Generalized subdifferentials and
 Darboux property of Fréchet derivatives.

Doctoral dissertation thesis

April 2009

Dušan Pokorný

Hereby I declare that I have written this thesis on my own and that I cited all used sources of information. I agree with public availablility and lending of the thesis.

Acknowledgement:

I am very grateful to my adviser Professor Jaroslav Lukeš for strong support during my whole studies.

I also would like to express many thanks to Professor Luděk Zajíček for many helpful disscusions on my work and papers.

Contents

Introduction 5
The approximate and the Clarke subdifferentials can be different everywhere. 8
Porosity and the Darboux property of Fréchet derivatives 18

Introduction

This thesis consists of two papers,

- The approximate and the Clarke subdifferentials can be different everywhere (J. Math. Anal. Appl. 347 (2008) 652-658)
- Porosity and the Darboux property of Fréchet derivatives (to appear in Real Anal. Exchange) which is joint work with O. Kurka.

The paper The approximate and the Clarke subdifferentials can be different everywhere deals with two important objects in nonsmooth analysis, the approximate subdifferential and the Clarke subdifferential. For $n \geq 2$ we construct a Lipschitz function on \mathbb{R}^{n} for which these two subdifferentials are different at every point $x \in \mathbb{R}^{n}$. This completely answers question by A.D. Ioffe whether the approximate and the Clarke subdifferentials must generically coincide (see [3]), which was partially answered by G. Katriel in [4](difference on a set of positive measure) and by D. Borwein, J.M. Borwein and X. Wang in [1](difference almost everywhere).

For f a Lipschitz function on an open set $U \subset \mathbb{R}^{n}$ the lower Dini derivative of f at $x \in U$ in a direction $v \in \mathbb{R}^{n}$ is defined by

$$
D_{v}^{-} f(x)=\liminf _{t \rightarrow 0^{+}} \frac{f(x+t v)-f(x)}{t}
$$

The Dini subdifferential of f at x is

$$
\partial^{-} f(x)=\left\{x^{*} \in \mathbb{R}^{n}:\left\langle x^{*}, v\right\rangle \leq D_{v}^{-} f(x) \text { for all } v \in \mathbb{R}^{n}\right\} .
$$

The approximate subdifferential of f at x is

$$
\partial_{a} f(x)=\limsup _{z \rightarrow x} \partial^{-} f(z)=\bigcap_{r>0} \bigcup_{z \in B(x, r)} \partial^{-} f(z)
$$

And finally, the Clarke subdifferential of f at x is

$$
\partial_{c} f(x)=\operatorname{conv}\left(\partial_{a} f(x)\right) .
$$

This means that we are actually looking for a function, for which $\partial_{a} f(x)$ is nonconvex. We work on a special set open U which is interior of a equilateral triangle and prove the following:

There is a Lipschitz function f on U such that
(A) for any $x \in U$ there is a direction v such that $D_{v}^{-} f(x) \leq-\frac{1}{4 \sqrt{3}}$,
(B) for any $x \in U$ we have $\left\{2 v_{1}, 2 v_{2}, 2 v_{3}\right\} \subset \partial_{a} f(x)$.

Where v_{1}, v_{2} and v_{3} are nonzero vectors such that the set $\operatorname{conv}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$ contains 0 . This means that $\partial_{c} f(x)$ contains 0 for every $x \in U$, but any point in $\partial_{a} f(x)$ must have norm at least $\frac{1}{4 \sqrt{3}}$.

To obtain function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\partial_{a} F(x) \neq \partial_{c} F(x)$ for every $x \in \mathbb{R}^{2}$ we just take a diffeomorphism $\varphi: \mathbb{R}^{2} \rightarrow U$ and then put $F=f \circ \varphi$. And finally, for such function F_{n} on $\mathbb{R}^{n}, n>2$ we put $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}, x_{2}\right)$.

The main idea of the construction is to take supremum of suitable system of functions with pyramid shaped graph (multipliers of distance function to equilateral triangles) which have the property that have great directional derivative in some direction at every point and convex hull of possible derivatives in the points of differentiability contains 0 .

In the second paper Porosity and the Darboux property of Fréchet derivatives we prove one implication of characterization of sets $M \subset \mathbb{R}^{d}$ without isolated points and with connected interior on which for every (relative) Fréchet derivative f the set $f(M)$ is connected. We prove necessarity of the condition which was proved as sufficient by P. Holický, C. E. Weil and L. Zajíček in general Banach space in [2].

By Fréchet derivative of a function $f: B \rightarrow \mathbb{R}$, where B is a subset of a Banach space X with no isolated points, we mean a function $g: B \rightarrow X^{*}$ for which

$$
\lim _{x \rightarrow a, x \in B} \frac{f(x)-f(a)-g(a)(x-a)}{\|x-a\|}=0
$$

for each $a \in B$. A set A in a real Banach space X is said to be porous at $a \in X$ if there are $c>0$ and $x_{n} \in X, x_{n} \neq a$, with $x_{n} \rightarrow a$ such that $x \notin A$ whenever $n \in \mathbb{N}$ and $\left\|x-x_{n}\right\|<c\left\|a-x_{n}\right\|$.

The result is based on the observation how can the Fréchet derivatives behave in the boundary points of the set. P. Holický, C. E. Weil and L. Zajíček proved the following lemma:

Lemma. Let X be a real Banach space, $G \subset X$ open, $a \in \partial G$ and let $X \backslash G$ be porous at a. Let $M:=G \cup\{a\}$ and suppose that $g: M \rightarrow X^{*}$ is a Fréchet derivative of a function $f: M \rightarrow \mathbb{R}$ on M. Then $(a, g(a))$ belongs to the closure of the graph of $\left.g\right|_{G}$ in $X \times X^{*}$. In particular, $g(a) \in \overline{g(G)}$.

Our key result is to prove the reverse of this fact in euclidean spaces. The proof is divided into three main steps. First of all we construct just Lipschitz function $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with good behaving directional derivatives on the complement of some special class of discrete sets which are not porous at the origin and for which $\varphi^{\prime}(0)$ exists and is equal to 0 . These sets are of form

$$
D=\bigcup_{i \in \mathbb{N}} r_{i} D_{p_{i}}
$$

where

$$
D_{p}=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \partial\left([-1,1]^{d}\right): 2 p x_{1}, \ldots, 2 p x_{d} \in \mathbb{Z}\right\}, \quad p \in \mathbb{N}
$$

for suitable sequences $p_{i} \nearrow \infty$ and $r_{i} \searrow 0$. The statement we need is the following:

For every $x \in \mathbb{R}^{d} \backslash(D \cup\{0\})$, there is a direction $\nu \in \mathbb{R}^{d},|\nu|=1$, and a neighbourhood U_{x} of x such that $\frac{\partial \varphi}{\partial \nu}(y) \geq 1 / 2$ for almost every $y \in U_{x}$.

Main idea of the construction of such function is, roughly speaking, to make φ oscillating on the faces of cubes $r_{i}[-1,1]^{d}$ with big derivative in the directions of the face, and use the points in $r_{i} D_{p_{i}}$ as possible points of nondifferentiability to avoid small derivatives in possible stationary points. Between sets $r_{i} \partial[-1,1]^{d}$ we make φ oscillating with big derivative in the "radius" direction.

In the second step, we use mollifications of these Lipschitz functions to obtain counterexample for our special class of sets. More presicely, we prove prove the following statement

There is a Lipschitz function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with properties

1. $F^{\prime}(0)=0$,
2. $F^{\prime}(x)$ exists and $\left|F^{\prime}(x)\right| \geq 1 /(4 \sqrt{d})$ whenever $x \in \mathbb{R}^{d} \backslash(D \cup\{0\})$.

The function F is obtained simply by formula

$$
F(x)=\int_{\mathbb{R}^{d}} \varphi(x+\delta(x) y) \psi(y) d y, \quad x \in \mathbb{R}^{d} \backslash(D \cup\{0\})
$$

for suitable $\delta \in \mathcal{C}^{1}\left(\mathbb{R}^{d} \backslash(D \cup\{0\})\right)$, where $\delta(x)$ depends on the diameter of the corresponding neighborhood U_{x} and ψ is usual mollification kernel.

And finally, for a general set M which is not porous at some point, we construct a suitable diffeomorphism which maps some of our special sets into M and using composition of that diffeomorphism and the counterexample on that special set, we obtain counterexample for M.

The question whether the condition is necessary in every Banach space remains still open.

References

[1] D. Borwein, J.M. Borwein, X. Wang, Approximate subgradients and coderivatives in \mathbb{R}^{n}, Set-Valued Anal. 4 (1996), 375-398.
[2] P. Holický, C. E. Weil and L. Zajíček: A note on the Darboux property of Fréchet derivatives, Real Anal. Exchange 32 (2007), 489-494.
[3] A.D. Ioffe, Approximate subdifferentials and applications. I. The finitedimensional case, Trans. Amer. Math. Soc. 281 (1984), 398-416.
[4] G. Katriel, Are the approximate and the Clarke subgradients generically equal?, J. Math. Anal. Appl. 193 (1995), 588-593.

The approximate and the Clarke subdifferentials can be different everywhere

Dušan Pokorný, Department of Mathematical Analysis,
Faculty of Mathematics and Physics, Charles University in Prague email:dpokorny@karlin.mff.cuni.cz

Abstract

We prove that, for a Lipschitz function on $\mathbb{R}^{n}, n \geq 2$, the approximate and the Clarke subdifferentials can differ everywhere. This completely answers a question by A.D. Ioffe, which was partially answered by G. Katriel.

1 Introduction

The approximate subdifferential and the Clarke subdifferential are two important objects in nonsmooth analysis. In [3], A.D. Ioffe posed the question, whether the approximate and the Clarke subdifferentials must generically coincide.

Let us recall the definition of the approximate and the Clarke subdifferentials for a Lipschitz function on \mathbb{R}^{n} (more general definitions for more general functions will not be needed here).

Let f be a Lipschitz function on an open set $U \subset \mathbb{R}^{n}$. The lower Dini derivative of f at $x \in U$ in a direction $v \in \mathbb{R}^{n}$ is defined by

$$
D_{v}^{-} f(x)=\liminf _{t \rightarrow 0^{+}} \frac{f(x+t v)-f(x)}{t}
$$

The Dini subdifferential of f at x is

$$
\partial^{-} f(x)=\left\{x^{*} \in \mathbb{R}^{n}:\left\langle x^{*}, v\right\rangle \leq D_{v}^{-} f(x) \text { for all } v \in \mathbb{R}^{n}\right\} .
$$

The approximate subdifferential of f at x is

$$
\partial_{a} f(x)=\limsup _{z \rightarrow x} \partial^{-} f(z)=\bigcap_{r>0} \overline{\bigcup_{z \in B(x, r)} \partial^{-} f(z)}
$$

Finally, the Clarke subdifferential of f at x is

$$
\partial_{c} f(x)=\operatorname{conv}\left(\partial_{a} f(x)\right)
$$

In a measure sense, Ioffe's question was answered by G. Katriel in [4] (positively in \mathbb{R} and negatively in the higher dimensions). In their paper [1], D. Borwein, J.M. Borwein and X. Wang improved this result proving that there is a Lipschitz function on $\mathbb{R}^{n}(n \geq 2)$ such that these two subdifferentials are different almost everywhere. Katriel also asked, if the approximate and the Clarke subdifferentials must be equal on a dense G_{δ} set. In our paper we will construct a Lipschitz function f on $\mathbb{R}^{n}, n \geq 2$, such that $\partial_{a} f(x) \neq \partial_{c} f(x)$ for each $x \in \mathbb{R}^{n}$. This gives a negative answer to Katriel's question and also a definitive negative answer to Ioffe's question.

