definitions throughout the whole collection. We tried to create
different sets of characteristic syllables with different initial settings (further
called Axx where xx stands for minimal percentage of documents where the
syllable occurred). For comparison we have created sets of characteristic syl-
lables occurring in at least 20% (A20), 40% (A40), 60% (A60), or 80% (A80)
documents. We have also tested other Axx sets of characteristic syllables
(for all multiples of 5), but their behavior was not much different from the
main sets of characteristic syllables A20, A40, A60 and A80.

There are sizes of sets of charactersitc syllables and sets of charactersitc
words in Table 7.5.

set of English Czech German
characteristic words syllables words syllables words syllables
A05 458 151 701 114 688 166
A20 174 84 152 64 163 79
A40 80 53 49 40 63 48
A60 41 35 21 26 27 32
A80 17 22 8 15 11 18
A100 1 2 1 2 1 3

Table 7.5: Sizes of sets of characterstic syllables and words (in KB)

7.5.4 Genetic Algorithm Criterion

While the precedent two criteria (cumulative and appearance) were more
like heuristics with no solid theoretical grounds, the method described in our
article [14] has been based on genetic algorithms.

In 1997, Üçolük and and Toroslu have published an article [110] about
use of genetic algorithm in text compression for Turkish. Ideas presented in
our paper [14] are strongly influenced by the results of their research, so let
us give a brief summary of their method.
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Üçolük and Toroslu have studied compression based on Huffman encoding
upon mixed alphabet of characters and syllables1. This alphabet is appar-
ently a subset of union of all characters and syllables. The issue is, which
syllables should be included to ensure the optimal length of the compressed
text. Observations suggested, that including nearly all the syllables usually
led to the best results. To prove this theory, the whole power set of the set
of all syllables had to be examined. A genetic algorithm has been designed
for this task.

Nice overview of genetic algorithms can be found in [47]. The general
principles are well known: Candidate solutions are encoded into individuals
called chromosomes. Chromosomes consist of genes, each encoding particular
attribute of the candidate solution. The values that each gene can have are
called alleles. The encoding can be done in several different ways: binary
encoding, permutational encoding, encoding by tree, and several others. A
population of individuals is initiated and then bred to provide an optimal
solution. The breeding is performed by two genetic operators – cross-over,
in which the two selected chromosomes exchange genes, and mutation, where
the value of a random gene is switched. The quality of a candidate solution
is represented by so-called fitness. Fitness has influence on the probability,
that the chromosome will be selected for mating. The higher the value of the
fitness function, the better the solution and the better chance, that genes of
the individual will carry over into next generations. After certain amount of
generations the algorithm should converge to the optimum.

In this particular case the candidate solution is represented by a binary
string, where the value 1 of i-th position means including the i-th syllable
in the alphabet and 0 excluding it. The fitness represents the length of the
text, if it was coded by Huffman encoding above the candidate alphabet. But
performing compression and measuring the compressed text length would
be rather expensive; it would require the Huffman tree construction which
is known to be of order O(n log n) with considerably large multiplicative
constant. Therefore it was decided rather to estimate this value theoretically.
This can be done in linear time.

The approximation is based on two facts. The first fact can be deduced
from Shannon’s contribution [48]: If the entropy of a given text is H, then the
greatest lower bound of the compression coefficient µ for all possible codes is
H/ logm where m is the number of different characters of the text.

1Note, that this is a slightly different approach, than the one we are using. In their
concept, rare syllables are dissolved into characters every time, they occur in the coded
message, raising the occurrence of its characters. In contrast, when we come across a new
syllable, we encode it character by character and add it into the set of syllables. Next
time we read this syllable on input, we treat it just like any other syllable.
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Second, the Huffman encoding is optimal. This means the ratio of Huff-
man compression µ can be well estimated as

µ = − 1

logm

m∑
i=1

pi log pi (7.1)

where pi is the probability of the i-th character of the alphabet to occur in the
text. The probability pi is calculated as pi = ni/n, where ni is the number
of occurences of the i-th character of the alphabet in the text. Having the
compression ratio makes it easy to compute the final code length l simply by
multiplying µ by the bit-length of the uncompressed text, which is n logm.
After a little mathematical brushing up we get this formula as the desired
approximation:

l = n log n−
m∑

i=1

ni log ni (7.2)

Characteristic syllables and their determination by GA

We have already mentioned, how important the sets of characteristic syl-
lables were for the compression ratio. We have also made clear, that the
construction of these sets of characteristic syllables is a difficult issue. In this
section we will finally introduce a genetic algorithm designed for this task.

The input of this algorithm is a collection of documents in given lan-
guage, so-called training set. The algorithm returns a file containing the
characteristic syllables as its output. The encoding of candidate solutions
into chromosomes is again very straightforward; provided that the training
set contains a set of N unique syllables, every individual is represented by a
binary string of length N , where the value 1 on i-th position means including
i-th syllable in the set of characteristic syllables, while 0 means excluding it.
The role of the fitness function is played by estimated compressed length of
a specimen from the training set. We are breeding the population to find a
solution minimizing this value.

Algorithm 7 shows, how the evaluation of characteristic syllables works.
Our fitness function tries to approximate resulting bit length of the text

compressed by HuffSyll algorithm. The behaviour of this algorithm allows
us to compute this value theoretically and therefore in reasonable time. The
resulting set of characteristic syllables should be optimal for use with Huff-
Syll. It will be interesting to examine, whether this set introduces some
improvements of the LZWL effectiveness too.
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Algorithm 7 Genetic algorithm for characteristic syllables

1: input colection of texts
2: output set of characteristic syllables
3: syllable space initialization
4: generate random initial population
5: while not last generation do
6: select several texts for specimen
7: new generation = empty set
8: while size of new generation ≤ POOLSIZE do
9: A = random individual from old generation

10: B = another random individual from old generation
11: C = cross-over(A,B)
12: add C into new generation
13: end while
14: if best individuals of old generation are better than worst new indi-

viduals then
15: replace up to KEEPRATE worst new individuals with best old in-

dividuals /*application of elitism*/
16: end if
17: switch generations
18: mutate random individual
19: end while
20: output(last generation)
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Evaluating fitness

The most important part of a genetic algorithm is the fitness function. It
has to be accurate enough to provide good ordering on the set of candidate
solutions and it has to be efficient, because it is called very often. The re-
quirements concerning speed do not allow us using sophisticated calculations
with high complexity.

