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Abstract

In this thesis, we focus on thorough yield curve modelling. We build on ex-

tended classical Nelson-Siegel model, which we further develop to accommodate

unobserved regional common factors and principal components. We centre our

discussion on central European currencies’ yield curves: CZK, HUF, PLN and

SKK.

We propose two novel models to capture regional dynamics; one based

purely on state space formulation and the other relying also on principal com-

ponents of the regional yield curves. Moreover, we supplement the models with

two application examples in risk management and structural break detection.

The main contribution of this thesis is a creation of a complete framework

that enables us to analyse yield curves, to design risk scenarios and to detect

structural breaks of various types.
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Abstrakt

Tato diplomová práce představuje několik model̊u výnosových křivek. Vycháźıme

z dynamického modelu Nelson-Siegel, který jsme dále rozš́ı̌rili pro modelováńı

regionálńıch latentńıch faktor̊u a hlavńıch komponent̊u. Naši analýzu převážně

zaměř́ıme na středoevropské výnosové křivky denominované v těchto měnách:

CZK, HUF, PLN a SKK.

V této práci představujeme dva p̊uvodńı modely, které zachycuj́ı regionálńı

dynamiku: prvńı založen na “state space framework” a druhý nav́ıc využ́ıvá

metody hlavńıch komponent regionálńıch výnosových křivek. Práce dále ob-

sahuje dvě praktické aplikace model̊u na ř́ızeńı rizik a na detekci strukturálńıch

změn.

Hlavńım přinosem této diplomové práce je vytvořeńı komplexńıho rámce,

který umožňuje analýzu výnosových křivek, př́ıpravu krizových scénář̊u a de-

tekci strukturálńıch změn.

Klasifikace JEL C51, C53, G17

Kĺıčová slova model s dynamickými faktory, Kalman̊uv

filter, Nelson-Siegel, state space, regionálńı

výnosová křivka, metoda hlavńıch kompo-

nent
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Chapter 1

Introduction

Time value of money is a main input for economic decision-making of all com-

panies. Since ancient times people have known that lending money for various

time-spans has a different price linked to the length of a loan. In modern times,

we refer to these as interest rates with different tenors depending when the loan

matures. A set of different interest rates observed at a point in time is called

a yield curve or a term structure.

Yield curve dynamics heavily affect financial institutions’ decision-making

thus good understanding of underlying driving forces is essential. Its impor-

tance has been increasing, since marking-to-market practice has become a com-

mon standard. These days, nearly whole banks’ or insurance companies’ value

is based on market bases, which makes the exposure to changes in term struc-

ture one of the main factors determining the value of financial institution’s

assets and liabilities, therefore its solvency.

The recent financial crisis has shown how quickly can a solvent institution

become insolvent. Moreover, throughout the crisis the investor’s risk aversion

increased significantly, which drained liquidity in the market and force mon-

etary authorities to keep lowering interest rates. The resulting sharp drop in

short-term rates shuffled with financial institutions’ balance sheets.

Furthermore, as financial integration proceeds we can expect country spe-

cific dynamics to gradually diminish. Therefore, we need a framework capable

of modelling several yield curves of different countries’ at once. With such a

framework, we are able to analyse dynamics and possible structural breaks.

This thesis presents such a framework. We mostly build on works of Diebold

et al. (2006; 2008) who introduced a dynamised version of classical Nelson-Siegel

model and discovered a global yield curve. We proceed notionally in a similar
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fashion and introduce two novel regional models.

The thesis is organised in five chapters. We begin our thesis with a survey

of related literature, in which we review theoretical and statistical background.

Since our models rely on state space framework, in chapter 3 we proceed

with introduction of such models and derivation of Kalman filter. Consequently,

we show how to construct a likelihood function for these models and present

diagnostics. In addition, we describe the data-sets used in this thesis.

Chapter 4 introduces gradually all the models. We start with the basic

dynamic Nelson-Siegel model as proposed by Diebold et al. (2006). We de-

scribe the way to put such a model into state space formulation to exploit its

properties. Moreover, this chapter introduces two novel, regional models.

Continuing with the regional models, we first perform the principal com-

ponent analysis on the stacked currencies’ yield curve to confirm our intuition

that regional yield curve exists. While performing the principal component

analysis, we also extract the first two principal components, which are needed

for one of the regional models.

The first of the two novel models is purely based on unobserved latent

factors and uses the strength of Kalman filter to extract them. This model

is thus called the Regional Common Factor model. The second novel model

includes the extracted principal components as regressors into the state space

framework; we refer to it as the Principal Component Regional model. This

idea simplifies the estimation and has a few advantages over the previous model,

which we mention further in the thesis.

The thesis further introduces two practical application of the models. The

first application focuses on a stress scenario design relevant to interest rate risk

management. The forecasting properties of the state space framework allows

us to easily construct forecasts on a give horizon and at a desired confidence

level. Through combination of point and interval forecasts of the extracted

factors, we are able to compute stressed curves. These stressed curves can be

further used in economic capital allocation.

The second practical application deserves more attention in general eco-

nomics, because it allows to detect structural breaks within the extracted fac-

tors. This goes in two step procedure; first plotting standardised residuals

and consequently estimating the model again with included dummy variable in

place of possible shock. As the dummy variable can take several forms, we not

only estimate significance and magnitude of the break, but additionally we can

see how the structural breaks can be modelled. Chapter 6 then concludes.



Chapter 2

Related Literature

This section shortly introduces the related literature on yield curve modelling

and theoretical background on state space framework and estimation methods,

which the thesis is altogether based on. Similarly, as the thesis contains three

notional parts we relate literature separately to all of these. We are mostly

concerned with regional models of yield curve; though, estimation methods

and practical usage of the models are also of keen interest.

Factor models Nelson and Siegel (1987) published a seminal paper in 1987.

This paper introduced a parsimonious way to model the whole yield curve with

only three parameters. This approach is able to reproduce all stylised facts

about possible yield curve shape: monotonic, humped or S-shaped (Nelson and

Siegel 1987, p. 474).

Moreover, the introduced framework arises as a solution to a second-order

differential equation with real and unequal roots (Nelson and Siegel 1987, p.

475), which gives a straight-forward inference of the model. That is why the

Nelson-Siegel model relies on exponential components that take different values

for various maturities.

Further developments are introduced in Litterman and Scheinkman (1991).

Setting off to improve hedging of bond portfolios, they propose a hedging tech-

nique based on bond-return-factor analysis. The main novelty of this paper

was the identification of three main factors explaining up to 97% of variance of

returns. These three factors are called: level, steepness (slope) and curvature.

Unlike in this thesis, these factors are computed as mimicking portfolios fulfill-

ing certain demand of factor loadings, whereas we apply principal component

analysis.
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Nelson-Siegel Model in its original form allows for straightforward extrap-

olation and smoothing of yield curve at one point in time. Despite profound lit-

erature on term structure modelling with no-arbitrage approach bases, Diebold

and Li (2006) state that there had not been paid much attention to practical

question of forecasting the yield curves. Diebold and Li (2006) propose an expo-

nential component framework based on the classical model of Nelson and Siegel

(1987) to answer this need. Diebold and Li (2006) reformulate the functional

form of the exponential components and used ordinary least squares regression

to fit the Nelson-Siegel curve to every year of their sample resulting in series of

three Nelson-Siegel coefficients. The innovative approach is to use these series

as factors driving the yield curve. Diebold and Li (2006) fit to these series

an autoregressive model of order 1 and use the natural forecasting abilities of

AR(1) to produce encouragingly good forecasts.

Diebold et al. (2006) introduces the Nelson-Siegel model into state space

framework thus allowing for clear inference and one step estimation. The pa-

per shows how the forecasting results can be further improved, if we include

macroeconomic variables as regressors into the state space framework.

Last but not least paper dealing with Nelson-Siegel yield curve modelling

from statistical perspective, Diebold et al. (2008), proposes an idea of Global

yield curve, which affects country specific yield curves and which country spe-

cific yield curves can load on. The main result is that there is an unobserved

Global yield curve.

Building on innovations of Diebold and Li (2006), Diebold et al. (2006)

and Diebold et al. (2008); Šopov (2009) proposed an approach to model yield

curve stress scenarios. Since AR(1) specification for factors and state space

formulation allows for easy forecasting, Šopov (2009) combines interval and

point forecasts to build through Nelson-Siegel model a stressed yield curves and

concludes that this approach gives encouraging results compared to benchmark

approaches.

No-arbitrage Models In spite of concentrating mostly on modelling in this

thesis, there are extensions to Nelson-Siegel framework allowing for no-arbitrage

estimation so that the model can be used for pricing. Diebold et al. (2006) stress

the poor forecasting abilities of no-arbitrage models of term structure that are

predominantly used for pricing and show that the Nelson-Siegel model is not

a member of affine class. Christensen et al. (2009) examine 4-factor Nelson-

Siegel model extended by Svensson (1995), which still cannot fulfil no-arbitrage
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conditions. Finally, they introduce 5-factor extension, which works better in

longer maturities and most importantly is an affine class model, thus arbitrage

free. Moreover, such a model brings reasonable improvement in forecasting.

These results are further developed in Christensen et al. (2006).

Estimation The estimation of such a complex model developed in this thesis

relies on methods developed to extract signal from noisy measurements and

mostly applied in engineering and physics. Kalman (1960) introduces a very

efficient way of computing mean and variance of a noisy signal. Since the state

space formulation has a state equation and an observation equation, it allows

easy application of Kalman filter. The parameters are either known or have to

be estimated; the maximum likelihood is an convenient choice.

In this thesis, we mostly use Durbin and Koopman (2001) and Harvey

(2002) as our theoretical background. The former book gives a coherent treat-

ment of state space models and Kalman filter and its application to economic

time-series models. The book serves also as a background text to support Ssf-

Pack 2.2 (Koopman et al. 1998), which is a package for Object-Oriented Ma-

trix Programming Language Ox1 (Doornik 2007). The latter book extensively

treats structural time-series application in both univariate and multivariate

cases. Recently, Jungbacker and Koopman (2008) further improved efficiency

of Kalman filter and likelihood evaluation.

1The package and Ox compiler are free for academic purposes.



Chapter 3

Methodology

In this chapter, we introduce the data, which we use to estimate the parameters,

and the needed methodology, which our models are based on. To get the feel

for the data, section 3.1 shows plots of the data and gives some intuition on the

common movements in the samples. Consequently, we introduce derivation of

Kalman filter, present some results in parameter estimation using Maximum

likelihood estimator and related diagnostics.

3.1 Data

In this paper, we use two different data-sets to estimate coefficients of our

models, one based on swap rates and the other based on zero rates. The

former data needs to be recalculated into zero rates in order to match the type

of rates between the two data-sets.

We start with the first date-set by collecting historical swap rates from

Bloomberg for three currency zones, which represent strong world currencies;

Euro (EUR), United States dollar (USD) and Pound Sterling (GBP). In Ta-

ble 3.1 we present the sample details and in Table 3.2 we indicate the available

maturities.

We denote Sn the n-year swap rate, so that we can extract the discount

factors. By setting D0 = 1 and D1 = 1
1+S1

, we use the relation in equation

(3.1) to compute the discount factors. The zero yield curve rates are computed

as shown in equation (3.2).

Dn =
1− Sn

∑n−1
i=1 Di

1 + Sn
, (3.1)
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where Dn is a n-year discount factor.

yn =
1

n
√
Dn

− 1 (3.2)

Table 3.1: Data-set 1 Details

Currency start date end date tenors p sample size n
EUR 31-Aug-1999 30-Jun-2008 13 119
USD 30-Jun-1996 30-Jun-2008 11 157
GBP 30-Sep-1999 30-Jun-2008 12 118

Source: Author’s calculations

Table 3.2: Maturities of Data-set 1

3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 12Y 15Y 20Y 25Y 30Y 40Y
EUR X X X X X X X X X X X X X
USD X X X X X X X X X X X
GBP X X X X X X X X X X X X

Source: Author’s calculations

The final zero curves of these currencies are shown in Figure 3.1, where we

also present mean curve as a series of means of each maturity rate, first quartile

and third quartile computed as quartiles for each maturity rate.

We observe that the zero curves inherit some similarities with the common

global factor hypothesis of Diebold et al. (2008). Especially between the years

2003 and 2005, we see a global drop in short-term rates followed by global

increase through 2006, though these movements are much weaker in case of

GBP. There are also some clear country specific movements; e.g. on average

the downward sloping GBP zero curve or the drop of USD short-term rates

after 2006. Finally, the dataset contains the large drop in the third quarter of

2008 and in 2009 as a consequence of outbreak of the financial crisis.

