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1 List of abbreviations 
 
ACTH              Adrenocorticotropic hormone 

AGA  Androgenetic alopecia 

APM  Arrector pili muscle 

ATRA  All-trans retinoid acid 

BDNF  Brain-derived nerve growth factor 

BMP  Bone morphogenic protein 

CL  Club hair 

CK6  Cytokeratin 6 

CRH  Corticotrophin-releasing hormone 

CsA  Cyclosporin A 

CTS  Connective tissue sheath 

CTSL  Cathepsin L 

DAPI  4′,6-Diamidin-2-phenylindol fluorescent stain 

DMEM  Dulbecco’s modified Eagle’s medium 

DP  Dermal papilla 

DPC  Dermal papilla cells / fibroblasts 

E2  17-beta estradiol 

ER  Estrogen receptor 

FBS  Fetal bovine serum 

FC  Fetal clone 

FDA  Food and Drug Administration 

FGF-7  Fibroblast growth factor 7 

GDNF  Glial cell line-derived neurotrophic factor 

HaCaT  Human keratinocyte cell line 

HDF  Human dermal fibroblasts 

HE  Hematoxylin-eosin 

HF  Hair follicle 

HFM  Human folliculoid microspheres 

HGF  Hepatocyte growth factor 

HR  Hairless gene 

IFNy  Interferon gamma 

IGF-1  Insulin-like growth factor 1 

IL-1  Interleukin 1 

IRS  Inner root sheath 
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LEF-1  Lymphoid enhancer-binding protein 1 

LDH  Lactate-Dehydrogenase 

MSH               Melanocyte-stimulating hormone 

NCAM  Neural cell adhesion molecule 

NGF  Nerve growth factor 

NHEK  Normal human epidermal keratinocytes 

ORS  Outer root sheath 

ORSK  Outer root sheath keratinocytes 

P75NTR Low affinity neurotrophin receptor 

PBS  Phosphate-buffered saline 

PRL  Prolactin 

PRLR  Prolactin receptor 

RAR  Retinoid acid receptor 

RC  Rough coat 

RT- PCR Real-Time-quantitative Polymerase Chain Reaction 
RXR  Retinoid X receptor 

SCF  Stem cell factor 

SG  Sebaceous gland 

SHH  Sonic hedgehog 

STAT-3 Signal transducer and activator of transcription 3 

TGFβ  Transforming growth factor beta 

TNFα  Tumor necrosis factor alpha 

TSP-1  Thrombospondin 1 

TUNEL Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling  

VEGF  Vascular endothelial growth factor 

VR-1  Vanilloid receptor 1 

WNT  Wingless gene 

3D  Three-dimensional 
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2 Introduction  
 

The loss of scalp hair (effluvium, alopecia) can be accompanied by severe 

psychological problems in a vastly underestimated number of afflicted 

patients57.Therefore the development of ever-new and hopefully more effective 

drugs for the management of common hair growth disorders remains a top priority 

both for clinical dermatology and the industry143.  

Most hair growth disturbances seen in clinical practice primarily result from 

changes in hair follicle cycling. Thus, a more profound understanding of the mo-

lecular controls of hair follicle cycling and its underlying disturbances promises to 

lead to the development of more effective “hair drugs,” one of the prime challenges 

of modern hair research. 

  The search for such hair drugs is, however, severely handicapped by the 

lack of satisfactory three-dimensional (3D) in vitro screening systems that suffi-

ciently mimic important epithelial-mesenchymal interactions as they occur in hu-

man hair follicles (HF). Therefore, pragmatic 3D screening systems are urgently 

needed, as preservation of native epithelial-mesenchymal interactions is superior 

to simple co-culture assays for isolated HF cell populations in which these interac-

tions are disrupted103,178, and hence data produced with such cell culture studies 

reflect highly artificial conditions, provide very uncertain predictive value for the 

clinical situation, and are therefore inappropriate for the screening purposes dis-

cussed here. 

For pre-clinical R&D (research and development) purposes, a simplified 3D 

folliculoid systems should provide a first-line screening tool for large-scale in vitro 

testing, to be followed by organ culture of micro-dissected human anagen hair 

bulbs159 and histocultures of hair-bearing skin, i.e. micro-dissected normal 

skin97,98,110 for the most promising agents that have been identified in this manner 

as a second-line assay, and eventual clinical testing as the ultimate and only fully 

reliable test system. 
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The main aim of this study was therefore to develop a human tissue- 

engineered hair equivalents for investigative dermatology that provides well-

defined basic parameters for detailed exploration of epithelial-mesenchymal 

interactions in the human hair follicle. 
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3 Skin Equivalents 
 

3.1 Tissue Engineering 
 

Decades ago, the possibility of growing replacement tissues to repair hu-

man skin was considered science fiction. When substitution of the skin was re-

quired, the only options were split or full-thickness skin grafts, tissue flaps and 

free-tissue transfers166. Over the last 30 years, tissue-engineered skin equivalents 

has developed and progressed at a very rapid rate. Today, there are some tissue 

engineered skin equivalents approved for use by the US Food and Drug Admini-

stration (FDA) and many others undergoing testing and development. Tissue-

engineered skin substitutes offer tissue replacement without requiring a donor site 

and may produce better healing39. Tissue engineering was defined in 1987 by the 

National Science Foundation bioengineering panel meeting in Washington, DC, 

USA, as ‘the application of the principles and methods of engineering and the life 

sciences toward the development of biological substitutes to restore, maintain, or 

improve function46.  

 

Key materials for tissue engineering are cells, matrix material (scaffold) and 

growth factors. The cell synthesizes matrices of new tissue, while the scaffold pro-

vides the appropriate environment for cells to be able to effectively accomplish 

their missions. The function of growth factors is to facilitate and promote cells to 

regenerate new tissue73. Future directions include genetic modification of trans-

planted cells to improve wound healing transiently or to deliver gene products sys-

temically17.  

A short review of some engineered skin equivalents are listed here. 
 

 

 

 

 

 



 
 
   Hair Equivalents

 

 Page 11 of 107 
 

3.2 Human Tissue- Engineered Skin Equivalents commercially available 
 

3.2.1 Cultured Epidermal Autografts (Epicel™) 
 

In 1975, Rheinwald and Green developed a technique that permitted epi-

dermal keratinocytes to be cultured in vitro using a feeder layer of irradiated mur-

ine fibroblasts177. From a skin biopsy, dermis and subcutaneous tissue were re-

moved, epidermis was minced and trypsinized, and a cell suspension was seeded 

on lethally irradiated 3T3 mouse fibroblasts (which can not multiply and inhibit 

growth of human fibroblasts from the biopsy). The standard culture medium was 

enriched by cholera toxin, epidermal growth factor, adenosine, insulin and hydro-

cortisone56,177. Small colonies formed within days after a cell suspension was 

plated. When cultures reached confluence, the keratinocytes were released with 

dispase and attached to a non-adherent gauze dressing56. Two to three weeks 

were required before the cultured graft was available. Using this technique, cul-

tured epidermal autografts (Epicel™), were first produced in 1988. The advan-

tages of cultured epidermal autografts are the potential provision of permanent 

wound coverage66,132, a decreased requirement for donor sites, pain relief, and a 

better functional and cosmetic outcome. The disadvantages are the requirement 

for a skin biopsy (or biopsies), a 3-week delay for graft cultivation, the lack of a 

dermal component, and high costs. Cultured epidermal autografts have been used 

to treat burns54,132, chronic leg ulcers66, epidermolysis bullosa23, cutaneous 

wounds resulting from excision of giant congenital nevi55, vitiligo164, chronic mas-

toiditis169, congenital hypospadias179, pressure ulcers157, and corneal replace-

ment150. However, cultured epidermal autografts are not a complete bi-layered 

skin, and the scar contraction and unstable attachment to the wound bed is attrib-

uted to the absence of a dermal substrate58.  
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3.2.2 Cultured Epidermal Allografts 
 

Cultured epidermal allografts are derived from unrelated allogeneic donors, 

such as newborn foreskin, can be grown in advance and may be stockpiled. They 

promote granulation formation and stimulate epithelialization from wound edges 

and from adnexal structures in the dermal bed of superficial wounds, probably 

through growth factor release154. The advantage of using cultured epidermal al-

lografts is immediate graft availability. The disadvantages are that they do not sur-

vive permanently on the wound bed, and there is a possibility of disease transmis-

sion, which can be minimized with an extensive screening. Cultured epidermal al-

lografts have been used to treat burns34,72,67,114, chronic leg ulcers37,96,155,156, donor 

sites158, and epidermolysis bullosa118. Cultured epidermal allografts can be cryo-

preserved and stored at –70°C to –120°C and thawed at room temperature before 

using12.  

 

3.2.3  Non-living Allogeneic Acellular Dermal Matrix (Alloderm®) 
 

Alloderm® is an acellular matrix material, processed directly from fresh ca-

daver skin that is treated with high salt to remove the epidermis and extracted with 

a solution to remove the cellular material. It is then freeze dried, leaving an immu-

nologically inert acellular dermal matrix with intact basement membrane complex. 

It has been used to treat burns since 1992. It can be glycerol preserved or lyophi-

lized. The advantages of this dermal matrix include: it is acellular and immunologi-

cally inert; it provides a template with natural dermal porosity for regeneration with 

the presence of an intact basement membrane; and it allows the use of thinner 

autografts. The disadvantages include risk of transmitting infectious diseases203.  
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3.2.4 Non-living Extracellular Matrix of Collagen and Chondroitin-6-Sulfate 
(Integra®) 

 

An in vitro dermal replacement, Integra® is an artificial skin developed by 

Burke and Yannas22. It consists of an artificial dermis (matrix of bovine collagen 

and chondroitin-6-sulfate, a shark-derived glycosaminoglycan) and a disposable 

silicone sheet (artificial epidermis). The matrix becomes vascularized, then the 

disposable epidermis is removed and can be replaced with a split thickness skin 

graft. In 1996, the FDA approved its use in burns. The advantage of using this arti-

ficial dermis is that it allows a neo-dermis to develop. The disadvantages are the 

collection of fluid under Integra® with the possibility of unnoticed infection, and the 

lack of a real epidermal component20.   

 

3.2.5 Cultured Skin Substitute 
 

A collagen and glycosaminoglycan dermal skin substitute was studied as 

substrate for cultured human epidermal keratinocytes18. Hansbrough61 further de-

veloped this skin substitute, which is prepared in vitro and transferred as a unit to 

the wound bed. This skin substitute is composed of autologous cultured keratino-

cytes as the epidermal component, and collagen and glycosaminoglycan substrate 

inoculated with autologous fibroblasts as the dermal component. Formation of rete 

ridge interdigitation, and basement membranes proteins (laminin and type IV col-

lagen), were identified immunohistochemically.The disadvantage of this skin sub-

stitute is the need to wait 3 to 4 weeks to produce the cultured grafts. Later 

Boyce21 added human melanocytes to the skin culture composed of human epi-

dermal keratinocytes, dermal fibroblasts and collagen glycosaminoglycan sub-

strates, and demonstrated restoration of pigmentation and inhibition of wound con-

traction after transplantation to athymic mice. More studies are needed to deter-

mine the effectiveness of this composite skin substitute.  
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3.2.6 Living Allogeneic Dermal Fibroblasts (Dermagraft®) 
 

A living dermal replacement (Dermagraft®) can be obtained by culturing 

human neonatal fibroblasts on a polyglyactin mesh. This method was developed 

by Cooper26. Dermal fibroblasts from neonatal foreskin are seeded on a bioab-

sorbable mesh, in a sterile bag with circulating nutrients. These cells attach, multi-

ply and begin secreting collagens and growth factors. The cells and the collagen 

proteins form a solid tissue by covering the mesh inside and outside. The mesh is 

made of biodegradable material and disappears after 3 to 4 weeks. This fibroblast 

collagen matrix can be used alone or as a base for meshed autografts or possible 

epidermal cultures154. The advantages of this skin substitute include good resis-

tance to tearing, ease of handling, and lack of rejection60,165. 

  

3.2.7 Extracellular Matrix of Allogeneic Human Dermal Fibroblasts          
(Transcyte™) 

 

Transcyte™ is a laboratory-grown temporary skin replacement. Neonatal 

(allogeneic) fibroblasts are cultured and proliferate on nylon fibers that are embed-

ded into a silastic layer for 4 to 6 weeks, forming a dense cellular ‘tissue’ which 

contains high levels of secreted human matrix proteins as well as multiple growth 

factors60. The fibroblasts are rendered non-viable by freezing after synthesizing 

collagen extracellular matrix and growth factors. TransCyte™ is approved for the 

treatment of burn wounds, and advantages include immediate availability and easy 

storage171.  

 

3.2.8 Living Allogeneic Bilayered Skin Construct (Apligraf®) 
 

A living human skin equivalent was first developed by Bell et al7. Apligraf® 

(also known as ‘Graftskin’) is a bilayered skin construct or living human skin 

equivalent, composed of living keratinocytes and dermal fibroblasts, derived from 

neonatal foreskin and propagated in culture. Initially, dermal fibroblasts are com-

bined with type I bovine collagen. Subsequently, keratinocytes overlying the epi-
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dermis are exposed to an air-liquid interface to promote formation of a stratum 

corneum208. Apligraf® resembles human skin histologically, produces matrix pro-

teins and growth factors, and can heal itself, following an injury45. Apligraf® gained 

FDA approval for the treatment of venous ulcers based on its efficacy in a con-

trolled, randomized, multicenter study performed in 293 patients with venous ul-

cers. It has also been used to treat patients with epidermolysis bullosa43,44 and in 

acute, partial or full-thickness excisional wounds made mostly by excision of skin 

cancer38. The advantages of using Apligraf® include ease of application, ability to 

apply the graft as an outpatient procedure, and avoidance of a surgical procedure 

that leaves a donor site wound. The disadvantages are its short shelf life (5 days) 

and cost. 

 

3.2.9 Composite Cultured Skin (OrCel™) 
 

Another living skin equivalent is the composite cultured skin, which consists 

of allogeneic fibroblasts and keratinocytes grown in vitro and seeded on opposite 

sides of a bilayered matrix of bovine collagen129. The collagen matrix consists of a 

cross-linked bovine collagen sponge coated with an overlay of pepsinized insolu-

ble collagen. Keratinocytes are seeded over a non-porous collagen gel (insoluble 

collagen) and the fibroblasts are seeded on the underside of the porous sponge. 

They are cultured between 10 to 15 days. Composite cultured skin has been used 

as a partial substitution for autografts on digits and over donor sites in the course 

of 16 operations performed on 7 children with recessive dystrophic epidermolysis 

bullosa, syndactyly and flexor contracture of the fingers41. The advantage of this 

skin substitute is its immediate availability; the disadvantage is the little clinical 

data to support its use.  

 

 

 

 

 

 



 
 
   Hair Equivalents

 

 Page 16 of 107 
 

3.3 Tissue-Engineered Hair Equivalents 
 

3.3.1 Hair equivalents for wound healing 
 

An autologous epidermal equivalent generated in vitro from the patient’s 

hair (the outer root sheath cells of the hair follicle [ORSK]) has been grafted suc-

cessfully in a pilot study performed on 11 chronic leg ulcers105. The advantages of 

this graft include the easy isolation of precursor cells for epidermal keratinocytes 

from plucked scalp hair follicles and that these precursor cells retain a high prolif-

erative capacity irrespective of the age of the hair follicle donor. This epidermal 

equivalent is commercially available in Europe, as EpiDex™. 

