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Chapter 1

Introduction

One of the most challenging problems of mathematics in recent decades con-
cerns with the equations describing motion of a viscous, compressible and heat
conducting fluid:

Ot + diV(Qﬁ) =0 s
(o), + div(oii ® @) + Vp = divS + of ,

: " : 1 L ¢V
(08)¢ + div(psu) + dlv(%) = ES v — 1 KPR (1.1)
d

1, s
T Q<§g|u\ +Qe)dx—/ﬂgf-udx—|—/qu5x,

in (0,7) x 2, where we will assume that the boundary 052 is compact. The
set of the introduced equations corresponds to a family of physical laws:

e The first equation expresses the conservation of mass, i.e. the rate at
which mass enters a system is equal to the rate at which mass leaves the
system.

e The second equation is the momentum equation expressing the Newton
second law: the Rate of change of momentum of a body is equal to the
resultant force acting on the body, and takes place in the direction of the
force.

e The third equation, called the entropy balance equation, can be viewed as
a mathematical formulation of the second law of thermodynamics.

e The last one is the conservation of energy, i.e. total amount of energy
changes only because of action of external forces or its flux through the
boundary.
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The system (1.1) is supplemented with the complete slip boundary condition
ﬁ'ﬁ‘agzo,SﬁXﬁbQ:O,(f‘ﬁ‘aQ:q, (1.2)

which expresses impermeability of the boundary 0€2 and the fact that tangential
component of the normal stress forces vanishes on the boundary, or the no-slip
boundary conditions for the velocity

Ton = 0. (1.3)

Moreover, if the magnetic field is taken into account, the system (1.1) reads
as follows

Ot +diV(Q’lz) =0,
(00); + div(oi ® @) + Vp=divS+ of + J x B,

7. 1 7-ViI9 A -
(0s): + div(osi) + div(%) = ES : Vi — % + p\curlB|2, (1.4)
d (1 2 1 =5 S
— —olu|” + oe + —|B )da::/gf-udx—l—/ qdS,,
dt Jo \2 ld 2#‘ | 0 a0

By + curl(B x @) + curl(Acurl B) = 0,

where the last equation is the Maxwell equation. Since the system is assumed
to be energetically isolated, we prescribe the additional boundary condition

B-iiloq=0. (1.5)

The formulation of the systems (1.1) and (1.4) is by no means complete.
The behavior of the system’s unknowns density, velocity, temperature (and
magnetic induction in case of (1.4)) is determined also by the particular kind
of interactions inside the fluid and set of laws governing the electromagnetic
field. This is described by so called constitutive relations on the structure of
the viscous stress tensor S, the pressure p, the external force f , and the heat
flux ¢.

The question of the existence of the solution of (1.1), (1.4) can be studied
by two approaches: the way of strong solutions, and the route of weak solution.
The main tool for the first approach is the fixed point argument which assures
smooth solutions but under the following restrictive assumptions: small initial
data or short time intervals. This drawbacks are overcome by the route of weak
solutions. This approach is based on the construction using Faedo-Galerkin
approximation coupled with addition of vanishing mollifying terms into the
system and then passing to the limit in the mollified system. This method
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provides the existence result for both large initial data and long time intervals.
Despite the lack of regularity property, the weak solution is still enough to
ensure that the physical principles motivating (1.1), (1.4) are valid.

The existence of weak solutions for the special case of (1.1) (e.i. the case that
the temperature 1 is not taken into account, called also Navier-Stokes system,
and the pressure p(g) ~ o with v > %) was first proved by Lions [26], and
then extended by Feireisl to the range v > 2 in [15] provided the underlying
spatial domain € is at least of class C**”. In [16], the authors investigate the
above mentioned special case of (1.1) posed on an arbitrary bounded domain 2,
where (2 is approximated by a suitable sequence of smooth domains. By means
of this method, one gets a sequence of approximate solutions that converges to
another weak solution of the problem on the limit domain. Such a solution has
bounded total energy but is not known to satisfy the energy inequality in the
differential form. Certain improvements in this direction have been achieved
by Poul in [31], where the existence problem is studied on Lipschitz domains.
Note that all the above cited authors use the so-called Bogovskii operator - a
specific branch of div™" (see e.g. [30]) - in order to get uniform estimates of
the pressure. The basic properties of this operator depend on regularity of the
domain, in particular the latter must be at least Lipschitz. The main goal of
the first part of this thesis is to extend the results of [15] to the class of certain
domains that may contains cusps.