The other data-set forms the basis for the regional analysis. We obtained

the zero rates from Thomson-Reuters for four central European currencies:

Czech Crown (CZK), Hungarian Forint (HUF), Polish Zloty (PLN) and Slovak

Crown (SKK).

Due to limited data availability we restrict our analysis to shorter maturi-

ties, as the very long ones are not available with sufficient history and liquidity.

The actual maturities for all four regional currencies are listed in Table 3.4.
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Figure 3.1: Zero Yield Curves – Evolution over Time
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Clearly, the data provide no information on interest rates with maturities longer

than 10 years so we can expect the dynamics to be slightly different to previ-

ous data-set. The differences are to some extent unimportant, because it shows

how the model can accommodate various data and simply can capture dynam-

ics of the sample fed in. Furthermore, the data-set is shorter as the liquidity

was poor in years before 2000. The sample length and number of maturities is

shown in Table 3.3.

Looking at Figure 3.2, we can see some similarities in the evolution of

countries’ yield curves over time. We have to bear in mind different lengths of

data sample and scale, e.g. parameters for the SKK model are further estimated

using lower number of observations, since the SKK sample ends in December

2008. At first sight, the Czech crown yield curve seems to be well behaved and
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Table 3.3: Data-set 2 details

Currency start date end date tenors p sample size n
CZK 31-Mar-1999 31-Nov-2009 12 117
HUF 31-Mar-2002 31-Nov-2009 12 93
PLN 31-Oct-2000 31-Nov-2009 12 110
SKK 30-Sep-2003 12-Dec-2008 12 64

Source: Author’s calculations

is similar to those of strong currencies. If the history of the data allows, we

observe periods of high rates around the year 2000, which were especially high

in Polish Zloty reaching over 15%. In Figure 3.3, the Hungarian Forint yield

curve shows relatively high short-end volatility as well as high short-term rates,

which is a sign that Forint and Hungarian economy are vulnerable to tempory

shocks.

The same figure shows many of common types of yield curve; upward sloping

in case of CZK, downward sloping in case of HUF and almost flat in case of

PLN and SKK.

Table 3.4: Maturities of Data-set 2

1M 2M 3M 6M 9M 1Y 3Y 5Y 6Y 7Y 8Y 10Y
CZK X X X X X X X X X X X X
HUF X X X X X X X X X X X X
PLN X X X X X X X X X X X X
SKK X X X X X X X X X X X X

Source: Author’s calculations

3.2 State Space Formulation

This thesis purely relies on state space formulation, which is a general frame-

work able to accommodate various specifications of time-series models. Since

seminal paper by Kalman (1960), state space framework has been a power-

ful tool to analyse time series. Unfortunately, it was not of much interest to

econometricians but rather to engineers. Recently, it has been gaining deserved

popularity for its strength. Unlike the black-box approach given by Box-Jekings
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Figure 3.2: Regional Zero Yield Curves – Evolution over Time
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methodology, the state space framework models time-series in structural way

explicitly (Durbin and Koopman 2001, p. 52).

For the purposes of this thesis; initially, we introduce the derivation of

Kalman filter in section 3.2.1. To be able to perform diagnostic checks and

further use the models for forecasting, we present Kalman Smoother and the

forecasting routine in section 3.2.2. Section 3.2.3 then shows the likelihood

function for state space models, diagnostics and structural break detection

methods, which we use in the empirical part of the thesis in Chapter 4.

3.2.1 Kalman Filter Derivation

We use the state space framework with notation given in equations (3.3) through-

out this thesis. The following derivation is based on Durbin and Koopman

(2001) who give an excellent treatment of state space models, related issues
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Figure 3.3: Regional Zero Yield Curves – Empirical Quartiles
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and provides tip for practical implementation.

yt = Ztαt + εt, ε ∼ N(0, Ht),

αt+1 = Ttαt +Rt + ηt, η ∼ N(0, Qt), t = 1, . . . , n,

α1 ∼ N(a1, P1), (3.3)

where yt is a vector of observation of yield curve in time t = 1, . . . , n. Moreover,

we assume all matrices Z, T,R,H,Q time-invariant, hence we drop the time in-

dex below where possible. Note that the Principal Component Regional model

needs some element of the transition matrix T to be time-varying, otherwise T

is time-invariant.

Let Yt−1 denote all information available at time t; the set of past observa-

tion vectors Yt−1 = {y1, y2, . . . , yt−1}. The idea is simple and stands on basic

multivariate regression theorem in appendix on page I, we start at time t = 1

and recursively derive the distributions for αt and yt; moreover, as these are

normally distributed, it is sufficient to derive mean and variance (Durbin and

Koopman 2001). We endeavour to show that p(yt|α1, . . . , αt, Yt) = p(yt|αt) and

p(αt+1|α1, . . . , αt, Yt) = p(αt+1|αt).
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Furthermore, let the initial state for α1 be N(a1, P1) and known. We seek

conditional distributions for αt+1 given Yt for t = 1, . . . , n. From the normality

of all distributions follows that the conditional distributions of subset of vari-

ables given other subset of variables are also normally distributed (Durbin and

Koopman 2001, p. 65). Hence the desired distributions are fully determined

by knowing at+1 = E(αt+1|Yt) and Pt+1 = Var(αt+1|Yt). We substitute for αt+1

from equation (3.3),

αt+1 = E(Tαt +Rηt|Yt) =

= E(Tαt|Yt) + E(Rηt|Yt) = TE(αt|Yt), (3.4)

Pt+1 = Var(Tαt +Rηt|Yt) =

= Var(Tαt|Yt) + Var(Rηt|Yt) = TVar(αt|Yt)T ′ +RQR′, (3.5)

for t = 1, . . . , n. We denote one-step forecast error of yt given Yt−1

vt = yt − E(yt|Yt−1) = yt − E(Zαt + εt|Yt−1) = yt − Zαt.

When Yt−1 and vt are fixed then Y is fixed and vice versa (Durbin and Koopman

2001, p. 66); hence E(αt|Yt) = E(αt|Yt−1, vt). By contrast, E(vt|Yt−1) = E(yt−
Zαt|Yt−1) = E(Zαt + εt − Zαt−1) = 0, thus E(vt) = 0 and Cov(yj, vt) =

E[yjE(vt|Yt−1)
′] = 0 for j = 1, . . . , t− 1. The next step is done by applying the

regression lemma A.1.1 in appendix on page I.

E(αt|Yt) = E(αt|Yt−1, vt) =

= E(αt|Yt−1) + Cov(αt, vt)[Var(vt)]
−1 =

= at +MtF
−1
t vt, (3.6)

where Mt = Cov(αt, vt), Ft = Var(vt) and at = E(αt|Yt−1) is defined above.

We proceed as follows

Mt = Cov(αt, vt) = E [E{αt(Zαt + εt − Zat)′|Yt−1}] =

= E [E{αt(αt − at)′Z ′|Yt−1}] = PtZ
′

and

Ft = Var(Zαt + εt − Zat)) = ZPtZ
′ +H.
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Durbin and Koopman (2001) assume Ft to be nonsingular; generally this can

be relaxed as it is shown further in Durbin and Koopman (2001), but for our

model we assume it holds. We substitute in (3.4) and (3.6), which gives

at+1 = Tαt + TMtF
−1
t vt =

= Tat +Ktvt, t = 1, . . . , n,

where

Kt = TMtF
−1
t = TPtZ

′F−1
t .

Now we apply the regression lemma A.1.1 again.

Var(αt|Yt) = Var(αt|Yt−1, vt)

= Var(αt|Yt−1 − Cov(αt, vt)[Var(vt)]
−1Cov(αt, vt)

′

= Pt −MtF
−1
t M ′

= Pt − PtZ ′F−1
t ZP ′t .

Substituting in (3.5) gives

Pt+1 = TPtL
′
t +RtQtR

′
t, t = 1, . . . , n,

where Lt = T − KtZ. The predictive Kalman filter is summarised in equa-

tions (3.7)

vt = yt − Zαt, Ft = ZPtZ
′ +H

Kt = TPtZ
′F−1
t , Lt = T −KtZ, t = 1, . . . , n,

at+1 = Tat +Ktvt, Pt+1 = TPtL
′ +RQR′, (3.7)

dimensions of these matrices are given in Table 3.5. The derivation of the con-

temporaneous filter is analogous and can be also found in Durbin and Koopman

(2001). For completeness, equations (3.8) present the contemporaneous filter

without derivation.

vt = yt − Zαt, Ft = ZPtZ
′ +H,

Mt = PtZ
′, t = 1, . . . , n,

at|t = at +MtF
−1
t vt, Pt|t = Pt −MtF

−1
t M ′

t ,

at+1 = Tat|t, Pt+1 = TPt|tL
′ +RQR′. (3.8)
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For standard error estimation and other details see Durbin and Koopman

(2001).

3.2.2 Smoothing & Forecasting

The universality of Kalman filter can be shown by the smoothing recursion and

the forecasting abilities that are organic to state space models and that extend

the possible applications.

Kalman Smoother The Kalman filter is a forward recursion evaluating one-

step ahead estimators, whereas the associated moment smoothing algorithm

is a backward recursion, which evaluates the mean and variance of specific

conditional distributions given the data set Yn. We are interested in calculating

condition mean α̂t = E(αt|Yn) and conditional variance Vt = Var(αt|Yn) given

all information. The derivation relies only on the regression lemma A.1.1 and

can be found in (Durbin and Koopman 2001, p. 70). Equation (3.9) presents

only the final result known as Kalman smoother.

rt−1 = Z ′F−1
t vt + L′trt, Nt−1 = Z ′F−1

t Z + L′tNtLt,

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt, , (3.9)

for t = n, . . . , 1 and initialised with rn = 0 and Nn = 0, because there are no

innovation at the end of the sample. Moreover, we assume α1 ∼ N(a1, P1).

Furthermore, we need to compute the smoothed disturbances ε̂t = E(εt|Yn)

and η̂t = E(ηt|Yn) that are use for parameter estimation and diagnostics. The

backward recursion for disturbances is presented in equations (3.10).

ut = F−1
t vt −K ′trt, Dt = F−1

t +K ′tNtKt,

ε̂t = Hut, Var(εt|Yn) = H −HDtH,

η̂t = QR′ut, Var(ηt|Yn) = Q−QR′DtRQ, (3.10)

for t = n, . . . , 1 and again initialised with rn = 0 and Nn = 0.

Forecasting Knowing y1, . . . , yn, we want to compute forecast yn+j for j =

1, . . . , J given Yn, which has the minimum square error matrix. We choose

estimate ȳn+j such as F̄n+j = E [(ȳn+j − yn+j)(ȳn+j − yn+j)
′|Yn] is minimal.

The exact derivation can be found in (Durbin and Koopman 2001, p. 94).



3. Methodology 15

The forecasting simplifies to continuation of Kalman filter as if the remaining

observations were missing.

āt+j+1 = T āt+j, P̄t+j+1 = T P̄t+jL
′ +RQR′, (3.11)

for t = 1, . . . , n, and vn+j = 0 and Kn+j = 0, because there is no new informa-

tion availble at time n+ j.

3.2.3 Likelihood, Goodness-of-fit & Diagnostics

Likelihood Evaluation Once we know the parameters, Kalman filter pro-

vides very efficient and fast method of extracting the latent factors. Clearly,

we do not know the parameters of the models ex ante, therefore we need to

find them. There are not many methods that can deal with various space state

models, so we employ with Maximum Likelihood estimation. Since the models

are Gaussian and linear in parameters, we can easily build the log-likelihood

function for the state space model as in equation (3.12) taken from Koopman

et al. (1998, p. 138):

logL(ψ) = log p(y1, . . . , yn;ψ) = −np
2

log(2π)− 1

2

n∑
t=1

(
log |Ft|+ v′tF

−1
t vt

)
,

(3.12)

where ψ is a vector of parameters. The matrices vt and Ft are computed

by equations (3.7) and (3.8). There is no available closed-form solution for

optimisation problem of such complex models; therefore, the log-likelihood

function needs to be maximised with numerical methods. We use a very

powerful method called BFGS based on the well-known modified Newton’s

method (Brinkhuis and Tikhomirov 2005, p. 300) and named after its inven-

tors Broyden–Fletcher–Goldfarb–Shanno method. This method is available in

the Ox package (Doornik 2007) as MaxBFGS function.