We have decided not to use the whole training set in the fitness evaluation,
but rather it is subset. For each generation we randomly select a specimen
and use it for computing the fitness of all individuals. This attitude has two
advantages: first, the evaluation needs less time, and second, the appearance
of the syllable in the language is taken in concern. It does not only matter,
how many occurrence the syllable has in the training set, but also in how
many texts it appears at least once, and therefore how big the chance is, that
it will appear in the specimen. After experimenting with the specimen size,
we agreed on specimen consisting of five documents.

The most accurate way of evaluating fitness would be performing the
actual compression and measuring the resulting file size. Again, this would
be unacceptably time-consuming. We had to do an approximation similar to
the one mentioned in last section.

The contribution of the characteristic syllables to the estimated bit length
may be evaluated by a formula very similar to formula 7.2. The only dif-
ference is, that we will not only work with syllable frequencies in the file,
which compressed bit length we are trying to estimate, but also with their
frequencies in the whole training set. We will refer to these global numbers
as n′i for number of occurrences of i-th syllable and n′ for the number of all
syllables in the training set. Our new formula will be as follows

l = n log n′ −
m∑

i=1

ni log n′i (7.3)

The situation will be slightly different with the syllables marked as rare
(non-characteristic). These syllables would have to be encoded character by
character in the compression. They would be initialized with lower frequency,
too. We take this into account in our approximation by adding an estimate of
bits necessary for encoding the syllable and by increasing its code bit length
by one.

The principals of the fitness evolution are outlined in pseudo code in
Algorithm 8.
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Algorithm 8 Evaluation of fitness

1: input specimen, set of syllables
2: output fitness
3: R = 0
4: for all file in specimen do
5: N ′ = 0, S = 0, P = 0
6: for all syllable in set of syllables do
7: V = number of occurrences of syllable in file
8: V ′ = number of occurrences of syllable in all the files
9: N ′ = N ′ + V ′

10: if syllable is marked as characteristic then
11: S = S + V ∗ lg2(V

′)
12: else if V > 0 then
13: S = S + V ∗ (lg2(V

′)− 1)
14: P = P+ estimated bit length of syllable’s code
15: end if
16: end for
17: N = number of syllables in file
18: R = R +N ∗ lg2(N

′)− S + P
19: end for
20: output(R)
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Setting parameters

The behaviour and effectiveness of a genetic algorithm depends on the set-
tings of several parameters. These parameters include size of the population,
probability of cross-over, probability of mutation, number of generations,
range of elitism and degree of siding with better individuals in selection.
There is no general rule for setting these parameters. The situation is even
more complicated by the fact, that these parameters often act in a rather
antagonistic manner.

Most authors [47] writing about evolutionary computing agree, that among
these parameters the one most important is the size of the population. Pop-
ulation too small does not allow the algorithm to sufficiently seek through
the whole search space. Inadequately large population leads to consuming
too much computational power without much significant improvement in the
quality of the solution. Optimal size depends on the nature of the problem
and on its size2. Yong Gao insists, that the dependency with size is linear
[46]. We have experienced good results with populations of several hundreds
individuals.

One thing that is tight very closely to population size is the type of
cross-over. In [99] the advantages of different types of cross-overs (one-point,
two-point, multi-point and uniform) are discussed. We have decided for
multi-point cross-over, because of its positive effect, when used with smaller
populations. It prevents the algorithm from creating unproductive clones.
We have set the number of cross-over points to the value of 10.

Elitism is an instrument against loosing the best solution found so far.
It means, that instead of replacing whole old population with the new one,
we keep several members of the old population as long as they are better
than the worst members of the new population. Too much elitism may cause
premature convergence, which is a really unpleasant consequence. To avoid
this, we restrict elitism to small number of individuals, about one percent of
the population.

In selection, better individuals are treated with favor; better chromosome
has higher chance to be chosen, than the one below standard. The probability
p, that an individual is chosen, may be formalized by

p(xi) =
k − f(xi)

nk −
∑n−1

j=0 f(xj)
(7.4)

where n stands for population size, f for fitness and constant k is set
equal to maxx∈P (f(x)) +minx∈P (f(x)). P stands for the population.

2size of problem is defined as length of candidate solution encoding
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7.5.5 Experimental Results

We tested, how the use of different sets of characteristic syllables affects the
compression ratio of LZWL and HuffSyllable programs. Results can be seen
in Table 7.5.5. GA stands for genetic algorithms, C65 for cumulative criterion
and A20 - A80 for several different sets of characteristic syllables assembled
by appearance criterion.

We have tested two different languages, Czech (CZ) and English (EN).
For each language we used 7000 testing documents of size. Czech ones were
from [41] (69 files, size 10 KB - 1 MB) and [81] (6931 files, size 1 - 50 KB),
while English documents were from [82] (333 files, size 10 KB - 5 MB) and
[30] (6667 files, size 5 KB - 100 KB). The universal middle-left hyphenation
algorithm (PUML) was used.

7.5.6 Conclusion

We introduced several different approaches for creating a dictionary of fre-
quent syllables. Cumulative criterion (C65) and several kinds of appearance
criterions (A20 – A80) were heuristic based on our assumption only. On
the other hand the method using genetic algorithms (GA) was based on the
theory.

The measurement performed uncovered several interesting facts.

Good choice of sets of characteristic syllables is the most important
for smallest files. When compressing files larger than 200 KB it is
insignificant

The set of characteristic syllables based on A20 appearance criterion is
nearly as good as the genetic based set of characteristic syllables, while
its creation is much less time-consuming.

The applicability of different sets of characteristic syllables slightly dif-
fers for different languages.