2 Preliminaries

We will use the following standard notation.
We denote by conv A the convex hull of a set A. For $x \in \mathbb{R}^{n}$ and $r>0$ we use $B(x, r)$ for an open ball with a center x and a radius r. We say that a function is K-Lipschitz if it is Lipschitz with a constant K. We use $\langle x, y\rangle$ for the inner product of $x, y \in \mathbb{R}^{n}$.

We will also need the following special definitions and notions.
We denote by \tilde{T} the closed triangle in \mathbb{R}^{2} with the vertices $(1,0),(-1,0)$ and $(0, \sqrt{3})$ and U will be the interior of \tilde{T}. Put $v_{1}=(0,1), v_{2}=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ and $v_{3}=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$. For $i \in\{1,2,3\}$ and $n \in \mathbb{N}$ put $v_{i}^{n}=\left(2-\frac{1}{n}\right) v_{i} . \mathcal{T}$ will be the system of all closed triangles $T \subset U$ with the sides parallel to the sides of the triangle \tilde{T}.

For $T \in \mathcal{T}$ or $T=\tilde{T}$ and $i \in\{1,2,3\}$ we denote by s_{T}^{i} the (closed) side of the triangle T which is orthogonal to the vector v_{i}. The vertex which is opposite to the side s_{T}^{i} will be denoted by q_{T}^{i} and c_{T} will be the centroid of the triangle T. Put $t_{T}^{i}=\operatorname{conv}\left\{c_{T}, q_{T}^{i}\right\}$ and $t_{T}=t_{T}^{1} \cup t_{T}^{2} \cup t_{T}^{3}$.

For $n \in \mathbb{N}$, \tilde{J}^{n} will be the function on \tilde{T} defined by

$$
\tilde{J}^{n}(x)=(2-1 / n) \operatorname{dist}(x, \partial U)
$$

Let f be a function on U, let V be an open subset of $U, n \in \mathbb{N}$ and $i \in\{1,2,3\}$. We will say that f is of the type \mathcal{A}_{i}^{n} on V, if it is positive on V and there is an $a \in \mathbb{R}$ such that $f(x)=a+\left\langle x, v_{i}^{n}\right\rangle$ for each $x \in V$. The function f is said to be of the type \mathcal{A}^{n} on V if it is of the type \mathcal{A}_{i}^{n} on V for some $i \in\{1,2,3\}$.

Let f be a function on U, let G be an open subset of U and $n \in \mathbb{N}$. We will say that f is of the type \mathcal{V}^{n} on the set G if for each $x \in G$ there is an open set $V \subset G$ with $x \in V$ such that f is of the type \mathcal{A}^{n} on V.

For $T \in \mathcal{T}$ or $T=\tilde{T}$ and $n \in \mathbb{N}$ define the function $J_{T}^{n}: U \rightarrow \mathbb{R}$ by

$$
J_{T}^{n}(x)= \begin{cases}(2-1 / n) \operatorname{dist}(x, \partial T) & \text { for } x \in T \cap U \\ 0 & \text { for } x \in U \backslash T\end{cases}
$$

We will need the following easy geometrical facts.
(G1) For $T \in \mathcal{T}$ and $n \in \mathbb{N}$, the function J_{T}^{n} is of the type $\mathcal{A}_{1}^{n}\left(\mathcal{A}_{2}^{n}\right.$ or $\left.\mathcal{A}_{3}^{n}\right)$ on the interior of the triangle with the sides $s_{T}^{1}, t_{T}^{2}, t_{T}^{3},\left(s_{T}^{2}, t_{T}^{1}, t_{T}^{3}\right.$ or $\left.s_{T}^{3}, t_{T}^{1}, t_{T}^{2}\right)$. The set

$$
\left\{(x, y) \in T \times \mathbb{R}: 0 \leq y \leq J_{T}^{n}(x)\right\}
$$

is a closed pyramid with a base $T \times\{0\}$. Similar facts hold for the functions \tilde{J}^{n} and $J_{\tilde{T}}^{n}$.
(G2) By a simple geometrical argument, choosing $x \in U, n \in \mathbb{N}$ and putting $T_{x}=\left\{T \in \mathcal{T}: c_{T}=x\right\}$, we have

$$
\tilde{J}^{n}(x)=J_{\tilde{T}}^{n}(x)=\sup _{T \in \mathcal{T}_{x}} J_{T}^{n}(x)
$$

(G3) Defining $f^{n}(x)=\left\langle v_{1}^{n}, x\right\rangle$, an easy computation shows that the set

$$
\left\{x \in \tilde{T}: f^{n}(x) \leq \tilde{J}^{n+1}(x)\right\}
$$

is a triangle T_{0} with the vertices $p^{1}=\left(0, b_{n}\right), p^{2}=(1,0), p^{3}=(-1,0)$, where

$$
b_{n}=\frac{\sqrt{3}}{2} \cdot \frac{2-\frac{1}{n+1}}{3-\left(\frac{1}{2(n+1)}+\frac{1}{n}\right)}
$$

Moreover, if $T \in \mathcal{T}$ and $\alpha \in \mathbb{R}$, define

$$
F_{\alpha}=\left\{x \in T: f^{n}(x)+\alpha \leq J_{T}^{n+1}(x)\right\} .
$$

(G3a) In the case $f^{n}\left(c_{T}\right)+\alpha=J_{T}^{n+1}\left(c_{T}\right)$ we have

$$
\frac{f^{n}(x)-f^{n}\left(c_{T}\right)}{\left|x-c_{T}\right|}>\frac{J^{n+1}(x)-J^{n+1}\left(c_{T}\right)}{\left|x-c_{T}\right|}
$$

for each $x \in T \backslash\left\{c_{T}\right\}$. So $f^{n}(x)>J^{n+1}(x)$ for each $x \in T \backslash\left\{c_{T}\right\}$. In particuar, the set F_{α} consists exactly of the one point c_{T}.
(G3b) If $f^{n}\left(c_{T}\right)+\alpha<J_{T}^{n+1}\left(c_{T}\right)$ and $f^{n}+\alpha \geq 0$ on T the set F_{α} is homothetic to T_{0}. Denote this homothety by S (the one with $S\left(F_{\alpha}\right)=T_{0}$). It has the property that for each $x, y \in F_{\alpha}$ we have

$$
\frac{J_{T}^{n+1}(x)-J_{T}^{n+1}(y)}{|x-y|}=\frac{\tilde{J}^{n+1}(S(x))-\tilde{J}^{n+1}(S(y))}{|S(x)-S(y)|}
$$

We will need the following two easy lemmas.
Lemma 1. Let f be a Lipschitz function on an open set $V \subset \mathbb{R}^{2}, x \in V$ and $\alpha \in \mathbb{R}$. Suppose that for any $n \in \mathbb{N}$ there is an $x_{n} \in V$ such that $\left|x-x_{n}\right|<\frac{1}{n}$ and

$$
\frac{f\left(x_{n}\right)-f(x)}{\left|x_{n}-x\right|} \leq \alpha
$$

Then there is a direction $v \in \mathbb{R}^{2}$ with $|v|=1$ and such that $D_{v}^{-} f(x) \leq \alpha$.

Proof. Put $v_{n}=\frac{x_{n}-x}{\left|x_{n}-x\right|^{2}}$. Due to the compactness of the unit sphere in \mathbb{R}^{2}, there is a unit vector $v \in \mathbb{R}^{2}$ and a subsequence $\left\{v_{n_{k}}\right\}_{k=1}^{\infty}$ of the sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ such that

$$
\lim _{k \rightarrow \infty} v_{n_{k}}=v .
$$

So it is sufficient to use the well known fact that (since f is Lipschitz) we have

$$
D_{v}^{-} f(x)=\liminf _{t \rightarrow 0^{+}, u \rightarrow v} \frac{f(x+t u)-f(x)}{t}
$$

Lemma 2. Let $n \in \mathbb{N}$ and let f and g be two Lipschitz functions on an open set $V \subset \mathbb{R}^{n}$, let $f \leq g$ on V and $x \in V$. Suppose that $f(x)=g(x)$. Then we have $\partial^{-} f(x) \subset \partial^{-} g(x)$.

Proof. The Lemma directly follows from the obvious fact that $D_{v}^{-} f(x) \leq$ $D_{v}^{-} g(x)$ for any direction $v \in \mathbb{R}^{n}$.

3 Main result

Lemma 3. Let f be a 2-Lipschitz function on U, let $r>0, w \in U$ and $n \in \mathbb{N}$. Suppose that f is of the type \mathcal{A}^{n} on $V=B(w, r)$ and $f \leq J^{n}$ on U. Then there is a 2-Lipschitz function $\tilde{f}: U \rightarrow \mathbb{R}$ and an open set $G \subset V$ such that, denoting $W=\{x \in V: \tilde{f}(x)>f(x)\}$, the following conditions hold:
(i) $w \in W$,
(ii) $\bar{W} \subset V$,
(iii) $f \leq \tilde{f} \leq J^{n+1}$,
(iv) $G \subset W$ and G is dense in W,
(v) \tilde{f} is of the type \mathcal{V}^{n+1} on G,
(vi) for each $x \in \partial G$ there is a $y \in V \backslash G, y \neq x$, such that $\operatorname{conv}\{x, y\} \cap G=\emptyset$, $\operatorname{conv}\{x, y\} \subset V$ and for each $z \in \operatorname{conv}\{x, y\} \backslash\{x\}$ we have

$$
\frac{\tilde{f}(z)-\tilde{f}(x)}{|z-x|} \leq-\frac{1}{4 \sqrt{3}},
$$

(vii) for each $x \in G$ there is a $y \in \partial G$ such that

$$
\frac{\tilde{f}(y)-\tilde{f}(x)}{|y-x|} \leq-\frac{1}{4 \sqrt{3}},
$$

(viii) there are $y_{1}, y_{2}, y_{3} \in \partial G$ such that $v_{i}^{n+1} \in \partial^{-} \tilde{f}\left(y_{i}\right)$.