The goodness-of-fit measures and diagnostic tests can be obtained using

standard tools in univariate case with only little adjustments, whereas in case

of multivariate models our set of tools becomes quite limited. We focus on

selection criteria and Likelihood ratio test when specifying the models and we

look at parameter t-tests and structural break detection.

Selection Criteria The well-known and popular selection criteria AIC (Akai-

ke Selection Criterion) and BIC (Bayes Selection Criterion) can be applied to
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Table 3.5: Kalman Filter Dimensions

vector size matrix size
yt p×1 Z p×m
αt m×1 T m×m
εt p×1 H p×p
ηt r×1 R m×r
yt p×1 Q r×r

Pt m×m
vt p×1 Ft p×p
at m×1 Kt m×1

Lt m×m

p is a number of maturities, m is a number of factors and r is assumed to be equal to m.

Source: Durbin and Koopman (2001)

state space models in a modified form. The modifications account for mul-

tivariate nature of the models. Let ψ̂ denote the estimate of the vector of

parameters, then the criteria are presented in equation (3.13) (Harvey 2002, p.

270).

AIC = −2 logL(ψ̂) + 2(k + d), BIC = −2 logL(ψ̂) + (k + d) log n, (3.13)

where k, d and n represent the number of parameters to be estimated, number

of non-stationary elements in state vector and number of observations, respec-

tively. The aim is to find a specification in such a way to minimise the selection

criteria.

Likelihood Ratio This test is built up on the property that large sample

maximum likelihood estimates of parameter vector ψ̂ is normally distributed

as in equation (3.14) (Durbin and Koopman 2001, p. 150).

ψ ∼ N(ψ,Ω), (3.14)

where Ω is the Hessian of the log-likelihood function.

Ω =

[
−∂

2 logL

∂ψ∂′ψ

]−1

. (3.15)



3. Methodology 17

Since the ratio of the squares of two random variables with standard normal

distribution has χ2 distribution with two degrees of freedom. Therefore, the

ratio of the squares of the logL has χ2 distribution with degrees of freedom

equal to df2 − df1, where dfi is number of degrees of freedom for the i-th com-

peting model, which represents number of parameters that needs to be fixed to

obtain the simpler model from the more complicated one. The LR statistics

has under null hypothesis that the restricted model fits better χ2 distribution

as in equation (3.16).

LR = −2 log

(
L(ψ̂1)

L(ψ̂2)

)
∼ χ2

(df1−df2), (3.16)

where L(ψ̂1) denotes the maximised value of likelihood function of the restricted

model and L(ψ̂2) of the unrestricted. The crucial assumption for Likelihood

ratio test is that we consider nested models, in other words such models that

only by setting some parameters to 0 in one of them we get the other. Fur-

thermore, throughout this thesis the standard errors are based on the Hessian

of log-likelihood function.

t-test & Structural Breaks The structural breaks can be detected via so-

called auxiliary residuals that essentially take form of standardised residuals

associated with both observation and state equations, which we compute as in

equation (3.17) and (3.18). Furthermore equation (3.19) suggests that matrix

B is a diagonal matrix.

ε̂st =
ε̂t√
Bε
t

[Var(ε̂)]−1 = Bε
t
′Bε

t (3.17)

η̂st =
η̂t√
Bη
t

[Var(η̂)]−1 = Bη
t
′Bη

t (3.18)

P−1
t = Bt

′Bt (3.19)

Plotting ε̂st and η̂st , we can visually assess presence of outliers and structural

breaks in latent factors, respectively. Relatively large values indicate an outlier

in case of ε̂st and a structural break in case of η̂st (Doornik 2007, pp. 35–37). As

pointed out in Doornik (2007), de Jong and Penzer (2000) discusses a general

approach to detecting structural breaks in state space models. Based on this

approach, we consequently include impulse intervention into the model. The
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impulse interventions simply take form of a dummy variable and we denote

its coefficient as βA further in the thesis. In the simplest case, we include a

variable equal to zero everywhere but at time t, where we visually detected a

possible structural break. Such a dummy would measure the break magnitude,

thus we call it a measurement impulse dummy (de Jong and Penzer 2000, p.

6). We can also impose different structure to study various breaks such as

bounce-back1 or level dummies, whose structure is plotted in Figure 3.4.

Figure 3.4: Impulse Dummies
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Significance of such a dummy coefficient can be tested using the t-test based

on equation (3.20).

ε̂si,t =
ε̂i,t√
Bε
ii,t

∼ tα(n− 1), (3.20)

where ε̂i,t denotes the i-th element of vector ε̂, Bε
ii,t denotes the i-th diagonal

element of matrix Bη
t and tα(n − 1) represents the α quantile of student’s

t-distribution with n− 1 degrees of freedom (Doornik 2007, p. 37).

3.3 Principal Component Analysis

In this section, we shortly review a popular method to reduce dimension of

data. This method also allows us to extract principal component, which is an

orthogonal projection of the original data that maximises component variance.

The basic idea to choose a number (lesser than number of original time-series)

components with largest variance in such a way that these chosen components

explain certain amount of variance in the data.

1Including only one positive and one negative dummy is called a switch (de Jong and
Penzer 2000, p. 6)
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The approach presented in this thesis is based on Tsay (2002), where one

can find additional information not presented here. The principal component

analysis is performed on covariance or correlation matrix of the returns. Let

r denote a matrix of return series r = (r1, . . . , rk)
′, where k is a number of

series. Denote the covariance matrix Σr and let wi = (wi1, . . . , wik)
′ be a

k-dimensional vector, where k = 1, . . . , k. Then

yi = w′ir =
k∑
j=1

wijrj

is linear combination of returns r. Multiplying the vector w′i by a constant

does not change the proportions of w′i, we can standardise the vector w′i so

that w′iwj = 1.

Knowing the properties of a linear combination of random variables, we

have

Var(yi) = w′iΣrwi, i = 1, . . . , k (3.21)

Cov(yi, yj) = w′iΣrwj, i, j = 1, . . . , k. (3.22)

What PCA does is essentially spectral-decomposition of the covariance ma-

trix. Since the covariance matrix Σr is non-negative definite, it has a spectral

decomposition. The result is a diagonal covariance matrix of the of the matrix

of the new linear combination and a matrix of eigenvectors. In other words,

we are looking for linear combinations wi such that yi and yj are uncorrelated

for i 6= j and the variances of yi are as large as possible. Tsay (2002, p. 421)

sums this up as followings:

1. The first principal component of r is the linear combination y1 = w′1r

that maximises Var(y1) subject to the constraint w′1w1 = 1.

2. The second principal component of r is the linear combination y2 =

w′2r that maximises Var(y2) subject to the constraint w′2w2 = 1 and

Cov(y1, y2) = 0.

3. The first principal component of r is the linear combination yi = w′ir that

maximises Var(yi) subject to the constraint w′iwi = 1 and Cov(yi, yj) for

j = 1, . . . , i− 1.

Let (λ1, e1), . . . , (λk, ek) be the eigenvalue-eigenvector pairs of Σr in de-



3. Methodology 20

scending order. Then Tsay (2002, p. 422) presents the following results in

equations (3.21) and (3.22).

Var(yi) = e′iΣrei = λi, i = 1, . . . , k (3.23)

Cov(yi, yj) = e′iΣrej = 0, i 6= j. (3.24)

In addition, it holds

k∑
i=1

Var(ri) = tr(Σr) =
k∑
i=1

λi =
k∑
i=1

Var(yi). (3.25)

The equation (3.25) implies how we can evaluate how much a single component

adds to the total variance in equation (3.26).

Var(yi)∑k
i=1 Var(yi)

=
λi

λ1 + · · ·+ λk
(3.26)

Hence, we have the tools to perform the PCA.

For additional discussion on PCA, we refer to Tsay (2002). For an applica-

tion to yield curve modelling see, amongst others, Litterman and Scheinkman

(1991), who were the first to interpret the three principal components as level,

slope and curvature of yield curve, and Rodrigues (1997) gives a methodology

to design stress scenarios. Finally, Diebold et al. (2008) uses PCA to extract

global yield curve components. We apply this notion in section 4.2.2 to regional

yield curve.

Chapter 3 showed necessary statistics and econometrics so the we can pro-

ceed to introduce the core and original models of the thesis in Chapter 4 and

their estimation in Chapter 5



Chapter 4

The Model

4.1 Nelson-Siegel Model

4.1.1 Classical Nelson-Siegel Model

This section builds the dynamic version of Nelson and Siegel (1987) model

as developed in Diebold et al. (2006). Nelson and Siegel (1987) study term

structure models and propose static model based on three exponential com-

ponents. Having parsimony in mind, Nelson and Siegel (1987) put forward a

model with only 3+1 parameters to capture the entire yield curve. This set-

ting can reproduce all stylised facts about yield curve shape and behaviour such

as: monotonic, humped and S-shaped. Over the time this model has become

well-known; mainly as a yield curve smoothing tool (Diebold and Li 2006).

We use the specification given in Diebold et al. (2006), who restate the

classical Nelson-Siegel model as in equation (4.1) and emphasize the advan-

tage that the corresponding coefficient can be interpreted as level, slope and

curvature without any further rotation.

y(τ) = β1 + β2

(1− e−λτ

λτ

)
+ β3

(1− e−λτ

λτ
− e−λτ

)
, (4.1)

where τ is the maturity in months and the parameter λ specifies where loadings

on β3 reach its peak. The factor loadings for various τ and fixed λ = 0.0609,

which correspond to τ = 29.88, are in Figure 4.1. In this framework, the level

factor β1 loads equally on all maturities and can be directly interpreted in cor-

responding interest rates. The slope factor β2 loads mostly on short maturities

with exponentially decaying influence on longer-term rates. The coefficient β2
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represents slope and its rate of decay is determined by the coefficient λ1. Lastly,

the curvature factor β3 loadings reach maximum in mid-term maturities, which

is determined by λ. Importantly, these factor loadings determine the shape of

the designed yield curve shocks.

Figure 4.1: Factor Loadings
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Moreover, this framework is being further developed; e.g. Christensen et al.

(2009) modified the model to become arbitrage-free. Recently, Jungbacker et

al. (2009) implemented findings in efficient estimation of state space models of

Jungbacker and Koopman (2008) in order to model term structure in similar

fashion to Diebold and Li (2006) and Diebold et al. (2006).

4.1.2 Dynamic Nelson-Siegel & State Space Framework

In this section we present the dynamic Nelson-Siegel model specified and esti-

mated using state space framework as presented in Diebold et al. (2006). This

framework allows for clear statistical inference (Diebold et al. 2006) and pro-

duces correct standard errors, which can further be used for testing purposes

and optionally for constructing yield curve shocks.

The state space formulation used in this paper is stated in equation (4.2),

1More details on λ computation can be found in section 4.4
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which is essentially a factor model with vector AR process for factors.

yt = Ztαt + εt, ε ∼ N(0, Ht),

αt+1 = Ttαt +Rt + ηt, η ∼ N(0, Qt), t = 1, . . . , n,

α1 ∼ N(a1, P1), (4.2)

where yt = (yt(τ1), . . . , yt(τp))
′ is a p×1 vector of yields of p different maturities,

αt a 3× 1 vector of common factors, Zt is a p× 3 matrix of factor loadings, Tt

is a 3× 3 transition matrix and Rt is assumed to be a 3× 3 diagonal matrix.

We denote the parameters of the Nelson-Siegel yield curve model as lt, st

and ct, level, slope and curvature, respectively. Furthermore, we drop the time

indices for time-invariant matrices to make the notation simpler and denote the

common factors as lt, st and ct for level, slope and curvature factor respectively.

The resulting model is in equations (4.3) and (4.4). lt+1 − µl
st+1 − µs
ct+1 − µc

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


︸ ︷︷ ︸

T

 lt − µl
st − µs
ct − µc

+ ηt, η ∼ N(0, Q) (4.3)

We assume R to be a (3 × 3) unit matrix, yet we estimate also off-diagonal

elements of state covariance matrix Q to capture possible correlation of dis-

turbances ηt. Note that unlike principal components, the latent factors can

be correlated in this specification. The observation equation is given in equa-

tion (4.4).
yt(τ1)

yt(τ2)
...

 =


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2
...

...
...