 

3.3.2 Neogenesis of the hair follicle 
 
 

Many approaches for neogenesis of the hair follicle (creation hair follicle de 

novo) have been tested recently, e.g. autologous dermal cells from dissociated 

hair follicle expanded in the culture and then in combination with competent 

epithelial cells re-implanted to the scalp or forming hair follicle as mini organs in vi-

tro and then transplanting the newly generated follicles back to the alopetic 

scalp194. However, due to tissue engineering challenges the creation of new hair 

follicles for the treatment of alopecia has not been achieved yet. 

 

3.3.3 Hair equivalents for investigative dermatology 
 

Many different 3D organotypic assay systems based on human skin and 

hair cell populations have been developed for investigative dermatol-

ogy5,101,104,193,211. These systems allow so far limited study of the function of diffus-

ible factors affecting epithelial–mesenchymal interactions, the dynamics of base-

ment membrane formation and the testing of the effects of various modulators, 

growth hormones, nutrients, etc.112,113,188-190.The human skin equivalents have be-

come an indispensable alternative to animal models in pharmacological and toxi-

cological in vitro testing167. 
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Historically, normal human epidermal keratinocytes (NHEK) were first used 

in organotypic 3D systems112,189,190,193 and later ORSK were also employed 
101,102,104). In these systems cells were layered above collagen I, or collagen I 

mixed with human dermal fibroblasts (HDF), generating 'pseudodermis' 193. Later, 

these collagen I gels or a pseudodermis were covered with various cell and matrix 

mixtures, which contained basement membrane and extracellular matrix compo-

nents (MatrigelTM basement membrane matrix;), NHEK or ORSK, plus mesenchy-

mal cells (HDF or DPC) in a number of different designs101,193. Ultimately, in previ-

ously reported 3D systems, comprehensive data on the ratio of prolifera-

tion/apoptosis of ORSK and DPC and/or on HF-like differentiation markers have 

not been assessed in the classical studies that have pioneered the 

field101,113,188,189,193. 

A human tissue-engineered skin equivalent in for the investigation of trans-

follicular penetration has been developed by Michel125. It is produced from human 

fibroblasts and keratinocytes obtained from healthy adult skin specimens removed 

during reductive breast surgery, and does not contain any synthetic material. Pre-

viously extracted pilosebaceous units are then inserted in the dermal equivalent in 

which small holes have been previously made. The product has histological, im-

munological, immunohistological, and ultrastructural properties similar to healthy 

human skin. This new in vitro hair model could be used to further broaden the un-

derstanding of the transfollicular route in the transcutaneous delivery of active 

substances. 

 

In order to overcome numerous challenges, further progress needs to be 

made in understanding the molecular pathways activated during hair follicle em-

bryogenesis and hair cycling. Eventually, this understanding should lead to the 

generation of new pharmaceutical agents that specifically target these path-

ways194. 
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4 The Biology of the hair follicle 

4.1 Human hair follicles 

The hair follicle is one of the most complex mini-organs of the human body. 

This exquisitely productive protein fiber factory, which doubles as a sensory organ 

and serves as an instrument of psychosocial communication, excretion, and pro-

tection, undergoes cyclic transformations between phases of rapid growth (ana-

gen), apoptosis-driven regression (catagen), and relative quiescence (telogen)35. 

With this “hair cycle,” the follicle demonstrates the unique ability to cyclically re-

generate itself during our lifetime, based on epithelial–mesenchymal interactions 

that drive waves of daughter cell populations, derived from resident epithelial, neu-

ral, and mesenchymal stem cells, into defined strata of differentiation88,146,195. The 

human scalp, eyebrows, and lashes consist of long, thick, medullated and pig-

mented terminal hair shafts, whereas the body is covered with short, thin and often 

unpigmented vellus hairs. Each of us displays an estimated total number of 5 mil-

lion hair follicles, of which 80,000 to 150,000 are located on the scalp. The hair 

length is defined by the duration of anagen, which lasts for 2 to 6 years. Approxi-

mately 85% to 90% of all scalp hairs are within anagen follicles. Catagen lasts only 

for a few weeks, followed by the telogen phase, which lasts 2 to 4 months. The 

usual growth of scalp hair follicles (i.e. the rate of hair shaft elongation) lies be-

tween 0.3 and 0.5 mm per day and is dependent on proliferation and subsequent 

follicular-type differentiation of the matrix keratinocytes in the hair bulb. The thick-

ness of the hair shaft is related to the size of the hair bulb33, which in turn is dic-

tated by the volume of the hair follicle’s mesenchymal component199. 

4.2 Hair Follicle Anatomy 

The mature anagen hair follicle is composed of a multicylindric stem that 

contains the hair shaft in its center and originates as an oval hair bulb proximally     

(Fig 1)207. Embraced by the hair bulb lies an onion-like structure, called the dermal 

papilla (DP) (sometimes referred to as the “follicular papilla” to avoid confusion 

with the most superficial region of the dermis). The DP functions as the “command 
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center” of the hair follicle and determines thickness, length, and likely the hair 

cycle itself146. 

Each hair follicle consists of epithelial and mesenchymal parts. The epithe-

lium is divided into an upper permanent region, distal to the arrector pili muscle 

(APM) and an inferior region (including the hair bulb), which dramatically reforms 

itself over the cycle (Fig.1,2). Apart from serving as the hair shaft factory, the    

anagen hair bulb also provides the hair shaft’s trichocytes with melanin granules. 

Within the hair bulb is a population of cells with the highest proliferation rate in the 

human body: the keratinocytes of the hair matrix. These can differentiate into 

trichocytes, or cells of the inner root sheath (IRS). The outer root sheath (ORS), 

hair matrix, and hair shaft derive from the epithelial stem cells in the bulge area, 

functioning as a pluripotent epithelial stem cell population for the skin                

(Fig. 2) 9,28,130. 

The size of the anagen hair bulb, the duration of anagen, and the hair shaft 

diameter are determined by the volume, the number of cells, and the secretory ac-

tivity of the DP82,148. Stringent coordination between epithelial and mesenchymal 

portions is needed to maintain the cyclic hair follicle growth195. Mesenchymal stem 

cells within the tissue sheath serve as a recruitment pool for new DP cells. Apart 

from mesenchymal stem cells, the hair follicle also contains mast cell precur-

sors81,90,134 and neuronal stem cells, the latter of which can develop into neurons 

and blood vessels1. The large numbers of stem cells make the hair follicle a fasci-

nating organ in the field of stem cell biology. 
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Figure 1. Hair follicle anatomy 

A) Anagen VI hair follicle ( IV is morphologic phase of anagen cycle). Histologic longitudinal section on the left 

hand side. Schematic drawing of an anagen VI follicle with anatomical details on the right hand side. B) Ana-

gen VI hair bulb in detail (enlargement of schematic drawing in A). APM, arrector pili muscle; CTS, connective 

tissue sheath; DP, dermal papilla; IRS, inner root sheath; ORS, outer root sheath; SG, sebaceous gland88 . 
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Figure 2. Structure of hair follicles during anagen, catagen and telogen stages of cycling ( Hematoxy-
lin and Eosin).  

A) a high magnification of hair bulb during the anagen (growth) stage (x100). B) a scalp-hair follicle during an-

agen stage (x25). C) a scalp-hair follicle during catagen (involutional) stage (x40). D) a scalp-hair follicle dur-

ing telogen (resting) stage (x25). In these panels, apm denotes arrector pili muscle, bg bulge, cl club hair, Cr 

cortex, Cu cuticle, cts connective-tissue sheath, dp dermal papilla, drm dermis, epi epidermis, hs hair shaft, 

iec involuting epithelial column, irs inner-rooth sheat, m matrix cells, ors outer root sheath, sc subcutaneous 

fat and sg sebaceous gland145  
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4.3 The Hair Cycle 

Hair cycling is the rhythmic change of the hair follicle through phases of 

growth (anagen), regression (catagen), and rest (telogen). Synchronized hair fol-

licle cycling (in mammals) prepares the hair coat for seasonal changes in habitat 

conditions as well as procreational activities195. The purpose of hair cycling in 

mammals with individual (asynchronous) follicle waves (e.g. humans) is not as ob-

vious, but may include cleaning the skin surface of debris and parasites, and ex-

cretion of deleterious chemicals by encapsulation within trichocytes195. In addition, 

follicle cycling might serve as a regulator of paracrine or even endocrine secretion 

of hormones and growth modulators produced within the follicle and secreted into 

the skin or circulation146. Finally, hair follicle cycling may act as a safe-guard 

against malignant degeneration by protecting rapidly dividing keratinocytes from 

oxidative damage by deletion during catagen88,144,146.   

4.3.1 Anagen 

Anagen (the growth phase of the hair cycle) is divided into 6 different 

stages defined by specific morphologic criteria148 (Fig. 3). During anagen, epithe-

lial stem cells differentiate into at least 8 different cell lines, forming the ORS, 

companion layer, Henle’s layer, Huxley’s layer, cuticle of the IRS, cuticle of the 

hair shaft, shaft cortex, and shaft medulla. The ORS probably is established by the 

downward migration of the regenerating epithelium174. IRS and hair shaft are tied 

together by their interlocked cuticle structures. The IRS-packaged shaft uses the 

innermost layer of the ORS (companion layer) as a slippage plane for orientation 

to move straight toward the skin surface76,136. 

Epithelial stem cells are located in the bulge area of the follicle. From   

there, in anagen stem cells ascend into the interfollicular epidermis and descend 

to differentiate into ORS cells. One hypothesis suggests that derivatives of stem 

cells from the bulge area reach the hair germ, transform into matrix keratinocytes, 

and rebuild the hair shaft139. During catagen, this stem cell population is situated 

lateral to the DP, protected from apoptosis and able to proliferate again in early 

anagen to produce a new hair shaft. 
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Hair shaft pigmentation only takes place in anagen. The cyclic reconstruc-

tion of an intact hair follicle pigmentary unit works optimally in scalp follicles during 

the first 10 hair cycles, meaning until approximately 40 years of age. Afterward 

there appears to be a genetically regulated exhaustion of the pigmentary potential 

of each individual follicle leading to “hair greying”201. 

4.3.2 Catagen 

The anagen period ends with a highly controlled involution of the hair follicle 

resulting in apoptosis and terminal differentiation. This process, called catagen, 

consists of 8 different stages. The hair follicle epithelium, neuroectodermal cell 

populations (melanocytes and Merkel cells), the mesenchyme, the perifollicular 

vascular system, and the follicular innervation all show cyclic changes in prolifera-

tion, differentiation, and apoptosis107,119,151. During catagen, the DP condenses, 

moves upward, and comes to rest beneath the bulge. The hairless gene (Hr) is re-

sponsible for the strong connection between the condensing DP and the diminish-

ing hair follicle epithelium in catagen and telogen follicles. In its function as a safe-

guard of apoptosis control during catagen140, Hr operates as a negative transcrip-

tion repressor and insures that apoptosis only takes place in certain tissues in the 

correct order.  

4.3.3 Telogen 
 

After regression, the hair follicle enters telogen, a phase of relative quies-

cence regarding proliferation and biochemical activity. The follicle remains in this 

stage until it is reactivated by intrafollicular and extrafollicular signals. The unpig-

mented club hair often remains stuck in the hair canal and is shed from the follicle 

during combing or washing. Most people lose 50 to 150 scalp hairs per day. The 

telogen stage typically lasts for two to three months before the scalp follicles re-

enter the anagen stage and the cycle is repeated.  

The percentage of follicles in the telogen stage varies substantially accord-

ing to the region of the body (e.g. 5 to 15 percent of scalp follicles are in the te-

logen stage at any one time, as compared with 40 to 50 percent of follicles on the 

trunk)145. 
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The chronology of hair follicle cycling is: 
catagen→telogen→anagen→catagen.  

Contrary to common misconception, morphologically, hair follicle cycling 

does not begin with anagen, but with catagen (Fig. 3) i.e., shortly after hair follicle 

morphogenesis has been completed. The initiation of hair follicle cycling via 

catagen induction is followed by a first, short phase of telogen, after which the first 

anagen development is seen195.  

The hair follicle has only one irreversible physiologic mechanism to break 

out of the hair cycle: programmed cell death, e.g. perifollicular inflammation that 

destroys the bulge region and therefore the follicle’s capacity to cycle40. This tar-

geted destruction probably serves to remove degenerated and nonfunctioning hair 

follicles. 
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Figure 3. Development and cycling of hair follicles.  

Selected stages of morphogenensis of hair follicles and three stages of follicular cycling (anagen, catagen and 

telogen) are shown. The roman numerals indicate morphologic sub-stages of anagen and catagen. The pie 

chart shows the proportion of time the hair follicle spends in each stage145. 
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4.4 Locally Produced Growth Factors, Hormones, and Proteins 

 

The hair follicle is not only a very productive source of pigmented hair 

shafts (keratins and melanin) but also of many growth-, pigment-, and immuno-

modulators. It can synthesize or metabolize an enormous number of hormones, 

neurotransmitters, neuropeptides and growth factors. For example, growth factors 

like TGF-β1/2, IGF1, HGF 48,75,108 and hormones like CRH, prolactin, cortisol, and 

melatonin47,77,87 are all synthesized in the hair follicle. Androgens are metabolized 

to dihydrotestosterone or 17β-estradiol, and proopiomelanocortin to ACTH, alpha-

MSH, or β-endorphin within the hair follicle195. The exact biological functions of the 

locally generated factors are not well understood. The hair cycle depends on this 

complex activity and on the expression of the specific matching receptors, sug-

gesting that these actions function as autocrine and paracrine mechanisms. 

As the hair follicle is regulated by diverse systemic extrafollicularly gener-

ated hormones and growth factors and by a variety of self-generated substances, 

it is no surprise that even small changes in this sensitive milieu can lead to a 

shortening of anagen, an induction of catagen, and to an increased number of te-

logen follicles, resulting in telogen effluvium. 

4.5 Key Factors in Hair Follicle Cycling 

 

It is now widely accepted that hair follicle transformation during cycling is 

caused by alterations in the local signaling milieu. There are key regulators that 

build up local gradients with competing stimulating and inhibitory signals (Fig. 4). 

Rhythmic changes of signal transducers in the key compartments of the follicle 

(bulge, secondary hair germ, dermal papilla) are thought to drive cyclic hair follicle 

transformation. 

Key factors known to induce anagen include soluble proteins of the WNT 

family, activation of the corresponding β-Catenin pathway, noggin, and the tran-

scription factor STAT314,128. Sonic hedgehog, HGF, and FGF7 (KGF) support this 

process and stimulate the subsequent steps of anagen development32,108,182.    
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DP-induced keratinocyte differentiation occurs via β-catenin/lef1 signaling178. Hair 

shaft differentiation seems to be mediated, at least in part, by desmoglein124. WNT 

signals (WNT3a and WNT7a) are capable of keeping the dermal papilla in anagen. 

IGF1, HGF, glial cell-derived neurotrophic factor, and vascular endothelial growth 

factor can prolong anagen (Fig. 4)42,69,108,111,119,128,135,149,161. During the anagen–

catagen transformation of the hair follicle, the transcription factor Hr is a central, 

indispensable element of navigation and coordination of signal transduction. Loss 

of Hr function leads to rapid degeneration of the hair follicle138. Certain members of 

the homeobox gene family also seem to control some of the named factors. TGF-

β1, TGF-β2, FGF-5, the neurotrophins NT3, NT4, BDNF, p75, also retinoids, 

prolactin, and several other candidates like thrombospondin 1 and vanilloid recep-

tor 1 induce catagen10,13,47,48,50,79,192,196,210. An essential inhibition/disinhibition sys-

tem in anagen development is the neutralization of BMP4 by noggin15. Anagen is 

terminated by the upregulation of hair growth inhibitors (TGF-β1, TGF-β2, FGF-5) 

and downregulated by anagen preserving factors (IGF-1, HGF, FGF-5S) at the 

same time.  