Proof. By the symmetry, we can suppose that f is of the type \mathcal{A}_{1}^{n} on V. So for some $\alpha \in \mathbb{R}$, we have $f(x)=\left\langle v_{1}^{n}, x\right\rangle+\alpha$ for each $x \in V$. Let \mathcal{T}_{w} be the system of the triangles from \mathcal{T} with the centroid w. Due to fact (G2) we have

$$
f(w) \leq J^{n}(w)<J^{n+1}(w)=\sup _{T \in \mathcal{T}_{w}} J_{T}^{n+1}(w)
$$

So there is a triangle $T^{*} \in T_{w}$ such that $J_{T^{*}}^{n+1}(w)>f(w)$ and so we can choose $T \in \mathcal{T}_{w}$ with $J_{T}^{n+1}(w)=f(w)$. For $l \in \mathbb{N}$, let T^{l} be the triangle with the vertices $q_{i}^{l}=w+\left(1+\frac{1}{l}\right)\left(q_{T}^{i}-w\right)$. By geometrical fact (G3a), the inequality $\left\langle v_{1}^{n}, y\right\rangle+\alpha>J_{T}^{n+1}(y)$ holds for each $y \in T \backslash\{w\}$. So there is some $l_{0} \in \mathbb{N}$ such that for each $l \geq l_{0}$ we have $T^{l} \in \mathcal{T}_{w}$ and $\left\langle v_{1}^{n}, y\right\rangle+\alpha \geq 0$ for all $y \in T^{l}$. Obviously, $J_{T^{l}}^{n+1} \searrow J_{T}^{n+1}$ uniformly on U and $f(w)=J_{T}^{n+1}(w)<J_{T^{l}}^{n+1}(w)$. This implies that the sets $W_{l}=\left\{z \in V: J_{T^{l}}^{n+1}(z)>\left\langle v_{1}^{n}, z\right\rangle+\alpha\right\}$ are nonempty and $\bigcap \bar{W}_{l}=\{w\}$. We used the fact that $\bar{W}_{l}=\left\{z \in V: J_{T^{l}}^{n+1}(z) \geq\left\langle v_{1}^{n}, z\right\rangle+\alpha\right\}$. Thus we can choose $l_{1} \geq l_{0}$ with $\bar{W}_{l_{1}} \subset V$. Put

$$
\tilde{f}(x)= \begin{cases}f(x) & \text { for } x \in U \backslash W_{l_{1}} \\ J_{T^{l_{1}}}^{n+1}(x) & \text { for } x \in W_{l_{1}}\end{cases}
$$

and $G=W_{l_{1}} \backslash t_{T^{l_{1}}}$. Then for any $x \in U$ we have

$$
\limsup _{y \rightarrow x} \frac{|\tilde{f}(x)-\tilde{f}(y)|}{|x-y|} \leq 2
$$

and so \tilde{f} is 2-Lipschitz on U (see [2], 2.2.7).
Properties (i)-(iv) are clear and (v) holds by geometrical fact (G1). Put

$$
b_{n}=\frac{\sqrt{3}}{2} \cdot \frac{2-\frac{1}{n+1}}{3-\left(\frac{1}{2(n+1)}+\frac{1}{n}\right)}, \quad p^{1}=\left(0, b_{n}\right), \quad p^{2}=(1,0), \quad p^{3}=(-1,0)
$$

$s^{1}=\operatorname{conv}\left\{p^{2}, p^{3}\right\}, s^{2}=\operatorname{conv}\left\{p^{1}, p^{3}\right\}, s^{3}=\operatorname{conv}\left\{p^{1}, p^{2}\right\}$ and for $i \in\{1,2,3\}$ set $t^{i}=\operatorname{conv}\left\{p^{i}, c_{\tilde{T}}\right\}$. Denote by T_{0} the closed triangle with vertices p^{1}, p^{2}, p^{3}. Note that

$$
\bar{G}=\bar{W}_{l_{1}}=\left\{z \in V: J_{T^{l_{1}}}^{n+1}(z) \geq f(z)\right\}
$$

By geometrical fact (G3b), there is a homothety $S: \bar{G} \rightarrow T_{0}$ with the property that for each $x, y \in \bar{G}$ we have

$$
\frac{\tilde{f}(x)-\tilde{f}(y)}{|x-y|}=\frac{\tilde{J}^{n+1}(S(x))-\tilde{J}^{n+1}(S(y))}{|S(x)-S(y)|}
$$

Turn to (vi). Choose $x \in \partial G$. We have

$$
S(\partial G)=s^{1} \cup\left(s^{2} \backslash\left\{p^{3}\right\}\right) \cup\left(s^{3} \backslash\left\{p^{2}\right\}\right) \cup\left(t^{1} \backslash\left\{p^{1}\right\}\right) \cup\left(t^{2} \backslash\left\{p^{2}\right\}\right) \cup\left(t^{3} \backslash\left\{p^{3}\right\}\right)
$$

Suppose that $S(x) \in s^{1}$. There is an $\alpha>0$ such that $x-\alpha v_{1} \in V$. Put $y=$ $x-\alpha v_{1}$. Then for any $z \in \operatorname{conv}\{x, y\} \backslash\{x\}$ we have

$$
\frac{\tilde{f}(z)-\tilde{f}(x)}{|z-x|}=-2+\frac{1}{n} \leq-\frac{1}{4 \sqrt{3}} .
$$

In the case $S(x) \in s^{2} \backslash\left\{p^{3}\right\}$ put $y=S^{-1}\left(p^{3}\right)$. For $z \in \operatorname{conv}\{x, y\} \backslash\{x\}$ we have

$$
\begin{aligned}
\frac{\tilde{f}(z)-\tilde{f}(x)}{|z-x|} & =\frac{\left\langle S(z), v_{1}^{n}\right\rangle-\left\langle S(x), v_{1}^{n}\right\rangle}{|S(z)-S(x)|}=\frac{\left\langle p^{3}, v_{1}^{n}\right\rangle-\left\langle p^{1}, v_{1}^{n}\right\rangle}{\left|p^{3}-p^{1}\right|} \\
& =-\frac{\left(2-\frac{1}{n}\right) b_{n}}{\sqrt{b_{n}^{2}+1}} \leq-\frac{1}{4 \sqrt{3}} .
\end{aligned}
$$

We use the fact that $\frac{\sqrt{3}}{6} \leq b_{n} \leq \sqrt{3}$. If $S(x) \in s^{3} \backslash\left\{p^{2}\right\}$ put $y=S^{-1}\left(p^{2}\right)$. Just as in the previous case, for each $z \in \operatorname{conv}\{x, y\} \backslash\{x\}$ we have

$$
\begin{aligned}
\frac{\tilde{f}(z)-\tilde{f}(x)}{|z-x|} & =\frac{\left\langle S(z), v_{1}^{n}\right\rangle-\left\langle S(x), v_{1}^{n}\right\rangle}{|S(z)-S(x)|}=\frac{\left\langle p^{2}, v_{1}^{n}\right\rangle-\left\langle p^{1}, v_{1}^{n}\right\rangle}{\left|p^{2}-p^{1}\right|} \\
& =-\frac{\left(2-\frac{1}{n}\right) b_{n}}{\sqrt{b_{n}^{2}+1}} \leq-\frac{1}{4 \sqrt{3}} .
\end{aligned}
$$

If $S(x) \in t^{i} \backslash\left\{p^{i}\right\}$ for $i \in\{1,2,3\}$ put $y=S\left(p^{i}\right)$. In these cases we have

$$
\frac{\tilde{f}(z)-\tilde{f}(x)}{|z-x|}=-\left(2-\frac{1}{n+1}\right) \sin \frac{\pi}{6} \leq-\frac{1}{4 \sqrt{3}},
$$

provided $z \in \operatorname{conv}\{x, y\} \backslash\{x\}$.
Turn to (vii). To prove it, choose $x \in G$. Using geometrical observation (G1), we have $G=G_{1} \cup G_{2} \cup G_{3}$ such that \tilde{f} is of the type \mathcal{A}_{i}^{n+1} on G_{i} and the set G_{1}, $\left(G_{2}\right.$ or $\left.G_{3}\right)$ is the interior of the triangle with sides $S^{-1}\left(s^{1}\right), S^{-1}\left(t^{2}\right), S^{-1}\left(t^{3}\right)$, $\left(S^{-1}\left(s^{2}\right), S^{-1}\left(t^{1}\right), S^{-1}\left(t^{3}\right)\right.$ or $\left.S^{-1}\left(s^{3}\right), S^{-1}\left(t^{1}\right), S^{-1}\left(t^{2}\right)\right)$. For $x \in G_{i}$, with $i \in$ $\{1,2,3\}$, choose $y \in s^{i} \subset \partial G$ with $x-y$ parallel to the vector v_{i}. Then we have

$$
\frac{\tilde{f}(y)-\tilde{f}(x)}{|y-x|}=-2+\frac{1}{n+1} \leq-\frac{1}{4 \sqrt{3}} .
$$

It remains to verify (viii). Put

$$
y_{1}=S^{-1}\left(\frac{p^{2}+p^{3}}{2}\right), \quad y_{2}=S^{-1}\left(\frac{p^{1}+p^{3}}{2}\right), \quad \text { and } \quad y_{3}=S^{-1}\left(\frac{p^{1}+p^{2}}{2}\right)
$$

To complete the proof, it is sufficient to use Lemma 2 and the fact that $v_{i}^{n+1} \in$ $\partial^{-} J_{T^{l_{1}}}^{n+1}\left(y_{i}\right)$.

Lemma 4. There is a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of 2-Lipschitz functions on U and a sequence $\left\{G_{n}\right\}_{n=1}^{\infty}$ of open sets in U such that the following conditions hold:
(1) G_{n} is dense in U,
(2) for $n>1$ we have $G_{n} \subset G_{n-1}$,
(3) for $n>1$ we have $f_{n}=f_{n-1}$ on $U \backslash G_{n-1}$,
(4) f_{n} is of the type \mathcal{V}^{n} on the set G_{n},
(5) for $n>1$ we have $f_{n-1} \leq f_{n}$ on U,
(6) $0<f_{n} \leq J^{n}$ on U,
(7) if $n>1$ then for any $x \in G_{n}$ there is an $x_{n} \in U \backslash G_{n}$ such that $\left|x-x_{n}\right|<\frac{1}{n}$ and

$$
\frac{f_{n}\left(x_{n}\right)-f_{n}(x)}{\left|x_{n}-x\right|} \leq-\frac{1}{4 \sqrt{3}},
$$

(8) for $x \in U \backslash G_{n}$ and $l \in \mathbb{N}$ there is an $x_{l}^{n} \in U \backslash G_{n}$ such that $\left|x-x_{l}^{n}\right|<\frac{1}{l}$ and

$$
\frac{f_{n}\left(x_{l}^{n}\right)-f_{n}(x)}{\left|x_{l}^{n}-x\right|} \leq-\frac{1}{4 \sqrt{3}},
$$

(9) if $n>1$ then for any $x \in U$ there are $y_{1}^{n}, y_{2}^{n}, y_{3}^{n} \in U \backslash G_{n}$ such that $\left|x-y_{i}^{n}\right|<\frac{1}{n}$ and $v_{i}^{n} \in \partial^{-} f_{n}\left(y_{i}^{n}\right)$ for $i \in\{1,2,3\}$.

Proof. The sequences $\left\{f_{n}\right\}_{n=1}^{\infty}$ and $\left\{G_{n}\right\}_{n=1}^{\infty}$ will be constructed inductively.
Put $f_{1}=J_{\tilde{T}}^{1}$ and $G_{1}=U \backslash t_{\tilde{T}}$. In the case $n=1$ conditions (1) and (6) are clear, the condition (4) holds by (G1). To prove (8), choose $x \in U \backslash G_{1}=t_{\tilde{T}} \cap U$ and $l \in \mathbb{N}$. By the symmetry we can suppose that $x \in t_{\tilde{T}}^{1} \cap U$. Choose $x_{l} \in t_{\tilde{T}}^{1} \cap U$ with $f(x)>f\left(x_{l}\right)$ and $\left|x-x_{l}\right|<\frac{1}{l}$. Since an easy computation shows that

$$
\frac{f_{1}\left(x_{l}\right)-f_{1}(x)}{\left|x_{l}-x\right|}=-\sin \frac{\pi}{6}=-\frac{1}{2} \leq-\frac{1}{4 \sqrt{3}}
$$

we are done.
Now suppose that, for some $q>1$, the functions f_{1}, \ldots, f_{q-1} and the sets G_{1}, \ldots, G_{q-1} have been constructed. The function f_{q} and the set G_{q} will be obtained by the following inductive procedure using Lemma 3.