︸ ︷︷ ︸

Z

 lt − µl
st − µs
ct − µc

+

+ εt, ε ∼ N(0, H), (4.4)

where H is assumed to be diagonal, which implies uncorrelated disturbances in

observation matrix. Diebold et al. (2006) stresses that the assumption of un-

correlated yields for different maturities is quite common. Moreover, it forces

unobserved factors to capture the covariance between different maturities. The
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elements of the factor loadings matrix Z are functions of maturity τ and pa-

rameter λ, which we fix as specified in section 4.4.

We estimated the model using Kalman filter2, which delivers mean square

error estimates of each component in αt+1 even if the observations are not

normally distributed, given the linearity of estimators (Koopman et al. 1998,

p. 67). The unknown parameters needed for the recursion are estimated using

Maximum likelihood estimation as described in section 3.2.3 or Durbin and

Koopman (2001). In total we need to estimate 18+p parameters; 3 means in

state equations, 9 elements in state transition matrix T , 3 diagonal elements

and 3 off-diagonal elements in covariance matrix Q and p number of diagonal

elements of in covariance matrix H for p number of maturities of yields. That

means 31, 29 and 30 parameters for EUR, USD and GBP model, respectively,

and 30 for CZK, HUF, PLN and SKK models. The implementation is described

in section 4.4.3

We refer to this model as ‘Dynamic Nelson-Siegel’ model or we simply use

abbreviation the DNS.

4.2 Regional Models

In this section we build the regional models: Regional Common Factor Model

model and Principal Component Regional model. The former model is inspired

by Diebold et al. (2008), yet we introduce some changes. Unlike single country

models, the regional models combine several single currency models together

to allow to extract regional common factors. Most importantly, we estimate

the regional model at once, which is possible with additional restrictions on

parameters. The latter model is built on the idea of the Regional Common

Factor model. In contrast the Principal Component Regional model, we use

extract the principal components of the countries’ yield curves to include them

in the model as regressors. Such a technique is, to the author’s best knowledge,

novel and possible to be estimated due to the state space formulation of the

model.

2See section 3.2 or Durbin and Koopman (2001) for details
3The time needed to estimate each model did not exceed 80 seconds on an average com-

puter. These times can be further improved by most recent findings in Jungbacker and
Koopman (2008). As a result of the estimation, we extract the series of factors lt|t−1, st|t−1

and ct|t−1.
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4.2.1 Regional Common Factor Model

Regional Common Factor Model follows the logic of Diebold et al. (2008) in

a way it implicitly models the global / regional yield curve. We refer to our

models as ‘regional’, because we use neighbouring currencies of data-set 2. Note

that ‘global’ yield curve is not observed and luckily not needed to be modellled.

The model as such essentially combines Dynamic Nelson-Siegel models for all

four countries of the Central European region and models them as one model,

which provides a clear inference thus can be estimated at once by Maximum

likelihood estimator and Kalman filter as presented in section 3.2.

We begin by stacking the currency yield curves ycurrency,t(τi) in one (48× 1)

column vector Yt(τi) as it can be seen in equation (4.5). The crucial part is to

correctly build the (48× 14) loadings matrix Z that translates the factors into

yields. The new loadings matrix contains original currencies’ loadings matrices

on the diagonal and two columns of zeros, which means that the regional latent

factors do not load on the yields directly, but though currency specific latent

factors. This specification estimates 14 latent factors, summarised as αt; for

the implementation purposes, the model implicitly extracts 26 latent factors,

since the factor means µcurrency are modelled as latent factors as well in order to

ease the estimation. Equation (4.5) presents the observation equation, which

is obviously just an ordinary observation equation in state space formulation,

which we derived in section 3.2.
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

yCZK,t(τ1)

yCZK,t(τ2)
...

yHUF,t(τ1)

yHUF,t(τ2)
...

yPLN,t(τ1)

yPLN,t(τ2)
...

ySKK,t(τ1)

ySKK,t(τ2)
...


︸ ︷︷ ︸

Yt(τ)

=


Z 0 0 0 0 0

0 Z 0 0 0 0

0 0 Z 0 0 0

0 0 0 Z 0 0


︸ ︷︷ ︸

Z



lCZK,t − µCZK
sCZK,t − µCZK
cCZK,t − µCZK
lHUF,t − µHUF
sHUF,t − µHUF
cHUF,t − µHUF
lPLN,t − µPLN
sPLN,t − µPLN
cPLN,t − µPLN
lSKK,t − µSKK
sSKK,t − µSKK
cSKK,t − µSKK

Lt

St


︸ ︷︷ ︸

αt

+

+ εt, ε ∼ N(0, H), (4.5)

Since we not only put together four times the DNS model, somehow larger

changes are made to the state matrix. In order to simplify the notation of

the state equation (4.9), we introduce a set of substitutions presented in equa-
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tions (4.6), (4.7) and (4.8).

αt =



αCZE,t

αHUF,t

αPLN,t

αSKK,t

Lt

St


=



lCZK,t − µCZK
sCZK,t − µCZK
cCZK,t − µCZK
lHUF,t − µHUF
sHUF,t − µHUF
cHUF,t − µHUF
lPLN,t − µPLN
sPLN,t − µPLN
cPLN,t − µPLN
lSKK,t − µSKK
sSKK,t − µSKK
cSKK,t − µSKK

Lt

St



(4.6)

In order to shorten the notation, equation (4.6) puts together the latent factors

of each currency, equation (4.7) then summarises each currency’s transition ma-

trix and stresses that we estimate only diagonal elements. This simplification

is rather technical and eases the optimisation of the log-likelihood function.

Tcurrency =

 a11 0 0

0 a22 0

0 0 a33

 (4.7)

The state equation of this model needs to be adjusted in order to allow currency

latent factors to load on regional factors. This is done by matrix Ψcurrency,

which enters the full model transition matrix T; equation (4.8) shows that we

do not allow currency’s level factor to load on regional slope factor and vise

versa. There may be a natural relationship between the regional level and the

country specific slope factors and vise versa, which we may miss. This drawback

is addressed in the Principal Component Regional model in section 4.2.2.

Moreover, the coefficients of matrices Ψcurrency are restricted to be positive,

which solves the possible identification problems. Note that identification is

the main issue in these models; though, we do not need to worry too much

about specification thanks to most-likely ‘true’ loading matrix Z.

The matrices Ψcurrency suggest that we do not assume any curvature factor
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to load on regional level or slope factors. The dynamics of the regional latent

factor captures transition matrix ρ, in equation (4.8).

Ψcurrency =

 ψ1 0

0 ψ2

0 0

 , ρ =

(
ρ11 ρ12

ρ21 ρ22

)
(4.8)

The state equation (4.9) containing all the substitutions explains the currency

factors’ dynamics similarly to the Dynamic Nelsol-Siegel model; as AR(1) pro-

cesses. Furthermore, it also captures the regional factors’ dynamics as vector

AR(1) process, thus allowing for possible cross relations in regional factors.

αCZE,t+1

αHUF,t+1

αPLN,t+1

αSKK,t+1

Lt+1

St+1


=



TCZE 0 0 0 ΨCZE

0 THUF 0 0 ΨHUF

0 0 TPLN 0 ΨPLN

0 0 0 TSKK ΨSKK

0 0 0 0 ρ11 ρ12

0 0 0 0 ρ21 ρ22


︸ ︷︷ ︸

T



αCZE,t

αHUF,t

αPLN,t

αSKK,t

Lt

St


+

+Rηt, η ∼ N

(
0,

(
Q 0

0 I(2×2)

))
(4.9)

We assume R to be (14 × 14) unit matrix and we do not estimate the off-

diagonal elements of state covariance matrix Q to keep a reasonable complexity

of the model. Moreover, estimating the off-diagonal elements may lead to

identification problems and to badly-behaved likelihood function.

Note the structure of the matrix T, which in fact determines the whole

dynamics of the model and shows the innovative methods of this thesis. Once

again, in order to be able to identify the model, we introduce another restric-

tions on parameters. We assume the regional factors’ covariance matrix to be

(2) unit matrix. The pleasant side effect is that the magnitude of coefficients

of matrices Ψcurrency can be directly interpreted as how much certain currency’s

factors load on regional factors.

4.2.2 Principal Component Regional Model

Principal Component Regional model further extends the Regional Common

Factor model of section 4.2.1. This model also follows the logic of Diebold
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et al. (2008) in a way it implicitly models the global / regional yield curve,

which as it is stated above cannot be observed. Unlike the Regional Common

Factor model, the Principal Component Regional model does not extract the

regional factors as latent factors, rather the model includes two other series to

act as regional level and slope factors. These series are obtained as principal

components extracted from all four yield curves using the Principal Component

Analysis presented in section 3.3.

The main idea is to include the extracted regional principal components into

the model as if these were explanatory variables in ordinary linear regression

model. Diebold et al. (2008) use principal component analysis to obtain starting

paths for Monte Carlo Markov Chain evaluation of likelihood function, whereas

we include the paths directly into the state equation (4.14).

The observation equation (4.10) looks similar to the one of the Regional

Common Factor model, yet with more latent factors in the vector αt. The

loadings matrix Z suggests that the regional factors do not load on the yields

directly; moreover, the factors act as regression coefficients, i.e. they are time
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invariant.



yCZK,t(τ1)

yCZK,t(τ2)
...

yHUF,t(τ1)

yHUF,t(τ2)
...

yPLN,t(τ1)

yPLN,t(τ2)
...

ySKK,t(τ1)

ySKK,t(τ2)
...


︸ ︷︷ ︸

Yt(τi)

=


Z 0 0 0 0(12×8)

0 Z 0 0 0(12×8)

0 0 Z 0 0(12×8)

0 0 0 Z 0(12×8)


︸ ︷︷ ︸

Z



lCZK,t − µCZK
sCZK,t − µCZK
cCZK,t − µCZK
lHUF,t − µHUF
sHUF,t − µHUF
cHUF,t − µHUF
lPLN,t − µPLN
sPLN,t − µPLN
cPLN,t − µPLN
lSKK,t − µSKK
sSKK,t − µSKK
cSKK,t − µSKK

LCZK

SCZK

LHUF

SHUF

LPLN

SPLN

LSKK

SSKK


︸ ︷︷ ︸

αt

+

+ εt, ε ∼ N(0, H), (4.10)

where H is assumed to be diagonal matrix and 0(12×8) denotes (12 × 8) zero

matrix.

We again exploit the variability of State Space framework and incorporate

this regression in such a way that the latent level factors Lcurrency and the latent

slope factors Scurrency become regression coefficients. We specify it in the follow-

ing way; we assume the transition matrix T to have time-varying coefficients;

furthermore, we assume regional latent factors to have a zero variance and

be time-invariant, and most importantly the matrices Φcurrency,t to carry the

principal component paths. Hence, the matrices Φcurrency,t are the time-varying

elements in the matrix T.

In order to simplify the notation of the state equation (4.14), we introduce
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a set of substitutions presented in equations (4.11), (4.12) and (4.13).



αCZE,t

αHUF,t

αPLN,t

αSKK,t

L

S


=



lCZK,t − µCZK
sCZK,t − µCZK
cCZK,t − µCZK
lHUF,t − µHUF
sHUF,t − µHUF
cHUF,t − µHUF
lPLN,t − µPLN
sPLN,t − µPLN
cPLN,t − µPLN
lSKK,t − µSKK
sSKK,t − µSKK
cSKK,t − µSKK

LCZK

SCZK

LHUF

SHUF

LPLN

SPLN

LSKK

SSKK



(4.11)

Note that the shortened matrix in equation (4.11) does not mean the same as

the original one, because it shuffles order of elements. We choose this shorthand

notation and bear in mind the correct order of elements.

Tcurrency =

 a11 0 0

0 a22 0

0 0 a33

 (4.12)

The substitution for currency’s transition matrix is the same as in previous

case. The crucial matrix Φcurrency,t is presented in equation (4.13), where the

φ1,t and φ2,t are not coefficients in common sense, but they carry (all matrices

the same) previously estimated principal components, the level and the slope

principal components, respectively. Importantly, these coefficients occur on

different places of the matrices Φcurrency,t. Therefore we can say that the ma-

trices Φcurrency,t have also a selection function to make sure that the regression
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coefficients L and S load on the correct country specific latent factors.