It seems confusing that some hair growth modulators have growth-

stimulating effects during morphogenesis but inhibitory effects in the hair cycle. 

TGF-β2, follistatin, and NT3, for example, accelerate hair follicle morphogenesis, 

but are catagen-inducing in mature anagen follicles14,49,131,146. Some of the very 

potent signal transducers of anagen induction or termination could lead to the de-

velopment of specific pharmacologic agents that could manipulate the human hair 

cycle and treat hair growth disturbances more efficiently. However, none of these 

factors seems to be a key element of the hair cycle clock itself, which directs the 

factors to execute the cyclic hair follicle transformations. 
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Figure 4. Molecular players in hair cycle control.  

The figure shows key factors of hair follicle cycling being employed by the hair cycle control to drive the hair 

follicle from one stage to the next one or to keep it in a given stage. However, none of the named mediators 

are known to be key elements of the central pacemaker. (For references, see text). APM, arrector pili muscle; 

CTS, connective tissue sheath; DP, dermal papilla; IRS, inner root sheath, ORS, outer root sheath; SG, seba-

ceous gland; BMP, bone morphogenic protein; WNT, wingless; STAT3, signal transducer and activator of 

transcription 3; FGF7, fibroblast growth factor 7; HGF, hepatocyte growth factor; Shh, sonic hedgehog; IGF1, 

insulin like growth factor; CTSL, cathepsin L; cutl, transcriptional repressor; GDNF, glial cell line-derived neu-

rotrophic factor; BDNF, brain-derived nerve growth factor; VEGF, vascular endothelial growth factor; ATRA, 

all-trans retinoid acid; RXR, retinoid x receptor; RAR, retinoid acid receptor; NGF, nerve growth factor; Lef1, 

lymphoid enhancer-binding protein; TGFβ, transforming growth factor β; p75NTR, low affinity neurotrophin re-

ceptor; PRL, prolactin; PRLR, prolactin receptor; IFNγ, interferon γ; ER, estrogen receptor; IL1, interleukin 1; 

VR1, vanilloid receptor 1; TNFα, tumor necrosis factor α; TSP1, thrombospondin 1; (modified after Paus and 

Peker149). 
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4.6 Sex Hormones as Potent Hair Growth Modulators 

Androgens are very potent, yet non-essential, hair growth modulators. In 

hair growth regulation, different types of hair follicles in diverse body areas have 

different underlying cycle control mechanisms. A common example is the para-

doxical effect of androgens on terminal follicles of the scalp compared with vellus 

follicles on other parts of the body. Androgens stimulate hair growth in non-scalp 

areas like the beard, breast or abdomen (at least in part by upregulation of gene 

expression and secretion of IGF1)75. In contrast, androgen sensitive hair follicles of 

the scalp become smaller under the influence of androgens (miniaturization) lead-

ing to the typical changes of androgenetic alopecia33,70. Inhibition of hair growth in 

the fronto-temporal region can be demonstrated by TGF-β stimulation74. Current 

theories suggest that scalp and body hair follicles react to androgen stimulation 

differently by triggering programmed gene regulation of defined hormones. These 

gene programs lead to potent hair growth stimulation in one follicle population and 

growth inhibition in others117.  

Localization and gender-specific regulation of hair follicle gene expression 

has also been demonstrated for estrogens. In vitro experiments show an inhibition 

of hair shaft elongation and anagen prolongation in human female occipital hair 

follicles, whereas in male frontotemporal scalp follicles, 17β-estradiol (E2) stimu-

lates hair shaft elongation25. In vivo E2 also leads to anagen prolongation in hu-

man hair follicles186. 

4.7 Management of Hair Growth Disorders 

 

Hair loss, as well as unwanted hair growth (hirsutism, hypertrichosis), is a 

widespread problem. According to one calculation, androgenetic alopecia on its 

own eventually affects approximately 50% of the world’s adult population145,206. 

The hair shaft, the main product of the hair follicle, serves as an instrument of so-

cial communication, a protective device, and as a container for sequestering and 

excreting unwanted compounds145,195.  
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Given the role of hair in psychosocial communication, (as a symbol of 

youth, health, fertility, and sexual potency) hair loss often has an underestimated 

psychosocial impact on an individual’s self-esteem, interpersonal relationships, 

and positioning within society57. Telogen effluvium, androgenetic alopecia, and 

alopecia areata, the 3 most frequent hair loss disorders encountered in clinical 

practice, exemplify how a range of negative psychological and social experiences 

translate into significant stressors that possibly conspire to further aggravate hair 

loss2-4,57. The majority of the known hair growth disorders are a consequence of 

changes in the hair cycle. The most frequent growth disorder in men and women is 

androgenetic alopecia (AGA). AGA is characterized by a shortening of the ana-

gen phase and a prolongation of telogen, combined with miniaturization of hair fol-

licles33. These changes are androgen dependent and genetically determined. The 

underlying molecular mechanism depends on the conversion of testosterone to di-

hydrotestosterone by 5α-reductase. Dihydrotestosterone binds to androgen recep-

tors of the hair follicle and leads to a shortening of anagen and a reduced cell hair 

matrix volume31,120. Men and women with AGA have a higher activity of 5α-

reductase type II and androgen receptors in the frontal scalp area compared with 

the occipital area170. However, simply removing androgens does not usually result 

in the conversion of miniaturized follicles to terminal ones; thus, current treatments 

for advanced androgenetic alopecia, including minoxidil and finasteride, are usu-

ally ineffective. 

The transient shedding of hair - telogen effluvium - that is associated with 

drugs, fever, endocrine abnormalities, parturition, anemia, and malnutrition occurs 

when an increased number of hair follicles prematurely enter the telogen stage 

and then shed their hair shafts. Transient shedding typically begins two to four 

months after the inciting event and lasts for several months145. Regrowth routinely 

follows, barring any metabolic or nutritional deficiency.  

In contrast to androgenetic alopecia, hirsutism and hypertrichosis result 

from an extended anagen stage with an abnormal enlargement of hair follicles. 

Small vellus hairs are transformed into large, terminal hairs. Depilatory creams 

and waxes, the usual treatments, alleviate the problem only temporarily, because 

irritation or plucking rapidly induces the anagen stage and hair-follicle growth145. 
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Electrolysis and selective photothermolysis with the use of lasers destroy the hair 

shaft, outer root sheath, bulge, and dermal papilla of the hair follicles145. The ex-

tent of the destruction determines whether the follicle regenerates.  

Some types of inflammatory alopecias (such as those caused by lichen 

planopilaris and discoid lupus erythematosus) are scarring and permanent, 

whereas others (such as alopecia areata) are nonscarring and reversible145. In 

scarring alopecias, the inflammation usually involves the superficial portion of the 

follicle, including the bulge area, suggesting that the stem cells necessary for the 

regeneration of the follicle are irreversibly damaged. In contrast, the acute follicular 

inflammation in alopecia areata attacks the hair bulb in the subcutaneous fat145. 

This inflammation terminates the anagen stage, forcing the follicles into the 

catagen stage. However, because the bulge area is spared, a new hair bulb and 

hair shaft grow at the start of the anagen stage, once the inflammation has sub-

sided or has been blunted with glucocorticoids.  

Antineoplastic drugs disrupt the rapidly proliferating bulb matrix cells. As 

a result, hair production ceases, and the hair shaft becomes narrower, with subse-

quent breakage and loss of the hair. Because the hairs that are lost are those in 

the anagen stage, this phenomenon is called anagen effluvium. The stem cells of 

the hair follicles are spared, presumably because of their slow cycling, and they 

subsequently generate a new hair bulb. Radiation therapy can also result in re-

versible anagen effluvium. However, high doses of radiation (50 to 60 Gy) typically 

cause permanent alopecia, probably because of the destruction of the epithelial 

stem cells or the dermal papilla145.  

Figure 5 illustrates how common hair growth disorders can be managed by 

manipulating the hair cycle at different time points. AGA and telogen effluvium 

could be treated by inhibiting premature catagen transition and/or stimulating the 

telogen/anagen transformation. Catagen induction and arrest of follicles in a pro-

longed telogen stage may be a therapy for hypertrichosis and hirsutism. 

A better understanding of the stem cell rich bulge region and the induction 

of secondary hair germ by DP signals could help narrow the search for tools that 

would limit the hair follicle miniaturization and loss seen in AGA. The discovery of 
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the enigmatic hair cycle clock is still the greatest challenge in hair research, and 

the one most likely to result in satisfactory treatment options in the field of hair 

growth disorders. 

 

 

Figure 5.  Management of hair growth disorders by hair cycle manipulation. 

Common hair growth disorders frequently arise from changes of the hair cycle. They can be managed by ma-

nipulating the length of the different hair cycle stages. Anagen: growth phase with active production of a pig-

mented hair shaft, maximal length and volume of the follicle; catagen: apoptosis-driven phase of hair cycle re-

gression with cessation of hair shaft production and pigmentation and club hair formation; telogen: phase of 

relative quiescence of hair follicle activity, exogen: active shedding of club hair;  +, stimulate;  −, inhibit (modi-

fied after Paus145). 
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5 Study Aims 

“The Development of an Organotypic Folliculoid Assay Systems 
for the Exploration of Epithelial-mesenchymal Interactions in the 
Human Hair Follicle" 
 

 

Worldwide annual investments made by consumers into manipulating their 

hair growth by pharmaceutical agents, cosmetics and/or nutraceuticals represent a 

major incentive for the pharmaceutical industry to develop new, and hopefully 

more effective hair growth-modulatory agents. 

The search for such agents is, however, severely handicapped by the lack 

of satisfactory three-dimensional (3D) in vitro screening systems that sufficiently 

mimic important epithelial-mesenchymal interactions as they occur in human hair 

follicles (HF). 

 

The main aim of this study was therefore to develop an organotypic folliculoid 

(hair follicle-like) assay system (equivalent) that provides well-defined basic pa-

rameters for detailed exploration of epithelial-mesenchymal interactions in the hu-

man hair follicle. Furthermore the assay system should also serve as a screening 

tool for potential hair drugs modulators. 

 

5.1 Criteria for the Development of Folliculoid Equivalent 

 

The complexity of epithelial-mesenchymal interactions that underlie HF 

growth and cycling makes it unlikely that these will ever be fully reproduced in vi-

tro. Therefore, when designing a human folliculoid in vitro system it is important to 

define the criteria that such an organotypic system should meet in order to mimic 

in vivo situation as closely as possible. Our 3D system should fulfill the following 

basic criteria:  
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1. Imitate at least some essential epithelial-mesenchymal interactions charac-

teristic for human HF biology; 

2. Show expected responses to recognized hair growth-modulatory agents; 

and  

3. Provide a reasonable predictive value on how human HF will respond to the 

same test agent in vivo.  

 

The work during this study was divided into 2 major parts including several 

objectives: 

 
Part I:   
To develop an organotypic system, which meets given criteria and provide well-

defined basic parameters for quantitatively assessing the modulatory effects of a 

given test agent. 

 

Part II: 
To optimize existing system into high-throughput screening assay to allow to test 

standard hair growth- modulatory agents and to study in more detail the basic mo-

lecular processes involved in HF growth and development. 

 

 

Objectives: 

• To establish hair follicle cell cultures 

• To design a structure of the folliculoid equivalents 

• To produce well-reproducable hair equivalents with a large number 

of test units 

• To optimize the culture condition of the equivalents 

• To prove the suitability of the systems for investigation of the effects 

of  hair growth-modulatory drugs 

• To prove the suitability of the systems as a discovery tool for the 

identification of the target genes and the global gene expression pro-

file 
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6 Materials and Methods 
 

6.1 Cell isolation and cell culture 
 

ORS keratinocytes were isolated from plucked anagen HF by trypsiniza-

tion106. Primary cultures of ORSK were then cultured on feeder layer of X-ray irra-

diated human dermal fibroblasts (HDF), obtained from human skin from de-

epidermized dermis using enzymatic digestion 102, in defined keratinocyte medium 

(SFM, Invitrogen, Paisley, UK) supplemented with 0.1 nmol L-1 cholera toxin, 5 μg 

mL-1 insulin, 0.4 μg mL-1 hydrocortisone, 2.43 μg mL-1 adenine, 2 nmol L-1 triiod-

thyronine, 10 ng mL-1 epidermal growth factor, 1 mmol L-1 ascorbyl-2-phosphate, 

and antibiotics penicillin G, gentamicin (all reagents purchased from Sigma-

Aldrich, Taufkirchen, Germany). Cells at early passage (2-4) were used. 

 

After microdissection of anagen VI HF from scalp-skin biopsies using a 

method modified according to Philpott 159, isolation of DPC from HF were estab-

lished according to Magerl115 and cultured in Chang medium (Trinova, Santa Ana, 

CA, USA) with 10% fetal bovine serum (FBS, Biochrom KG, Berlin, Germany) 

123,204. The cell passages of 1-2 were used. 

 

6.2 Preparation of human organotypic folliculoid “sandwich” systems  
 

Two different organotypic co-cultures were prepared based on previously 

described 3D systems by Limat104 and Stark193, with the basic modifications indi-

cated in Fig. 6B and C.  

 

In the first system (“layered sandwich”, Fig. 6B), dermal equivalents were 

prepared from collagen type I extracted from rat tail tendons (BD Biosciences, 

Bedford, MA, USA) at a final concentration of 4 mg mL-1. Eight volumes of ice-cold 

collagen solution were mixed with 1 volume of 10x Hank´s buffered saline (Invitro-

gen) followed by neutralization with 1 M NaOH. One volume of FBS was added 

with suspended HDF (passages 2-8) and mixed thoroughly resulting in final con-
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centration of 3.2 mg mL-1 collagen and 2.5 x 105 cells mL-1. Of this mixture, 1.5 mL 

each were poured into a 24-multiwell dish (Corning Costar, Corning, NY, USA) 

and allowed to gel at 37°C. After polymerization, Dulbecco’s modified Eagle’s me-

dium (DMEM, Invitrogen) with 10% FBS was added up to the upper edge of the 

well 52,188. The gels were cultivated under submerged conditions for 5 days, with 

changes of medium every other day. After this period the gels were maximally 

contracted and were used as pseudodermis. The pseudodermis was transferred 

by forceps into tissue culture transwells (pore size 0.4 μm, polycarbonate, Corning 

Costar) and overlaid with 0.1 mL of suspension of DPC in Matrigel™ Basement 

Membrane Matrix (BD Biosciences) at a concentration of 1x106 DPC mL-1. The 

suspension geled within a few minutes at 37 °C, and then Chang medium204 was 

added into the wells and cultured for 24 hours submerged. After this, the medium 

was removed and 1x105 ORSK (passage 2-4) in 0.1 mL of different media (see be-

low) were seeded on top of the gels, 5 samples per each medium were prepared. 

Another 24 hours later, when the ORSK already had formed a sheet and had at-

tached to the top of the pseudodermis with MatrigelTM + DPC layer, more medium 

was added until the entire sandwich system was submerged. Culture was per-

formed for 14 days with medium changes every other day (note that previously 

published systems were cultured at the air-liquid interface101,193  [see Fig. 6A], as 

opposed to the submerged conditions described herein). 

 

The second, newly developed “folliculoid” 3D system (“mixed sandwich”) 

(Fig. 6C) was prepared in an identical manner to the one described above, until 

the contracted pseudodermis had been transferred into tissue culture transwells. 

