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stochastického programováńı
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Chapter 1

Introduction

To select among several decisions the best one is an ancient and “obviously
very simple” task that people have been solving for centuries. Verily, to find
the shortest route to the office, the cheapest TV set in the town, the biggest
mountain of the country, the best student in the class, you don’t have to
be mathematician and you can still answer the questions without trouble.
Without the same trouble, we hear our representatives speaking about the
best decision for the society the Party has taken or would take if it could;
and obviously, the best solutions are “our” solutions . . . No, simple things
are not simple.

The World War II is now widely considered as a starting point of a new
mathematical discipline which adopted the name of mathematical program-
ming. Mathematical programming is a discipline offering us a toolbox to
solve optimization problems, i. e., the problems of selecting the “best” solu-
tion. The breakthrough was certainly the invention of the simplex method
for solving linear optimization problems by George B. Dantzig [13] – he pro-
vided an instrument for automated searching of solutions of such problems
and also its applications to solve real-world problems, first of all coming of
course from military area.

The methods of linear and nonlinear programming developed later deal
with deterministic problems. But the uncertainty is natural property of all
real-world models. In his early paper, Dantzig [14] himself realized very
large importance of the uncertainty in optimization. Sometimes, uncertain
parameters can be replaced without worry, i.e., approximated with some
“good” estimates, but otherwise such simplification is not possible and leads
to false conclusions. Thus, in the fifties, works on the new area of science
was originating: the stochastic programming was born.

Stochastic programming is large scientific area of the theory of optimiza-
tion in which the problems with random parameters occur. We search for
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CHAPTER 1. INTRODUCTION 7

solutions of such problems, investigate their properties and properties of the
problems themselves. All mentioned is important especially in cases in which
the randomness cannot be neglected. To begin our investigation at a mathe-
matically correct base let us start with a formal description of the uncertainty
in mathematical programming.

1.1 Uncertainty in mathematical programming

As said above, the uncertainty is natural property of mathematical opti-
mization problems. As the starting point, consider the following general
optimization problem

minimize c(x; ξ) subject to x ∈ X, f(x; ξ) ≤ 0 (1.1)

where

• ξ ∈ Rs is a data element of the problem,

• x ∈ X ⊂ Rn is a decision vector,

• the dimensions n, s,m, and the mappings c : Rn × Rs → R and
f : Rn × Rs → Rm are structural elements of the problem.

All decision-making problems follow such a frame but different methods
have to be used due to the nature of structural and data elements of the
problems. For our purpose, we extend the description of the framework by
the following characterization.

1. The knowledge of the data is insufficient (uncertain). All that is known
about the data vector ξ (at least at the very beginning) is that it belongs
to a given uncertainty set Ξ ⊂ Rs.

2. The objective function of (1.1) is required to be the best possible given
the actual realization (instance) of ξ ∈ Ξ.

3. The constraints of problem (1.1) are required to be satisfied as much
as possible given the actual realization of ξ ∈ Ξ.

If the realization of ξ is known and fixed in advance (before the decision
has to be taken), and the elements of the problem have suitable properties,
standard algorithms of deterministic optimization can be used to solve prob-
lem (1.1). For example, if X is a closed convex set, ξ is known and fixed,
c and the components fj of f are convex functions in x for all j, then (1.1)
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is a classical case of a convex programming problem and it can be solved by
traditional tools of mathematical (convex) programming.

This is rarely the case; in practice, uncertainty of the data is typical
property and inevitably has to be considered during the course of building
the modelling framework. Let us see several examples how the uncertainty
occurs.

Example 1.1.

1. The data ξ is not known at the time when a decision has to be taken,
and it is observed later in the future. For example, x is a vector of
production variables and ξ is an unknown value of future demand or
market price.

2. The data ξ cannot be measured or estimated exactly even if it is realized
before or at the time when the concrete decision is taken. This is typical
for many physical applications where for example material properties
are measured with random errors.

3. The data is certain and the optimal solution of the problem can be com-
puted exactly, but such solution cannot be implemented exactly due to
physical characteristics of the solution. For example, if the decision
is an amount of some commodity to be produced but the production
cannot be operated precisely, the actual production is uncertain. Such
uncertain implementation can be easily modeled via uncertainty in pa-
rameters of the model, not necessarily in the decision vector x itself.

4. The model itself is an approximation of a complicated real-world phe-
nomenon and uncertainty comes directly from the reality and the mod-
eling process.

Dealing with uncertainty is a kind of bread-and-butter problems that
classical optimization try to solve. During the history of mathematical pro-
gramming, several approaches were developed.

1.1.1 Sensitivity analysis – the traditional way

First, the uncertainty can be simply ignored at the stage of building the
model or at the stage of searching for the optimal solution. The uncertain
value of data parameter is replaced by some nominal value, usually by an
average, expected value, expert estimate, etc. The accuracy of the optimal
solution is (or should be) inspected ex-post by sensitivity analysis. This is
a traditional way to control the stability of the model but it is limited only
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to a single, already generated solution. Moreover, the sensitivity analysis
deals only with small perturbations of the nominal data. There are simple
examples where the approach described above fails entirely. We would cite
famous Peter Kall’s linear programming example.

Example 1.2 (Kall [35]). Consider a linear optimization problem

minimize x+ y subject to ax+ y ≥ 7, bx+ y ≥ 4

where a, b are random coefficients with uniform distribution on [1; 4] and
[1/3; 1] respectively. After replacing a and b with their expected values and
solving the deterministic optimization problem, we obtain the solution which
is not feasible with 75% probability!

The classical sensitivity analysis is an adequate method only for simple
models or for applications where the uncertainty of the data does not play
a crucial role. Otherwise, we are necessarily compelled to use more sophisti-
cated methods.

1.1.2 Parametric programming

The uncertainty can be introduced to the model via a parameter – member of
a specified parametric space. The problem (precisely, a family of problems)
is then solved over the parametric space. We introduce this technique here
only for completeness and do not pursue this direction anymore in the thesis.

1.1.3 Stochastic programming

Stochastic programming handles the uncertainty of stochastic nature. More
precisely, we consider ξ in (1.1) to be a random vector and assume that
we are able to identify its underlying probability distribution. The idea
of stochastic programming approach is to incorporate available information
about data through its probability distribution and solve the new model by
means of deterministic optimization (the new model was said to be a “deter-
ministic equivalent” in early works on stochastic programming). There are
various ways of doing that and there are many papers and books dealing with
particular branches of stochastic programming. The stochastic programming
community recognizes Dantzig’s paper [14] as the initial work in the area;
there are also a large number of books devoted to stochastic programming
and its applications (Birge and Louveaux [8], Kall and Wallace [36], Prékopa
[50], Ruszczyński and Shapiro [64], Wallace and Ziemba [72], and others).

Formally, we assume that ξ is a random vector defined on some probability
space (Ω,A,P) and its probability distribution µ ∈ P(Ξ) is known and fixed.
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Here, P(Ξ) denotes the space of all probability measures defined on the
set Ξ. We assume that c and f are A-measurable functions for all x ∈ X
and that µ does not depend on x ∈ X. We have to make a decision before
the realization of ξ is taken. Information about probabilistic nature of ξ can
be incorporated into the model through various techniques and so we arrive
at particular variants of stochastic programming problems. Let us describe
some of them by the following examples.

Example 1.3 (Chance-constrained problem). We assume that the objective
c(x; ξ) = c(x) does not depend on ξ and that we require the constraints
f(x; ξ) ≤ 0 to be fulfilled with the prescribed level of probability 1−ε, where
ε ∈ [0; 1]. In fact, non-linear and/or random objective of (1.1) can be moved
to the constraint part of the problem considering the following problem

minimize t subject to x ∈ X, f(x; ξ) ≤ 0, c(x; ξ) ≤ t, t ∈ R.

(see Section 7.1 for details) The following stochastic programming problem is
known as chance (or probability) constrained problem and is one of particular
problems treated by the stochastic programming theory and practice:

minimize c′x subject to x ∈ X, µ{ξ ∈ Ξ : f(x; ξ) > 0} ≤ ε.

We will treat particular cases of chance-constrained programming in Sec-
tions 2.1.2 and 4.3 and in Chapters 6 and 7.

Example 1.4 (Recourse problem). We assume that the constraints set does
not depend on ξ; it means, we can somehow incorporate all available con-
straints into the (deterministic) set X. Possible deviations from the model
requirements are compensated by additional recourse action g(x; ξ) which is
often the optimal value of a so-called second stage optimization program; its
solution depends on the action x from the first stage program and on the
realization of the random vector ξ. All possible compensation actions are
incorporated to the first stage program through some selected criterium. In
many cases, it is done by taking expected value of the first-stage objective
c(x; ξ) and the second-stage value g(x; ξ); the problem reads

minimize E
[
c(x; ξ) + g(x; ξ)

]
.

Expectation is taken with respect to the probability distribution of ξ and
we assume that the functions c, g are measurable and that their expectations
exist. This problem is called (stochastic programming) problem with recourse
(or with penalization). Other criteria are sometimes used (var,P−, quantile
criteria). We treat recourse problems more deeply in Sections 2.1.1 and 4.2
and partially in Chapter 5.
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Example 1.5 (Mixed case). Mixed case where both the compensation g
and the constraints f depend on the uncertainty parameter are common
in practice. From the theoretical point of view, they are not so important
because one random part of the problem can be easily converted to the other,
as mentioned in Example 1.3 for the case of chance-constrained problem. We
therefore do not pay any special attention to these problems.

1.1.4 Robust programming

Unlike stochastic programming, techniques of robust programming are look-
ing for a solution to optimization program (1.1) that satisfies its constraints
for all possible realizations of ξ, i. e., that is feasible for any member of the
problems belonging to the family (1.1). The problem can be rewritten as

minimize c′x subject to x ∈ X, f(x; ξ) ≤ 0 for all ξ ∈ Ξ. (1.2)

The symbol Ξ is overloaded here: first, in (1.1), it represents the uncertainty
set which the (unknown) parameter ξ is known to belong to, and second, in
(1.2), it is the set of parameters for which the constraints must be fulfilled. In
fact, this overloading is not too much important: the two sets usually coincide
for the reason that information we have about the uncertain parameter is the
same as the risk we want to hedge against. Even if it is not the case, the
role of the original uncertainty set Ξ is not recognized so important in robust
programming problems.

For c, f and X convex, (1.2) is a convex program but it is numerically
hard to solve because of an infinite number of constraints. There are several
relaxation techniques to deal with this issue, see e. g. Ben-Tal and Nemirovski
[5], Bertsimas and Sim [7], and references therein. We describe a so-called
“randomized” approach Calafiore and Campi [10] in Chapter 7.

The dissertation thesis is divided into three main parts. The first part
is devoted to the stability in stochastic programming problems, involving
the necessary theoretical background on probabilistic metrics and the survey
of literature. This part ends with Chapter 5 concerning approximations in
stochastic programming. Second part numbered as Chapter 6 deals with
convexity in chance-constrained problems, especially for the case of weakly
dependent constraint rows. Last part of the thesis, Chapter 7, compares
stochastic and robust programming as the two disciplines solving one original
optimization problem by different means.



Chapter 2

Stochastic programming
problems

We introduced in Chapter 1 stochastic programming as a mathematical dis-
cipline that could help to solve optimization problems in which the uncer-
tainty is of probabilistic nature. We continue in this chapter by specifying
the general form of stochastic programming problems and two main classes of
stochastic programming problems that meet this general form and to which
we refer later in the thesis. Second part of the chapter is devoted to an
introduction to the stability of stochastic programming problems; it will be
continued by Chapter 4.

2.1 Classes of stochastic programming

problems

In Examples 1.3 and 1.4 we started with two specific cases of stochastic
programming problems – chance-constrained problem and recourse (penal-
ization) problem. In the following, we generalize the concept by the following
general formulation of stochastic programming problem:

inf
x∈X

∫
Ξ

F0(x; ξ) µ(dξ)

subject to∫
Ξ

Fj(x; ξ) µ(dξ) ≤ 0, j = 1, . . . , d

(2.1)

In addition to general assumptions from (1.1), we assume that

12
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• Ξ ⊂ Rs is a closed set, representing here the support of µ (cf. the note
on overloaded symbol Ξ in Section 1.1.4),

• µ ∈ P(Ξ) is a probability measure defined on Ξ,

• X is a closed set not depending on µ,

• Fj : Rn × Ξ → R̄ are for all j = 0, . . . , d extended real random lower
semicontinuous functions.

Recall that a function F : Rn × Ξ → R̄ is random lower semicontinuous
if its epigraphical mapping

ξ 7→ epiF (·, ξ) :=
{

(x; r) ∈ Rn × R : F (x; ξ) ≤ r
}

is closed-valued and measurable. In the literature, random lower semicon-
tinuous functions are also referred as normal integrands ; a detailed analysis
of random lower semicontinuous functions can be found in Rockafellar and
Wets [58], Section 14.D.. From the above definition it follows that

1. F (·; ξ) is lower semicontinuous for every fixed ξ ∈ Ξ (closed-valuedness
of epiF means that for every ξ the epigraph epiF (·, ξ) is closed subset
of Rn+1, i.e. F (·; ξ) is lower semicontinuous);

2. F (x; ·) is measurable for every fixed x ∈ X.

Note that not every multifunction possessing the last two properties is neces-
sarily random lower semicontinuous; the counterexample is due to the infinity
nature of the range of F and the existence of a non-measurable set well known
from the measure theory.

In what follows we use the following notation:

X(µ) :=

{
x ∈ X :

∫
Ξ

Fj(x; ξ) µ(dξ) ≤ 0, j = 1, . . . , d

}
,

ϕ(µ) := inf
x∈X(µ)

∫
Ξ

F0(x; ξ) µ(dξ),

ψ(µ) :=

{
x ∈ X(µ) :

∫
Ξ

F0(x; ξ) µ(dξ) = ϕ(µ)

}
.

X(µ) is the constraint set of (2.1); it depends on the probability distribu-
tion µ. ϕ(µ) is the optimal value and ψ(µ) is the optimal solution set of the
problem (2.1). X (without reference to to µ) is used to describe determinis-
tic constraints, i.e. all constraints that does not depend on the probability
measure µ. We will also refer to µ as “original distribution” for the sequel.