ΦCZK,t =

 φ1,t 0 0(1×6)

0 φ2,t 0(1×6)

0 0 0(1×6)

 ΦHUF,t =

 0(1×2) φ1,t 0 0(1×4)

0(1×2) 0 φ2,t 0(1×4)

0(1×2) 0 0 0(1×4)



ΦSKK,t =

 0(1×6) φ1,t 0

0(1×6) 0 φ2,t

0(1×6) 0 0

 ΦPLN,t =

 0(1×4) φ1,t 0 0(1×2)

0(1×4) 0 φ2,t 0(1×2)

0(1×4) 0 0 0(1×2)


(4.13)



αCZE,t+1

αHUF,t+1

αPLN,t+1

αSKK,t+1

L

S


=



TCZE 0 0 0 ΦCZE,t

0 THUF 0 0 ΦHUF,t

0 0 TPLN 0 ΦPLN,t

0 0 0 TSKK ΦSKK,t

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

T



αCZE,t

αHUF,t

αPLN,t

αSKK,t

L

S


+

+Rηt, η ∼ N

(
0,

(
Q 0

0 0(8×8)

))
(4.14)

We assume R to be (20 × 20) unit matrix and we do not estimate the off-

diagonal elements of state covariance matrix Q to capture decrease complexity

of the model. Moreover, estimating the off-diagonal elements may lead to

identification problems and will lead to badly-behaved likelihood function.

4.3 Dynamic Nelson-Siegel Shocks

This section builds on novel approach to construct stress scenarios of Šopov

(2009). The Dynamic Nelson-Siegel model and its state space formulation

allows us to construct the 12-month forecast with ease, which is shown in

equation (4.15).

ᾱt+h+1 = TE(αt+h|y) = T ᾱt+h, (4.15)
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where ᾱt+h+1 represents the h+1-ahead forecast and E(αt+h|y) is the expected

value of αt+h given all observed information y. Hence the forecasting is es-

sentially just continuation of Kalman recursion as if these were missing data

(Koopman et al. 1998, p.94).

The shocks are then constructed similarly to building forecast intervals. The

novel method presented in Šopov (2009) uses point forecasts for two factors

and bounds of interval forecasts for the third factor. For example denoting

lt+h + SE(lt+h)Φ
−1(1− p) as l+t+h, where lt+h stands for h-period ahead forecast

made in time t and SE(lt+h) represents its standard errors. Consequently, the

shocked yield curve corresponding to the level shock is given by equation (4.16).
y+
level(τ1)

y+
level(τ2)

...

 = Z

 l+t − µl
st − µs
ct − µc

 (4.16)

Figure 4.2 presents the notion of choosing two point forecasts and one bound of

interval forecasts to construct the shocked curve. The points used in equation

(4.16) are marked with a red dot.

Figure 4.2: Yield Curve Shock Construction Method
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4.4 Implementation

The estimation of the models introduced in this paper is a numerically chal-

lenging task, the proposed single country models imply optimisation over up

to 31 variables.

To estimated the optimal parameter λ, which determines the loadings matri-

ces Z, we use Matlab’s default optimisation function fminsearch and following

steps

1. fixing λ at 0.06 and fitting sequentially Nelson-Siegel curve with ordinary

least squares,

2. taking OLS estimates for β̂i,t’s and λt−1
4 as starting values for the opti-

misation.

3. from the obtained series of sequentially optimal parameters λ, we take

the mean, which will be used further in the thesis.

Since the DNS models are numerically more complicated to estimate, we

perform the computation in econometric package Ox5 using SsfPack 2.26.

Numerical optimisation is not a straight-forward method to solve arbitrary

problem. Particularly, when optimising over large number of parameters, some

reasonable starting values for the optimisation become crucial in order to es-

timate the model successfully. To estimate the 30 parameters and 6 latent

factors7, which each currency models has, we proceed with the following steps:

1. estimation of the model with diagonal transition matrix T ,

2. setting the estimated coefficients of the restricted model as starting values

for the optimisation.

This procedure improved the estimation times dramatically from hundreds

of seconds to only tens of seconds.

4In time t = 1 we simply take λ1 = 0.06.
5Ox is an object-oriented matrix programming language. We use Ox version 5.00 (Doornik

2007).
6SsfPack is an Ox package specialised for estimation of state space models. This solution

has got two advantages: it offers complete set of function to work with state space models
such as likelihood evaluation, and secondly the SsfPack is programmed in C, so it delivers
very fast computation thus even larger models are feasible. For details see Koopman et al.
(1998)

7We specified the models in such a way that the mean coefficient are modelled as latent
factors with no dynamics and zero variance.
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The estimation of the two regional models is even more complicated, yet we

proceed in a similar way. The number of parameters would become rather high,

if we estimated full models as in separate cases, so we restricted the transition

matrices T to be diagonal.

1. estimation of the currency models with diagonal transition matrix T ,

2. setting the estimated coefficients of the restricted model as starting values

for the optimisation and setting the unknown coefficients close to 0,

3. using single currency estimates of covariance matrix Ĥ as ‘true’ values

and not optimising over these parameters. This saves estimation of 48

parameters and considerably decreases the estimation time.

These procedures make sure that the optimisation converges. Furthermore,

these two improvements are essential for practical implementation in industry

and in further development of these models.



Chapter 5

Empirical Results

This chapter presents the estimation results of all the variations of Dynamic

Nelson-Siegel model presented in chapter 4. The latent factors were extracted

with Kalman filter and the model parameters were estimated with Maximum

likelihood presented in section 3.2. The implementation details are described

in section 4.4.

5.1 Dynamic Nelson-Siegel

5.1.1 Principal Component Analysis

In theory, the result of Litterman and Scheinkman (1991) suggests that yields

with different maturities are driven by three common factors. Therefore by

applying the principal component analysis on multivariate time-series of yield

curves, we expect to obtain three components, which are supposed to explain

over 80% of all variation in the data. These first three components are known

as level, slope and curvature components, respectively. Usually, the level com-

ponent explains majority of variation of yields (Diebold and Li 2006).

As we expected, our analysis confirms the results of Litterman and Scheink-

man (1991) and as we can see in Table 5.1, the first three principal components

do explain overwhelming majority of variations in the sample. In Table 5.1,

there are relative and cumulative percentages of variation1 explained by each

component for each currency.

The level component delivers close to 93% of the variation in case of Czech

Crown and Hungarian Forint, slightly above 91% in case of Slovak Crown and

1These percentages are computed by equation (3.25).
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over 98% in case of Polish Zloty. The remaining two components are thus rel-

atively lower in case of Zloty compared to other three currency zones. Czech

Crown shows the highest percentage explained by the slope component suggest-

ing more stable long-end of the curve over time as there is not much variation

left for the curvature components. The curvature components are responsible

for inflexion of the yield curve. High level of curvature changes can be observed

in Figure 3.2 d) in case of Slovak Crown. The very same figure also helps to ex-

plain the large portion of variation explained by the first principal component

of Polish yield curve, it’s the large drop in yields, which occurred in 2002.

Table 5.1: Principal Component Analysis by Currencies

PC1 PC2 PC3
CZK percentage 92.92% 6.32% 0.54%
CZK cumulative 92.92% 99.25% 99.79%
HUF percentage 92.97% 5.09% 1.38%
HUF cumulative. 92.97% 98.06% 99.44%
PLN percentage 98.37% 1.44% 0.15%
PLN cumulative 98.37% 99.82% 99.97%
SKK percentage 91.23% 5.13% 2.77%
SKK cumulative 91.23% 96.37% 99.14%

Source: Author’s calculations

In Figure 5.1, we can see some similarities of the paths of the level compo-

nents of Czech Crown and Polish Zloty. The latter one shows higher amplitude.

All the four currency zones experienced large drop in yields at the end of 2008

and throughout the first half of 2009 caused by the spreading financial crisis.

5.1.2 Dynamic Nelson-Siegel Parameters

The estimated parameters and their standard errors are presented for clarity in

matrices corresponding to the model formulation in equations (4.3) and (4.4).

The estimates for CZK are in equations (5.1) and (5.2); for HUF in equations

(5.3) and (5.4); for PLN in equations (5.5) and (5.6); and the results for SKK

are in equations (5.7) and (5.8). The estimated diagonal elements of Ĥ matrices

are presented as columns in Table 5.2. The last parameter of the Nelson-Siegel

model λ takes these values: λCZK = 0.0801, λHUF = 0.0891, λPLN = 0.0775,
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Figure 5.1: Principal Components of Yield Curves
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λSKK = 0.0702.

CZK : µ̂ =



−2.946

(0.389)

1.983

(0.083)

2.221

(0.070)


, T̂ =



0.982 0.005 −0.007

(0.009) (0.024) (0.014)

0.007 0.894 0.067

(0.021) (0.039) (0.022)

−0.027 0.076 0.865

(0.038) (0.082) (0.049)


(5.1)

Studying closely the results, we see that diagonal elements of the T̂ matrices

dominate the other elements. Almost all factors seems quite persistent. The

exceptions, yet still over 0.8, are the third diagonal elements, which determines

the dynamics of curvature factor, in HUF currency zone and the second, which

determines the dynamics of slope factor, in SKK currency zone. The diagonal

elements are significantly different from 0 at 5% level of significance.

The first element on the diagonal mostly determining the dynamics of level

factor is close to one in all currency zones, which indicates possibility non-

stationary process. In fact, this would not be problem in state space framework,

because it can handle non-stationary processes.

CZK : Q̂ =

 0.049 −0.049 0.041

−0.049 0.111 −0.083

0.041 −0.083 0.505

 (5.2)

Lets look at each currency separately. In equation (5.2), we see an interesting

structure of the CZK factor covariance matrix, where the slope factor is neg-

atively correlated with the other two. Note that the magnitude of variances

cannot be directly interpreted, because the level factor possesses larger loadings

on all maturities, equal to 1, thus its variance seems relatively lower in com-

parison to the other two factors, although effectively capturing larger portion

of variation in the data.

HUF : µ̂ =



−2.088

(0.461)

0.009

(0.201)

−1.070

(0.236)


, T̂ =



0.997 0.050 −0.042

(0.016) (0.023) (0.017)

0.016 0.806 0.132

(0.044) (0.052) (0.037)

0.061 0.152 0.690

(0.084) (0.120) (0.089)


(5.3)
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In equation (5.3), we see that Forint’s level factor coefficient in transition matrix

T is close to one, which would mean it is driven by random walk process.

Generally, all the level driving elements are not significantly different from 1.

The values of other two diagonal coefficients are evidence of AR(1) process

that drives the slope and curvature factors. The estimate of covariance ma-

trix Q̂ in equation (5.4) exhibits the same structure as the one of CZK; the

negatively correlated slope factor with the other two.

HUF : Q̂ =

 0.112 −0.063 0.336

−0.063 0.540 −0.029

0.336 −0.029 2.881

 (5.4)

The parameters of the model for Polish yield curve, in equation (5.5), are to

some extend affected by the large drop of the polish zero rates at the beginning

of our sample. In comparison with the other three models, the Polish model

has got relatively lower and negative mean parameters. We can see results of

these differences in Figure 5.2, where we plotted the curves based only on the

estimated mean parameters µ̂ as if the factors were equal to 0. The PLN curve

is downward sloping and positioned at higher yields than the others.

PLN : µ̂ =



−3.891

(0.194)

−3.937

(0.228)

−5.092

(0.266)


, T̂ =



0.961 0.012 −0.018

(0.017) (0.020) (0.018)

0.010 0.859 0.130

(0.025) (0.024) (0.022)

−0.145 −0.009 0.934

(0.036) (0.043) (0.041)


(5.5)

In equation (5.6), we see the same structure of covariance matrix Q̂ as in case

of CZK and HUF. Comparing the magnitude of the level variance, we see that

the CZK zone seems to have the most stable yield curve and the Zloty’s yields

are by contrast the most varying. These results are confirmed by graphical

analysis of the yield curve plots in Figure 3.1.

PLN : Q̂ =

 0.180 −0.178 0.081

−0.178 0.239 −0.133

0.081 −0.133 0.755

 (5.6)

The Slovak Crown model exhibits similar parameter characteristics to the Czech
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Crown model. In equation (5.7), we see a negative level factor mean, a relatively

lower positive slope factor mean and a positive curvature mean, which leads to

very similar mean yield curve in Figure 5.2.

SKK : µ̂ =



−1.742

(0.429)

0.934

(0.061)

2.476

(0.279)


, T̂ =



0.976 0.037 0.025

(0.019) (0.049) (0.017)

0.016 0.775 0.050

(0.054) (0.076) (0.027)

0.016 0.104 0.883

(0.064) (0.184) (0.067)


(5.7)

Unlike in other currency zones, the SKK covariance matrix Q̂ has a different

structure. In figure (5.8), we see that the curvature factor is negatively corre-

lated with the other two. This suggests that an increase in the level factor is

accompanied by a decrease in the curvature factor, which curbs the movements

of mid-term rates and emphasises the shifts of short- and long-term rates. In

other words, the upward shift goes together with inflexion and vice versa.