Then, a mixture of ORSK (1x106 cells  mL-1, passage 2-4), DPC (1x106 cells mL-1, 

passage 1-2) in 1 volume of fetal clone II (FC, Perbio Science, Erembodegem-

Aalst, Belgium), and the Matrigel™ matrix (9 volumes) was prepared and 0.1 mL of 

this suspension was poured on the top of the pseudodermis. The suspension 

geled within a few minutes at 37 °C and the different culture media were added 

into the wells (5 samples per each group) and the culture was submerged as de-

scribed above. The experiments were repeated 3 times. 
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Throughout the experiments, three different culture media were used: 

Culture medium 1. Composed of 3 parts of DMEM, mixed with 1 part of Ham´s 

F12 (Sigma-Aldrich) supplemented with 10% fetal clone (FC), 0.1 nmol L-1 cholera 

toxin, 5μg mL-1 insulin, 0.4 μg mL-1 hydrocortisone, 2.43 μg mL-1 adenine, 2 nmol 

L-1 triiodthyronine, 10 ng mL-1 human recombinant epidermal growth factor, 1 

mmol L-1 ascorbyl-2-phosphate and antibiotics penicillin G, gentamicin. (modified 

from Smola21) The calcium concentration of this medium was 1.9 mmol L-1.  

Culture medium 2. Similar component found in medium 1 but without FC. The 

calcium concentration of this medium was 1.8 mmol L-1. 

Culture medium 3. Defined keratinocyte medium SFM (Invitrogen) supplemented 

with 0.1 nmol L-1 cholera toxin, 5 μg mL-1 insulin, 0.4 μg mL-1 hydrocortisone, 2.43 

μg mL-1 adenine, 2 nmol L-1 triiodthyronine, 10 ng mL-1 epidermal growth factor, 1 

mmol L-1 ascorbyl-2-phosphate, and antibiotics (penicillin G, gentamicin). The me-

dium did not contain FC and the calcium concentration45 was 0.15 mmol L-1. 

 

6.3 Preparation of Human Folliculoid Microspheres (HFM) 
 

The following described method of HFM preparation has been patented un-

der patent EP1231949. A beaker containing two phases of immiscible autoclaved 

liquids [lower phase: 250 ml of perfluorether (Fluorinert™ FC-40, 3M, Germany); 

upper phase: 500 ml of defined triglyceride mixture (Miglyol, Hüls, Germany)] was 

prepared and warmed up to 37 °C with continuous magnetic stirring to prevent 

sedimentation and attachment of prepared HFM (see below). 

 

Then a cell-matrix mixture of HFM was prepared, following the optimized 

protocol for the previously described64 preparation of the “mixed sandwich” 3D 

system. Mixture of collagen I and Matrigel™ Basement Membrane Matrix (ratio 

4:1) was used as a matrix for cells. Ice-cold collagen type I extracted from rat tail 

tendons (BD Biosciences, Bedford, MA, USA) at a final concentration of 4 mg/ml 

was mixed with 10x Hank´s buffered saline (Invitrogen) followed by neutralization 

with 1 M NaOH (Invitrogen), then an appropriate volume of Matrigel™ (BD Biosci-

ences) was added and mixed. One volume of FBS with resuspended cells (ORSK 
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and DPC in the ratio 1:2) was then added to the matrix and mixed thoroughly (the 

cell density of ORSK was 1 x 106 cells mL-1 and of DPC was 2 x 106 cells mL-1). A 

1 ml syringe was filled with the above cell-matrix suspension and, by gently press-

ing the syringe, small droplets were placed into the Miglyol-FC-40 mixture and 

formed HFM by way of a gelling process at 37 °C 8. The HFM were left in this liq-

uid for 5 min (with continuous stirring), then removed with a net, washed immedi-

ately in the culture medium and then placed in culture Petri dishes. The HFM were 

cultivated submerged in the aforementioned (see cell isolation and cell culture) 

supplemented low-calcium (0.15 mM) SFM for 10 days (Fig. 13A). Under these 

conditions, the average size of the HFM was 1.73 ± 0.33 mm on day 0 and 1.03 ± 

0.20 on day 7. In order to determine the effects of high calcium content in growth 

media, a medium with a calcium concentration of 1.8 mM was used in some ex-

periments. This (also serum-free) solution was composed of three parts of Dul-

becco’s Modified Eagle’s Medium (DMEM), one part of Ham´s F 12 (both from 

Sigma), and the above additives. 

 

The agents investigated were resuspended in the appropriate vehicle and 

were added to the medium on day 0. The medium was changed on days 3 and 7, 

and collected for LDH analysis (see cytotoxicity assay). HFM (20-30 per group) 

were cultured submerged in culture medium, and one third of the samples were 

collected on days 3, 7 and 10. 

 

6.4 Histology and quantitative histomorphometry 
 

For morphological analysis of folliculoid “sandwich” systems, the specimens 

were fixed in 4% formaldehyde (in phosphate-buffered saline, PBS, pH 7.4) for 24 

hours. After dehydration, samples were embedded in paraffin and 5 µm sections 

were stained with hematoxylin-eosin (HE). On these sections, the quantitative 

evaluation of the spheroid diameter was also performed. Using a calibrated ocular 

eye-piece of a light-microscope (Olympus Optical Co., Japan), the largest diame-

ter of the spheroids was measured in 3-5 samples per group (at least 75 spheroids 
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from 3-5 different folliculoid systems were measured per group). The statistical 

analysis was performed as described in section 6.9. 

For morphological analysis of the HFM, samples were embedded into 

Thermo Shandon Cryochrome solution (Thermo Shandon Inc., Pittsburgh, PA, 

USA) and frozen in liquid nitrogen vapor. 8 μm thick sections were then cut, and, 

after fixation in ice-cold acetone, the samples were stained with hematoxylin-eosin 

(Sigma). 
 

6.5 Immunofluorescence 
 

Samples were embedded in Thermo Shandon Cryochrome solution 

(Thermo Shandon Inc., Pittsburgh, PA, USA) and frozen in liquid nitrogen vapor. 

Cryosections, made at 8µm settings, were mounted on silane coated slides, and 

air dried. Sections were then fixed for 10 minutes in acetone at –20 °C, rehydrated 

in phosphate-buffered saline (PBS), and then were pre-incubated with 10% serum 

species of the secondary antibody for 20 minutes. For immunofluorescence label-

ing, the following primary antibodies were used: mouse anti-cytokeratin 6 (CK6, 

clone KA12, 1:10, Progen, Heidelberg, Germany) to identify ORSK; mouse anti-

large proteoglycan versican (Versican, 1:500, Seikagaku Corporation, Tokyo, Ja-

pan) to identify DPC; mouse anti-fibronectin (1:10, Acris, Hiddenhausen, Ger-

many); mouse anti-c-kit/scattered factor (SCF, 1:100, Santa Cruz Biotech, Santa 

Cruz, CA, USA); rabbit anti-transformig growth factor-β2 (TGFβ2, 1:50, Santa Cruz 

Biotech). Sections were then labeled with appropriate fluorescein isothiocyanate- 

(FITC) or rhodamine-conjugated goat anti-mouse or anti-rabbit secondary antibod-

ies (Jackson ImmunoResearch, West Grove, PA, USA). For positive controls for 

both CK6 and versican, cryosections of human HF11,92,93 were used and stained 

similarly as described above. 

 

To assess proliferation of different cell types in organotypic co-cultures, double 

immunolabeling was performed. For detection of proliferation in the ORSK and 

DPC, sections were incubated overnight with the first primary antibody against the 

recognized proliferation marker Ki67 (1:10 of rabbit anti-human Ki67, Zymed, San 
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Francisco, CA, USA) at 4 °C, then with the first secondary antibody (goat anti-

rabbit, FITC-conjugated) for 45 minutes at room temperature. The samples were 

then incubated with either an antibody against CK6, which is not expressed by 

normal epidermal keratinocytes, yet characteristic for normal ORSK (1:10 of 

mouse anti-human CK6, Progen) 93,94 or with an antibody against the DPC-specific 

extracellular matrix antigen, Large proteoglycan Versican (Seikagaku Corporation, 

Tokyo, Japan) 84,85,191 for 1 h at 37 °C. Finally, the second secondary antibody 

(goat anti-mouse, rhodamine-conjugated) was applied for 45 minutes at room 

temperature. Sections were then washed in PBS, counterstained with DAPI (4′,6-

Diamidin-2-phenylindol fluorescent stain) (Sigma) and mounted with Fluoromount 

G (Southern Biotechnology Associates, Birmingham, AL, USA). 

 

For measurement of apoptosis in the ORSK and DPC, a similar double 

staining protocol was used. In this case, however, instead of Ki67 labeling, com-

ponents of an ApopTag TUNEL (terminal dUTP nick-end labeling) Apoptosis As-

say Kit (Intergen, Purchase, NY, USA) were used following the instructions sug-

gested by the manufacturer. 

 

6.6 Cytotoxicity assay 
 

To assess the presence of necrotic cells within the HFM, a Lactate-

Dehydrogenase (LDH)-based Cytotoxicity Assay was applied (Bio Vision, Moun-

tain View, California,USA). Briefly, the culture media of the HFM of all treated 

groups were collected on days 3, 7 and 10 and the amount of LDH, as a marker of 

necrotic cell death, was colorimetrically determined according to the protocol sug-

gested by the manufacturer. 
 
 
 

6.7 Semi-quantitative RT-PCR technique 
 

The expression of mRNA for TGFβ2 and SCF in HFM (and in microdis-

sected human scalp hair follicles, used as positive controls) was determined by 
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semi-quantitive RT-PCR. The total RNA was extracted using the RNA easy kit 

(Qiagen, Hilden, Germany) and then was reverse transcribed with random primers 

and reverse transcriptase provided in 1st Strand cDNA Synthesis Kit for RT-PCR 

(Boehringer Mannheim, Mannheim, Germany). Subsequent PCR amplification (94 

°C for 5 min; 30 cycles of 94 °C for 30s, 57 °C for 60s, 72 °C for 60s; 72 °C for 10 

min) was performed on the UNO-Thermoblock (Biometra, Göttingen, Germany) 

with the following primers (all from Sigma): TGFβ2, 5'-ATC CCG CCC ACT TTC 

TAC AGA C-3' and 5'-CAT CCA AAG CAC GCT TCT TCC-3' (GenBank accession 

number: Y00083); SCF, 5’-ATT CAA GAG CCC AGA ACC CA and CTG TTA ACC 

AGC CAA TGT ACG (GenBank accession number: M59964); β-actin, 5'-CGA CAA 

CGG CTC CGG CAT GTG C-3' and 5'-CGT CAC CGG AGT CCA TCA CGA TGC-

3' (GenBank accession number: NM001101). The PCR products were visualized 

on a 2 % agarose gel with ethidium bromide, and the photographed bands were 

quantified by Image Pro Plus 4.5.0 software (Media Cybernetics, Silver Springs, 

MD, USA). 

 

6.8 Microarray gene expression analysis 
 

The microarray experiment was based on two-color ratio hybridization and 

a Low RNA Input Fluorescent Linear Amplification kit (Agilent Technologies, 

Böblingen, Germany) for RNA labeling. In short, 500 ng of total RNA (isolated from 

control and treated HFM as described above) was reverse transcribed with an 

oligo(dT)-T7 promoter primer and Moloney murine leukemia virus-reverse tran-

scriptase (MMLVRT, Applera, Darmstadt, Germany) in order to synthesize first 

and second-strand of cDNA. Fluorescent antisense cRNA was synthesized with 

T7 RNA polymerase, which simultaneously incorporated either cyanine 3-cytidine 

5'-triphosphate (3-CTP) or cyanine 5-CTP (both from Cy Scribe, Amersham, 

Freiburg, Germany). The purified products were quantified by absorbance at A552 

nm for cyanine 3-CTP and A650 nm for cyanine 5-CTP, and labeling efficiency 

was verified with a Nanodrop photometer (Kisker, Steinfurt, Germany). Before hy-

bridization, 2 μg of each labeled cRNA product was fragmented and mixed with 

control targets and hybridization buffer according to the supplier’s protocol (Agilent 
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Technologies). Hybridization was done overnight for 19 hours at 60°C. The slides 

were then washed according to the manufacturer’s manual, and the scanning of 

microarrays was performed with 5-μm resolution using a DNA microarray laser 

scanner (Agilent Technologies). Features were extracted with an image analysis 

tool version A 6.1.1 (Agilent Technologies) using default settings. Data analysis 

was conducted on the Rosetta Inpharmatics Platform Resolver Built 4.0. Expres-

sion patterns were identified by stringent data analysis using a 2-fold expression 

cut-off and exclusion of data points with a low p value (p < 0.01). By using this 

strategy, data selection was independent of error models implemented in the 

Rosetta Resolver system. 

 

6.9 Statistical analysis 
 

In order to compare the proliferation and apoptosis of cells in the organo-

typic co-cultures, the percentage of Ki67-positive (proliferating) or TUNEL-positive 

(apoptotic) cells was determined (both in ORSK and in DPC) in at least 5 samples 

per group for each experiment. From TUNEL staining the apoptotic cells were dis-

tinguished from necrotic cells according to the morphological criteria and only 

apoptotic cells were assessed. The values were then averaged and were ex-

pressed as mean ± SD. Statistical analysis was performed using Mann-Whitney 

nonparametric test. Two types of statistical comparison were carried out for sand-

wich system. First, to reveal the differences between the different media within the 

given co-culture, the values obtained in the 3 different media were compared to 

one another either in the “layered” or in the “mixed” cultures. Then, to assess dif-

ferences between the two co-cultures, values obtained in the given culturing me-

dium in the “layered” sandwich were compared to those of the “mixed” one cul-

tured in the same medium. P values < 0.05 were regarded as significant. A similar 

comparison was performed during the determination of the averaged cluster size 

and the average number of CK6+ ORSK and Versican+ DPC. 
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7 Experimental work 

7.1  Experimental Part I - “Sandwich” system 
 
Development of a Basic Organotypic Assay System that Imitates Human Hair 
Follicle-like Epithellial-Mesenchymal Interactions. 
 

7.1.1 Introduction 
 

The cyclic growth and regression activity of the HF is the result of bi-

directional epithelial-mesenchymal interactions27,82,120,122,139,145,176,195. Even though 

the complexity of these interactions makes it unlikely that they can be fully repro-

duced in vitro, simplified in vitro-assay systems are required that attempt to imitate 

at least some key aspects of these interactions in a three-dimensional (3D) or-

ganotypic context52,101,102. Such assay systems hopefully will not only offer (ur-

gently needed) hair research alternatives to the use of intact, organ-cultured hu-

man scalp HF 159, whose supply is very limited, but should also facilitate dissection 

of the as yet obscure molecular signaling principles that govern epithelial-

mesenchymal interaction in the human HF (as opposed to the murine system, 

where due to the availability of numerous instructive mouse mutants with defined 

hair growth abnormalities27,131 the molecular basis of epithelial-mesenchymal in-

teractions in the HF during morphogenesis and cycling is already much better un-

derstood 27,145,195).  
 

Many different 3D organotypic assay systems on the basis of human skin 

cell populations have been developed for investigative dermatol-

ogy5,101,104,116,193,211. These allow to study, for example, the role of diffusible factors 

affecting epithelial-mesenchymal interactions, the dynamics of basement mem-

brane formation and to test the effects of various modulators, growth hormones, 

nutrients, etc.19,112,113,188-190. These human skin equivalents have become an indis-

pensable alternative to animal models in pharmacological and toxicological in vitro 

testing53,167. As long as human HF epithelial stem cells and human hair matrix 

keratinocytes cannot be easily dissected, cultured and propagated in vitro without 
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loosing their in vivo-characteristics95, it would be naive to expect that human HF-

like structure can be reconstructed in vitro with such relative ease as is now the 

case for human epidermis and dermis. However, the characteristic mesenchymal 

component of the human HF, the highly specialized, inductive dermal papilla fibro-

blasts (DPC), can readily be dissected, cultured and propagated115,123 as is the 

case for human outer root sheath keratinocytes (ORSK) 101,102,104,106. Therefore, 

these cell populations offer themselves to be employed as the basis for any hu-

man folliculoid in vitro system. 