Choose a dense sequence $\left\{a_{m}\right\}_{m=1}^{\infty}$ in G_{q-1}. We will construct 2-Lipschitz functions $f_{q}^{k}: U \rightarrow \mathbb{R}$ and open sets G_{q}^{k} for $k=0,1, \ldots$.

Put $f_{q}^{0}=f_{q-1}$ and $G_{q}^{0}=\emptyset$. Suppose that we already have the functions $f_{q}^{0}, \ldots, f_{q}^{k-1}$ and the sets $G_{q}^{0}, \ldots, G_{q}^{k-1}$ such that the set $H^{k}:=G_{q-1} \backslash \bigcup_{l=0}^{k-1} \overline{G_{q}^{l}}$ is nonempty and the sets $\overline{G_{q}^{1}}, \ldots, \overline{G_{q}^{k-1}}$ are pairwise disjoint. Choose the minimal m such that $a_{m} \in H^{k}$ and find

$$
0<r_{k}<\min \left(\operatorname{dist}\left(a_{m}, \partial H^{k}\right), \frac{1}{4 q}\right) .
$$

Then f_{q-1} is of the type \mathcal{A}^{q-1} on $B\left(a_{m}, r_{k}\right)$ and so we can use Lemma 3 for $f=f_{q-1}, w=a_{m}, r=r_{k}$ and $n=q-1$. Lemma 3 provides us with a function \tilde{f} and a set G such that conditions (i)-(viii) hold. Put $f_{q}^{k}=\tilde{f}$ and $G_{q}^{k}=G$.

Define

$$
f_{q}=\sup _{k \in \mathbb{N}} f_{q}^{k} \quad \text { and } \quad G_{q}=\bigcup_{k=1}^{\infty} G_{q}^{k} .
$$

Then f_{q} is 2-Lipschitz as a supremum of 2-Lipschitz functions. Note that the sets $\left\{\overline{G_{q}^{k}}\right\}_{k=1}^{\infty}$ are pairwise disjoint and by (iv) we have $\overline{G_{q}^{k}} \supset W_{q}^{k} \supset G_{q}^{k}$, where $W_{q}^{k}=\left\{x \in U: f_{q}^{k}(x)>f_{q-1}(x)\right\}$ for $k=1,2, \ldots$. In particular, the sets $\left\{W_{q}^{k}\right\}_{k=1}^{\infty}$ are pairwise disjoint as well and for any $l \in \mathbb{N}$ we have

$$
(*) \quad\left\{x \in U: f_{q}^{l}(x)=f_{q}(x)\right\}=U \backslash \bigcup_{k \neq l} W_{q}^{k} .
$$

Moreover, we have

$$
(* *) \quad\left\{x \in U: f_{q-1}(x)=f_{q}(x)\right\}=U \backslash \bigcup_{k \in \mathbb{N}} W_{q}^{k} .
$$

It remains to verify the validity of conditions (1)-(9) for $n=q$. Property (1) holds due to the fact that

$$
\bar{G}_{n} \supset \overline{\bigcup \overline{G_{n}^{k}}} \supset \overline{\bigcup\left\{a_{m}\right\}} \supset \overline{G_{n}} \supset \bar{U}
$$

Conditions (2) and (3) are clear. Condition (4) holds by (v), condition (5) by (iii) and condition (6) by the induction hypothesis and (iii). To prove (7), choose $x \in G_{n}$. There is some $k \in \mathbb{N}$ such that $x \in G_{n}^{k}$. Due to (vii) from Lemma 3, there is an $x_{n} \in \partial G_{n}^{k} \subset \partial G_{n}$ such that

$$
\frac{f_{n}\left(x_{n}\right)-f_{n}(x)}{\left|x_{n}-x\right|}=\frac{f_{n}^{k}\left(x_{n}\right)-f_{n}^{k}(x)}{\left|x_{n}-x\right|} \leq-\frac{1}{4 \sqrt{3}} .
$$

So we are done because

$$
\left|x_{n}-x\right| \leq \operatorname{diam} G_{n}^{k} \leq \frac{1}{2 n}<\frac{1}{n}
$$

Now turn to (8). Choose $x \in U \backslash G_{n}$ and $l \in \mathbb{N}$. If $x \in U \backslash G_{n-1}$ we are done due to the induction hypothesis. So we can suppose $x \in G_{n-1} \backslash G_{n}$. There are two possibilities, either there is a $k_{0} \in \mathbb{N}$ such that $x \in \overline{G_{n}^{k_{0}}}$ or $x \notin \overline{G_{n}^{k}}$ for each $k \in \mathbb{N}$.

In the first case, using condition (vi) from Lemma 3, we can find $y \in U$, $y \neq x$, such that $\operatorname{conv}\{x, y\} \subset G_{n-1} \backslash G_{n}^{k_{0}}$ and $|x-y|<\frac{1}{l}$, and we have

$$
\frac{f_{n}^{k_{0}}(z)-f_{n}^{k_{0}}(x)}{|z-x|} \leq-\frac{1}{4 \sqrt{3}} \quad \text { for each } z \in \operatorname{conv}\{x, y\} \backslash\{x\}
$$

Now, by $(*)$, it is sufficient to find an $x_{l}^{n} \in \operatorname{conv}\{x, y\} \backslash\left(\{x\} \cup \bigcup_{k \neq k_{0}} W_{n}^{k}\right)$. But this is clearly possible, since the set $\operatorname{conv}\{x, y\} \backslash\{x\}$ cannot be covered by the pairwise disjoint open sets $W_{n}^{k}, k \neq k_{0}$, unless there is some $k_{1} \neq k_{0}$ such that $\underline{\operatorname{conv}}\{x, y\} \backslash\{x\} \subset W_{n}^{k_{1}}$. This contradicts the fact that the sets $\overline{G_{n}^{k_{0}}}=\overline{W_{n}^{k_{0}}}$ and $\overline{G_{n}^{k_{1}}}=\overline{W_{n}^{k_{1}}}$ are disjoint.

In the second case there is some $0<\alpha<\frac{1}{l}$ and some $i \in\{1,2,3\}$ such that $\operatorname{conv}\left\{x, x-\alpha v_{i}\right\} \subset G_{n-1}$ and for any $0<\beta \leq \alpha$ we have

$$
\frac{f_{n-1}\left(x-\beta v_{i}\right)-f_{n-1}(x)}{\beta}=-2+\frac{1}{n-1} \leq-\frac{1}{4 \sqrt{3}} .
$$

So, by $(* *)$, it is sufficient to find $x_{l}^{n} \in \operatorname{conv}\left\{x, x-\alpha v_{i}\right\} \backslash\left(\{x\} \cup \bigcup_{k \in \mathbb{N}} W_{n}^{k}\right)$. But just as in the previous case, the set conv $\{x, y\} \backslash\{x\}$ cannot be covered by the pairwise disjoint open sets W_{n}^{k} unless there is some k_{1} such that $\operatorname{conv}\{x, y\} \backslash$ $\{x\} \subset W_{n}^{k_{1}}$. This is a contradiction with the fact that $x \notin \overline{G_{n}^{k_{1}}}=\overline{W_{n}^{k_{1}}}$.

To complete the proof, it remains to verify (9). Choose $x \in U$ and find $m \in \mathbb{N}$ such that $\left|x-a_{m}\right|<\frac{1}{2 n}$. There is $k \in \mathbb{N}$ such that $a_{m} \in \overline{G_{n}^{k}}$. Due to the fact that $\operatorname{diam} \overline{G_{n}^{k}}<\frac{1}{2 n}$, we have $\partial G_{n}^{k} \subset B\left(x, \frac{1}{n}\right)$ and it suffices to use (viii) from Lemma 3.

Proposition 5. There is a Lipschitz function f on U such that
(A) for any $x \in U$ there is a direction v such that $D_{v}^{-} f(x) \leq-\frac{1}{4 \sqrt{3}}$,
(B) for any $x \in U$ we have $\left\{2 v_{1}, 2 v_{2}, 2 v_{3}\right\} \subset \partial_{a} f(x)$.

Proof. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ and $\left\{G_{n}\right\}_{n=1}^{\infty}$ be the sequences from Lemma 4. Put $f=$ $\sup f_{n}$. Then f is 2 -Lipschitz as a supremum of 2 -Lipschitz functions (it is finite by (6)). Let $x \in U$. To prove (A), it is sufficient (by Lemma 1) to show that for any $l \in \mathbb{N}, l>1$, there is a $\xi_{l} \in B\left(x, \frac{1}{l}\right)$ with

$$
\frac{f\left(\xi_{l}\right)-f(x)}{\left|\xi_{l}-x\right|} \leq-\frac{1}{4 \sqrt{3}}
$$

Condition (7) (for $x \in G_{l}$) or (8) (for $x \in U \backslash G_{l}$) implies that there is a $\xi_{l} \in U \backslash G_{l}\left(\xi_{l}=x_{l}\right.$ or $\xi_{l}=x_{l}^{l}$ respectively) such that $\left|\xi_{l}-x\right|<\frac{1}{l}$ and

$$
\frac{f_{l}\left(\xi_{l}\right)-f_{l}(x)}{\left|\xi_{l}-x\right|} \leq-\frac{1}{4 \sqrt{3}}
$$

Properties (3) and (5) give $f\left(\xi_{l}\right)=f_{l}\left(\xi_{l}\right)$ and $f(x) \geq f_{l}(x)$ and so we are done. Turn to (B). Choose $m \in \mathbb{N}$. Condition (9) provides us with $y_{1}^{m}, y_{2}^{m}, y_{3}^{m} \in$ $B\left(x, \frac{1}{m}\right) \cap\left(U \backslash G_{m}\right)$ such that $v_{i}^{m} \in \partial^{-} f_{m}\left(y_{i}^{m}\right)$ for $i \in\{1,2,3\}$. Using (3), we have $f\left(y_{i}^{m}\right)=f_{m}\left(y_{i}^{m}\right)$ for $i \in\{1,2,3\}$. To finish the proof it suffices to use Lemma 2 and the fact that $v_{i}^{m} \rightarrow 2 v_{i}$ for $m \rightarrow \infty$ and $i \in\{1,2,3\}$.

Theorem 6. There is a Lipschitz function f on U such that $\partial_{a} f(x) \neq$ $\partial_{c} f(x)$ for each $x \in U$.

Proof. Let f be the function from Proposition 5. Firstly, observe that (A) implies that $0 \notin \partial_{a} f(x)$. On the other hand, (B) implies that $0 \in \operatorname{conv}\left(\partial_{a} f(x)\right)=$ $\partial_{c} f(x)$.

Corollary 7. For $n \geq 2$ there is a Lipschitz function F_{n} on \mathbb{R}^{n} such that $\partial_{a} f(x) \neq \partial_{c} f(x)$ for each $x \in \mathbb{R}^{n}$.

Proof. Let f be the function from Theorem 6. Choose some $\Phi: \mathbb{R}^{2} \rightarrow U$ \mathcal{C}^{1}-diffeomorphism and put $F_{2}=f \circ \Phi$. Using chain rule for the Dini subdifferential (see for example [5], 3.20) we obtain that for any $x \in \mathbb{R}^{2}$

$$
\partial^{-} F_{2}(x)=\bigcup_{y \in \partial^{-} f(\Phi(x))} y \cdot \Phi^{\prime}(x) .
$$

So (by continuity of Φ^{\prime}) the same equality holds for the approximate subdifferential and we are done for $n=2$. If $n>2$ it is sufficient to put $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $F_{2}\left(x_{1}, x_{2}\right)$.