SKK : Q̂ =

 0.062 −0.054 −0.022

−0.054 0.136 −0.018

−0.022 −0.018 0.881

 (5.8)

The estimates of covariance matrices Ĥ shows at which maturities the model

corresponds the best to fitted yield curves. In section A.3 of Appendix, we

present the estimates of the model based on currencies of data-set 1; for EUR,

GBP and USD, which show similar results in terms of persistence of the fac-

tors and structure of the covariance matrices as in Diebold et al. (2006) and

most importantly the parameter characteristics are almost identical to our re-

gional currency models. The similarities are: the coefficients on the diagonal

of transition matrices are close to 1 signalling high persistence in the process,

the GBP model shows the same structure of the factor covariance matrix Q̂ to

the SKK model and the USD model possesses the same structure as the other

three models. Table 5.3 presents the Likelihood ratio test for diagonality of

covariance matrices Q̂. We restrict the matrices Q̂ to be diagonal and estimate

the model once again to obtain the maximised value of the likelihood function

of restricted models. We see that in all cases the extra three parameters in

matrix Q̂ add sufficient amount of log-likelihood, thus we can reject the null

hypothesis at 5% level of significance in favour for the unrestricted models.
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Table 5.2: Estimates of Diagonal Elemenets of Ĥ

τ ĤCZK ĤHUF ĤPLN ĤSKK

1M 0.022 0.147 0.026 0.028
2M 0.009 0.040 0.005 0.004
3M 0.002 0.337 0.002 0.001
6M 0.013 0.064 0.007 0.034
9M 0.031 0.136 0.014 0.065
1Y 0.036 0.215 0.021 0.084
3Y 0.036 0.038 0.005 0.008
5Y 0.011 0.003 0.007 0.000
6Y 0.003 0.000 0.002 0.593
7Y 0.877 0.102 0.960 0.000
8Y 0.003 0.001 0.005 0.001
10Y 0.028 0.026 0.061 0.013

Source: Author’s calculations

Slightly less significant results of the HUF and the SKK model caused the

Bayes information criterion to prefer the restricted model, i.e. the criterion is

lower for the restricted model; as it can be seen in Table 5.4.

Table 5.3: Diagonality of Q – Likelihood Ratio Test

Currency LR p-value
CZK 31.171 +0.00
HUF 12.657 0.0054
PLN 59.043 +0.00
SKK 9.0492 0.0286

χ2
3(0.975) 9.3484

Source: Author’s calculations

5.2 Regional Models – Estimation

In this section, we estimate the regional models, yet we need to confirm our

intuition first by performing the principal component analysis on the combined

data-set. This data-set includes the four regional currency yield curves. We

adjusted the sample length to fit the shortest sub-sample available, which is

the SKK sample starting 30-Sep-2003 and ending 31-Dec-2008, when the Slovak
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Figure 5.2: Regional Mean Yield Curves
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x-axis denotes maturities τ in months; y-axis denotes yield rates in %

Republic accepted the common currency Euro. Hence, we work with sample of

n = 64 observation and p = 48 maturities.

5.2.1 Principal Component Analysis – Regional Level

The results from the principal component analysis confirmed our intuition that

the four regional currencies are driven by common factors. In Table 5.5, we

show the results up to the fourth principal component. The first principal com-

ponent (level) explains less variation of the data than in one currency only anal-

ysis. The second and the third component (slope and curvature, respectively)

Table 5.4: Selection Criteria

Currency AIC AICres BIC BICres

CZK -871.93 -843.18 -579.77 -577.57
HUF -149.00 -138.76 143.16 126.84
PLN -521.43 -464.81 -229.27 -199.20
SKK -405.88 -399.24 -113.71 -133.64

Source: Author’s calculations
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each explains over additional 10% of the variation in the data. Interestingly,

the fourth principal component explains additional 5% of the variation, which

can still be considered. We presume that this component gathers some regional

specifics not significant or observable on country level.

Table 5.5: Regional Principal Component Analysis

PC1 PC2 PC3 PC4
Percentage 68.03% 11.89% 10.99% 5.65%
Cumulative 68.03% 79.92% 90.91% 95.56%

Source: Author’s calculations

The Regional Common Factor Model, the way we specify it, requires two

principal components as regressors. Therefore we include two strongest princi-

pal components known as the level and the slope components. These together

capture near 80% of variation of the data. The paths of the two components

are plotted in Figure 5.3.

Figure 5.3: Regional Principal Components

0 10 20 30 40 50 60 70
−15

−10

−5

0

5

10

 

 
PC1

PC2

We use these results in both regional models. The Regional Common Factor

Model is built with two regional common factors – level and slope, similarly

the Principal Component Regional Model uses the paths of the two principal

components as explanatory variables, which each currency sub-model can load

on.

5.2.2 Regional Common Factor Model Parameters

The Regional Common Factor Model is estimated with method described in

chapter 3. The estimation of the whole model takes about 8 minutes on an
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average computer, which may seem to be quite a long time, yet recall that the

sample has 3072 data-entries and we estimate 37 parameters and extract 26

latent factors2. Moreover, due to implementation improvements presented in

section 4.4, these times have been effectively decreased.

The resulting estimates of elements of transition matrix T and correspond-

ing standard errors are in Table 5.6. For reader’s convenience we put the diag-

onal elements into columns. The estimated means of currency specific factors

and the estimates of currency loadings on regional factors is in Table 5.7.

Table 5.6: Estimates of Diagonal Elemenets of Transition Matrix T̂

CZK HUF PLN SKK
coeff. est. SE est. SE est. SE est. SE
a11 1.005 0.006 1.003 0.007 0.996 0.009 0.991 0.011
a22 0.944* 0.028 0.949 0.037 0.964 0.041 0.780* 0.083
a33 0.891 0.067 0.832 0.102 0.952 0.044 0.818* 0.076

∗ denotes element significantly different from 1 at 5% significance level.

Source: Author’s calculations

As we can see in Table 5.6, when removing the off-diagonal elements from

currency sub-models and introducing the regional common factor for level and

slope, all diagonal elements increased. Most of the diagonal elements is not

significantly different from 1, which suggest two things: the model can be esti-

mated with restricting the diagonal elements to 1, which would mean assuming

that the factors follow a random walk, and the regional common factors capture

the ‘predictable’ dynamics.

The only exceptions are the slope AR(1) coefficient in the CZK sub-model

and the slope and the curvature AR(1) coefficient in the SKK sub-model. The

Czech Crown does not load on the regional slope factor at all, which keeps the

currency slope AR(1) dynamics in place. In case of the SKK sub-model we see

rather low loadings, which possibly still keeps the AR(1) process for currency

specific factors.

The single currency model sign structure change in the regional model in

case of Forint sub-model and most noticeably in case of Zloty sub-model. The

22 × 12 diagonal elements and variances of transition matrix T plus 4 elements of factor
transition matrix ρ plus 1 corresponding covariance coefficient + 8 coefficients of matrices
Φ = 37 parameters; 12 currency specific latent factors + 12 currency specific factors means
modelled as latent factor with 0 variance + 2 regional factors = 26 latent factors.
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Table 5.7: Estimates of Means µ̂ and Matrices Ψ̂

CZK HUF PLN SKK
coeff. est. SE est. SE est. SE est. SE
µl -0.716 0.490 -2.123 0.497 -2.166 0.496 -1.477 0.483
µs 2.024 0.175 -0.879 0.413 1.296 0.370 0.393 0.046
µc 2.576 0.321 -0.201 0.405 1.898 0.453 0.368 0.256
ψ1 0.027 0.930 0.196 0.196 0.395* 0.090 0.122 0.273
ψ2 0.000 48.063 0.150 0.532 0.420* 0.091 0.030 1.685

∗ denotes element significantly different from 0 at 5% significance level.

Source: Author’s calculations

latter sub-model estimate suggests change of sign of the slope and curvature

mean. These changes can be explained while looking at the bottom part of

Table 5.7, where we can see how much each currency’s yield curve loads on the

regional latent factors. To address the changes in Zloty sub-model; the PLN

factors load the most on the regional level and slope factors. Moreover, these

two coefficients are significantly different from 0.

The Czech Crown does not load on the regional slope factor at all and

because the principal component analysis revealed important slope component,

we conclude there are country specific slope driving forces. The CZK sub-model

also has the lowest coefficient φ1 and also the country specific means differ only

slightly from the currency specific models.

Although lower than the PLN coefficients, the HUF sub-model loads rela-

tively a lot compared to the CZK sub-model. The HUF and SKK sub-models

follow similar pattern to the CZK model, with higher loadings on regional level

factor.

Table 5.8: Regional Latent Factor Transition Matrix ρ̂

ρ̂ ˆCov(ρ)
ρ11 -0.300 ρ12 -0.150 1. -0.841

(0.257) (0.261)
ρ21 0.620 ρ22 0.458 -0.841 1.

(0.259) (0.264)

The extracted regional factors are plotted in Figure A.2. We see that the
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Table 5.9: Estimates of Diagonal Elemenets of Q̂

Q̂CZK Q̂HUF Q̂PLN Q̂SKK

0.041 0.067 0.636 0.063
0.051 0.377 0.016 0.156
0.667 3.155 0.639 1.077

Source: Author’s calculations

factors are implicitly forced to have a zero mean and are highly negatively

correlated; see Table 5.8. Table 5.9 shows the estimated variances of currency

specific factors associated with currency sub-models. Generally speaking, by

introducing two regional common factors the currency specific factors’ variance

decreased. On the other hand, the variance of the curvature factor increased in

all sub-models but the PLN one. The PLN sub-model experienced increase in

the level factor variance and large decrease in the slope factor variance. Hence

we conclude that the extracted regional factors are mostly influenced by Polish

Zloty, whose impact is mostly on the regional curvature factor, which makes

other currency load less on this regional factor and with higher errors.

To complete the analysis, we plotted the extracted latent factors for each

currency zone in Figure A.2. When comparing graphically the extracted factors

based on the DNS models and the Regional Common Factor model, we can see

that the introduction of the regional factors absorbed some of the variance

of the factors and that these currency specific level and slope factors of the

regional model seem much smoother.

Figure 5.4: Regional Common Factors
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5.2.3 Principal Component Regional Model Parameters

The Principal Component Regional Model is estimated in similar fashion as

previous models with one difference: initially, we need to perform the princi-

pal component analysis to obtain the two principal component paths, which

we use as regressors that represent the regional level and slope components.

Despite the more elaborate notion behind this model, the estimation time is

significantly lower; less than a minute. This fast estimation is due to lower

number of parameters and orthogonal regressors. Moreover, we estimate only

24 parameters but 32 latent factors this time.3

Table 5.10 presents the estimates of the diagonal transition matrices. Nearly

all the coefficient are not significantly different from 1 at 5% significance level.

This result confirms similar result of the Regional Common Factor model; the

model suggests that the introduction of regressors based on the first two prin-

cipal component leads to factors, which are driven by random walk. The only

exception are, the same as in the previous model, the coefficients driving the

CZE slope factor and the SKK slope and curvature factors. These two excep-

tions signal country specific dynamics, whose predictability can be captured

by AR(1) one specification and further used, p.e. forecasting. In other words,

the regional components may absorb the predictability of present in the single

currency models.

Table 5.10: Estimates of Diagonal Elemenets of Transition Matrix T̂

CZK HUF PLN SKK
coeff. est. SE est. SE est. SE est. SE
a11 1.003 0.007 0.997 0.008 0.984 0.013 0.985 0.012
a22 0.919* 0.033 0.948 0.037 0.984 0.063 0.784* 0.080
a33 1.002 0.033 0.832 0.101 0.951 0.045 0.825* 0.078

∗ denotes element significantly different from 1 at 5% significance level.

Source: Author’s calculations

Since the principal components differ from the regional factors of the pre-

vious model, we can expect the results to differ as well. The mean coefficients

32 × 12 diagonal elements and variances of transition matrix T similar to the previous
model = 24 parameters; 12 currency specific latent factors + 12 currency specific factors
means modelled as latent factors with 0 variance + 8 latent factors with zero variance acting
as currency loading coefficient on the two extracted principal components = 32 latent factors.
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are not much of our interest, because the principal components do not have to

have zero means, thus the currency specific mean coefficients have to balance

this.