Different classes of stochastic programming problems, not only well-known
and already presented recourse and chance-constrained programs fall into this
general framework. Let nevertheless start again with recourse problems.
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2.1.1 Recourse (penalization) problems

Let d = 0. Here, the constraint part of the problem does not exhibit any
probabilistic nature – the only constraints we have in hand are already in-
cluded in X. Problem (2.1) then reduces to

inf
x∈X

∫
Ξ

F0(x; ξ) µ(dξ). (2.2)

This problem covers among others a so called stochastic programming problem
with recourse. In the usual application framework, the function F0 is split up
into two parts: first part is the first-stage objective function c(x); it does not
depend on ξ and gives us the (first stage) decision x. After some decision x
is chosen, random variable ξ is realized and some compensation/penalization
action is taken evaluated by the cost function Q(x; ξ). The expected value
of these additional costs is taken into consideration when deciding about
first-stage decision. The whole problem then reads:

inf
x∈X

(
c(x) +

∫
Ξ

Q(x; ξ) µ(dξ)

)
(2.3)

where c : Rn → R, and Q : Rn × Rs → R̄
For theoretical purposes, only properties of Q are of special consideration

in stochastic programming (the function c is considered not to be of ran-
dom nature). This cost function is usually given throughout a second-stage
optimization problem depending on the realization of ξ as well as on the
first-stage decision x. The recourse value function can be read, for example,
as

Q(x, ξ) := inf{q(y) : y ∈ Y (x, ξ)}, (2.4)

Y : Rn × Rs ⇒ Rm, q : Rm → R̄. Of course, properties of the multifunction
Y are crucial for properties of second-stage value function Q and thus for
properties of the stochastic program (2.3) as a whole. Most of the literature
is concerned with the problem of (fixed) linear recourse:

min (c′x+ EQ(x; ξ)) subject to x ∈ X
where

Q(x; ξ) = min{q(ξ)′y : Wy = b(ξ)− T (ξ)x, y ≥ 0},
(2.5)

c ∈ Rn (first-stage costs), y ∈ Rm (second-stage solution), and W ∈ Rm̄×m

(fixed recourse matrix). The vectors q (second-stage objective), b (right-
hand side), and matrix T (technology matrix), all of them of appropriate
sizes, depend on ξ affine linearly. To have the problem in (2.5) well defined
we need the following assumptions to be fulfilled:
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(A1) foreach t ∈ Rm̄ there exists y ∈ Rm
+ such that Wy = t (the recourse is

complete);

(A2) there exists u ∈ Rm̄ such that W ′u ≤ q (dual feasibility);

(A3) ξ ∈ P2(Ξ), i.e.
∫

Ξ
‖ξ‖2µ(dξ) < +∞ (finite second-order moments).

A number of papers and books concern stochastic linear programming
problems with recourse; among all we refer to the book Birge and Louveaux
[8] where the basic theory and numerical methods for stochastic programming
problems with expectation is treated.

2.1.2 Chance-constrained programming problems

Consider d = 1 and set F0(x; ξ) = c(x), where c : Rn → R. In this case, there
is no stochastic element in the objective function of the problem. Let further
H : Rn ⇒ Rs be a multifunction representing stochastic constraints of the
problem, and define F1 from (2.1) as

F1(x; ξ) = p− χH(x)(ξ),

with p ∈ [0; 1] being a prescribed (sufficiently high) probability level, and
χA(·) the characteristic function of a set A (equal to 1 if ξ ∈ A, 0 other-
wise). The easy transformation of (2.1) (having in mind that integral of the
characteristic function of a set A is equal to the probability of the set) leads
to the formulation of so-called (joint) chance-constrained (or probabilistic)
programming problem:

min c(x) subject to x ∈ X, µ(H(x)) ≥ p (2.6)

Example 2.1. To get a particular formulation of Example 1.3 on page 10
in our form we have to set up

c(x) = c′x,

H(x) = {ξ ∈ Ξ; f(x; ξ) ≤ 0}, and

p = 1− ε.

If this example, no matter if the function f is considered one- or multidi-
mensional. Assume for now the constraint function f in Example 2.1 to be
one-dimensional and only one component of ξ applies in the definition of f .



CHAPTER 2. STOCHASTIC PROGRAMMING PROBLEMS 16

If we now have a number of d = s of such functions (each of them with its
own component of ξ), define for all i = 1, . . . , s

Hi(x) = {ξ ∈ Ξ: fi(x; ξi) ≤ 0},
Fi(x; ξ) = pi − χHi(x)(ξ), with

pi ∈ [0; 1].

Using these definitions and assuming stochastically independent components
of ξ, (2.1) results in the formulation of stochastic programming problem with
individual probabilistic constraints :

min c(x) subject to x ∈ X, µ(fi(x; ξi) ≤ 0) ≥ pi for i = 1, . . . , s. (2.7)

From the probabilistic point of view, each constraint in the last model is
examined separately, it means that the model ignores (possible) stochastic
dependence between the constraints. This could be considered as an issue
and an advantage at the same time for practical problems because numerical
treatment of individual probabilistic constraints is much more simple than
of joint ones. We will focus on another issue of individual/joint chance-
constrained problems in Chapter 6.

As for recourse problems, many papers and books are devoted to chance-
constrained programming problems. The starting reference could be the book
of András Prékopa [50] with thorough analysis of many aspects of chance-
constrained programming. We mention some additional literature in the
upcoming chapters devoted to stability and structural dependence of chance-
constrained problems.

2.1.3 Other formulations

More complicated models falling into the frame of (2.1) and involving prob-
abilistic terms can be formulated; we now will mention only a few of them
as illustration of possible extensions to the area.

1. Block-joint probabilistic constraints. Consider d ≥ 1 and multi-
dimensional functions fi in (2.7); we obtain a problem that is composed
of several blocks of joint probabilistic constraints; each block itself is
considered independent on other blocks.

2. Probability maximization. Consider a problem

maxµ(c(x; ξ) ≤ b) subject to x ∈ X.
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The above problem is sometimes referred as problem of maximizing
the probability: we require the objective c to attain some prescribed
(sufficiently small) treshold b with as high probability as possible. To
rewrite the problem in terms of (2.1) we set d = 0 and

H(x) = {ξ ∈ Ξ: c(x; ξ) ≤ b},
F0(x; ξ) = 1− χH(x)(ξ).

3. Hybrid linear problem. Probabilistic constraints and recourse can
be combined together, as in the following model example with simple
linear recourse with probabilistic constraints:

min

(
c′x+

m∑
j=1

qjE[ξj − Tjx]+

)
subject to

x ∈ X, µ{Tx ≥ ξ} ≥ p,

where Tj are the rows of matrix T , qi are penalization constants, [·]+
stands for positive part function. The second-stage optimization prob-
lem is a classical linear problem with probabilistic constraints, i.e. we
require the constraints to be satisfied with sufficiently high probability,
nevertheless possible constraint violation is in addition penalized by
unit costs qj.

2.2 Stability of stochastic programming

problems

Almost all methods of stochastic programming rely on the fact that the
distribution µ is known and fixed in advance. In practice, this is not the
case, the true distribution is rarely completely known:

• often, the true distribution is not actually known but we have some
historical data at our disposition, hence some statistical estimate of µ
can (and should) be used;

• even if the distribution is completely known, its properties could forbid
to solve the problem efficiently and some simple (e.g. discrete) approx-
imation has to be used;

• the most unpleasant is the case when we dispose no information at
all (nor the historical data) and one has to use some kind of expert
estimate.



CHAPTER 2. STOCHASTIC PROGRAMMING PROBLEMS 18

All these cases (and possibly other of yours) have common mathematical
interpretation: in (2.1), we replace the “original” distribution µ by the “new”
one (estimated, approximated) which we will denote ν for the remaining parts
of the thesis.

The key question in the theory of stability of stochastic programming is:
how the optimal value and optimal solution of (2.1) change if we replace the
original measure µ by its estimate (approximation, . . . ) ν. We can split up
such large question into several areas of interest:

1. Qualitative stability: we are looking for suitable qualitative proper-
ties of the optimal value and the optimal solution set, such as (semi-)
continuity, differentiability, or persistence (existence of a solution on a
neighbourhood).

2. Quantitative stability: the matter of thing is to quantify previous
properties; for example to find a convenient upper bounds for

|ϕ(µ)− ϕ(ν)| and D(ψ(µ), ψ(ν))

where D is suitably selected set-distance, e.g. Pompeiu-Hausdorff dis-
tance, ρ-distances, etc. (for thorough analysis see Rockafellar and Wets
[58], Chapter 4). More formally we look for functions mϕ, mψ having
convenient properties (e.g. Lipschitz, Hölder continuity, etc.) such that

|ϕ(µ)− ϕ(ν)| ≤ mϕ(d(µ, ν))

D(ψ(µ), ψ(ν)) ≤ mψ(d(µ, ν))

where d is some function measuring “difference” between distributions
µ and ν.

Natural question arises when reading previous sentences: how to measure
(quantify) the “difference” between two distributions; this question was also
investigated by several authors and is to be exploited in the next chapter.



Chapter 3

Probability metrics

3.1 Minimal and ideal probability metric

3.1.1 Minimal information metric

Stating quantitative stability of optimal values and/or optimal solution sets
in the form

|ϕ(µ)− ϕ(ν)| ≤ mϕ(µ, ν)

D(ψ(µ), ψ(ν)) ≤ mψ(µ, ν)
(3.1)

the key is to find an explicit form of functionals mϕ, mψ for µ and ν being
not too far each other. Hence, our aim is to introduce a notion of “distance
between probability distributions”. Denote P(Ξ) the space of all probability
measures defined on Ξ ⊂ Rs and PF ⊂ P(Ξ) its (somehow determined)
subset; the choice of PF would depend on a set F of nonlinear real functions
defined on Ξ on so that the subclass PF has suitable properties (existence of
finite moments is such a common property).

Definition 3.1 (Rachev [53], Definition 2.3.1). A mapping dF : Ξ × Ξ →
[0; +∞] is said to be a probability pseudometric (also semimetric) on the
space PF(Ξ) if it has the following properties:

(P1) (identity) µ = ν ⇒ dF(µ, ν) = 0

(P2) (symmetry) dF(µ, ν) = dF(ν, µ)

(P3) (triangle inequality) dF(µ, ν) ≤ dF(µ, π) + dF(π, ν) for all π ∈ PF(Ξ)

It is said to be a probability metric if the identity property has a form of
equivalence:

19
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(P1*) (identity) µ = ν ⇔ dF(µ, ν) = 0.

Natural choice of a distance for the general stochastic programming prob-
lem (2.1) is a distance that uniformly compares expectations on a variety of
nonlinear function F . Such distance is defined for µ, ν ∈ PF by

dF(µ, ν) := sup
F∈F

∣∣∣∫
Ξ

F (ξ)µ(dξ)−
∫

Ξ

F (ξ)ν(dξ)
∣∣∣ (3.2)

and known as the distance having ζ-structure or Zolotarev pseudometric on
the space PF of probability measures. The concept of such a distance was
introduced by Zolotarev [75], the question is examined also in Zolotarev [76]
and Rachev [53].

For the distance (3.2), the properties (P1), (P2), and (P3) are always
satisfied, hence dF is always a pseudometric. If it has finite value and the
class F is rich enough to ensure that dF(µ, ν) = 0 implies µ = ν, then it is a
metric on PF .

The choice of functions that will belong to F , so forth defining the class
PF and the (pseudo-) metric dF , would closely depend on structural prop-
erties of the problem. Smaller the number of members of F , smaller the
distance is and hence more stringent bounds could be found. The “smallest
possible” F contains only the functions Fj(x, ·) – see the upcoming Defini-
tion 3.2.

For reasons of localization (this will be treated later in more depth), we
consider an open set U ⊂ Rn (without any additional specification here) and
define the class of functions

FU :=
{
Fj(x; ·) : x ∈ X ∩ clU, j = 0, . . . , d

}
and the space of probability metrics corresponding to FU as

PFU
(Ξ) :=

{
ν ∈ P(Ξ) :

−∞ <

∫
Ξ

inf
x∈X∩rB

Fj(x; ξ)dν(ξ) for each r > 0,

sup
x∈X∩clU

∫
Ξ

Fj(x; ξ)dν(ξ) < +∞ for each j = 0, . . . , d

}
.

The conditions on ν in PFU
(Ξ) are such that expectations in (3.2) exist and

are finite so the distance is well defined.
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Definition 3.2. The distance

dFU
(µ, ν) := sup

j=0,...,d
x∈X∩clU

∣∣∣∫
Ξ

Fj(x; ξ)(µ)(dξ)−
∫

Ξ

Fj(x; ξ)(ν)(dξ)
∣∣∣

is called minimal information (m. i.) metric.

The distance dFU
is a distance having ζ-structure. It is the “minimal

distance” for the stability of the model (2.1) in sense that it takes information
only from specific properties of the functions Fj. General stability theorems
deal with this probability distance.

3.1.2 Ideal probability metric

Minimal information metric is difficult to handle. In order to find more
friendly results we look for another distance having ζ-structure by enlarging
the class F and thus bounding dFU

from above. Then, all bounds of type
(3.1) found originally with dFU

remain still valid for any new distance from
PF . Sometimes, it is also necessary to reduce the class PF of acceptable
probability measures to ensure existence and finiteness of expectations. The
common strategy of constructing an enlarged class Fid is such that Fid con-
tains all the functions CFj(x; ·) for all x ∈ X∩clU and some C > 0 and share
some typical analytical properties of Fj. We call such probability metric as
an ideal probability metric for the predefined class of stochastic programming
problems.

3.2 Probability metrics for recourse

functionals

3.2.1 Wasserstein metric

Functionals of stochastic programs with linear recourse as well as some other
types of recourse functionals exhibit a local Lipschitz property which we are
going to characterize now.

Definition 3.3. Consider a function F : Ξ → R. We define 1-Lipschitz
constant of F

L1(F ) := inf
{
L : |F (ξ)− F (ξ̃)| ≤ L‖ξ − ξ̃‖ ∀ξ, ξ̃ ∈ Ξ

}
,

where ‖·‖ is the usual Euclidian norm. We define the class of 1-Lipschitz
continuous functions as

F1 := {F :Ξ→ R : L1(F ) ≤ 1} .



CHAPTER 3. PROBABILITY METRICS 22

Denote

P1(Ξ) = PF1(Ξ) :=

{
ν ∈ P(Ξ) :

∫
Ξ

‖ξ‖ν(dξ) < +∞
}

the class of probability measures having finite the first absolute moment.

Definition 3.4. Let µ, ν ∈ P1(Ξ). We define so-called Wasserstein metric
by

W1(µ, ν) := dF1 = sup
F∈F1

∣∣∫
Ξ

F (ξ)µ(dξ)−
∫

Ξ

F (ξ)ν(dξ)
∣∣.

Wasserstein metric is a distance that has ζ-structure. It is used in many
areas of probability and statistics where it is also known as Kantorovich or
Mallows metric.

Application of the Kantorovich-Rubinstein theorem gives us a dual rep-
resentation of W1. The exact formula states

W1(µ, ν) := inf

{∫
Ξ×Ξ

‖ξ − ξ̃‖ η(dξ × dξ̃) : η ∈ D(µ, ν)

}
,

where D(µ, ν) is the set of all probability measures (from P(Ξ×Ξ)) for which
µ and ν are marginal distributions.

Calculation of the value of Wasserstein metric is rather troublesome be-
cause it involves computation of a multidimensional integral. The situation
is much more simpler in one-dimensional space: let µ, ν ∈ P(Ξ) be one-
dimensional distributions with distribution functions F,G respectively. Then
the Wasserstein metric simplifies to (see Vallander [70])

W1(µ, ν) =

∫ 1

0

|F−1(t)−G−1(t)|dt

or, using duality,

W1(µ, ν) =

∫ +∞

−∞
|F (t)−G(t)|dt.

