
Charles University in Prague
Faculty of Mathematics and Physics

DOCTORAL THESIS

RNDr. David Bednárek

Bulk Evaluation of User-Defined
Functions in XQuery

Department of Software Engineering

Supervisor: Prof. RNDr. Jaroslav Král, DrSc.

2009

ii

I would like to thank all those who supported me in my doctoral studies
and work on my thesis. In the first place I appreciate the help and advices
received from my supervisor Jaroslav Král and I am grateful for corrections,
comments, and ideas I have received from him and other, often anonymous
reviewers. Secondly, I would like to thank the leaders of our department,
Jaroslav Pokorný, Frantǐsek Plášil, and Peter Vojtáš, for allowing me enough
time and space to complete this thesis. Last but not least, I thank Jana,
Ondřej, and Elǐska for their support and tolerance.

My work was partially supported by the National Programme of Research,
Information Society Project number 1ET100300419.

Dedicated in memory of Jǐŕı Demner and Jan Pavelka who influenced me
much in my professional life.

iii

iv

Title: Bulk Evaluation of User-Defined Functions in XQuery
Author: RNDr. David Bednárek
Department: Department of Software Engineering

Faculty of Mathematics and Physics
Charles University in Prague

Supervisor: Prof. RNDr. Jaroslav Král, DrSc.
Author’s e-mail address: bednarek@ksi.mff.cuni.cz
Supervisor’s e-mail address: kral@ksi.mff.cuni.cz

Abstract:
XPath queries are usually translated into an algebra that combines tra-

ditional relational operators and XML-specific ones. In particular, FLWOR
loops are represented using nest, unnest, join, and similar operators and their
original nested-loop nature disappears, creating an opportunity for bulk eval-
uation and join reordering. In XQuery, two additional issues shall be handled
– tree construction and the presence of user-defined functions. The recursive
nature of functions pushes the problem outside of the range of relational alge-
bra. This thesis presents a novel evaluation framework based on an expanding
network of relational operators, called R-program. In this environment, func-
tions are evaluated in bulk instead of evaluating each call separately. Besides
obvious advantages of bulk evaluation, R-programs also allow rearrangement
of data flow across function boundaries. A set of program transformations
employing these capabilities is described; together with rule-based static in-
terprocedural analysis algorithms used to determine the applicability of the
transformations.

Keywords: XML data management, XQuery, recursion, relational algebra.

v

vi

Název: Hromadné vyhodnocováńı uživatelských funkćı v jazyce XQuery
Author: RNDr. David Bednárek
Pracovǐstě: Katedra softwarového inženýrstv́ı

Matematicko-fyzikálńı fakulta
Univerzita Karlova v Praze

Školitel: Prof. RNDr. Jaroslav Král, DrSc.
E-mail autora: bednarek@ksi.mff.cuni.cz
E-mail školitele: kral@ksi.mff.cuni.cz

Abstrakt:
Dotazy v jazyce XPath jsou obvykle překládány do algebraického systému

kombinuj́ıćıho tradičńı relačńı operátory s operátory specifickými pro XML.
Konstrukce FLWOR jsou pak reprezentovány operátory nest, unnest, join
a daľśımi, č́ımž se ztráćı jejich vnořený charakter a otev́ırá se př́ıležitost
pro hromadné vyhodnocováńı a restrukturalizaci spojeńı. V jazyce XQuery
přibývaj́ı dva daľśı problémy – konstrukce stromů a př́ıtomnost uživatelských
funkćı. Rekurzivńı charakter funkćı nedovoluje reprezentaci tohoto jazyka
uvnitř relačńı algebry. V této práci je prezentován nový př́ıstup k vyhodno-
cováńı založený na expanduj́ıćı śıti relačńıch operátor̊u, nazvané R-program.
V tomto prostřed́ı jsou funkce vyhodnocovány hromadně namı́sto separátńıho
vyhodnocováńı každého voláńı zvlášť. Vedle zřejmých výhod hromadného
vyhodnocováńı R-programy dovoluj́ı restrukturalizaci toku dat přes rozhrańı
funkćı. V práci je uvedena sada transformaćı využ́ıvaj́ıćıch tyto schopnosti
a algoritmy statické interprocedurálńı analýzy určuj́ıćı aplikovatelnost uve-
dených transformaćı.

Kĺıčová slova: XML, XQuery, rekurze, relačńı algebra.

vii

viii

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 3

2 Related Work 5
2.1 XML data model . 5
2.2 XML data types . 7
2.3 XML Schema . 7
2.4 XML query languages . 8
2.5 Physical storage models . 9
2.6 Indexing . 13
2.7 XML-specific join methods . 15
2.8 Query representation and rewriting 17
2.9 Tree generation . 18
2.10 Function handling . 19
2.11 Turing completeness . 19

3 Approach 21
3.1 Motivating example . 21
3.2 Principles . 27

4 Preliminaries 29
4.1 Domains and tuples . 29
4.2 Hierarchical strings . 30
4.3 Relational algebra notation . 30

5 R-programs 35
5.1 R-nets and R-programs . 36
5.2 Dependency closure and acyclicity 40
5.3 Controllers . 40
5.4 Semantics of R-programs . 42

ix

5.5 Evaluation of R-programs . 48

6 Compile-time architecture 51
6.1 XQuery normalization . 52
6.2 Transcription phase . 55

7 Canonical mode 61
7.1 Tree environment handling . 63
7.2 Invocation stacks . 63
7.3 Canonical mode . 64
7.4 Example . 65
7.5 Document ordering . 67
7.6 Effective Boolean value . 67
7.7 Attribute removal . 68
7.8 Relation removal . 70

8 Reverted modes 73
8.1 Atomic-filtering modes . 74
8.2 Node-filtering modes . 75
8.3 Structural-filtering modes . 76
8.4 Output-driven mode . 77

9 Static analysis 87
9.1 Phases . 88
9.2 Observed dependency relations 89
9.3 AST node behavior . 90
9.4 Rule behavior . 91
9.5 Dependency analysis algorithm 95
9.6 Forward propagation phase . 103
9.7 Cycle removal phase . 104
9.8 Backward propagation phase 107
9.9 Complexity of the static analysis 108

10 Conclusion 111
10.1 Future work . 115

A Transcription rules 131
A.1 Unary operators . 131
A.2 Binary operators . 132
A.3 Node construction . 135
A.4 Navigation . 136
A.5 FLWOR expression . 137

x

A.6 Quantified expressions . 140

xi

xii

List of Figures

3.1 An XQuery function returning a sequence of nodes 22
3.2 Näıve processing . 22
3.3 Bulk processing . 23
3.4 Bulk processing with reverted flow 25
3.5 An XQuery function parameterized with a sequence of nodes . 27

5.1 Example: An R-program to compute transitive closure 38
5.2 Graphical representation of the program from the Fig. 5.1 . . 39
5.3 Three expansions of the R-program from Fig. 5.2 46
5.4 R-program run over serialized documents 48
5.5 Pipelined R-program run-time 49

6.1 Compile-time processing . 51
6.2 Query 1 . 54
6.3 Query 1 – Forest model . 54
6.4 A standard-flow rule for a binary operator 57
6.5 A standard-flow rule E0 ::= let $Y := E1 return E2 58
6.6 A standard-flow rule E0 ::= for $Y in E1 return E2 59
6.7 A reverted-flow rule for a binary operator 60

7.1 Life cycle of identifiers . 62
7.2 Query 1 – Sample input and output documents 65
7.3 Canonical representation of the function employee 71

8.1 A reverted-flow rule E0 ::= let $Y := E1 return E2 76
8.2 A reverted-flow rule E0 ::= for $Y in E1 return E2 77
8.3 Reverted representation of the function employee 78
8.4 Query 1 – Standard data flow 83
8.5 Query 1 – Reversed data flow 84

9.1 A part of the composition hierarchy of a ΓR matrix 93

10.1 Static rewriting . 116

xiii

10.2 Dynamic rewriting . 116

xiv

List of Algorithms

1 Dependency analysis algorithm 96
2 Function propagateOp . 97
3 Function propagateCall . 97
4 Function propagateFnc . 98
5 Function expand . 99

xv

xvi

Chapter 1

Introduction

The recent development in the area of query languages for XML shows that
the XQuery language will likely be used as one of the main application devel-
opment languages in the XML world [19]. This shift from a query language
towards a universal programming language will be accompanied by increased
complexity of XQuery programs. In particular, intensive use of user-defined
functions may be expected.

Current XQuery processing method can handle the interior of an XQuery
function well, including the technique usually called query unnesting – a
sub-query nested in a FLWOR loop is hoisted to the level of the surrounding
query and the iterative character of the loop is replaced by a join operator.
Subsequently, join reordering or XML-specific holistic join techniques may be
applied. Experiments show that the use of such methods is the only known
key to higher throughput.

Unfortunately, none of the above-mentioned methods can be extended
to the inter-procedural level. Known attempts are based on procedure inte-
gration (we prefer this term known from compiler construction although it
is, literally, function integration), inspired by the handling of views in SQL.
However, integration techniques induce expansion of the program size and
cannot be applied to recursive functions – note that recursion support is
important due to the recursive nature of XML.

This work presents a method of XQuery evaluation that allows some
degree of optimization across the boundaries of functions while avoiding more
than linear code size expansion. The system is based on relational algebra
and designed primarily for physical layouts that employ Dewey numbering
[57]; however, it is also applicable to other physical storage systems.

Designing a query evaluation method is a tremendous amount of work
and creating a completely new method from scratch is naturally a nonsense;
on the other hand, the accent put on inter-procedural optimization may re-

1

quire redesigning of the architecture of the whole processing chain. In other
words, inter-procedural optimization can hardly be added as an extension to
an existing query processor. Instead, overall architecture must be redesigned;
then, existing methods may be implemented within the new frame. Natu-
rally, some important methods may not fit into the new architecture – for
instance, traditional join-reordering methods can not be applied across func-
tions without their integration (which is discouraged due to the cost of code
expansion). In such cases, replacements for these methods shall be designed.

Obviously, a single thesis may not incorporate a complete design of a
query processor in the necessary degree of detail. Therefore, the scope of
this thesis is reduced to the following items:

• A mathematical model, based on relational algebra, capable to repre-
sent an optimized query, including user-defined functions.

• For important XQuery constructs, their (unoptimized) representation
in the mathematical model.

• Alternative representations for important XQuery value types and con-
cepts – Boolean values, output tree generation, unordered context etc.

• Rule-based transformations as a replacement for the most important
query rewrite methods like predicate pushing and join-reordering.

• Effective static analysis algorithms for the application of the alternative
representations and transformations.

All these items belong to the compilation phase of a query; the run-time
phase is described only at conceptual level.

1.1 Contribution

In this thesis, we present R-programs as an intermediate language combining
relational algebra operations with functions. While there is one-to-one corre-
spondence between R-program functions and XQuery functions, a single call
to an R-program function corresponds to multiple calls to the corresponding
XQuery function. Inspired by terms like bulk load and bulk operation, we call
this arrangement bulk evaluation.

Beyond the ability to perform more than one function call at once, R-
programs also allow optimizations based on the reversal of the data flow
across a function boundary. Based on this reversal, effects similar to predicate

2

pushing and join reordering may be achieved, even though the system does
not offer general support for moving operations through function boundaries.

An R-program is conceptually a network of computing nodes, connected
by pipes carrying relations. Each node performs a relational operation. In
this system, functions conceptually run in parallel with their callers, ex-
changing their data in both directions. Since pipes are easily implemented
in distributed environment, this arrangement is particularly advantageous in
parallel settings.

To show the generality of R-program models, we present the canonical
transcription of XQuery programs to R-programs. Nevertheless, the canon-
ical mode is only a last-resort mode – in many cases, an alternate mode
may be used to reduce the complexity of the representation. A selection of
alternate modes is described in this work; we also show that these modes
may be automatically reduced to submodes, based on the removal of relation
attributes.

We also show additional transformations that may serve as an inter-
procedural replacement for predicate pushing or join reordering. For struc-
tural joins, the transformed network of join operators copies the behavior of
a path-join algorithm in a distributed manner.

Finally, this work presents static analysis algorithms that determine which
transformation is applicable or required for each parameter, variable, or sub-
expression in an XQuery program. While such analysis is straightforward
within an expression, its extension to programs with recursive functions is
an important step towards effective application of the above-mentioned trans-
formations.

This work covers the most important aspects required in the design of
the compile-time part of an XQuery engine. Although some of the presented
methods are only equivalents of well-known techniques, their demonstration
is important to show the viability of the approach based on the R-programs.

The most important advantage of the R-programs is their ability to sup-
port user-defined XQuery functions in a way that does not obstruct inter-
procedural optimization. In this sense, this is a novel technique of XQuery
evaluation that may be superior to the currently used methods, especially
for larger XQuery applications engineered with intensive decomposition to
small functions.

1.2 Outline

The next chapter, Related work, presents a review of the most important
techniques used in XPath and XQuery evaluation and in the areas that affect

3

the evaluation, from physical storage and indexing through XML-specific
joins to algebraic representation of queries. A motivation example is shown
in the Chapter 3 together with the principles of the evaluation method.

In the Chapter 4 Preliminaries, our version of relational algebra notation
is summarized and the notion of hierarchical identifiers is introduced. The
definition and the semantics of R-programs is shown in the Chapter 5.

The forest model of a query and the generic framework of transcription
from forest models to R-programs is presented in the Chapter 6. The prin-
ciples and the transcription rules for the canonical and Boolean modes are
introduced in the Chapter 7 (details are given in the Appendix); the motiva-
tion, principles, examples, and transcription rules for the reverted modes are
shown in the following chapter.

The Chapter 9 – Static analysis defines the task of mode selection, its
phases and algorithms.

The pro’s and con’s of the method, optimization issues, open problems,
future directions, and alternate approaches are presented in the Conclusion.

4

Chapter 2

Related Work

In this chapter, we will review the most important topics related to our goal.
Of course, the related areas are quite wide; we will analyze only those aspects
that have some impact on the problems we are solving.

2.1 XML data model

In the area of querying, the abstraction of a XML document is governed by
the W3C definition of the XQuery/XPath Data Model (XDM) [29]. Note
that XDM is slightly different from the XML Information Set (Infoset) [21]
which is used to describe XML documents per se.

Two use cases are distinguished in the XDM specification: Construction
from an Infoset and construction from a Post Schema Validation Infoset
(PSVI). While the interface presented by XDM is fixed, the behavior of the
model is different in the two cases. In other words, the result of a query
applied to validated input may differ from the result of the same query on
the same input without validation.

A XML storage is usually stuck to one of the two use cases, depending
on the schema-awareness of the approach. Moreover, the information stored
in the database does not necessarily copy the original Infoset; naturally, a
storage method closer to XDM would match the requirements of the querying
engine better. However, storing a verbatim materialization of XDM would
not be wise since XDM is redundant (see below). Consequently, XDM is only
an abstraction that is not physically represented in real XML databases.

Under XDM, a XML document is an ordered unranked tree whose nodes
are labeled with a set of properties. The most important properties are:

• node-kind – the kind of node, one of attribute, comment, document,
element, namespace, processing-instruction, and text

5

• node-name – the qualified name of the node, if any

• string-value – a string value associated to the node

• typed-value – a sequence of typed atomic values associated to the node

The remaining properties and accessors required by the standard (base-uri,
document-uri, is-id, is-idrefs, namespace-bindings, namespace-nodes, nilled,
type-name, unparsed-entity-public-id, and unparsed-entity-system-id) are ei-
ther deprecated or of minor importance; therefore, they are often ignored at
research level. Similarly, the comment, namespace, and processing-instruction
nodes are usually neglected.

There are two sources of redundancy in XDM:

• For a non-leaf node (i.e. a document or element node), the string value
is by definition the concatenation of the string values of all its text node
descendants in the document order.

• In schema-unaware environment, the typed value equals to the string
value; in PSVI settings, the typed value corresponds to the string value
under the rules of the type determined from the schema.

Since the concept of atomization (see the section 2.4) uses the typed
value, storing the typed value in a schema-aware XML storage saves the
conversion cost and makes indexing effective. The string value would be
calculated from the typed value in such setting. Nevertheless, this approach
may be applied only to the attribute nodes and the lowermost element nodes;
for inner element nodes, storing the concatenated string value would cause
unacceptable redundancy while not saving any conversion cost since no type
conversion is done at complex-content nodes (see the section 2.3). Thus, if
the string or typed value is queried for an inner element or document node,
the value must be generated by concatenation. This observation suggests
that the string and typed values should be stored differently at various levels
of the tree, at least in schema-aware methods.

Besides the representation of complete XML documents, XDM instances
(usually called temporary trees or tree fragments) are created by the XQuery
constructors. For these trees, the XDM requirements are relaxed; conse-
quently, a method designed to store complete documents may not be appli-
cable to temporary trees. Therefore, separating the paths of input documents
and temporary trees during the evaluation of a query may be necessary al-
though the XQuery standard treats both the types of XDM instances equally.

6

2.2 XML data types

The XDM specification [29] together with XML Schema specification [79]
define a hierarchy of types.

From the point of view of the XML Schema, the most important catego-
rization is between simple types and complex types. A simple type may be
assigned to an attribute and to the text content of an element node, while
a complex type places a restriction on the structure of the sub-tree of an
element node.

In querying, the point of view is different: An XPath or XQuery expres-
sion may evaluate to a sequence of items, each item being either a reference
to a node or an atomic value. Thus, the world of item types in XQuery
contains two independent spaces:

• Atomic types, derived from xs:anyAtomicType, attached to every atomic
item

• Node types, usually referred to as kind tests, allowing to restrict the
node-kind and/or the node-name properties of nodes

The hierarchy of atomic types roughly corresponds to a part of the simple
type hierarchy of XML Schema; some simple types are not considered atomic
since their corresponding typed value is a sequence.

Although the kind tests may contain a reference to a type from an XML
schema, their expressing power is significantly lower than the power of the
XML schema language. In particular, there is no way to restrict the content
of a node when the corresponding document was not validated.

2.3 XML Schema

W3C XML Schema [79] is a powerful language designed to define the schema
(i.e. the structure and type properties) of XML documents and to assist
in their processing. The XML Schema language is a replacement for the
older and less powerful DTD [15]. Essentially, a schema serves the following
purposes:

• To restrict the structure of the document, including the node-kind and
the node-name properties of nodes, using the mechanism of complex
types.

• To assign simple types to attributes and (some) element nodes; this
assignment restricts the syntax of their string value and defines their
typed value.

7

• To define foreign-key relationship between elements and/or attributes.

The presence of a schema may have the following implications in querying:

• Schema-aware storage (see the section 2.5) may be applied for docu-
ments conforming to a schema. The complex types allow semantically
meaningful shredding of the document while the simple types indicate
the appropriate data-type to the values of attributes and simple-content
elements. Nevertheless, the schema does not provide enough informa-
tion to select the optimal storage strategy; therefore, the schema is
often augmented with human assistance and/or statistic information
[62].

• Structural conformance to a schema allows to prune the search space
of various querying techniques, in particular, of twig joins (see the Sec.
2.7).

• Simple types assigned by a schema may be propagated through the
query to replace dynamic typing with static type assignment. This is
particularly important in the cases where value-based indexes may be
applied (see the Sec. 2.6).

2.4 XML query languages

Among XML query languages, the following triplet of languages standardized
by the W3C committee is currently the most important.

• XPath 2.0 [10] – based on the axis step paradigm, an XPath query
returns a sequence of references to input document nodes.

• XQuery 1.0 [12] enriches XPath 2.0 with two key features – tree con-
struction and user-defined functions – along with a number of minor
improvements.

• XSLT 2.0 [50] is a language equivalent in strength to XQuery (a method
of conversion is described in [30]); however, their application areas are
traditionally different – XSLT is used primarily in format conversions
and transformations of complete XML documents, while XQuery is
used, as its name suggests, in querying.

The XSLT language is clearly divided into the XPath layer and the proper
XSLT layer. Therefore, XSLT implementations are often built upon an

8

XPath engine. On the other hand, this layered implementation is hardly ap-
plicable in XQuery, because specific constructs may be mixed inside XPath
expressions. In XQuery engines, the core usually evaluates an XQuery ex-
pression (either the main expression or the interior of a function) while the
function declarations and function calls are handled as an upper layer of the
language.

It is worth noticing that the predecessors, XPath 1.0 and XSLT 1.0,
missed a significant number of important features; therefore, processing meth-
ods devised for the 1.0 languages must often be significantly redesigned before
upgrading to XPath 2.0 and XSLT 2.0.

2.5 Physical storage models

Serialized representation

Serialized storage models comprehend a wide range of techniques, charac-
terised by the use of a document-ordered sequence of records and the absence
of any node identifiers. The tree structure is usually represented by nesting
children between a pair of markers or by explicitly storing the count of chil-
dren of each node. The former case may also be regarded as a materialization
of SAX events [16].

The most prominent example of serialized storage model is the canon-
ical textual representation of XML. Despite its prevalence, this strategy is
absolutely inappropriate for a competent XML storage due to its verbosity,
the need to escape meta-symbols, no support for random access, and other
issues.

These disadvantages are addressed by binary XML techniques. There is
a number of such formats, none being generally accepted as a standard. In
general, this approach reduces the size of a document by indirect representa-
tion of element and attribute names and more effective binary delimitation
of string data. In the presence of a schema, further savings may be achieved
using binary encoding of typed values and using references to the schema.
Moreover, some binary XML formats have some level of support for random
access and/or update.

Binary XML techniques are used in industrial database systems, either
as stand-alone collections of documents or as XML data embedded into at-
tributes in a relational DBMS.

Microsoft SQL Server 2005 [68] introduced a new data type capable to
store complete XML documents or XML fragments using a kind of binary
XML encoding. Attributes of this type may be queried using a SQL function

9

capable to evaluate a subset of the XQuery language. The system is capable
to evaluate the query either based solely on the XML blob data or using a
XML-specific index (see the section 2.6 for further discussion).

Oracle XMLDB [55] offers binary XML storage (together with indexing
options) as one of three physical representation methods available, the others
being object-relational storage and XML-views on relational data.

The main advantage of binary XML is its space-effectivity (being the
best among non-compressing methods) and the ability to quickly recover the
document (e.g. in the form of SAX events). The main factor that contributes
to the low overhead is the absence of node identifiers; thus, when an index is
built on a binary XML data, the space advantage disappears.

For applications where space efficiency is the primary goal, XML com-
pression techniques were developed [5]. XML compression usually addresses
both the document structure and the data, optionally using schema infor-
mation. Although the compression methods do not necessarily follow the
simple serialization pattern, they share the characteristic absence of node
identifiers. Thus, from the point of view of XML storage and querying, the
compression methods behave similarly to the binary XML techniques, adding
space efficiency and, in most cases, jettisoning the random-access and update
capabilities.

XML streams, in almost all meanings of this popular label, share the
distinguishing features of serialized representation – the document-ordering
and the absence of node identifiers. Of course, the usual requirement of
one-pass processing creates a separated research branch of XML stream pro-
cessing which is not a subject of this thesis. Nevertheless, some general query
processing methods exhibit one-pass behavior for a subset of queries; thus,
such methods may be adapted for stream processing. A notable example
of such system is the Raindrop project [51] where algebraic techniques were
successfully applied to XML streams.

XML tree

The term XML tree, when describing a XML storage method, refers to a
graph-like representation of a XML document or its fragment. Each XML
node (with the optional exclusion of attribute and text nodes) is represented
by a record stored somewhere on a media, containing the required node
properties. The document structure is represented by links among the node
records in various arrangements:

• Links to all children, usually allowing random access to the i-th child

• A link to the first child and a link to the next sibling

10

• In addition, a link to the parent may be present

The links are usually implemented in the form of addresses that allow
localization of the target node records; these links may be the only way to
access the records. For in-memory implementations, memory addresses are
usually used; for external media, structured addresses like block/offset pairs
are required, sometimes with a level of indirection allowing relocation.

An XQuery engine working above a XML tree may use these addresses
to implement node references produced by XPath expressions; moreover, the
engine must use them in those arrangements where these references form
the only access path to the records. It is important to notice that while the
addresses provide a unique key for the set of nodes there is no way to retrieve
document-ordering from them.

The XML DOM [27] is the best known case of in-memory XML tree.
Although DOM is used in many widely spread XSLT and XQuery engines,
it can hardly become a base for a high-performance engine due to a number
of features missing in the interface [88].

The IBM DB2 engine [65] uses persistent-media XML tree as the pri-
mary physical storage, augmented with a combined path/value index (see
the section 2.6).

Relational storage

A wide variety of XML storage methods is built using relational database
building block, starting from the notion of a table as a set (bag) of tuples
through the use of B-trees to the use of relational algebra in query represen-
tation and optimization. The level of application of the relational techniques
ranges from the adoption of concepts through the reuse of implementation
to tight integration in a single SQL/XQuery processing engine.

The relational principles of storage may be applied both in schema-aware
and in schema-oblivious manner. Since the knowledge of schema offers a
significant advantage, techniques of automatic or user-assisted schema deter-
mination were introduced [81] for the cases when there is no schema defined
a priori.

In the simplest case, a XML node is encoded in one tuple. In schema-
oblivious systems, all the tuples corresponding to nodes of the same kind
belong to the same table (i.e. there is one table for all elements, one table for
all attributes etc.); in extremely simple implementations, all node kinds may
share the same table. In the presence of a schema, the nodes are distributed
among tables according to their role in the schema, i.e. based on their name
and (optionally) ancestors in the document.

11

When the XML schema employs inheritance (and also for other reasons),
a node may be represented by more than one tuple (as with some object-
relative techniques). Some techniques also employ collections in relational
attributes, i.e. a violation of the first normal form. In some cases, a XML
node may have no representation at all since its presence may be inferred
from the schema.

Consequently, a document may be dispersed (shredded) across dozens of
tables in a schema-aware storage. To recover the original XML document,
the original XML schema as well as the selected mapping to the relational
schema are necessary. Since the schema may change over time in most appli-
cations, adaptive/incremental techniques are required to avoid re-shredding
of existing documents on each schema change.

The same set of tables may accommodate a collection of XML documents,
in such a case, a document identifier is inserted into the representation of each
node.

Whether schema-aware or not, the representation in relational tables as-
signs a key to the tuple(s) representing each node because each table has
at least one unique key. Such a key (together with the identification of the
table) may be used in an XQuery engine as a representation of the node.

There are two methods to encode the parent-child hierarchy:

• Inserting foreign keys to the tables representing children to link to their
parents

• Using keys that encode parent-children relationship, either with inter-
val or Dewey encoding

Schema-aware methods usually prefer the foreign key approach, especially
when the node key is derived from the node data and, therefore, meaning-
ful. For data-centric applications, the performance of the foreign-key based
implementation is superior to other methods [55]. The disadvantage of the
method is the necessity for transitive closure to implement recursive XPath
axes (ancestor/descendant) in recursive schemata.

Encoding order is a crucial task in relational representation of XQuery.
The most common solution is using node identifiers that encode the order. A
prominent application of this approach is shown in [24], using the Rainbow
framework.