 

When designing a human folliculoid in vitro system it is important to define 

the criteria that such an organotypic assay should meet in order to support the 

claim that it imitates the in vivo situation as closely, yet also as pragmatically and 

economically, as possible. Based on our current limited knowledge of human HF 

biology 80,122,139,145, we propose that the following minimal criteria should be met: 

 

1. Given that direct interactions of the HF epithelium and the HF mes-

enchyme via native extracellular matrix are crucial for normal HF 

functions104,109 , ORSK and DPC should be physically interacting un-

der 3D conditions. 

2. The extracellular matrix through which these interactions are occur-

ring should also contain basement membrane components, since HF 

epithelium and mesenchyme are interacting via a basement mem-

brane-like extracellular matrix 29,30,121,205. 

3.  Morphologically, the 3D system should allow the epithelial HF cells 

to form - ideally concentric - cell aggregates in order to mimic com-

pact, functionally linked epithelial tissue compartments as they occur 

in the outer and inner root sheaths or the hair matrix of the HF in 

vivo. 

4. While the epithelial HF cells should show substantial proliferation, 

HF-type keratinization (e.g. cytokeratin-6 [CK6] expression92,93) and a 

low level of apoptosis, the HF mesenchymal cells used in such a 3D 

system should show minimal proliferation and minimal apoptosis (as 
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is characteristic for the follicular dermal papilla in vivo 27,107,199 and 

should display secretory activities that distinguish HF fibroblasts from 

interfollicular dermal fibroblasts such as strong expression of versi-

can. This proteoglycan, the expression of which correlates well with 

the hair inductive ability of DPC, was shown to act as a specific 

marker of matrix changes in the unique papilla extracellular matrix to 

promote HF development and cycling36,86.  

5. As in vivo, the interaction of HF epithelium and mesenchyme should 

be supported by a fibroblast-contracted collagen type I gel that re-

sembles the interfollicular dermis. 

6. Finally, in contrast to skin equivalents, “folliculoid” 3D systems should 

not be cultured at the air-liquid interface, but should be kept under 

continuously submerged culture conditions, since almost the entire 

HF epithelium lives under fully “submerged” conditions in vivo. 

 
Historically, normal human epidermal keratinocytes (NHEK) were first used 

in organotypic 3D systems112,189,190,193 and later ORSK were also em-

ployed101,102,104. In these systems were cells layered above collagen I  or collagen I 

mixed with human dermal fibroblasts (HDF) forming pseudodermis15,193. Later, 

these collagen I gels or a pseudodermis were covered with various cell and matrix 

mixtures, which contained basement membrane and extracellular matrix compo-

nents (Matrigel™), NHEK or ORSK, plus mesenchymal cells (HDF or DPC) in a 

number of different designs (see Fig. 6A) 101,193. Ultimately, all these previously 

reported 3D systems with HF cell populations were cultured at the air-liquid inter-

face. The comprehensive data on the ratio of proliferation/apoptosis of ORSK and 

DPC in these systems, and on HF-like differentiation markers (e.g. CK6 for ORSK, 

versican for DPC 36,86 ) were not assessed in the classical studies that have pio-

neered the field 101,104,113,189,190,193 . 

 

The aim of the present study, therefore, was to develop the first organotypic 

“folliculoid” 3D system that meets all of the above six criteria (as pragmatically and 
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economically as possible), and provides well-defined basic parameters for quanti-

tatively assessing the modulatory effects of a given test agent.  

 

In order to achieve this, we developed two continuously submerged 3D sys-

tems, whose basic design principle is outlined in Fig. 6B and C: In the “layered 

sandwich” (Fig.6B), the pseudodermis (collagen I mixed with HDF) was first lay-

ered by Matrigel™ mixed with DPC; over this, an ORSK cell suspension was lay-

ered 24 hours later. In the “mixed sandwich” (Fig. 6C) a mixture of Matrigel™, 

DPC, and ORSK was placed on top of a pseudodermis. Since proliferation and dif-

ferentiation of most skin cells, especially of NHEK, are strongly affected by the 

presence of serum components and the calcium concentration in the culture me-

dium6,11,19,51,137,180,188,189,193, we investigated the effects of serum withdrawal and of 

switching from a high to a low calcium concentration in the culture media on the 

characteristics of both systems. Both systems were then compared by histology, 

quantitative histomorphometry and/or immunohistology with respect to overall 

morphology, arrangement and number of epithelial cell clusters, ORSK and DPC 

proliferation or apoptosis, CK6 or Versican expression. 
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Figure 6. Schematic drawing of previously described organotypic co-cultures and the newly devel-
oped systems. 
Normal human epidermal keratinocytes (NHEK) were used in previous organotypic 3D systems layered above 

collagen I mixed with human dermal fibroblasts (HDF). Also only collagen I gels or collagen I mixed with HDF 

or dermal papilla fibroblasts (DPC) were used and covered with various cell and matrix mixtures. MatrigelTM 

mixed with NHEK or outer root sheath keratinocytes (ORSK), and MatrigelTM mixed with epithelial and mesen-

chymal cell populations NHEK and HDF or ORSK and DPC was used  (panel A) 101,193. All these 3D systems 

were cultured at the air-liquid interface. Our new “layered sandwich” was prepared from collagen I mixed with 

HDF (pseudodermis) and layered firstly with MatrigelTM with DPC above and after with ORSK on the top 
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(panel B). In the “mixed sandwich”, we used pseudodermis (collagen I with HDF) layered above with the mix-

ture of DPC and ORSK in MatrigelTM matrix (panel C). 

7.1.2 Results 
 

The „mixed” and the „layered” 3D systems meet all basic criteria for „follicu-

loid” organotypic systems that imitate human hair follicle epithelial-

mesenchymal interactions. 

 

Both the „mixed” and the „layered” folliculoid 3D systems are the first or-

ganotypic assays that meet all six minimal criteria proposed above that any in vitro 

organotypic assay system should fulfill, which aims at imitating basic principles of 

epithelial-mesenchymal interactions in the human HF: 

 

1. ORSK and DPC are in physical contact under 3D conditions (see Fig. 7B) . 

2. The use of Matrigel™, which contains laminin, collagen IV, heparan sulfate pro-

teoglycans, entactin, nidogen (BD Bioscience product specification sheet), en-

sures that the extracellular matrix, through which ORSK-DPC interactions oc-

curr, also contains basement membrane components. 

3. Both 3D systems allow the epithelial HF cells (here: ORSK) to form spheroid 

cell aggregates, thus at least vaguely mimicking the compact epithelial tissue 

compartments as they occur in the outer and inner root sheaths or the hair ma-

trix of the HF in vivo (Fig. 7A, B). 

4. The epithelial HF cells (ORSK) show substantial proliferation (Fig. 8A), HF-

type keratinization (i.e. CK6 expression; Fig. 9) and a low level of apoptosis 

(Fig. 8C). Instead, as required, the HF mesenchymal cells (DPC) show minimal 

proliferation (Fig. 8B) and minimal apoptosis (Fig. 8D), thus approximating the 

characteristically minimal basal rate of proliferation of the follicular dermal pa-

pilla and the virtual absence of fibroblast apoptosis, in vivo. In addition, the 

DPC maintain in both sandwich systems their characteristic secretory activities 

that distinguish HF fibroblasts from interfollicular dermal fibroblasts (i.e. they 

display strong expression of the large proteoglycan, versican [Fig. 10A]). 
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5. As in vivo, the interaction of ORSK and DPC is supported by a fibroblast-

contracted collagen type I gel that resembles the interfollicular dermis         

(Fig. 7A). 

6. The “folliculoid” 3D systems can be successfully cultured under continuously 

submerged culture conditions. 

 
In both the “layered” and “mixed” folliculoid systems, the ORSK formed 

spheroid epithelial cell aggregates which retained their characteristic keratin 

expression pattern (Fig. 9A), while the DPC were cumulated in clusters and 

remained versican+ (Fig. 10A). In the following, differences between the two dif-

ferent “folliculoid” systems and between the use of three different media (high/low 

calcium, presence/absence of serum) are delineated. 
 

 

The “mixed” sandwich model generates outer root sheath keratinocytes ag-

gregates with a smaller diameter, while the outer root sheat keratinocytes 

and dermal papilla cell numbers are higher than in the “layered” sandwich 

model.  

 

 As revealed by HE staining of the histological sections of the 3D systems, 

significant differences among the morphological characteristics of the two cultures 

were found (Fig. 7A,B). Although, in both systems, the ORS cells formed multicel-

lular spheroid clusters (similarly to those described by Limat 101), the spheroids in 

the “layered” sandwich entered much less to the Matrigel™, whereas the ORS 

clusters were well distributed in the Matrigel™ matrix of the “mixed” sandwich.  

 

 In addition, the “layered” system, in media 1 (high Ca with FC) and 2 (high 

Ca without FC),  showed much larger spheroids than in medium 3 (low Ca without 

FC) (Fig.11): the mean diameter of the multicellular aggregations was 0.522 ± 

0.12 mm in medium 1; 0.44 ± 0.21 mm in medium 2; and 0.183 ± 0.08 mm in me-

dium 3 (all expressed as mean ± SD). In the “mixed” sandwich, however, when 

compared to results with the “layered” sandwich (Fig.11), much smaller clusters 
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were formed in media 1 (0.313 ± 0.13 mm, mean ± SD) and 2 (0.239 ± 0.078 mm, 

mean ± SD) but not in medium 3 (0.206 ± 0.041 mm, mean ± SD), indicating that 

modifications of the culture media affected the morphological characteristics of the 

“layered” system much stronger than that of the “mixed” sandwich. Although this 

was not evaluated quantitatively, high calcium conditions appeared to favor corni-

fication in the ORSK aggregates in the “layered” sandwich assay (see Fig. 9A, left 

panel) 

 
As microscopic comparison of immunofluorescent pictures of different 

sandwiches revealed no noticeable differences among various culture media, the 

number of CK6 and Versican positive cells were measured in the multicellular 

clusters. As seen in Fig. 12A, the number of (CK6+) ORSK in media 2 and 3 was 

much greater in the “mixed” sandwich than in the “layered” one. Furthermore, in 

the “layered” co-culture, but not in the “mixed” one, the withdrawal of serum and/or 

the decrease in calcium content of the culture media remarkably suppressed the 

number of cells. In addition, the number of (versican+) DPC was also much 

greater in the „mixed” sandwich in all three media applied (Fig. 12B). However, we 

found significantly suppressed DPC numbers in medium 3 in both sandwiches. 

 
 

Outer root sheat keratinocytes proliferate better in the „mixed” than in the 

„layered” sandwich system, regardless of the calcium or serum content of 

the media, whereas the proliferation and apoptosis of dermal papilla cells, in 

both sandwich systems, strongly depends on the amount of serum and cal-

cium in culture media. 
 

The proliferation and apoptotic properties of ORSK and DPC (Fig. 8) after 

14 days in the culture were compared. In medium 1 (high- calcium medium, pres-

ence of FC), the growth properties of ORSK were significantly greater in the 

„mixed” sandwich compared to the “layered” one, as revealed by immunohisto-

chemical detection of the proliferation marker Ki67 and by determining the per-

centage of Ki67 and CK6 positive cells (Fig. 8A). In contrast, such differences 
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were not observed in the case of DPC; namely, in medium 1, the percentage of 

Ki67 and versican positive cells were very similar both in the „layered” and in the 

„mixed” systems (Fig. 8B). 

 

In medium 2 ( high-calcium medium without FC), the expression of Ki67 in 

CK6 positive cells behaved very similarly to that seen in sandwiches cultured in 

medium 1 (Fig. 8A). Cellular proliferation of ORSK in the „mixed” sandwich signifi-

cantly increased when compared to the „layered” one. However, although some 

non-significant tendencies for higher proliferation in serum-free medium could be 

observed, we found no marked differences among data obtained in the two media 

in either sandwich. 

 

In contrast, the Ki67 expression in DPC was remarkably affected by the se-

rum content of the medium (Fig. 8B). In both sandwiches, the withdrawal of serum 

significantly reduced the percentage of Ki67 in Versican positive cells suggesting 

that the presence of serum is a growth-promoting factor for the proliferation of 

DPC. Furthermore, we observed a significantly decreased Ki67 expression in DPC 

(cultured in medium 2) in the „mixed” sandwich compared to the „layered” one. 

 
The behavior of cells in the sandwiches in low calcium concentration and 

serum-free medium (medium 3) were also examined. Essentially, very similar find-

ings were observed for both the ORSK and DPC with those in the experiments 

performed in medium 2 (Fig. 8A and B). Namely, cellular proliferation of ORSK in 

the „mixed” sandwich significantly increased compared to that seen in the „lay-

ered” system. Moreover, no major differences were found among the effects of dif-

ferent media in either sandwich. In addition, similarly to that seen in medium 2, 

significantly less Ki67 expression in versican+ DPC was identified in the low cal-

cium medium 3 in both sandwiches than found in medium 1. 

 

Interestingly, the proliferation of ORSK was not affected by the serum or 

calcium content of the media in both systems, similarly to findings observed with 
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organotypic co-cultures with NHEK193. However, it is important to note that ORSK 

proliferated better in the „mixed” sandwich than in the „layered” cultures (Fig. 8A). 

 

 Apoptosis of DPC is highest in the presence of serum and/or under high 

calcium conditions, while the apoptosis of both ORSK and DPC is lowest in the 

“mixed” sandwich model cultured in serum-free, low calcium medium  

 
The percentage of TUNEL positive cells in ORSK growing in the „layered” 

3D system was almost identical in the three different solutions (Fig. 8C). Similarly 

to these data, no differences among the apoptosis of ORSK growing in the „mixed” 

sandwich in the high calcium concentration media (medium 1 and 2) were ob-

served. However, in contrast to the above data, ORS cells of the „mixed” sandwich 

showed an extremely suppressed apoptosis in the low calcium serum-free medium 

3 (Fig. 8C). 

 

In the „layered” sandwich, the percentage of TUNEL positive DPC cells in 

the different media changed very similarly to that found with the expression of the 

proliferation marker (seen in Fig. 8B). Namely, the highest level of apoptosis was 

observed in medium 1 (high calcium, presence of serum), whereas the decrease 

of calcium concentration in medium 3 significantly (and the withdrawal of serum 

markedly yet not significantly) suppressed the number of TUNEL positive cells 

(Fig. 8D). In the „mixed” sandwich, the highest level of DPC apoptosis was also 

observed in medium 1, which, similarly to that seen in the „layered” system, 

slightly decreased by the removal of serum in medium 2, which however was re-

markably suppressed when calcium was decreased in medium 3. 
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Figure 7.  Histology (hematoxylin-eosin stain) of spheroid structures in the “layered” and “mixed” sys-
tems cultured in various media. 

Panel A. Different 3D co-cultured “layered” and “mixed” systems were established and cultured submerged in 

medium 1 (high Ca concentration, with Fetal Clone, + FC), in medium 2 (high Ca concentration, without Fetal 

Clone, - FC), or in medium 3 (low Ca concentration, without Fetal Clone, - FC). Panel B. Outer root sheath 

keratinocytes (O) and dermal papilla fibroblasts (D) are in physical contact under 3D conditions. Original mag-

nification, 100x for panel A, 200x for panel B. 
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Figure 8.  Quantitative analysis of proliferation and apoptosis of ORSK and DPC in the two systems 
cultured in various media for 14 days. 