The calculation is demonstrated in Figure 3.1.
The one-dimensional Wasserstein metric is plausible metric concerning

the easiness of calculation – it is a simple one-dimensional integral. But
there are special cases where obtained results are useless as in the following
example.

Example 3.1 (Houda [32]). Consider two one-dimensional distributions µ, ν
with distribution functions F,G defined by

F (t) :=


ε

1− t
for t < 0

arbitrary for t ≥ 0
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t
0

1

F (t)

G(t)

W1(µ, ν)

Figure 3.1: One-dimensional Wasserstein metric

with some ε ∈ (0; 1), and

G(t) :=

{
0 for t < 0

F (t) for t ≥ 0

The distribution µ is an example of a probability distribution having heavy
tails ; although the two distribtions appear close each to other, the value of
the Wasserstein metric between µ and ν is infinite. The problem is illustrated
on Figure 3.2.

t

1

F (t)

G(t)

F (t) = G(t)W1(µ, ν)→ +∞

K(µ, ν) = ε

Figure 3.2: Wasserstein metric and heavy tails

In the literature there also appears a notion of higher-order Wasserstein
metrics: consider p ≥ 1, and denote

Pp(Ξ) = PFp(Ξ) :=

{
ν ∈ P(Ξ) :

∫
Ξ

‖ξ‖pν(dξ) < +∞
}

a class of distributions having finite at least p-th moment. For µ, ν ∈ Pp(Ξ),
we define (starting with the dual representation) the p-Wasserstein metric
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by

Wp(µ, ν) :=

[
inf

{∫
Ξ×Ξ

‖ξ − ξ̃‖p η(dξ × dξ̃) : η ∈ D(µ, ν)

}]1/p

,

where D(µ, ν) is again the set of all probability measures (of P(Ξ× Ξ)), for
which µ and ν are marginals. The p-order Wasserstein metric was historically
used for stability of recourse models with random both recourse costs and
technology matrix with right-hand side. Nowadays, the actual importance of
these metrics diminishes in favour of the Fortet-Mourier metrics (see below).
Let us end with saying that (Pp(Ξ),Wp) is metric space and Wp metrizes the
topology of weak convergence on Pp(Ξ).

3.2.2 Fortet-Mourier metric

General recourse functionals can grow faster than linearly. To generalize the
notion of Lipschitz continuity, we define for p ≥ 1 a p-Lipschitz constant of
the function F : Ξ→ R by

Lp(F ) := inf
{
L : |F (ξ)−F (ξ̃)| ≤ L‖ξ− ξ̃‖max{1, ‖ξ‖p−1, ‖ξ̃‖p−1} ∀ξ, ξ̃ ∈ Ξ

}
and the class of p-Lipschitz continuous functions by

Fp := {F : Ξ→ R : Lp(F ) ≤ 1} .

Following the similar construction of the Wasserstein metric, we denote

Pp(Ξ) = PFp(Ξ) :=

{
ν ∈ P(Ξ) :

∫
Ξ

‖ξ‖pν(dξ) < +∞
}

the class of probability measures having finite the p-th absolute moment, let
µ, ν ∈ P(Ξ), and define the metric

ζp(µ, ν) := dFp(µ, ν) = sup
F∈Fp

∣∣∫
Ξ

F (ξ)µ(dξ)−
∫

Ξ

F (ξ)ν(dξ)
∣∣.

The last one is called the p-th order Fortet-Mourier metric (see Fortet and
Mourier [23], Rachev [53]). We immediately see that W1(µ, ν) coincides with
ζ1(µ, ν).

When constructing a scenario tree within a discretization process, one
discusses the problem how to minimize the chosen metric. In the case of
the p-Fortet–Mourier metric with p > 1, the problem could be transformed
to the minimization of the 1-Fortet–Mourier metric, i. e. the 1-Wasserstein
metric. For details about these techniques see Pflug [47].
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3.2.3 Bounded Lipschitz β-metric

In early papers concerning the stability with respect to the probability mea-
sures, a more complicated distance was considered, but which also holds the
ζ-structure. It deals with bounded Lipschitz functions defining “bounded
Lipschitz” constant by

‖f‖BL := sup
ξ∈Ξ
‖f(ξ)‖+ sup

ξ,ξ̃∈Ξ

ξ 6=ξ̃

|f(ξ)− f(ξ̃)|
‖ξ − ξ̃‖

This leads to the class FBL := {f : Ξ→ R : ‖f‖BL ≤ 1} and the metrics β :=
dFBL

called the bounded Lipschitz β-metrics. Bounds found using this metric
has later been replaced by better results with the Wasserstein metric. This
metric also metrizes the topology of weak convergence.

3.3 Probability metrics for chance constraints

3.3.1 B-discrepancies

Recall here the definition of the chance-constrained model to see how an
“ideal” probability metric is constructed for chance-constrained functionals;
the model is

min c(x) subject to x ∈ X,µ(Hj(x)) ≥ pj for all j (3.3)

(c.f. (2.6)). Functionals Fj are defined here by Fj(x; ξ) = pj − χHj(x)(ξ).
Consider a class B = B(Ξ) of Borel subsets of Ξ such that it contains all
multifunctions Hj (i.e., constraint multifunctions). We define the class F by

F = FB := {χB : B ∈ B}

Due to the nature of indicator function χ the corresponding class of conve-
nient probability measures is the whole set P(Ξ).

Definition 3.5. The distance

αB = dFB = sup
B∈B
|µ(B)− ν(B)|

is called α-(pseudo-)metric or, alternatively, B-discrepancy.

α-metric is not, in fact, the only (pseudo-) metric but the whole class of
pseudometrics. A specific distance can be defined according to the nature
and properties of Hj(x).
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Example 3.2 (polyhedral discrepancy). Consider the following linear exte-
nension of Example 2.1 where

H(x) := {ξ ∈ Ξ : T (ξ)x ≥ h(ξ)}

with X and Ξ being polyhedra, h and T depending on ξ affine linearly.
The sets H(x) are polyhedra with a uniformly bounded number of faces, so
considering the class

B(Ξ) = Bph,k(Ξ) := {B ⊂ Ξ : B is a polyhedra with at most k faces}

we arrive at so-called polyhedral discrepancy

αph,k(µ, ν) = dFBph,k
(Ξ)(µ, ν) = sup

B∈Bph,k
|µ(B)− ν(B)|.

In mixed-integer two-stage stochastic programming problems (we allow
for integer decisions in both stages) with rational recourse matrix, recourse
value function is discontinuous but can be partitioned into countable many
regions of continuity. These regions splits into disjoints Borel subset whose
closures are polyhedra and polyhedral discrepancies apply again. We do not
further pursue this direction in the thesis; for details see Rachev and Römisch
[54], Section 3.2.

Example 3.3 (half-space discrepancy). Consider the chance-constrained
problem with a single constraint:

min c(x) subject to x ∈ X,

µ

(
m∑
j=1

ξjxj ≥ ξm+1

)
≥ p

where ξ has a multivariate normal distribution with nonsingular covariance
matrix. The set H(x) defined as

H(x) := {ξ ∈ Rm+1 :
m∑
j=1

ξjxj ≥ ξm+1}

is closed half-space in Rm+1; hence, the appropriate class (with Ξ = Rm+1)
would be

B(Ξ) = Bh(Ξ) := {B ⊂ Ξ : B is a closed half-space of Ξ}

and we arrive at so-called half-space discrepancy

αh(µ, ν) = dFBh(Ξ)
(µ, ν) = sup

B∈Bh(Ξ)

|µ(B)− ν(B)|.
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Special attention is paid here to another case of B-discrepancy distance:
Kolmogorov metric. Due to wide usage of Kolmogorov metric we devote a
special subsection to it even it does not differ from other discrepancies and
follows the general scheme.

3.3.2 Kolmogorov metric

Consider a chance-constrained problem where the right-hand side only is
random:

min c′x subject to x ∈ X,µ{ξ ∈ Ξ; g(x) ≥ ξ} ≥ p

where Ξ ⊂ Rs, g : Rn → Rs, p ∈ [0; 1]. The corresponding set-valued mapping
determining the discrepancy distance is defined by

H(x) := {ξ ∈ Ξ : ξ ≤ g(x)};

that are s-dimensional “semi-closed intervals”; we form a class B by exactly
such intervals:

B(Ξ) = BK(Ξ) := {(−∞; ξ], ξ ∈ Ξ}.

The corresponding distance is called Kolmogorov or Kolmogorov-Smirnov
metric

K(µ, ν) = αK(µ, ν) = dFBK(Ξ)
(µ, ν) = sup

B∈BK(Ξ)

|µ(B)− ν(B)|.

The last expression is simply the difference of probability distributions func-
tions F , G corresponding to µ, ν

K(µ, ν) := sup
z∈Ξ
|F (z)−G(z)|.

t
0

1

F (t)

G(t)

K(µ, ν)

Figure 3.3: One-dimensional Kolmogorov metric
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A considerable advantage of this metrics is the computational simplicity
when it is applied to workaday optimization problems. Hence, it is often
used in practice instead more sophisticated distances even it is not always
an ideal metric. See Figure 3.3 for a better idea.

On the other hand, the Kolmogorov metric is not good choice when we
deal, for example, with approximation of unknown mass points of a discrete
distribution. This issue is illustrated in Figure 3.4; the Wasserstein metric
works well in this case. For another case we refer to Dupačová and Römisch
[20] where the authors measure changes in optimal value arising from includ-
ing an additional scenario to the problem; the Kolmogorov metrics does not
reflect (under the cited conditions) the position of the new scenario, com-
pared to expected behaviour of the suitable metric.

In the case of Example 3.1 where the Wasserstein metric was found not
to work, the Kolmogorov metric works well; it deals without problem even
for distributions having heavy tails.

There are many results concerning stability of stochastic programming
problems with respect to Kolmogorov metric. Section 4.3 references some
pivotal literature devoted to this question.

t
0

1

F (t)

G(t)

ε

K(µ, ν) = 1
W1(µ, ν) = ε

Figure 3.4: Kolmogorov metric and discrete distribtions



Chapter 4

Stability in stochastic
programming problems

4.1 General stability theorem

We introduced in Section 2.1 a general form of the stochastic programming
problem. Recall that definition: the mathematical formulation of the prob-
lem is to find

inf
x∈X

∫
Ξ

F0(x; ξ) µ(dξ)

subject to∫
Ξ

Fj(x; ξ) µ(dξ) ≤ 0, j = 1, . . . , d

(4.1)

where ξ ∈ Ξ is a random vector defined on the probability space (Ω,A,P),
Ξ ⊂ Rs is a closed support of µ ∈ P(Ξ), a probability distribution of ξ,
X ⊂ Rn is a closed constraint set not depending on µ, and Fj : Rn × Ξ→ R
are random lower semicontinuous functions.

Before stating a general stability theorem we need some additional notions
to be defined.

4.1.1 Complete local minimizing set

Stochastic programming problems often lack convexity properties. Even if
the original problem is convex, perturbations and approximations can lead
to optimization problems that are not convex. In order to find well-behaved
properties of the optimal solutions, we need some concept of localization

29
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that overcome this difficulty. To achieve this, consider a nonempty open set
U ⊂ Rn (cf. the definition of the ideal probability metric in Section 3.1.1),
ν ∈ PFU

(Ξ), and denote

XU(ν) :=

{
x ∈ X ∩ clU :

∫
Ξ

Fj(x; ξ) ν(dξ) ≤ 0, j = 1, . . . , d

}
ϕU(ν) := inf

x∈XU (ν)

∫
Ξ

F0(x; ξ)ν(dξ)

ψU(ν) :=

{
x ∈ XU(ν) :

∫
Ξ

F0(x; ξ)ν(dξ) = ϕU(ν)

}
.

(4.2)

XU(ν) is the set of feasible solutions (with respect to integral constraints)
belonging to U , ϕU(ν) is the optimal value, and ψU(ν) the optimal solution
set of the corresponding (localized) optimization problem.

Definition 4.1. A nonempty set S ⊂ Rn is called complete local minimizing
(CLM) set of the optimization problem (4.2) relative to U if S = ψU(ν) ⊂ U .

Local optimizing sets are examples of CLM sets (U will be chosen such
a way that the local optimizing set is contained in U). Nonempty global
optimizing sets are also CLM sets. The idea under the notion of CLM set
is to restrict our consideration to a neighbourhood of a selected optimum
instead to examine all possible feasible solutions of perturbed problem. Now
only such a way localized solutions are of our interest. The idea of CLM sets
was introduced in Robinson [56] and Klatte [44].

4.1.2 Semicontinuity of set-valued mappings

Dealing with stability of optimal solution sets, we need a notion of continuity
of set-valued functions (multifunctions). We will use Berge’s terminology; for
the following definition see e.g. book Bank et al. [3] where also necessary and
sufficient conditions for the property are stated.

Definition 4.2. Let (P , d) be a (semi-) metric space. We say that a set-
valued mapping S : (P , d) ⇒ Rn is (Berge) upper semicontinuous at the point
µ ∈ P if for every open set O ⊂ Rn with S(µ) ⊂ O it holds that S(ν) ⊂ O
for each ν ∈ P with sufficiently small value of d(µ, ν).

Remark 4.1. Rockafellar and Wets [58] introduced a similar notion of outer
semicontinuous set-valued mappings. This notion is not in fact identical: the
multifunction S from Definition 4.2 is outer semicontinuous at a point µ if
it is upper semicontinuous at this point, S(µ) is closed set, and S is locally
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bounded at µ, i.e., for some (sufficiently small) neighbourhood V of µ the
set S(V ) is bounded.

In our settings, it will be the set-valued mapping ψU which will be ex-
amined for upper semicontinuity with respect to a particular, selected prob-
ability (semi-) metric. It is closed-valued function, and local boundedness
will be introduced through theorem assumptions. So, in all theorems of this
thesis, we can replace the notion of upper semicontinuity by Rockafellar’s
outer semicontinuous alternative.

4.1.3 Growth conditions

Quantitative stability properties of the optimal solution set cannot be stated
without knowing behaviour of the objective function near the optimal so-
lution set: we need some growth condition of the objective function. Here
we adopt the settings of Römisch [59] inspired by Rockafellar and Wets [58],
Section 7.J:

Definition 4.3. For τ ≥ 0 we define the growth function by

ψµ(τ) := min

{∫
Ξ

F0(x; ξ)µ(dξ)− ϕ(µ) : dist(x;ψ(µ)) ≥ τ, x ∈ XU(µ)

}
and the associated growth function by

Ψµ(η) := η + ψ−1
µ (2η), η ∈ R+

where
ψ−1
µ (2η) := sup{τ ≥ 0 : ψµ(τ) ≤ 2η}.