Huffsyllable and LZWL gave best results when used with different sets
of characteristic syllables. LZWL was most efficient with A60 and A80,
while HuffSyllable with A20 and GA.
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Lang. Method Dict. 100B-1KB 1-10KB 10-50KB 50-200KB
CZ HuffSyll C65 5.32 4.67 4.10 3.85
CZ HuffSyll GA 4.70 4.31 3.99 3.81
CZ HuffSyll A20 4.71 4.31 3.97 3.79
CZ HuffSyll A40 4.77 4.36 3.99 3.81
CZ HuffSyll A60 4.85 4.43 4.05 3.85
CZ HuffSyll A80 5.07 4.62 4.18 3.92
CZ LZWL C65 6.30 5.19 4.24 3.75
CZ LZWL GA 6.15 5.23 4.29 3.76
CZ LZWL A20 6.15 5.22 4.28 3.74
CZ LZWL A40 5.93 5.03 4.20 3.74
CZ LZWL A60 5.74 4.95 4.18 3.76
CZ LZWL A80 5.85 5.00 4.24 3.81
EN HuffSyll C65 4.84 3.84 3.39 3.24
EN HuffSyll GA 4.04 3.46 3.26 3.20
EN HuffSyll A20 3.95 3.46 3.27 3.19
EN HuffSyll A40 3.95 3.46 3.25 3.18
EN HuffSyll A60 3.93 3.45 3.25 3.19
EN HuffSyll A80 3.98 3.48 3.27 3.22
EN LZWL C65 5.89 3.77 2.88 2.73
EN LZWL GA 5.30 3.63 2.87 2.74
EN LZWL A20 5.45 3.73 2.91 2.73
EN LZWL A40 5.18 3.55 2.84 2.71
EN LZWL A60 5.14 3.53 2.80 2.70
EN LZWL A80 4.93 3.43 2.77 2.72

Table 7.6: Effect of characteristic syllables in compression of texts. Com-
pression ratio in bits per character.



Chapter 8

Large Text Files Compression

Our motivation for compression of large text files has been fulltext system
EGOTHOR [45]. These files have size around 20MB and were formed by
concatenation of hundreds of web pages. The cached web pages are mostly
textual and contain lots of HTML tags. However the web pages are usually
not XML nor HTML well-formed hence special methods for compression of
XML can not be used since they require well-formed or even valid documents.

Very common error found in HTML pages is that one tag has more at-
tributes with the same name. Another common problem is inconsistent pair-
ing of opening tag with closing pair. More on this topic can be found in [8].

Our goal was to merge compression methods for text (syllable, word) with
methods for the compression of XML and in addition to allow compression
of documents that are not well-formed. Furthermore we wanted to take ad-
vantage of the fact that these documents contain XML tags even though it
need not be well-formed. Important factor has been the size of documents,
which has been 15-20 MB. We decided to use Burrows-Wheeler transforma-
tion as basis for compression method since it yields very good results when
big blocks are compressed.

8.1 Project XBW

Solution of the introduced problems is the project XBW, experimental re-
sults of this project were published in [16]. Project’s homepage [15] contains
executable version, source codes and detailed documentation including the
results.

94
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The main idea of the project XBW has been to design a system com-
posed of modules for particulad compression methods (BWT, MTF, RLE,
LZC, LZSS, PPM, arithmetic coding, Huffman coding), parser and methods
TD1, TD2, TD3 (TDx module) for compression of set of used source units.
Connection of modules in describes in Figure 8.1. Some modules are optional
and only one module from RLE, LZC, LZSS, and PPM can be selected.

In order to allow easy connectivity data exchange among the most mod-
ules is done via simple interface consisting of a data structure array (an array
of integers and its size). All implemented compression methods had to be
modified for compression using large alphabet since their input has been an
array of integers and not an array of characters.

Another goal has been high configurability of system in order to perform
wide range of experiments. For example by setting just one parameter, use of
BWT or MTF or BWT+MTF before using methods such as RLE, PPM, LZC
or LZSS can be tested. How do these results vary for syllables, words and
characters? How will the results differ if these methods will use arithmetic
or Huffman coding as entropy coder? For many methods there is choice for
using adaptive and semi-adaptive variant.

8.2 Parts of Project XBW

The diagram of program XBW is shown in Figure 8.1. An input file is split
into source units (characters, syllables, words, XML tags - depending on
settings). The output of this parser is an array of these source units, which
represent the original file. Another output of the parser is a set of used source
units, which is sent into TDx module where is encoded.

Next follow two transformations BWT and MTF, which can be indepen-
dently turned off. After transformations follow compression methods RLE,
LZC, LZSS and PPM which can only be used in final stage.

Compression methods RLE, LZC, LZSS and PPM use along with module
TDx also module AC/HC, which performs entropic coding using arithmetic
or Huffman coding.

8.2.1 Parser

Parser can read documents in different encodings including UNICODE. It
can also use structure of XML even when the document is not well-formed.
Output of parser is set of the source units (words, syllables, characters),
which are in the input document and array of integers where one integer
represents one source unit.
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Figure 8.1: Architecture of XBW

The resulting array can be further processed by any compression method,
but the set of source units has to be sent to module TDx, which compresses
this set using TD1, TD2, or TD3 method.

Processing of XML

The Parser creates two separate dictionaries - one for elements and one for
attributes of tags. When new item (element or attribute) is recognised it is
searched for in dictionary and in case it is not found it is added into cor-
responding dictionary and assigned first available number, which will be its
identifier. The name of the item is written to output just after the new iden-
tifier. This ensures that the dictionaries do not need to be coded explicitly
and can be reconstructed during the extraction using already processed part.

We use special symbol EA that is used in three ways. It denotes the
end of tag attribute and start of its content (in the example the second
occurrence of EA). Second usage is replacing end character for tag (third
occurrence of EA). Third way of using it, is separating the end of attribute
from the beginning of its value (first occurrence of EA). Parser determines
the meaning of the symbol EA by context.

Because we compress also non well-formed documents we need a special
symbol EE that indicates that closing tag follows which should not be in
that place. After the symbol EE we specify which tag is present.
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Example 8.1 Suppose the input

<book>

<note importance="high">money</note>

<note importance="low">your money</note>

</note>

Then the dictionaries look like

Element dictionary
E1 book
E2 note
E3 empty

Attribute dictionary
A1 importance
A2 empty

and output is the array E1 book E2 note A1 importance EA high EA
money EA E2 A1 low EA your money EA EE E2.