Series of double immunolabeling was performed to define the number of Ki67 positive (proliferating, panel A 

and B) and TUNEL positive (apoptotic, panel C and D) cells in cytokeratin-6 (CK6) expressing outer root 

sheath keratinoctyes (ORSK, panel A and C) or versican expressing dermal papilla fibroblasts (DPC, panel B 

and D) cells, as described in „Materials and Methods“ section. The numbers of double positive cells 

(Ki67+/CK6+, TUNEL+/CK6+, Ki67+/versican+, TUNEL+/versican+) in each group were determined, and ex-

pressed as a percentage of total number of cells expressing the respective marker for ORSK (CK6+) or for 

DPC (versican+). All data are shown as mean ± SD. Asterisks mark significant (p < 0.05) differences. 
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Figure 9.  Immunohistochemical identification of CK6 expression in the two systems cultured in vari-
ous media. 

Cryosections of 3D co-cultures (panel A) and human hair follicle, which served as a positive control (panel B), 

were air dried, fixed in acetone, and then probed with a mouse anti-human cytokeratin-6 (CK6) to identify 

outer root sheath keratinocytes. Immunofluorescent labeling was employed using a FITC-conjugated secon-

dary antibody (green fluorescence) whereas cell nuclei were labeled using DAPI (blue fluorescence). Original 

magnification, 250x for panel A, 100x for panel B. All figures are representatives of at least three determina-

tions with similar results. 
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Figure 10.  Immunohistochemical identification of versican expression in the two systems cultured in 
various media. 
Cryosections of 3D co-cultures (panel A) and human hair follicle, which served as a positive control (panel B), 

were air dried, fixed in acetone, and then probed with a mouse anti-human versican to identify dermal papilla 

fibroblasts. Immunofluorescent labeling was employed using a rhodamine-conjugated secondary antibody (red 

fluorescence) whereas cell nuclei were labeled using DAPI (blue fluorescence). Original magnification, 250x 

for panel A, 100x for panel B. All figures are representatives of at least three determinations with similar re-

sults. 
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Figure 11. Quantitative analysis of the averaged diameter of multicellular spheroid clusters in the two 
systems cultured in various media. 

On the HE stained histological sections, using a calibrated ocular eye-piece of a light-microscope, the largest 

diameter of the spheroids was measured on at least 75 clusters per group. The values were then averaged 

and were expressed as mean ± SD. Statistical analysis was performed using Mann-Whitney non-parametric 

test. Two types of statistical comparison were carried out. First, to reveal the differences between the different 

media within the given co-culture, the values obtained in the 3 different media were compared to one another 

either in the “layered” or in the “mixed” cultures. Then, to assess differences between the two co-cultures, val-

ues obtained in the given culturing medium in the “layered” sandwich were compared to those of the “mixed” 

one cultured in the same medium. Asterisks mark significant (p < 0.05) differences. 
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Figure 12.  Quantitative analysis of the number of CK6 or versican positive cells of multicellular sphe-
roid clusters in the two systems cultured in various media. 

The number of cytokeratin-6 (CK6) (panel A) or versican (panel B) positive cells in clusters was determined by 

visual counting of cells on immunolabeled sections of 3D systems. Values were then averaged and shown as 

mean ± SD. Asterisks mark significant (p < 0.05) differences. 
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7.1.3 Discussion 
 

The aim of the present study was to develop the first “folliculoid” 3D system 

that meets - as pragmatically and as economically as possible - six defined mini-

mal criteria of a useful human “folliculoid” organotypic assay for studying and dis-

secting epithelial-mesenchymal interactions that approximate those occurring in a 

human HF. As shown in Figs. 7-12, both the “mixed” and the “layered” sandwich 

systems meet this criteria. In this respect the “mixed” system (= pseudodermis 

plus one layer of  mixture of ORSK and DPC in MatrigelTM), cultured under low 

calcium and serum-free conditions, was identified as optimal.  

 

Simultaneously, the investigation was carried out in order to establish well-

defined basic parameters for a qualitative and quantitative assessment of the 

modulatory effects of a given test agent. By assessing the effect of different media 

with high/low calcium conditions and/or absence/presence of serum on these pa-

rameters (number and diameter of ORSK aggregates, Ki67+ , TUNEL+, CK6+, 

Versican+ cells), it was shown that both “folliculoid” sandwich systems can serve 

as robust screening systems. These assays now can be applied to the testing of 

standard hair growth-modulatory agents in the human system (e.g. cyclosporin A, 

HGF, minoxidil, IGF-1, steroid hormones 122,145) in order to explore whether recog-

nized hair growth stimulators really upregulate e.g. ORSK proliferation and/or DPC 

secretion of hair follicle morphogens in the sandwich assays reported.  

 

In both sandwich systems (“mixed”, “layered”), the ORSK appeared to be-

have essentially “in vivo-like” since they formed CK6+ spheroids or cells aggre-

gates (ORSK) (Fig. 7). However, epidermal-like stratification was not seen in the 

organotypic co-cultures of ORSK, in contrast to what Limat et al. had described in 

his co-culture systems at the air-liquid interface 100,104 (Fig. 6A). This difference 

can be interpreted as a reflection of the – more in vivo-like - continuous sub-

merged culture conditions used in this study. It has also been shown that ORSK 

form epidermis-like stratified epithelia, when layered to matrices without 

DPC100,104. The “layered” 3D system investigated herein showed that the presence 
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of an intermediary layer of MatrigelTM-embedded DPC induced the overlying 

ORSK to aggregate in clusters, rather than into an epidermis-like structure (Fig. 
7A left side).This confirms the dominant role of DPC in driving cultured human 

ORSK towards a more hair follicle-like differentiation pathway. 

 

It has been documented extensively that the serum and/or calcium content 

of the culture medium exerts profound influences on the morphological and func-

tional characteristics of NHEK-based organotypic co-cultures 
6,11,19,51,137,180,188,189,193. This study however provides the first systematic compari-

son of various media with differences in calcium concentration and/or serum con-

tent on basic test parameters in human “folliculoid” organotypic cultures. This 

comparison suggests that the “mixed” system (= pseudodermis plus one layer of 

mixture of ORSK and DPC co-cultured in MatrigelTM), comes closest to meeting 

the defined criteria, if the “folliculoids” are cultured under low calcium- and serum-

free conditions. As one would demand of an optimal in vitro-system that imitates 

human HF epithelial-mesenchymal interactions as closely as can reasonably be 

expected in vitro, DPC show only negligible apoptosis and minimal proliferation 

under these conditions, while the ORSK proliferate at comparatively very high lev-

els, while displaying minimal apoptosis (Fig. 8).  

 

This defined optimal growth conditions for a human “folliculoid” 3D system 

should greatly facilitate further optimization efforts towards the development of 

continuously improved organotypic systems that mimic the in vivo situation in the 

human HF. 
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7.2  Experimental Part II - Microsphere system 
 

Development of a Novel Human Folliculoid Microsphere Assay as Screening 
and Discovery Tool for Basic and Applied Hair Research. 

 

7.2.1 Introduction 
 

Previously, we have defined basic criteria that all hair biology-related or-

ganotypic systems should meet in order to support the claim that they mimic the in 

vivo situation as closely as possible64. Briefly, these criteria are:  

 

1. Outer root sheath keratinocytes (ORSK) and follicular dermal papilla fibro-

blasts (DPC) should be physically interacting. 

2.  The extracellular matrix through which this occurs should also contain 

basement membrane components. 

3. The epithelial HF cells should form cell aggregates. 

4. Epithelial HF cells should show substantial proliferation as well as HF-type 

keratinization and a low level of apoptosis; mesenchymal cells should show 

minimal proliferation and minimal apoptosis and should display specialized, 

HF-type secretory activities,  

5. and these organotypic systems should be cultured under continuously 

submerged culture conditions in well defined media (i.e. under serum-free 

conditions and with a defined concentration of calcium ions). 

 

Using these criteria, two novel folliculoid organotypic systems64 “layered 

sandwich” and “mixed sandwich” have been developed. Comparison of these sys-

tems suggest that the “mixed sandwich” system cultivated under continuously 

submerged condition in serum-free, low calcium medium meets all basic criteria 

and offers several advantages over previously available assays64,101,104. 
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However, so far these assays are still very laborious and time-consuming, 

and only a very limited number of such ”sandwiches” can be generated at any 

time, thus hampering the usefulness of this system as a higher-throughput screen-

ing tool. Therefore, the goal of this study was to develop a novel, more easy-to-

handle in vitro-assay which also: 

 

1. requires lower cell numbers (especially of DPC) per test unit; 

2. is easier and faster to prepare than previously published 3D folliculoid sys-

tems; 

3. is well-reproducible with a large number of test units; 

4. is less expensive; 

5. responds to recognized hair growth-modulatory drugs in a manner that best 

approximates the clinical response to these agents; and 

6. functions as a discovery tool for identifying new target genes and/or their 

protein products for candidate hair growth-modulatory agents. 

 

This study describes a novel and pragmatic human folliculoid microsphere 

(HFM) assay that meets all the basic and modified prerequisites for in vitro higher-

throughput screening systems for pre-clinical candidate hair drug screening. 
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7.2.2 Results 
 
Characteristics of interacting human HF-derived epithelial and mesenchymal 

cells in the HFM. 

 

First the characteristics of cells within the HFM system were investigated. 

We found that ORSK and DPC, forming spheroid cell aggregates, were in close 

physical contact in the HFM (Fig. 13B-C) and that the employed extracellular ma-

trix indeed contained basement membrane components such as fibronectin (Fig. 
13D-E). In addition, epithelial ORSK showed HF-type keratinization (i.e. CK6 ex-

pression; Fig. 13G-H, K, L), substantial proliferation (i.e. Ki67 expression in the 

CK6 positive cells, Fig. 13K and 14A), and a low level of apoptosis (number of 

TUNEL positive ORSK, Fig. 13L and 14C). Instead, the HF mesenchymal DPC 

exhibited minimal proliferation and apoptosis (Fig. 13M and N, Fig. 14B and D) 

but maintained their characteristic, specific secretory activity, i.e., they displayed 

strong expression of the large proteoglycan versican191 (Fig. 13 I-J, M, N). 

 

In most of experiments, in accordance with the findings in the previously 

developed “sandwich” 3D systems 64, serum-free culturing media that contained 

low concentrations of calcium (0.15 mM) was used. However, the biological fea-

tures of the cells in the HFM cultured in high calcium solutions were also deter-

mined. During the 10 day culture period no difference in proliferation and apop-

tosis of ORSK in the two different media was found (Fig. 14A and C). In contrast, 

both the proliferation and the apoptosis of DPC significantly increased in high-Ca 

medium compared to low-Ca solution (Fig. 14B and D). 

 

Furthermore, the processes of possible necrosis were also investigated by 

measuring the LDH release during the 10 day culture period in low-Ca media. The 

maximum amount of LDH (20 U/L) was seen on day 3 when the system was (most 

probably) still under the “stress” caused by the preparation of the HFM. On days 7 

and 10, the LDH levels returned to normal, which suggests a full recovery of the 

cells in the HFM (Fig. 14E). 
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It was therefore concluded, that the HFM meet all the basic criteria of an 

organotypic folliculoid system and that they can be successfully cultivated under 

continuously submerged culture conditions (most efficiently in low-Ca media) re-

maining vital for at least 10 days. 

 

Hair folliculoid HFM show several advantages over folliculoid “sandwich” 

systems. 

 

Comparison of the current data with those obtained by previous “sandwich” 

systems also revealed that the preparation of micropheres: 

 

1. requires lower number, yet higher density of cells (especially DPC) per test 

unit. Although the density of ORSK was essentially the same (1 x 106 cells 

mL-1) both in the “sandwich” and HFM systems, double DPC density (2 x 

106 cells mL-1) in the HFM was achieved. In addition, the remarkably higher 

number of test units that can be obtained using 1 ml of cell suspension in 

the HFM system (i.e. 30-50 HFM compared to the 10 “sandwiches”) also 

suggests that the same amount of test units can be prepared using much 

fewer cells; 

2. is easier and faster. The average time to prepare the HFM was only a few 

hours compared to the approximately 5 day-long preparation time at best 

needed for any of the two “sandwich” systems presented before64  

3. is easily repeatable with higher number of test units, which allows a higher 

degree of standardization and greatly facilitates automation. In addition, the 

HFM system allows for the preparation of test units with variable sizes, de-

pending on specific experimental needs; and  

4. due to the dramatic decrease in culture time and consumables, is less ex-

pensive. 
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Negative regulators of HF growth differentially inhibit proliferation and in-

duce apoptosis in cells growing in the HFM. 

 

In the next phase of these experiments, the novel HFM system was as-

sessed in terms of whether is also suitable to analyze the actions of recognized 

hair growth-modulatory drugs (the effects of all agents examined are summarized 

in Table 1 and 2). At first the effects of the potent HF growth inhibitory agents 

were investigated, i.e. 10-6M tretinoin 50, 25 ng/ml transforming growth factor-β2 

(TGFβ2) 69,192, and 10-7 M corticotropin-releasing hormone (CRH) 78,187 (Table 1). 

As expected, all agents significantly decreased the number of Ki67 positive (hence 

proliferating) cells in the CK6 positive ORSK (Fig. 15A, 16A, Table 1A). In addi-

tion, tretinoin (Fig. 15C) and TGFβ2 (Fig. 16C), but not CRH (Table 1B), in-

creased the number of TUNEL positive ORSK, suggesting stimulation of apop-

tosis. Furthermore, TGFβ2 (Fig. 16B) suppressed the number of Ki67 positive 

DPC, whereas the other two agents did not affect the proliferation of these cells 

(Fig. 15B and Table 1A). Finally, tretinoin (Fig. 15D) and TGFβ2 (Fig. 16D) 

stimulated apoptosis in DPC as well, while CRH, similar to its lack of action as 

seen on ORSK, did not affect the process (Table 1B). 
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Table 1. The effect of hair growth inhibitors on proliferation (a) and apoptosis (b) of ORSK and DPC in 
the HFM 

 

 
(a)  Effects of hair growth inhibitors on proliferation 
 

  
 

Ki67-positive cells in ORS  
(% of control)  

 
Ki67-positive cells in DPC  

(% of control)  

Days of     
culture  Day 7  Day 10  Day 7  Day 10  

Tretinoin 40.9 23 ↓**  34.4 26 ↓** 100.5 23 98.2 27 

TGF 2  48.4 19 ↓* 37.7 23 ↓** 22.7 14 ↓**   26.4 27 ↓**   

CRH 61.3 19 ↓* 62.8 15 ↓* 92.6 37 93.1 38 

          
 
(b)  Effects of hair growth inhibitors on apoptosis  
 

  
 

TUNEL-positive cells in ORS    
(% of control)  

 
TUNEL-positive cells in DPC    

(% of control)  

Tretinoin 176.2 22 ↑*  195.8 24 ↑*   105.6 29 226.8 37   ↑** 
TGF 2  185.4 24 ↑*   245.5 23 ↑**  188.1 27 ↑**   225.23 36 ↑** 
CRH 115.8 23           91.6 32 96.9 29 91.4 36 

     
 
CRH, corticotropin-releasing hormone; TGF 2, transforming growth factor- 2. 