Both these functions describe the behaviour of the objective function:
ψµ(τ) is non-decreasing lower-semicontinuous function, vanishing at 0, and
it can be considered as a “minimal growth” in sense that for non-optimal solu-
tions it describes distance of the value of the objective function to the optimal
value of the problem. Ψµ(η) is increasing lower-semicontinuous function also
vanishing at 0 that will give us the perturbation estimate for optimal solu-
tions (higher the growth, lower the associated function and better estimates
we will obtain).

In the definition of associated growth function we are not restricted by the
“minimal” growth function. In fact, we can use any convenient continuous
increasing function (at least for small values of τ) in order to guarantee
sufficient growth of the objective function. The results derived for Ψ can be
simply redeclared for these special growth functions.
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Example 4.1 (Linear growth). If ψµ(τ) ≥ γτ for some γ > 0 and each small
τ ≥ 0 we say the objective function has linear growth at its optimal solution
set. In this case the associated function Ψ is bounded above by

Ψµ(η) ≤ η +
2η

γ
= Cη (4.3)

with C = (γ + 2)/γ and sufficiently small η ≥ 0.

Example 4.2 (k-th order growth). Similarly, if ψµ(τ) ≥ γτ k for k ≥ 1 (the
other remains unchanged) we say that the objective function satisfies k-th
order growth condition at the solution set. Here, the upper bound to the
associated function Ψ is modified to

Ψµ(η) ≤ η +

(
2η

γ

)1/k

≤ Cη1/k (4.4)

with some constant C > 0. The linear growth is included in this definition
via k = 1, the case of k = 2 is called quadratic growth condition.

Strong convexity condition. In early papers devoted to stability of op-
timal solutions in stochastic programming, the strong convexity property of
the objective function is widely used.

Definition 4.4. Given some subset U ⊂ Rn, the function c : Rn → R is said
to be strongly convex if there exists some κ > 0 such that for all x1, x2 ∈ U
and all λ ∈ [0; 1],

c(λx1 + (1− λ)x2) ≤ λc(x1) + (1− λ)c(x2)− 1

2
κλ(1− λ)‖x1 − x2‖2

This is actually very strong condition; for example if applied near the
optimal solution set of the problem (2.2) it ensures the solution to be unique.
Further, the strong convexity condition is sufficient for the quadratic growth
condition. We refer to Schultz [65] to more details about conditions ensuring
strong convexity property.

4.1.4 Metric regularity

In problems with probabilistic constraints the stability property for con-
straint sets X(µ) are needed. To state it we will use a notion of the special
metric regularity condition as introduced in Rockafellar and Wets [58], Sec-
tion 9.G.
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Denote

Xy(µ) :=

{
x ∈ X :

∫
Ξ

Fj(x; ξ)µ(dξ) ≤ yj, j = 1, . . . , d

}
X−1
x (µ) :=

{
y ∈ Rd : x ∈ Xy(µ)

}
Definition 4.5. We say that the mapping x 7→ X−1

x (µ) is metrically regular
at some pair (x̄, 0) ∈ Rn × Rd, x̄ ∈ X0(µ) if there are a ≥ 0 and ε > 0 such
that for all x ∈ X and y ∈ Rd with ‖x − x̄‖ ≤ ε and max

j=1,...,d
|yj| ≤ ε it holds

that

dist(x,Xy(µ)) ≤ a max
j=1,...,d

max

{
0,

∫
Ξ

Fj(x; ξ)µ(dξ)− yj
}
. (4.5)

Metric regularity condition relates the distance of some (unfeasible) so-
lution x from the perturbed set Xy, and the “value” y of this perturbation.
The relation is considered of Lipschitz nature again, giving us a base for use-
ful estimation for the optimal value and optimal solution set changes. See
Figure 4.1 for better idea about the notion. Note that for y = 0 we obtain
X0(µ) = X(µ), the constraint set of the unperturbed problem.

p

X0(µ)

p− y

Xy(µ)

y

P(constr.)

x

(feasible)

P(constr.)

x
(unfeasible)

x

Rn

0 1

[0;1]

x̄

ε

ε

a×

≥

Figure 4.1: Concept of metric regularity condition.

Remark 4.2. In earlier works, the notion of “metric regularity” of Xx(µ) is
known under the term of “pseudo-Lipschitz continuity” of the multifunction
y 7→ Xy(µ) (see Rockafellar [57]). Now we prefer the contemporary notion of
metric regularity, as proposed by the same author later; see Rockafellar and
Wets [58] and the bibliographical commentary for Chapter 9 of this book.



CHAPTER 4. STABILITY IN SP PROBLEMS 34

4.1.5 General stability theorem

We are now ready to formulate a general stability theorem for the problem
(4.1); the theorem was introduced in Henrion and Römisch [28].

Theorem 4.1 (Henrion and Römisch [28]). Consider the stochastic program-
ming problem (4.1) with its general assumptions. Let P ∈ PFU

and assume
that

• ψ(µ) 6= ∅, U is open bounded neighbourhood of ψ(µ);

• if d ≥ 1, x 7→
∫

Ξ
F0(x; ξ)µ(dξ) is Lipschitz on X ∩ clU ;

• x 7→ X−1
x (µ) is metrically regular at each pair (x̄; 0), x̄ ∈ ψ(µ).

Then

• ψU : (PFU
, dFU

) ⇒ Rm is (Berge) upper semicontinuous at µ

• there exist δ > 0, L > 0, L̂ ≥ 1 such that for ν ∈ PFU
(Ξ), dFU

(µ, ν) <
δ, we have that

◦ |ϕU(µ)− ϕU(ν)| ≤ LdFU
(µ, ν)

◦ ψU(ν) 6= ∅ and it is a CLM set wrt. U , i. e., ψU(ν) ⊂ U

◦ ψU(ν) ⊂ ψ(µ) + Ψµ

(
L̂dFU

(µ, ν)
)

B

This general theorem states several stability results with respect to the
minimal information metric. First, persistence and qualitative property of
continuity (upper semicontinuity at the unperturbed problem) for localized
optimal solution sets. Second, quantitative stability property of Lipschitz
type for optimal values. And third, quantitative stability property for opti-
mal solution sets relying on the growth properties of the objective function.

As mentioned earlier, the minimal information metric is not easy to han-
dle. So different estimates for upper bounds with more suitable metrics for
specific structures of stochastic programming problem are derived in the lit-
erature; some of them we will mention in the two following sections. Also the
condition of special metric regularity is crucial in this setting and sometimes
hard to check. We refer to Rockafellar and Wets [58] where some sufficient
conditions for metric regularity are given.
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4.2 Stability of stochastic programming

problems with recourse

Early stability results for recourse problems was obtained by Römisch and
Wakolbinger [63] with the β-metrics applied. The results was later extended
in Römisch and Schultz [60]. Among others, the Hölder continuity of optimal
values was proved. We illustrate these results by citing two theorems where
the complete linear recourse is assumed. Recall thus the problem introduced
by (2.5)

min (c′x+ EQ(x; ξ)) subject to x ∈ X
where

Q(x; ξ) = min{q(ξ)′y : Wy = b(ξ)− T (ξ)x, y ≥ 0},
(4.6)

and X ⊂ Rn beeing nonempty closed polyhedron, c ∈ Rn and W ∈ Rm̄×m

having constant elements, q, b, and T depending on ξ affine linearly.
For p ∈ [1; +∞) and K > 0, denote Pp,K(Ξ) a space of probability

measures with uniformly bounded p-th moment:

Pp,K(Ξ) :=

{
ν ∈ P(Ξ);

∫
Ξ

‖ξ‖pµ(dξ) ≤ K

}
.

Theorem 4.2 (Römisch and Schultz [60]). Consider the problem (4.6) with
assumption (A1), (A2) from Section 2.1.1 fulfilled. Let p > 1, K > 0 and fix
µ ∈ P2p,K(Ξ). Assume further that ψ(µ) is nonempty and bounded. Then

1. ψ is upper semicontinuous at µ with respect to the metric space
(P2p,K(Ξ), β), and

2. there exist constants δ > 0, L > 0 such that for any ν ∈ P2p,K(Ξ)
fulfilling β(µ, ν) < δ we have ψ(ν) 6= ∅ and

|ϕ(µ)− ϕ(ν)| ≤ Lβ(µ, ν)1− 1
p .

Later, Römisch and Schultz [61] have weakened significantly the assump-
tions and got better – Lipschitz estimates with the Wasserstein metric. The
case of the complete linear recourse is studied in Römisch and Schultz [62],
where the next theorem is proved. Note, if we do not take into account the
assumption (A3), we would get a similar proposition with P2(Ξ) and the
metrics W2.



CHAPTER 4. STABILITY IN SP PROBLEMS 36

Theorem 4.3. Consider the problem (4.6) with (A1), (A2) and assume
(A3): q or (a, T ) are non-stochastic. Let µ ∈ P1(Ξ) and assume that ψ(µ)
is nonempty and bounded set. Then ψ is upper semicontinuous at µ with
respect to (P1(Ξ),W1), and there exist constants δ > 0, L > 0 such that for
any ν ∈ P1(Ξ) for which W1(µ, ν) < δ we have ψ(ν) 6= ∅ and

|ϕ(µ)− ϕ(ν)| ≤ LW1(µ, ν).

The following theorem is a possible non-linear modification based on the
previous theorem: we slightly modified its assumptions and the proof. Fur-
ther, the continuity properties and compactness ensure existence and bound-
edness of optimal solution of the original (unperturbed) problem and, at the
same time, we can leave out the localization property.

Theorem 4.4 (Houda [31],Houda [32]). Consider the program (2.2), where
the following assumption are fulfilled:

• X is a compact set, and the function F0 is uniformly continuous on
Rn × Rs;

• F0(x; ·) is Lipschitz continuous for all x ∈ X with constant L not de-
pending on x.

Then ψ is (Berge) upper semicontinuous at µ with respect to (P1(Ξ),W1),
and for any ν ∈ P1(Ξ) we have that

ψ(ν) 6= ∅ and

|ϕ(µ)− ϕ(ν)| ≤ LW1(µ, ν).

Proof. 1. Denote hµ(x) :=
∫

Ξ
F0(x, ξ)µ(dξ); hµ is continuous on a compact

set X, thus ψ(ν) is nonempty set for all (ν ∈ P1).

2. Let ν ∈ P1, xµ ∈ ψ(µ) and xν ∈ ψ(ν). The two inequalities are valid:

ϕ(µ) ≤ hµ(xν) ≤ ϕ(ν) + |hµ(xν)− hν(xν)| (a)

ϕ(ν) ≤ hν(xµ) ≤ ϕ(µ) + |hµ(xµ)− hν(xµ)| (b)

The left inequality in (a) is due to the fact that ϕ(µ) is the optimal
value of the problem, the right one to the equality hν(xν) = ϕ(ν) and
a trivial fact that a+ b ≤ |a+ b|. Arguments for (b) are similar.

3. From (a) and (b) we get

−|hµ(xµ)− hν(xµ)| ≤ ϕ(µ)− ϕ(ν) ≤ |hµ(xν)− hν(xν)|

and so
|ϕ(µ)− ϕ(ν)| ≤ sup

x∈X0

|hµ(x)− hν(x)|.
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4. The function F0(x, ξ) is Lipschitz in ξ thus for x ∈ X one has∣∣∣∣∫
Ξ

F0(x, ξ)µ(dξ)−
∫

Ξ

F0(x, ξ)ν(dξ)

∣∣∣∣
≤
∫

Ξ×Ξ

|F0(x, ξ)− F0(x, ξ′)| η(dξ × dξ′)

≤ L

∫
Ξ×Ξ

‖ξ − ξ′‖η(dξ × dξ′)

for arbitrary η ∈ D(µ, ν). So,

|hµ(x)− hν(x)| ≤ L inf
η∈D(µ,ν)

∫
Ξ×Ξ

‖ξ − ξ′‖η(dξ × dξ′) = LW1(µ, ν)

and finally

|ϕ(µ)− ϕ(ν)| ≤ sup
x∈X
|hµ(x, ξ)− hν(x)| ≤ LW1(µ, ν).

5. The continuity of ϕ(·) at µ follows from the previous point. Furthemore,
the continuity of hµ(·) follows from the theorem continuity assumptions.
The set X is compact, so Proposition 4.2.1 from Bank et al. [3] leads
to the upper semi-continuity of the mapping ψ(·) at µ. This completes
the proof.

The Wasserstein metric is an ideal metric for recourse problems where
F0 is Lipschitz continuous function. Apparently, not all recourse functionals
used are Lipschitz continuous. We still have a possibility to elevate order
of Lipschitz continuity and get estimates with respect to the Fortet-Mourier
metric (see e.g. Dupačová and Römisch [20], Dupačová et al. [19], Rachev
and Römisch [54]). In Pflug [47], the method to find optimal approxima-
tions (scenarios) via minimization of the Wasserstein metric are proposed;
in the same paper it is shown that the result obtained via mimimization of
the Fortet-Mourier metric of higher order are equivalent to that one with
Wasserstein metric. We will also refer the result of Theorem 4.4 with slightly
different context in Chapter 5 concerning empirical distributions and pro-
cesses.

4.2.1 Quantitative stability of optimal solutions

Quantitative stability of optimal solution sets can be achieved by direct ap-
plication of Theorem 4.1. For example, Theorem 4.3 can be extended directly
by
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Theorem 4.5 (Römisch [59], Corolally 25). Consider the assumptions of
Theorem 4.3 to be fulfilled. Then

∅ 6= ψ(ν) ⊂ ψ(µ) + Ψµ(LW (µ, ν)) (4.7)

where L > 0 and ν ∈ P1(Ξ) are the same as in Theorem 4.3 and Ψµ is
associated growth function as defined in Definition 4.3.

Due to the definition of the growth function, the upper bound in (4.7) is
the best possible. Stringent assumptions as the strong convexity condition
were also used earlier in the literature; generally, such bounds are not the
best but could have better computation aspects.

Theorem 4.6 (Houda [31], Kaňková and Houda [42]). Let assumptions of
Theorem 4.4 be fulfilled. Let X be convex and for all ξ ∈ Ξ let F0(·; ξ) be
strongly convex on Rn with parameter κ > 0. Then

‖ψ(µ)− ψ(ν)‖2 ≤ 8

κ
LW (µ, ν) (4.8)

Proof. Denote hµ(x) :=
∫

Ξ
F0(x, ξ)µ(dξ); hµ is strongly convex with parame-

ter κ. Denote further x̂µ := argminx∈X hµ(x); it is a single vector due to the
strong convexity property again.

As hµ(x) is strongly convex function on compact convex X, the following
inequality is valid for all x ∈ X (see Kaňková and Lachout [43], Lemma 2,
proved in Kaňková [38], Lemma 6 for strongly concave functions):

‖x− x̂µ‖2 ≤ 4

κ
(hµ(x)− hµ(x̂µ))

In particular,

‖x̂ν − x̂µ‖2 ≤

≤ 4

κ

(
hµ(x̂ν)− hµ(x̂µ)

)
≤

≤ 4

κ

∣∣hµ(x̂µ)− hν(x̂ν)
∣∣+

4

κ

∣∣hν(x̂ν)− hµ(x̂ν)
∣∣ ≤

≤ 8

κ

∣∣ϕ(µ)− ϕ(ν)
∣∣ ≤

≤ 8

ρ
LW1(µ, ν)

which yields the assertion of the theorem.