Interval encoding

Interval encoding (also called Dietz numbering) [52] is used for instance in
the MonetDB/XQuery system [13, 40].

12

Nodes are identified using a pair of pre-order and post-order ranks, usu-
ally augmented with the depth of the node: N = 〈pre, post, depth〉. In this
encoding, XPath axes are represented using a combination of comparisons,
like

pre1 < pre2 ∧ post2 < post1

for the descendant axis.

Dewey encoding

Compared to interval encoding, Dewey encoding, also known as dynamic
level numbering [77, 57], offers easier implementation of XML update at the
cost of slightly more expensive theta-join operations. The eXist system [61]
is an example of a native XML storage.

In Dewey encoding systems, each edge of a XML tree is marked with a
label; the order of labels defines the order of children in the tree. A node
is identified using the concatenation of the labels attached to the path from
the root to the node. XPath axes are represented using prefix test or lexico-
graphic comparison.

2.6 Indexing

In abstract words, an index attached to a XML storage may be used to
localize:

• the documents that satisfy a particular condition, and/or

• the nodes of a document that satisfy a particular condition.

In document-centric applications, localizing the document may often be suf-
ficient, while in data-centric applications, node localization is essential. In
most cases, an index serves both purposes; therefore, it generates pairs of doc-
ument and node identifiers. In many cases, indexes produce node identifiers
in the document order; such indexes may be used to establish the document
ordering among a set of nodes. Document ordering is also essential for the
majority of XML-specific structural join algorithms.

The search condition for a node may be based on:

• the name of the node

• the label path of the node, i.e. the sequence of node names on the path
from the root to the node

13

• the string or typed value of the node

• structural relationship to other nodes

An index may combine name/path properties with value properties; such
indexes are usually called combined path-value indexes. In XML-specific
indexing techniques, structural relationship is usually encoded in a form of
interval or Dewey numbering. Thus, an index that maps paths and/or values
to node numbers may provide structural information as well.

Name-based indexes are implicitly present in each schema-aware rela-
tional storage because nodes are distributed to various tables based on their
name. Additionally, when a traditional relational index is attached to a col-
umn in such a storage, it may be considered a combined name-value index.
Creating such an index is usually a user-assisted process; selection of an in-
dex during query processing is a matter of traditional physical query rewrite
process. Note that there is usually no way to retrieve document ordering
from such an index; therefore, these indexes are not well fitted for holistic
approaches like twig joins.

The DataGuide (or DataGuides) [34] is a structure that implements a
path-based index in schema-oblivious systems. For a given label path, the
DataGuide stores a sequence of corresponding nodes, usually in the document
order. The structure may also be used when a search pattern based on node
names and structural relations (e.g. a twig-pattern) is given [7]. Since the
nodes are usually identified using a kind of interval or Dewey numbering, the
output of the DataGuide search may be piped directly to a holistic structural
join algorithm (e.g. TwigStack).

A value-based index in a schema-oblivious storage usually indexes all
nodes regardless of their name or context. The applicability in a structural-
join algorithm requires that the nodes with the same key value are stored
in the document order; consequently, the index may be directly used only
in the case of exact-match search. For range searches, the set of matching
nodes must be sorted before the application of a structural-join algorithm.

Because the semantics of the equality operator in XQuery is wider than
the exact-match semantics due to implicit conversions and other issues, so-
phisticated techniques like the algebra defined in [71] are required to success-
fully use such an index.

Structures like the DataGuide may be augmented with a value-based in-
dex, forming together a combined path-value index. Such an index is appli-
cable when a pattern-based query is combined with an exact-match condition
on a value.

IBM DB2/XML [65] is an example of a system based on combined path-
value indexes attached to XML trees.

14

Microsoft has chosen a different approach – their SQL/XML engine sup-
ports both path-based and value-based indexes but not combined ones [68].

In applications where schema information is not available, statistics may
be used to control the creation of indexes [74].

2.7 XML-specific join methods

Besides value-based joins known from relational systems, XML processing
requires structural joins to handle XPath axes. Structural joins are based on
a node identification scheme that allows determining the structural relation-
ship between two nodes solely from their identifiers. Majority of structural
join techniques can accommodate both interval encoding and Dewey num-
bering.

At the basic level, a structural join operator consumes two sets of nodes
and generates those pairs of nodes that satisfy a particular axis relationship.
There are four basic XPath axes, descendant, ancestor, preceding, and
following; the other axes may be derived from them (using constraints on
node depth if necessary). The descendant axis (and its derivative child) is
the most frequently used one.

Being based solely on the node identifiers, a structural join is formally a
special case of theta-join, applying a particular condition on a pair of iden-
tifiers. For interval encoding, the condition is a conjunction of numeric com-
parison predicates, e.g. a.pre ≤ b.pre ∧ b.post ≤ a.post for the descendant

axis. For Dewey encoding, the condition is based on string prefix and/or
string comparison predicates. Most relational systems are already capable of
handling such conditions; therefore, the importance of special structural join
techniques is due to their superior effectivity [4].

Staircase join [38] is one of the most important implementations of struc-
tural join, based on interval encoding. Originally, it was implemented as an
extension to the relational Monet engine, serving as a minimalistic support
for XML-specific operations in a relational encoding of XML. There are two
versions; the basic one consumes the input relations completely, the advanced
version issues skip commands to one of the inputs allowing to reduce the I/O
cost of the operation.

Advanced structural join techniques can handle more than two sets of
nodes at once. Path join methods are able to process a chain of descendant
or child axes, i.e. XPath expressions like $X//b[P1]/c[P2]//d[P3]. In this
example, the path-join is a quaternary operator – besides the node set $X,
three sets of nodes retrieved from the input document are fed to the operator,
corresponding to the //b[P1], //b/c[P2], and //b/c//d[P3] expressions.

15

When the predicates P1, P2, P3 allow, these inputs are generated by path-
value indexes; where combined indexes are not available, value indexes are
used to generate //*[P1], //*[P2], and //*[P3].

The principle of path-join methods is fairly simple – all inputs are read in
document order (since most indexes produces document-ordered sequences,
no sort operation is usually required), performing a kind of merge-join.
Therefore, this phase is linear with respect to the sum of sizes of the in-
puts. Unlike plain merge-joins, the path-join requires additional memory:
Linked stacks, operated during the merging phase, are used to generate the
output of the join operator – the generating phase is linear with respect to
the size of the output. Note that, in the most pathological case, the size of
the output may be the product of the sizes of the inputs. The maximum size
of the stacks is proportional to the maximum depth of the input document.

Twig join methods [17] are a further improvement of the path-join tech-
nique, allowing to process a twig pattern at once. A twig pattern is essentially
a tree whose nodes correspond to the inputs of the twig-join operator and
whose edges represent descendant or child relationships. Twig patterns are
extracted from XPath expressions like

$X//b[c[P1] and .//d[P2]]/e[P3]

or
for $B in $X//b,

$C in $B/c[P1],

$D in $B//d[P2],

$E in $B//e[P3]

return ($B, $C, $D, $E)

Note that these two examples produce the same twig pattern; the dif-
ference is that while the second query produces quadruples, the first query
produces only the $E nodes and the other three variables are existentially
quantified.

Most advanced twig join methods [47] are capable to handle or operators
in predicates, like in $X//b[c[P1] or .//d[P2]]/e[P3].

An interesting extension to twig-pattern matching was described in [57]:
An extended form of node identifiers, named extended Dewey, combines the
standard Dewey number with the label path (see the Sec. 2.6). This approach
allows to process the twig pattern using only the inputs corresponding to the
leaves of the twig-pattern; the identifiers of the internal nodes of the pattern
(like $B in the example above) are derived.

Most structural join algorithms act as merge joins, traversing all their
inputs in the document order. Nevertheless, hash-based algorithms also exist
[59]. Advanced algorithms involve skipping in the input streams [32], similar
to zig-zag joins.

16

2.8 Query representation and rewriting

Various XML processing methods are based on different formal models. Al-
though algebraic models prevail, formalisms like automata [28, 76], logic
[11], or lambda-calculi [56] are frequently used. An interesting application of
monadic Datalog to XPath can be found in the Lixto project [35].

Two causes of this diversity may be identified: First, the application
area of XML is wider than of relational databases – besides data-centric
XML, there are document-centric applications, stream processing, protocols
etc. Second, the XML query languages are significantly more complex than
SQL; thus, developing a formalism to cover all the language features is very
difficult.

Algebraic systems

There is a number of systems that apply relational algebra to XML process-
ing. In this section, we will shortly introduce a selection of them.

The Pathfinder system [14, 73] is a front-end attached to the Monet
system (see the section 2.5). It is based on a kind of relational algebra and
the loop-lifting technique [42]. This technique does not employ hierarchical
numbering scheme – the absence of hierarchical numbering helps avoiding the
safety problems encountered with unlimited domains of hierarchical numbers;
on the other hand, the Pathfinder approach cannot employ the numbering
scheme to shortcut a long path through FLWOR-induced joins. The effect
of long join paths produced by the Pathfinder system was studied in [39].

The XAT algebra [86] used in the Rainbow system forms a long-term
background for experiments with query rewrite in the area of XML data
retrieval as well as in XML streams. In this environment, query unnesting is
extensively used, i.e. rewriting the query representation so that any relational
operators are performed on first-normal-form relations with atomic attributes
[83]. A similar rewriting technique was presented in [60].

On the XAT algebra, an algorithm to remove unreferenced columns was
demonstrated in [85]. Nevertheless, such optimization techniques based on
XAT presented so far never crossed the boundary of a functions.

XML systems built by major relational system vendors are usually tightly
coupled with their older relational core; therefore, based on the relational
algebra. The degree of integration varies from retuning the object-relational
query optimizer [55] to applying vast extensions to the relational core [68].

The VAMANA system [70] presents a number of techniques known from
the relational database systems like cost-based optimization or pipelined ex-
ecution; however, the system is limited to stand-alone XPath expressions.

17

Algebraic rewriting techniques were also used on top of the Galax XQuery
engine [71].

Algebraic models are also employed in the area of incremental XML view
maintenance [26].

Static rewriting

Several methods of XML query rewriting was presented without the use or
relational algebra. The first branch of this area is XQuery canonization,
i.e. selecting a subset of the language and rewriting the rest. A number
of canonical or core forms of XQuery was already presented. Besides the
W3C standard XQuery Core [22], probably the most complete attempt can
be found in [80].

During canonization, particular problems may be solved. For instance,
the elimination of intersect and except operators was addressed by the rewrit-
ing technique described in [37]. The automatic determination of unordered
context in XQuery programs was tackled in [43]. Although the presented
algorithm is quite efficient, it does not handle general user-defined functions.

2.9 Tree generation

Temporally existing trees were introduced in the XQuery 1.0 and XSLT 2.0
standards and many XQuery processing models can handle them. Examples
may be found in the [69], based on the TLC algebra, or in the theoretical
study on the tree-transformation power of XSLT [46]. However, the ignorance
of user-defined functions rendered the problem simpler than it really was.
In the presence of user-defined functions, more sophisticated models and
algorithms are required.

The Pathfinder algebra, as well as the majority of the others, deals only
with the querying part while the generative part of the XQuery language is
implemented without theoretical back-up. For instance, suspended element
constructor technique is implemented in the Sedna system [31].

The stability of output numbering, which is an important consequence
of our approach, is essential in the area of XML views. The area was al-
ready extensively studied using various approaches. In [54], an XQuery view
definition is transformed to a special language allowing bidirectional map-
ping between the input and the output document. A completely different
approach is used in [36], where the view definition is transformed using the
query applied atop the view.

18

2.10 Function handling

In contemporary XQuery processors, function boundaries usually form a bar-
rier that optimizers cannot penetrate. The problem of inter-procedural op-
timization of XQuery is recognized but rarely studied [49].

Contemporary XQuery processing and optimization techniques are usu-
ally focused on querying and, in most cases, ignore the existence of user-
defined functions. One of the rare exceptions may be found in the stream-
processing engine described in [28]. In the era of XSLT 1.0, the implementa-
tion techniques had to recognize user-defined functions (templates) well (see
for instance [36]); however, this branch of research appears discontinued as
the community shifted to XQuery.

Pathfinder does support user-defined functions; however, the extent of
optimization available across the function boundaries is unclear. Anyway,
the cardinality forecast system based on the Pathfinder algebra described in
[78] can propagate the information through function calls.

The paper [1] addresses explicitly the problem of recursive user-defined
functions in XQuery, using a controlled form of recursion, limited in its appli-
cability to distributive functions. This approach is related to the fixed-point
systems known from relational databases.

In relational algebra, transitive closure is usually used as the only exten-
sion towards recursion. There is extensive theoretical background showing
that the transitive closure, being strong enough to capture linear recursion
[45] and certain cases of double recursion [84], seems to be sufficient for quite
a wide class of problems.

There were infrequent attempts to study different mechanisms of recur-
sion over relational databases, for instance the RQL language [3].

Recursive functions were successfully implemented in the streaming en-
gine described in [53]. However, the implementation applies only to those
XQuery programs that are evaluable in single pass.

2.11 Turing completeness

There are various approaches to the classification of the strength of the
XQuery language. Using string or numeric expressions and the presence of
recursion, one may easily prove Turing-completeness of the XQuery language.
However, such plays with atomic values do not belong to typical XQuery use
cases. Similarly, the unlimited power of XQuery to create temporal trees
is rarely used. Therefore, it is more useful to determine the strength of a
shrunk version of XQuery, stripping off functions on atomic values, ordered

19

sequences, and navigation over temporary trees. Such a shrunk language
has its memory limited to the sets of source document nodes, therefore, it
is no longer Turing-complete. Nevertheless, this language is still at least as
strong as context-sensitive languages (see [66]), therefore, many static anal-
ysis problems like termination are intractable. A different approach may be
found in [67] where the Turing completeness of XSLT 2.0 is proved using the
tree transformation abilities of the language.

20

Chapter 3

Approach

In this chapter, we will present the motivation using an example and sum-
marize the principles of the method.

3.1 Motivating example

Consider the sub-query “return all persons which were employed on a given
date”. In XQuery, such a sub-query may be represented by a function. The
function employed in Fig. 3.1 is parameterized by the date $P and return a
sequence of nodes, each representing a matching employee. The rest of the
query shown there uses the function to print the number of employees for
all dates listed in a document. The standard function fn:count is used to
compute the length of the sequence of employees for each date given.

A näıve implementation calls the function employed for each date in the
given history. This situation is depicted in Fig. 3.2 using the terminology
of relational database systems, augmented with a XML-specific operator of
node construction. Note that, due to the nature of the condition placed on
the employee nodes, value indexes on @hired and @fired can not reduce
the number of scanned nodes significantly.

To enlarge the opportunity to optimize, we suggest the following arrange-
ment shown in Fig. 3.3: The function employed is statically transformed so
that it consumes all the values of the parameter $P at once. Consequently,
the transformed function returns all the original return values in a single
batch. In other words, the transformed function is called only once, instead
of repeated calling in the näıve approach.

Bulk evaluation offers the ability to use more effective join techniques
than nested-loop evaluation. In our example in Fig. 3.3, a kind of theta-join
is used to combine the set of parameter values with the set of employee nodes

21

declare function local:employed($P as xs:date) as element()*

{

fn:doc("company")//employee[@hired lt $P and @fired gt $P]

};

<report>{

for $D in fn:doc("history")//@date return

<point

date="{$D}"

number="{fn:count(local:employed($D))}"

/>

}</report>

Figure 3.1: An XQuery function returning a sequence of nodes

Figure 3.2: Näıve processing

22

Figure 3.3: Bulk processing

23

retrieved from a storage. To reduce cost, this theta-join may be implemented
using repeated range scans on a sorted materialization of the left operand
– this arrangement would never be possible in the näıve implementation in
Fig. 3.2.

Although the Fig. 3.3 might suggest that the function employed was
integrated into the main query, this is not the case. Under bulk evaluation,
the transformed query still retains its decomposition to functions and the
function call operations are preserved, albeit with transformed operands.
The key to correctness is that all calls to a function are transformed in the
same manner consistent with the transformation of the function body.

Procedure integration known from compiler construction [72], would in-
deed produce similar result; however, at the cost of exponential growth of
the query size. Moreover, procedure integration cannot handle recursive
functions and recursion is natural in XML processing.

The concept of view merging [20] in relational databases is also a form of
procedure integration, although unparameterized. In the merged query, sub-
sequent transformations are unaware of the original boundary of the view, al-
lowing aggressive optimization (like join reordering) across the hidden bound-
ary.

Behind the ability to handle recursion, the most important advantage of
bulk evaluation over procedure integration is the fact that the transformation
to bulk-executed functions preserves the size of the query.

Of course, the preservation of function boundaries reduces the maneu-
vering space of subsequent optimization. However, we will show that some
optimization is possible, using rule based transformation of the function in-
terfaces.

Fig. 3.4 shows an improved version of the execution schema shown in Fig.
3.3. Assuming that the attribute @date has an ordered index, the theta-join
was implemented by a repeated range scan over the index.

If the function employed were integrated into the surrounding query, the
shift from Fig. 3.3 to Fig. 3.4 would be a relatively simple algebraic transfor-
mation. However, the bulk evaluation approach requires that the boundary
of the function be still present. Therefore, such a transformation must be
formalized as a transformation of the function interface.

In our example, the original interface of the function was composed of
the parameter $P and the return value. With the shift from näıve to bulk
evaluation, the singleton parameter was replaced by a sequence of dates. In
Fig. 3.4, the parameter is substituted with a pair of an output parameter
and an input parameter. The output parameter is essentially a sequence of
intervals; for each such interval, the input parameter returns back a sequence
of dates that match the interval.

24

Figure 3.4: Bulk processing with reverted flow

25

In other words, the caller of the function is expected to perform a range-
based theta-join of the original sequence of dates with the intervals generated
by the function through the output parameter. The attributes not involved
in the join (marked here as emp) are just passed around; the fact that it is
an employee node is not relevant for the caller.

Although it may seem that we are pulling out all joins from the function,
it is not true – only those join conditions that may be implemented with a
particular physical access method are worthy of extraction. Therefore, there
is only a small number of transformations that may be applied to a function
parameter.

Each call to a given function must adapt to the selected interface mode,
whether or not it may benefit from it. For instance, if the function employed

were called only once (wrt. the näıve evaluation), the caller would be still
required to perform the theta-join, which would be reduced to a selection
operation in this case.

In our example, the input parameter transformed from $P is immediately
returned back from the function. In general, there may be arbitrary operation
applied to the input parameter, including a join or other binary operation
with a copy of the data computed during the preceding evaluation of the
output parameter.

Therefore, the transformed function can no longer be evaluated in a simple
call-return manner. Instead, the ability to pass the control to and from the
function more than once is required. Moreover, the function must be able to
retain their private data during the time the control is temporarily returned
to its caller.

Furthermore, pipelined execution is required to avoid unnecessary materi-
alization of intermediate results. Therefore, a function may run effectively in
parallel with its caller, returning the first data for output parameters sooner
than the last data for input parameters arrive.

We should emphasize that the strength of the XQuery language brings
more difficulties than those featured in Fig. 3.3:

• The original order of @date nodes must be recovered from the output of
the transformed function employed. Moreover, these nodes must main-
tain their full identity despite the fact the original function consumed
only the atomic xs:date values extracted from them.

• XQuery functions may be parametrized by sequences; for instance, the
function qualified in Fig. 3.5 returns the employees which have all
the skills given by the parameter $S. (The rest of the query in Fig. 3.5
creates a report containing a list of positions; for each position, all ap-
propriately qualified employees are listed.) By definition, an individual

26

declare function local:qualified($S as element()*) as element()*

{

fn:doc("company")//employee

[every $V in $S satisfies skill[@name = $V/@name]]

};

<report>{

for $P in fn:doc("positions")//position return

<position id="{$P/@id}">{

local:qualified($P/skill)

}</position>

}</report>

Figure 3.5: An XQuery function parameterized with a sequence of nodes

call to the function is identified by the sequence assigned to $S; there-
fore, a bulk-evaluated call would require join driven by an attribute of
sequence type.

• Node construction operators must be expressed in a way compatible
with relational algebra although their XQuery semantics corresponds
rather to a free-store operation than an algebraic operator.

• When an XQuery function creates a node, each call to this function
must, by definition, create a node with a new identity. Therefore, bulk
evaluation must carefully observe the equivalence with näıve evaluation.

3.2 Principles

Our approach is based on the following ideas:

• We introduce R-programs as an intermediate language combining rela-
tional algebra operations with functions. While there is a one-to-one
correspondence between R-program functions and XQuery functions, a
single call to an R-program function corresponds to multiple calls to
the corresponding XQuery function. Inspired by terms like bulk load
and bulk operation, we call this arrangement bulk evaluation.

• A particular invocation of an XQuery function is identified by the ar-
ray of values assigned to the for control variables on the descent to the

27

invocation. In the translation to an R-program function, this definition
allows separate handling of function parameters, using the invocation
identification as a key that binds corresponding parameter values to-
gether. Using this technique, sequence-typed parameters may be dis-
solved to multiple rows, avoiding nesting in a non-first-normal-form
relation. Moreover, each parameter may be handled independently in
further optimizations.

• The use of non-first-normal-form relations in the processing chain is
reduced to the hierarchical strings (see the Section 4.2); no node sets
or sequences are packed inside a relation attribute.

• R-program functions are evaluated in multiple passes, in a way inspired
by multi-pass attribute grammars [48]. In pipelined implementations
of R-programs, functions conceptually run in parallel.

• The multiple-pass nature of functions offers the ability to pass infor-
mation in the reverse direction with respect to the original data flow.
This rearrangement allows reducing the amount of data processed by a
function using information from the calling context. This idea is similar
to the principle of Magic sets approach used in Datalog engines [6].

28

Chapter 4

Preliminaries

Our mathematical model is based on relational algebra; however, additional
operators are required to handle XQuery-specific tasks. Besides atomic types
like numbers or strings, relation attributes will carry identifiers used for var-
ious purposes – Dewey numbering, order maintenance, context identification
etc. Most of these identifiers are created during the query evaluation from
atomic values and other identifiers; thus, they become compound hierarchical
structures.

In this chapter, we will define the notation for domains and tuples. Then,
the notion of hierarchical strings is defined as the mathematical model of the
domain of identifiers. Finally, our selection of relational algebra operators is
presented and explained.

4.1 Domains and tuples

Let AttrNm denote the vocabulary of attribute names and DomNm be the
vocabulary of domain names.

(Relation) schema Ω is a partial function that maps a finite set of at-
tribute names to domain names, i.e. Ω : AttrNm → DomNm such that
dom(Ω) is finite. The universe of all relation schemata is denoted Sch.

We will show relation schemata using traditional notation like (a1 : D1, a2 :
D2, a3 : D3).

For each domain name d ∈ DomNm, D(d) denotes the corresponding
universe of values (the domain). These domains are assumed to be pairwise
disjoint; the union of all domains is denoted D =

⋃
d∈DomNmD(d)

We will omit D and use the domain names themselves to denote the
associated set of values when there is no risk of confusion.

Tuple over the schema Ω is a partial function t : dom(Ω) → D such that

29

t(a) ∈ D(Ω(a)) for each a ∈ dom(Ω). Relation over the schema Ω is any
finite set of tuples over the schema Ω. The universe of all relations over the
schema Ω is denoted U(Ω). The universe of all relations of all schemata is
denoted U .

4.2 Hierarchical strings

We will use the traditional notation (Kleene star) Σ∗ to denote the set of all
finite words over an alphabet Σ. Besides the empty string (λ) and concatena-
tion operator (.), we will need the following partial functions: rtrim : Σ∗ →
Σ∗ and last : Σ∗ → Σ such that rtrim(x).last(x) = x, ltrim : Σ∗ → Σ∗ and
first : Σ∗ → Σ such that first(x).ltrim(x) = x, and after(x, y) = z such that
x = y.z. Furthermore, we define the predicate prefix (y, x) = (∃z)(x = y.z).

Definition 1 (Hierarchical strings) Let D be a totally ordered domain.
Hierarchical alphabet over the domain D is an (infinite) totally ordered super-
set H(D) ⊇ D with an injection α : H(D)∗ → H(D) that is monotone with
respect to the (lexicographical) ordering, α(u) < α(w) ⇔ u < w. Hierarchical
string is a word over hierarchical alphabet, a member of H(D)∗.

Hierarchical alphabet may be implemented for instance by the set of
unranked ordered trees whose leaves are labeled with the members of D.

On examples, we will write hierarchical strings using parenthesized nota-
tion as shown on Fig. 7.2.

In our identifiers (see the Chapter 7), the hierarchical strings will be built
upon the domain DL = DA ∪ N ∪ DE ∪ Addr containing all atomic values,
natural numbers, external document identifiers, and AST node addresses (in
arbitrary ordering). Based on this definition, the domain of identifiers will
be DH = (H(DL))∗.

Although our notion of hierarchical strings is a bit unusual, it is backed
by a theory of strings over infinite languages. Such languages were already
applied in the area of XML [64], although in a different manner. The ex-
tensive use of string operations in the environment of relational algebra was
already studied in [9].

4.3 Relational algebra notation

We will use the following operators borrowed from classical relational algebra
(see, for instance, [33]):

30

• Union and set difference, R ∪ S and R \ S, on two relations with the
same set of attributes.

• Natural join, R ./ S, as a Cartesian product tied by equivalence on
common attributes.

• Selection, σ[P (a1, . . . , an)](R), based on a predicate P .

• Projection and duplicate elimination, δπ[a1, . . . , an](R), reducing the re-
lation R to the attributes a1, . . . , an. For removing attributes, we will
also use the abbreviation δπ[\a1, . . . , an](R) for δπ[AR\{a1, . . . , an}](R)
where AR is the set of attributes of R. Note that our algebraic model
is defined on sets (as opposed to bags); therefore, our operator of pro-
jection is coupled with duplicate elimination. We are still using the
traditional symbol δ for duplicate elimination in combination with π
to emphasize this fact.

• Rename, π[b/a](R), renaming the attribute a to b.

• Function application, π[b := f(a1, . . . , an)](R) which adds a new at-
tribute b to the relation R, based on the function f and the values of
the attributes a1, . . . , an.

• Grouping, γ[a1, . . . , an, b := g(d)](R) creates groups from the relation
R based on the grouping attributes a1, . . . , an and adds a new attribute
b whose value is given by the aggregate function g applied to the bag of
values of the attribute d corresponding to the given group. We will also
use the abbreviation γ[\c, b := g(d)](R) for γ[AR \ {c, d}, b := g(d)](R)
where AR is the set of attributes of R. Traditional aggregate functions
count, sum, min, and max are used.

For specific operations of XQuery, we will also use the following operators:

• Sequential numbering, ν[a1, . . . , an, b := @(c)](R) adds a new attribute
b to the relation R, whose value is the 1-based sequential number of the
row among the rows having the same values of a1, . . . , an with respect
to the ordering defined by the attribute c.