8.2.2 Compression of Set of Used Elements

One of the products of parser is set of used source units (words, syllables,
characters). This set is stored in data structure trie, which is implemented in
module TDx that can be compressed using methods TD1, TD2 and TD3 as
described in Chapter 7.4. TD3 is used as default method because it obtained
the best results in experiments.

Methods TDx have a very good compression ratio because they compress
the set of source units as whole and not separate source units on their own.
In addition methods TD2 and TD3 use the fact that syllables and words
from natural language are compressed.

8.2.3 BWT

In project XBW a few algorithms for BWT [29] are implemented having
different asymptotic complexity. Repetitiveness of file, AML, is defined as
average length of common prefixes for all rotations of input string. The
fastest algorithm for files that are not too repetitive (AML < 1000) is Kao’s
modification of Itoh’s algorithm [57], which has complexity O(AML·n·log n),
where n is the length of the input string. For very repetitive files algorithm
by Karkkainnen and Sanders [58] with complexity O(n) performs the best. A
comparison of different methods for BWT over large alphabet can be found
in our work [19].

A very important factor for BWT is the block size, which is transformed at
once, because compression methods used after BWT give better compression
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ratio for larger blocks. For example, in bzip2 algorithm, the maximum block
size is 900 KB. We decided to choose the block size so that any document
up to 50MB could be considered as a single block. Again this value can be
set as parameter in program XBW.

The choice of the algorithm for BWT has no influence on the compression
ratio, it plays a key role in the time performance. Large blocks require more
resources, but thanks to using words as source units we can diminish this
factor. Compared to bzip2, which uses 900 KB blocks, BWT runs only twice
longer with 50MB block size while yielding much better compression ratio.

Module BWT can be turned off and then the transformation is skipped.
This is useful for testing compression using methods LZC, LZSS or PPM.

8.2.4 MTF and RLE

Combination of the methods MTF and RLE is the most widely used approach
for the second phase in the block compression after BWT. In the project
XBW this is only one of the possibilities. MTF is a reversible transformation,
which can be turned off. RLE is one of the final methods (other alternatives
are LZC, LZSS and PPM).

Method MTF is programmed using splay tree [56], which improves per-
formance especially for large alphabet.

Method RLE is present in three variants: RLE1, RLE2 and RLE3 where
RLE is used by default.

In the variant RLE1, repeating sequence of source units is replaced by
three symbols. First is an escape sequence, which indicates that following
are the symbol and number of occurrences. Compression alphabet in this
case is increased only by escape symbol.

For the variant RLE2 the orginal alphabet is doubled; we add one escape
symbol for each symbol from alphabet. Repeating sequence of source units is
coded by pair of escape symbol for the source unit and number of occurrences.

When variant RLE3 is used we add special symbol for each source unit
and number of its occurrences. Then repeating sequence of source units is
replaced by special symbol for the source unit and its number of occurrences.
This method is useful only for very large files or for very small alphabets set-
ting small maximal length of repeating sequence. Otherwise the compression
ratio is bad due to the extent of the alphabet.

8.2.5 Dictionary Methods and PPM

One of the goals of project XBW has been to test use of alternative methods
to BWT + MTF + RLE. We chose to use dictionary methods LZSS [100]
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and LZC [50] and the statistical method PPM [33]. These methods have also
been implemented to support use of large alphabet.

Method LZSS we implemented as opposed to original method uses en-
tropic coder for values D, L and N (see section 2.5.2). Similar idea is used
in gzip [44].

Method PPM is configurable by run time parameters. Implemented are
variants PPMA, PPMB and PPMC and for all of them the length of context
and usage of exclusions can be set. Other variants of PPM (for example
PPMD [53] or PPMII [95]) can be added in future.

As part of project XBW these methods have common distinct place as
well as RLE that after them no compression method or transformation can
be used. This is due to fact that these methods call directly entropic coder
(Huffman or arithmetic) and their output is not an array of integers that is
input of all other methods.

8.2.6 Entropic Coders

Project XBW implements Huffman coding (HC) and Arithmetic coding (AC),
both in static and adaptive version. In addition, versions for improving speed
for compression with large alphabet have been implemented. A static ver-
sion of Huffman coding is implemented as the canonical version [75] and for
adaptive arithmetic coding Moffat Tree [74] is used.

The most important property of this part is that the interface for Arith-
metic and Huffman coding is identical, so in order to choose coding it is suf-
ficient to change preprocessor definition parameter and recompile program.
Arithmetic coder is set by default.

This is the only module that writes data to output file. Hence it is used by
compression methods, which can only stand as last in queue of compression
methods (RLE, LZC, LZSS, PPM) and it is also used by module TDx that
codes the set of used source units.

8.3 Ambiguity of Name XBW

The name XBW has not been chosen very appropriately, because it can be
easily mistaken for name ”xbw transform” used by the authors of paper [42]
from October 2005 for XML transformation into the format more suitable
for searching. In another article [43] from May 2006 these authors renamed
the ”xbw transform” to ”XBW transform”. Moreover they used it in com-
pression methods called XBzip and XBzipIndex. We use name XBW since
July 2006 [7].
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Another confusion in naming is also caused by the fact that originally we
used XBW in our articles [7, 10, 13, 12] for naming syllable BWT + MTF
+ RLE for valid XML files. In project XBW which we named the same
way, only the main idea for compression of XML using BWT remains, but
otherwise it is completely different implementation.

Name XBW is used for naming different things in computer science and
elsewhere, for example [34]. Luckily they have nothing to do with XML or
compression, hence are not interchanged with our XBW.