Many other results concerning stability of optimal solution sets was found
in the literature, among all let us cite Dupačová [18], Römisch and Schultz
[62], Shapiro [66], Artstein and Wets [2], Schultz [65], Kaňková [41], Dentcheva
[17]; see also Römisch [59] for references.
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4.3 Stability of chance-constrained problems

Stability results for chance constrained programs are direct corollaries of
Theorem 4.1 where appropriate B-discrepancies are applied. The crucial
assumption is the metric regularity; specific conditions implying the met-
ric regularity are examined in context of chance-constrained programming
by several authors. For example, consider a (possibly) nonlinear chance-
constrained program with random right-hand side only:

min c(x) subject to x ∈ X, µ{ξ ∈ Ξ : g(x) ≥ ξ} ≥ p (4.9)

where g : Rn → Rs, c : Rn → R, and p ∈ [0; 1]. X and Ξ is assumed to be as in
the general stochastic programming model. The constraints of the problem
are formed by semi-closed intervals (−∞; ξ] (c.f. Chapter 3) and thus, one
is led to use the Kolmogorov metric as an “ideal” probability metric. In the
following theorem due to Henrion [26] (see also Henrion and Römisch [29]),
the r-concave measure is assumed. We return in detail to this property in
Chapter 6 where also r-concavity will be formally defined.

Theorem 4.7 (Henrion [26]). In (4.9), assume

• c is convex, X is closed and convex;

• g have concave components;

• µ ∈ P(Ξ) is r-concave for some r < 0;

In addition, assume that

• ψ(µ) is nonempty and bounded;

• there exists some x̂ ∈ X such that Fµ(g(x̂) > p where Fµ is the distri-
bution function of µ (Slater condition);

Then ψ(·) is (Berge) upper semicontinuous at µ, and there exist constants
L, δ > 0 such that for any ν ∈ P(Ξ) with K(µ, ν) < δ we have that

ψ(ν) 6= ∅ and

|ϕ(µ)− ϕ(ν)| ≤ LK(µ, ν).

The Slater condition and convexity assumptions ensure the metric reg-
ularity condition from the general theorem. Applying a strong convexity
condition one can arrive at the stability of optimal solution set that will be
of Hölder type (Henrion and Römisch [29]).
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Stability of chance-constrained programs was also treated many times
in the literature. Selected papers include Römisch and Wakolbinger [63],
Römisch and Schultz [61], [54], Kaňková [39], Gröwe [25], Henrion and
Römisch [28], [29], Rachev and Römisch [54], and others.



Chapter 5

Approximations in stochastic
programming problems with
recourse

5.1 Motivation

Recall the result of Theorem 4.3 concerning optimal values of the problems:

|ϕ(µ)− ϕ(ν)| ≤ LW1(µ, ν). (5.1)

This bound appears under various variations in many other stochastic pro-
gramming results concerning stability of optimal values and solutions. Our
motivation here is the following: we see the stability bound “double-structured”.
First is the Lipschitz constant, coming from the model structure itself and
analytical properties of involved functionals.

Example 5.1. Consider a farmer’s problem originating from Birge and Lou-
veaux [8]: a farmer specializes in raising several crops on a land of limited
size a. He requires some amount b1 of each of the crops for his needs (raised
himself or bought elsewhere). We assume that the production costs c, sell-
ing prices q+, and purchase prices q− are known and fixed. Finally consider
the yields ξ for each crop to be independent random variables with some
predefined distribution. The farmer’s goal is to devote an optimal amount
x of land to each crop in order to minimize his costs c modified by possible
additional purchases y− of missing crops and reduced by selling the spare
crops y+.

1with appropriate index in mathematical formulation (5.2) that we will omit here for
simpler understanding

41
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We can formulate the above problem as a two-stage stochastic linear
program

min (c′x+ EQ(x; ξ)) subject to
∑

x ≥ a

where

Q(x; ξ) = min{q′y : y− − y+ ≥ b− ξx, y+, y− ≥ 0},
(5.2)

with the last inequation formulated for each crop.
The favourable separable form of the second stage leads to rewriting the

compensation Q as a sum of individual compensations Qi for each sepa-
rated crop. Each such individual compensation is linear function of ξ hence
Lipschitz continuous with Lipschitz constant that can be found easily. The
example is finished in Houda [33] by numerical quantification of the Lipschitz
constants in Birge and Louveaux’s formulation of this farmer problem.

Second structural part of the bound (5.1) is the randomness expressed
by the value of the Wasserstein metric between distributions µ and ν. In
addition, this value is in this special case independent from the value of the
Lipschitz constant examined in the previous example. This is not a rule:
there are many other examples where such separation will not be possible.
Nevertheless we will take advantage of this result and will concentrate on
specific convergence properties of Wasserstein (and in limited view also Kol-
mogorov) metrics.

5.2 Empirical distributions and processes

If the probability measure µ, needed for succesful solution of the stochastic
optimization problem, is not available, but we have empirical data at our
disposition we can use them instead and replace the original distribution
with the empirical version. The empirical distribution function is a widely
used statistical gadget applied both theoretically and practically in many
mathematical, engineering, and economic models.

5.2.1 Empirical distribution function

Let ξ1, ξ2, . . . , ξN , . . . be independent random variables with the same prob-
ability distribution µ. For notation simplicity, we denote its distribution
function by F instead of Fµ. The true distribution µ is, as stated in the
introduction, considered as an unknown distribution which is estimated by
the sample ξ1,. . . ,ξN .
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Definition 5.1. The random function

FN(t) =
1

N

N∑
i=1

χ(−∞;t](ξi), t ∈ R (5.3)

is called empirical distribution function based on the sample ξ1, . . . , ξN ;
χA is again the characteristic (indicator) function of the set A.

For each realization of the sample, FN(t) is actually a distribution func-
tion; we denote associated probability measure as µN and call it empirical
measure.

By Glivenko-Cantelli theorem and the law of large numbers, a sequence of
empirical distribution functions FN converges almost surely to the distribu-
tion function F under general conditions as N goes to infinity. Considering
the definition of the Wasserstein and Kolmogorov metric, values of these
metric for F and FN will converge too (see e.g. Shorack and Wellner [68]).

For example, to be able to explore convergence properties of the Wasser-
stein metric, we require µ ∈ P1 (i.,e., all ξi being integrable). In that case∫

|t|µN(dt)→
∫
|t|µ(dt) a.s.

and by dominated convergence∫
W (µN , µ)→ 0 a.s.

The almost sure convergence of Kolmogorov metric is straightforward from
its definition.

5.2.2 Empirical processes

One-dimensional Wasserstein metric involving integral computation of dif-
ference between distribution functions is well known in statistics. To find its
convergence rate at infinity we are interested in behaviour of the associated
empirical process defined as follows.

Definition 5.2. The integrated empirical process is defined by

√
N W (µN , µ) =

∫ +∞

−∞

√
N |FN(t)− F (t)| dt. (5.4)
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The (integrated) empirical process is considered here in a more general
sense than usual: we assume here only that µ ∈ P1(Ξ). If it is the uniform
distribution on [0;1], (5.4) describes the (integrated) empirical process in the
usual statistical sense. In this case, such process is also known as Mallows
statistic. Recall now the notion of the Brownian bridge and other basic
notions from the stochastic analysis which we need in what follows.

Definition 5.3. A stochastic process X is the family {X(t) := X(t, ω) :
t ≥ 0} of real-valued random variables defined on (Ω,A,P).

Definition 5.4.

1. The stochastic process X is continuous if for each ω ∈ Ω the function
X(·, ω) (also known as the trajectory of the process) is continuous
(everywhere in t).

2. If for any 0 ≤ t1 < · · · < tK the joint distribution of (X(t1), . . . ,X(tK))
is normal, then the process is called Gaussian.

3. If for any 0 ≤ t0 < t1 < · · · < tK the random variables X(tk) −
X(tk−1), k = 1, 2, . . . are independent then the process is said to have
independent increments..

4. The process X has stationary increments if for each t, s, h ≥ 0 the
distributions of (X(t + s + h) − X(t + h)) and (X(t + s) − X(t)) are
the same (i.e., the distribution of increments depends only on t and
s). In that case it is reasonable to speak about covariance function
cov(X(s),X(t)) as a function of s and t.

Definition 5.5. A stochastic process U is called Brownian bridge if it is
continuous Gaussian process having mean function EU(t) = 0 and covariance
function cov(U(s),U(t)) = min(s, t)− st where s, t ∈ [0; 1].

The Brownian bridge is conditioned Wiener process given marginal con-
ditions U(0) = 0, U(1) = 0 (the right marginal condition is that differing
from the usual Wiener process). Its increments are still normal but not yet
independent. The Brownian bridge will be denoted by U in this thesis.

We find the Brownian bridge as the (weak) limit of the integral (5.4)
in case of the uniform distribution on [0; 1] (see Section 3.8 of Shorack and
Wellner [68]):∫ +∞

−∞

√
N
∣∣∣ 1

N

N∑
i=1

χ(−∞;t](ξi)− t
∣∣∣ dt→d

∫ +∞

−∞
|U(t)|dt (5.5)
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In this case the probability distribution of the limit of (5.5) is also known
explicitly (see Section 3.8 of Shorack and Wellner [68]):

F

(∫ +∞

−∞
|U(t)|dt ≤ x

)
=

√
π

2

+∞∑
j=1

δ
−3/2
j ψ

(
x

δ
−3/2
j

)
(5.6)

where

ψ(t) =
1

t1/3
(
32/3e−

2
27
t2Ai(3t)−4/3

)
δj = −

a′j
21/3

Ai is the usual Airy function (one of the solutions of the differential equation
y′′−xy = 0), and a′j are j-th zeros of Ai′, see e.g. Abramowitz and Stegun [1],
Section 10.4. Formula (5.6) was derived by Johnson and Killeen [34] based
on previous result by Shepp [67] and Rice [55].

To find a weak limit for distributions that are not uniform is not so easy.
The Inverse Theorem with a simple substitution does not suffice because one
has to involve the derivative of F (x) into consideration. The condition under
which the convergence is valid was found by del Barrio et al. [16].

Proposition 5.1 (del Barrio et al. [16], Theorem 2.1). The limit theorem

√
N(FN(t)− F (t))→w U(F (t)) in L1(R)

is valid if and only if ∫ +∞

−∞

√
F (t)(1− F (t))dt < +∞

From this it easily follows that, under the last condition, the following
convergence result is valid:

Theorem 5.2. If ∫ +∞

−∞

√
F (t)(1− F (t))dt < +∞

then ∫ +∞

−∞

√
N
∣∣∣ 1

N

N∑
i=1

χ(−∞;t](ξi)− F (t)
∣∣∣ dt→d

∫ +∞

−∞
|U(F (t))|dt (5.7)
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Proof. We have used the fact that if some process Yn converge weakly in
L1(R) to Y , then, in particular, ||Yn||L1 →d ||Y ||L1 where ||g||L1 =

∫∞
−∞ g(t)dt

for each non-negative g ∈ L1(R)).

The convergence rate of the Kolmogorov metric is a long-standing result
originated by Kolmogorov [45] for independent identically distributed sam-
ples: if the sample ξ1, ξ2, . . . , ξN correspond to a probability measure that is
absolutely continuous with respect to the Lebesgue measure on R, then

P
{√

N sup
−∞<t<∞

|FN(t)− F (t)| < x
}
→

∞∑
k=−∞

(−1)ke−2k2x2

for x > 0 (5.8)

(the limit is obviously 0 for x < 0). The rate of convergence is exponential
and independent on the original distribution. Such kind of result is not
known in the case of the Wasserstein metric.

5.3 Comparison: independent and dependent

data samples

We will illustrate convergence results from the previous section here for some
“representative” distributions. Recall that in the case of the uniform distri-
bution, the distribution function of the limit (5.7) is known, see (5.6). On the
other hand, left hand side of (5.7) is easily evaluable for the one-dimensional
case and will stand for us as a base for the following numerical results. Fur-
thermore, to extend the results, we focus not only on the independent case
but also on the case of weakly dependent data.

5.3.1 Weakly dependent samples

In economical and engineering applications, weakly dependent samples are
of very practical interest. It is known that many economical and technical
data series exhibit dependence properties although they are considered as
independent. The background theory partially permits doing that such a way
and we would give some hints that it will be also the case for convergence of
empirical distributions and processes.

From the practical point of view, let us leave out assumptions of indepen-
dence in Section 5.2 and replace them with some weak type of dependence.
For simplicity we are not going in depth and choose most simple variant of
dependency, M -dependent sequences.
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Definition 5.6. Let {ξt}+∞
−∞ be a random sequence defined on the probabil-

ity space (Ω,A,P). Let, moreover, B(−∞, a) be the σ-algebra generated by
. . . , ξa−1, ξa, and B(b,+∞) be the σ-algebra generated by ξb, ξb+1, . . .. The
sequence is said to be M-dependent if B(−∞, a) and B(b,+∞) are inde-
pendent for b− a > M .

More sophisticated dependency conditions could be found in the litera-
ture, see e.g. book of Yoshihara [74]. Here we make only a note that results
found for M -dependent sequences also applies to other weak-dependent se-
quences. For example, it is known (see Yoshihara [74] again) that every
stationary φ-mixing normal distributed sequence is also M -dependent for
some M ∈ N. A stationary Gaussian random sequence {ξt}+∞

−∞ is φ-mixing if
and only if the σ-algebras B(−∞, k) and B(k+N,+∞) are independent for
any N sufficiently large.

Empirical estimates has already been investigated (in the literature) for
some types of weakly (say mixing) dependent random sequences (for some
details see e.g. Dai et al. [12], Kaňková [39], or Wang and Wang [73]).
We can prove by the techniques employed in Kaňková [39] that the case of
M -dependent samples can be transformed to the independent one and the
asymptotic results remain valid (of course, the convergence will be slower).

Theorem 5.3. For every natural N there exists k ∈ {0, 1, . . .} and r ∈
{1, . . . ,M} such that N = Mk + r, and

|FN(t)− F (t)| ≤
M∑
j=1

Nj

N
|FNj

(t)− F (t)|, t ∈ R (5.9)

where FNj
are empirical distribution functions determined by sequences of Nj

independent random variables, and

Nj =

{
k + 1 for j = 1, . . . , r
k for j = r + 1, . . . ,M

Proof. Let M,N, k, r fulfil the relation N = Mk+ r (existence of such parti-
tion is straightforward). We split the sample sequence {ξi}Ni=1 into M groups
of lengths Nj by selecting indexes modulo M :

j = 1 : ξ1, ξM+1, . . .

j = 2 : ξ2, ξM+2, . . .