• Ordered grouping, γ[a1, . . . , an, b := g(c, d)](R) works similarly to the
plain grouping operator except that the aggregate function g is order
aware, thus applied to the sequence of values of the attribute d or-
dered by the attribute c. We will also use the abbreviation γ[\, b :=
g(c, d)](R) for γ[AR \ {c, d}, b := g(c, d)](R) where AR is the set of at-
tributes of R. For XML, we will need two aggregate functions, cat and

31

catd; the former being plain concatenation, the latter concatenation
with spaces as separators.

• Ordered run grouping, ξ[a1, . . . , an, P (e1, . . . , en), b := g(c, d)](R) de-
tects groups as the longest runs of rows (ordered by the attribute c)
for which the predicate P (e1, . . . , en) is true and the value of attributes
a1, . . . , an is the same. The rows having P (e1, . . . , en) false are then
discarded. Each group is replaced by a row with attributes a1, . . . , an

equal to the original ones, the attribute c set to the value of c in the
first row in the run attribute, and a new attribute b computed using
the ordered aggregate function g (same as for ordered grouping). The
remaining attributes of R, including d are discarded.

• Sequence generation, ω[b := c . . . d](R) where c and d are attributes of
integer domain, replaces each row in R by a (possibly empty) set of
rows with the additional attribute b whose values iterate through the
range from c to d.

Note that only ordered grouping and sequence generation are true addi-
tions to relational algebra. Sequential numbering and ordered run grouping
may be expressed in terms of the other operators – they are treated sepa-
rately since they will be likely implemented directly. As we will see later,
the exotic operators are used only in less frequent XQuery constructs like
positional (at) variables or range (to) expressions. The ordered run group-
ing operator is dedicated to the normalization of the constructed documents
and, as shown in the section 8.4, may be concentrated at the very end of the
processing pipeline.

To improve readability, we will sometimes prefer textual names for infix
operators ./, ∪, and \, as shown in the following definition.

Definition 2 (Relational operators) Binary relational operator is a mem-
ber of the following set:

BinRelOp = { join, union, except }

32

Unary relational operator is a member of the following set:

UnRelOp = { id }
∪ { σ[P] | P is a predicate }
∪ { δπ[A] | A ⊆ AttrNm }
∪ { π[b/a] | a, b ∈ AttrNm }
∪ { π[a := E] | a ∈ AttrNm, E is an expression }
∪ { ν[A, b := @(c)] | A ⊆ AttrNm, b, c ∈ AttrNm }

∪
{

γ[A, b := g(d)]

∣∣∣∣∣
A ⊆ AttrNm, b, d ∈ AttrNm,
g is an aggregate function

}

∪
{

γ[A, b := g(c, d)]

∣∣∣∣∣
A ⊆ AttrNm, b, c, d ∈ AttrNm,
g is an ordered aggregate function

}

∪ { ω[b := c . . . d] | b, c, d ∈ AttrNm }

There is one constant – the empty relation – parameterized by the required
schema:

NulRelOp = { ∅[Ω] | Ω ∈ Sch }
Finally, relational operator is binary, unary, or constant:

RelOp = BinRelOp ∪ UnRelOp ∪ NulRelOp

33

34

Chapter 5

R-programs

The recursive nature of XQuery requires an addition to the classical relational
algebra. Traditionally, relational algebra is being augmented with transitive
closure operator and the researchers then strive to squeeze their recursive
problem to the transitive closure or a kind of fix-point operator [45, 75, 2].

However, transitive closure is a safe operator that cannot produce new
attribute values and that always terminates. This observation shows that it is
insufficient to generally model the XQuery language with its tree constructors
and possibility of non-termination.

In our approach, we suggest a formalism that is more close to the original
nature of the XQuery language. While such a model is less elegant than the
transitive closure in mathematical sense, the behavior of the model is not
skewed towards the transitive closure idiom. This in turn allows unbiased
analysis and optimization based on the model.

An R-program consists of a set of R-functions. The interior of each R-
function is described by a directed graph of (extended) relational algebra
operators and R-function calls. Each R-function receives one or more rela-
tions as its input arguments and produces one or more relations at its output.

Since the language of R-programs does not offer any programmatic struc-
tures like conditions or loops, any recursive R-program would immediately
fall into endless recursion. To give recursive R-programs their semantics, the
notion of controlling argument is defined that allows to predict the output
and to stop the recursion when the controlling arguments are empty. This
mechanism corresponds to the case when recursion in an XQuery program is
stopped by iterating over an empty set. Of course, termination of R-programs
is not generally guaranteed just as the termination of XQuery programs is
not.

35

5.1 R-nets and R-programs

The notion of R-net forms the core of our formalism, representing a directed
graph of operations. Besides relational algebra operators, function calls are
allowed.

A special operator trigger is introduced here which will be used later in the
definition of expansion. The trigger is a unary sink, consuming one operand
and producing none; the purpose of the operator is to check the validity of
computation – any non-empty input to a trigger invalidates the computation.

Note that the definition of R-net does not require that the directed graph
be acyclic. Acyclicity will be studied on the complete R-program, allowing
a kind of cycle around a function call. Such a cycle does not necessarily
paralyze the evaluation of the program; it may just require multiple entry
and exit to the same function.

This approach to acyclicity is crucial; it allows the reversal of evaluation
direction which is the base of the output-driven mode described later in this
work.

Let ArcNm be the vocabulary of arc names ; we assume {0, 1, 2} ⊂ ArcNm.
We will use them to bind actual arguments to formals in function calls as
well as to distinguish input operands in non-commutative operators.

Definition 3 (R-net) Let Fncs be a set of function names. R-net over Fncs
is an octet

N = (Plcs, Ops, In, Out, sch, op, ini, fin)

where Plcs is a finite set of places, Ops is a finite set of operations, ini, fin ∈
Ops are initial and final operations.

In : (Ops \ {ini})× ArcNm → Plcs

Out : (Ops \ {fin})× ArcNm → Plcs

are finite partial mappings that define the input and output arcs. The Out
mapping must be a projection, i.e. rng(Out) = Plcs. The mapping

sch : Plcs → Sch

associates a schema to each place.

op : (Ops \ {ini, fin}) → (RelOp ∪ { trigger} ∪ { call[f] | f ∈ Fncs })

is a mapping that assigns operators to operations. For each t ∈ Ops such
that op(t) ∈ RelOp, the input arcs carry the arc names 1 and 2 (for binary
operators) and the output arc is named 0. The schema sch(Out(t, 0)) of the

36

output place must correspond to the schemata sch(In(t, 1)) and sch(In(t, 2))
(if applicable) with respect to the properties of the operator op(t). When
op(t) = trigger, there is exactly one input arc labeled 1 and no output arc.

Note that this definition of R-net allows that a single place be the output
of multiple operations. This is a kind of redundancy which is allowed by the
definition of R-program semantics, provided all the operations generate the
same output. This arrangement makes some forms of optimization easier;
nevertheless, in the final stage, this redundancy must be removed. Thus, the
final versions of R-nets will satisfy the following condition:

Definition 4 (Non-redundant R-net) An R-net is called non-redundant
if the mapping Out is an injection.

Note that for function call operations (op(t) = call[f]), the input and
output arcs are not constrained by the definition of R-net; the constraints will
be described later, in the definition of R-program. Similarly, the operations
ini and fin serve as placeholders for input and output arguments for an R-net
and their constraints will be defined later.

We will use the notation p
a−→
M

t as an abbreviation for p = InM(t, a) and

t
a−→
M

p for p = OutM(t, a).

A set of functions, whose bodies are expressed using R-nets, forms an
R-program.

Definition 5 (R-program) R-program is a tuple

M = (Fncs, Plcs, Ops, In, Out, sch, op, ini, fin, ownerP , ownerT , main)

where Fncs is a finite set of function names. The mappings ini, fin : Fncs →
Ops define the initial and final operations for each function.

ownerP : Plcs → Fncs and ownerT : Ops → Fncs are total functions called
ownership mappings that induce the following partitioning of Plcs and Ops:

Pf = { p ∈ Plcs | ownerP (p) = f } Tf = { t ∈ Ops | ownerT (t) = f }
The mappings In, Out, sch and op are composed of partitions Inf , Outf , schf ,
and opf such that

In =
⋃

f∈Fncs

Inf Out =
⋃

f∈Fncs

Outf

sch =
⋃

f∈Fncs

schf op =
⋃

f∈Fncs

opf

37

function main (m : (a : D, b : D))
return (v : (a : D, b : D))

begin
v := call[f](m,m, m);
r := (m ∪ v);

end;

function f(z : (a : D, b : D),
m : (a : D, b : D),
x : (a : D, b : D))
return (w : (a : D, b : D))

begin
p := π[c/b](z);
q := π[c/a](m);
r := (p ./ q);
s := δπ[\c](r);
t := (s \ x);
u := (s ∪ x);
v := call[f](t,m, u);
w := (t ∪ v);

end;

Figure 5.1: Example: An R-program to compute transitive closure

and, for each f ∈ Fncs, the following tuple

N(f) = (Pf , Tf , Inf , Outf , schf , opf , ini(f), fin(f))

is a correct R-net over Fncs. main ∈ Fncs is called the main function. Finally,
for each t ∈ Ops such that op(t) = call[f], the following condition must be
met for each a:

(∃p1 ∈ Plcs) p1
a−→
M

t ⇔ (∃p2 ∈ Plcs) ini(f)
a−→
M

p2

(∃p3 ∈ Plcs) p3
a−→
M

fin(f) ⇔ (∃p4 ∈ Plcs) t
a−→
M

p4

sch(In(t, a)) = sch(Out(ini(f), a))

sch(In(fin(f), a)) = sch(Out(t, a))

Fig. 5.1 shows an example of R-program in a textual form; the same R-
program in a graphical form is shown in Fig. 5.2. This R-program computes
the transitive closure m+ of its argument m.

38

2

1

Figure 5.2: Graphical representation of the program from the Fig. 5.1

39

5.2 Dependency closure and acyclicity

The following definitions form the condition of acyclicity.

Definition 6 (Dependency closure) Let d be a binary relation on the
places of an R-program M such that

d ⊆ { 〈p1, p2〉 ∈ PlcsM × PlcsM | ownerPM(p1) = ownerPM(p2) }

The dependency closure of d is the smallest relation d ⊆ PlcsM ×PlcsM such
that d ⊆ d,

〈p1, p2〉 ∈ d ∧ 〈p2, p3〉 ∈ d ⇒ 〈p1, p3〉 ∈ d

and

opM(t) = call[f] ∧ p1
a−→
M

t ∧ iniM(f)
a−→
M

p2

∧〈p2, p3〉 ∈ d ∧ p3
b−→

M
finM(f) ∧ t

b−→
M

p4

 ⇒ 〈p1, p4〉 ∈ d

for each p1, p2, p3, p4 ∈ PlcsM , a, b ∈ ArcNm, t ∈ OpsM , and f ∈ FncsM

Note that all conditions in the definition of dependency closure are im-
plications with conjunctive positive premises. Therefore, the set of relations
d that satisfy these conditions is closed under intersection. Consequently, a
single minimum with respect to inclusion exists.

Definition 7 (Acyclic R-program) Let D be the relation (called primi-
tive dependency relation) induced by the primitive operators in an R-program
M , i.e.

D =

{
〈p1, p2〉

∣∣∣∣∣
(∃t ∈ Ops, a1, a2 ∈ ArcNm)

(p1
a−→
M

t ∧ t
b−→

M
p2 ∧ opM(t) ∈ RelOp)

}

The R-program M is called acyclic if the dependency closure D of the prim-
itive dependency relation is antisymmetric and irreflexive, i.e.

〈p1, p2〉 ∈ D ⇒ 〈p2, p1〉 /∈ D

5.3 Controllers

For acyclic R-programs, evaluation is possible. However, the evaluation may
not follow the classical call-return scheme; instead, the R-program functions
must be gradually instantiated and integrated into the main function.

40

Since we have no explicit control structures, the process of instantiation
must be stopped by an implicit rule. This is based on the notion of controller
set. A controller set is such a subset of the input arguments of an R-function
that all the outputs of the function are empty whenever all the controller
inputs are empty.

Since all relational algebra operators (in our model) produce empty results
on empty arguments, the complete set of the input arguments of any function
always forms a controller set. However, smaller controller sets will allow
better optimization. The following definitions state the criteria on controller
set exactly.

Definition 8 (Primitive controller relation) Let M be an R-program.
Primitive controller relation is any relation

dC ⊆ { 〈p1, p2〉 ∈ PlcsM × PlcsM | ownerPM(p1) = ownerPM(p2) }
such that

(opM(t) ∈ UnRelOp ∧ p1
1−→
M

t ∧ t
0−→
M

p0) ⇒ 〈p1, p0〉 ∈ dC

(opM(t) = join∧p1
1−→
M

t∧p2
2−→
M

t∧ t
0−→
M

p0) ⇒ (〈p1, p0〉 ∈ dC ∨〈p2, p0〉 ∈ dC)

(opM(t) = union∧p1
1−→
M

t∧p2
2−→
M

t∧t
0−→
M

p0) ⇒ (〈p1, p0〉 ∈ dC∧〈p2, p0〉 ∈ dC)

(opM(t) = except ∧ p1
1−→
M

t ∧ p2
2−→
M

t ∧ t
0−→
M

p0) ⇒ 〈p1, p0〉 ∈ dC

Note that the previous definition contains a disjunction on the right-hand
side of the condition for the join operator. It means that either input of a
join may be selected in a primitive controller relation. In other words, there
may be more than one primitive controller relation for an R-program; there
number of such relations is exponential with respect to the number of join
operators in the program. Consequently, more than one controller set may
exist.

The purpose of controllers is to define where triggers shall be placed in
an R-program. Instead of trying to find the best controller set automatically
among the exponential number of controller sets, the primitive controller
relation is defined statically during the translation of the XQuery to an R-
program.

Definition 9 (Controller set) Let dC be a primitive controller relation
and dC be its dependency closure. For each function f ∈ Fncs, the set

DC(f) =

{
p1 ∈ Plcs

∣∣∣∣∣
(∃p2 ∈ Plcs, a, b ∈ ArcNm)

(iniM(f)
a−→
M

p1 ∧ 〈p1, p2〉 ∈ dC ∧ p2
b−→

M
finM(f))

}

41

is called a controller set of f .

The Fig. 5.2 shows a primitive controller relation (and portions of its
dependency closure) using thick arrows.

5.4 Semantics of R-programs

The execution of an R-program is based on instantiation of R-functions and
merging them into one R-net. An instantiation is identified by a call stack
that collects the call instructions along the descent. The following definitions
specify this notion explicitly.

Definition 10 (Call automaton) Let M be an R-program. The call au-
tomaton of M is the following finite state machine

CA(M) = (Q, Σ, δ, q0, F)

whose set of states is Q = FncsM , its initial state is q0 = mainM , and all
states are final (F = Q). The alphabet is formed by the call instructions of
M :

Σ = { t ∈ OpsM | (∃f ∈ FncsM) opM(t) = call[f] }
The state-transition function is defined as:

δ = { 〈f1, t, f2〉 | t ∈ OpsM ∧ ownerTM(t) = f1 ∧ opM(t) = call[f2] }

The language CSL(M) = L(CA(M)) accepted by the automaton is called the
call stack language.

Definition 11 (Call tree) Call tree of an R-program M is any finite lan-
guage c ⊆ CSL(M) which is prefix-closed, i.e. such that x.y ∈ c ⇒ x ∈ c,
and contains the empty word λ.

A call tree corresponds to a (partial) expansion of the R-program. The
expansion creates copies of the instantiated function bodies and glues them
together using identity operators on their input and output arguments. On
the boundary of the call tree, function calls are not expanded and operators
generating empty sets are glued instead of their output values. Triggers are
placed at the selected controller subset of the input arguments.

42

Definition 12 (Expansion) Let c ⊆ CSL(M) be a call tree of an R-program

M = (FncsM , PlcsM , OpsM , InM , OutM , schM , opM ,

iniM , finM , ownerPM , ownerTM , mainM)

Let DC(f) be a controller set for each function f ∈ FncsM . The expansion
of M associated to c and DC is the following R-net

N = (PlcsN , OpsN , InN , OutN , schN , opN , iniN , finN)

whose elements are defined using the following auxiliary definitions:

C = { 〈s, t, f〉 | t ∈ OpsM ∧ f ∈ FncsM ∧ s.t ∈ c ∧ opM(t) = call[f] }

C ′ =

{
〈s, t, f〉

∣∣∣∣∣
t ∈ OpsM ∧ f ∈ FncsM ∧ s ∈ c
∧ s.t /∈ c ∧ opM(t) = call[f]

}

K = { 〈λ, mainM〉 } ∪ { 〈s.t, f〉 | 〈s, t, f〉 ∈ C }

The expansion is composed of copies of primitive operations distinguished
with the symbol R:

OpsR =

{
〈R, s, t〉

∣∣∣∣∣
〈R, s, f〉 ∈ K ∧ t ∈ OpsM

∧ ownerTM(t) = f ∧ opM(t) ∈ RelOp

}

InR = { 〈s, p〉 a−→ 〈R, s, t〉 | 〈s, p〉 ∈ PlcsN ∧ 〈s, t〉 ∈ OpsR ∧ p
a−→
M

t }
OutR = { 〈R, s, t〉 a−→ 〈s, p〉 | 〈s, t〉 ∈ OpsR ∧ 〈s, p〉 ∈ PlcsN ∧ t

a−→
M

p }

opR(〈R, s, t〉) = opR(t) for each 〈R, s, t〉 ∈ OpsR

In addition, there are identity operations labelled with I corresponding to
passing input arguments to R-functions:

P I =

{
〈s, t, f, p1, p2〉

∣∣∣∣∣
〈s, t, f〉 ∈ C ∧ p1, p2 ∈ PlcsM ∧
(∃a ∈ ArcNm)(p1

a−→
M

t ∧ iniM(f)
a−→
M

p2)

}

OpsI = { 〈I, s.t, p2〉 | 〈s, t, f, p1, p2〉 ∈ P I }
InI = { 〈s, p1〉 1−→ 〈I, s.t, p2〉 | 〈s, t, f, p1, p2〉 ∈ P I }

OutI = { 〈I, s.t, p2〉 0−→ 〈s.t, p2〉 | 〈s, t, f, p1, p2〉 ∈ P I }

opI(〈I, s.t, p2〉) = id for each 〈I, s.t, p2〉 ∈ OpsR

43

Furthermore, identity operations corresponding to passing output arguments,
labelled with O:

PO =

{
〈s, t, f, p1, p2〉

∣∣∣∣∣
〈s, t, f〉 ∈ C ∧ p1, p2 ∈ PlcsM ∧
(∃a ∈ ArcNm)(p1

a−→
M

finM(f) ∧ t
a−→
M

p2)

}

OpsO = { 〈O, s, p2〉 | 〈s, t, f, p1, p2〉 ∈ PO }
InO = { 〈s.t, p1〉 1−→ 〈O, s, p2〉 | 〈s, t, f, p1, p2〉 ∈ PO }

OutO = { 〈O, s, p2〉 0−→ 〈s, p2〉 | 〈s, t, f, p1, p2〉 ∈ PO }

opO(〈O, s, p2〉) = id for each 〈O, s, p2〉 ∈ OpsO

Instead of pruned function calls at the boundaries of c, triggers are inserted
at those input arguments that are in the selected controller set DC(f):

P T =

〈s, t, f, p1, p2〉

∣∣∣∣∣
〈s, t, f〉 ∈ C ′ ∧ p1, p2 ∈ PlcsM ∧
(∃a ∈ ArcNm)

(p1
a−→
M

t ∧ iniM(f)
a−→
M

p2 ∧ p2 ∈ DC(f))

OpsT = { 〈T, s.t, p2〉 | 〈s, t, f, p1, p2〉 ∈ P T }
InT = { 〈s, p1〉 1−→ 〈T, s.t, p2〉 | 〈s, t, f, p1, p2〉 ∈ P T }

opT (〈T, s.t, p2〉) = trigger for each 〈T, s.t, p2〉 ∈ OpsT

Operations labelled with E creating empty relations at the boundaries where
function calls were pruned:

PE =

{
〈s, t, f, p2〉

∣∣∣∣∣
〈s, t, f〉 ∈ C ′ ∧ p2 ∈ PlcsM ∧
(∃a ∈ ArcNm)(t

a−→
M

p2)

}

OpsE = { 〈E, s, p2〉 | 〈s, t, f, p2〉 ∈ PE }
OutE = { 〈E, s, p2〉 0−→ 〈s, p2〉 | 〈s, t, f, p2〉 ∈ PE }

opE(〈E, s, p2〉) = ∅[schM(p2)] for each 〈E, s, p2〉 ∈ OpsE

44

Finally, the net is composed as follows:

PlcsN = { 〈s, p〉 | 〈s, f〉 ∈ K ∧ p ∈ PlcsM ∧ ownerPM(p) = f }
OpsN = {〈R, λ, iniM(mainM)〉, 〈R, λ, finM(mainM)〉}

∪ OpsR ∪ OpsI ∪ OpsO ∪ OpsT ∪ OpsE

InN = InR ∪ InI ∪ InO ∪ InT

OutN = OutR ∪ OutI ∪ OutO ∪ OutE

schN(〈s, p〉) = schM(p) for each 〈s, p〉 ∈ PlcsN

opN = opR ∪ opI ∪ opO ∪ opT ∪ opE

iniN = iniM(mainM)

finN = finM(mainM)

The first three expansions of the R-program at the Fig. 5.2 are shown
at the Fig. 5.3. Identity operations are marked with bold arrows; empty set
operations are shown explicitly. The expansions correspond to the call trees
{λ}, {λ, t1}, and {λ, t1, t1t2}, where t1 and t2 are the two call operations in
the R-program.

The following definition defines the computation of an R-net with no
function calls. If the computation does not fire any trigger, it means that the
assumption that the output of the unexpanded calls is empty was correct.
This is the base of the next definition of controlled computation.

Definition 13 (Computation of R-net) Let N be an R-net. Computa-
tion of N is any mapping

κ : PlcsN → U
that satisfies the following conditions:

(∀p ∈ PlcsN) κ(p) ∈ U(schN(p))

and, for each t ∈ OpsN such that opN(t) ∈ RelOp

κ(p0) = opN(t)(p1, . . . , pn)

where pi
i−→
N

t for i ∈ 1, . . . , n and t
0−→
N

p0.

Definition 14 (Controlled computation of R-net) Let κ be a compu-
tation of an R-net N . κ is called controlled if κ(p1) = ∅ for each p1 ∈
PlcsN , t ∈ OpsN such that p1

1−→
N

t and opN(t) = trigger.

45

trigger(t1t2t2)

empty

trigger(t1t2)

empty

m

initial(main)

final(main)

m

initial(main)

final(main)

trigger(t1)

empty

m

initial(main)

final(main)

Figure 5.3: Three expansions of the R-program from Fig. 5.2

46

Lemma 1 (Equivalence of controlled computations)
Let M be an acyclic R-program, DC

1 and DC
2 be controller set assignments, c1

and c2 be call trees of M , N1 be the expansion of M associated to c1 and DC
1 ,

and N2 be the expansion of M associated to c2 and DC
2 . Let κ1 be controlled

computation of N1 and κ2 be controlled computation of N2 such that

(∀a, p1, p2)(iniN1

a−→
M

p1 ∧ iniN2

a−→
M

p2 ⇒ κ1(p1) = κ2(p2))

Then
(∀s)(s ∈ c1 ∩ c2 ⇒ (∀p)(κ1(〈s, p〉) = κ2(〈s, p〉)))

The proof of this lemma is straightforward: The first difference between
the computations (based on any topological sort which is ensured by the
acyclicity) must be on the boundary of one of the call trees (since all oper-
ations inside are deterministic). However, the controller inputs to the un-
expanded call must be empty since the computation is controlled; based on
the definition of the controller set, it may be shown that the output of the
expanded call in the other computation must be empty; therefore it must
not be different from the empty relations injected directly at the boundary.

This lemma essentially states that, for fixed input arguments, all con-
trolled computations produce the same results. This allows to define the
semantics of the R-program using any controlled computation, if it exists.

Definition 15 (Input and output of an R-program) Let M be an R-
program, let

AI = { a | (∃p) iniM(mainM)
a−→
M

p }
AO = { a | (∃p) p

a−→
M

finM(mainM) }

Any mapping i : AI → U is called an input to M , o : AO → U is called an
output of M .

Definition 16 (Effect of an R-program) Let M be an acyclic R-program
and i : AI → U be an input to M . If there exists a controller set assignment
DC, a call tree c, and a controlled computation κc of the expansion of M
associated to c and DC such that

(∀a, p) iniM(mainM)
a−→
M

p ⇒ κc(〈λ, p〉) = i(a)

then the output of M on i is M(i) = o such that o(a) = κc(〈λ, p〉) for each
a, p such that p

a−→
M

finM(mainM).

47

R-program

encoder
recursive

interpreter
serializerrelations relations

XML XML

XML

Schema

Figure 5.4: R-program run over serialized documents

Thanks to the Lemma 1, this definition is correct because all controlled
computations c will compute the same values of κc(〈s, p〉). Nevertheless, there
are acyclic programs that do not have any controlled computation (for some
inputs); for such programs and inputs, the output is undefined. Naturally,
this situation corresponds to unterminated recursion which may occur in an
XQuery program.

The lemma 1 also allows us to simplify the notation – we can omit the
call tree c from κc(〈s, p〉). Additionally, we will omit the angle brackets
that originally corresponded to the construction of the set of places in the
expansion of M corresponding to c. In other words, κ(s, p) now means the
value associated to the place p in the invocation associated to the stack s; of
course, assuming a fixed R-program and its input.

5.5 Evaluation of R-programs

The Fig. 5.4 depicts the simplest situation where the R-program is run
over serialized XML documents. Since the R-program paradigm is relation-
oriented, an encoding phase must precede the interpretation of the program
and a serializer must then recover the document from the (generally un-
ordered) output of the interpreter.

When the source documents are retrieved from a database that employs
a kind of Dewey numbering scheme, the relational data may be passed from
the database without an encoder. Similarly, when the output is stored back
to the database, the serializer may be omitted, if the database is able to
absorb the Dewey identifiers generated by the R-program.

Simple R-programs can be evaluated in one pass using the call-return
approach. However, advanced R-program require the pipelined architecture
shown in the Fig. 5.5. The R-program is gradually expanded by the expander
into an R-net. The expansion is controlled by triggers inserted into the ex-

48

R-program

pipelined

interpreter

expander
expanded

R-program
triggers

XML

DB

XML

DB

Figure 5.5: Pipelined R-program run-time

panded R-net in all places where an unexpanded R-function is called. When
a trigger encounters the first tuple of data arriving in the actual arguments of
the R-function, a further expansion step is invoked, consisting of integration
of the R-function body into the expanded R-program.

49

50

Chapter 6

Compile-time architecture

The R-program representation is created from the XQuery program during
a process called transcription; the whole compile-time processing chain is
shown at the Fig. 6.1.