Remark 8. In fact, the Proposition 5. gives that for some constant $C>0$ the (Hausdorff) distance of $\partial_{a} f(x)$ and $\partial_{c} f(x)$ is greater than C for each $x \in U$. In the proof of Corollary 7. this property fails because of application of the diffeomorphism. If we want to obtain such function on the whole space, one way to do it is to begin the construction with a suitable affine function (for emample $\left.x \rightarrow\left\langle x, v_{1}\right\rangle\right)$ instead of $J_{\tilde{T}}^{1}$ and then make simillar piramide procedure on the whole space.

Acknowledgement. I would like to thank Prof. Luděk Zajíček for helpful discussions on the topic and many useful remarks.

References

[1] D. Borwein, J.M. Borwein, X. Wang, Approximate subgradients and coderivatives in \mathbb{R}^{n}, Set-Valued Anal. 4 (1996), 375-398.
[2] H. Federer, Geometric measure theory, Springer-Verlag(1969).
[3] A.D. Ioffe, Approximate subdifferentials and applications. I. The finitedimensional case, Trans. Amer. Math. Soc. 281 (1984), 398-416.
[4] G. Katriel, Are the approximate and the Clarke subgradients generically equal?, J. Math. Anal. Appl. 193 (1995), 588-593.
[5] J.-P. Penot, Calcul Sous-Differentiel et Optimisation, J. Func. Anal. 27 (1978), 248-276.

Porosity and the Darboux property of Fréchet derivatives

Ondřej Kurka*and Dušan Pokorný \dagger
Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18675 Prague 8, Czech Republic (e-mail: ondrej.kurka@mff.cuni.cz, dpokorny@karlin.mff.cuni.cz)

Abstract

We study a relation between the porosity of sets in Euclidean spaces and the Darboux property of (relative) Fréchet derivatives.

1 Introduction and main result

A set A in a real Banach space X is said to be porous at $a \in X$ if there are $c>0$ and $x_{n} \in X, x_{n} \neq a$, with $x_{n} \rightarrow a$ such that $x \notin A$ whenever $n \in \mathbb{N}$ and $\left\|x-x_{n}\right\|<c\left\|a-x_{n}\right\|$. Let $B \subset X$ be non-empty without isolated points and $f: B \rightarrow \mathbb{R}$ be given. We say that $g: B \rightarrow X^{*}$ is a (relative) Fréchet derivative of f on B if

$$
\lim _{x \rightarrow a, x \in B} \frac{f(x)-f(a)-g(a)(x-a)}{\|x-a\|}=0
$$

for each $a \in B$.
The following two results have appeared in [1].
Lemma 1.1 Let X be a real Banach space, $G \subset X$ open, $a \in \partial G$ and let $X \backslash G$ be porous at a. Let $M:=G \cup\{a\}$ and suppose that $g: M \rightarrow X^{*}$ is a Fréchet derivative of a function $f: M \rightarrow \mathbb{R}$ on M. Then $(a, g(a))$ belongs to the closure of the graph of $\left.g\right|_{G}$ in $X \times X^{*}$. In particular, $g(a) \in \overline{g(G)}$.

Theorem 1.2 Let X be a real Banach space and $B \subset X$ be non-empty such that the interior of B is connected and $X \backslash B$ is porous at every $a \in B \cap \partial B$. Let $g: B \rightarrow X^{*}$ be a Fréchet derivative of a function $f: B \rightarrow \mathbb{R}$ on B. Then the graph of g is a connected subset of $X \times X^{*}$. In particular, $g(B)$ is connected in X^{*}.

[^0]In this paper, we prove converses of these results in the case of Euclidean spaces. Proposition 4.2 below corresponds with Lemma 1.1, while the following theorem corresponds with Theorem 1.2.

Theorem 1.3 Let $B \subset \mathbb{R}^{d}$ be non-empty without isolated points such that the interior of B is connected. Then the following assertions are equivalent:
(i) $\mathbb{R}^{d} \backslash B$ is porous at every $a \in B \cap \partial B$.
(ii) The graph of g is connected whenever g is a Fréchet derivative of a function $f: B \rightarrow \mathbb{R}$ on B.
(iii) $g(B)$ is connected whenever g is a Fréchet derivative of a function f : $B \rightarrow \mathbb{R}$ on B.

Proof. (i) \Rightarrow (ii) follows from Theorem 1.2 and (ii) \Rightarrow (iii) is clear. Let (i) do not hold. There is $a \in B$ such that $\mathbb{R}^{d} \backslash B$ is not porous at a. By Proposition 4.2 below, there is $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, Fréchet differentiable on B, such that $f^{\prime}(a)=0$ and $\left|f^{\prime}(u)\right| \geq 1$ for any $u \in B \backslash\{a\}$. Then $g=\left.f^{\prime}\right|_{B}$ is a Fréchet derivative of $\left.f\right|_{B}$ on B and 0 is an isolated point of $g(B)$. Thus (iii) does not hold, and the remaining (iii) \Rightarrow (i) is proved.

2 Preliminaries

Let $d \in \mathbb{N}$ be fixed throughout the whole paper. We denote by $|x|$ the Euclidean norm of $x \in \mathbb{R}^{d}$ and by $B(x, r)$ the open ball around x with radius $r>0$. We fix ψ a mollification kernel, i.e. a function with properties

1) $\psi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$,
2) $\psi>0$ on $B(0,1)$ and $\psi=0$ on $\mathbb{R}^{d} \backslash B(0,1)$,
3) $\psi(x)=\psi(y)$ if $|x|=|y|$,
4) $\int_{\mathbb{R}^{d}} \psi=1$.

Lemma 2.1 Let $\Omega \subset \mathbb{R}^{d}$ be open and $\rho: \Omega \rightarrow(0, \infty)$ be a continuous function. Let $c>0$. Then there is $\delta \in \mathcal{C}^{1}(\Omega)$ satisfying $0<\delta<\rho$ on Ω, Lipschitz with the constant c on Ω.

Proof. Let $\left\{B_{k}\right\}_{k \in \mathbb{N}}$ be a covering of Ω by open balls such that $\overline{B_{k}} \subset \Omega$ for each $k \in \mathbb{N}$. Put $m_{k}=\min _{x \in \overline{B_{k}}} \rho(x)$. Then the desired function is

$$
\sum_{k=1}^{\infty} \frac{m_{k}}{2^{k}} \Psi_{k}
$$

where $\Psi_{k}: \Omega \rightarrow[0,1)$ is a continuously differentiable function such that $\Psi_{k}>0$ on $B_{k}, \Psi_{k}=0$ on $\Omega \backslash B_{k}$ and $\left|\Psi_{k}^{\prime}\right| \leq c / m_{k}$ on Ω.

Lemma 2.2 Let $\Omega \subset \mathbb{R}^{d}$ be open, $\varphi \in \mathcal{L}_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ and let $\delta \in \mathcal{C}^{1}(\Omega)$ be positive on Ω. Then, for the function $F: \Omega \rightarrow \mathbb{R}$ defined as

$$
F(x)=\int_{\mathbb{R}^{d}} \varphi(x+\delta(x) y) \psi(y) d y
$$

we have $F \in \mathcal{C}^{1}(\Omega)$.

Proof. We note first that F can be equivalently expressed as

$$
F(x)=\frac{G(x)}{\delta(x)^{d}}
$$

where

$$
G(x)=\int_{\mathbb{R}^{d}} \varphi(t) H_{t}(x) d t \quad \text { and } \quad H_{t}(x)=\psi\left(\frac{x-t}{\delta(x)}\right)
$$

Fix $x \in \Omega$ and a direction $\nu \in \mathbb{R}^{d}$. We will prove that
I. $\frac{\partial G}{\partial \nu}(x)$ exists and

$$
\frac{\partial G}{\partial \nu}(x)=\int_{\mathbb{R}^{d}} \varphi(t) \frac{\partial H_{t}}{\partial \nu}(x) d t
$$

II. the mapping

$$
s \mapsto \int_{\mathbb{R}^{d}} \varphi(t) \frac{\partial H_{t}}{\partial \nu}(s) d t
$$

is continuous at x.
Choose $\varepsilon>0$ such that $\overline{B(x, \varepsilon)} \subset \Omega$ and put

$$
\Gamma=\overline{\bigcup_{s \in \overline{B(x, \varepsilon)}} B(s, \delta(s))}
$$

Note that, for $s \in \overline{B(x, \varepsilon)}$ and $t \in \mathbb{R}^{d} \backslash \Gamma$, we have $\frac{\partial H_{t}}{\partial \nu}(s)=0$. Moreover, the function $(s, t) \mapsto \frac{\partial H_{t}}{\partial \nu}(s)$ is continuous on the compact set $\overline{B(x, \varepsilon)} \times \Gamma$, and so there is a constant $C>0$ with $\left|\frac{\partial H_{t}}{\partial \nu}(s)\right| \leq C$ for $(s, t) \in \overline{B(x, \varepsilon)} \times \Gamma$. So

$$
\left|\varphi(t) \frac{\partial H_{t}}{\partial \nu}(s)\right| \leq C \chi_{\Gamma}(t)|\varphi(t)|
$$

for $s \in \overline{B(x, \varepsilon)}$ and $t \in \mathbb{R}^{d}$, where χ_{Γ} is the characteristic function of the set Γ. Now, since $\chi_{\Gamma}|\varphi| \in \mathcal{L}^{1}\left(\mathbb{R}^{d}\right)$, I and II are consequences of the standard theorems on integral depending on parameter.

We proved, in particular, that the partial derivatives of G are continuous on Ω, and so $G \in \mathcal{C}^{1}(\Omega)$. Immediately, $F \in \mathcal{C}^{1}(\Omega)$ as well.

Lemma 2.3 Let $L, K>0$. Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function which is Lipschitz with the constant L, let $\Omega \subset \mathbb{R}^{d}$ an open set and let $\delta \in \mathcal{C}^{1}(\Omega)$ be positive and Lipschitz with the constant K / L. Suppose that, for each $x \in \Omega$, there is $\nu_{x} \in \mathbb{R}^{d},\left|\nu_{x}\right|=1$, such that $\frac{\partial \varphi}{\partial \nu_{x}}(y) \geq 2 K$ for almost every $y \in B(x, \delta(x))$. Then the function

$$
F(x)=\int_{\mathbb{R}^{d}} \varphi(x+\delta(x) y) \psi(y) d y
$$

belongs to $\mathcal{C}^{1}(\Omega)$ and $\left|F^{\prime}(x)\right| \geq K$ for each $x \in \Omega$. Moreover, F is Lipschitz.