8.4 Corpora

Our corpus is formed by three files which come from search engine EGOTHOR.
The first one is formed by web pages in Czech, the second in English and
third in Slovenian of respectives sizes 24MB, 15MB, 21MB. The values of
AML, describing their repetitiveness, are approximately 2000. Information
about compression ratio of XBW on standard corpora Calgary, Cantebury
and Silesia can be found in [15].

bpB Method
Parser File BWT LZC LZSS PPM

xml cz 0.907 2.217 2.322 1.399
None xml en 0.886 2.044 2.321 1.292

xml sl 0.710 1.982 2.010 1.205
TOTAL 0.834 2.093 2.213 1.305

xml cz 0.906 2.206 2.296 1.395
Text xml en 0.887 2.044 2.321 1.292

xml sl 0.710 1.979 2.003 1.204
TOTAL 0.833 2.087 2.200 1.303

xml cz 0.894 2.073 2.098 1.320
XML xml en 0.874 1.915 2.115 1.239

xml sl 0.700 1.850 1.797 1.129
TOTAL 0.822 1.957 1.998 1.234

Table 8.1: Influence of parser on compression ratio for alphabet of characters.

8.5 Results

First we list results of program XBW for various compression methods and
the effect of parser on the results. Then we show an influence of alphabet.
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MB/s No Parser XML Parser - Characters

BWT LZC LZSS PPM BWT LZC LZSS PPM
xml cz 0.368 3.587 1.498 0.106 0.457 2.668 1.418 0.091
xml en 0.419 4.028 1.297 0.125 0.544 2.915 1.249 0.104
xml sl 0.386 4.258 1.638 0.119 0.500 2.915 1.497 0.091

TOTAL 0.386 3.906 1.485 0.115 0.491 2.810 1.397 0.094

Table 8.2: Influence of parser on compression speed

MB/s No Parser XML Parser - Characters

BWT LZC LZSS PPM BWT LZC LZSS PPM
xml cz 4.260 4.724 5.257 0.117 2.577 3.156 3.415 0.096
xml en 4.417 4.999 5.417 0.142 2.705 3.397 3.606 0.110
xml sl 4.918 5.236 5.946 0.134 3.012 3.299 3.672 0.097

TOTAL 4.509 4.960 5.519 0.128 2.747 3.263 3.548 0.099

Table 8.3: Influence of parser on decompression speed

At the end we compare results of XBW using optimal parameters with com-
monly used programs Gzip 1.2.4, Rar 3.7.1, szip 1.12, PPMonstr [96], Bzip2
1.0.4, and ABC 2.4 [22].

All published results have been obtained using arithmetic coder. BWT
has been run over whole input at once followed by MTF and RLE (parameter
RLE=2). PPM (variant of PPMC) run with parameters PPM exlusions=off
a PPM order=5. The exclusions has been set off, because the exclusions
have improved compression ratio only unsignificantly but they have decreased
compression speed significantly.

The size of compressed files includes coded dictionary which is created
always when parser is used. Compression ratio is listed in bits per byte.

The run time has been measured under Linux and stands for sum of
system and user time. This implies that we list time without waiting for
disk. The run time of ABC has been measured under Windows XP, because
this program do not support Linux. Measurements has been performed on
PC with processor AMD Athlon X2 4200+ with 2GB of RAM. The data is
in megabytes per second where the uncompressed size of file is used both for
compression and decompression.

We use the abbreviation Char. for Characters in some tables. Table 8.1
shows the results of compression ratio for various methods for alphabet of
characters. These results show effect of XML, which improves the compres-
sion ratio by approximately ten percent.

Next in Tables 8.2 and 8.3 we list the speed of program with and without
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parser using alphabet of characters. Results show that in almost all cases the
parser degrades the speed. The reason is that we have to work with dictionary
and the time saved by slightly shortening the input does not compensate for
the work with dictionary. The exception is compression using BWT. Here
the shortening the input and decreasing its repetitiveness significantly fastens
BWT, which is the most demanding part of block compression.

bpB Method
XML Parser File BWT LZC LZSS PPM

xml cz 0.894 2.073 2.098 1.320
Characters xml en 0.874 1.915 2.115 1.239

xml sl 0.700 1.850 1.797 1.129
TOTAL 0.822 1.957 1.998 1.234

xml cz 0.854 1.796 1.841 —
Syllables xml en 0.836 1.626 1.785 —

xml sl 0.664 1.559 1.541 —
TOTAL 0.783 1.672 1.723 —

xml cz 0.857 1.683 1.654 —
Words xml en 0.830 1.514 1.558 —

xml sl 0.668 1.457 1.390 —
TOTAL 0.785 1.563 1.539 —

Table 8.4: Influence of alphabet on compression ratio

MB/s XML Parser - Characters XML Parser - Words
BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 0.457 2.668 1.418 0.091 1.587 0.279 1.477 N/A
xml en 0.544 2.915 1.249 0.104 2.009 0.920 1.093 N/A
xml sl 0.500 2.915 1.497 0.091 1.566 0.443 1.349 N/A

TOTAL 0.491 2.810 1.397 0.094 1.666 0.399 1.319 N/A

Table 8.5: Influence of alphabet on compression speed

Method commonly used for text compression is the use of words as source
units. In Table 8.4 we show the influence of alphabet on compression ratio.
For textual data in English best compression ratio is achieved with using
words and method BWT. For Czech and Slovenian the syllables are better,
because these languages have rich morphology. One word occurs in text
in different forms and each form is added into dictionary. With the use of
syllables core of the word is added, which can be formed by more syllables,
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MB/s XML Parser - Characters XML Parser - Words
BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 2.577 3.156 3.415 0.096 3.986 3.951 3.923 N/A
xml en 2.705 3.397 3.606 0.110 4.006 4.443 4.523 N/A
xml sl 3.012 3.299 3.672 0.097 4.241 4.157 4.237 N/A

TOTAL 2.747 3.263 3.548 0.099 4.076 4.135 4.167 N/A

Table 8.6: Influence of alphabet on decompression speed

and the end of word. But these last syllables of words are common for
many words and hence there are more occurrences of then in the text. For
dictionary methods LZx the words are by far the best choice.

The effect of large alphabet on speed varies and is shown in Tables 8.5
and 8.6. For all algorithms the decompression is faster for words than for
characters. On the other hand decompression when parser with words has
been used is still slower than decompression without parser see Table 8.1.
The use of words increases the speed of compression only when BWT is
used. Significant increase in speed for BWT is due to shortening the input
and decreasing approximately three times AML. Results for PPM and words
are not shown since the program did not finish within hour.