The rest of the thesis is devoted to investigation of singular limits of systems
that arise from the systems (1.1), (1.4). The importance of the singular limits
arises from the fact that the full Navier-Stokes-Fourier system (1.1) or the equa-
tions of magnetohydrodynamics (1.4) describe the entire spectrum of possible
motions - ranging from sound waves, cyclone waves in the atmosphere, to mod-
els of gaseous stars in astrophysics. This approach consists of two steps: scaling
and asymptotic analysis. By scaling the equations, the parameters determin-
ing the behavior of the system become explicit. Asymptotic analysis provides
a useful tool in the situation when certain of these parameters called charac-
teristic numbers vanish or become infinite. The main goal of the asymptotic
analysis is to derive a simplified set of equations solvable either analytically or
with less numerical effort.

Let’s repeat some basic features of scaling, explained in [13], Chapter 4. For
all physical quantities appearing in (1.1), (1.4), we can identify their charac-
teristic values: the reference time T}, the reference density g,of, the reference
length L., the reference velocity U, , the reference temperature 9, , the ref-
erence magnetic induction B, , together with the characteristic values of other
composed quantities pref, €ref, fref s Mref 5 Kref s Aref , and the source term fief .
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Introducing new independent and dependent variables X' = X /X, consid-
ering such special scaling that only certain characteristic numbers (specified
later) occur in the resulting system, and omitting the primes in the rescaled
system, we arrive at the following system:

Ot + le(Qﬁ) =0 )
. o 1 ) I =
(o) + div(ou ® u) + WVP =divS + ng,

1 7 1 1 Vo .
(08)¢ + div(psii) + Ediv(%) = 5<Ma2S Vi — Eq 19v ) 7 (1.6)
d Ma Ma2 .
el —Qu >4 ge dx—/—gf-ﬁdx+0re/ qds,

or for the magnetohydrodynamics equations:
0+ + diV(Qﬁ) =0 s
. VR 1 ) 1 = > o
(o)) + div(oi @ 4) + —Vp =divS + —s0of + — J><B,
Ma Fr
1¢-Vv A

i 0 1 g — l 2.\ — — 2 312
(08)¢ + div(psu) + P_le(E) =3 <Ma S:Viu + M\CurlB[ ) ,

d Ma®  _, Ma?® Ma® -
S (g + oo + B) /— -*d+cre/ ds, ,
3 [, (S el oe+ S o 1B] el et Cur | g
B, + curl(B x @) + curl(AcurlB) = 0,
(1.7)
where
QrefLref . . .
Chret = is boundary flux intensity constant ,
Urefpref
Ma = U, Orel s Mach number ,
Dref
F Uref s F d b
r = ——— is Froude number
re: Lre Ure .
Pe = Pref Zret T vef is Peclet number ,
ﬁrefﬁref
Ure :
Al = f\/ Oretfbref 18 Alfven number .

Bref

As we mentioned above, the interesting cases for the asymptotic analysis are
cases when some of these parameters called characteristic numbers vanish or
become infinite. Similarly to the previously mentioned existence, the asymp-
totic analysis can be also studied by two approaches. The first one means that
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the limit solutions are investigated in the classical sense. One of the first results
of this approach was achieved by Klainerman and Majda in [21] where the exis-
tence of the limit solution for the Navier-Stokes system is proved in the classical
sense, but on a sufficiently small time interval. They proved that the solu-
tions of the compressible magnetohydrodynamics equations tend to a solution
of the incompressible magnetohydrodynamics equations under the assumption
that the Mach number tends to zero. Another approach to this topic was pro-
posed by Lions and Masmoudi in [27], where the existence is shown in a weak
sense. Similar problems were further developed by Desjardins and Grenier [6].
The same strategy was later adapted for the full Navier-Stokes-Fourier system
by Feireisl and Novotny in [14].