Before the transcription, a mode selection phase analyzes the XQuery
program and determines the evaluation mode assigned to each variable, ex-
pression, and operation in the source program. Each mode consists of a set
of relations that hold the value of a variable or expression and transcription
rules for each XQuery operator or statement. Some transcription rules form
a bridge between different modes.

Employing the flexibility of R-programs, transcription rules may even
reverse the flow of information partially; such a reversal is an R-program
analogue of predicate pushing and join reordering known from relational-
algebra based query rewriting. Reversed flow forms a key component of the
output-driven evaluation method.

Most of the modes are not general; therefore the main goal of the mode
selection phase is determining the applicability of the modes at various places
in the source program. Besides the output-driven mode, there are modes

XQuery

program

trans-

cription
R-program

storage

layout

parsing and

normalization

mode

selection

annotated

forest

forest

model

Figure 6.1: Compile-time processing

51

designed to handle temporal trees, Boolean values, unordered context etc.
Where no alternate mode applies, the evaluation fails back to the canonical
mode which follows the W3C definition [22] of XQuery semantics (but still
employs bulk-evaluation).

6.1 XQuery normalization

There are several variants of core subsets of XQuery, including the core gram-
mar defined in the W3C standard [22], the LixQuery framework [44], and
others [30]. Since the XSLT and XQuery are related languages and the trans-
lation from XSLT to XQuery is known (see [30]), the model may be applied
also to XSLT.

In our model, a selection of operators based on the W3C standard core
[22] is used. Our model is deviated from the standard core in the definition of
the FLWOR: to handle order by clauses properly, we must cope with all the
variables at once, whereas in the W3C standard the FLWOR is decomposed
to individual variables, leaving the definition of order by semantics a bit
vague. With this exception, the normalization process defined in the XQuery
standard may be applied.

In addition to the standard core, we must also handle those library func-
tions defined in [58] that operate on sequences longer than one and those
that access the dynamic context.

The following list summarizes the syntactic structures (as well as impor-
tant library function calls) produced by the process of normalization (the
numbers refer to the corresponding section of the standard [12]):

• declare function and function calls (4.1.5)

• variable references (4.1.2), context item (“.”, 4.1.4), fn:last (7.2.1),
fn:position (7.2.2)

• FLWOR expressions (4.8)

• quantified expressions (some, every, 4.10)

• conditional expressions (if, 4.10)

• logical expressions (4.6)

• operations on atomic singletons – arithmetic operators (4.4), value com-
parisons (4.5.1), and part of library function calls

• literals (4.1.1), empty sequence (4.1.3), range expression (to, 4.3.1)

52

• sequence concatenation (“,”, 4.3.1)

• calls to library functions working on sequences
(fn:tokenize, fn:index-of, fn:empty, fn:exactly-one,
fn:distinct-values, fn:insert-before, fn:remove, fn:reverse,
fn:subsequence, fn:unordered, fn:deep-equal, fn:count, fn:avg,
fn:max, fn:min, fn:sum)

• node-set operators (union, intersection, except, 4.3.3)

• forward/reverse axis navigation (4.2.1.1), fn:root (4.2), fn:id,
fn:idref, kind and name tests (4.2.1.2), node comparisons (4.5.3)

• statically named document references (fn:doc, fn:collection)

• computed constructors (4.7.3)

• implicit conversions – atomization (3.4.2), effective Boolean value
(fn:boolean, 3.4.3)

In this work, we decided to ignore type-related constructs, namely:

• Type clauses (as) in variable, parameter, and function declarations

• instance of, typeswitch, cast as, castable as, treat as,
validate

• Constructor functions (see [58])

Nevertheless, we will maintain basic type distinction between atomic val-
ues and node references, because the semantics of many operators is affected
by the types of their operands in this sense. Moreover, we will use a special
mode to represent singleton Boolean values because of their importance.

Similarly to the normative definition of the XQuery semantics, we use
(abstract) grammar rules of the core grammar [22] as the base for the models.
An XQuery program is formalized as a forest of abstract syntax trees (AST),
one tree for each user-defined function and one for the main expression. Each
node of each AST has a (program-wide) unique address E ∈ Addr. The set
QFncNames ⊆ Addr enumerates all roots of ASTs assigned to functions, the
node main ∈ Addr denotes the root of the main expression.

As an example, we will use the Use Case TREE – Query 1 from the
XQuery Test Suite [82], shown in Fig. 6.2. Fig. 6.3 shows the corresponding
abstract syntax forest. Node labels are shown as letters left to the nodes.

53

declare function local:toc($P as element()) as element()*

{

for $X in $P/section

return <section> {

$X/@* , $X/title , local:toc($X)

} </section>

};

<toc> {

for $S in $I/book return local:toc($S)

} </toc>

Figure 6.2: Query 1

l

a

b

c

d

e

f

g

h

i

j

k

m n

<section>

for $X

return
in

$P/section

toc($X)

,

$X/@*

function toc($P)

$X/title

<toc>

for $S

in

$I/book

toc($S)

PI

$S

$X

$P

return

main

$P
,

Figure 6.3: Query 1 – Forest model

54

An (abstract) grammar rule G(E0) is assigned to each node E0 of the
AST tree, assigning semantics to the relationship between E0 and its chil-
dren E1, . . . , En. Formally, the corresponding abstract grammar rule would
be X0 → X1 . . . Xn for some nonterminals X0, . . . , Xn. In our abstract gram-
mar, majority of rules correspond to expressions; therefore, it is usually not
necessary to distinguish between various nonterminals. Thus, we will use
node address variables E0, . . . , En instead of nonterminal names. Further-
more, we will add concrete syntax elements like delimiters to improve read-
ability as in the following example:

E0 ::= E1 union E2

(We will use the symbol ::= for grammar rules to avoid confusion with
other meanings of arrows in this work.)

Some rules contain literals, XML element names, XQuery function names,
or variable names. These items will not be materialized as nodes in the AST;
instead, they become parameters of the node E0. Naturally, we will include
these items in the rule, as in:

E0 ::= for $y in E1 return E2

Of course, the symbol $y is a placeholder for a variable name, not a
concrete variable.

For each AST node E, the set vars[E] contains the names of accessi-
ble variables. In particular, when E is the root of a function AST, vars[E]
contains the names of arguments of the function.

6.2 Transcription phase

The transcription of an XQuery program to an R-program is driven by a set
of modes and a set of transcription rules. A mode defines the representation
of an XQuery value, a transcription rule assigns a partial R-net to an abstract
grammar rule. The system is extensible, i.e. new modes and transcription
rules may be added.

Each mode is essentially a group of relational tables; in the terminology
of R-programs, the tables correspond to places. To bind transcription rules
together, these places are identified using the common dictionary ArcNm of
arc names.

For every AST node E, the mode selection phase selects a mode m(E).
A mode m essentially consists of a set P (m) ⊂ ArcNm of arc names and their
associated schemata. Applying union to their sets of arc names, combined
modes modes may be produced from basic modes. Most transcription rules
are assigned to basic modes; rules for combined modes are defined naturally
by superposition of the basic mode rules.

55

In the transcription process, every AST node is transformed to a set of
R-program places, whose identifications are merged from the arc names from
P (m(E)) and the identification of the node E. We will use the notation
N [E] for the place corresponding to an arc name N ∈ ArcNm and a node
E ∈ Addr.

Similar process governs the transcription of variables and XQuery func-
tion arguments. Each variable or parameter $x is assigned a mode m(E, $x) ⊂
ArcNm. The mode depends on a particular AST node E since some opera-
tions like nesting into FLWOR statements change the representation of visible
variables. For an arc name N ∈ m(E, $x), we will use the notation N [E, $x]
for the resulting R-program place.

For an AST node E0 and its children E1, . . . , En, the corresponding tran-
scription rule is selected among the transcription rules assigned to the gram-
mar rule R(E0) so that it fits to the modes m(E0),m(E1), . . . , m(En). Simi-
larly to modes, transcription rules may be combined from basic transcription
rules. Each basic rule is associated to a grammar rule and an (n + 1)-tuple
of modes assigned to the corresponding AST nodes.

Besides the expression value which propagates bottom-up in the AST,
variable values shall be propagated top-down. In some cases, their represen-
tation may change upon descent through a grammar rule; moreover, their
encoding may be affected by the expression value. Thus, the propagation of
variable values is governed by variable transcription rules, selected accord-
ing to the grammar rule, the modes m(E0, $x),m(E1, $x), . . . ,m(En, $x) as-
signed to the variable at the corresponding nodes, and, sometimes, the modes
m(E0),m(E1), . . . , m(En) assigned to the expression values at the same AST
nodes. Nevertheless, in most cases, the variable transcription rules are trivial,
consisting of identity operations.

The following definition summarizes the previous paragraphs in more for-
mal way.

Definition 17 (Transcription rule) Let R : X0 → X1 . . . Xn be an ab-
stract grammar rule. Let mF

0 ,mF
1 , . . . , mF

n ⊂ ArcNm and mR
0 ,mR

1 , . . . , mR
n ⊂

ArcNm be sets of forward and reverse arc names, respectively. Transcription
rule T is an R-net

NT = (PlcsT , OpsT , InT , OutT , schT , opT , iniT , finT)

whose initial and final arc names are pairs 〈N, i〉 where i ∈ {0, 1, . . . , n} and
N ∈ ArcNm such that

{ a | iniT
a−−→

NT

p } = { 〈N, 0〉 | N ∈ mR
0 } ∪ { 〈N, i〉 | i ∈ {1, . . . , n}∧N ∈ mF

i }

56

union

expr
value

add.
env.

inv.
env.

expr
value

add.
env.

inv.
env.

var.
value

var.
value

expr
value

add.
env.

inv.
env.

var.
value

var.
value

var.
value

var.
value

$X $Y

$X $Y

$X $Y

1 2

0

Figure 6.4: A standard-flow rule for a binary operator

{ a | p a−−→
NT

finT } = { 〈N, 0〉 | N ∈ mF
0 } ∪ { 〈N, i〉 | i ∈ {1, . . . , n}∧N ∈ mR

i }

The arc names in each mode are divided into two groups, forward and
reversed. The division governs the direction of the R-program arcs in the
vicinity of the associated place: The forward arcs propagate expression value
in bottom-up manner with respect to the AST tree while the reversed arcs
propagate values towards the leaves. For arcs representing variables and
arguments, the sense is opposite. Inspired by the notation of attribute gram-
mars [48], we will call the bottom-up propagating arcs synthesized and the
opposite inherited.

The Fig. 6.4 shows the general scheme of a transcription rule for a binary
operator, with forward modes only. In this case, the propagation of the ex-
pression values is independent. The rule is composed of a core part, covering
the invocation environment (inherited), the expression value (synthesized),
and the additional environment (synthesized). For each variable, there is an
independent portion of the transcription rule (inherited).

For grammar rules that define a new variable, additional dependencies
between the core part and the new variable are present as shown in the Fig.
6.5 and 6.6.

57

union

expr
value

add.
env.

inv.
env.

expr
value

add.
env.

inv.
env.

var.
value

expr
value

add.
env.

inv.
env.

var.
value

var.
value

var.
value

$X

$X

$X $Y

1 2

0

union

Figure 6.5: A standard-flow rule E0 ::= let $Y := E1 return E2

A reverted-mode rule is shown at the Fig. 6.7.

58

union

expr
value

add.
env.

inv.
env.

expr
value

add.
env.

inv.
env.

var.
value

expr
value

add.
env.

inv.
env.

var.
value

var.
value

var.
value

$X

$X

$X $Y

1 2

0

union

Figure 6.6: A standard-flow rule E0 ::= for $Y in E1 return E2

59

union

expr
value

add.
env.

inv.
env.

expr
value

add.
env.

inv.
env.

var.
value

var.
value

expr
value

add.
env.

inv.
env.

var.
value

var.
value

var.
value

var.
value

$X $Y

$X $Y

$X $Y

1 2

0

Figure 6.7: A reverted-flow rule for a binary operator

60

Chapter 7

Canonical mode

The canonical mode is based on the following principles:

• Nodes within a tree are identified by node identifiers using Dewey ID
labeling scheme.

• A tree is encoded using a mapping of Dewey labels to node properties.

• A tree created during XQuery evaluation is identified by a tree identifier
derived from the context in which the tree was constructed.

• A node is globally identified by the pair of a tree identifier and a node
identifier.

• A sequence is modeled using a mapping of sequence identifiers to se-
quence items.

• Each sequence containing nodes is accompanied by a tree environment
which contains the encoding of the trees to which the nodes of the
sequence belong.

• Evaluating a for-expression corresponds to iteration through all se-
quence identifiers in the value of the in-clause.

• A particular context reached during XQuery evaluation is identified by
the pair of a call stack, containing positions in the program code, and
a control variable stack, containing sequence identifiers selected by the
for-expressions along the call stack.

• Node identifiers, tree identifiers, sequence identifiers, and control vari-
able stacks share the same domain of hierarchical strings, allowing to
construct each kind of identifier from the others.

61

seq id
si

var stack
vs

tree id
ti

node id
ni

nest/unnest 2ctor

nest/unnest 1

ctordoc-order

input doc output docnav join

Figure 7.1: Life cycle of identifiers

In our model, various operators like FLWOR or constructors convert one
kind of identifier into another. The life cycle of identifiers is shown in Fig.
7.1.

To support the life cycle, we need a common type that supports all the
operations on the identifiers. This leads to the notion of Hierarchical string
defined in the section 4.2.

The model described in this chapter is simplified for the sake of readabil-
ity:

• We assume that all atomic values are represented using the same do-
main DA and that members of this domain carry both the exact type
information and the value. Consequently, all built-in operators and
function are expected to act on this domain according to the type
promotion and subtype substitution rules as defined in the XQuery
standard [22].

• We will not describe the model of type-related constructs instance of,
typeswitch, cast as, castable as, treat as, validate and type
declarations (as) attached to function parameters, return values, and
for, let, some, every, and global variable declarations.

• We will not model error detection and handling; for inputs that man-
date raising an error in the standard, our model may silently produce
some results not supported by the standard.

• We ignore any namespace issues, assuming that all names in the query
and in the input documents are normalized to expanded QName’s (see
[22]).

62

7.1 Tree environment handling

XQuery expressions carry node references – the documents (generally, trees)
must be represented aside the representation of the expression values. The
trees are stored in a tree environment – a relational model of a forest of XML
trees.

The trees may originate outside the query processor (as the input doc-
uments) or they may be created during the query evaluation (by construc-
tors). In the former case, the environment formally propagates from the
main expression down to AST leaves and function calls; in the latter case,
the environment propagates mostly bottom-up. For an XQuery variable,
trees created inside the defining expression must be forwarded down to the
variable scope.

This observation leads to the definition of two relations of the same
schema, one being passed top-down, one bottom-up:

invenv[E], exenv[E] : (ti : DH , ni : DH , nk : DK , nn : DN , nv : DA)

invenv[E] is the tree environment in which the expression is invoked.
exenv[E] is the additional tree environment containing the tree fragments
created by the expression E.

ti is a tree identifier. For input documents, ti ∈ DE; for trees created
during the evaluation, the identifier is in the form ti = α(cs).α(vs); its parts
cs and vs correspond to the environment identification at the moment of tree
creation.

ni is a node identifier; for input documents, it is the Dewey identifier of
the node. For nodes constructed during the evaluation of the query, the node
identifier has the properties of Dewey numbering; however, the individual
labels are hierarchical, since they are constructed during the evaluation using
concatenation and the α operator.

〈nk , nn, nv〉 is a tuple of properties assigned to a node by the XQuery
Data Model, containing node kind, node name, and the typed value (see the
section 2.1).

7.2 Invocation stacks

In bulk evaluation, invocations of a function (or, generally, a sub-expression)
are merged together. To distinguish among values corresponding to different
invocations, our relational models of XQuery values carry a special attribute
– the control variable stack vs . In most cases, this attribute merely prop-
agates through operators and controls join operations. In some cases (like

63

with literals or constructors), the value representation must be created from
scratch; therefore, a source of variable stacks is required.

This requirement is satisfied using the following relation, passed as a
reversed arc from the main expression to functions and from AST roots to
their leaves:

invv[E] : (vs : DH)

invv[E] is the set of variable stacks in which E is evaluated. vs is the stack
of sequence identifiers selected by the for-clauses throughout the descent to
the examined expression. The sequence stack vs , together with a call stack
c ∈ CSL(M) of the resulting R-program M , forms the identification of the
dynamic context in which an expression is evaluated.

While the XQuery standard defines dynamic context as the set of variable
assignments (with some negligible additions), our notion of dynamic context
is based on the stack pair that determines the descent through the code to
the examined expression, combining both the code path stored in c and the
for-control variables in vs . The key to the sufficiency of this model is the
observation that, under fixed outer conditions, the variable assignment is a
function of the stack pair.

Constructor operations must generate globally unique tree identifiers; the
uniqueness is reached using the combination of a variable stack from the set
invv[E] with a call stack passed through the following relation:

invc[E] : (cs : DC)

invc[E] is a single-row relation containing the call stack in which the
expression E is evaluated.

7.3 Canonical mode

The canonical mode is based on the following data structures:

• varseqa[E, $x], varseqn[E, $x] together represent the assignment of the
values of the variable $x ∈ vars[E] to the contexts from invv[E]. This
representation is applied also to the implicit variables (., fn:root).

• exseqa[E] and exseqn[E] represent the assignment of the result value of
the expression E to the contexts from invv[E].

64

section

9

8

book

sectiontitle title

7 4

title

7

section

5

@id

6

/

1

p

8

p

9

section

((d(1))(d(1.9)))

(2.2(d(1.5.8)))

toc

sectiontitle title

(2.1(d(1.5.7))) (2.1(d(1.9.4)))

title

(2.1(d(1.5.8.9)))

section

((d(1))(d(1.5)))

@id

(1(d(1.5.8.6)))

/

()

Figure 7.2: Query 1 – Sample input and output documents

The signature of the mode relations (arc names) is as follows:

varseqa[E, $x], exseqa[E] : (vs : DH , si : DH , av : DA)

varseqn[E, $x], exseqn[E] : (vs : DH , si : DH , ti : DH , ni : DH)

The prefixes var and ex are used to distinguish between arguments as-
signed to variables and arguments representing expressions (although there
is no difference in semantics).

The varseqa[E, $x] and exseqa[E] relations describe atomic members of
sequences, the corresponding relations varseqn[E, $x] and exseqn[E] contain
node members of the same sequence (the two portions are interweaved using
the sequence identifiers si).

Attribute si is a sequence identifier used to represent order (and duplicity)
of values in a sequence. av is a value of an atomic type as defined by the
XQuery standard. The attributes ti and ni together form a foreign key linked
to the corresponding tree environment. For variable values varseqn[E, $x],
the trees are stored in invenv[E]; for expression values, each referenced tree
resides either in invenv[E] or exenv[E].

7.4 Example

Fig. 7.2 shows an input document related to the example program in Fig.
6.3; note that text nodes are omitted. The input document is given a unique
tree identifier d and encoded using Dewey-based relation passed as the envi-
ronment invenv[a] assigned to the root of the main function AST. The value
of the global variable $I is a singleton reference to the document root. The

65

following evaluation is bound to the AST node a. (Note that the first param-
eter λ corresponds to the empty call stack upon the entry to the program.)

κ(λ, varseqn[a, $I]) =
(

λ λ d λ
)

κ(λ, invenv[a]) =

d λ document λ λ
d 1 element book λ
d 1.5 element section λ
d 1.5.7 element title Introduction
d 1.5.8 element section λ
d 1.5.8.6 attribute id 100
d 1.5.8.7 element title Motivation
d 1.5.8.9 element p In...
d 1.5.9 element section λ
d 1.5.9.4 element title Approach
d 1.5.9.8 element p We...

As the execution of the program proceeds, the function toc is called four
times in the original XQuery sense. However, in the R-program the corre-
sponding R-function is expanded only three times, due to the bulk evaluation
semantics. The calls are located at AST nodes e and n, the latter being re-
cursive. This is expressed in the values assigned to the nodes invv[f] and
varseqn[f, $P] during the three R-program runs through these nodes. The
former node contains the variable stacks, the latter forms the value of the
variable $P. Note that the variable is always a singleton, therefore, its model
contains empty sequence identifiers:

κ(e, invv[f]) =
(

(d(1))
)

κ(e.n, invv[f]) =

(
(d(1))(d(1.5))
(d(1))(d(1.9))

)

κ(e.n.n, invv[f]) =
(

(d(1))(d(1.5))(d(1.5.8))
)

κ(e, varseqn[f, $P]) =
(

(d(1)) λ d 1
)

κ(e.n, varseqn[f, $P]) =

(
(d(1))(d(1.5)) λ d 1.5
(d(1))(d(1.9)) λ d 1.9

)

κ(e.n.n, varseqn[f, $P]) =
(

(d(1))(d(1.5))(d(1.5.8)) λ d 1.5.8
)

Encoding of a sequence is shown at the relation exseqn[j] which corre-
sponds to the value of the concatenation operator at node j. This operator

66

is evaluated three times, returning sequences of two nodes in two cases. In
the R-program, the operator is bulk-evaluated twice. Input nodes and con-
structed nodes are mixed here, which is expressed in the use of different tree
identifiers in the third column.

κ(e, exseqn[j]) =

(d(1))(d(1.5)) 2.1(d(1.5.7)) d 1.5.7
(d(1))(d(1.5)) 2.2(d(1.5.8)) (e.n.i)((d(1))(d(1.5))(d(1.5.8))) λ
(d(1))(d(1.9)) 2.1(d(1.9.4)) d 1.9.4

κ(e.n, exseqn[j]) =(
(d(1))(d(1.5))(d(1.5.8)) 1(d(1.5.8.6)) d 1.5.8.6
(d(1))(d(1.5))(d(1.5.8)) 2.1(d(1.5.8.9)) d 1.5.8.9

)

The value associated to the node j becomes the child list of a constructor;
therefore, the tree identifiers ti are replaced to obey the required copy seman-
tics and node identifiers ni are stripped during sub-tree extraction. On the
other hand, the sequence identifiers si are used as edge labels in the output
document – they may be found in the final output of the program shown in
Fig. 7.2.

7.5 Document ordering

Document ordering is represented by the following operator applied to a
relation x with any signature containing the attributes ti and ni (the tree
and node identifiers). The operator computes the sequence identifier, using
the fact that node identifiers are ordered according to the document order
and adding the tree identifier to keep trees separated.

docorder(x) = π[si := α(ti).α(ni)](x)

7.6 Effective Boolean value

In the most frequent case, Boolean values are created by the implicit conver-
sion process called effective Boolean value [22]. This conversion generates a
singleton atomic value of type xs:boolean, i.e. either true or false.

The effective Boolean value may be defined using the operators of rela-
tional algebra; however, the defining expression is too complex because the
definition of effective Boolean value is complex and irregular (for instance,
it is order-sensitive). Fortunately, most XQuery operators do not produce

67

sequences of mixed atomic and node items; in these cases, the definition of
the effective Boolean value is simplified.

To make use of the above-mentioned observation, the conversion must be
moved against the data flow and coupled with the previous operator. This
move is represented by the introduction of the EBV mode which stores the
effective Boolean value of the original expression. This mode will be used on
the data path between two operators whenever the second operator induces
the conversion of its operand to the effective Boolean value.

Note that if the output of an operator is used twice, once with the EBV
conversion and once without any conversion, the operator is modified so that
it produces both the canonical and the EBV modes.

The EBV mode consists of the following two relations:

exebvt[E] : (vs : DH)

exebvf[E] : (vs : DH)

exebvt[E] = {(vs) | the effective Boolean value in the context vs is true}

exebvf[E] = {(vs) | the effective Boolean value in the context vs is false}

The Appendix A summarizes the most important transcription rules for
the canonical and the EBV modes.

7.7 Attribute removal

In many cases, some attributes may be removed from the relations in the
transcription. In general, there may be three reasons for the removal:

• The value of the attribute is constant.

• The value of the attribute may be derived from another relation.

• The attribute is not used in subsequent computation.

With the removal of an attribute, the model of an expression or a variable
is shrunk to a submode. Thus, a submode is generated “automatically” from
the base mode. Effective algorithms to determine removable attributes are
presented in the chapter 9.

68

Constant attributes

Many transcription rules assign the empty string to an attribute. The most
important case is the attribute si – singleton variables are represented in
this way. Similarly, constructors generate empty strings to ni , representing
the root of a tree. In these cases, the empty value may be traced forward
and removed, until the attribute is discarded in a projection or merged in
a union operator. Removing such attribute simplifies many operations and
allows advanced optimizations; e.g., employing the fact that an expression is
a singleton.

Derived attributes

When an XQuery expression is independent of a particular invocation (i.e., if
it is constant or dependent only on the input documents), the column vs may
be removed from its relational representation. When necessary, the column
may be added using a (Cartesian product) join to the relation invv[E].

However, the dependency on the relation invv[E] was important as it
kept the resulting R-program controlled (see the section 5.3). Furthermore,
we have no constant (other than the empty set) in our relational algebra.
Therefore, constants must be represented using a projection (function appli-
cation) on a singleton relation kept in the controller set of every function.
Such a relation is, formally, derived from the relation invv[E] by the removal
of its only attribute. It means that, whenever an expression is evaluated, the
reduced version of the invv[E] relation consists of a single row carrying no at-
tribute. Absence of the row would mean that no evaluation is required – this
is exactly the purpose of a controller argument. Since all constants will be
dependent on this relation, evaluation of the R-program remains controlled.

Unused attributes

In the transcription rules, often an attribute is not used in the right-hand
side of the equations. For instance, all node-set operators ignore the si
attribute of their operands. In the terms of the relational algebra, there is a
projection operator that removes the attribute. The projection operator is
distributive over some of the other relational algebra operators, provided the
operators do not reference attributes removed by the projection. Thus, the
projection operator may be moved against the flow of computation until a
barrier formed by a set difference, a natural join or a selection operator that
references the removed column. The projection operator may also annihilate
with a function application operator that defines the removed column.

69

In the special case of the attribute si , this removal corresponds to the
evaluation in unordered context as defined in [22].

7.8 Relation removal

Besides relation removal, whole relations may be removed from the generated
R-program whenever static analysis detects that they are always empty. This
is again a kind of forward-propagating property and a similar algorithm to
the detection of constant and derived attributes may be used.

Both exseqn[E] and exseqa[E] relations are frequent candidates for re-
moval since, in most cases, XQuery values are either sequences of nodes or
sequences of atomic values (i.e., not mixed). The same applies to the rep-
resentation of variable values. Furthermore, the exenv[E] relation is empty
whenever the expression E (including the functions called here) does not
contain constructors.

Relations may also be removed when they are not referenced – this is
often the case of exebvf[E] or exebvt[E] because where clauses and quantified
expressions use only one of them. The absence of usage is a backward-
propagating property similar to the case of unused attributes.

The Fig. 7.3 shows the result of the attribute and relation removal on
the canonical representation of the function employee from the Fig. 3.1.