 

Series of double immunolabeling was performed to define the number of Ki67-positive (proliferating, a) and 

TUNEL-positive (apoptotic, b) cells in CK6 expressing outer root sheath keratinocytes (ORSK) or versican 

expressing dermal papilla fibroblasts (DPC). The numbers of double positive cells (Ki67+/CK6+, 

TUNEL+/CK6+, Ki67+/versican+, TUNEL+/versican+) in each group were determined, and expressed as 

mean SD values as a percentage of the control (non-treated) samples regarded as 100%. All data are shown 

as mean value SD. Asterisks mark significant (* p<0.05; ** p<0.01; ↑ increase; ↓decrease) differences. 
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Table 2. The effect of hair growth stimulators on proliferation (a) and apoptosis (b) of ORSK and DPC 
in the HFM 

 
(a)  Effects of hair growth stimulators on proliferation  
 

  
 

Ki67-positive cells in ORS  
(% of control)  

 
Ki67-positive cells in DPC 

(% of control)  

Days of      
culture  Day 7  Day 10  Day 7  Day 10  

IGF-I 192.8 37 ↑*  215.5 28 ↑**  266.9 38 ↑**   360.6 42 ↑**   
Calcitriol 193.7 26 ↑** 198.1 30 ↑**  220.9 21 ↑**   117.5 27 

CsA, low Ca 170.8 26 ↑*  195.4 29 ↑**  212.8 21 ↑**   252.9 32 ↑**   
CsA, high Ca 124.7 38 116.3 21 115.6 19 123.8 29 

HGF, low Ca 197.5 33 ↑*  169.5 28 ↑*  106.7 34 176.3 30 ↑*  

HGF, high Ca 167.1 19 ↑*  196.9 21 ↑**  116.8 22 94.1 26 

 
(b)  Effects of hair growth stimulators on apoptosis  
 

  
 

TUNEL-positive cells in ORS 
(% of control)  

 
TUNEL-positive cells in DPC 

(% of control)  

IGF-I 87.3 30 129.2 55 97.6 31 94.6 27 

Calcitriol 127.5 39 112.7 23 121.5 27 125.9 28 

CsA, low Ca 117.9 27 123.9 33 93.5 20 114.9 28 

CsA, high Ca 116.01 31 215.7 37 ↑*  119.39 64 118.42 62 

HGF, low Ca 86.8 31 92.3 22 111.2 26 84.7 29 

HGF, high Ca 90.9 19 90.4 18 91.8 24 93.3 16 
  
CsA, cyclosporin A; HGF, hepatocyte growth factor; IGF-1, insulin-like growth factor 1. 

 

Series of double immunolabeling was performed to define the number of Ki67-positive (proliferating, a) and 

TUNEL-positive (apoptotic, b) cells in CK6 expressing outer root sheath keratinocytes (ORSK) or versican 

expressing dermal papilla fibroblasts (DPC). The numbers of double positive cells (Ki67+/CK6+, 

TUNEL+/CK6+, Ki67+/versican+, TUNEL+/versican+) in each group were determined, and expressed as 

mean value SD values as a percentage of the control (non-treated) samples regarded as 100%. All data are 

shown as mean value SD. Asterisks mark significant (* p<0.05; ** p<0.01; ↑ increase; ↓decrease) differences. 
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Positive regulators of HF growth stimulate proliferation of ORSK and DPC in 

the HFM without affecting apoptosis. 

 

The effect of recognized HF growth-promoting agents was investigated 

next, i.e. insulin-like growth factor-I (IGF-I) 160, 1α,25 dihydroxyvitamin D3 

(1,25(OH)2D3, calcitriol) 63,183,202, cyclosporin A (CsA) 91, and hepatocyte growth 

factor (HGF)83 (Table 2). Applications of 100 ng/ml of IGF-I, 10-8 M calcitriol, 10 

ng/ml CsA, and 10 ng/ml HGF resulted in very similar modifications in the func-

tions of the cells in the microspheres (Table 2). Namely, all agents increased pro-

liferation (elevated the number of Ki67 positive cells) both in the ORSK (Fig. 17A 
and C, Fig. 18A and C) and DPC (Fig. 17B and D, Fig. 18B and D) populations 

without exerting any measurable effect on apoptosis of these cells (Table 2B). 

 

The effects of CsA and HGF are modified by the alteration in the calcium 

concentration of the culture media. 

 

The above data, as mentioned before, was obtained in experiments where 

low-Ca media was used to culture the HFM. Previous studies, however, suggest 

that the effects of CsA 197 and HGF 181 on proliferation of keratinocytes are 

strongly affected by the calcium content within the culture media. Therefore, these 

molecules were also tested on HFM cultured under high-Ca conditions. In marked 

contrast to data obtained in the low-calcium medium, 10 ng/ml CsA in high-calcium 

solution did not significantly stimulate the proliferation of ORSK and DPC (Table 
2A) but, intriguingly, induced apoptosis in the ORSK (Table 2B). The effects of 

HGF (10 ng/ml) to stimulate proliferation of ORSK (Table 2A) and not to modify 

apoptosis of ORSK and DPC (Table 2B) were essentially the same in the two me-

dia. However, contrary to the low-Ca data, HGF was unable to promote prolifera-

tion of DPC in HFM cultured in high-Ca solution (Table 2A). These findings unam-

biguously argue for the careful selection of which calcium concentration to use for 

the culture media. 
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The HFM are suitable for the investigation of protein and gene expression of 

cytokines and growth factors involved in HF biology. 

 

The question whether the HFM system can operate as a discovery tool for 

identifying new target genes (and their protein products) for candidate hair growth 

modulatory agents was investigated as well. Therefore the expression of such bio-

logical markers (on protein and mRNA level) in the HFM, which were previously 

described as important regulators in HF biology in vivo were measured. Using im-

munofluorescence, the expression of TGFβ2 (negative regulator of hair growth) 

and stem cell factor (SCF, hair growth stimulator 195,153) in the cells of the micro-

spheres could clearly be shown (Fig. 19A-D). In addition, employing RT-PCR on 

RNA isolated from the HFM, we could also detect the mRNA transcript of these 

molecules (Fig. 19E-F). 

 

Positive and negative regulators of hair growth may not only directly affect 

the biological processes of the cells of the HF but, very often, significantly modify 

the complex cytokine/growth factor network of the mini-organ. Investigation, using 

RT-PCR, was used in order to highlight the effects of some of those hair growth-

modulatory agents on the expression of endogenous TGFβ2 and SCF which, 

when applied “exogenously”, significantly affected proliferation and apoptosis of 

cells in the HFM (see above). 

 

As shown in Fig. 19G, 25 ng/ml “exogenous” growth inhibitor TGFβ2 (Fig. 
16 and Table 1) remarkably up-regulated the gene expression of “endogenous” 

TGFβ2 but did not affect the expression of SCF. Partly similar to these findings, 

10-6M tretinoin (another negative regulator, Fig. 15 and Table 1) also significantly 

increased the level of TGFβ2 mRNA transcripts; however, in contrast to the effect 

of “exogenous” TGFβ2, it also significantly decreased the expression of the 

growth-promoter SCF. Moreover, it was shown that the CsA (a positive regulator 

of HF growth, Fig. 18A and B), significantly suppressed the expression of the 

growth-inhibitory TGFβ2 without affecting the level of SCF. 
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The HFM are also suitable for the investigation of global gene expression 

profiles. 

 

Finally, the novel model system was further analyzed in order to see 

whether it could determine changes of global gene expression profiles upon ex-

perimental manipulations. Therefore, in a pilot study, HFM were treated with cer-

tain hair growth stimulatory agents (such as HGF, calcitriol, IGF-I, and 17β Estra-

diol)24,133,162,198 for 7 days, then a Micro-Array analysis that represented the whole 

human genome (Agilent®, 44K, G4112A) was performed to follow gene expres-

sion alterations. As seen in Table 3 (showing changes of only selected genes), 

treatment of the HFM with recognized growth stimulators induced remarkable 

changes in the expressions of certain genes with potential roles in regulation of HF 

growth, development, and cycling. Hence, although these preliminary findings re-

main to be repeated and confirmed by quantitative “real-time” PCR, our data (in 

accordance with the above findings, see Fig. 19) further indicate that the novel 

HFM system was indeed a suitable model for studying HF biology since, similarly 

to those seen in the HF, agents affecting proliferation and apoptosis of cells in the 

HFM may also significantly alter the global gene (and protein) expression profile of 

e.g. molecules of cytokine and growth factor signaling. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
   Hair Equivalents

 

 Page 71 of 107 
 

Table 3.  Alterations in the expression of selected genes expressed in HFM after 7 days of incubation 
with various recognized hair growth stimulators (HGF, calcitriol, IGF-I, 17-ß estradiol).  
 

The genes shown have been selected on the basis of established biological functions, relevant expression 

levels or relatedness to factors known in hair follicle biology.  

 
HGF (10 ng/ml) 

 
Gene Expression 

change 
(fold) 

Recognized function 
in HF biology 

Comments Selected 
references

Ephrin-A5 
(NM_001962) 

↑, 6.5 Ephrin A3 gene was 
down-regulated in 
androgenic alopecia. In 
addition, ephrin A3 
raised the proliferation 
rate of the outer root 
sheath keratinocytes 
(ORSK) and induced 
gene expression in 
acidic hair keratin 3-II 
suggesting that ephrin 
A3 functions as hair 
growth promoting factor 
in the hair cycle. 

No information on 
Ephrin-A5 in skin 
available. 
 

126  

Insulin-like 
growth factor-II 
mRNA-binding 
protein-1 
(AK022617) 

↑, 3.5 Not known.  
However, IGF is a 
potent hair growth 
stimulator. 

Implicated in mRNA 
localization, turnover, 
and translational 
control. Stimulates 
cell proliferation. In 
deficient mice, sig-
nificant retardation of 
growth is observed. 

62,99  

Lysyl oxidase 
(NM_002317) 

↑, 3.1 Progressive hair loss in 
rough coat (rc) mice 
which show reduced ly-
syl oxidase-like protein. 

Extracellular matrix 
regulator. 

65  

Retinol binding 
protein-4 
(NM_006744) 
 

↑, 2.5 Stimulation of RA recep-
tors inhibits hair growth. 

Potential hair growth 
inhibitor. 

50  

Sex hormone-
binding  globulin 
(SHBG) 
(NM_001040) 
 

↑, 2.2 Decreased protein lev-
els in patients with  
isolated hirsutism. 

Limits the levels of 
circulating free sex 
hormones (especially 
androgens). 

200  

Ectodysplasin A 
(NM_001399) 
 

↑, 2.2 Critical for normal HF 
development. 

 184,185  

Angiopoietin-2 
(NM_001040) 

↑, 2.1 Modulation of perifollicu-
lar vasculation (hair 
cycle-dependent vascu-
lar remodeling). 

 147  
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Calcitriol (10-8 M) 
 

Gene Expression 
change 
(fold) 

Recognized function in 
HF biology 

Comments Selected 
references

Delta- and 
Notch-like      
Epidermal 
Growth Factor-
related receptor 
(NM_139072) 

↑, 4,9 The Notch pathway (and 
its receptor, Delta-1) is a 
central regulator of hair 
follicle growth and       
development and inter-
cellular communication 
mechanisms. 

 168  

Interleukin 1    
receptor, type II 
(NM_004633) 
 

↑, 2.9 Unknown. Antagonizes           
interleukin 1 activity. 

71  

Insulin-like 
growth factor 
binding protein-3
(S56205) 
 

↑, 2.1 Regulates activity of IGF, 
a potent hair-growth 
stimulator. 

Potential hair growth 
inhibitor. 

68  

Transforming 
growth factor β1 
(NM_000660) 
 

↑, 2.1 Potent hair growth        
inhibitor. 

 69,192  
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IGF-I (100 gn/ml) 
 

Gene Expression 
change 
(fold) 

Recognized function in 
HF biology 

Comments Selected 
references

Growth hormone 
2 
(NM_173841) 

↑, 4.5 Unknown. In peripheral tissues, 
activates the hair 
growth promoting   
insulin-like growth 
factor-I signaling. 

161  

Interleukin 1    
receptor           
antagonist  
(NM_173841) 
 

↑, 4.2 Hair growth promoter by 
inhibition of IL-1. 

 162,163  

Frizzled      
homologue 5 
(NM_003468) 
 

↑, 4.0 The Frizzled gene family 
plays a key role in hair 
follicle development. 

 172  

WNT-6 
(NM_006522) 

↑, 3.1 WNT-receptors are     
important for hair           
development. 

 127,185  

Vascular endo-
thelial growth 
factor 
(AK098750) 
 
 

↑, 3.1 Key promoter of anagen-
associated angiogene-
sis. 

 209  

Keratin 5b 
(NM_173352) 
 

↑, 2.9 Proliferation-associated 
keratin. 

 93,94  
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17β Estradiol (10-6 M) 
 

Gene, 
(Accession num-
ber) 

Expression 
change 
(fold) 

Recognized function 
in HF biology 

Comments Selected 
references

Ephrin-A5 
(NM_001962) 

↑, 6.3 Ephrin A3 gene was 
down-regulated in an-
drogenic alopecia. In 
addition, ephrin A3 
raised the proliferation 
rate of ORSK and        
induced gene expres-
sion in acidic hair keratin 
3-II suggesting that eph-
rin A3 functions as hair 
growth promoting factor 
in the hair cycle. 

No information on 
Ephrin-A5 in skin 
available. 
 

126  

Insulin-like 
growth factor-II 
mRNA-binding 
protein-1 
(AK022617) 

↑, 5.5 Not known. However, 
IGF is a potent hair 
growth stimulator. 

Implicated in mRNA 
localization, turnover, 
and translational 
control. Stimulates 
cell proliferation. In 
deficient mice, sig-
nificant retardation of 
growth is observed. 

62,99  

Alkaline        
phosphatase 
(NM_001631) 

↑, 4.3 Expressed in DP, activ-
ity linked to normal hair 
matrix – papilla            
interaction. 
 

Marker of inductive 
potential of DPCs. 

59  
 

Protein kinase 
Cβ1 
(AJ002788) 

↑, 3.6 PKCβ pseudosubstrate 
(as well as the general 
PKC inhibitor 
GF109203X) was shown 
to reduce skin and hair 
pigmentation; hence, it 
is a potential hair growth 
stimulator. 

PKCβ, overex-
pressed in HaCaT 
cells, stimulates pro-
liferation/tumor 
growth, suppresses 
differentiation and 
apoptosis. 

141,142  

Retinol binding 
protein-4 
(NM_006744) 
 

↑, 3.2 Stimulation of RA recep-
tors inhibits hair growth. 

Potential hair growth 
inhibitor. 

50  

Ectodysplasin A 
(NM_001399) 

↑, 2.8 Critical for normal HF 
development. 

 185,186  

Insulin-like 
growth factor 
binding protein 
(NM_004970) 

↑, 2.5 Regulates activity of 
IGF, a potent hair-
growth stimulator. 

Potential hair growth 
inhibitor.  

68  

Sex hormone-
binding globulin 
(NM_001040) 

↑, 2.3 Decreased protein     
levels in patients with  
isolated hirsutism. 

Limits the levels of 
circulating free sex 
hormones (especially 
androgens). 