Previous results show that the best compression ratio has the algorithm
BWT. Also it is evident that parser improves compression ratio for all algo-
rithms. The fastest compression is achieved using LZC and fastest decom-
pression using LZSS.

Our primary criterion is compression ratio and since method BWT has by
far the best compression ratio, we focus mainly on BWT. In case the speed
is priority choice of dictionary methods is advisable.

Table 8.7 contains comparison of compression ratios for different choices
of parser, which shows that words are best for English and syllables for
Czech and Slovenian. The choice of either words or syllables depends on
the size of file and on morphology of the language. For languages with
rich morphology, and for smaller files the syllables are better. Choice of
either words or syllables effects the number of occurrences of symbols from
dictionary for the input text. In program XBW we have implemented a few
methods for splitting words into syllables. Results have been obtained using
the choice Left. More details can be found in [15]. Interesting is the fact
that the XML mode of parser has small influence on compression ratio. This
is not due to incorrect implementation of parser, but due to properties of
BWT for large blocks. For example for LZx methods the effect is significant.
Again more detailed results are in [15].
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Table 8.8 show the influence of parser on the speed of program. The
fastest by far is the choice of words as source units for compression. For
decompression (see Table 8.9) the differences are small. In order to improve
the speed it is better to use parser in text mode instead of XML mode for
words.

There are many algorithms for sorting suffixes in BWT. The choice of this
algorithm has big impact of overall performance of compression. Without the
use of parser, sorting suffixes for big blocks amount up 90% of run time of
whole program. More details are in [103]. For all files the fastest is Kao’s
modification of Itoh’s algorithm [57] and it has been used in all measurements
when BWT has been used.

Run time of separate parts of program are in Table 8.11. These times
show in which parts there is the most room for improvement.

bpB No Parser Text Parser XML Parser
Char. Syllables Words Char. Syllables Words

xml cz 0.907 0.906 0.855 0.862 0.894 0.854 0.857
xml en 0.886 0.887 0.836 0.836 0.874 0.834 0.830
xml sl 0.710 0.710 0.666 0.672 0.700 0.664 0.668

TOTAL 0.834 0.833 0.789 0.790 0.822 0.783 0.785

Table 8.7: Compression ratio for BWT.

MB/s No Parser Text Parser XML Parser
Char. Syllables Words Char. Syllables Words

xml cz 0.368 0.324 1.056 1.767 0.457 1.073 1.587
xml en 0.419 0.364 1.225 2.128 0.544 1.330 2.009
xml sl 0.386 0.331 1.102 1.790 0.500 1.135 1.566

TOTAL 0.386 0.336 1.110 1.853 0.491 1.150 1.666

Table 8.8: Compression speed for BWT

MB/s No Parser Text Parser XML Parser
Char. Syllables Words Char. Syllables Words

xml cz 4.260 2.628 4.277 4.817 2.577 3.710 3.986
xml en 4.417 2.494 4.612 4.764 2.705 3.981 4.006
xml sl 4.918 2.639 4.686 5.442 3.012 3.685 4.241

TOTAL 4.509 2.598 4.494 5.002 2.747 3.765 4.076

Table 8.9: Decompression speed for BWT
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8.5.1 Influence of File Size

We compared compression ratio of different methods (LZSS, LZC, BWT +
MTF + RLE, and PPM) used in XBW on different sizes of files. We used
files files xml cz, xml en, and xml sl and their suffixes of sizes 104 B, 105 B,
106 B, and 5 ∗ 106 B. We set the parser to text mode. Results are shown in
Table 8.10. Some results for word-based and syllable-based versions of PPM
are not shown, because their compression times are longer than 5 hours.

Both word-based and syllable-based versions of LZSS and LZC have bet-
ter compression ratio than character-based for all languages and file sizes.
Word-based versions are better than syllable-based versions. There are some
exceptions for the smallest sizes of files (104 B), where character-based or
syllable-based versions sometimes outperform word-based versions.

The character-based version of BWT has the best compression ratio for
the sizes of files up to (106 B), the syllable-based version has the best com-
pression ratio for the larger sizes of files. The difference in compression ratio
between the syllable-based and the word-based version is very small and the
time of compression and decompression is about 1.5 - 2 times better for the
word-based version.

The character-based version of PPM has the best compression ratio for
the smallest sizes of files, the syllable-based version has the best compression
ratio for the middle sizes of files, and the word-based version has the best
compression ratio for the largest sizes of files. PPM has very slow compression
time, for example, the character-based version compresses files of the size
5∗106 B in 1 minute. The syllable-based version compresses this kind of files
in 1 hour and the word-based version compresses in 2 hours.

8.5.2 Comparison with Other Programs

For comparison we show the results of programs Gzip, Rar, ABC, szip,
PPMonstr, and Bzip2. Programs for compression of XML data such as
XMLPPM [32] and Xmill [66] can not cope with non-valid XML files. Hence
we could not get their results on our data. For all tested programs we used pa-
rameters for the best available compression. XBW was using only text parser
(not XML), because the other compared methods are not XML based. In
Table 8.12 we list compression ratios. Our program compresses all files the
best and is significantly better for files which are not in English.

In Tables 8.13 and 8.14 are the results for speed of compression and de-
compression. The fastest is Gzip, but it also has the worst compression ratio
and hence we compare speed of XBW only with other methods. Compression
for XBW takes less twice the minimum of the other methods (except gzip).
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Decompression is comparably fast as for Rar and ABC. Decompression speed
of Bzip2 is approximately three times faster, szip is twice faster.

The performance of XBW is sufficient for common use, however it is
slower than the speed of hard disks, and hence where speed is priority, it
is better to use program based on dictionary methods such as Gzip. XBW
has the best compression ratio and therefore it is suitable especially for long
term archiving.

8.6 Future Work

In future work on XBW we aim to focus on three directions. The first is
creation of parser which could be used also on binary data. The later is
improving the run time of program where again we see the biggest potential
in parser.

