The 3D visibility (graph) drawing is a graph drawing in IR3 where vertices are represented by 2D sets placed into planes parallel to xy-plane and the edges correspond to z-parallel visibility among these sets. We continue the study of 3D visibility drawing of complete graphs by rectangles and regular polygons. We show that the maximum size of a complete graph with a 3 D visibility drawing by regular n -gons is $\mathrm{O}(\mathrm{n} 4)$. This polynomial bound improves signifficantly the previous best known (exponential) bound 6 n 3 $3 n 1326 n$.We also provide several lower bounds. We show that the complete graph $\mathrm{K} 2 \mathrm{k}+3$ (resp. $\mathrm{K} 4 \mathrm{k}+6$) has a 3 D visibility drawing by regular 2 k -gons (resp. $(2 \mathrm{k}+1$)-gons). We improve the best known upper bound on the size of a complete graph with a 3D visibility drawing by rectangles from 55 to 50 . This result is based on the exploration of unimodal sequences of k-tuples of numbers. A sequence of numbers is unimodal if it rst increases and then decreases. A sequence of k-tuples of numbers is unimodal if it is unimodal in each component. We derive tight bounds on the maximum length of a sequence of k-tuples without a unimodal subsequence of length n . We show a connection between these results and Dedekind numbers, i.e., the numbers of antichains of a power set $\mathrm{P}(1 ;::: ; \mathrm{k})$ ordered by inclusion.