Proof. First, note that $F \in \mathcal{C}^{1}(\Omega)$ due to Lemma 2.2. Now, choose $x \in \Omega$ and a sequence $\left\{\lambda_{n}\right\}$ of non-zero real numbers with $\lambda_{n} \rightarrow 0$. Since $F \in \mathcal{C}^{1}(\Omega)$, it is sufficient to write

$$
\begin{aligned}
& \frac{\partial F}{\partial \nu_{x}}(x)=\lim _{n \rightarrow \infty} \frac{F\left(x+\lambda_{n} \nu_{x}\right)-F(x)}{\lambda_{n}} \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} \frac{\varphi\left(x+\lambda_{n} \nu_{x}+\delta\left(x+\lambda_{n} \nu_{x}\right) y\right)-\varphi(x+\delta(x) y)}{\lambda_{n}} \psi(y) d y \\
& \geq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} \frac{\varphi\left(x+\lambda_{n} \nu_{x}+\delta\left(x+\lambda_{n} \nu_{x}\right) y\right)-\varphi\left(x+\lambda_{n} \nu_{x}+\delta(x) y\right)}{\lambda_{n}} \psi(y) d y \\
& \quad \quad+\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} \frac{\varphi\left(x+\lambda_{n} \nu_{x}+\delta(x) y\right)-\varphi(x+\delta(x) y)}{\lambda_{n}} \psi(y) d y \\
& \geq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{d}}-L \frac{\left|\delta\left(x+\lambda_{n} \nu_{x}\right)-\delta(x)\right|}{\lambda_{n}}|y| \psi(y) d y \\
& \quad+\int_{\mathbb{R}^{d}} \liminf _{n \rightarrow \infty} \frac{\varphi\left(x+\lambda_{n} \nu_{x}+\delta(x) y\right)-\varphi(x+\delta(x) y)}{\lambda_{n}} \psi(y) d y \\
& \geq \int_{\mathbb{R}^{d}}-L \frac{K}{L}|y| \psi(y) d y+\int_{B(0,1) \backslash N} \frac{\partial \varphi}{\partial \nu_{x}}(x+\delta(x) y) \psi(y) d y \\
& \geq \int_{B(0,1)}-K|y| \psi(y) d y+\int_{B(0,1) \backslash N} 2 K \psi(y) d y \\
& \geq \int_{B(0,1)} K \psi(y) d y=K,
\end{aligned}
$$

where N has measure 0 . We could use the Fatou lemma because

$$
\frac{\varphi\left(x+\lambda_{n} \nu_{x}+\delta(x) y\right)-\varphi(x+\delta(x) y)}{\lambda_{n}} \psi(y) \geq-L \psi(y)
$$

for $n \in \mathbb{N}$ and $y \in \mathbb{R}^{d}$.
To prove that F is Lipschitz, we write

$$
\begin{aligned}
|F(u)-F(v)| & \leq \int_{\mathbb{R}^{d}}|\varphi(u+\delta(u) y)-\varphi(v+\delta(v) y)| \psi(y) d y \\
& \leq \int_{\mathbb{R}^{d}} L(|u-v|+|\delta(u)-\delta(v)||y|) \psi(y) d y \\
& \leq \int_{\mathbb{R}^{d}}(L|u-v|+K|u-v||y|) \psi(y) d y \\
& =\int_{B(0,1)}(L|u-v|+K|u-v||y|) \psi(y) d y \\
& \leq \int_{B(0,1)}(L+K)|u-v| \psi(y) d y=(L+K)|u-v|
\end{aligned}
$$

Lemma 2.4 Let (P, ϱ) be a metric space and functions $s, t: P \rightarrow \mathbb{R}$ be bounded by M_{s}, M_{t} on P. Then the function st is Lipschitz with the constant $M_{s} L_{t}+$ $M_{t} L_{s}$ in the case that s, t are Lipschitz with the constants L_{s}, L_{t}.

Proof. We have

$$
\begin{aligned}
|s(x) t(x)-s(y) t(y)| & \leq|s(x) t(x)-s(x) t(y)|+|s(x) t(y)-s(y) t(y)| \\
& =|s(x)||t(x)-t(y)|+|t(y)||s(x)-s(y)| \\
& \leq M_{s} L_{t} \varrho(x, y)+M_{t} L_{s} \varrho(x, y)
\end{aligned}
$$

for $x, y \in P$.

3 Functions on special domains

Let $r_{i}, s_{i} \in \mathbb{R}, p_{i} \in \mathbb{N}$ for $i \in \mathbb{N}$ satisfying

- $r_{1}>r_{2}>\cdots>0$,
- $p_{1} \leq p_{2} \leq \ldots$,
- $r_{i} \rightarrow 0$,
- $\frac{r_{i+1}}{r_{i}} \rightarrow 1$,
- $\frac{s_{i}}{r_{i}} \rightarrow 0$,
- $p_{i} \rightarrow \infty$
- $\left|\frac{s_{i}-s_{i+1}}{r_{i}-r_{i+1}}\right|=1$,
- $\frac{r_{i}}{r_{i}-r_{i+1}} \frac{1}{p_{i}} \leq 2$,
be fixed throughout this section. We put

$$
\begin{gathered}
D_{p}=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \partial\left([-1,1]^{d}\right): 2 p x_{1}, \ldots, 2 p x_{d} \in \mathbb{Z}\right\}, \quad p \in \mathbb{N} \\
D=\bigcup_{i \in \mathbb{N}} r_{i} D_{p_{i}}
\end{gathered}
$$

In this section, we denote

$$
\|x\|=\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}
$$

for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$.
Lemma 3.1 There is a Lipschitz function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with properties

1. $F^{\prime}(0)=0$,
2. $F^{\prime}(x)$ exists and $\left|F^{\prime}(x)\right| \geq 1 /(4 \sqrt{d})$ whenever $x \in \mathbb{R}^{d} \backslash(D \cup\{0\})$.

The whole section is dedicated to the proof of this lemma.
Define

$$
\begin{gathered}
h(x)=\operatorname{dist}(x, \mathbb{Z}), \quad h_{0}(x)=\operatorname{dist}\left(x,\left\{-p_{1}, \ldots, 0, \ldots, p_{1}\right\}\right), \quad x \in \mathbb{R}, \\
g\left(x_{1}, \ldots, x_{d}\right)=\sum_{j=1}^{d} h\left(x_{j}\right), \quad g_{0}\left(x_{1}, \ldots, x_{d}\right)=\sum_{j=1}^{d} h_{0}\left(x_{j}\right), \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}, \\
g_{t}(x)=t^{-1} g(t x), \quad g_{t, 0}(x)=t^{-1} g_{0}(t x), \quad x \in \mathbb{R}^{d}, t>0
\end{gathered}
$$

Put $C=1+4 d$. For $x \in \mathbb{R}^{d}$, define

$$
\varphi(x)= \begin{cases}0, & x=0 \\ \frac{\|x\|-r_{i+1}}{r_{i}-r_{i+1}}\left(C s_{i}+g_{p_{i} / r_{i}}(x)\right) & \\ \quad+\frac{r_{i}-\|x\|}{r_{i}-r_{i+1}}\left(C s_{i+1}+g_{p_{i+1} / r_{i+1}}(x)\right), & r_{i+1} \leq\|x\|<r_{i} \\ C s_{1}+g_{p_{1} / r_{1}, 0}(x), & r_{1} \leq\|x\|\end{cases}
$$

Claim 3.2 $\varphi(x) /\|x\| \rightarrow 0$ as $x \rightarrow 0$.
Proof. For $x \in \mathbb{R}^{d}$ and $i \in \mathbb{N}$ with $r_{i+1} \leq\|x\|<r_{i}$, we obtain

$$
\begin{aligned}
|\varphi(x)| & \leq\left|\frac{\|x\|-r_{i+1}}{r_{i}-r_{i+1}}\right|\left|C s_{i}+g_{p_{i} / r_{i}}(x)\right| \\
& +\left|\frac{r_{i}-\|x\|}{r_{i}-r_{i+1}}\right|\left|C s_{i+1}+g_{p_{i+1} / r_{i+1}}(x)\right| \\
& \leq C\left|s_{i}\right|+\left|g_{p_{i} / r_{i}}(x)\right|+C\left|s_{i+1}\right|+\left|g_{p_{i+1} / r_{i+1}}(x)\right| \\
& \leq C\left|s_{i}\right|+\frac{r_{i}}{p_{i}} \frac{d}{2}+C\left|s_{i+1}\right|+\frac{r_{i+1}}{p_{i+1}} \frac{d}{2} \\
\frac{|\varphi(x)|}{\|x\|} \leq \frac{|\varphi(x)|}{r_{i+1}} & \leq C\left|\frac{s_{i}}{r_{i}}\right| \frac{r_{i}}{r_{i+1}}+C\left|\frac{s_{i+1}}{r_{i+1}}\right|+\frac{1}{p_{i}} \frac{r_{i}}{r_{i+1}} \frac{d}{2}+\frac{1}{p_{i+1}} \frac{d}{2}
\end{aligned}
$$

The properties of the sequences r_{i}, s_{i} and p_{i} guarantee that the right side converges to 0 as i tends to ∞.

Claim 3.3 φ is Lipschitz.
Proof. Obviously, h is Lipschitz with the constant 1 and g, g_{t} are Lipschitz with the constant d on \mathbb{R}^{d} (all the Lipschitz constants in the proof are with respect to $\|\cdot\|)$. Fix $i \in \mathbb{N}$ and put $U=\left\{x \in \mathbb{R}^{d}: r_{i+1} \leq\|x\|<r_{i}\right\}$. We will investigate separately the functions

$$
\begin{aligned}
\varphi_{1}(x) & =\frac{\|x\|-r_{i+1}}{r_{i}-r_{i+1}} C s_{i}+\frac{r_{i}-\|x\|}{r_{i}-r_{i+1}} C s_{i+1} \\
\varphi_{2}(x) & =\frac{\|x\|-r_{i+1}}{r_{i}-r_{i+1}} g_{p_{i} / r_{i}}(x) \\
\varphi_{3}(x) & =\frac{r_{i}-\|x\|}{r_{i}-r_{i+1}} g_{p_{i+1} / r_{i+1}}(x)
\end{aligned}
$$

which satisfy that $\varphi_{1}+\varphi_{2}+\varphi_{3}=\varphi$ on U. For $x, y \in U$, we have

$$
\varphi_{1}(x)-\varphi_{1}(y)=C(\|x\|-\|y\|) \frac{s_{i}-s_{i+1}}{r_{i}-r_{i+1}}
$$

and thus $\left|\varphi_{1}(x)-\varphi_{1}(y)\right| \leq C\|x-y\|$. It follows from Lemma 2.4 that φ_{2}, φ_{3} are Lipschitz with the constants

$$
d+\frac{r_{i}}{p_{i}} \frac{d}{2} \frac{1}{r_{i}-r_{i+1}}, \quad d+\frac{r_{i+1}}{p_{i+1}} \frac{d}{2} \frac{1}{r_{i}-r_{i+1}}
$$

on U. Together, we get that φ is Lipschitz with the constant $C+4 d$ on U. Even, φ is Lipschitz with this constant on $\bar{U}=\left\{x \in \mathbb{R}^{d}: r_{i+1} \leq\|x\| \leq r_{i}\right\}$ because $\lim _{x \rightarrow z, x \in U} \varphi(x)=C s_{i}+g_{p_{i} / r_{i}}(z)=\varphi(z)$ whenever $\|z\|=r_{i}$.

We have proved that φ is Lipschitz with the constant $C+4 d$ on $\left\{x \in \mathbb{R}^{d}\right.$: $\left.r_{i+1} \leq\|x\| \leq r_{i}\right\}$ for every $i \in \mathbb{N}$. It is also Lipschitz with this constant (in fact, Lipschitz with the constant d) on $\left\{x \in \mathbb{R}^{d}: r_{1} \leq\|x\|\right\}$. Considering the continuity of φ at 0 (Claim 3.2), we see that φ is Lipschitz with the constant $C+4 d$ on \mathbb{R}^{d}.