. . .

j = M : ξM , ξ2M , . . .
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Each of these new sequences has independent members due to M -dependence
property. Denote FNj

empirical distribution function of each of them; FN
stands for the empirical distribution function of the whole sample despite it
is formed from dependent random variables. An easy transformation leads
to the following conclusion:

|FN(t)− F (t)|

=

∣∣∣∣∣ 1

N

N∑
i=1

χ(−∞;t](ξi)− F (t)

∣∣∣∣∣
=

∣∣∣∣∣∣
M∑
j=1

1

N

Nj∑
i=0

χ(−∞;t](ξMi+j)−
M∑
j=1

Nj

N
F (t)

∣∣∣∣∣∣
=

∣∣∣∣∣
M∑
j=1

Nj

N
(FNj

(t)− F (t))

∣∣∣∣∣
as (naturally)

∑
Nj = N . The assertion of the theorem follows directly.

5.3.2 Simulation study overview

According to our analysis above, let us now focus on the numerical illustration
to results from Section 5.2. To do that we choose four “representative” one-
dimensional probability measures: uniform, exponential, normal and Cauchy,
and as a weakly dependent sequence we choose a simple 2-dependent sequence
– MA(1) process. The exact procedure is as follows.

1. Set N to an appropriate sample length; we select N = 100 as a rep-
resentative for “short” sample, and N = 1000 as for “long” sample
(having in mind that these sample lengths could be somehow vague in
various situations).

2. Generate independent samples ζ1, ζ2, . . . , ζN from the given distribu-
tion.

3. Make up a new series defined as

ξk := 0.5ζk + 0.5ζk−1.

The theoretical distribution of ξk is given by convolution. In particular,
it is
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• triangular (Simpson’s) distribution in the case of uniform samples
on [0; 1];

• gamma distribution with the shape and rate parameters both
equal to 2 in the case of exponential distribution with parame-
ter λ = 1;

• normal distribution with zero mean and variance 0.5 in the case
of normal distribution N(0; 1);

• Cauchy distribution with actual parameters.

4. The empirical distribution function is calculated for the independent
as for the dependent sample series. The Wasserstein and Kolmogorov
distances are then calculated with respect to the theoretical measure.

5. The procedure is repeated 200 times to obtain an estimate of the “den-
sity” of both distances and the density of their associated empirical
processes.

First graph set (Figures 5.1 and 5.2) illustrates almost sure convergence
of Kolmogorov and Wasserstein metric. The left column of the set displays
densities estimated from independent data, the right column one from de-
pendent data. The dotted line in each of the graphs represents the “short”
sample size, the solid line the “long” one.

Remark 5.1. Instead of the true Cauchy distribution a “cut” version is
used. Cutting is necessary because Cauchy distribution does not have the
first moment and the Wasserstein metric is undefined for it. Furthermore,
the cut version also represents a distribution with heavy tails.

Our numerical results confirm the expected one: both Wasserstein and
Kolmogorov metrics vanish to zero as number of samples grows. It is true
even for cut Cauchy distribution. In all the pictures one could even start to
compare rates of convergence between dependent and independent samples
or across different distributions, although the better base for such comparison
will follow in results on empirical processes.

The second graph set (Figures 5.3 and 5.4) is devoted to the convergence
of the empirical process

√
NK(µN , µ) (the case of the Kolmogorov metric),

and the integrated empirical process (the case of the Wasserstein metric),
respectively. The density lines are (Gaussian) kernel estimates of the limiting
distribution in each case.

Kolmogorov’s empirical process is known to converge to the limit (5.8) re-
gardless the original distribution. This is numerically confirmed by Figure 5.3
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(even for Cauchy distribution). For Wasserstein’s integrated empirical pro-
cess, the rate of convergence is stabilizing quickly in the case of the uniform,
normal, and exponential distributions. The problem of Cauchy distribution
is easily justifiable: although cutting allowed us to use the Wasserstein dis-
tance, numerical properties of the distance would to be hardly favourable.
This is another illustration of the fact mentioned earlier in Example 3.1.

As for other “standard” distributions, the results with dependent data are
seen to differ slightly but one can appreciated the difference as not very im-
portant. As members of used MA(1) process are actually weakly dependent,
this behaviour is expected again.

An answer to the question about other interesting properties of weakly-
dependent sample series in comparison with independent ones (especially for
another types of dependency) is not given in this thesis; the question remains
still unanswered and open for the future research.
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Convergence of Kolmogorov metric

Kolmogorov metric value: N=100 (dotted), N=1000 (solid)
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Kolmogorov metric value: N=100 (dotted), N=1000 (solid)

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40
50

Uniform distribution on [0;1]

Convergence of Kolmogorov metric

Kolmogorov metric value: N=100 (dotted), N=1000 (solid)

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40
50

Exponential(1) distribution

Convergence of Kolmogorov metric − dependent data

Kolmogorov metric value: N=100 (dotted), N=1000 (solid)
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Kolmogorov metric value: N=100 (dotted), N=1000 (solid)
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Figure 5.1: Convergence of the Kolmogorov metric
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Convergence of Kolmogorov metric

Kolmogorov metric value: N=100 (dotted), N=1000 (solid)
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Convergence of Kolmogorov metric − dependent data

Kolmogorov metric value: N=100 (dotted), N=1000 (solid)
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Figure 5.1: Convergence of the Kolmogorov metric (cont’d)

Convergence of Wasserstein metric

Wasserstein metric value: N=100 (dotted), N=1000 (solid)
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Wasserstein metric value: N=100 (dotted), N=1000 (solid)
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Figure 5.2: Convergence of the Wasserstein metric
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Convergence of Wasserstein metric

Wasserstein metric value: N=100 (dotted), N=1000 (solid)
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Wasserstein metric value: N=100 (dotted), N=1000 (solid)
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Wasserstein metric value: N=100 (dotted), N=1000 (solid)
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Figure 5.2: Convergence of the Wasserstein metric (cont’d)
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Convergence of empirical process

N ×× Kolmogorov.metric
Process value: N=100 (dotted), N=1000 (solid)
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N ×× Kolmogorov.metric
Process value: N=100 (dotted), N=1000 (solid)
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N ×× Kolmogorov.metric
Process value: N=100 (dotted), N=1000 (solid)
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Figure 5.3: Convergence of the Kolmogorov empirical process
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Convergence of empirical process

N ×× Kolmogorov.metric
Process value: N=100 (dotted), N=1000 (solid)
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Convergence of empirical process − dependent data

N ×× Kolmogorov.metric
Process value: N=100 (dotted), N=1000 (solid)
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Figure 5.3: Convergence of the Kolmogorov empirical process (cont’d)

Convergence of integr. empirical process

N ×× Wasserstein.metric
Process value: N=100 (dotted), N=1000 (solid)
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Figure 5.4: Convergence of the integrated empirical process
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Convergence of integr. empirical process

N ×× Wasserstein.metric
Process value: N=100 (dotted), N=1000 (solid)
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Process value: N=100 (dotted), N=1000 (solid)
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N ×× Wasserstein.metric
Process value: N=100 (dotted), N=1000 (solid)
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Figure 5.4: Convergence of the integrated empirical process (cont’d)



Chapter 6

Convexity and structural
dependence in
chance-constrained problems

In this chapter we focus our attention to a special case of chance-constrained
problems. For computational and theoretical purposes, the convexity prop-
erty of the constraint set is a highly important question: this favourable
property has an indispensable impact to numerical properties of the problem
as is the possibility to use well-known and highly developed convex program-
ming methods. Also theoretical consequences of the convexity property of
solution sets are of positive nature. In this chapter, another result on con-
vexity of the set of feasible solutions is given, with an extension to stability
of optimal solutions and a simple example.

6.1 Introduction

Let start our investigation with a slightly modified joint chance-constrained
problem from Section 2.1.2:

min c(x) subject to P{h(x; ξ) ≥ 0} ≥ p (6.1)

where x ∈ Rn is again a decision vector, ξ : Ω → Rs is a random vector de-
fined on the probability space (Ω,A,P), c : Rn → R is a vector real function,
h : Rn × Rs → Rd is a vector-valued mapping, and p ∈ [0; 1] is a prescribed
probability level. As in Chapter 2 we denote µ the distribution of the random
vector ξ and F = Fµ its distribution function.

The problem (6.1) is equal to the problem (2.6) if X = Rn and for each
x ∈ Rn we set H(x) = {ξ ∈ Rs : h(x; ξ) ≥ 0}, a set of realizations satisfying

57
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the (let say original) constraints. To emphasize importance of the value p in
this chapter, we denote the constraint set as

M(p) :=
{
x ∈ Rn : P{ξ ∈ H(x)} = µ(H(x)) ≥ p

}
and the whole problem simply as

minF0(x) subject to x ∈M(p).

Chance-constrained problems are common in engineering and economic
practice and applications; well known are the applications in energy, water
resources, production and inventory, telecommunications, and others. See
Prékopa [51], Wallace and Ziemba [72], and references therein for details and
further applications of chance-constrained programming.

A matter of importance both in theoretical and practical applications of
the chance-constrained programming is to determine when the set M(p) of
feasible solutions is convex. It is trivially known that the sets M(0), M(1)
(i. e., the set without any probabilistic constraint and the set of constraints
satisfied almost surely) are convex if h(·, ξ) are concave functions for all
ξ ∈ Rs. Classical result of Prékopa Prékopa [48] (see also Prékopa [49],
Tamm [69], Prékopa [50], Prékopa [51] and references therein) states the
following:

Proposition 6.1 (Prékopa [51], Theorems 2.5 and 2.11). If µ is absolutely
continuous (with respect to Lebesgue measure), log-concave measure (or r-
concave with r ≥ −1/s), and the one-dimensional components of h are quasi-
concave functions of (x, ξ) then M(p) is a convex set.

A log-concave (or r-concave) measure is implied by a log-concave (or
r

1−rs -concave) density. It is known (see the above references again) that
many prominent multivariate distributions satisfy the condition, hence many
chance-constrained problems can be solved by means of convex optimization.

The quasi-concavity property is not preserved under addition. For exam-
ple, consider a problem with random right-hand side in the form

min c(x) subject to P{g(x) ≥ ξ} ≥ p. (6.2)

Problem (6.2) falls into the frame (6.1) if we set h(x; ξ) = g(x)−ξ. In order to
have h(x; ξ) quasi-concave, it is not sufficient to have g(x) quasi-concave and
g(x) is usually required to be concave. Recently, Henrion and Strugarek [30]
proposed an alternative approach to deal with this problem: their idea is to
relax concavity condition of g and make more stringent concavity condition
on the probability distribution µ. We recall this in Section 6.2. In Section
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6.3 we further relax the condition of independence that authors of Henrion
and Strugarek [30] require and show that, under modified assumptions, their
results still remain valid. Section 6.4 introduces stability properties of the
optimal values of the “dependent” and “independent” problems.

6.2 Concavity and density decrease

6.2.1 r-concave functions

We recall the definition of an r-concave function (see Prékopa [51], Defini-
tion 2.3):

Definition 6.1. A function g : Rn → (0; +∞) is called r-concave for some
r ∈ [−∞; +∞] if

g(λx+ (1− λ)y) ≥
[
λgr(x) + (1− λ)gr(y)

]1/r
for all x, y ∈ Rn and all λ ∈ [0; 1]. Cases r = −∞, 0, and +∞ are treated by
continuity.

We summarize some interesting cases in Table 6.2.1. For our purpose the
most important are functions that are r-concave for r ≤ 1. Note that if g is
r∗-concave, it is also r-concave for all r ≤ r∗.

r = +∞ . . . g(λx+ (1− λ)y) ≥ max{g(x), g(y)}
r ∈ (1; +∞) . . . gr is concave
r = 1 . . . g is concave
r = 0 . . . g is log-concave (log f is concave):

g(λx+ (1− λ)y) ≥ gλ(x)g1−λ(y)
r < 0 . . . gr is convex
r = −∞ . . . g is quasi-concave:

g(λx+ (1− λ)y) ≥ min{g(x), g(y)}

Table 6.1: r-concave functions.

6.2.2 r-decreasing densities

Here we adopt the definition of Henrion and Strugarek [30] for a so-called
r-decreasing function.



CHAPTER 6. CONVEXITY AND STRUCTURAL DEPENDENCE 60

Definition 6.2 (Henrion and Strugarek [30], Definition 2.2). A function
f : R→ R is called r-decreasing for some r ∈ R if

1. it is continuous on (0; +∞), and

2. there exists a threshold t∗ > 0 such that trf(t) is strictly decreasing
for all t > t∗.

If r = 0 the function f is strictly decreasing in the classical sense. As for
r-concave functions, if f is r∗-decreasing then it is r-decreasing for all r ≤ r∗.
In Henrion and Strugarek [30] it is shown that if marginal densities of the
distribution µ are (r + 1)-decreasing (for some r > 0), then the mapping
t 7→ F (t−1/r) (F being the corresponding distribution function) is concave
for t ∈ (0; t∗−r), which is further shown to be sufficient to ensure convexity
property of the problem (6.2):

Theorem 6.2 (Henrion and Strugarek [30], Theorem 3.1). If

1. there exist ri > 0 such that the components gi of g are (−ri)-concave,

2. the components ξi of ξ have ri + 1-decreasing densities, and

3. the components ξi of ξ are independently distributed,

then M(p) is convex for all p > p∗ := maxi Fi(t
∗
i ) where Fi denotes the

distribution function of ξi and t∗i refer to the definition of ri + 1-decreasing
probability density.

As shown in Henrion and Strugarek [30], required treshold constants p∗

are not really high for prominent one-dimensional distributions and so The-
orem 6.2 can be directly used in applications.

6.3 Weak dependence of the rows

In the sequel we ask for the relaxation of the independence condition (iii) in
Theorem 6.2. To do this, we define an α′ coefficient of dependence by the
following definition.

Definition 6.3. For a random vector ξ we define a coefficient α′ of (weak)
dependence as

α′ := sup
z

∣∣F (z)−
∏
i

Fi(zi)
∣∣ (6.3)

where F is the distribution function of the vector ξ, Fi are the corresponding
one-dimensional marginal distribution functions and z = (z1, . . . , zs) ∈ Rs.
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If α′ = 0, ξi’s are independent random variables. Our α′-coefficient is
inspired by and actually is a modified version of the known strong-mixing
coefficient, see e. g. Yoshihara [74]. The classical strong-mixing (α-mixing)
coefficient is generally defined for two σ-fields B1, B2 ⊂ A by

α(B1,B2) := sup
A∈B1,B∈B2

|P(A ∩B)− P(A)P(B)|

If B1,B2 are σ-fields generated by two random vectors ξ1, ξ2, we say that
the two vectors are α-dependent. For our purposes we extend the defini-
tion to more than two random variables (this is straightforward) and use
their distribution functions instead of generated σ-fields. Of course, if some
variables ξ1, ξ2 are α-dependent (in the strong-mixing sense), they are also
α′-dependent in the sense of Definition 6.3.