70

inv.
env.

var.
value
$P

ni3,nn3,nv3

doc(“company”)

ni1 ni2,nn2

join
prefix(ni1,ni2)

ni2,nn2

select
nn2=”employee”

join
prefix(ni2,ni3)

select
nn3=”@hired”

ni2,ni3,nn3,nv3

join
prefix(ni2,ni4)

select
nn4=”@fired”

ni2,ni4,nn4,nv4

ni4,nn4,nv4

join
nv3<avP

join
avP<nv4

vsP,avP

vsP,ni2

join

vsP,ni2

vsP,ni2

expr
value

Figure 7.3: Canonical representation of the function employee

71

72

Chapter 8

Reverted modes

The name reverted mode denotes any mode that employs reverted arcs (other
than the invc[E], invv[E], and invenv[E] arcs). In this chapter, we will show
a particular set of reverted modes designed to replace predicate pushing and
join reordering in the context of R-programs. In addition, we will present
the output-driven mode dedicated to output-document handling.

All the presented modes share a common feature – they are derived from
a forward mode (the canonical mode) using a join operation. The general
scheme is as follows: In the underlying forward mode, we have a forward arc
x. In the derived mode, we are replacing the forward arc with a pair of a
reverted arc y and a forward arc z with the following semantics:

z = σ[P] (y ./ x)

Thus, the replacement corresponds to pushing a join operation into the
expression that computes x. The join may be based on equality (hidden in
the natural join operator) as well as on an predicate P , or combining both
conditions.

Several scenarios may fit within this general scheme:

• When the primary key of the relation y is empty, the join operator is
reduced to a selection controlled by the value of y (which contains at
most one tuple). This situation corresponds to pushing an independent
predicate into the expression producing x. We will denote this scenario
as independent filtering.

• When the primary key of y is a subset of the primary key of x, the
join operator does not multiply the tuples from x. It may be described
as dependent filtering by a predicate whose parameters are fed through
the relation y and matched using the common part of the primary keys.

73

• When the primary key of y contains an attribute not present in x, the
join operator produces multiple tuples for a single tuple from x. This
scenario allows moving a join operation through the boundary of an
expression or function: Instead of performing a join (u ./ x) at its
original position, the relation u is sent through the reverted arc y to
the place where x is computed. Subsequently, the join operation may
be reordered with respect to any joins that produce x. This situation
will be called dependent multiplication.

• The special case when the primary keys are disjoint will be called in-
dependent multiplication.

Note that any attributes of y that are not present in x (and not involved
in P) will return through z unaffected. Using hierarchical strings, we are
able to pack more values to a single attribute; therefore, a single additional
attribute can cover all multiplication scenarios. We will use the name ak
(additional key) for such an attribute.

8.1 Atomic-filtering modes

These modes are applied to the exseqa[E] relation of the canonical mode, in
particular, to its av attribute. This is the attribute that carries the atomic
value of an XQuery expression and XQuery predicates may be applied to it.
Although there is a vast number of predicates applicable, only those predi-
cates that may be useful in indexed access are considered. In this section,
we will show modes based on two kinds of predicates – the equality av = x
and the bounding interval r ≤ av ≤ s.

Based on the discussion in the previous section, we can define the follow-
ing eight reverted modes. Each mode consist of a reverted arc relation, a
forward arc relation, and an equation that defines the forward relation based
on the reverted relation and the underlying exseqa[E].

• independent equality filtering
exiefr[E] : (av : DA)
exiefa[E] : (vs : DH , si : DH , av : DA)
exiefa[E] = (exiefr[E] ./ exseqa[E])

• independent interval filtering
exiifr[E] : (r : DA, s : DA)
exiifa[E] : (vs : DH , si : DH , av : DA)
exiifa[E] = δπ[\r, s] σ[r ≤ av ≤ s] (exiifr[E] ./ exseqa[E])

74

• dependent equality filtering
exdefr[E] : (vs : DH , av : DA)
exdefa[E] : (vs : DH , si : DH , av : DA)
exdefa[E] = (exdefr[E] ./ exseqa[E])

• dependent interval filtering
exdifr[E] : (vs : DH , r : DA, s : DA)
exdifa[E] : (vs : DH , si : DH , av : DA)
exdifa[E] = δπ[\r, s] σ[r ≤ av ≤ s] (exdifr[E] ./ exseqa[E])

• independent equality multiplication
exiemr[E] : (ak : DH , av : DA)
exiema[E] : (ak : DH , vs : DH , si : DH , av : DA)
exiema[E] = (exiemr[E] ./ exseqa[E])

• independent interval multiplication
exiimr[E] : (ak : DH , r : DA, s : DA)
exiima[E] : (ak : DH , vs : DH , si : DH , av : DA)
exiima[E] = δπ[\r, s] σ[r ≤ av ≤ s] (exiimr[E] ./ exseqa[E])

• dependent equality multiplication
exdemr[E] : (ak : DH , vs : DH , av : DA)
exdema[E] : (ak : DH , vs : DH , si : DH , av : DA)
exdema[E] = (exdemr[E] ./ exseqa[E])

• dependent interval multiplication
exdimr[E] : (ak : DH , vs : DH , r : DA, s : DA)
exdima[E] : (ak : DH , vs : DH , si : DH , av : DA)
exdima[E] = δπ[\r, s] σ[r ≤ av ≤ s] (exdimr[E] ./ exseqa[E])

Other modes may be derived similarly, for instance lower-bound or upper-
bound modes.

Reverted modes require special handling of variable propagation, applying
union on their reverted arcs as shown in the Fig. 6.7 for the general case of
a binary operator. Furthermore, rules defining a new variable contain joins
as shown in the Fig. 8.1 and 8.2.

8.2 Node-filtering modes

Similarly to atomic filtering, node sequences may be filtered using the im-
portant properties of the nodes, namely the kind nk , the name nn, and the

75

union

expr
value

add.
env.

inv.
env.

expr
value

add.
env.

inv.
env.

var.
value

expr
value

add.
env.

inv.
env.

var.
value

var.
value

var.
value

$X

$X

$X $Y

1 2

0

union

Figure 8.1: A reverted-flow rule E0 ::= let $Y := E1 return E2

typed value nv . Any subset of the three attributes may be bound by equal-
ity like nn = x, the typed value may also be constrained by the bounding
interval r ≤ nv ≤ s. These combinations generate 11 ways of filtering.

Furthermore, each filtering may be independent or dependent and may
become a multiplication. Consequently, there are 44 modes applicable.

Fig. 8.3 shows the representation of the function employee from the
Fig. 3.1, using independent node filtering on the invocation environment
and independent atomic multiplication on the variable $P.

8.3 Structural-filtering modes

Node sequences may also be filtered with respect to the node identifier ni , us-
ing its properties as a Dewey number. The available filters are q = rtrim(ni),
prefix (ni , q), and prefix (q, ni), corresponding to the child, ancestor, and
descendant axis navigation with respect to the node q (see the Table A.1).
Based on these three types of filters, 12 reverted modes are defined, carrying
the node identifier q in their reverted arc relation.

Applying structural-filtering modes, a group of structural join operators

76

union

expr
value

add.
env.

inv.
env.

expr
value

add.
env.

inv.
env.

var.
value

expr
value

add.
env.

inv.
env.

var.
value

var.
value

var.
value

$X

$X

$X $Y

1 2

0

union

Figure 8.2: A reverted-flow rule E0 ::= for $Y in E1 return E2

may be interconnected so that they together emulate the behavior of a path
or twig join (see the Sec. 2.7). Note that only the basic versions of joins may
be emulated; the emulation of the skipping versions (see [47]) would require
cycles in the R-program.

8.4 Output-driven mode

Compared to the complexity of XPath evaluation, the generation of the out-
put tree seems straightforward. XQuery constructors create the output doc-
ument in bottom-up manner; moreover, the formal definition of XQuery se-
mantics suggests that the children of the new nodes are created from the
source node list by copying (including their sub-trees). This copying is usu-
ally avoided by the use of shared pointers and reference counting [31]; how-
ever, these methods are poorly applicable in parallel environments.

To avoid the obstacles of bottom-up construction, the output-driven mode
is devised. Using this mode, output documents are effectively constructed
in top-down manner, giving each node its final position in the moment of its
construction. This arrangement allows bypassing the construction of partial

77

inv.
env.

var.
value
$P

ni3,nv3

doc(“company”)

ni1

ni2

join
prefix(ni1,ni2)

ni2,nn2

join
prefix(ni2,ni3)

ni2,ni3,nv3

join
prefix(ni2,ni4)

ni2,ni4,nv4

ni4,nv4

vsP,ni2

expr
value

”@hired” ”@fired”

nn4nn3

”employee”

nn2

join

ni2,nv3,nv4

Figure 8.3: Reverted representation of the function employee

78

sub-trees and, in the case when the output of the query is stored into a
database, building the output document directly in its storage location.

In most cases, constructed nodes and trees are not navigated using XPath
axes or combined using node-set operations; they are just propagated to other
constructors or to the final output of the program. (Note that navigation in
temporary trees was prohibited in XSLT 1.0., therefore, it is still very rare
practice in XSLT 2.0 and XQuery.) In such cases, the expressions forming
a XQuery program may be statically divided into two classes: Expressions
returning atomic values and input document nodes and expressions returning
constructed nodes.

Under the assumption that output trees are not navigated, only the fol-
lowing operators may be applied to the constructed node sequences:

• Concatenation (,) operator

• for-expression

• let-expression

• Node constructor

• Input-to-output tree conversion (implicit)

• Function call

These operators can perform only a limited degree of manipulation on
the sequences. As a result, each node is just placed somewhere in the output
document, without any modification to its contents. Using where clause,
nodes may be discarded; using let-expression or function arguments, nodes
may be copied. Thus, the total effect on a constructed node may be rep-
resented by a set of placeholders that represent the positions in the output
document where the node is placed (copied).

Our method is based on partial reversal of the direction of data flow in
an XQuery program. In the synthetic part of the program that generates
the output document, the canonical bottom-up evaluation is replaced by
top-down distribution of placeholders. These placeholders give advice to the
constructor operators on where the constructed nodes will reside in the final
output document.

Output node identifiers are produced during the reversed evaluation of the
XQuery program. Starting at the main expression, (partial) placeholders are
propagated through the program; at each constructor, partial placeholders
are finalized to produce complete output node identifiers. These identifiers,

79

together with the properties of the constructed node, are stored into the
output database.

We assume that the XQuery was already statically analyzed to determine
which expressions are used as output node sequences, in other words, where
the output-driven mode shall be applied (see the Chapter 9).

Those expressions will be evaluated in two phases. In the first phase,
the information is passed in reversed direction against the original data-flow,
using the placeholder sets. In the second phase, the output is simply collected
by (disjoint) union operators. In an implementation, each constructor may
directly write its output to storage instead of union-collecting the output
along function calls.

A set of descriptors is expressed using the following relation:

exdesc[E] : (vs : DH , ni : DH , si : DH)

The vs attribute corresponds to the variable stack and determines the
context of the evaluation in the same manner as in the forward modes. The
remaining hierarchical identifiers form the partial placeholder ni .α(si).

The output of the XQuery program is collected from all constructor oper-
ators throughout the program. Every contribution is modeled as the relation:

exout[E] : (oi : DH , nk : DK , nn : DN , nv : DA)

The oi attribute is the output node identifier, nk , nn, and nv attributes
represent node kind, name and value as required by the XML document
model.

With respect to the canonical mode, the output-driven mode relations
are created so that the following equation holds:

normalize(exout[E]) = glue(exdesc[E],
mkforest(exseqn[E], invenv[E], exenv[E], exseqa[E]))

glue(x, y) = π[oi := ni .α(si .r).s] (x ./ lunpack(y))

lunpack(x) = δπ[\ni] π[r := first(ni), s := ltrim(ni)] (x)

See the Section 7 for the definition of the functions normalize and mkforest .
The function glue(x, y) performs a join operation on its arguments; thus,

the output-driven mode is similar to the concept of reverted mode defined by
a join operation presented in the introduction to this chapter. The original
join-based concept is complicated in two aspects – first, the join is applied
on a function of four arcs instead of one forward arc; second, the function

80

normalize is applied on the left-hand-side of the equation. The latter fact
corresponds to the fact that the exout[E] arcs carry unnormalized tree frag-
ments and the normalization is delayed as described below.

The join operation in glue(x, y) is driven by the equality of the attribute
vs ; thus, this is a special case of dependent multiplication as defined in the
beginning of this chapter. Static analysis may determine that the value
of the remaining attributes of the exdesc[E] relation is independent of the
value of vs ; in such cases, the vs attribute may be removed, resulting to
an independent-multiplication scenario where exdesc[E] is replaced by the
following relation:

exdesci[E] : (ni : DH , si : DH)

We will show that the set of placeholders may be computed in the reversed
direction of the constructed node flow. The computation begins at the main
expression Emain of the program, with a single placeholder pointed at the
root of the output document:

Reverted core rules

exdesc[Emain] := (vs := λ, ni := λ, si := λ)

Core rules

exenv[Emain] := normalize(π[ti := λ] π[ni/oi] exout[Emain])

The normalize function performs the normalization required by the se-
mantics of the constructor operation – adjacent string values are separated
by spaces, concatenated, and converted to a text node; then, adjacent text
nodes are merged. In the output-driven mode, the normalization is delayed
to the very end of the query execution. To allow this rearrangement, an
additional node kind – string node – must have been introduced and the
normalization must have been generalized to trees instead of the original se-
quences. We have already defined the generalized normalize function in the
definition of constructor transcription rules for the canonical mode.

An implementation that stores the output of the query in a database may
decide to store the unnormalized version of output, provided it is aware of
the consequences in indexing and further querying.

The reversed evaluation of the applicable XQuery operators is described
by the following equations.

81

Concatenation

Syntax

E0 ::= E1 , E2

Reverted core rules

exdesc[E1] := π[si/u] δπ[\si] π[u := s.1] (exdesc[E0])

exdesc[E2] := π[si/u] δπ[\si] π[u := s.2] (exdesc[E0])

Core rules

exout[E0] := (exout[E1] ∪ exout[E2])

Node construction

E0 ::= <e>{ E1 }</e>

exdesc[E1] = δπ[\p, u] π[si := λ, ni := p.α(u)] π[p/ni , u/si] (exdesc[E0])

exout[E0] = π[nk := element, nn := e, nv := λ] δπ[\ni , si]

π[oi := ni .α(si)] (exdesc[E0])

∪ exout[E1]

For expression

E0 ::= for $y in E1 return E2

exdesc[E2] = δπ[\j, u, w, av] π[vs := j.α(av), si := u.α(w)]

(π[j/vs , u/si] (exdesc[E0]) ./ π[w/si] (exseqa[E1]))

exout[E0] = exout[E2]

Order-by clause

E0 ::= for $y in E1 order by E2 return E3

exdesc[E3] = δπ[\j, u, w, av] π[vs := j.α(av), si := u.α(y).α(w)]

(π[j/vs , u/si] (exdesc[E0]) ./

π[w/si] (exseqa[E1]) ./

π[j/vs , y/av] δπ[\si] (exseqa[E2]))

82

<section>

for $X

return
in

$P/section

toc($X)

,

$X/@*

function toc($P)

$X/title

<toc>

for $S

in

$I/book

toc($S)

PI

$S

$X

$P

return

main

$P

Figure 8.4: Query 1 – Standard data flow

Example

Fig. 8.4 shows the abstract syntax trees corresponding to the program in Fig.
6.2 with arrows depicting the propagation of information. The thin dashed
arrows show the propagation of input tree nodes, the thick dashed arrows
carry the constructed nodes. Note that the $X/@* and $X/title expres-
sions produce input nodes, however, their corresponding sub-trees are copied
into the output document. This behavior may be regarded as an implicit
conversion – by definition, it shall take place just before the <section> con-
structor; however, static analysis may move the conversion operation down
to the XPath expressions as shown in the figure.

The reversed flow of placeholders is shown in Fig. 8.5, using solid arcs.
The side effects of constructors are shown as thick dashed arrows. In the
formal model of the output-driven mode, the encodings of the constructed
nodes are collected using union operators; in reality, it may be implemented
by an output operation as suggested in the picture.

Implicit conversions attached to the $X/@* and $X/title expressions were
transformed to side effects: Such expressions perform a Cartesian product
of their new placeholder argument with the input nodes returned by their
XPath expression. Each of these input nodes is (together with its sub-tree)
copied into every place denoted by the placeholder set.

The computation starts with the empty vs-independent placeholder (ni :=
λ, si := λ). The empty placeholder reaches the <toc> constructor which pro-

83

<section>

for $X

return
in

$P/section

toc($X)

,

$X/@*

function toc($P)

$X/title

<toc>

for $S

in

$I/book

toc($S)

PI

$S

$X

$P

return

main

$P

Figure 8.5: Query 1 – Reversed data flow

duces a node in the form of the tuple (oi := α(λ), nk := element, nn :=
toc, nv := λ). The oi value encodes the fact that the node will be placed in
the depth 1 as the only child of the document node.

The constructor operator then passes the placeholder (ni := α(λ), si :=
λ) to its sub-expression, carrying the information that the nodes created by
the sub-expression will become children of the node identified by α(λ).

A for-expression iterates through a sequence whose order is encoded in
the sequence identifiers. (In our example, this is a sequence of nodes seri-
alized in the document-order; therefore, their node identifiers determine the
ordering.) In each iteration, the for-expression produces a new placeholder
by appending the sequence identifier at the end of the si attribute of the
placeholder; in the example, the for $S expression creates the placeholder
(vs := α(siS), ni := α(λ), si := siS) for each sequence identifier siS gener-
ated by the in-expression. This placeholder is passed down to the function
toc.

The expression for $X iterates through another expression, generating
placeholders like (vs := α(siS).α(siX), ni := α(λ), si := siS.siX) by append-
ing sequence identifiers siX . Therefore, the <section> constructor produces
a set of nodes encoded by tuples

(oi := α(λ).α(siS.siX), nk := element, nn := section, nv := λ)

The concatenation (,) operator is implemented using fixed labels {1, 2, 3}
assigned to its three operands. Thus, the recursive call to the function toc

84

receives a set of placeholders in the form

(vs := α(siS).α(siX), ni := α(λ).α(siS.siX), si := 3)

Further nested calls receive the sets like

(vs := α(siS).α(siX).α(siX2), ni := α(λ).α(siS.siX).α(3.siX2), si := 3)

and so on.

Applicability of the output-driven mode

The output-driven approach may be functional if the following requirements
are satisfied:

• The target database uses a kind of identifiers to link the individual
elements together. (Pointer-based implementations are disqualified.)

• These identifiers must be stable and independent on the presence of
sibling elements. For instance, identifier schemes based on sequential
(1,2,3,. . .) numbering of document nodes are not suitable. Fortunately,
schemes designed to support updates usually satisfy this requirement.

• The target database must tolerate temporal violation of referential in-
tegrity during the process of document generation. (For instance, chil-
dren representation may be generated before their parents.) Transaction-
based isolation can solve this problem; however, the cost of this ap-
proach in a distributed environment is not negligible. Higher-level
management of incomplete output documents may perform better than
a transaction-based approach.

• The target database must offer an interface capable to accept individual
document elements and identifiers from the XQuery/XSLT engine.

It seems that many contemporary XML storage systems, either relational
(for instance [68]) or native, can support the first three requirements either
immediately or with little changes. The main blocker is the fourth require-
ment, since the storage systems are usually built as black-boxes not capable
to accept their internal identifiers from the outside. Nevertheless, advanced
XML storage systems are often tightly coupled with an XPath engine on
the retrieval side; therefore, the integration on the document-generation side
may be realizable.

85

Materialized XML-views are one of the areas where such an approach
may be used. Indeed, methods using identifier schemes satisfying the above-
mentioned requirements were already presented [26, 25]; however, they are fo-
cused on view updates, therefore solving a different problem than our method
described in this paper. In [36], related techniques were used in query refor-
mulation above XSLT Views.

The main advantage of the presented method is the absence of in-memory
structures representing the output document or its parts during the execu-
tion. This fact reduces the memory footprint of the execution. On the other
hand, the amount of information generated during the execution is greater
than in memory-based approaches, due to the fact that each generated node
carries the Dewey identifier of the absolute location of the node. Therefore,
the proposed approach may be advantageous under the following circum-
stances:

• Large output documents that would hardly fit into memory. Tradi-
tionally, streaming XQuery/XSLT processors are used in these cases;
however, our technique allows to process programs that do not fit into
streamability requirements associated with various streaming methods
(see, for instance [23]).

• Shallow output documents. In this case, the absolute Dewey identifiers
of the generated nodes are relatively short and the above-mentioned
overhead connected to their generation is lower. Studies [63] show that
real XML data are rather shallow.

• A distributed environment, where the maintenance of in-memory trees
is costly.

• XML messaging. Our labeling scheme may also be used as an alterna-
tive to serialized XML in tightly-coupled systems (for instance XRPC
[87]) where latency is more important than bandwidth.

86

Chapter 9

Static analysis

Before transcription, a transcription rule (or a set of rules) must be selected
for each AST node of each function. These transcription rules induce mode
assignment for each AST node. The selected rule/mode assignment must
satisfy these requirements:

• Each selected mode must be valid in the given context. This rule
applies to transcription rules applicable under a particular condition,
e.g. singleton expressions, node-only sequences etc.

• The selected mode must carry enough information to the consumers.
More precisely, the set of output arcs at a particular rule and node must
be a super-set of the input arcs required by the selected transcription
rules in the neighborhood.

• The R-program generated using the selected transcription rules must
be acyclic.

More than one mode selection may fulfil these conditions; therefore, the
mode selection phase uses a priority scheme to favorize the modes expected
to be less costly. This prioritization forms a kind of rule-based optimization.
This prioritization also ensures that the resulting R-program will be non-
redundant (in the sense of the Definition 4).

Note that the determination of controller sets is also necessary for an
executable R-program. However, the controller sets are determined statically
and independently in each transcription rule; therefore, the mode-selection
algorithms are not required to support controller sets.

87

9.1 Phases

The three above-mentioned conditions lead to the following three phases of
the static analysis:

• Forward propagation determines certain properties of the values at each
AST node and, thus, the applicability of transcription rules.

• Cycle removal phase detects cycles in the generated R-program and
gradually removes them until the program is acyclic. This phase is
driven by the priority rules, based on the observation that the canonical
transcription (assigned the lowest priority) is always acyclic.

• Backward propagation determines the set of arcs (i.e. the mode) re-
quired at each AST node by the neighboring nodes that consume its
outputs. This in turn removes redundancy and keeps the greatest-
priority transcription rule from the available rules.

All the three phases work as if the source program (in the AST forest
model) were already transcribed to an R-program. Nevertheless, the algo-
rithms are based on traversals through the original AST forest; thus, the
transcription is, at this moment, only virtual.

In the forward propagation phase, the canonical and Boolean transcrip-
tion rules are virtually applied and the properties of the resulting R-program
are examined. Based on the forward propagation phase, a set of applicable
transcription rules is determined for each AST node. The following phases
act as if all applicable transcription rules were applied at once, producing a
redundant R-program. The cycle removal phase eliminates the transcription
rules that would break the acyclicity condition. The redundancy is com-
pletely removed after the backward propagation phase.

Each of the three phases is composed of two steps – dependency analysis
and a specific dependency application step. The dependency analysis step
follows the same algorithm in all the three phases; however, the meaning of
the word “dependency” is different in these phases.

In all phases, we are determining certain kind of dependency between the
inherited and the synthesized arcs at each AST node. Inherited arcs consist
of the forward arcs associated to the representation of visible variables and
of the reversed arcs of the expression value; synthesized arcs are the forward
arcs of the expression value and the reversed arcs of the visible variables.
Arcs of all modes together are considered.

88

9.2 Observed dependency relations

Each of the three phases determines a different kind of dependency:

• The forward phase determines the dependency of cardinality on the
scale zero/one/more. Thus, the output of the first phase is a set of
observations like “if the inherited arc aI has its cardinality less or
equal to cI , then the synthesized arc aS will have a cardinality at most
cS”. Such an observation bound to an AST node E will be denoted
carddepcI ,cS [E, aI , aS] for cI , cS ∈ {0, 1}.

• The cycle removal phase determines dependency in the sense of the Def-
inition 6, i.e. that the value of a synthesized arc aS must be computed
after the value of an inherited arc aI , denoted dep[E, aI , aS]. When
the dependency is determined, cycles are detected and broken by the
removal of a transcription rule as shown below.

• The backward phase determines the requirement for an inherited arc
based on the requirement for an synthesized arc. It determines state-
ments aareq[E, aI , aS] with the meaning “the inherited arc aI is required
by the most prioritized available transcription rule that can produce the
synthesized arc aS”. At the same time, the backward phase also de-
termines dependency at the level of relation attributes: the statement
ccreqcI ,cS [E, aI , aS] means “the relational attribute cI of the inherited
arc aI is required by the most prioritized available transcription rule
that can produce the relational attribute cS of the synthesized arc aS”.
Mixed statements acreqcS [E, aI] and careqcI [E, aI] are also determined
to show the dependency between particular attributes and whole rela-
tions in both directions.

All the above-mentioned symbols may be generalized as φ[E, aI , aS] where:

• φ ∈ {carddep0,0, carddep0,1, carddep1,0, carddep1,1} for the forward phase

• φ ∈ {dep} for the cycle detection

• φ ∈ {aareq} ∪ {acreqcS | cS ∈ AttrNm} ∪ {careqcI | cI ∈ AttrNm} ∪
{ccreqcI ,cS | cI , cS ∈ AttrNm} for the backward phase

Thus, for each pair 〈aI , aS〉, φ[E, aI , aS] is a matrix of Boolean values. The
size of the matrix is 2 · 3 for the forward phase, 1 · 1 for the cycle detection,
and (1 + |sch(aI)|) · (1 + |sch(aS)|) for the backward phase.