Fix $k \in\{1, \ldots, d\}$ and $i \in \mathbb{N}$ and differentiate φ on the set $\left\{x \in \mathbb{R}^{d}: r_{i+1}<\right.$ $\|x\|<r_{i},\|x\|=x_{k}>\left|x_{j}\right|$ for $\left.j \neq k\right\}$:

$$
\begin{aligned}
& \varphi(x)= \frac{x_{k}-r_{i+1}}{r_{i}-r_{i+1}}\left(C s_{i}+\frac{r_{i}}{p_{i}} g\left(\frac{p_{i}}{r_{i}} x\right)\right)+\frac{r_{i}-x_{k}}{r_{i}-r_{i+1}}\left(C s_{i+1}+\frac{r_{i+1}}{p_{i+1}} g\left(\frac{p_{i+1}}{r_{i+1}} x\right)\right), \\
& \frac{\partial \varphi}{\partial x_{j}}(x)= \frac{x_{k}-r_{i+1}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i}}{r_{i}} x_{j}\right)+\frac{r_{i}-x_{k}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i+1}}{r_{i+1}} x_{j}\right), \quad j \neq k, \\
& \frac{\partial \varphi}{\partial x_{k}}(x)= \frac{x_{k}-r_{i+1}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i}}{r_{i}} x_{k}\right)+\frac{r_{i}-x_{k}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i+1}}{r_{i+1}} x_{k}\right) \\
& \quad+C \frac{s_{i}-s_{i+1}}{r_{i}-r_{i+1}}+\frac{1}{r_{i}-r_{i+1}} \frac{r_{i}}{p_{i}} g\left(\frac{p_{i}}{r_{i}} x\right)-\frac{1}{r_{i}-r_{i+1}} \frac{r_{i+1}}{p_{i+1}} g\left(\frac{p_{i+1}}{r_{i+1}} x\right)
\end{aligned}
$$

(if the derivatives of h exist). For almost every x with $r_{i+1}<\|x\|<r_{i}$ and $\|x\|=x_{k}>\left|x_{j}\right|$ for $j \neq k$, we obtain

$$
\begin{aligned}
\frac{\partial \varphi}{\partial \nu_{x}}(x) \geq & \frac{s_{i}-s_{i+1}}{r_{i}-r_{i+1}} \frac{\partial \varphi}{\partial x_{k}}(x)-\sum_{j \neq k}\left|\frac{\partial \varphi}{\partial x_{j}}(x)\right| \\
\geq & C-\left|\frac{1}{r_{i}-r_{i+1}} \frac{r_{i}}{p_{i}} g\left(\frac{p_{i}}{r_{i}} x\right)\right|-\left|\frac{1}{r_{i}-r_{i+1}} \frac{r_{i+1}}{p_{i+1}} g\left(\frac{p_{i+1}}{r_{i+1}} x\right)\right| \\
& \quad-\sum_{j=1}^{d}\left|\frac{x_{k}-r_{i+1}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i}}{r_{i}} x_{j}\right)\right|-\sum_{j=1}^{d}\left|\frac{r_{i}-x_{k}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i+1}}{r_{i+1}} x_{j}\right)\right| \\
\geq & C-4 d=1,
\end{aligned}
$$

where ν_{x} denotes $\left(\left(\left(s_{i}-s_{i+1}\right) /\left(r_{i}-r_{i+1}\right)\right) /\|x\|\right) x$.

Claim 3.4 For every $x \in \mathbb{R}^{d} \backslash(D \cup\{0\})$, there is a direction $\nu \in \mathbb{R}^{d},\|\nu\|=1$, and a neighborhood U_{x} of x such that $\frac{\partial \varphi}{\partial \nu}(y) \geq 1 / 2$ for almost every $y \in U_{x}$.

Proof. Due to the symmetry, we may suppose that $x_{j} \geq 0, j=1, \ldots, d$.
Consider cases:
(1) Let $\|x\|=r_{i}$ for some $i \in \mathbb{N}, i \geq 2$. As $x \notin r_{i} D_{p_{i}}$, there is $j \in\{1, \ldots, d\}$ such that $2 p_{i} x_{j} / r_{i} \notin \mathbb{Z}$. Denote $\tau=h^{\prime}\left(p_{i} x_{j} / r_{i}\right) \in\{-1,1\}$ and choose $\varepsilon>0$ such that $\varepsilon \leq(1 / 4) \min \left\{r_{i}-r_{i+1}, r_{i-1}-r_{i}\right\}, 2 \varepsilon<r_{i}-x_{j}$ and $h^{\prime}\left(p_{i} a / r_{i}\right)=\tau$ whenever $\left|x_{j}-a\right| \leq \varepsilon$. Put $\nu=\tau e_{j}$ and $U_{x}=\left\{y \in \mathbb{R}^{d}:\|y-x\| \leq \varepsilon\right\}$. For almost every $y=\left(y_{1}, \ldots, y_{d}\right) \in U_{x}$, there is $k \in\{1, \ldots, d\}$ such that $\|y\|=y_{k}>\left|y_{j^{\prime}}\right|$ for $j^{\prime} \neq k$ and the derivatives $h^{\prime}\left(\frac{p_{i+1}}{r_{i+1}} y_{j}\right)$ and $h^{\prime}\left(\frac{p_{i-1}}{r_{i-1}} y_{j}\right)$ exist (in such a case, $k \neq j$ because $y_{k} \geq\|x\|-\varepsilon=r_{i}-\varepsilon>x_{j}+\varepsilon \geq y_{j}$ by the choice of ε). So, for almost every $y=\left(y_{1}, \ldots, y_{d}\right) \in U_{x}$ with $\|y\|<r_{i}$, we have (for some k)

$$
\begin{aligned}
\frac{\partial \varphi}{\partial \nu}(y)=\tau \frac{\partial \varphi}{\partial x_{j}}(y) & =\tau \frac{y_{k}-r_{i+1}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i}}{r_{i}} y_{j}\right)+\tau \frac{r_{i}-y_{k}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i+1}}{r_{i+1}} y_{j}\right) \\
& =\frac{y_{k}-r_{i+1}}{r_{i}-r_{i+1}}+\tau \frac{r_{i}-y_{k}}{r_{i}-r_{i+1}} h^{\prime}\left(\frac{p_{i+1}}{r_{i+1}} y_{j}\right) \\
& \geq \frac{y_{k}-r_{i+1}}{r_{i}-r_{i+1}}-\frac{r_{i}-y_{k}}{r_{i}-r_{i+1}} \\
& =1-2 \frac{\|x\|-\|y\|}{r_{i}-r_{i+1}} \geq 1-2 \frac{\varepsilon}{r_{i}-r_{i+1}} \geq 1 / 2
\end{aligned}
$$

while, for almost every $y=\left(y_{1}, \ldots, y_{d}\right) \in U_{x}$ with $\|y\|>r_{i}$, we have (for some k)

$$
\begin{aligned}
\frac{\partial \varphi}{\partial \nu}(y)=\tau \frac{\partial \varphi}{\partial x_{j}}(y) & =\tau \frac{y_{k}-r_{i}}{r_{i-1}-r_{i}} h^{\prime}\left(\frac{p_{i-1}}{r_{i-1}} y_{j}\right)+\tau \frac{r_{i-1}-y_{k}}{r_{i-1}-r_{i}} h^{\prime}\left(\frac{p_{i}}{r_{i}} y_{j}\right) \\
& =\tau \frac{y_{k}-r_{i}}{r_{i-1}-r_{i}} h^{\prime}\left(\frac{p_{i-1}}{r_{i-1}} y_{j}\right)+\frac{r_{i-1}-y_{k}}{r_{i-1}-r_{i}} \\
& \geq \frac{r_{i-1}-y_{k}}{r_{i-1}-r_{i}}-\frac{y_{k}-r_{i}}{r_{i-1}-r_{i}} \\
& =1-2 \frac{\|y\|-\|x\|}{r_{i-1}-r_{i}} \geq 1-2 \frac{\varepsilon}{r_{i-1}-r_{i}} \geq 1 / 2
\end{aligned}
$$

(2) Let $\|x\|=r_{1}$. In this case, the procedure is similar to the procedure of (1) (choosing $j, \tau, \varepsilon, \nu$ and U_{x} as in (1), we have $\frac{\partial \varphi}{\partial \nu}(y) \geq 1 / 2$ for almost every $y=\left(y_{1}, \ldots, y_{d}\right) \in U_{x}$ with $\|y\|<r_{1}$ and we can easily check that $\frac{\partial \varphi}{\partial \nu}(y)=1$ for every $y=\left(y_{1}, \ldots, y_{d}\right) \in U_{x}$ with $\left.\|y\| \geq r_{1}\right)$.
(3) Let $r_{i+1}<\|x\|<r_{i}$ for some $i \in \mathbb{N}$. We define

$$
V=\left\{y \in \mathbb{R}^{d}: r_{i+1}<\|y\|<r_{i},\|y\|=y_{k} \geq \max _{j \neq k}\left|y_{j}\right| \text { for some } k\right\} .
$$

We supposed that $x_{j} \geq 0, j=1, \ldots, d$. Therefore, V is a neighbourhood of x. We have

$$
\frac{\partial \varphi}{\partial \nu_{x}}(y)=\frac{\partial \varphi}{\partial \nu_{y}}(y)+\varphi^{\prime}(y)\left(\nu_{x}-\nu_{y}\right) \geq 1-\left|\varphi^{\prime}(y) \| \nu_{x}-\nu_{y}\right|
$$

for almost every $y \in V$, where ν_{x} and ν_{y} denote $\left(\left(\left(s_{i}-s_{i+1}\right) /\left(r_{i}-r_{i+1}\right)\right) /\|x\|\right) x$ and $\left(\left(\left(s_{i}-s_{i+1}\right) /\left(r_{i}-r_{i+1}\right)\right) /\|y\|\right) y$, as above. Now, the existence of an appropriate U_{x} follows from the continuity of $y \mapsto \nu_{y}$ and from Claim 3.3.
(4) Let $\|x\|>r_{1}$. We choose a k with $x_{k}>r_{1}$ and take $U_{x}=\left\{\left(y_{1}, \ldots, y_{d}\right) \in\right.$ $\left.\mathbb{R}^{d}: y_{k}>r_{1}\right\}$. If ν denotes e_{k}, then

$$
\frac{\partial \varphi}{\partial \nu}(y)=\frac{\partial g_{p_{1} / r_{1}, 0}}{\partial x_{k}}(y)=h_{0}^{\prime}\left(\frac{p_{1}}{r_{1}} y_{k}\right)=1
$$

for every $y \in U_{x}$.
Now, for every $x \in \mathbb{R}^{d} \backslash(D \cup\{0\})$, we define $\rho(x)$ as the supremum of numbers $r \leq|x|$ for which there is $\nu \in \mathbb{R}^{d},|\nu| \leq 1$, such that $\frac{\partial \varphi}{\partial \nu}(y) \geq 1 /(2 \sqrt{d})$ for almost every $y \in B(x, r)$. By Claim 3.4, $\rho>0$ on $\mathbb{R}^{d} \backslash(D \cup\{0\})$. Obviously, ρ is Lipschitz (with the constant 1 with respect to $|\cdot|$). By Claim 3.3, we can take $L>0$ such that φ is Lipschitz with the constant L (with respect to $|\cdot|$). By Lemma 2.1, there is $\delta \in \mathcal{C}^{1}\left(\mathbb{R}^{d} \backslash(D \cup\{0\})\right)$ satisfying $0<\delta<\rho$, Lipschitz with the constant $1 /(4 \sqrt{d} L)$. We define F on $\mathbb{R}^{d} \backslash(D \cup\{0\})$ first by

$$
F(x)=\int_{\mathbb{R}^{d}} \varphi(x+\delta(x) y) \psi(y) d y, \quad x \in \mathbb{R}^{d} \backslash(D \cup\{0\})
$$

By Lemma 2.3 (applied on $K=1 /(4 \sqrt{d})$), F is Lipschitz and differentiable on $\mathbb{R}^{d} \backslash(D \cup\{0\})$ and property 2. from Lemma 3.1 is satisfied. We extend F on \mathbb{R}^{d} to be Lipschitz. Property 1. follows now from Claim 3.2 and from

$$
\sup _{x \in B(0, r)}|F(x)| \leq \sup _{x \in B(0, r) \backslash(D \cup\{0\})} \sup _{t \in B(x, \delta(x))}|\varphi(t)| \leq \sup _{t \in B(0,2 r)}|\varphi(t)|
$$

for $r>0$. This completes the proof of Lemma 3.1.