The third direction is adding new compression methods. We have only
very simple versions of PPM, we plan add some more powerfull versions like
PPMonstr [96], there exists some sophisticated alternatives of MTF [22, 90].
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bpB 104 B 105 B 106 B 5 ∗ 106 B whole
Char. 3.276 2.618 2.381 2.313 2.321

LZSS en Syllables 3.339 2.208 1.936 1.851 1.849
Words 3.468 2.167 1.764 1.623 1.582
Char. 2.900 2.618 2.381 2.313 2.296

LZSS cz Syllables 2.973 2.461 2.081 1.948 1.890
Words 3.014 2.458 1.983 1.795 1.673
Char. 2.140 2.058 2.011 1.998 2.003

LZSS sl Syllables 1.961 1.770 1.659 1.610 1.584
Words 1.946 1.750 1.580 1.485 1.403

Char. 4.247 3.178 2.654 2.257 2.044
LZC en Syllables 3.705 2.618 2.182 1.846 1.654

Words 3.749 2.536 2.062 1.729 1.530
Char. 3.897 3.435 2.767 2.549 2.206

LZC cz Syllables 3.349 2.952 2.398 2.191 1.824
Words 3.292 2.874 2.294 2.082 1.692
Char. 3.402 2.833 2.522 2.286 1.979

LZC sl Syllables 2.482 2.208 2.057 1.883 1.581
Words 2.337 2.115 1.192 1.778 1.462

Char. 3.066 1.842 1.389 1.106 0.887
BWT en Syllables 3.388 1.945 1.394 1.071 0.836

Words 3.439 1.994 1.421 1.082 0.836
Char. 2.693 2.067 1.541 1.335 0.906

BWT cz Syllables 3.088 2.259 1.588 1.334 0.855
Words 2.997 2.293 1.645 1.375 0.862
Char. 1.864 1.430 1.228 1.063 0.710

BWT sl Syllables 1.946 1.503 1.247 1.051 0.666
Words 1.871 1.538 1.284 1.083 0.672

Char. 3.353 2.204 1.742 1.454 1.292
PPM en Syllables 3.358 2.105 1.615 1.301 —

Words 3.486 2.141 1.611 1.283 —
Char. 3.024 2.456 1.906 1.709 1.395

PPM cz Syllables 3.090 2.417 1.844 1.583 —
Words 3.083 2.439 1.848 1.573 —
Char. 2.114 1.824 1.622 1.461 1.204

PPM sl Syllables 2.019 1.701 1.498 1.312 —
Words 1.991 1.723 1.503 1.311 —

Table 8.10: Influence of file size on compression ratio
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Seconds Compression Decompression
Parser BWT MTF RLE Parser BWT MTF RLE

xml cz 4.668 7.788 0.748 0.720 1.980 0.764 0.868 1.328
xml en 2.364 3.800 0.388 0.448 1.112 0.716 0.440 0.796
xml sl 3.352 7.404 0.496 0.504 1.592 0.676 0.556 0.916

TOTAL 10.384 18.992 1.632 1.672 4.684 2.156 1.864 3.04
Parser in text mode using words; BWT using Itoh; RLE - version 3

Table 8.11: Running time for different parts of XBW

bpB XBW Gzip Bzip2 Rar ABC szip PPMonstr

xml cz 0.857 1.697 1.406 1.161 1.196 1.305 1.048
xml en 0.830 1.664 1.299 0.851 0.974 1.139 0.934
xml sl 0.668 1.373 1.126 0.912 0.946 1.057 0.812

TOTAL 0.785 1.584 1.275 0.998 1.054 1.178 0.938
XBW: parser in text mode using words, Kao’s algoritm for BWT

Gzip: gzip -9; Rar: rar -m5; Bzip2: bzip2 -9; ABC: abc -9; Szip: szip -b41;
PPMonstr ppmonstr -o1 -m256;

Table 8.12: Comparison of compression ratio

MB/s XBW Gzip Bzip2 Rar ABC szip PPMonstr

xml cz 1.732 10.320 3.170 2.708 1.603 4.040 1.033
xml en 2.058 11.587 3.454 2.689 1.034 3.826 1.026
xml sl 1.758 13.713 3.245 3.190 1.645 4.196 1.076

TOTAL 1.812 11.634 3.262 2.853 1.422 3.967 1.046
XBW: parser in text mode using words, Kao’s algoritm for BWT

Gzip: gzip -9; Rar: rar -m5; Bzip2: bzip2 -9; ABC: abc -9; Szip: szip -b41;
PPMonstr ppmonstr -o1 -m256;

Table 8.13: Comparison of compression speed

MB/s XBW Gzip Bzip2 Rar ABC szip PPMonstr

xml cz 4.087 25.004 9.430 3.955 2.691 5.794 0.988
xml en 4.309 46.926 11.722 6.137 3.407 5.689 0.978
xml sl 4.614 46.986 13.132 4.775 4.101 5.438 1.031

TOTAL 4.313 34.629 11.045 4.640 2.363 5.624 1.001
XBW: parser in text mode using words, Kao’s algoritm for BWT

Gzip: gzip -9; Rar: rar -m5; Bzip2: bzip2 -9; ABC: abc -9; Szip: szip -b41;
PPMonstr ppmonstr -o1 -m256;

Table 8.14: Comparison of decompression speed
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Conclusion

This thesis is devoted to the text compression, specifically to a new approach
called syllable-based compression. Common universal compression methods
decompose the text into single characters or n-grams of these characters
and use them to compress the file. For the text compression, compression
methods often decompose the document into sequences of words (sequences
of alphanumerical characters) and non-words (sequences of the remaining
characters) and call these new strings an alphabet, over which they perform
the compression. In this work we examine the possibility of further dividing
the words into syllables and compressing the whole text over the alphabet
of syllables. At the first sight, this approach might not seem entirely logical
and one reviewer of a prestigious conference has written us that, due to the
fact that a syllable is shorter than a word, the compression ratio achieved
cannot be better than using word-based compression. It is obviously true,
due to the fact, that models used in both categories of methods are different.
In practice, the application environment determines which method, or which
category of methods is usable. Consequently, it is impossible to call one
approach better than the other, since different situations may require both
word-based and syllable-based compressions. One of the reasons may be the
fact that word-based methods use larger model than syllable-based methods.
The biggest part of the model is mostly the set of used words or syllables.
We have to encode the set of used words or syllables and transmit this set
between the encoder and decoder - in case of word-based compression, the
code for this set is greater in size [5].