89

Let us fix to a given vocabulary of expression arc names ExArcNm and
variable arc names VarArcNm. Both vocabularies are divided into forward
and reverse arcs:

ExArcNm = ExArcNmF ∪ ExArcNmR

VarArcNm = VarArcNmF ∪ VarArcNmR

ExArcNmF = {eF
1 , eF

2 , . . . , eF
nF

e
}

ExArcNmR = {eR
1 , eR

2 , . . . , eR
nR

e
}

VarArcNmF = {vF
1 , vF

2 , . . . , vF
nF

v
}

VarArcNmR = {vR
1 , vR

2 , . . . , vR
nR

v
}

For the modes defined in the chapters 7 and 8, the sets are as follows:

ExArcNmF = {exseqa, exseqa, exseqn, exenv, exout,
exiefa, exiifa, exdefa, exdifa, exiema, exiima, exdema, exdima}

ExArcNmR = {invc, invv, invenv, exdesc,
exiefr, exiifr, exdefr, exdifr, exiemr, exiimr, exdemr, exdimr}

VarArcNmF = {varseqa, varseqn, varout,
variefa, variifa, vardefa, vardifa, variema, variima, vardema, vardima}

VarArcNmR = {vardesc,
variefr, variifr, vardefr, vardifr, variemr, variimr, vardemr, vardimr}

9.3 AST node behavior

For an AST node E with the set vars(E) of visible variables, there are:

• the inherited arcs eR
i [E] for i ∈ {1, 2, . . . , nR

e }

• the inherited arcs vF
i [E, $x] for i ∈ {1, 2, . . . , nF

v } and $x ∈ vars(E)

• the synthesized arcs eF
j [E] for j ∈ {1, 2, . . . , nF

e }

• the synthesized arcs vR
j [E, $y] for j ∈ {1, 2, . . . , nR

v } and $y ∈ vars(E)

90

Thus, for a generalized dependency symbol φ, the dependency relations
represented by the following set of dependency matrices :

ψEE[E] =
(
φ[E, eR

i [E], eF
j [E]]

)

ψEV [E, $y] = (φ[E, eR
i [E], vR

j [E, $y]]) for each $y ∈ vars(E)

ψV E[E, $x] = (φ[E, vF
i [E, $x], eF

j [E]]) for each $x ∈ vars(E)

ψV V [E, $x, $y] = (φ[E, vF
i [E, $x], vR

j [E, $y]]) for each $x, $y ∈ vars(E)

Note that the symbols φ were already matrices, therefore, the matrix
ψEE[E] contains nR

e ·nF
e ·k Boolean values where k is the size of the φ matrix

(which is different for each phase); similarly, nR
e · nR

v · k is the size of each
ψEV [E, $y] matrix, nF

v · nF
e · k for each ψV E[E, $x], and nF

v · nF
e · k for each

ψV V [E, $x, $y].
These matrices may be arranged into a compound dependency matrix

ψ[E] =

ψEE[E] ψEV [E, $y1] . . . ψEV [E, $ym]
ψV E[E, $x1] ψV V [E, $x1, $y1] . . . ψV V [E, $x1, $ym]

...
...

...
ψV E[E, $xm] ψV V [E, $xm, $y1] . . . ψV V [E, $xm, $ym]

The compound matrix has the total size

s(E) = (nR
e + m(E) · nF

v) · (nF
e + m(E) · nR

v) · k
where m(E) is the number of visible variables for the node E.
The compound matrix completely determines the behavior of the sub-

expression rooted at the node E with respect to the dependency properties
observed by the analysis phase.

9.4 Rule behavior

Given a transcription rule R applied at an AST node E0 with its children
E1, . . . , En, the compound dependency matrix for the parent is a function of
compound dependency matrices of the children:

ψ[E0] = ΦR(ψ[E1], . . . , ψ[En])

.

91

The function ΦR determines the propagation of dependencies in the given
rule; therefore, it is always a monotone function, i.e.

x1 ≤ y1 ∧ . . . ∧ xn ≤ yn ⇒ ΦR(x1, . . . , xn) ≤ ΦR(y1, . . . , yn)

where the partial ordering ≤ is defined on Boolean matrices as

x ≤ y ⇔ (∀i, j)(xi,j ⇒ yi,j)

Note that the function ΦR may depend on the result of the previous phase
of the analysis. This dependency is expressed as a variability in the selection
of the transcription rule R for a given grammar rule.

In the following text, we will also assume that the manipulation with the
visible variables is already incorporated in the rule R.

Each ΦR function is defined in terms of matrices AR, BR, ΓR, and ∆R as
follows:

ΦR(Ψ) = ∆R + AR ·Ψ · (ΓR ·Ψ)∗ ·BR

where Ψ is the matrix created from the compound matrices ψ[E1], . . . , ψ[En]:

Ψ =

ψ[E1] 0 . . . 0
0 ψ[E2] . . . 0
...

...
...

0 0 . . . ψ[En]

The symbols + and · denote matrix addition and multiplication with
respect to the Boolean algebra (in other words, union and composition of
relations), the symbol ∗ is the reflexive and transitive closure.

The matrices AR, BR, ΓR, and ∆R are constructed as follows:

∆R =
(

δ
)

AR =
(

α1 α2 . . . αn

)

BR =

β1

β2
...

βn

 ΓR =

γ1,1 γ1,2 . . . γ1,n

γ2,1 γ2,2 . . . γ2,n
...

...
...

γn,1 γn,2 . . . γn,n

Here, αp is the dependency matrix between the inherited arcs of E0 and
the inherited arcs of Ep, βq is the dependency matrix between the synthesized
arcs of Eq and the synthesized arcs of E0, γp,q is the dependency matrix
between the synthesized arcs of Ep and the inherited arcs of Eq, and δ is the
dependency matrix between the inherited and synthesized arcs of E0.

92

ΓR

...
children in the AST
Ep, Eq

γR,p,q

...
visible XQuery variables
$xi, $xj

γV V
R,p,q[$xi, $xj]

...
arc names (relations)
vR

k , vF
l

φ[R, vR
k [Ep, $xi], v

F
l [Eq, $xj]]

...
relation attributes
cI , cS

ccreqcI ,cS [R, vR
k [Ep, $xi], v

F
l [Eq, $xj]]

Figure 9.1: A part of the composition hierarchy of a ΓR matrix

Similarly to the composition of the ψ[E] matrices, each αp, βq, γp,q, or δ
matrix is built from blocks corresponding to the expression and the visible
variables. These blocks are divided to parts corresponding to arc names and,
finally, the parts are composed of Boolean matrices according to the observed
dependency (like the propagation of relation attributes). For illustration, a
part of the hierarchy of a ΓR matrix used in the backward phase is shown on
the Fig. 9.1.

Function call rules

For a function call rule R : E0 ::= f(E1, . . . , En), the matrices αp, βq, γp,q,
and δ are dependent on the properties of the called function f($x1, . . . , $xn),
i.e. on the matrix ψ[Ef] where EF = root(f). The matrices are defined as
follows:

αEE
R,q = ψEV [Ef , $xq] αV E

R,q [$xi] = 0
αEV

R,q [$xj] = 0 αV V
R,q [$xi, $xj] = I if i = j

αV V
R,q [$xi, $xj] = 0 if i 6= j

βEE
R,p = ψV E[Ef , $xp] βV E

R,p [$xi] = 0
βEV

R,p [$xj] = 0 βV V
R,p [$xi, $xj] = I if i = j

βV V
R,p [$xi, $xj] = 0 if i 6= j

γEE
R,p,q = ψV V [Ef , $xp, $xq] γV E

R,p,q[$xi] = 0
γEV

R,p,q[$xj] = 0 γV V
R,p,q[$xi, $xj] = 0

93

δEE
R = ψEE[Ef] δV E

R [$xi] = 0
δEV
R [$xj] = 0 δV V

R [$xi, $xj] = 0

Here, the expression-to-expression dependencies αEE, βEE, γEE, δEE are
carried through the called function, i.e. determined by its matrix ψ[Ef].
The variables are propagated from the node E to the children nodes – the
dependency is determined by identities αV V

R,q [$xi, $xi] and βV V
R,p [$xi, $xi]. The

rest of the matrices is zero since there are no other dependencies in the
function call operator.

Operator rules

For grammar rules other than function calls, their matrices are fixed by the
design of the corresponding transcription rules. (However, they may depend
on the result of the previous phases of static analysis.)

The behavior of a grammar rule with respect to a variable $xi is identical
for all the visible variables except of the variables defined or referenced by
the rule; moreover, two different variables do not interfere. Therefore, the
decomposition of αp, βq, γp,q, and δ matrices is simplified as shown in the
following equations for γp,q:

γEV
R,p,q[$xj] = γEV

R,p,q

γV E
R,p,q[$xi] = γV E

R,p,q

γV V
R,p,q[$xi, $xj] = γV V

R,p,q if i = j

γV V
R,p,q[$xi, $xj] = 0 if i 6= j

The equations for α, β, and γ are similar. Thus, the behavior of a gram-
mar rule R (having n children) is defined by the following set of matrices:

αEE
R,p, α

EV
R,p , α

V E
R,p , α

V V
R,p for each p ∈ {1, . . . , n}

βEE
R,q , βEV

R,q , βV E
R,q , βV V

R,q for each q ∈ {1, . . . , n}
γEE

R,p,q, γ
EV
R,p,q, γ

V E
R,p,q, γ

V V
R,p,q for each p, q ∈ {1, . . . , n}

δEE
R , δEV

R , δV E
R , δV V

R

In addition, rules that define a variable $y visible in its p-th child define
the following dependency matrices:

αEV
R,p [$y], β

V E
R,q [$y], γV V

R,p,p[$y, $y]

γEV
R,q,p[$y], γ

V E
R,p,q[$y] for each q ∈ {1, . . . , n}

94

Conversely, a rule that references a variable $y must define the following
additional matrices:

δEV
R [$y], δV E

R [$y], δV V
R [$y, $y]

9.5 Dependency analysis algorithm

Since recursion may exist among user-defined functions, the dependency
analysis algorithm shown in Alg. 1 computes all the matrices ψ[E] at once,
in iterative manner. During the computation, the algorithm maintains a
quadruple of matrices alpha[E], beta[E], gamma[E], and delta[E] for each
AST node E. Their meaning is derived from the defining equation of ΦR(Ψ)
(see the Section 9.4):

alpha[E] = AR · (Ψ · ΓR)∗

beta[E] = (ΓR ·Ψ)∗ ·BR

gamma[E] = (ΓR ·Ψ)∗ · ΓR

delta[E] = ∆R + AR ·Ψ · (ΓR ·Ψ)∗ ·BR

Here, Ψ denotes the previous value of delta[E1], . . . , delta[En] associated
to the children of E, arranged diagonally into a matrix.

In the case of function call, the matrices alpha[E], beta[E], and gamma[E]
are sparse, due to the special properties of the AR, AR, AR, and AR matrices
(see the previous section). Therefore, the implementation stores only their
parts corresponding to alphaEE[E], alphaV E[E], betaEE[E], betaEV [E] and
gammaEE[E]. The rest is either zero or an identity (which is embedded in
the algorithm).

The computation starts by initializing alpha[E], beta[E], gamma[E], and
delta[E] from AR, BR, ΓR, and ∆R (see lines 9 to 12 of Alg. 1). This
initialization corresponds to the equations with Ψ = 0. For function call
operators, the matrices are set to zeros (see lines 4 to 7 of Alg. 1)

Then, the algorithm increases the values of alpha[E], beta[E], gamma[E],
and delta[E] until the above-mentioned four equations are satisfied. In this
moment, the fourth equation ensures that delta[E], substituted for ψ[E],
satisfies the defining equation of ΦR(Ψ).

Each increase to a matrix delta[E] is decomposed to atomic changes corre-
sponding to setting delta[E][i, j] from 0 to 1. Each atomic change, including
the initialization (see lines 13 to 19 of Alg. 1), is logged to a stack as the
triplet 〈E, i, j〉.

95

Algorithm 1 Dependency analysis algorithm

Input: AR[E], BR[E], ΓR[E], ∆R[E] for every E ∈ Addr
Output: alpha[E], beta[E], gamma[E], delta[E] for every E ∈ Addr
1: stk := empty
2: for all E ∈ Addr do
3: if E is a function call then
4: alpha[E] := 0
5: beta[E] := 0
6: gamma[E] := 0
7: delta[E] := 0
8: else
9: alpha[E] := AR[E]

10: beta[E] := BR[E]

11: gamma[E] := ΓR[E]

12: delta[E] := ∆R[E]

13: for all i ∈ rows(delta[E]) do
14: for all j ∈ cols(delta[E]) do
15: if delta[E][i, j] = 1 then
16: stk.push(〈E, i, j〉)
17: end if
18: end for
19: end for
20: end if
21: end for
22: while not stk.empty do
23: 〈E, i, j〉 := stk.pop
24: if E = root(f) for some function f then
25: for all E0 ∈ Addr such that E0 ::= f(E1, . . . , En) do
26: propagateFnc(E,i,j)
27: end for
28: else
29: E0 := parent(E)
30: if E0 is a function call then
31: propagateCall(E0,E,i,j)
32: else
33: propagateOp(E0,E,i,j)
34: end if
35: end if
36: end while

96

Algorithm 2 Function propagateOp

Input: E0 = parent(E), i ∈ rows(delta[E]), j ∈ cols(delta[E])
1: i′ := rowPackChild(E0, E, i)
2: j′ := colPackChild(E0, E, j)
3: M1 := crows(alpha[E0], i

′)
4: M2 := crows(gamma[E0], i

′)
5: M3 := rcols(beta[E0], j

′)
6: M4 := rcols(gamma[E0], j

′)
7: expand(M1, M2, M3, M4)

Algorithm 3 Function propagateCall

Input: E0 ::= f(E1, . . . , En), E0 = parent(E),
i ∈ rows(delta[E]), j ∈ cols(delta[E])

1: if i belongs to a variable then
2: M1 := {i}
3: M2 := ∅
4: else
5: i′ := rowPackChild(E0, E, i)
6: M1 := crows(alpha[E0], i

′)
7: M2 := crows(gamma[E0], i

′)
8: end if
9: if j belongs to a variable then

10: M3 := {j}
11: M4 := ∅
12: else
13: j′ := colPackChild(E0, E, j)
14: M3 := rcols(beta[E0], j

′)
15: M4 := rcols(gamma[E0], j

′)
16: end if
17: expand(M1, M2, M3, M4)

97

Algorithm 4 Function propagateFnc

Input: E0 ::= f(E1, . . . , En), E = root(f),
i ∈ rows(delta[E]), j ∈ cols(delta[E])

1: if i belongs to the p-th argument then
2: i′ := colPackEx (Ep, rowUnpackVar(E, p, i))
3: i′′ := rowPackChild(E0, Ep, i

′)
4: M1 := ∅
5: M2 := {i′′}
6: for all l ∈ crows(delta[Ep], i

′) do
7: l′ := colPackChild(E0, Ep, l)
8: M1 := M1 ∪ crows(alpha[E0], l

′)
9: M2 := M2 ∪ crows(gamma[E0], l

′)
10: end for
11: else
12: i′ := rowPackEx (E0, rowUnpackEx (E, i))
13: M1 := {i′}
14: M2 := ∅
15: end if
16: if j belongs to the q-th argument then
17: j′ := rowPackEx (Eq, colUnpackVar(E, q, j))
18: j′′ := colPackChild(E0, Eq, j

′)
19: M3 := ∅
20: M4 := {j′′}
21: for all k ∈ rcols(delta[Eq], j

′) do
22: k′ := rowPackChild(E0, Ep, k)
23: M3 := M3 ∪ rcols(beta[E0], k

′)
24: M4 := M4 ∪ rcols(gamma[E0], k

′)
25: end for
26: else
27: j′ := colPackEx (E0, colUnpackEx (E, j))
28: M3 := {j′}
29: M4 := ∅
30: end if
31: expand(M1, M2, M3, M4)

98

Algorithm 5 Function expand

Input: E0 ∈ Addr, M1 ⊆ rows(delta[E0]), M2 ⊆ rows(gamma[E0]),
M3 ⊆ cols(delta[E0]), M4 ⊆ cols(gamma[E0])

1: for all k ∈ M1 do
2: for all l ∈ M3 do
3: if delta[E0][k, l] = 0 and 〈k, l〉 is not forbidden then
4: delta[E0][k, l] := 1
5: stk.push(〈E0, k, l〉)
6: end if
7: end for
8: for all l ∈ M4 do
9: alpha[E0][k, l] := 1

10: end for
11: end for
12: for all k ∈ M2 do
13: for all l ∈ M3 do
14: beta[E0][k, l] := 1
15: end for
16: for all l ∈ M4 do
17: gamma[E0][k, l] := 1
18: end for
19: end for

99

The stack controls the core of the algorithm (lines 22 to 36 of Alg. 1).
Each triplet 〈E, i, j〉 removed from the stack induces an update to the matrix
delta[E0] for the parent E0 of the node E, using the procedure propagateOp
or propagateCall. Whenever E is the root of a function AST, all nodes E0

carrying the call to the procedure are updated using the procedure propa-
gateFnc.

The matrices alpha[E] and beta[E] are used to speed-up the update of
delta[E]; their effective maintenance requires the matrix gamma[E]. For a
given node E, all four matrices are changed simultaneously, using the proce-
dure expand (see Alg. 5). This procedure is controlled by two sets M1,M2 of
row numbers and two sets M3,M4 of column numbers, setting the positions
M1×M4, M2×M3, M2×M4, and M1×M3 in the matrices alpha[E], beta[E],
gamma[E], and delta[E], respectively. In the cycle removal phase, the pro-
cedure expand does not propagate forbidden dependencies (see below); for
the other two phases, the part of the test at the line 3 is omitted.

The procedure propagateOp is called whenever a child E of an AST node
E0 has set its delta[E][i, j] to 1. The coordinates 〈i, j〉 are converted to
the corresponding position 〈i′, j′〉 in the Ψ matrix (see the Sec. 9.4), using
the auxiliary functions rowPackChild and colPackChild (which consist of
the addition of a constant). Then, functions crows and rcols are used to
determine the sets of non-zero positions in a column or a row of a matrix,
respectively.

The code of the procedure propagateOp implements the following obser-
vation: Let Ψ′ = Ψ + K where K is a matrix containing exactly one 1 and
the rest set to 0. Then, the values alpha[E0]

′, beta[E0]
′, gamma[E0]

′, and
delta[E0]

′ corresponding to Ψ′ may be determined from the values alpha[E0],
beta[E0], gamma[E0], and delta[E0] corresponding to Ψ as follows:

alpha[E0]
′ = alpha[E0] + alpha[E0] ·K · gamma[E0]

beta[E0]
′ = beta[E0] + gamma[E0] ·K · beta[E0]

gamma[E0]
′ = gamma[E0] + gamma[E0] ·K · gamma[E0]

delta[E0]
′ = delta[E0] + alpha[E0] ·K · beta[E0]

The lines 4 to 7 of Alg. 2 compute the sets of nonzero rows/columns in
alpha[E0] ·K, gamma[E0] ·K, K · beta[E0], and K · gamma[E0].

The procedure propagateCall in Alg. 3 is derived from the procedure
propagateOp, with respect to the special properties of A, B, Γ, and ∆ matri-
ces of function calls (see the Sec. 9.4) and the sparsity of the corresponding
matrices alpha, beta, and gamma. Therefore, the behavior depends on the

100

position 〈i, j〉 with respect to the composition of the compound dependency
matrix ψ[E] – see the Sec. 9.3.

The procedure propagateFnc in Alg. 4 recalculate the matrices alpha[E0],
beta[E0], gamma[E0], and delta[E0] whenever the matrix delta[E] corre-
sponding to the called function changes. In this case, the values of AR,
BR, ΓR, and ∆R change as a result of the change of delta[E]. The effect
depends on the position 〈i, j〉 of the atomic change in the compound depen-
dency matrix delta[E] with respect to its composition.

When 〈i, j〉 falls into the ψEE[E] part (lines 13–15 and 28–30), the change
affects the matrix δR; when in the ψEV [E, $xq] part (lines 13–15 and 18–21),
the matrix αR[Eq] is affected; ψV E[E, $xp] influences βR[Ep] (lines 3–6 and
28–30); finally, ψV V [E, $xp, $xq] affects γR[Ep][Er] (lines 3–6 and 18–21).

The calculated change of AR, BR, ΓR, and ∆R propagate to the defining
equations alpha[E0], beta[E0], gamma[E0], and delta[E0]. The propagation
depends on the values of Ψ (i.e. packed delta[Ek]); the total effect is calcu-
lated at the lines 6–10 and 21–25 based on the following equations derived
from the four defining equations.

For an atomic change KA in AR:

alpha[E0]
′ = alpha[E0] + KA · (1 + Ψ · gamma[E0])

delta[E0]
′ = delta[E0] + KA ·Ψ · beta[E0]

For an atomic change KB in BR:

beta[E0]
′ = beta[E0] + (1 + gamma[E0] ·Ψ) ·KB

delta[E0]
′ = delta[E0] + alpha[E0] ·Ψ ·KB

For an atomic change KΓ in ΓR:

alpha[E0]
′ = alpha[E0] + alpha[E0] ·Ψ ·KΓ · (1 + Ψ · gamma[E0])

beta[E0]
′ = beta[E0] + (1 + gamma[E0] ·Ψ) ·KΓ ·Ψ · beta[E0]

gamma[E0]
′ = gamma[E0] +

(1 + gamma[E0] ·Ψ) ·KΓ · (1 + Ψ · gamma[E0])

delta[E0]
′ = delta[E0] + alpha[E0] ·Ψ ·KΓ ·Ψ · beta[E0]

For an atomic change K∆ in ∆R:

delta[E0]
′ = delta[E0] + K∆

Proper positioning of the atomic change is ensured by the functions
colUnpackEx , RowUnpackEx , colUnpackVar , RowUnpackVar , colPackEx , RowPackEx ,
colPackVar , and RowPackVar that perform the (de-)composition of the com-
pound matrices as defined in the Sec. 9.3.

101

Complexity

Let m = max(m(E)) be the maximal number of visible variables among all
nodes of the program. Then the maximal size of a compound matrix assigned
to any node is

s(m) = (nR
e + m · nF

v) · (nF
e + m · nR

v) · k

Note that nR
e , nF

v , nF
e , nR

v are parameters of the system (proportional to
the number of transcription modes) and k is a parameter of the analysis
phase (the size of the elementary dependency matrix φ). Therefore, taking
the parameters as constants, s(m) = O(m2).

Since the compound matrix delta[E] contains at most s(m) Boolean val-
ues, it may be changed at most s(m) times; consequently, a given E is en-
countered in the main loop of the algorithm at most s(m) times.

Let n be the size of the AST forest, i.e. the size of the query. The
previous observation implies that the total number of calls to propagateOp
or propagateCall is at most n · s(m). The function propagateFnc is called in
a loop over all call nodes to the given XQuery function; nevertheless, since
the total number of call nodes in the program is less than n, the total number
of calls to propagateFnc is less than n · s(m).

In the interior of the Alg. 2, the function expand is called, having the
time complexity proportional to the size of the greatest matrix gamma[E],
which is O((1 + a)2 · s(m)) where a is the number of children of the node E.
Except for the function-call node, a is a small number limited by the design
of grammar rules; therefore, the expand function has the time complexity
O(s(m)), i.e. O(m2).

In the case of function call, only reduced versions of the matrices alpha[E],
beta[E], and gamma[E] are stored. All three reduced matrices have the size
O(m2); therefore, the expand function has the time complexity O(m2) also
for the function call case.

Prior to the call to expand, Alg. 2, 3, and 4 compute the M1, . . . , M4

sets. The cost of this computation is proportional to the size of the (reduced)
matrices, i.e. O(m2). Therefore, each call to propagateOp, propagateCall,
or propagateFnc requires the time O(m2).

Concluded, the total time complexity of the Alg. 1 is

O(n ·m4)

where n is the size of the program and m is the maximal number of visible
variables in the program.

102

For space complexity, the most important factor is the summary size of
all the (reduced) gamma[E] matrices, which is

O(n ·m2)

9.6 Forward propagation phase

As shown in the previous sections, the first step of the forward propagation
phase computes the dependencies denoted carddep0,0, carddep0,1, carddep1,0,
and carddep1,1 which determine how a sub-expression behave with respect to
the cardinality of the relations involved. These relations are computed using
the dependency analysis algorithm 1 and packed in the dependency matrices
alpha[E], beta[E], gamma[E] and delta[E] for each node E.

In the second step, absolute cardinality information is determined. The
absolute cardinality information is the pair of properties card0 and card1 as-
signed to each inherited and each synthesized arc, determining that the arc
will always carry an empty relation (in the case of card0) or a singleton value
(for card1). For an AST node E, the information is packed into two vectors,
icard[E] and scard[E], for inherited and synthesized arc, respectively. The
vectors are arranged in the same manner as the rows and columns of the
dependency matrices. In the forward propagation phase, the transcription is
limited to the canonical and Boolean rules which contain no reverted arcs;
therefore, the icard[E] vector contains the cardinality flags for the visible
variables and the scard[E] vector carries the cardinality flags for the expres-
sion value. In addition, the cardinality flags for the invv[E] relation is added
to the icard[E] vector.

The vector icard[root(main)] associated to the main expression of the
XQuery program is set to values corresponding to the start of the program;
in particular, card1(invv) is set to true to indicate that invv[root(main)] is a
singleton.

The values of the icard[E] vectors are propagated down through the AST
forest, from parents to children and from function calls to the corresponding
AST roots. In the case of parent-to-children propagation, the propagation is
determined by the alpha[E0] relations computed in the dependency analysis
step:

icard[Ei] = (icard[E0] · alpha[E0])[i]

For function calls, the vectors propagate through the delta[E1], . . . , delta[En]
relations of the children to the arguments of the called function:

103

icard[root(f)] = icard[E0] · (delta[E1], . . . , delta[En])

Finally, the scard[E] vectors are computed from icard[E] and delta[E] as
follows:

scard[E] = icard[E] · delta[E]

The vectors are computed iteratively, starting from zero vectors and prop-
agating changes using a stack. The algorithm is similar to the Alg. 1 with
these two differences: Vectors are propagated instead of matrices and the
propagation is top-down instead of bottom-up. Because of the simplicity
and similarity, we do not show the forward propagation algorithm in code.

Complexity

Because of the similarity, the complexity analysis of the forward propagation
algorithm is similar to the case of dependency propagation algorithm. The
state space of the algorithm is driven by the icard vectors; their total size is
O(n ·m) so the algorithm will propagate at most O(n ·m) changes in these
vectors. Each change propagates through a multiplication with a matrix of
size O(m) times O(m); therefore, it induces further changes in at most O(m)
positions. Concluded, the time complexity of the second step of the forward
propagation is

O(n ·m2)

9.7 Cycle removal phase

The cycle removal phase simulates the use of all transcription rules (appli-
cable with respect to the results of the forward propagation phase) at once.
During the phase, some transcription rules are removed in order to avoid
cyclic dependencies. Since the rules themselves are acyclic, each cycle con-
tains at least two rules, offering the choice to remove any of these rules. In
our approach, there are two methods used to detect and remove rules in a
cycle. These two methods covers the two different cases described in the
following paragraphs.

Each cycle is spread over several AST nodes and, optionally, over several
functions through function calls. Thus, the cycle generates a partial call
tree formed of the involved functions and an AST sub-tree in each of the
functions. In the root function of the partial call tree, the root of the cycle’s
AST sub-tree is called the summit of the cycle – this is the place where all

104

the dependencies in the cycle arise from the children of the summit node and
are bent back down to the children. Formally, there is a cycle in the graph
of the relation Ψ · ΓR (see the Sec. 9.4).

Two cases may arise in the cycle within the summit node rule:

• An inherited arc of child Ei depends on a synthesized arc of the same
child Ei. Formally, ψ[Ei] · γR,i,i is cyclic.

• An inherited arc of child Ej depends on a synthesized arc of another
child Ei, i 6= j.

More than one part of the cycle may be stitched through the summit rule;
therefore, the above-mentioned cases are handled independently in various
parts of the same cycle.