Nevertheless, the loadings coefficients or the regression coefficients in this

case, are all significantly different from zero. This is probably caused by the

fact that principal components are notionally the ideal regressor one can hope

for: orthogonal to each other and capturing exhausting amount of variation in

the data.

Table 5.11: Estimates of Means µ̂ and Currency Loadings L, S

CZK HUF PLN SKK
coeff. est. SE est. SE est. SE est. SE
µl -0.336 0.497 -2.150 0.500 -2.216 0.477 -1.479 0.465
µs 1.877 0.120 -0.875 0.411 1.297 0.478 0.383 0.049
µc -0.140 0.520 -0.126 0.409 1.887 0.451 0.836 0.427
L -0.156 0.003 -0.208 0.005 -0.137 0.008 0.184 0.038
S -0.017 0.001 -0.196 0.010 0.183 0.004 -0.079 0.002

Source: Author’s calculations

In Table 5.12 we can present the estimated of variances currency specific

factors associated with the sub-models. Since the sub-models can load on

the regional principal components also with negative sign the impacts on the

factors’ variance is ambiguous. The PLN sub-model shows general decrease in

factor variation, whereas the variances of the SKK sub-model even increased.

This leads us to similar conclusion as in the case of the RCFM. The Zloty

yield curve is driven most in line with the regional yield curve, therefore the

introduction of regional principal components decreased the Zloty sub-model

variances. By contrast, the SKK yield curve is probably least bond to the

regional yield curve.

Table 5.12: Estimates of Diagonal Elemenets of Q̂

Q̂CZK Q̂HUF Q̂PLN Q̂SKK

0.055 0.095 0.153 0.084
0.061 0.380 0.161 0.158
0.228 3.272 0.652 1.335

Source: Author’s calculations
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The results are notionally identical to the previous case confirming that the

two specifications are relevant to yield curve modelling: low loadings in the

CZK sub-model and high loadings in the HUF and the PLN sub-model.

In Table 5.11, we notice that the CZK sub-model has the lowest absolute

magnitude of parameters compared to the other sub-model parameters. Intro-

ducing the regional principal components caused the HUF sub-model to load

more on these components than on the regional common factors of the previous

models. Furthermore, the HUF sub-model has both loading coefficients LHUF

and SHUF negative as well as the CZK sub-model. We can thus expect both

yield curves to behave in a similar fashion, yet Forint yield curve with higher

amplitude.

Unfortunately, due to identification issues of the Regional Common Factor

model and consequent restrictions to obtain positive loadings parameters, we

cannot compare the signs of parameters between the models.

5.3 Application

In this section we present two possible applications of the models. To show

the variability of the models and the state space formulation, we show one risk

management example suitable for managing interest rate risk and one example

applicable in general economics for analysing various time-series data. The

former example introduces a straight-forward way how to design yield curve

stress scenarios, which may be used to compute regulatory or economic capital.

The latter shows how to detect structural breaks within the data.

5.3.1 Stress Scenarios Application

The interest rate risk management relies on well-estimated models, which we

obtain with high quality data. For this reason, we proceed with EUR, GBP and

USD zero rates due to higher liquidity of interest rate swaps denominated in

these currencies. We exploit the outstanding forecasting properties of the DNS

model found in Diebold and Li (2006) and Diebold et al. (2006) in combination

with the stress scenario design approach of Šopov (2009).

The estimates of EUR, GBP and USD models are presented in appendix

A.3. Using these estimates, the forecasting algorithm of section 3.2.2 and stress

curve design approach shown in section 4.3, we calculated the stressed curves

as of December 2007 for the next 12 months at 99% confidence level.
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The resulting stressed yield curves are plotted in Figures 5.5, 5.6 and 5.7.

Each figure shows level, slope or curvature shocks for each currency zone in

comparison with yield curves as of December 2007 and realised yield curve as

of December 2008. The solid line denotes 12-month ahead forecast computed

by equation (4.15). Clearly, the forecast could not capture such a massive drop

experienced in 2008. The most successful is the forecast computed for the GBP

zone, which predicted change in slope, or in other words predicted a moderate

drop in short-term rates. The forecast for the USD zone also predicted a way

of change of the short-term rates, yet by smaller amount.

We see how the shape of the stressed yield curves is fully determined by the

Nelson-Siegel factor loadings. This leads to widest level shock and differently

shaped slope and curvature shock. The level shock affects all maturities equally,

the slope shock results in short-term rate movements and the curvature shock

determines from shorter-term rates to mid-term rates, after which it starts to

decay.

Considering the year 2008 to be an extreme year, these shocks were able

to capture most of the price change of stylised portfolios as shown in Šopov

(2009).

Figure 5.5: Level Shocks
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Figure 5.6: Slope Shocks
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Figure 5.7: Curvature Shocks
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5.3.2 Structural Break Detection

This section introduces another application based on the abilities of state space

framework. We show how to detect structural breaks in our single currency

models of section 4.1.2. Using the method proposed in section 3.2.3, we first

estimate the model and construct the auxiliary residuals of equations (3.17)

and (3.18). The plots of the auxiliary residuals will uncover possible structural

breaks.

We give examples of all regional currencies of data-set 2 and one currency

model of data-set 1, which is the US dollar. Furthermore, we select two cur-

rencies for closer analysis, which would be CZK and for its high liquidity USD.

As discussed in section 3.2.3, we begin our analysis by computing and plot-

ting the auxiliary residuals.4 The plots of auxiliary residuals for CZK and USD

are in Figure 5.8 and Figure 5.9 and for HUF, PLN and SKK in Figure A.3,

Figure A.4 and Figure A.5.

By visual analysis we see that there are some relatively more extreme values

in all of these plots. We selecte one suspicious point in time for all currencies

and summarise them in the second columns of Table 5.13 and Table 5.14. In

these tables, we see that we mostly selected the points of possible structural

breaks associated with the slope factor. There is a very good explanation for

this, this phenomenon is caused by the Nelson-Siegel loadings determining what

factors drive what interest rates. The short-term rates are those most sensitive

to shocks and because the slope factor loads mostly on these rates, it is very

vulnerable to be affected. More persistent structural changes slowly affecting

the whole yield curve would be reflected in the level factor fluctuations.

After selecting the possible breaks, we can proceed to include a dummy

regressor in each single currency model. Estimating such models gives us the

information about the size of the break and its significance. We chose the

measurement impulse dummy for the HUF, PLN and SKK models, the switch

impulse dummy for the CZK model and the bounce-back impulse dummy for

the USD model.

Measurement Dummy The motivations is to show usage of different dum-

mies giving different interpretations. In case of the HUF and PLN model we

focused on the possible structural breaks associated with the outbreak of the

crisis in September 20085. In Table 5.13 we see that the dummy coefficient βA

4Note that this computation can be done along with the estimation
5Lehman failed 15th September 2008.
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Figure 5.8: Auxiliary Residuals – CZK
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Figure 5.9: Auxiliary Residuals – USD
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takes large absolute values in both models, which means a sharp unexpected

increase in Forint slope factor and a large unexpected drop in Zloty curvature

factor. Both occurred in the by the end of the month of the crisis outbreak.

The structural break detected in the SKK currency zone affected level factor

of the whole yield curve by -0.597 and as we can see in Figure 3.2, it correctly

matches with the time when the whole SKK yield curve started to rise. All βA

coefficients are significant at 1% level.

1,658095745 1,661585397 1,658953459 1,669402222

Table 5.13: Impulse Interventions Coefficient Significance

Type Date βA SE t-stat df t(0.95) p-val.
CZK Slope Dec-2000 -1.107 0.018 -8.294 116 1.658 +0.00
HUF Slope Sep-2008 2.180 0.292 4.032 92 1.662 +0.00
PLN Curv. Dec-2008 -2.096 0.446 -3.139 109 1.659 0.001
SKK Level Aug-2006 -0.597 0.021 -4.141 63 1.669 +0.00

Source: Author’s calculations

Switch & Bounce-back Dummies These two types of impulse response

dummies can be used to describe better the dynamics of the structural breaks.

One can combine different structures to analyse possible spill-overs between

factors over time.

As noticed above, the CZK model is estimated with a switch dummy vari-

able that has one at time t of suspicious break and -1 at time t + 1. The

estimation of the model including the dummy regressor delivered a significant

estimate of the coefficient βA = −1.107 precisely finding a temporary drop in

the CZK short-term rates; see the first row of Table 5.13. The drop and the

switch effect is plotted in Figure 5.10, where the yield curve as of November

2000 started to drop, yet the short-term rates dropped more and went up again

in January of 2001, which shuffled with the yield curve’s slope. This happened

when the CZK crow reached its minimum USD exchange rate of 40.18 in last

quarter of 2000.

Based on our visual analysis of auxiliary residuals of late 2008 in Figure 5.9,

we decide to employ bounce-back impulse response dummy for USD model. The

bounce-back structure can be seen best in slope factor residuals. Table 5.14

reports the results of three separate estimations, which specifies the bounce-

back dummy each time for a different factor. In line with our visual analysis,
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Figure 5.10: Switch Effect – CZK
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we obtain highly significant non-zero estimate of coefficient βA based on slope

residuals. We can reject the bounce-back type of structural break for the USD

level factor, but we receive quite significant estimate of coefficient βA at 10%

level for the curvature factor.

Table 5.14: Impulse Response Significance – USD

Factor Date βA SE t-stat p-value
Level Sep-2008 -0.064 0.016 -0.502 0.308
Slope Sep-2008 0.608 0.029 3.569 0.000

Curvature Sep-2008 0.562 0.170 1.363 0.087
t157(0.95) 1.655

Source: Author’s calculations

5.4 Concluding Remarks

In this section we presented estimates of all models developed in Chapter 4,

empirical results and we drew several conclusions. The simplest models were

estimated for central European currencies for the first time and we conclude

that the dynamic Nelson-Siegel model proposed by Diebold et al. (2006) is

suitable for modelling these yield curves.

The single currency models brought encouraging results consistent with re-

sults of Diebold and Li (2006); Diebold et al. (2006). Consequently, we proceed

to estimation of the two novel and more elaborate regional models introduced

in section 4.2.1 and 4.2.2. Initially, we examine whether there exists a regional
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yield curve. The principal component analysis confirmed our intuition based

on findings of Diebold et al. (2008). There is one dominant principal compo-

nent, which we refer to as level component, two less dominant referred to as

slope and curvature components; moreover, there is a fourth component, which

captures comparable variation. As a detour we presume the fourth component

to carry information observed as noise on currency level, but as a fourth most

dominant component on regional level. We extract the paths of the first two

components—level and slope components—to base our further analysis on.

The innovative Regional Common Factor model proves to be an adequate

for modelling regional yield curve and the model manages to extract regional

level and slope factors. Since these factors are forced to have zero mean, they

seem to be negatively correlated distortions. Their introduction into the model,

decreases variance of the currency specific level and slope factors. Moreover, it

seems that these regional factors capture so much of the information present

in the data that most of the currency specific diagonal elements of transition

matrices T are not significantly different from one. This leads us to a con-

clusion, that the only predictable movements are determined on regional level.

Interestingly, the Polish Zloty yield curve is attached to the regional factors

more than other currencies. By contrast, the Slovak Crown yield curve inherits

its own dynamics.

The second innovative model is the Principal Component Regional model,

which directly exploits the first two principal components as regressors. This

novel extension has two advantages: it speeds up the estimation and delivers

very significant regression coefficients. This models confirms our findings based

on the Regional Common Factor model and moreover it adds information about

signs of loading coefficients. Similarly, most of the currency specific diagonal

elements of transition matrices T are not different from 1; the only exceptions

are the CZK coefficient associated with the slope factor and the SKK coeffi-

cients driving dynamics of the slope and the curvature parameters. The latter

also supports the conclusion that the SKK yield curve is most detached from

the regional yield curve.

Furthermore, we find that the CZK, the HUF and the PLN level loading

coefficient is negative, which either means that the yield curve level moves in

opposite direction to the regional one, or that the regional level component

moderates the currency specific ones. In case of the curvature loadings, we find

similar pattern with only difference and that is the PLN has the only positive

coefficient in stead of the SKK one.
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Finally, we presented two possible applications of the Nelson-Siegel and

state space framework: one risk management example and one example appli-

cable in general economics for analysing various time-series data. The former

example provides an easy way to construct yield curve stress scenarios. The

key idea is to exploit the three factor structure of the Nelson-Siegel model and

straightforward forecasting abilities of the state space models. To construct

the shock associated with a factor, we simply compute point forecasts for the

other two factors for a desired horizon and interval forecast at desired level

of confidence for the factor we are interested in. By using the Nelson-Siegel

loadings matrix, the two point forecasts and one bound of the interval forecast

we obtain shocked curve for given horizon and at a given confidence level.