Convention. To simplify the notation, we drop the prime symbol ′ from
Definition 6.3 and use the notion of α-dependence in the sense of Defini-
tion 6.3 for the remaining part of the chapter. As the original α strong-mixing
coefficient is not used anymore in the thesis this will cause no additional
problem.

In what follows we allow for a small structural dependence introduced by
a small value of α. Recall that the set of feasible solutions of (6.2) can be
written as

M(p) :=
{
x ∈ X : F (g(x)) ≥ p

}
where F is the distribution function of the random right-hand side ξ. Further,
denote

M ′(p) =
{
x ∈ X :

s∏
i=1

Fi(gi(x)) ≥ p
}

where Fi are one-dimensional marginal distribution functions of F .
If the components ξi of ξ are independently distributed, the two sets are

equal:
M(p) = M ′(p)

This is not true in case of weak dependence, but the following proposition is
valid:

Proposition 6.3. If the components ξi of ξ in (6.2) are α-dependent (in the
sense of Definition 6.3) then

M ′(p+ α) ⊂M(p) ⊂M ′(p− α) ⊂M(p− 2α). (6.4)



CHAPTER 6. CONVEXITY AND STRUCTURAL DEPENDENCE 62

Proof. If the components of ξ are α-dependent, we have

|F (g(x))−
∏
i

Fi(gi(x))| ≤ α, i.e.∏
i

Fi(gi(x))− α ≤ F (g(x)) ≤
∏
i

Fi(gi(x)) + α.

The second inequation together with the definition of M(p) implies

p ≤ F (g(x)) ≤
∏
i

Fi(gi(x)) + α∏
i

Fi(gi(x)) ≥ p− α,

that is
M(p) ⊂M ′(p− α) (6.5)

Similarly the first inequation of (6.3) yields

p− α ≤
∏
i

Fi(gi(x)) ≤ F (g(x)) + α

F (g(x)) ≥ p− 2α

hence
M ′(p− α) ⊂M(p− 2α). (6.6)

Combining equations (6.5) and (6.6) we obtain the whole chain of inequalities

M ′(p+ α) ⊂M(p) ⊂M ′(p− α) ⊂M(p− 2α). (6.7)

If p is sufficiently high, then possibly non-convex M(p) is bounded from
both side by convex sets:

Theorem 6.4. If

1. there exist ri > 0 such that the components gi of g are (−ri)-concave,

2. the components ξi of ξ have ri + 1-decreasing densities,

3. the components ξi of ξ are α-dependently distributed, and

4. p > maxi Fi(t
∗
i ) + α (with t∗i and Fi as in Theorem 6.2),

then M(p) is bounded (from both sides) by convex sets M ′(p+α) and M ′(p−
α).
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Proof. The last will be proved modifying the proof of Theorem 6.2. Due to
the assumptions, for x, y ∈M ′(p− α) we have

0 ≤ Fi(t
∗) < p− α ≤ Fi(gi(x)) < 1

and the same inequalities are valid for x replaced by y. The second inequality
follows simply from the assumption (iv), the last one is proved by Lemma 3.1
of Henrion and Strugarek [30]. By the continuity of marginal distributions
functions and quantile properties we obtain

0 < t∗i < F−1
i (Fi(gi(x))) ≤ gi(x)

and the same with y. The remaining part of the proof is the same as in
Henrion and Strugarek [30], in particular we have for λ ∈ [0; 1]

m∏
i=1

Fi(gi(λx+ (1− λ)y))

≥
m∏
i=1

[Fi(F
−1
i (Fi(gi(x))))]λ[Fi(F

−1
i (Fi(gi(y))))]1−λ

= [
m∏
i=1

Fi(gi(x))]λ[Fi(gi(y))]1−λ

≥ (p− α)λ(p− α)1−λ

= p− α

hence λx + (1 − λ)y ∈ M ′(p − α). The other bound follows directly from
Proposition 6.3.

Theorem 6.4 has great impact also on numerical solutions of “dependent
problems.” If we (somehow) know that the components of ξ are α-dependent
so that α is small enough (at least such that condition 4 of 6.4 is fulfilled),
then, solve two convex, “independent” problems

min c(x) subject to x ∈M ′(p− α), and (6.8)

min c(x) subject to x ∈M ′(p+ α). (6.9)

The optimal solutions of these problems (or the optimal solution of the “in-
dependent” problem with M ′(p)) are good approximations of the original
(dependent) problem in the meaning that both optimal values of the prob-
lems are lower and upper bounds of the optimal value of the original problem.
An insight into stability properties of the problem is provided by the following
section.
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6.4 Stability properties

We have already stated that optimal value of the problem (6.2) is bounded by
optimal values of the problems (6.8) and (6.9). Under additional assumptions
on objective and constraint functions, we can prove Theorem 6.5.

Before do that we recall the notion of (special) metric regularity intro-
duced in Section 4.1.4. Here it will be applied to the constraint set M ′(p):
actually X0 = M ′(p), Xy = M ′(p − y), and the inequality (4.5) is now
rewritten as

dist(x,M ′(p− y)) ≤ amax{0, p+ y −
s∏
i=1

Fi(gi(x))}

valid for some ε > 0 and some a > 0, for all x ∈ Bε(x̄), y ∈ Bε(0) where Bε(x)
is ε-neighbourhood of x. The condition ensures the quantitative stability
property for the optimal value of “dependent” and “independent” problem.

Theorem 6.5. Consider the problem (6.2) and let

1. assumption 1–4 of Theorem 6.4 be fulfilled;

2. c be Lipschitz continuous function on Rn;

3. the mapping x 7→ {y ∈ R|x ∈ M ′(p + α − y)} be metrically regular at
(x̄′(p+ α), 0);

4. α-dependence coefficient satisfies α < 1
2
ε, where ε is provided by metric

regularity condition (iii).

Then there exists a constant L > 0 such that

|ϕ′(p+ α)− ϕ(p)| ≤ Lmax
{

0, p+ α−
∏

Fi(gi(x̄
′(p− α)))

}
(6.10)

is fulfilled. Here, ϕ(p), ϕ′(p + α) are the optimal values of (6.2) and (6.9)
respectively, and x̄′(p − α), x̄′(p + α) are the optimal solutions of (6.8) and
(6.9) respectively.

Proof. Under the assumptions of Theorem 6.5

|ϕ′(p+ α)− ϕ(p)|
≤ |ϕ′(p+ α)− ϕ′(p− α)|
≤ L‖x̄′(p+ α)− x̄′(p− α)‖
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M ′(p+ α)

M ′(p+ α− y)

M(p)

x′α∗

x∗

x′α−y∗

ε

0

∆prob.

α < 1
2
ε

y < ε

ε

x ≤ a×

ε

FM ′(g(x))

Figure 6.1: Metric regularity and bounded feasibility sets.

If α < 1
2
ε, the metric regularity condition imply

‖x̄′(p+ α)− x̄′(p− α)‖

≤ amax{0, p+ α−
∏

Fi(gi(x̄
′(p− α))}

Combining the two inequalities yields the assertion.

The concept of Theorem 6.5 is illustrated in Figure 6.1. The stability of
optimal solutions is more complicated thing that require some kind of growth
condition (see Chapter 4.1.3); this question is not yet finished and will be
subject of our further research.

6.5 Example: comparison

We are now ready to illustrate the result of this chapter on a simple opti-
mization problem taken originally from Henrion and Strugarek [30]:

minimize x+ y subject to (6.11)

g1(x, y) =
1

x2 + y2 + 0.1
≥ ξ1

g2(x, y) =
1

(x+ y)2 + 0.1
≥ ξ2

Assume that the random vector ξ is normally distributed with zero mean
and the variance matrix Σ. Further, we consider two cases:

1. independent case with

Σ =

(
1 0
0 1

)
, (6.12)
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Figure 6.2: Estimation of the α coefficient

2. weak dependent case with

Σ =

(
1 0.1
0.1 1

)
(6.13)

In this example the gi’s are (−1)-concave, ξi’s have 2-decreasing densities
with the treshold t∗ =

√
2, the critical probability level is p∗ = Ψ(

√
2) = 0.921

(these values are taken from the original paper), and the weak-dependence
coefficient for the dependent case is α = 0.017 (this last is estimated value,
see Figure 6.2).

The overall shape of the collection of the sets M ′(p) is given in Figure 6.3.
Each individual set M ′(p) is given as horizontal cut at the specified level p
(found on z-axis). The contour lines of these sets are depicted on Figure 6.4.
As usual, the symbol ϕ denotes the optimal values of the corresponding
problem; unfortunately, the right-hand side of (6.10) is of the existence type
only, thus the actual value of the upper bound remains unknown.

For the chosen normal distribution, convexity of the feasible set is assured
theoretically at the probability level of 0.921 for the independent case. As
Figure 6.3 shows, the actual probability level in the example is much more
smaller, around the value of 0.7.

For the weak dependent case, these tresholds (theoretical and actual)
are shifted towards the center of feasibility sets (center of image), and the
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optimal values and optimal solutions (depicted as points on the last figure)
remain stable as the value of α-coefficient is small.

There are still two interesting but open questions: first, how is the actual
treshold value for both independent and dependent case; second, if there is
convexity property even on weakly dependent structures above the treshold
value. This last is seen from Figure 6.4 but there is still no theoretical
background to prove this hypothesis.
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Chapter 7

Chance-constrained problems
and robust programming
approach

Techniques of robust programming have became a popular alternative to
stochastic programming during the last two decades. The robust program-
ming handles the uncertainty in an optimization model through the so-called
“worst case” analysis: the constraints of the general optimization model (1.1)
are required to be satisfied for all possible realizations of uncertainty parame-
ter ξ (these realizations are called instances of ξ by the robust programming
community), and we optimize the worst-case objective function among all
robust solutions. Even if such paradigm is classical in the statistical decision
theory, real development of this discipline in applied optimization dates only
to the last decade starting with the works of Mulvey et al. [46] and Ben-Tal
and Nemirovski [4]. On the other hand, robust optimization problems are
not new (they form part of semi-infinite programming problems); also the
influence of the robust control theory is evident and not negligible.

In this chapter we introduce some basic notions and techniques used to
solve uncertain optimization programs and try to compare them with the
stochastic programming – from a philosophical rather than quantitative point
of view. Both techniques are eligible, each in its own context viewed from
mathematical and applied (economic, engineering, managerial) point of view.

7.1 Uncertain convex program

Recall a simplified version of the general optimization problem introduced by
(1.1). We call it an uncertain convex program (UCP). In fact, this is a family

68
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of convex optimization programs parameterized by ξ ∈ Ξ. We consider the
following “standardized” form of the uncertain convex program:

minimize c′x subject to x ∈ X, f(x; ξ) ≤ 0, (7.1)

where

• x ∈ X ⊂ Rn is the decision vector,

• c ∈ Rn is a (known) objective coefficient, and

• ξ ∈ Ξ ⊂ Rs is a parameter (data) vector.

We assume further that

• X is convex and closed set,

• f : X × Ξ→ R is convex in x for all ξ ∈ Ξ,

• Ξ is a prescribed set of instances (cf. the note concerning the overloaded
symbol Ξ in Section 1.1.4).

As we stated already in Introduction (cf. Example 1.3), without lost of
generality, the objective function is linear and the constraint function f is
scalar-valued. More precisely, the linearity of the objective can be imposed
by moving the non-linear (and possibly random) objective function to the
constraint part of the problem:

minimize t subject to x ∈ X, c(x; ξ) ≤ t, f(x; ξ) ≤ 0,

and multiple valued convex constraint functions fi(x; ξ) (incorporating the
moved objective if needed) can be converted into a single scalar-valued con-
straint by the transformation

f(x; ξ) := max
i
fi(x; ξ)

If the realization of ξ is known and fixed, the problem (7.1) is deterministic
convex program and we can use techniques of convex programming to solve
the problem. This corresponds to the approach of ignoring uncertainty as
described in Chapter 1. In many cases, such solution is very sensitive to
perturbations of ξ and other methods must be used.
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7.1.1 Chance-constrained program

In this chapter, we compare the chance-constrained program (as a mem-
ber of the family of stochastic programming problems) with a robust one.
We recall here a definition of the chance-constrained problem (PCP), with
slightly modified notation: assuming that ξ is a random vector defined on the
probability space (Ω,A,P) with known probability distribution µ ∈ P(Ξ),
we require the constraints of (7.1) to be fulfilled with a prescribed level of
probability 1− ε. The problem reads

minimize c′x subject to x ∈ Xε :=
{
x ∈ X : µ{ξ ∈ Ξ : f(x; ξ) > 0} ≤ ε

}
.

(7.2)
There are several issues addressed to chance-constrained problems:

1. the problem (7.2) or its approximation need not to be convex even if f
is convex in x for all ξ;

2. to evaluate the probability in the definition of Xε one often has to
calculate values of multidimensional integrals.

The first issue has been partially overcame using r-concave measures; Chap-
ter 6 is a contribution of our thesis to the area. Many numerical techniques
are used to overcome the second issue; we present one of possible approaches
below.

The term of “chance-constrained” optimization is coined with an early
work of Charnes and Cooper [11]; most of the relevant literature is resumed
in Prékopa [50]. Main results of the topic concern conditions under which
(7.2) is a convex program and how to convert the probability constraints into
an explicit deterministic form.

7.1.2 Robust convex program

The robust programming approach is an alternative way to deal with un-
certainty parameters in (7.1). It is also known as ‘min-max’ or ‘worst-case’
approach due to the nature of the problem. In robust optimization we look
for a solution which is feasible for all possible instances of ξ; this approach
leads to the robust convex problem (RCP):

min
x∈X

c′x subject to f(x; ξ) ≤ 0 for all ξ ∈ Ξ. (7.3)

Throughout, we assume that there exists a feasible solution to (7.3). The
robust convex programming problem is convex but it has an infinite number
of constraints and so it is numerically hard to solve. The robust optimization
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methods propose some relaxation techniques to deal with such a problem.
In what follows, we consider a solution method based on ‘randomization’
of the parameter ξ and the sampling techniques. Another disadvantage of
robust programming in its original form is the fact that it allocate the same
weight to all values of the parameter regardless possible different importance
of individual instances of ξ.

The mathematical and computational framework of robust optimization
problems was introduced by Mulvey et al. [46] and Ben-Tal and Nemirovski
[4], and developed by other authors in various directions, see e. g. Ben-Tal
and Nemirovski [5], [6], Bertsimas and Sim [7], El Ghaoui et al. [21], and
references therein.

7.2 Approximations to stochastic and robust

optimization programs

To solve the chance-constrained program (7.2), complete knowledge of prob-
ability distribution µ is needed. On the other way, robust programming
problem (7.3) is not solvable at all as mentioned above (having infinite num-
ber of constraints in general). Thus various approximation and estimation
techniques are adopted to overcome these difficulties, both in stochastic and
robust programming. In this section we present two of them, one for stochas-
tic and one for robust programming approach. Both have in common their
sampling nature that involves the probability distribution of parameter ξ.