4 General case

Lemma 4.1 Let $r>0$ and $x, y \in \mathbb{R}^{d}$ be such that $|x-y|<r / 2$. Then there is a diffeomorphism $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, Lipschitz with the constant 2 , such that $\Psi(u)=u$ for $u \in \mathbb{R}^{d} \backslash B(x, r), \Psi(y)=x$ and $\left|v \circ \Psi^{\prime}(u)\right| \geq \frac{2}{3}|v|$ for any $u \in \mathbb{R}^{d}$ and $v \in\left(\mathbb{R}^{d}\right)^{*}$.

Proof. Without loss of generality $x=0, y=(|y|, 0,0, \ldots, 0)$ and $r=1$. Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be a function which is differentiable everywhere in $(0, \infty)$ and right differentiable at 0 such that $\phi(0)=|y|, \phi(\xi)=0$ for $\xi \geq 1, \phi_{+}^{\prime}(0)=0$ and $\left|\phi^{\prime}(\xi)\right| \leq 1 / 2$ for $\xi>0$. Define $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\Theta: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by

$$
\Phi(s)=\phi(|s|) \quad \text { and } \quad \Theta(s)=\left(s_{1}+\Phi(s), s_{2}, \ldots, s_{d}\right)
$$

where $s=\left(s_{1}, s_{2}, \ldots, s_{d}\right) \in \mathbb{R}^{d}$. Now, Θ is a diffeomorphism on \mathbb{R}^{d} which is identity on $\mathbb{R}^{d} \backslash B(0,1)$ and $\Theta(0)=y$. Put $\Psi=\Theta^{-1}$. For $s \in \mathbb{R}^{d}$ and $t \in\left(\mathbb{R}^{d}\right)^{*}$, we have

$$
\left|t \circ \Theta^{\prime}(s)\right|=\left|t+t\left(e_{1}\right) \Phi^{\prime}(s)\right| \leq \frac{3}{2}|t| .
$$

Moreover, for $s, s^{\prime} \in \mathbb{R}^{d}$, we have

$$
\left|\Theta(s)-\Theta\left(s^{\prime}\right)\right| \geq\left|s-s^{\prime}\right|-\left|\Phi(s)-\Phi\left(s^{\prime}\right)\right| \geq \frac{1}{2}\left|s-s^{\prime}\right|
$$

So $\left|v \circ \Psi^{\prime}(u)\right| \geq \frac{2}{3}|v|$ for $u \in \mathbb{R}^{d}, v \in\left(\mathbb{R}^{d}\right)^{*}$, and Ψ is Lipschitz with the constant 2.

Proposition 4.2 Let $a \in \mathbb{R}^{d}$ and $E \subset \mathbb{R}^{d} \backslash\{a\}$ be a set which is not porous at a. Then there is a Lipschitz function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, Fréchet differentiable on $\mathbb{R}^{d} \backslash E$, such that $f^{\prime}(a)=0$ and $\left|f^{\prime}(u)\right| \geq 1$ for any $u \in \mathbb{R}^{d} \backslash(E \cup\{a\})$.

Proof. Without loss of generality $a=0$. Put $I=[-1,1]^{d}$. Since E is not porous at 0 , there is, for any $k \in \mathbb{N}$, some minimal $n_{k} \in \mathbb{N}$ such that, for any $r \in\left(0,2^{-n_{k}}\right], r I \subset E+B\left(0, r / 10^{2 k}\right)$. Put

$$
k(n)=\max _{n_{k} \leq n} k \quad \text { for } n \geq n_{1}
$$

$r_{n, l}=\frac{1}{2^{n}}-\frac{10 l}{2^{n+1} \cdot 10^{2 k(n)}} \quad$ and $\quad p_{n, l}=10^{2 k(n)-1} \quad$ for $l=0, \ldots, 10^{2 k(n)-1}-1$.
Rearrange $r_{n, l}$ into the decreasing sequence $\left\{r_{i}\right\}_{i=1}^{\infty}$ and $\left\{p_{i}\right\}_{i=1}^{\infty}$ be the sequence of the corresponding $p_{n, l}$'s. Put

$$
s_{1}=0 \quad \text { and } \quad s_{i+1}=s_{i}+(-1)^{i+1}\left(r_{i}-r_{i+1}\right) \quad \text { for } i \geq 1 .
$$

Note that $s_{i}=0$ and $s_{i+1}=r_{i}-r_{i+1}$ if i is odd. One can compute that

$$
\frac{r_{i}}{r_{i}-r_{i+1}} \frac{1}{p_{i}}=2-\frac{10 l}{10^{2 k(n)}} \quad \text { and } \quad 1 \geq \frac{r_{i+1}}{r_{i}} \geq 1-\frac{10}{10^{2 k(n)}}
$$

for the $n \in \mathbb{N}$ and $l \in\left\{0, \ldots, 10^{2 k(n)-1}-1\right\}$ corresponding to i, and so

$$
\sup \frac{r_{i}}{r_{i}-r_{i+1}} \frac{1}{p_{i}} \leq 2 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{r_{i+1}}{r_{i}}=1 .
$$

Moreover,

$$
\left|\frac{s_{i}-s_{i+1}}{r_{i}-r_{i+1}}\right|=1 \quad \text { and } \quad \frac{s_{i}}{r_{i}} \leq \frac{10}{10^{2 k(n)}} \quad \text { for all } i \in \mathbb{N}
$$

and so $s_{i} / r_{i} \rightarrow 0$ for $i \rightarrow \infty$. Let F be a function which Lemma 3.1 gives for these r_{i} 's and p_{i} 's.

Now, choose $x \in r_{i} D_{p_{i}}$. There are some n and l such that $r_{i}=r_{n, l}$ and $p_{i}=p_{n, l}$. So there is some $u_{x} \in E$ with $\left|x-u_{x}\right|<r_{n, l} / 10^{2 k(n)}$. Put $B_{x}=$ $B\left(x, 2 r_{n, l} / 10^{2 k(n)}\right)$ and, by Lemma 4.1, choose a diffeomorphism $\Psi_{x}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, Lipschitz with the constant 2 , which is identity on $\mathbb{R}^{d} \backslash B_{x}$ and maps u_{x} onto x such that $\left|v \circ \Psi_{x}^{\prime}(u)\right| \geq \frac{2}{3}|v|$ for any $u \in \mathbb{R}^{d}$ and $v \in\left(\mathbb{R}^{d}\right)^{*}$. Let x_{1}, x_{2} be
distinct elements of $D=\bigcup_{i \in \mathbb{N}} r_{i} D_{p_{i}}$ with the corresponding $r_{n_{1}, l_{1}}, p_{n_{1}, l_{1}}, r_{n_{2}, l_{2}}$ and $p_{n_{2}, l_{2}}$. We may suppose that $r_{n_{1}, l_{1}} \geq r_{n_{2}, l_{2}}$. Then

$$
\left|x_{1}-x_{2}\right| \geq \frac{r_{n_{1}, l_{1}}}{2 p_{n_{1}, l_{1}}}=5 \frac{r_{n_{1}, l_{1}}}{10^{2 k\left(n_{1}\right)}}
$$

if $r_{n_{1}, l_{1}}=r_{n_{2}, l_{2}}$ and

$$
\left|x_{1}-x_{2}\right| \geq r_{n_{1}, l_{1}}-r_{n_{2}, l_{2}} \geq \frac{10}{2^{n_{1}+1} \cdot 10^{2 k\left(n_{1}\right)}} \geq 5 \frac{r_{n_{1}, 0}}{10^{2 k\left(n_{1}\right)}} \geq 5 \frac{r_{n_{1}, l_{1}}}{10^{2 k\left(n_{1}\right)}}
$$

if $r_{n_{1}, l_{1}}>r_{n_{2}, l_{2}}$. In both cases,

$$
\left|x_{1}-x_{2}\right| \geq 5 \frac{r_{n_{1}, l_{1}}}{10^{2 k\left(n_{1}\right)}}>\frac{2 r_{n_{1}, l_{1}}}{10^{2 k\left(n_{1}\right)}}+\frac{2 r_{n_{2}, l_{2}}}{10^{2 k\left(n_{2}\right)}}
$$

So $B_{x_{1}} \cap B_{x_{2}}=\emptyset$ and we can define a one-to-one mapping $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, differentiable on $\mathbb{R}^{d} \backslash\{0\}$ and Lipschitz with the constant 2, by

$$
\Psi(u)= \begin{cases}\Psi_{x}(u) & \text { if } u \in B_{x} \\ u & \text { if } u \in \mathbb{R}^{d} \backslash \bigcup_{x \in D} B_{x}\end{cases}
$$

Put $f=(6 \sqrt{d}) F \circ \Psi$. Since f is a composition of Lipschitz mappings, it is Lipschitz. We have $\Psi^{-1}(D) \subset E$, and thus f is differentiable everywhere in $\mathbb{R}^{d} \backslash$ E. For $u \in \mathbb{R}^{d} \backslash(E \cup\{0\})$, we have

$$
\left|f^{\prime}(u)\right|=(6 \sqrt{d})\left|F^{\prime}(\Psi(u)) \circ \Psi^{\prime}(u)\right| \geq \frac{2}{3}(6 \sqrt{d})\left|F^{\prime}(\Psi(u))\right| \geq 1
$$

by property 2 . of the function F. Finally, $f^{\prime}(0)=0$. It follows from property 1 . and from

$$
f(B(0, r))=(6 \sqrt{d}) F(\Psi(B(0, r))) \subset(6 \sqrt{d}) F(B(0,2 r))
$$

for every $r>0$.
We are grateful to Professor Luděk Zajíček for valuable remarks and also for suggesting the characterization of sets where Fréchet derivatives have Darboux property (Theorem 1.3) which easily follows from our Proposition 4.2. We thank to Professor Miroslav Zelený for the idea of mollification by convolution with a variable kernel.

References

[1] P. Holický, C. E. Weil and L. Zajíček: A note on the Darboux property of Fréchet derivatives, Real Anal. Exchange 32 (2007), 489-494.

[^0]: ${ }^{*}$ The research was supported by grant 201/06/0198 of the Grant Agency of the Czech Republic
 ${ }^{\dagger}$ The research was supported by grant $201 / 07 / 0388$ of the Grant Agency of the Czech Republic