The cycle removal phase is constituted of two steps: Dependency analysis
algorithm and local cycle removal. As described in the previous sections, the
dependency analysis algorithm proceeds in bottom-up manner. Therefore,
for each cycle, the summit rule is the last rule encountered during the run
of the algorithm. Thus, the summit rule is the place where each cycle may
be detected. Unfortunately, the transcription rule that forms the part of the
dependency cycle at the summit is not always removable. Therefore, the
removal of a transcription rule under a child of the summit node may be
required.

Within the frame of bottom-up evaluation, the removal under a child
requires a kind of prediction to determine whether a cycle may be closed at
the level of the parent node. Such prediction is possible in the first of the two
cases mentioned above. The prediction is based on the notion of forbidden
dependencies: There is a statically determined set of dependencies that must
never occur in the ψ[E] matrix for any AST node E. The set of forbidden
dependencies is chosen so that it avoids the first case of dependency, i.e.
when ψ[E] contains no forbidden dependency, then ψ[E] · γR,i,i is acyclic for
any rule R and any child position i.

It depends on the properties of the γR,i,i matrices whether such a set of
forbidden dependencies exists. This leads to the notion of ordered rule set :
A set of transcription rules is called ordered if there exists a total strict order
P on the set of arc names used by the transcription rules (see the Sec. 6.2)
such that all dependencies in all γR,i,i matrices respect the order P , i.e. the
following implications hold:

〈a[Ei], b[Ei]〉 ∈ γR,i,i ⇒ 〈a, b〉 ∈ P

〈a[Ei], b[Ei, $xk]〉 ∈ γR,i,i ⇒ 〈a, b〉 ∈ P

105

〈a[Ei, $xj], b[Ei]〉 ∈ γR,i,i ⇒ 〈a, b〉 ∈ P

〈a[Ei, $xj], b[Ei, $xk]〉 ∈ γR,i,i ⇒ 〈a, b〉 ∈ P

Note that the requirement does not apply to γR,i,j for i 6= j.
For the transcription rules presented in the chapters 7 and 8.4, such an

ordering really exists: The arc names are sorted in the following order:

• Reverted arcs of expressions (like exiefr or exdesc - see the Sec. 8.4),
including invc, invv and invenv

• Reverted arcs of variables (like variefr or vardesc)

• Forward arcs of variables (varseqa, varseqn, varebvt, varebvf, varout,
variefr etc.)

• Forward arcs of expressions (exseqa, exseqn, exenv, exebvt, exebvf, exout,
exiefr etc.)

Inside each group, any ordering may be chosen.
For a rule set ordered by P , the forbidden dependencies are defined by

the transposed matrix P T . Because P is a total ordering, any non-forbidden
〈a[. . .], b[. . .]〉 pair in any ψ[E] matrix satisfies either a = b or 〈a, b〉 ∈ P .
Thus, any 〈a[. . .], b[. . .]〉 pair in ψ[Ei] ·γR,i,i must satisfy 〈a, b〉 ∈ P ; therefore,
acyclicity is ensured by the presence of the total ordering P .

The dependency analysis step of the cycle removal phase constructs the
ψ[E] matrices incrementally in the delta[E] matrices. The condition at the
line 3 of function expand shown in the Alg. 5 ensures that forbidden depen-
dencies are not propagated to the delta[E] matrices.

The second step of the cycle removal ensures that the selected set of
transcription rules R satisfies the following requirements for each node E0:

• The matrix ψ[E0] contains no forbidden dependencies.

• The graph of the relation Ψ · ΓR is acyclic.

Note that the matrix Ψ is a composition of the delta[E1], . . . , delta[En]
matrices computed for the children in the first step. The matrix ψ[E0] must
be recalculated from Ψ using the matrices ∆R, AR, ΓR, and BR which depend
on the selected set of rules R.

In the second step, each node E0 is inspected independently and its tran-
scription rules are reexamined, starting with the highest priority (i.e. lowest
cost) rules. If any of the two above-mentioned requirements is violated, the
highest priority rule which contributes to the violation is replaced by a lower

106

priority rule that computes the same output at expectedly higher cost. This
replacement is repeated until a satisfying set of rules is found.

The canonical transcription rules always satisfy the requirements; further-
more, any non-canonical representation may be derived from the relations of
the canonical mode. Therefore, for each mode, a last-resort transcription
rule is defined using canonical-mode input, the canonical rule R-net, and
an additional R-net to convert the outputs to the required mode. The last-
resort rules are assigned the lowest priority to ensure that the algorithm of
the second step always terminates – in the worst case, all rules are replaced
with the last-resort rules.

Complexity

The filtering of the forbidden dependencies in the first step has no impact
on its asymptotic complexity. In the second step, AST nodes are examined
independently; for each node, a transcription rule for each outgoing arc must
be determined. The number of outgoing arcs is O(m), i.e. linear with respect
to the number of visible variables. The number of candidate rules for each
arc is fixed by the system design. Application of a transcription rule requires
recalculation of the ψ[E0] matrix – when done incrementally, it costs the time
O(m2) for each rule. The acyclicity check for the Ψ · ΓR matrix may also
be done in the time O(m2). Concluded, each AST node requires the time
O(m3); consequently, the whole second step of cycle removal has the time
complexity

O(n ·m3)

O(n ·m2)

9.8 Backward propagation phase

The backward propagation phase follows the same scheme as the forward
propagation with the difference that the sense of dependency is reverted,
from the output to the input. It means that beta[E0] relations are used to
propagate the flag vectors.

The requirement information is a pair of vectors ireq[E] and sreq[E] for
each AST node E, containing Boolean flags that determine the requirement
for particular inherited and synthesized arcs (and their relation attributes).

The vector sreq[root(main)] associated to the main expression of the
XQuery program is set according to the values required at the end of the
program; it means that the corresponding flag is set to true to indicate that
the output-driven mode arc exout[root(main)] is required.

107

The values of the sreq[E] vectors are propagated down through the AST
forest, from parents to children and from function calls to the corresponding
AST roots. In the case of parent-to-children propagation, the propagation is
determined by the beta[E0] relations computed in the dependency analysis
step:

sreq[Ei] = (beta[E0] · sreq[E0])[i]

For function calls, the vectors propagate through the delta[E1], . . . , delta[En]
relations of the children to the arguments of the called function. At the same
time, the requirements propagate also through the return value of the func-
tion:

sreq[root(f)] = (sreqE[E0], delta[E1] · sreqV [E0], . . . , delta[En] · sreqV [E0])

Here, sreqE and sreqV denote the expression and variable portions of the
sreq vector.

Finally, the ireq[E] vectors are computed from sreq[E] and delta[E] as
follows:

ireq[E] = delta[E] · sreq[E]

Complexity

The algorithm is complementary to the forward propagation algorithm. There-
fore, its time complexity is the same, namely

O(n ·m2)

9.9 Complexity of the static analysis

In all three phases of the static analysis, the first step dominates the time
complexity. Since the second steps reuse the data of the first steps, their space
complexity is equivalent. All the three first steps have the same asymptotic
complexity O(n · m4) (although their multiplicative constants are different
because of different numbers of dependencies observed in different phases).
Concluded, the total time complexity of the static analysis is

O(n ·m4)

while the space complexity is

O(n ·m2)

108

where n is the size of the XQuery program and m is the maximal number of
local variables visible at any place in the program. It is important to notice
that m is a local property of the program and, for programs decomposed to
functions of limited size, the complexity is linear with respect to the size n
of the program.

109

110

Chapter 10

Conclusion

In this work, we have presented a novel architecture aimed at effective eval-
uation of user-defined functions in XQuery. The architecture is based on
relational representation of XML documents and XQuery values. The use
of relational algebra in XML processing has already become almost a stan-
dard; however, the incorporation of functions requires significant alterations
to contemporary designs. Therefore, to show the viability of the presented ar-
chitecture, this work must present quite large amount of particular problems
and their solution.

R-programs

We have presented a framework of R-programs, designed to handle recursion
together with relational algebra operations. The R-programs allow bulk-
evaluation of function calls, i.e. the ability to evaluate all calls to an XQuery
function in a single call to the corresponding R-program function. The bulk-
evaluation offers important advantages in the XQuery evaluation, starting
with the reduction of call overhead and ending in inter-procedural optimiza-
tion.

The novelty of this approach is in the absence of explicit control struc-
tures in the R-program language. Instead of stopping recursion by explicit
conditions, an R-program evaluator may (or may not) decide to skip a func-
tion call based on an implicit condition. This gives the evaluator the freedom
of choice to speculatively execute code before the decision is ready.

R-programs allow reusing sub-expressions; in such environment, common
sub-expression elimination is applicable to reduce the size of the program
and the cost of its evaluation. On the other hand, the reuse makes query
rewrite more difficult, since an operator may be evaluated in more than one
context. Moreover, pipelined evaluation of relational algebra operators in the

111

presence of expression reuse imposes additional synchronizing constraints;
to satisfy these constraints, materialization of intermediate results may be
required. Nevertheless, reevaluation is usually considered more costly than
materialization.

One of the important advantages of the R-program model is the ability
to distribute the evaluation over several computing nodes. The R-program
operations (or chunks of them) may be computed at different nodes, while
the R-program arcs are naturally implemented as pipes carrying relations
among nodes. This way, R-programs may be easily implemented on cluster
or grid architectures.

Modes and transcription

The XQuery language formally uses only one data-type (a sequence of items)
to carry all kinds of values. Strict application of this approach in an imple-
mentation would degrade the performance significantly. Therefore, alternate
representations of XQuery values are used, depending on the context.

Such an alternative representation for a value of an expression is called a
mode of evaluation. In R-program representation, a XQuery value is carried
by one or more relations, therefore, a mode is defined by the names and
the signatures of these relations. The canonical mode is the most general
mode corresponding most directly to the normative semantics of the lan-
guage. Other modes are applied in special contexts; a mode is described
by a mapping between the mode and the canonical mode. The alternative
modes allow to reduce the amount of information relayed and to adapt the
encoding to the subsequent operations.

For each operator (grammar rule) of the XQuery language, there is a
set of transcription rules; each rule represents the evaluation of the XQuery
operator with the operands and the result encoded in a particular mode.

Besides the selection among modes, there is also an option of “automatic”
reduction whenever the consumers of an expression do not use all attributes
of the model. In this way, submodes are automatically created based on
static analysis. One of the submodes corresponds to the unordered context
as defined by the XQuery standard; therefore, the static analysis algorithm
described in this paper may also be used for the automatic determination
of ordered and unordered contexts in a XQuery program. Methods of or-
dered/unordered context determination were already described; among them,
column dependency analysis described in [41] is similar to our approach but
based on a different mathematical model that does not handle user-defined
functions.

112

The system is open – new modes may be added under the same notation
and corresponding algorithms can be reused.

Algebra

In each mode, the expression or variable value is represented by a set of
relations whose attributes are atomic values and strings in a hierarchical
alphabet, acting similarly to Dewey identifiers. The use of hierarchical strings
may be considered a violation of the first normal form – similar non-first-
normal-form relations may be found in every relational model of XQuery.
This is a natural consequence of the fact that a call to an XQuery function
may have arguments carrying sequences. While most methods deal with
this problem by allowing sequences in an attribute, our approach is different
– hierarchical strings are used to identify the context in which a function
is invoked. While sequences may easily be as large as input documents, the
length of the identifiers is usually proportional to the depth of the documents;
therefore, our approach generates smaller tuples than traditional models.

When designing our algebraic system, we tried to avoid introducing new
operators. Thus, majority of XQuery operators is expressed using operators
known from relational query engines. Although there are exotic operators like
ordered grouping in our set of operators, their use is limited to infrequent
XQuery constructs. Using the output-driven mode, normalization of the
output document is moved to the very end of the query, leaving the core of
the query populated with standard relational operators.

The models based on relational algebra may also offer new modes of
optimization. For instance, the concatenation operator is rewritten using
the union operator which is commutative; thus, transformations based on
reordering of the operands become available.

Canonical and Boolean mode

The canonical mode described in the work is used to reflect the definition of
the XQuery semantics as closely as possible. It would be natural to prove the
equivalence between our canonical mode and the normative XQuery seman-
tics; unfortunately, some of the most interesting parts of XQuery semantics,
namely the effect of the order-by clause and the identity of constructed nodes,
are described only informally, although under the title “Formal Semantics”
[22]. Although not attempted in this work, the notation of R-programs may
allow defining the XQuery semantics more exactly than the system used in
the W3C specification.

113

Besides the canonical mode, we introduced the effective Boolean value
mode in order to avoid the complex conversion rules of effective Boolean
value whenever possible.

Reverted modes

The most important advantage of R-programs is the ability to pass infor-
mation in the direction opposite to the original data flow. This reversal is
used to simulate several variants of predicate pushing and join reordering
known from pure relational algebra systems. Although the presented abili-
ties are not as general as the traditional query rewrite techniques, we have
presented that our R-program approach may be a competitive replacement
of traditional systems. The loss of generality is balanced by the ability of
R-programs to express recursive functions which is not possible in “single-
expression” systems.

In XQuery, the most important operators are structural joins, in particu-
lar, their multiple-input (holistic) versions (see the Sec. sec:joins). Reverted
modes offer bidirectional communication between atomic computing elements
of an R-program; therefore, implementation of multiple-input joins using a
network of communicating binary elements is possible. This arrangement
allows to simulate some structural-join algorithms even in those cases where
the join operation is spread across several functions in the XQuery source.

Output document handling

Although XQuery uses the same operators to handle input, temporary, and
output data, it may be wise to use different implementations in these cases.
We have shown an evaluation mode that reverses the standard flow of evalu-
ation on the output, synthetic portion of the program. This approach allows
generating elements of the output document directly at their final locations
in the representation of the output document, bypassing the creation and
merging of temporal trees required in the standard evaluation order. The
method is developed for systems where the output of the transformation is
stored in a database, bypassing any serialization.

This method of generating output is particularly advantageous in dis-
tributed environments, since it removes the bottleneck formed by the use of
shared memory that would be otherwise required to store the temporary tree
fragments.

114

Static analysis

Finally, a polynomial algorithm of static analysis is presented which evalu-
ates the behavior of XQuery code with respect to the information required
at any node of its abstract syntax tree. The algorithm is applicable to any
group of modes based on the relational algebra. The process of static anal-
ysis replaces the stage of query rewriting known from relational databases.
The static analysis is based on heuristic selection of modes and, thus, not
necessarily optimal; on the other hand, adapting query rewriting methods to
the recursive XQuery environment would be difficult. The area of compiler
construction shows that inter-procedural optimization and, especially, code
motion is expensive; therefore, it is important to have an effective algorithm
of heuristic mode selection.

10.1 Future work

We have presented an idea that, in some aspects, differs significantly from
traditional techniques of query evaluation. Therefore, its application within
an existing engine is difficult or even impossible. Subsequently, before we can
materialize our ideas in an implementation, many collateral problems shall
be solved and many well-known solutions have to be adapted or redesigned.
Some of the problems are mentioned in this section.

Besides the path to an implementation, there are also alternative (or more
advanced) versions of the approach presented so far. One of them, based on
a Datalog-like model, was already published in [8]; since we consider the
Datalog version worthy of further development, an overview of this idea is
presented in this section.

Schema awareness

If the input documents to the transformation are stored in schema-aware
storage, the transcription phase may use the schema of the documents to
adapt the R-program to the storage. It corresponds to replacing the single
invenv[E] relation with a set of relations containing the shredded representa-
tion of the input document(s).

Cost-based optimization

Following the transcription, intra-procedural optimization (denoted as static
rewriting) may be applied. Since the body of an R-function consists only of

115

R-program

pipelined

interpreter

expander
expanded

R-program
triggers

XML

DB

XML

DB

static

rewriting

local plan

selection

statistics

physical

R-program

Figure 10.1: Static rewriting

R-program

pipelined

interpreter

expander
expanded

R-program triggers

dynamic

rewriting

XML

DB

XML

DB

physical

R-program

global plan

selection

statistics

Figure 10.2: Dynamic rewriting

relational operators and function calls, almost any rewriting approach known
from relational database systems may be applied.

Cost-based optimization may be required before the interpretation phase;
in this setting, only intra-procedural optimization (denoted as local plan se-
lection) is available. The physical plan is again in the form of a dag of algebra
operators and function calls; thus it is again an R-program, albeit using a
different set of operators. This architecture is shown in Fig. 10.1.

Note, however, that the effectivity of intra-procedural cost-based opti-
mization is limited because the cost of function calls and cardinality of their
outputs is not known. This weakness may be addressed with the architecture
depicted at the Fig. 10.2.

In each cycle, the expanded R-program may be optimized by rewriting
and transformed using cost-based plan selection to a physical R-program.
Since the original R-functions were integrated into a single function, the
optimization is in fact inter-procedural. Of course, this phase may alter
only the newly appended R-function body because the previously integrated
code is already being executed. On the other hand, the plan selection may
make use of cost and cardinality estimation computed throughout the whole
integrated program. Therefore, it may produce better plans than in the case

116

of recursive interpretation with local plan selection.

Datalog-like models

Relational systems with recursion are often examined using Datalog [18] or
one of its derivatives; R-programs may be also rewritten using a notation
inspired by Datalog. In Datalog-like representation, original function bound-
aries are completely dissolved – this fact may offer analysis and transforma-
tion options unavailable within the system of R-programs.

A Datalog-like representation may be created from an R-program as fol-
lows: Each place is represented by a predicate whose arguments correspond
to the attributes of the relation associated to the place. In addition, an argu-
ment storing the call stack (see the Sec. 5.4) is added to simulate the seman-
tics of R-program expansion. Each R-program operation is then transformed
to a set of Horn clauses, using function symbols, negation, or aggregation.

Because of the Turing-completeness of XQuery (see the Sec. 2.11), such
a system must be unsafe, allowing to create new values not listed in the
extensional facts. This may lead to non-termination of bottom-up evaluation,
a fact that may have been expected due to the existence of non-terminating
XQuery programs.

Besides the issue of safety and termination, there are problems with se-
mantics of the system: Some XQuery programs (including terminating ones)
will be transformed to a non-stratifiable set of rules. Therefore we cannot
rely on minimal-model semantics. Although the theory behind logical pro-
gramming offers a number of more sophisticated definitions of semantics like
stable models or perfect models [18], none of these definitions lead to results
that exactly match the effect of the underlying XQuery program.

These issues open a new area of research – besides searching for the right
definition of semantics, there is an interesting opportunity to classify XQuery
programs based on their stratifiability or the number of the strata in their
models. Interestingly, the stratifiability does not remove Turing-completeness
from the language – even a program without negation may simulate a Turing
machine using function symbols.

117

118

Bibliography

[1] Loredana Afanasiev, Torsten Grust, Maarten Marx, Jan Rittinger, and
Jens Teubner. An inflationary fixed point operator in XQuery. In
Proceedings of the 24th International Conference on Data Engineering,
ICDE 2008, April 7-12, 2008, Cancún, México, pages 1504–1506. IEEE,
2008.

[2] Rakesh Agrawal. Alpha: An extension of relational algebra to express
a class of recursive queries. IEEE Trans. Softw. Eng., 14(7):879–885,
1988.

[3] Rafiul Ahad and Bing Yao. RQL: A recursive query language. IEEE
Trans. on Knowl. and Data Eng., 5(3):451–461, 1993.

[4] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M. Patel,
Divesh Srivastava, and Yuqing Wu. Structural joins: a primitive for
efficient XML query pattern matching. In In ICDE, pages 141–152,
2002.

[5] Christopher J. Augeri, Dursun A. Bulutoglu, Barry E. Mullins, Rusty O.
Baldwin, and Leemon C. Baird, III. An analysis of XML compression
efficiency. In ExpCS ’07: Proceedings of the 2007 workshop on Experi-
mental computer science, page 7, New York, NY, USA, 2007. ACM.

[6] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ull-
man. Magic sets and other strange ways to implement logic pro-
grams (extended abstract). In PODS ’86: Proceedings of the fifth ACM
SIGACT-SIGMOD symposium on Principles of database systems, pages
1–15, New York, NY, USA, 1986. ACM.

[7] Radim Bača, Michal Krátký, and Václav Snášel. On the efficient search
of an XML twig query in large DataGuide trees. In IDEAS ’08: Pro-
ceedings of the 2008 international symposium on Database engineering
and applications, pages 149–158, New York, NY, USA, 2008. ACM.

119

[8] David Bednárek. Extending Datalog to cover XQuery. In Peter Vojtáš,
editor, Information Technologies - Applications and Theory, pages 1–6,
Jesenná 5, 040 01 Košice, Slovakia, 2008. PONT s.r.o., Seňa, Slovakia.

[9] Michael Benedikt, Leonid Libkin, Thomas Schwentick, and Luc
Segoufin. Definable relations and first-order query languages over
strings. J. ACM, 50(5):694–751, 2003.

[10] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández,
Michael Kay, Jonathan Robie, and Jérôme Siméon. XML Path Language
(XPath) 2.0. W3C, January 2007.

[11] R. Bloem and J. Engelfriet. A comparison of tree transductions defined
by monadic second order logic and by attribute grammars. J. Comput.
Syst. Sci., 61(1):1–50, August 2000.

[12] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query
Language. W3C, January 2007.

[13] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner. MonetDB/XQuery: A fast XQuery processor powered by
a relational engine. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Chicago, IL, USA, June 2006.

[14] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan
Rittinger, and Jens Teubner. Pathfinder: XQuery—the relational way.
In VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, pages 1322–1325. VLDB Endowment, 2005.

[15] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
cois Yergeau Fran and John Cowan. Extensible Markup Language
(XML) 1.1 (Second Edition). W3C, August 2006.

[16] David Brownell. SAX2. O’Reilly Media, Inc., 2002.

[17] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins:
optimal xml pattern matching. In SIGMOD ’02: Proceedings of the 2002
ACM SIGMOD international conference on Management of data, pages
310–321, New York, NY, USA, 2002. ACM.

[18] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know
about Datalog (and never dared to ask). IEEE Transactions on Knowl-
edge and Data Engineering, 1(1):146–166, 1989.

120

[19] Donald D. Chamberlin. XQuery: Where do we go from here? In Pro-
ceedings of the 3rd International Workshop on XQuery Implementation,
Experience and Perspectives, in cooperation with ACM SIGMOD, June
30, 2006, Chicago, USA, 2006.

[20] Surajit Chaudhuri. An overview of query optimization in relational
systems. In PODS ’98: Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages
34–43, New York, NY, USA, 1998. ACM.

[21] John Cowan and Richard Tobin. XML Information Set (Second Edi-
tion). W3C, February 2004.

[22] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok Malho-
tra, Kristoffer Rose, Michael Rys, Jérôme Siméon, and Philip Wadler.
XQuery 1.0 and XPath 2.0 Formal Semantics. W3C, January 2007.

[23] Jana Dvořáková and Filip Zavoral. Xord: An implementation framework
for efficient XSLT processing. In Costin Badica, Giuseppe Mangioni,
Vincenza Carchiolo, and Dumitru Burdescu, editors, 2nd International
Symposium on Intelligent Distributed Computing, volume 162 of Studies
in Computational Intelligence, Catania, Italy, 2008. Springer-Verlag.

[24] Maged El-Sayed, Katica Dimitrova, and Elke A. Rundensteiner. Ef-
ficiently supporting order in XML query processing. In WIDM ’03:
Proceedings of the 5th ACM international workshop on Web informa-
tion and data management, pages 147–154, New York, NY, USA, 2003.
ACM.

[25] Maged El-Sayed, Elke A. Rundensteiner, and Murali Mani. Incremental
fusion of XML fragments through semantic identifiers. In IDEAS ’05:
Proceedings of the 9th International Database Engineering & Applica-
tion Symposium, pages 369–378, Los Alamitos, CA, USA, 2005. IEEE
Computer Society.

[26] Maged EL-Sayed, Ling Wang, Luping Ding, and Elke A. Runden-
steiner. An algebraic approach for incremental maintenance of material-
ized XQuery views. In WIDM ’02: Proceedings of the 4th international
workshop on Web information and data management, pages 88–91, New
York, NY, USA, 2002. ACM.

[27] Vidur Apparao et al. Document Object Model (DOM) Level 1 Specifica-
tion. W3C, October 1998.

121

[28] Leonidas Fegaras, Ranjan K. Dash, and YingHui Wang. A fully
pipelined XQuery processor. In XIMEP 2006, 3rd International Work-
shop on XQuery Implementation, Experiences and Perspectives. ACM,
2006.

[29] Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and
Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C,
January 2007.

[30] Achille Fokoue, Kristoffer Rose, Jérôme Siméon, and Lionel Villard.
Compiling XSLT 2.0 into XQuery 1.0. In Allan Ellis and Tatsuya Hagino,
editors, WWW ’05: Proceedings of the 14th international conference on
World Wide Web, pages 682–691, New York, NY, USA, 2005. ACM.

[31] Andrey Fomichev, Maxim Grinev, and Sergey Kuznetsov. Sedna: A
native XML DBMS. pages 272–281. 2006.

[32] Marcus Fontoura, Vanja Josifovski, Eugene Shekita, and Beverly Yang.
Optimizing cursor movement in holistic twig joins. In CIKM ’05: Pro-
ceedings of the 14th ACM international conference on Information and
knowledge management, pages 784–791, New York, NY, USA, 2005.
ACM.

[33] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems: The Complete Book. Prentice Hall, first edition,
October 2001.

[34] Roy Goldman and Jennifer Widom. Dataguides: Enabling query for-
mulation and optimization in semistructured databases. In VLDB ’97:
Proceedings of the 23rd International Conference on Very Large Data
Bases, pages 436–445, San Francisco, CA, USA, 1997. Morgan Kauf-
mann Publishers Inc.

[35] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog,
and Sergio Flesca. The Lixto data extraction project: back and forth be-
tween theory and practice. In PODS ’04: Proceedings of the twenty-third
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 1–12, New York, NY, USA, 2004. ACM.

[36] Sven Groppe, Stefan Böttcher, Georg Birkenheuer, and André Höing.
Reformulating XPath queries and XSLT queries on XSLT views. Data
Knowl. Eng., 57(1):64–110, 2006.

122

[37] Sven Groppe, Jinghua Groppe, and Stefan Böttcher. Simplifying XPath
queries for optimization with regard to the elimination of intersect and
except operators. Data Knowl. Eng., 65(2):198–222, 2008.

[38] Torsten Grust, Maurice Keulen, and Jens Teubner. Staircase join: Teach
a relational DBMS to watch its (axis) steps. In In Proc. of the 29th Intl
Conference on Very Large Databases (VLDB, pages 524–535, 2003.

[39] Torsten Grust, Manuel Mayr, and Jan Rittinger. XQuery join graph
isolation. CoRR, abs/0810.4809, 2008.

[40] Torsten Grust and Jan Rittinger. Jump through hoops to grok the
loops Pathfinder’s purely relational account of XQuery-style iteration
semantics. In Proceedings of the ACM SIGMOD/PODS 5th Interna-
tional Workshop on XQuery Implementation, Experience and Perspec-
tives (XIME-P 2008), June 2008.