7.2.1 Chance-constrained “sampled” problem

Consider a set of independent samples ξ1, . . . , ξN distributed according to µ,
the original distribution of the parameter ξ. Recall that

FN(t) =
1

N

N∑
i=1

χ(−∞;t](ξi), t ∈ R (7.4)

is the empirical distribution function defined as a (discrete) random vari-
able for the given sample (see Section 5.2 to find more on notation and other
properties of empirical distribution functions). The problem (7.2) is approxi-
mated, for the given sample, by replacing the original probability distribution
µ by the empirical probability measure µN associated with FN , and then the
problem reads
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min
x∈X

c′x subject to x ∈ X[ε,N ] :=
{
x ∈ X;

1

N
card{i; f(x; ξi) > 0} ≤ ε

}
(7.5)

where card denotes the cardinality of the argument. In this chapter, we call
the problem (7.5) as the chance-constrained sampled problem (PCPN). The
essential idea of (7.5) is that the relative frequency of constraint violations
corresponds to the desired upper level of infeasibility in (7.2). (7.5) is the pro-
gram with a single constraint and in some simple cases it is computationally
tractable.

There exists many results in the theory of stability of stochastic opti-
mization problems dealing with a question how far is the optimal solution
of (7.5) from the original optimal solution of (7.2); among all we refer to
works Henrion and Römisch [28], Kaňková [37], Kaňková [40], Rachev and
Römisch [54], Römisch [59], references therein, and many of other authors.
Here, general stability theorem (Theorem 4.1) can be considered as a base
for further special results. For example, Corollary 2 in Henrion and Römisch
[28] states conditions under which the Hausdorff distance between optimal
solution set of (7.2) and of (7.5) is Hölder continuous with respect to the
Kolmogorov metric. As the Kolmogorov metric K(µ, µN) converges almost
surely to zero under general conditions, the distance between optimal solu-
tions of (PCP) and (PCPN) is expected to converge to zero too. This will
be made in evidence on the numerical example in Section 7.3.

7.2.2 Robust sampled program

Recently, Calafiore and Campi [10] and de Farias and Van Roy [15] indepen-
dently proposed the following approximation to the robust convex program
(7.3). Consider again the set of independent samples ξ1, . . . , ξN distributed
according to given probability distribution µ. The robust convex problem
(7.3) is then approximated by the following robust sampled convex problem
(SCPN):

min
x∈X

c′x subject to X[N ] :=
{
x ∈ X; f(x; ξi) ≤ 0 for i = 1, . . . , N

}
. (7.6)

This is a relaxation of the original robust convex problem: we do not require
the original constraints to be satisfied for all realizations of ξ ∈ Ξ but only for
a certain finite but sufficiently large number of samples which are moreover
the most probable to happen. Calafiore and Campi [9] found a rule to set up
N in order to have the optimal solution of (7.6) feasible in (7.2):
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Proposition 7.1 (Calafiore and Campi [9], Theorem 2). For fixed ε, β > 0,
the optimal solution of (7.6) is feasible in (7.2) with a probability at least
1− β if

N ≥ 2n

ε
ln

1

ε
+

2

ε
ln

1

β
+ 2n.

This approach (also called “randomized” by the authors) has several fa-
vorable impacts:

• the problem is convex, it has a finite number of constraints and it is
effectively computable;

• it incorporates weights to the individual parameter instances of ξ –
their absence in the original robust convex program is also the subject
of criticism of the common robust framework;

• in addition, realizations of ξ used in (7.6) are such that are most prob-
able to happen.

The randomized approach to robust convex program was proposed in
Calafiore and Campi [10] and de Farias and Van Roy [15]. In Erdoğan and
Iyengar [22] the idea was extended to the case of the so-called ambiguous
chance-constrained programming where the distribution µ is known only ap-
proximately. The study of these authors is based on the Vapnik-Červonenkis
(VC) theory, see e. g. Vapnik [71].

The solution of (7.6) approximates the solution of (RCP): higher the
number of samples, closer the solutions are. In order to find the optimal
solution of (SCPN) that is sufficiently close to the optimal solution of (RCP)
one need a rather high number of samples to be generated. The authors of
above-cited papers have sought for a rule on the sample size N that assures
the optimal solution of (SCPN) to be ε-feasible, i. e. feasible in the chance-
constrained problem (PCP). But one cannot expect that this solution is
near to the optimal solution of (PCP). In fact, in the following section we
give a comparative numerical study on a simple optimization problem where
this conclusion is approved. We further develop this idea in detail from the
economical and practical point of view.

7.3 Numerical study

7.3.1 Problem setting

On the following simple numerical example we illustrate the fact that the two
above mentioned approaches to solve uncertain convex program are based on
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a different “philosophy” how to understand the uncertainty. Thus, consider
the following uncertain convex program

minimize x subject to x ≥ ξ, x ∈ R (7.7)

where ξ ∈ R is distributed according to the standard normal distribution
N(0; 1), and to the exponential distribution Exp(1) with rate one, respec-
tively. We denote F the distribution functions for both cases (as we do not
intend to differentiate between them).

According to Sections 7.1 and 7.2, we define the following deterministic
programs

min
x∈R

x subject to x ≥ F−1(1− ε), (7.8)

min
x∈R

x subject to
1

N
card{i;x < ξi} ≤ ε, (7.9)

min
x∈R

x subject to x ≥ max
i=1,...,N

ξi. (7.10)

(7.8) is chance-constrained problem (PCP), (7.9) is sampled version of it
(PCPN), and (7.10) is robust sampled problem (SCPN). Normal and expo-
nential distribution functions are defined on an unbounded set, hence the
missing robust program (RCP) is not well defined – there is no real solution
feasible to all the instances of ξ. However, practical interest of this last fact
is small; we can use some suitable transformation of the distribution in order
to obtain a bounded support and define the new problem. We do not pursue
this direction in what follows.

For each of the three above problems the optimal solution coincides with
the lower boundary of their feasibility sets. That is:

• the optimal solution of the chance-constrained problem (PCP) related
to (7.7) is 1− ε quantile of F ;

• the optimal solution of the chance-constrained sampled problem (PCPN)
is computed as the lowest from N samples which are greater or equal
to the 0.95 sample quantile;

• the optimal solution to (SCPN) is the highest of N samples considered.

7.3.2 Comparison between the stochastic and robust
approach

To compare the approaches we set up ε = β = 0.05 (probability level in
(7.2) and confidence parameter in Proposition 7.1). Figure 7.1 illustrate the
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convergence properties of robust and chance-constrained sampled problems.
The optimal solution of (7.8), marked by a small tickmark on x-axis, is
approximately 1.64 for the normal and 3.00 for the exponential distribution.
The number of samples assuring that the optimal solution of (SCPN) is 0.05-
feasible with probability 0.95 (see Proposition (7.1)) is about 240. Thus, we
consider three values of the sample size N = 30, 240, 3000, representing low,
“accurate”, and large sample size.

The sampling procedure is repeated 200 times for each sample size in
order to estimate densities (histograms) for the optimal solutions which are
themselves random variables. (These estimates are standard Gaussian kernel
estimates as defined by default in density function of R programming lan-
guage.) The optimal solution of (PCPN) is represented by the dotted line,
the optimal solution of (SCPN) is represented by the solid one. The left-hand
column of the array represents normal distribution, the right-hand column
represents exponential distribution.

First, dotted histograms represent the fact that the optimal solution of the
chance-constrained sampled problem (7.9) converges, as N goes to infinity, to
the solution of (7.8) (marked by the tickmark). The sampling method related
to (7.5) is useful especially if the number N of samples is high, as a possible
error in estimating optimal solution of the chance-constrained problem (7.2)
decreases.

On the other hand, the robustly sampled optimal solutions of (7.10) (solid
histograms) are getting away from the point of the optimal solution of (PCP)
as far as the number of samples increases, and are going to the upper bound-
ary of the support of F (i. e. to the infinity in both of our cases), but with
rapidly decreasing rate.

For the robust sampled problem, the tickmark represents the lower bound-
ary of ε-feasibility setXε, i. e. the limiting point for which a solution is feasible
in (PCP) with a high probability. You could observe the fact mentioned by
Proposition 7.1 – if N is greater than 241, the optimal value of the (SCPN)
program is feasible in (PCP) with probability of 0.95.

The presented approaches exhibit very different numerical results. Before
making a conclusion on this difference in Section 7.5 we explain the back-
ground of the approaches also by their possible real-world applications in the
next section.
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7.4 Applications of the chance-constrained

and robust programming

7.4.1 Applications of the chance-constrained problems

There is a huge number of applications in stochastic programming due to
the long history of the subject. A collection of the most important ones
is given in the Wallace and Ziemba’s book Wallace and Ziemba [72]. We
give here only a short overview of selected particular tasks that was solved
in real-world applications. Other items include applications in agriculture,
power generation and electricity distribution, military, production control,
telecommunications, transportation and many others.

• Chemical engineering (Henrion and Möller [27]). A continuous distil-
lation process is frequently very dependent on a controlled rate of its
inflow; if the last is of stochastic nature, it cannot be processed imme-
diately but has to be stored in a feed tank. The objective is to find
the optimal feed control with the prescribed lower and upper level of
the inflow preventing the feed tank to be empty or full, together with
the fact that costs compensating possible level violations are difficult
to model.

• Finance – portfolio selection. The objective is to select the optimal
portfolio of bonds in order to maximize final amount of money and to
cover necessary payments in all years. The last is modeled via liquidity
constraints we want to satisfy with some high level of probability.

• Water management (Prékopa and Szántai [52]): one of the very begin-
ning application of chance-constrained problems. A number of reser-
voirs must be designed in order to control flooding due to random
stream inflows.

These models have in common that we estimate the probability distribution
(needed to solve the optimization problem) by means of observations from the
past. The resulting solution in (PCPN) is an approximation to the (unknown)
solution of (PCP) and the approximation is better as the number of samples
(observations) is higher. Furthermore, our solution of the chance-constrained
“sampled” problem is only approximatively ε-feasible for a given level ε. On
the other hand, this level is usually not crucial for real applications if our
preferences are pointed towards costs saving solutions – this is also the case
of all mentioned applications.
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7.4.2 Applications of robust sampled problem

The number of real-world applications of the robust programming is a lit-
tle more sparse. The most important are the robust truss topology design
and the robust portfolio selection problems; there are also other applications,
especially in finance (e. g. option modeling), management (supply chain man-
agement), or engineering (power supply).

• Robust Truss Topology Design (Ben-Tal and Nemirovski [4]). The
problem is to select the optimal configuration of a structural system
(mechanical, aerospace, ...) that is subjected to one ore more given
loads (nominal loads) and an unspecified set of small uncertain loads.
The goal is to find such configuration that the construction is rigid to
all of the prescribed loads.

• Robust portfolio selection (Goldfarb and Iyengar [24]). Here, the un-
certain parameters are the modeling errors in the estimates of market
parameters and they are assumed to lie in a known and bounded un-
certainty set. The robust portfolio is the solution to an optimization
problem where the worst-case behaviour of parameters is assumed.

The optimal solutions to robust problems hedge against the worst-case real-
ization of uncertain parameters regardless their “importance”. The random-
ized (sampled) approach incorporate the information about importance to
the model via probability distribution of samples so that the optimal solu-
tion of the sampled problem does not have to satisfy the constraints for all
possible realizations of the parameter. At the same time, the probability of
such violation is small and for a given ε one could easily compute the number
of samples to generate in order to obtain an ε-feasible solution. Indeed, if the
number of samples is significantly greater than required, the optimal solution
of the sampled problem also hedges against the parameters with the smaller
probability of occurrence. This could be the task if the risk of constraint
violation has to be minimized as much as possible and costs of doing that
are of smaller importance. This is usually the case of the truss constructions
mentioned above.

7.5 Conclusion – stochastic vs. robust

programming

Choosing the approximation method to an uncertain convex program is am-
biguous. There is no reason to measure difference between the two optimal
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solutions as they originate in different context. But the selected method has
to fill up the needs of practical dimension of the problem:

• how much the probability of violation of the constraints is crucial,

• how many samples one has at disposition or can generate.

Getting an answer to the first question stronger, one’s preferences have to be
directed towards the robust sampled problems assuring the high probability
of fulfilling the constraints. Chance to fulfill the constraints by the optimal
solution of chance-constrained sampled problem is only approximately the
desired value 1 − ε, especially if the number of samples is low. But this
solution could be useful in cases where the 1− ε level is not crucial and our
preferences are pointed more likely towards costs savings solutions.

We have illustrated how these general theses apply in a simple optimiza-
tion problem and two rather ‘representative’ distributions. The generaliza-
tion is possible – for other distributions it is straightforward, for the multi-
dimensional case the problem is likely to be a problem of getting data and
obtaining a clear representation.
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Normal N(0;1) distribution, N=30

Solution of PCP_N: dotted (left histogram), SCP_N: solid (right histogram)
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Figure 7.1: Convergence of optimal values for (SCPN) and (PCPN)



Chapter 8

Summary and open questions

This doctoral thesis focuses on the stability and approximations in stochas-
tic programming. The first introducing part (Chapters 1 to 3) is devoted to
present the concept of the uncertainty in mathematical programming, with
presenting some of the two actually common approaches to deal with the
uncertainty: the stochastic programming and the robust programming. The
stochastic programming problems are presented in Chapter 2 and the concept
of distance on the probability space with some prominent metrics (Wasser-
stein and Kolmogorov) appointed in Chapter 3. Chapter 4 presents selected
known results from the theory of stability of stochastic, lead by Theorem 4.1
of Henrion and Römisch [28]. Some small modification to known results are
given by Theorems 6.5 and 4.6.

Chapter 5 deals with approximations in stochastic programming prob-
lems. In detail, convergence rates of Wasserstein and Kolmogorov met-
rics and of associated empirical processes are studied. The theoretical re-
sults known for independent data series are extended (in numerical part of
the chapter) by considering not only independent samples but also weakly-
dependent ones (only the simplest M -dependence property is considered).
The theoretical questions about observed results was answered only partially
by Theorem 5.3.

Chapter 6 is devoted to the question of convexity in chance-constrained
programming. The result of Henrion and Strugarek [30] is exploited and the
result reproved with the original assumption of a structural weak-dependence
property replacing the original independence of the constraint rows. The re-
sult is then connected with the stability theorem, but the obtained result
still remain the result of existence characteristics only. Another extension
that seems to be examined is apparent convexity property even for weakly-
dependent problems, as this thesis only approximates this one by an inde-
pendent problem.

80
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Chapter 7 closing the thesis compares the stochastic programming (repre-
sented by the chance-constrained programming problem) with one of contem-
porary robust programming approaches (so-called randomized robust pro-
gramming problem). On a simple numerical example we show a conceptual
difference between the two approaches that has to be taken into account
while applying one or other approach to the real-world application.
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