200  

Glial cell-derived 
neurotrophic fac-
tor 
(NM_000514) 

↑, 2.2 Catagen inhibitor.  16  
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Figure 13. Microscopic photography and histology of the microspheres and the expression of certain 
markers in cells and matrix of the HFM 
 
A) Photomicrographs of HFM in culture at day 10. B-C) Histology of HFM structure (hematoxylin-eosin stain-

ing). ORSK, outer root sheath keratinocytes, DPC, dermal papilla cells. Note the physical contact of ORKS 

and DPC in the HFM. D-E) Expression of fibronectin (as revealed by fluorescein isothiocyanate, FITC, immu-

nostaining, green fluorescence) in the HFM (D) and in microdissected HF used as a positive control (E). F) 
Negative control, the primary antibody was omitted. G-H) Expression of the ORSK marker CK6 (as revealed 

by rhodamine immunostaining, red fluorescence) in the HFM (G) and in microdissected HF (H). I-J) Expres-

sion of the large proteoglycan versican (DPC marker) (as revealed by rhodamine immunostaining, red fluores-

cence) in the HFM (I) and in microdissected HF (L). K-L) Double immunolabeling of the ORSK marker CK6 

(as revealed by rhodamine immunostaining, red fluorescence) with the proliferation marker Ki67 (K) or with 

apoptosis marker TUNEL (L) (in both cases, FITC immunostaining, green fluorescence). M-N) Double immu-

nolabeling of the DPC marker versican (as revealed by rhodamine immunostaining, red fluorescence) with 

proliferation marker Ki67 (M) or with the apoptosis marker TUNEL (N) (in both cases, FITC immunostaining, 

green fluorescence). Original magnification, 40x for A; 100x for B, D-F, H, J; 250x for C, G, I, K-N. For D-N, 

nuclei were counterstained with DAPI (blue fluorescence). 
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Figure 14. Quantitative analysis of proliferation and apoptosis of ORSK and DPC in the HFM cultured 
in various media for 10 days 
 
Series of double immunolabeling was performed to define the number of Ki67 positive (proliferating, A and B) 

and TUNEL positive (apoptotic, C and D) cells in CK6 expressing outer root sheath keratinocytes (ORSK, A 
and C) or versican expressing dermal papilla fibroblasts (DPC, B and D), as described in „Materials and 

Methods“ section. The numbers of double positive cells (Ki67+/CK6+, TUNEL+/CK6+, Ki67+/versican+, 

TUNEL+/versican+) in each group were determined, and expressed as a percentage of total number of cells 

expressing the respective marker for ORSK (CK6+) or for DPC (versican+). All data are shown as mean ± SD. 

Asterisks mark significant (*, p < 0.05) differences. E) Determination of level of the released lactate dehydro-

genase (LDH) during culturing. All data are shown as mean value ± SD. 
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Figure 15. Effects of tretinoin on proliferation and apoptosis of ORSK and DPC in the HFM 
 

HFM were treated with vehicle (Control) or with 10-6 M tretinoin for up to 10 days, then a series of double im-

munolabeling was performed in order to define the number of Ki67 positive (proliferating, A and B) and 

TUNEL positive (apoptotic, C and D) cells in CK6 expressing outer root sheath keratinocytes (ORSK, A and 
C) or versican expressing dermal papilla fibroblasts (DPC, B and D). The numbers of double positive cells 

(Ki67+/CK6+, TUNEL+/CK6+, Ki67+/versican+, TUNEL+/versican+) in each group were determined, and ex-

pressed as a percentage of total number of cells expressing the respective marker for ORSK (CK6+) or for 

DPC (versican+). All data are shown as mean value ± SD. Asterisks mark significant (*p < 0.05; **p < 0.01) 

differences. 
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Figure 16. Effects of TGFβ2 on proliferation and apoptosis of ORSK and DPC in the HFM 
 
HFM were treated with vehicle (Control) or with 25 ng/ml TGFβ2 for up to 10 days, then a series of double 

immunolabeling was performed in order to define the number of Ki67 positive (proliferating, A and B) and 

TUNEL positive (apoptotic, C and D) cells in CK6 expressing outer root sheath keratinocytes (ORSK, A and 
C) or versican expressing dermal papilla fibroblasts (DPC, B and D). The numbers of double positive cells 

(Ki67+/CK6+, TUNEL+/CK6+, Ki67+/versican+, TUNEL+/versican+) in each group were determined, and ex-

pressed as a percentage of total number of cells expressing the respective marker for ORSK (CK6+) or for 

DPC (versican+). All data are shown as mean value ± SD. Asterisks mark significant (*p < 0.05; **p < 0.01) 

differences. 
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Figure 17. Effects of IGF-I and calcitriol on proliferation of ORSK and DPC in the HFM 
 
HFM were treated with vehicle (Control), with 100 ng/ml of IGF-I (A and B), or with 10-8 M calcitriol (C and D) 

for up to 10 days, then a series of double immunolabeling was performed to define the number of Ki67 positive 

(proliferating) cells in CK6 expressing outer root sheath keratinocytes (ORSK, A and C) or versican express-

ing dermal papilla fibroblasts (DPC, B and D). The numbers of double positive cells (Ki67+/CK6+, 

Ki67+/versican+) in each group were determined, and expressed as a percentage of total number of cells ex-

pressing the respective marker for ORSK (CK6+) or for DPC (versican+). All data are shown as mean value ± 

SD. Asterisks mark significant (*p < 0.05; **p < 0.01) differences. 
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Figure 18. Effects of Cyclosporin A and HGF on proliferation of ORSK and DPC in the HFM 
 
HFM were treated with vehicle (Control), with 10 ng/ml Cyclosporin A (A and B), or with 10 ng/ml HGF (C and 
D) for up to 10 days, then a series of double immunolabeling was performed to define the number of Ki67 

positive (proliferating) cells in CK6+ expressing outer root sheath keratinocytes (ORSK, A and C) or versican 

expressing dermal papilla fibroblasts (DPC, B and D). The numbers of double positive cells (Ki67+/CK6+, 

Ki67+/versican+) in each group were determined, and expressed as a percentage of total number of cells ex-

pressing the respective marker for ORSK (CK6+) or for DPC (versican+). All data are shown as mean value ± 

SD. Asterisks mark significant (*p < 0.05; **p < 0.01) differences. 

 



 
 
   Hair Equivalents

 

 Page 83 of 107 
 

 
 
 
 
 
 
 
 
 
 



 
 
   Hair Equivalents

 

 Page 84 of 107 
 

Figure 19. Expression of TGFβ2 and SCF in the HFM, RT-PCR analysis of SCF and TGFβ2 
 
A-B) Expression of TGFβ2 (as revealed by rhodamine immunostaining, red fluorescence) in the HFM (A) and 

in microdissected HF used as a positive control (B). C-D) Expression of SCF (as revealed by FITC immu-

nostaining, green fluorescence) in the HFM (C) and in microdissected HF (D). Original magnification, 100x for 

A, B, D; 250x for C. Nuclei were counterstained by DAPI (blue fluorescence). E-F) Reverse transcriptase PCR 

analysis of SCF (E) and TGFβ2 (F) (and β-actin, used as an internal control) mRNA expression in the HFM 

and in microdissected HF (used as positive controls). Lanes, 1 and 4, HF (positive control);2 and 5, reaction 

without template (negative control); 3 and 6, HFM. G) HFM were treated with 25 ng/ml TGFβ2, 10-6 M treti-

noin or 10 ng/ml Cyclosporin A (CsA) for 7 days and the expressions of TGFβ2- and SCF-specific mRNA were 

determined by RT-PCR. The amount of mRNA transcripts was then quantified by densitometry and the values 

obtained for TGFβ2 and SCF were normalized on the base of those for β-actin. Data of the treated groups, ob-

tained in 3 independent experiments, are expressed as mean ± SD values as a percentage of the matched 

control samples regarded as 100 % (line). Asterisks mark significant (*p < 0.05; **p < 0.01) differences.  
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7.2.3 Discussion 
 

Studies of the epithelial-mesenchymal interactions in the HF have been lim-

ited due to a lack of suitable in vitro screening systems that sufficiently mimic con-

ditions as they occur in human HF. So far, there are no available systems, which 

allow a higher-throughput screening of candidate hair drugs than can be obtained 

by using histoculture techniques or by the classical organ-culture of microdis-

sected, amputated human scalp HF in the anagen VI phase of the hair cycle 115,159. 

Even if this method, which is still the gold standard for in vitro analyses of human 

hair growth, is complemented by the addition of read-out parameters beyond hair 

shaft elongation 50,152,192, the very limited number of human HF available severely 

restricts the number of agents that can be screened. Also, while our understanding 

of epithelial-mesenchymal interactions in murine HF has recently progressed sub-

stantially173, our understanding of these interactions in human HF is still very rudi-

mentary. 

 

Some HF-like in vitro models derived from human follicular cells have been 

described 64,89,101,104,193. However, so far none of them are easily prepared in large 

amounts to allow high-throughput screening and to properly investigate epithelial-

mesenchymal interactions. The aim of this study was, therefore, to develop a 3D in 

vitro system that allows a more detailed examination of the basic molecular proc-

esses involved in HF growth and development with a robust reproducibility.  

 

In this study, a novel and very pragmatic organotypic assay, which imitates 

human HF-like epithelial-mesenchymal interactions and is prepared with compara-

tive ease has been described. Studying the expression of a number of different 

markers (e.g., proliferation, apoptosis, CK6 and versican expression),  it was 

shown that, under culture conditions with a serum-free, low-Ca medium, these 

HFM retain several essential characteristic for human scalp HF. 

 

The novel technique of the microsphere preparation using a gelling process 

of the matrix and cell mixture sustains high cell viability. The inclusion of Matrigel 
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(containing laminin and collagen IV) imitates the matrix environment of the follicu-

lar dermal papilla, namely that it more closely resembles that of basement mem-

branes, rather than of interfollicular dermis and enables to very closely mimic an 

extracellular matrix of the hair follicle mesenchyme. The low number of TUNEL 

positive cells in later phases of the culture with normalized LDH level suggests the 

optimal nutrient supply to the HFM also when the cell number has increased. Cul-

turing for more than 10 days is feasible when the number of cells, volume of ex-

tracellular matrix, and size of the HFM is increased during the preparation process. 

The system is highly reproducible, as thousands of microspheres were generated 

in past 10 experiments. 

 

The technique of the HFM preparation also allows easy cell migration within 

the microsphere compared to other spheroid systems. Nevertheless, although a 

mixture of isolated ORS and DPC with HF inductive potential175 was used in our 

experiments and the cell migration and matrix reorganization within the micro-

sphere was indeed observed, the formation of HF unit did not occur. This suggests 

that the interaction and signaling of the follicular cells with surrounding dermal    

micro-environment are crucial for morphogenesis and development of the HF. 

However, the main aim of this study was to develop a simplified hair follicle-like 3D 

in vitro system rather then to induce terminal HF formation. 

 

All hair growth-modulatory agents investigated altered apoptosis, prolifera-

tion, protein and gene expression in different cell populations within the HFM sys-

tem in a manner that suggests that HFM allow the standardized pre-clinical as-

sessment of test agents on relevant human hair growth markers under substan-

tially simplified in vitro conditions that approximate the in vivo situation. It was fur-

ther shown using a DNA microarray that HFM also offers a useful discovery tool 

for the identification of novel target genes for candidate hair drugs. Evidently, the 

HFM method still has limitations, especially in the rapid analysis of various read-

out parameters. These shortcomings will hopefully be overcome in the near future 

with the “automation” of the evaluation process by employing e.g. staining “robots”, 

automated image analyzer software packages, and high-content screening de-
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vices. Nevertheless, the novel assay system described is currently the only one 

that can claim to come at least close to overcoming the formidable remaining 

methodological challenges that have to be met before automation. 

 

In HFM, we were also able to identify several other markers important for 

the HF development and differentiation (e.g. CK14, β-catenin, IGF-I, IGF-I recep-

tor, alkaline phosphatase, data not shown). Due to the fact that there is no exclu-

sively ORS-specific marker available93,94, the use of CK6 immunostaining as a "HF 

type-keratinization marker for ORS" is a reasonable approach, even though it must 

be kept in mind that CK6 is also expressed by activated (e.g. wounded, inflamed 

or UV-irradiated) interfollicular epidermal keratinocytes and in the companion layer 

of HF94. The latter is unproblematic, since CK6 immunoreactivity originating from a 

companion layer-type epithelium within the microspheres would still reflect and 

confirm a HF-type keratinization pattern (the companion layer only exists within the 

HF epithelium). In addition, during our ORS isolation method and culture, no epi-

dermal components were present, and pure ORS keratinocyte cultures were gen-

erated (as confirmed by negative IRS markers). 

 

In conclusion, the presented data suggest that HFM represent a valuable 

system to study epithelial-mesenchymal interactions and their changes in re-

sponse to treatment with various candidate hair-drugs. HFM, therefore, do not only 

offer a novel and pragmatic basic screening tool, but also an instructive new ex-

perimental system for basic and applied pre-clinical hair research in the human 

system. 
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8 Conclusions from the study 
 
 

• Three new organotypic folliculoid systems (“layered sandwich”, “mixed 

sandwich”, microsphere system) for the exploration of molecular processes 

involved in HF growth were developed. 

 

• All newly developed systems meet all basic criteria for „folliculoid” organo-

typic systems that imitate human hair follicle epithelial-mesenchymal inter-

actions. 

 

• Outer root sheat keratinocytes proliferate in all systems, regardless of the 

calcium or serum content of the media, whereas the proliferation and apop-

tosis of dermal papilla cells, in all systems, strongly depends on the amount 

of serum and calcium in culture media. 

 

• The human folliculoid microsphere system (HFM), selected as the best op-

timized system, proved to be highly reproducible organotypic assay, which 

under culture conditions with a serum-free, low-Ca medium, retains several 

essential characteristic for human scalp HF. 

 

• HFM allow the standardized pre-clinical assessment of test agents on rele-

vant human hair growth markers under substantially simplified in vitro con-

ditions that approximate the in vivo situation. 

 

• HFM also offers a useful discovery tool for the identification of novel target 

genes for candidate hair drugs. 

 

• The HFM therefore offer a novel and pragmatic screening tool and an in-

structive new experimental system for basic and applied pre-clinical hair re-

search in the human system. 
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9 Summary   
 

The search for more effective drugs for the management of common hair 

growth disorders remains a top priority, both for clinical dermatology and the in-

dustry. Human hair growth can currently be studied in vitro by the use of organ-

cultured scalp hair follicles. However, simplified organotypic systems are needed 

for dissecting the underlying epithelial-mesenchymal interactions and as screening 

tools for candidate hair growth-modulatory agents. 

In this study, three novel organotypic human folliculoid assays for basic and 

applied hair research were developed. Two organotypic “sandwich” systems con-

sist of a pseudodermis (collagen I mixed with and contracted by human interfollicu-

lar dermal fibroblasts) on which one of two upper layers is placed: either a mixture 

of Matrigel™ and follicular dermal papilla fibroblasts (DPC), with outer root sheath 

keratinocytes (ORSK) layered on the top (“layered sandwich” system), or a mixture 

of Matrigel™, DPC and ORSK (“mixed sandwich” system). Third, the patented 

new technique generating human folliculoid microspheres (HFM), consisting of 

human DPC and ORSK within an extracellular matrix was established.  

Studying a number of different markers (e.g. proliferation, apoptosis, cy-

tokeratin-6, versican), it was shown that these folliculoid systems, cultured under 

well-defined conditions retain several essential epithelial-mesenchymal interac-

tions characteristic for human scalp hair follicle. Selected, recognized hair growth-

modulatory agents modulate these parameters in a manner that suggests that all 

developed organotypic systems allow the standardized pre-clinical assessment of 

test agents on relevant human hair growth markers under substantially simplified 

in vitro conditions that approximate the in vivo situation. Furthermore, by using 

immunohistochemistry, RT-PCR, and DNA microarray techniques it was shown 

that the folliculoid systems also offer a useful discovery tool for the identification of 

novel target genes and their products for candidate hair drugs. 

 Organotypic folliculoid systems thus represent an instructive new experi-

mental and screening tool for basic and applied hair research in the human sys-

tem. 
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A fully functional model of hair reconstitution remains elusive because of the 

complexity of cellular organization and the number of molecular interactions 

that must be approximated. In this issue, Havlickova et al. (2009) report a 

significant contribution to hair engineering with their human folliculoid 

microsphere assay. 
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