The later example introduces a general approach to detect and model struc-

tural breaks. We show how to analyse various types of impulse intervention

dummies as: measurement, switch and bounce-back dummy. After graphi-

cal analysis of auxiliary residuals, we select suspicious points and include the

impulse interventions as dummy regressor into the Nelson-Siegel model. The

significance of the dummy coefficient then suggests whether it should be re-

jected or not. We conclude that the HUF and the PLN yield curves both

experienced structural break in the month of the crisis outbreak—September

2008. We found a significant switch type break in CZK yield curve when the

Czech Crown was reaching the bottom of CZK 40.18 per USD at the end of

2000. Finally, we identified bounce-back type of structural break in USD yield

curve in September 2008 and two consecutive months, again the months of

Lehman fail.



Chapter 6

Conclusion

In this thesis we focus on and analyse dynamics of yield curves of various cur-

rency zones. We set off to modify Dynamic Nelson-Siegel approach to capture

driving factors behind regional yield curves and by using state space framework

and principal component analysis we endeavour to extract regional common

factors. After setting up the framework and estimating the models we show

two possible practical applications.

The dynamic Nelson-Siegel model proved to be an adequate model to de-

scribe dynamics in single country yield curve. The key idea is to model param-

eters of classical Nelson-Siegel one-period model as latent factors, thus looking

at the model as if it was a factor model. In combination with state space

formulation, we can take the yield curve as multivariate time-series and the

unobserved factors as state equation. Therefore, we obtain a clear inference

and a way to estimate the model in one step through Maximum likelihood and

Kalman filter.

Furthermore, we propose two innovative regional models. These two models

are, to the author’s best knowledge, novel and not presented anywhere else. Our

intuition is based on findings of Diebold et al. (2008) who discovered global yield

curve by analysing zero rates of USD, GBP, DM and JPY. Hence, we expect to

find similar common dynamics in currencies’ yield curves geographically even

closer: CZK, UHF, PLN and SKK.

We model the regional yield curve as a stacked currencies’ yield curves in

one step. The first proposed regional model relies on Kalman filter to extract

the regional factors, thus we refer to it as to the Regional Common Factor

model. The second proposed model includes regional principal components

as regressors, thus we call it the Principal Component Regional model. One
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of the innovations of this thesis is to impose restrictions on parameters of

the Regional Common Factor model to counter the identification issues. We

restrict parameters determining how much each currency’s yield curve loads

on the regional factors to be positive. This device allows us to estimate the

parameters and extract several unobserved latent factors: each currency’s level,

slope, curvature factor plus regional level and slope factors.

Despite its notional complexity, the Principal Component Regional model is

easier to estimate than the Regional Common Factor model. By including the

extracted first two principal components, we obtain two high quality regressors,

which can be seamlessly included into the state space framework. Similarly,

this model extracts currencies’ unobserved latent factors, yet it does not extract

the regional factors. It rather estimates loadings parameters associated with

the regressors.

Since most of the models are quite complex and/or novel, we cannot rely

on of-the-shelf econometric software. We estimate the models with custom

made software programmed in OxDoornik (2007) extended with SsfPack 2.2

Koopman et al. (1998).

Initially, we can observe similar yield curve dynamics of the regional cur-

rencies and yield curves in more liquid currency zones of EUR, GBP and USD.

Moreover, almost all diagonal coefficients of transition matrices representing

the main dynamics of latent factors seem to be quite persistent with values

close to 1. This suggests that possible random walk specification for the latent

factors may be considered thus opening a new topic for further research.

The regional models bring more information how much currencies’ sub-

models load on regional factors or principal components. We find that the PLN

yield curve loads the most on the regional factors and these loading coefficients

are significant, whereas the CZK level factor loads the least and the slope factor

does not load on regional factors at all. We conclude that the CZK slope factor

possesses its own dynamics corresponding to country specific features.

The Principal Component Regional model brings similar conclusions. The

CZK has a minute slope loadings coefficient. Since the loadings coefficient are

not restricted to be positive in this model, we can observe their signs. The CZK

and the HUF sub-models load with negative sign on the first two principal

components. Interestingly, when negative coefficients are allowed, the HUF

sub-model has the largest magnitude followed by the PLN coefficients. The

SKK yield curve is the only one to load on the first principal component—level
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component—with positive sign and the PLN yield curve is the only one to load

on the second principal component—slope component—with positive sign.

The first practical application shows how to use the established framework

in interest rate risk management. Using the forecasting abilities of state space

models, we computed 12-month stress scenarios at 99% level. The main idea

is to combine interval forecasts with point forecasts to obtain shocked curves

for one year horizon. This procedure is performed on models for more liquid

markets: EUR, GBP and USD.

This thesis further applies currently known structural breaks detection tools

on the single currency regional models to identify critical moments in evolution

of each currency yield curves. This results in a coefficient associated with the

dummy variable. The magnitude and significance of the coefficient give us

additional information about the structural breaks.

In conclusion, the main contribution of this thesis is a creation of a complete

framework that enables us to analyse yield curves, to design risk scenarios and

to detect structural breaks of various types. Importantly, all of the applications

rely on established econometric and statistic methods, which we, in addition,

present along with statistical background needed to understand and be able to

use the models.



Bibliography

Brinkhuis, J. and Tikhomirov, V., Optimization: Insights and Applications,

Princeton Series in Applied Mathematics, Princeton University Press, Wiley,

2005, ISBN 978-0-691-10287-0

Christensen, J.H.E., Diebold, F. X. and Rudebusch, G.D., The Affine

Arbitrage-Free Class of Nelson-Siegel Term Structure Models, Manuscript,

University of Pennsylvania and Federal Reserve Bank of San Francisco, (Orig-

inal version: NBER Working Paper No. 13611, 2007), 2009

Christensen, J. H. E., Diebold, F. X. and Rudebusch, G. D., An Arbitrage-Free

Generalized Nelson-Siegel Term Structure Model, The Econometrics Journal,

12, 33–64, 2009

Christoffersen, P. F., Evaluating Interval Forecasts, International Economics

Review, Volume 39, Issue 4, 1998

Crouhy, M., Galai, D. and Mark, R., The Essentials of Risk Management,

McGraw-Hill, 2006

Diebold, F. X., Li, C., Forecasting the Term Structure of Government Bond

Yields, Journal of Econometrics, 130, 337-364., 2006

Diebold, F. X., Rudebusch, G. D. and Aruoba, B., The Macroeconomy and the

Yield Curve: A Dynamic Latent Factor Approach, Journal of Econometrics,

131, 309-338, 2006

Diebold, F. X., Ji, L. and Li, C., A Three-Factor Yield Curve Model: Non-

Affine Structure, Systematic Risk Sources, and Generalized Duration, in L.R.

Klein (ed.), Long-Run Growth and Short-Run Stabilization: Essays in Mem-

ory of Albert Ando. Cheltenham, U.K.: Edward Elgar, 240–274, 2006



Bibliography 63

Diebold, F. X., Li, C. and Yue, V., Global Yield Curve Dynamics and Interac-

tions: A Generalized Nelson-Siegel Approach, Journal of Econometrics, 146,

351-363, 2008

Doornik, J. A., Object-Oriented Matrix Programming Using Ox, 3rd ed. Lon-

don: Timberlake Consultants Press and Oxford: www.doornik.com, 2007

Driessen, J., Melenberg, B., Nijmanb, T., Common factors in international

bond returns, Journal of International Money and Finance 22, pp. 629–56,

2003

Durbin, J., and Koopman, S. J., Time Series Analysis by State Space Methods,

Oxford University Press, 2001, ISBN 978-0-19-852354-3

Enders, W., Applied Econometric Time Series, Wiley Series in Probability and

Statistics, Wiley, 2003, ISBN 0-471-23065-0

Harvey, A. C., Forecasting structural time series models and the kalman filter,

Cambridge University Press, 2002, ISBN 0-521-40573-4

Jungbacker, B. and Koopman, S. J. Likelihood-based analysis for dynamic fac-

tor models, Department of Econometrics, VU University Amsterdam, 2008

Jungbacker, B. and Koopman, S. J., Wel, van der, M., Dynamic Factor Models

with Smooth Loadings for Analyzing the Term Structure of Interest Rates,

Discussion Paper TI 2009-041/4, Tinbergen Institute, 2009

McNeil, A. J., Frey, R., Embrechts, P., Quantitative risk management, Prince-

ton University Press, 2005, ISBN 0-691-12255-5

Nelson, C. R., Siegel, A. F., Parsimonious modeling of yield curve, Journal of

Business 60, pp. 473–489, 1987

Jong de, P., Penzer, J., Diagnosing Shocks in Time Series, Journal of the

American Statistical Association, Vol. 93, 1998, rev. 2000

Kalman, R. E., A New Approach to Linear Filtering and Prediction Problems,

J.Basic Engineering, Transactions ASMA, Series D, 82, 1960

Koopman, S. J., Shephard, N, and Doornik, J. A, Statistical algorithms for

models in state space using SsfPack 2.2, Econometrics Journal, vol. 1, pp.

1–55, 1998



Bibliography 64

Litterman, R., Scheinkman, J., Common factors affecting bond returns, Journal

of Fixed Income 1, 54–61, 1991

Rodrigues, A. P., Term structure and volatility shocks, Federal Reserve Bank

of New York, 1997

Svensson, L. E. O., Estimating Forward Interest Rates with the Extended

Nelson-Siegel Method Quarterly Review, No. 3, Sveriges Riksbank, 13–26.
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Appendix A

Appendix

A.1 Regression Lemma

The lemma and its proof can be found in Durbin and Koopman (2001, p. 37)

Regression Lemma A.1.1. Assume x, y, z to be random vectors of arbitrary

orders with means µp and covarance matrices Σpq = E[(p − µp)(q − µq)
′] for

p, q = x, y, z with µz = 0 and Σyz = 0. Then

E(x|y, z) = E(x|y) + ΣxzΣ
−1
zz z, (A.1)

Var(x|y, z) = Var(x|y) + ΣxzΣ
−1
zz Σ′xz. (A.2)

♠

A.2 Dynamic Nelson-Siegel – Global Models

EUR : µ̂ =



−2.268

(0.467)

2.365

(0.294)

2.539

(0.038)


, T̂ =



0.992 0.017 0.017

(0.007) (0.017) (0.016)

0.007 0.962 0.067

(0.015) (0.026) (0.024)

0.001 0.018 0.883

(0.026) (0.054) (0.054)


(A.3)

EUR : Q̂ =

 0.026 −0.029 0.002

−0.029 0.058 0.003

0.002 0.003 0.316

 (A.4)
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USD : µ̂ =



−3.134

(0.416)

1.412

(0.338)

2.24

(0.21)


, T̂ =



0.991 0.016 0.013

(0.008) (0.012) (0.014)

0.009 0.942 0.067

(0.015) (0.021) (0.034)

0.003 0.019 0.893

(0.014) (0.063) (0.052)


(A.5)

USD : Q̂ =

 0.079 −0.088 0.056

−0.088 0.149 −0.116

0.056 −0.116 0.613

 (A.6)

GBP : µ̂ =



−2.808

(0.168)

−0.731

(0.121)

0.041

(0.239)


, T̂ =



0.959 −0.006 0.034

(0.01) (0.003) (0.006)

−0.099 0.928 0.067

(0.082) (0.041) (0.052)

0.421 0.126 0.616

(0.138) (0.06) (0.086)


(A.7)

GBP : Q̂ =

 0.011 −0.001 −0.002

−0.001 0.071 −0.005

−0.002 −0.005 0.207

 (A.8)

A.3 Dynamic Nelson-Siegel – Regional Models

A.4 Detecting Structural Breaks – Auxiliary

Figures
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Figure A.1: Currency’s Latent Factors – RCFM
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Figure A.2: Currency’s Latent Factors – PCRM
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Figure A.3: Auxiliary Residuals – HUF
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Figure A.4: Auxiliary Residuals – PLN
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Figure A.5: Auxiliary Residuals – SKK
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