During our research, we have discovered that the usefulness of word-based
or syllable-based compression depends on many factors: the language of the
document, its size and also the chosen compression method. In general, it
is important whether the document contains a large amount of words or
syllables which are used only rarely, such words and syllables disproportion-
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ally decrease the efficiency of the compression of the whole alphabet. Both
syllable-based and word-based compression is, according to our measure-
ments, usually significantly more efficient than character-based compression
for all observed compression methods in all file sizes, with the exception of
the smallest files.

Conditions Advantageous for Syllables

Advantageous for syllable-based methods and in turn disadvantageous for
word-based compression methods are the following conditions:

1. The language of the document has a rich morphology, its words have
many different forms. In the document, there will be a large amount
of words that have been used only once and encoding such dictionary
would then be inefficient (as in Czech). The opposite is English, where
words usually have a small amount of linguistic forms.

2. The language creates new words by compounding (as in German)
or by adding prefixes and suffixes (Czech, German), which leads to a
large amount of unique words, used only once across the document.
The opposite is English, where prepositions are used to change the
meaning of words.

3. The file being compressed is small in size. The smaller the size of
the file, the greater the probability that a large amount of words will
be used only once across the document.

4. The used methods are dictionary compression methods with static
initialization (LZWL), statistical methods with a higher order of con-
text (PPM) or BWT. In statistical methods of the first order and dictio-
nary methods without initialization, however, words are more efficient.
When we consider compression speed too, words have twice worse com-
pression speed than syllables for PPM and twice better compression
speed than syllables for BWT.

Compression methods can be measured according many criteria. The
most of which are compression radio, compression and decompression speed,
space used during compression and decompression. Compression methods
can be tested on various types of files, in case of text compression methods
it can be on files of different languages and sizes. We can say that syllable-
based versions of the given compression methods are more successful for some
criteria and some types of files than word-based or character-based versions.
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Syllable-based versions are outperformed by word-based or character-based
versions for different combinations of criteria and types of files. The impor-
tance of each criterion is changing in time and for each user can be different.

9.1 The Assets of the Thesis

In this thesis, we have defined several compression algorithms that were
capable of compression over alphabets of syllables, words and sometimes
even n-grams. These methods can be used for compression of pure text,
XML and even XML containing errors (non-well-formed XML). The following
list offers their overview and brief description, including interesting results.
Each compression method was tested using vast collections of data (tens of
thousands of files) in various languages (English, Czech, German, Slovenian)
and of different sizes (5 KB to 20 MB).

LZWL A dictionary compression method based on LZW method.
LZWL works over an alphabet of words and syllables. This method
shown as the first that, in the case of Czech language, syllable-based
version of some method can achieve a much higher compression ratio
than word-based version of the same method with the same settings
for some type of files.

HuffSyll A statistical compression method which is mostly first order,
but use some information from the second order of context. It works
over an alphabet of syllables and words and uses static initialization
with a characteristic words and syllables sets. For very small files, it
can achieve slightly better compression ratio than bzip2.

XMillSyl, XMLSyl Our early developed two methods specializing
on a combination of well-formed XML and text compression. These
methods were focused on small files, but the results achieved were not
too convincing. We have discovered a problem with the necessity of
real data compression, which often consists of non-well-formed XML,
which is not able to compress by existing XML compression methods.

XBW A very successful method intended for large non-well-formed
XML files. Based on Burrows-Wheeler transformation, it combines
XML and text compression and works over alphabets of words, charac-
ters, and syllables. Syllable- and word-based versions have a compres-
sion ratio almost twice better than bzip2 when compressing files 20 MB
large. The word-based version also consumes only twice the amount of
time bzip2 does in files of this size.
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TD1, TD2, TD3 Methods for the compression of a set of strings
(syllables, words) based on trie compression, used, e. a., in XBW. In
case of syllables, they are more efficient than other methods compared
(including bzip2); in case of words, they are more successful for larger
files.

9.2 Future Work

The most important findings in the area of syllable-based compression were
already discovered and published, but there is a promising field of research
for XML and common file compression.

According to our, not yet published, findings, specific algorithms for de-
composing words into syllables, using knowledge of a specific language, can
slightly improve the compression ratio in very small files. Their use, however,
is limited to very large collections of small files, for which the implementa-
tion of the algorithm and the creation of its characteristic syllables dictionary
would be profitable.

We have managed to slightly improve the HuffSyllable method and its
adaptation to arithmetic encoding. The resulting method, called AritSyll, is
being prepared for publishing.

For the methods for the compression of a set of strings, we have not yet
published a set of improvements called TD4A through TD4H, which replace
Elias’s codes delta and gamma with static and adaptive Huffman encoding,
effectively encode nodes with just one child and also effectively store the bit
map for the information whether a certain node represents an element of the
dictionary.

XBW is a powerful program. Due to the possibility of combining various
compression methods, many compression methods can be added and more
interesting results can be published in the future. There is one example: the
statistical lossless compression method MSC [20] has the best results when
MSC is used the combination BWT + MTF + MSC.
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K., Snášel, V., Pokorný, J. (Eds.): Proceedings of the Dateso 2005
Annual International Workshop on DAtabases, TExts, Specifications
and Objects. CEUR-WS, Vol. 129, (2005) 32–45.

[3] Lánský, J., Žemlička, M.: Compression of Small Text Files Using Sylla-
bles. In: Storer, J. A., Cohn, M. (Eds.): Proceedings of 2006 IEEE Data
Compression Conference, IEEE Computer Society Press, Los Alamitos,
California, USA (2006) 458.
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[14] Kuthan, T., Lánský, J., Genetic algorithms in syllable based text com-
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[38] Dvorský, J. Word-Based Compression Methods for Information Re-
trieval Systems. Doctoral Thesis, Faculty of Mathematics and Physics,
Charles University, Prague (2003).
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