[41] Torsten Grust, Jan Rittinger, and Jens Teubner. eXrQuy: Order Indif-
ference in XQuery. In Proceedings of the 23rd International Conference
on Data Engineering, ICDE 2007, April 15-20, Istanbul, Turkey, pages
226–235. IEEE, 2007.

[42] Torsten Grust and Jens Teubner. Relational Algebra: Mother Tongue
- XQuery: Fluent. In Vojkan Mihajlovic and Djoerd Hiemstra, edi-
tors, First Twente Data Management Workshop (TDM 2004) on XML
Databases and Information Retrieval, Enschede, The Netherlands, June
21, 2004, CTIT Workshop Proceedings Series, pages 9–16. Centre for
Telematics and Information Technology (CTIT), University of Twente,
Enschede, The Netherlands, 2004.

[43] Jan Hidders and Philippe Michiels. Avoiding unnecessary ordering oper-
ations in XPath. In Georg Lausen and Dan Suciu, editors, Database Pro-
gramming Languages, 9th International Workshop, DBPL 2003, Pots-
dam, Germany, September 6-8, 2003, Revised Papers, volume 2921 of
Lecture Notes in Computer Science, pages 54–70. Springer, 2003.

[44] Jan Hidders, Philippe Michiels, Jan Paredaens, and Roel Vercammen.
LiXQuery: a formal foundation for XQuery research. SIGMOD Rec.,
34(4):21–26, 2005.

[45] H. V. Jagadish, Rakesh Agrawal, and Linda Ness. A study of transitive
closure as a recursion mechanism. SIGMOD Rec., 16(3):331–344, 1987.

123

[46] Wim Janssen, Alexandr Korlyukov, and Jan Van den Bussche. On
the tree-transformation power of XSLT. Technical report, University of
Hasselt, 2006.

[47] Haifeng Jiang, Hongjun Lu, and Wei Wang. Efficient processing of XML
twig queries with OR-predicates. In SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on Management of data,
pages 59–70, New York, NY, USA, 2004. ACM.

[48] Thomas Johnsson. Attribute grammars as a functional programming
paradigm. In Functional Programming Languages and Computer Archi-
tecture, pages 154–173. Springer-Verlag, 1987.

[49] R. Abdel Kader and M. van Keulen. Overview of query optimization
in xml database systems. Technical Report TR-CTIT-07-39, Enschede,
November 2007.

[50] Michael Kay. XSL Transformations (XSLT) Version 2.0. W3C, January
2007.

[51] Ming Li, Murali Mani, and Elke A. Rundensteiner. Efficiently loading
and processing XML streams. In IDEAS ’08: Proceedings of the 2008 in-
ternational symposium on Database engineering and applications, pages
59–67, New York, NY, USA, 2008. ACM.

[52] Quanzhong Li and Bongki Moon. Indexing and querying XML data
for regular path expressions. In VLDB ’01: Proceedings of the 27th
International Conference on Very Large Data Bases, pages 361–370,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[53] Xiaogang Li and Gagan Agrawal. Efficient evaluation of XQuery over
streaming data. In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 265–276. VLDB Endowment,
2005.

[54] Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. Bidirectional interpre-
tation of XQuery. In PEPM ’07: Proceedings of the 2007 ACM SIG-
PLAN symposium on Partial evaluation and semantics-based program
manipulation, pages 21–30, New York, NY, USA, 2007. ACM.

[55] Zhen Hua Liu, Muralidhar Krishnaprasad, and Vikas Arora. Native
XQuery processing in Oracle XMLDB. In SIGMOD ’05: Proceedings
of the 2005 ACM SIGMOD international conference on Management of
data, pages 828–833, New York, NY, USA, 2005. ACM.

124

[56] Pavel Loupal. Evaluation of XQuery queries using lambda calculi. In
Paolo Atzeni, Albertas Caplinskas, and Hannu Jaakkola, editors, Ad-
vances in Databases and Information Systems, Proceedings of the 12th
East European Conference, ADBIS 2008, September 5-9, 2008, Pori,
Finland, pages 180–183. Tampere University of Technology. Pori. Pub-
lication, 2008.

[57] Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan, and Ting Chen. From
region encoding to extended Dewey: on efficient processing of XML twig
pattern matching. In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 193–204. VLDB Endowment,
2005.

[58] Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and
XPath 2.0 Functions and Operators. W3C, January 2007.

[59] Christian Mathis and Theo Härder. Hash-based structural join algo-
rithms. In Torsten Grust, Hagen Höpfner, Arantza Illarramendi, Stefan
Jablonski, Marco Mesiti, Sascha Müller, Paula-Lavinia Patranjan, Kai-
Uwe Sattler, Myra Spiliopoulou, and Jef Wijsen, editors, Current Trends
in Database Technology - EDBT 2006, EDBT 2006 Workshops PhD,
DataX, IIDB, IIHA, ICSNW, QLQP, PIM, PaRMA, and Reactivity on
the Web, Munich, Germany, March 26-31, 2006, Revised Selected Pa-
pers, volume 4254 of Lecture Notes in Computer Science, pages 136–149.
Springer, 2006.

[60] Norman May, Sven Helmer, and Guido Moerkotte. Strategies for query
unnesting in XML databases. ACM Trans. Database Syst., 31(3):968–
1013, 2006.

[61] Wolfgang Meier. eXist: An open source native XML database. In Ak-
mal B. Chaudhri, Mario Jeckle, Erhard Rahm, and Rainer Unland, ed-
itors, Web, Web-Services, and Database Systems, NODe 2002 Web and
Database-Related Workshops, Erfurt, Germany, volume 2593 of Lecture
Notes in Computer Science, pages 169–183. Springer, 2003.

[62] Irena Mlýnková and Jaroslav Pokorný. UserMap: an adaptive enhancing
of user-driven XML-to-relational mapping strategies. In Alan Fekete
and Xuemin Lin, editors, Database Technologies 2008. Proceedings of
the Nineteenth Australasian Database Conference, ADC 2008, January
22-25, 2008, Wollongang, NSW, Australia, volume 75 of CRPIT, pages
165–174. Australian Computer Society, 2008.

125

[63] Irena Mlýnková, Kamil Toman, and Jaroslav Pokorný. Statistical Anal-
ysis of Real XML Data Collections. In COMAD’06, pages 20–31, New
Delhi, India, 2006. Tata McGraw-Hill Publishing.

[64] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state ma-
chines for strings over infinite alphabets. ACM Trans. Comput. Log,
15:403–435, 2004.

[65] Matthias Nicola and Bert van der Linden. Native XML support in DB2
universal database. In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 1164–1174. VLDB Endow-
ment, 2005.

[66] Gundula Niemann and Friedrich Otto. The church-rosser languages are
the deterministic variants of the growing context-sensitive languages. In
Proc. Foundations of software science and computation structures; Lec-
ture notes in Computer Science, pages 243–257. Springer-Verlag, 1998.

[67] Ruhsan Onder and Zeki Bayram. Xslt version 2.0 is turing-complete: A
purely transformation based proof. In Oscar H. Ibarra and Hsu-Chun
Yen, editors, CIAA, volume 4094 of Lecture Notes in Computer Science,
pages 275–276. Springer, 2006.

[68] Shankar Pal, Istvan Cseri, Oliver Seeliger, Michael Rys, Gideon Schaller,
Wei Yu, Dragan Tomic, Adrian Baras, Brandon Berg, Denis Churin, and
Eugene Kogan. XQuery implementation in a relational database system.
In VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, pages 1175–1186. VLDB Endowment, 2005.

[69] Stelios Paparizos, Yuqing Wu, Laks V. S. Lakshmanan, and H. V. Ja-
gadish. Tree logical classes for efficient evaluation of XQuery. In SIG-
MOD ’04: Proceedings of the 2004 ACM SIGMOD international confer-
ence on Management of data, pages 71–82, New York, NY, USA, 2004.
ACM.

[70] Venkatesh Raghavan, Kurt Deschler, and Elke A. Rundensteiner. VA-
MANA - a scalable cost-driven XPath engine. In ICDEW ’05: Proceed-
ings of the 21st International Conference on Data Engineering Work-
shops, page 1278, Washington, DC, USA, 2005. IEEE Computer Society.

[71] Christopher Re, Jerome Simeon, and Mary Fernandez. A complete and
efficient algebraic compiler for xquery. Data Engineering, International
Conference on, 0:14, 2006.

126

[72] Stephen Richardson and Mahadevan Ganapathi. Interprocedural anal-
ysis vs. procedure integration. Inf. Process. Lett., 32(3):137–142, 1989.

[73] Jan Rittinger, Jens Teubner, and Torsten Grust. Pathfinder: A re-
lational query optimizer explores XQuery terrain. In Alfons Kem-
per, Harald Schöning, Thomas Rose, Matthias Jarke, Thomas Seidl,
Christoph Quix, and Christoph Brochhaus, editors, Datenbanksysteme
in Business, Technologie und Web (BTW 2007), 12. Fachtagung des
GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), Pro-
ceedings, 7.-9. März 2007, Aachen, Germany, volume 103 of LNI, pages
617–620. GI, 2007.

[74] Karsten Schmidt and Theo Härder. Usage-driven storage structures for
native xml databases. In IDEAS ’08: Proceedings of the 2008 interna-
tional symposium on Database engineering & applications, pages
169–178, New York, NY, USA, 2008. ACM.

[75] Ming-Chien Shan and Marie-Anne Neimat. Optimization of relational
algebra expressions containing recursion operators. In CSC ’91: Proceed-
ings of the 19th annual conference on Computer Science, pages 332–341,
New York, NY, USA, 1991. ACM.

[76] Hong Su, Elke A. Rundensteiner, and Murali Mani. Automaton in or
out: run-time plan optimization for XML stream processing. In SSPS
’08: Proceedings of the 2nd international workshop on Scalable stream
processing system, pages 38–47, New York, NY, USA, 2008. ACM.

[77] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasun-
daram, Eugene Shekita, and Chun Zhang. Storing and querying ordered
XML using a relational database system. In SIGMOD ’02: Proceedings
of the 2002 ACM SIGMOD international conference on Management of
data, pages 204–215, New York, NY, USA, 2002. ACM.

[78] Jens Teubner, Torsten Grust, Sebastian Maneth, and Sherif Sakr. De-
pendable cardinality forecasts for XQuery. PVLDB, 1(1):463–477, 2008.

[79] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML Schema Part 1: Structures Second Edition. W3C, October
2004.

[80] Nicolas Travers, Tuyet-Tram Dang-Ngoc, and Tianxiao Liu. Untyped
XQuery canonization. In Kevin Chen-Chuan Chang, Wei Wang, Lei
Chen, Clarence A. Ellis, Ching-Hsien Hsu, Ah Chung Tsoi, and Haixun

127

Wang, editors, Advances in Web and Network Technologies, and Infor-
mation Management, APWeb/WAIM 2007 International Workshops:
DBMAN 2007, WebETrends 2007, PAIS 2007 and ASWAN 2007,
Huang Shan, China, June 16-18, 2007, Proceedings, volume 4537 of
Lecture Notes in Computer Science, pages 358–371. Springer, 2007.

[81] Ondřej Vošta, Irena Mlýnková, and Jaroslav Pokorný. Even an ant
can create an XSD. In Jayant R. Haritsa, Kotagiri Ramamohanarao,
and Vikram Pudi, editors, Database Systems for Advanced Applications,
13th International Conference, DASFAA 2008, New Delhi, India, March
19-21, 2008. Proceedings, volume 4947 of Lecture Notes in Computer
Science, pages 35–50. Springer, 2008.

[82] W3C. XML Query Test Suite, November 2006.

[83] Song Wang, E.A. Rundensteiner, and M. Mani. Optimization of nested
xquery expressions with orderby clauses. Data Engineering Workshops,
2005. 21st International Conference on, pages 1277–1277, April 2005.

[84] Weining Zhang, Clement T. Yu, and Daniel Troy. Necessary and
sufficient conditions to linearize doubly recursive programs in logic
databases. ACM Trans. Database Syst., 15(3):459–482, 1990.

[85] Xin Zhang, Bradford Pielech, and Elke A. Rundesnteiner. Honey, I
shrunk the XQuery!: an XML algebra optimization approach. In WIDM
’02: Proceedings of the 4th international workshop on Web information
and data management, pages 15–22, New York, NY, USA, 2002. ACM.

[86] Xin Zhang, Xin Zhang, Elke A. Rundensteiner, and Elke A. Runden-
steiner. XAT: XML algebra for the Rainbow system. Technical report,
2002.

[87] Ying Zhang and Peter Boncz. XRPC: interoperable and efficient dis-
tributed XQuery. In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 99–110. VLDB Endowment,
2007.

[88] Kristopher William Zyp. Ajax performance analysis. Technical report,
IBM, 2008.

128

Index of symbols

./, 30
∪, 30
∅[Ω], 33
p

a−→
M

t, 37

t
a−→
M

p, 37

\, 30

ArcNm, 36
AttrNm, 29
av , 65

BinRelOp, 32

CA, 42
carddepcI ,cS [E, aI , aS], 89
cat, 30
catd, 30
cs , 64
CSL, 42

D, 29
δ, 30
δπ[\a1, . . . , an], 30
δπ[a1, . . . , an], 30
d, 40
DC , 41
dC , 41
dep[E, aI , aS], 89
DomNm, 29

except, 32
exenv[E], 63
exseqa[E], 64

exseqn[E], 64

fin, 36
Fncs, 36

γ[a1, . . . , an, b := g(c)], 30
γ[a1, . . . , an, b := g(c, d)], 30

id, 33
In, 36
ini, 36
invc[E], 64
invenv[E], 63
invv[E], 64

join, 32

κ(p), 45
κ(s, p), 48

main, 37

ν[a1, . . . , an, b := @(c)], 30
ni , 63
nk , 63
nn, 63
NulRelOp, 33
nv , 63

ω[b := c . . . d], 30
op, 36
Ops, 36
Out, 36
ownerP , 37
ownerT , 37

129

π[b := f(a1, . . . , an)], 30
π[b/a], 30
Plcs, 36

RelOp, 33

σ[P (a1, . . . , an)], 30
sch, 36
si , 65

ti , 63

U , 29
union, 32
UnRelOp, 33

varseqa[E, $x], 64
varseqn[E, $x], 64
vs , 64

ξ[a1, . . . , an, P (e1, . . . , en), b := g(c, d)],
30

130

Appendix A

Transcription rules

This section summarizes the most important transcription rules for the canon-
ical and the EBV modes whose principles were explained in the Chapter 7.

A.1 Unary operators

Syntax

E0 ::= op E1

All unary operators share the following rules:

Invocation rules

invc[E1] := invc[E0]

invv[E1] := invv[E0]

Environment rules

invenv[E1] := invenv[E0]

exenv[E0] := exenv[E1]

Variable rules

varseqn[E1, $x] := varseqn[E0, $x]

varseqa[E1, $x] := varseqa[E0, $x]

131

Boolean negation

Syntax

E0 ::= fn:not(E1)

Core rules

exebvt[E0] := exebvf[E1]

exebvf[E0] := exebvt[E1]

A.2 Binary operators

Syntax

E0 ::= E1 op E2

All binary operators share the following rules:

Invocation rules

invc[E1] := invc[E0]

invc[E2] := invc[E0]

invv[E1] := invv[E0]

invv[E2] := invv[E0]

Environment rules

invenv[E1] := invenv[E0]

invenv[E2] := invenv[E0]

exenv[E0] := (exenv[E1] ∪ exenv[E2])

132

Variable rules

varseqn[E1, $x] := varseqn[E0, $x]

varseqa[E1, $x] := varseqa[E0, $x]

varseqn[E2, $x] := varseqn[E0, $x]

varseqa[E2, $x] := varseqa[E0, $x]

Note that whenever the two environments exenv[E1] and exenv[E2] contain
the same tree identifier ti , the corresponding tree information is merged
via set-union. Since the tree identifier exactly determines the context in
which the tree was created, trees having the same identifier must be identical;
therefore, applying set-union to tree environments do not alter them anyway.

Concatenation

Syntax

E0 ::= E1 , E2

Core rules

exseqa[E0] := π[si/r](π[r := 1.si] (exseqa[E1]) ∪ π[r := 2.si] (exseqa[E2]))

exseqn[E0] := π[si/r](π[r := 1.si] (exseqn[E1]) ∪ π[r := 2.si] (exseqn[E2]))

Node-set union

Syntax

E0 ::= E1 union E2

Core rules

exseqa[E0] := ∅

exseqn[E0] := docorder (δπ[\si] (exseqn[E1]) ∪ δπ[\si] (exseqn[E2]))

Node-set intersection

Syntax

E0 ::= E1 union E2

133

Core rules

exseqa[E0] := ∅

exseqn[E0] := docorder (δπ[\si] (exseqn[E1]) ./ δπ[\si] (exseqn[E2]))

Node-set difference

Syntax

E0 ::= E1 except E2

Core rules

exseqa[E0] := ∅

exseqn[E0] := docorder (δπ[\si] (exseqn[E1]) \ δπ[\si] (exseqn[E2]))

Value comparisons

Syntax

E0 ::= E1 op E2

op ∈ {eq, ne, lt, le, gt, ge}

Core rules

tmp1 := δπ[\si] π[a/av] exseqa[E1]

tmp2 := δπ[\si] π[b/av] exseqa[E2]

tmp3 := δπ[\a, b] σ[P (a, b)] (tmp1 ./ tmp2)

exebvt[E0] := tmp3

exebvf[E0] := (invv[E0] \ tmp3)

Here P is the binary predicate corresponding to the operator op.

Boolean and

Syntax

E0 ::= E1 and E2

134

Core rules

exebvt[E0] := (exebvt[E1] ./ exebvt[E2])

exebvf[E0] := (exebvf[E1] ∪ exebvf[E2])

Boolean or

Syntax

E0 ::= E1 or E2

Core rules

exebvt[E0] := (exebvt[E1] ∪ exebvt[E2])

exebvf[E0] := (exebvf[E1] ./ exebvf[E2])

A.3 Node construction

Syntax

E0 ::= <e>{ E1 }</e>

Core rules

exseqn[E0] := π[si := λ, ti := α(cs).α(vs), ni := λ](invv[E0])

Environment rules

tmp1 := π[ni := λ, nk := element, nn := e, nv := λ](invv[E0])

tmp2 := normalize(mkforest(exseqn[E1], invenv[E1], exenv[E1], exseqa[E1]))

exenv[E0] := π[ti := α(cs).α(vs)] ((invc[E0]) ./ (tmp1 ∪ tmp2))

Functions

mkforest(x, y, z, u) = (envcut(envfilter(x, (y ∪ z))) ∪ envstring(u))

envfilter(x, y) = σ[prefix (p, q)] (π[p/ni] (x) ./ π[q/ni] (y))

envcut(x) = δπ[\p, q, si , ti] π[ni := α(si).after(q, p)] (x)

135

envstring(x) = δπ[\si , av] π[ni := α(si), nk := string, nv := av] (x)

normalize(x) = normalizeT (normalizeS (x))

normalizeS (x) = (π[nk := text] rpack groupS runpack(x) ∪
σ[nk 6= string](x))

normalizeT (x) = (π[nk := text] rpack groupT runpack(x) ∪
σ[nk 6= text](x))

runpack(x) = δπ[\ni] π[r := rtrim(ni), s := last(ni)] (x)

rpack(x) = δπ[\r, s] π[ni := r.s] (x)

groupS (x) = ξ[vs , r, nk = string, nv := catd(s, nv)] (x)

groupT (x) = ξ[vs , r, nk = text, nv := cat(s, nv)] (x)

A.4 Navigation

Syntax

E0 ::= E1 / axis::*

Core rules

tmp1 := (invenv[E1] ∪ exenv[E1])

tmp2 := σ[P (q, ni , nk)](tmp1 ./ π[q/ni] (exseqn[E1]))

exseqn[E0] = docorder δπ[\nk , nn, nv , q, si] tmp2

Environment rules

invenv[E1] = invenv[E0]

exenv[E0] = exenv[E1]

The selection operator is driven by a predicate P applied to node identi-
fiers q (a node from the sequence) and ni (a node from its tree environment);
additionally, the node kind nk may be constrained. The predicate is selected
according to the axis used in the navigation operator as shown in the table
A.1. (See the Sec. 4.2 for the definitions of the operators used here.)

136

axis P
ancestor prefix (ni , q) ∧ q 6= ni

ancestor-or-self prefix (ni , q)
attribute q = rtrim(ni) ∧ nk = attribute

child q = rtrim(ni) ∧ nk 6= attribute

descendant prefix (q, ni) ∧ q 6= ni ∧ nk 6= attribute

descendant-or-self prefix (q, ni) ∧ nk 6= attribute

following ni > q ∧ ¬prefix (q, ni) ∧ nk 6= attribute

following-sibling rtrim(ni) = rtrim(q) ∧ ni > q ∧ nk 6= attribute

parent ni = rtrim(q)
preceding ni < q ∧ ¬prefix (ni , q) ∧ nk 6= attribute

preceding-sibling rtrim(ni) = rtrim(q) ∧ ni < q ∧ nk 6= attribute

self ni = q

Table A.1: XPath axes and their corresponding predicates

A.5 FLWOR expression

Let clause

Syntax

E0 ::= for $y in E1 return E2

Invocation rules

invc[E1] := invc[E0]

invc[E2] := invc[E0]

invv[E1] := invv[E0]

invv[E2] := invv[E0]

Core rules

varseqn[E2, $y] := exseqn[E1]

varseqa[E2, $y] := exseqa[E1]

exseqn[E0] := exseqn[E2]

exseqa[E0] := exseqa[E2]

137

Environment rules

invenv[E1] := invenv[E0]

invenv[E2] := invenv[E0] ∪ exenv[E1]

exenv[E0] := exenv[E1] ∪ exenv[E2]

Variable rules

varseqn[E1, $x] := varseqn[E0, $x]

varseqa[E1, $x] := varseqa[E0, $x]

varseqn[E2, $x] := varseqn[E0, $x]

varseqa[E2, $x] := varseqa[E0, $x]

For clause

Syntax

E0 ::= for $y in E1 return E2

Invocation rules

invc[E1] := invc[E0]

invc[E2] := invc[E0]

invv[E1] := invv[E0]

tmp1 := π[vsI := vs .α(siO)] π[siO/si] exseqn[E1]

tmp2 := π[vsI := vs .α(siO)] π[siO/si] exseqa[E1]

tmp3 := (δπ[\ti , ni] tmp1 ∪ δπ[\av] tmp2)

invv[E2] := π[vs/vsI] δπ[\vs , siO] tmp3

138

Core rules

varseqn[E2, $y] := π[si := λ] π[vs/vsI] δπ[\vs , siO] tmp1

varseqa[E2, $y] := π[si := λ] π[vs/vsI] δπ[\vs , siO] tmp2

tmp4 := π[si I/si , vsI/vs] exseqn[E2]

tmp5 := π[si I/si , vsI/vs] exseqa[E2]

exseqn[E0] := δπ[\vsI , siO, si I] π[si := siO.si I] (tmp4 ./ tmp3)

exseqa[E0] := δπ[\vsI , siO, si I] π[si := siO.si I] (tmp5 ./ tmp3)

Environment rules

invenv[E1] := invenv[E0]

invenv[E2] := invenv[E0] ∪ exenv[E1]

exenv[E0] := exenv[E1] ∪ exenv[E2]

Variable rules

varseqn[E1, $x] := varseqn[E0, $x]

varseqa[E1, $x] := varseqa[E0, $x]

varseqn[E2, $x] := π[vs/vsI] δπ[\vs]((varseqn[E0, $x]) ./ δπ[\siO] tmp3)

varseqa[E2, $x] := π[vs/vsI] δπ[\vs]((varseqa[E0, $x]) ./ δπ[\siO] tmp3)

Order-by clause

Syntax

E0 ::= for $y in E1 order by E3 return E2

Core rules

tmp6 := (δπ[\si] π[vsI/vs] exseqa[E3] ./ tmp3)

exseqn[E0] := δπ[\vsI , siO, si I] π[si := α(av).siO.si I] (tmp4 ./ tmp6)

exseqa[E0] := δπ[\vsI , siO, si I] π[si := α(av).siO.si I] (tmp5 ./ tmp6)

The other equations are identical to the equations of the plain for-expression.
Note that in the case of multi-variable for-expression with order-by clause,
the exseqn[E0] equation shall handle all the control variables at once.

139

Where clause

Syntax

E0 ::= where E1 return E2

Invocation rules

invc[E1] := invc[E0]

invc[E2] := invc[E0]

invv[E1] := invv[E0]

invv[E2] := exebvt[E1]

Environment rules

invenv[E1] := invenv[E0]

invenv[E2] := invenv[E0]

exenv[E0] := (exenv[E1] ∪ exenv[E2])

Variable rules

varseqn[E1, $x] := varseqn[E0, $x]

varseqa[E1, $x] := varseqa[E0, $x]

varseqn[E2, $x] := (varseqn[E0, $x] ./ exebvt[E1])

varseqa[E2, $x] := (varseqa[E0, $x] ./ exebvt[E1])

A.6 Quantified expressions

Syntax

E0 ::= [some|every] $y in E1 satisfies E2

The quantified expressions share the following rules:

140

Invocation rules

invc[E1] := invc[E0]

invc[E2] := invc[E0]

invv[E1] := invv[E0]

tmp1 := π[vsI := vs .α(siO)] π[siO/si] exseqn[E1]

tmp2 := π[vsI := vs .α(siO)] π[siO/si] exseqa[E1]

tmp3 := (δπ[\ti , ni] tmp1 ∪ δπ[\av] tmp2)

invv[E2] := π[vs/vsI] δπ[\vs , siO] tmp3

Core rules

varseqn[E2, $y] := π[si := λ] π[vs/vsI] δπ[\vs , siO] tmp1

varseqa[E2, $y] := π[si := λ] π[vs/vsI] δπ[\vs , siO] tmp2

Environment rules

invenv[E1] := invenv[E0]

invenv[E2] := invenv[E0] ∪ exenv[E1]

exenv[E0] := ∅

Variable rules

varseqn[E1, $x] := varseqn[E0, $x]

varseqa[E1, $x] := varseqa[E0, $x]

varseqn[E2, $x] := π[vs/vsI] δπ[\vs]((varseqn[E0, $x]) ./ δπ[\siO] tmp3)

varseqa[E2, $x] := π[vs/vsI] δπ[\vs]((varseqa[E0, $x]) ./ δπ[\siO] tmp3)

some-expression

Syntax

E0 ::= some $y in E1 satisfies E2

141

Core rules

tmp4 = δπ[\vsI] (π[vsI/vs]exebvt[E2] ./ δπ[\si] tmp3)

exebvt[E0] = tmp4

exebvf[E0] = (invv[E0] \ tmp4)

every-expression

Syntax

E0 ::= every $y in E1 satisfies E2

Core rules

tmp4 = δπ[\vsI] (π[vsI/vs]exebvf[E2] ./ δπ[\si] tmp3)

exebvt[E0] = (invv[E0] \ tmp4)

exebvf[E0] = tmp4

142