We study two problems of singular limits in this thesis. In the first one we
consider the system (1.7) with the both Mach and Alfvén numbers proportional
to € together with certain special initial conditions. It is shown that when ¢
tends to zero than the limit quantities are weak solutions to the incompress-
ible system of the equations of magnetohydrodynamics. This extends results
written by Klainerman and Majda, [21] or Zank and Matthaeus, [39] because
in comparison with [21], [39], the temperature 9 is taken into account in our
problem.

The second studied problem consists of the full Navier-Stokes-Fourier system
(1.6) under the assumption that the Mach and Froude number are equal to ¢
and the Péclet number together with the scaling constant 1/Ce equal to 2.
Moreover we focus our attention to the case when (1.6) is defined on unbounded
domain in R?® with a non empty compact boundary. The investigation of its
singular limits leads to the analysis of local decay of acoustic waves which can
be studied by several methods. Desjardins and Grenier in [6] use the so-called
Strichartz estimates (see [36]). But these estimates become too complicated for
the case of general unbounded domain and require certain restriction on the
shape of the domain, and thus are not usable for our case. Instead of them we
use approach developed by Feireisl, Novotny and Petzeltovd in [17] based on
weighted time-space estimates for abstract wave equations. By means of these
tools, we finally show that the limit system can be viewed as a simple model
of the fluid motion in the stellar radiative zones as introduced in [5].

The results published in this thesis are included in the articles written by the
author. The chapters with original scientific results correspond to the following
articles:

e Chapter 2, On the Ewistence of Finite Energy Weak Solutions to the
Navier-Stokes Equations in Irreqular Domains corresponds to the article
On the Ezxistence of Finite Energy Weak Solutions to the Navier-Stokes
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Equations in Irregular Domains [23] published by the author in Mathe-
matical Methods in Applied Sciences.

e Chapter 3, Singular Limits of the Equations of Magnetohydrodynamics is
covered by the article Singular Limits of the Equations of Magnetohydro-
dynamics [24] accepted for publication in Journal of Mathematical Fluid
Mechanics.

e Chapter 4, Incompressible Limits for the Navier-Stokes-Fourier Systems
on Unbounded Domains under Strong Stratification corresponds to the ar-
ticle Incompressible limits for the Navier-Stokes-Fourier Systems on Un-
bounded Domains under Strong Stratification [22] submitted for publica-
tion to Archive Rational Mech. Anal.



Chapter 2

On the Existence of Finite
Energy Weak Solutions to the
Navier-Stokes Equations in
Irregular Domains

Corresponds to the article by Kukucka P.: On the Existence of Finite Energy Weak Solutions to the
Navier-Stokes Equations in Irregular Domains, Math. Meth. Appl. Sci., 32(11) 1428-1451, 2009.

Abstract: This paper studies the existence of weak solutions of the Navier-Stokes system defined
on a certain class of domains in R? that may contain cusps. The concept of such a domain and weak
energy solution for the system is defined and its existence is proved. However, thinness of cusps
must be related to the adiabatic constant appearing in the pressure law.

2000 Mathematics Subject Classification. 35A05, 35Q30

Keywords: Navier-Stokes system, renormalized solution, energy inequality

2.1 Introduction

We prove the global existence of weak solutions of the Navier-Stokes equations
of an isentropic compressible fluid:

o0¢ + div(ou) =0, (2.1)

(ou"); + div(ou'd) + a(0")s, = pAu' + (N + p)(divd),,, i=1,2,3. (2.2)

Here the density o = o(t,x) and the velocity @ = [u'(t,z),u?(t,z),u?(t, )]
are functions of the time ¢ € (0,7") and the spatial coordinate z € €, where

13
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Q) C R3 is a domain belonging to the class W1 ¢ specified below. We assume
that

37
<s< . 2.3
3= 5 < 400 (2.3)

The viscosity coefficients o, A satisfy
2

a > 0 is a positive constant, and the adiabatic constant 7 is subjected to the
constraint

3
—. 24
7> 5 (2.4)
We prescribe the initial conditions for the density and the momentum:

together with the no-slip boundary conditions for the velocity:
u'lpgn =0, i=1,2,3. (2.6)
The data og , ¢’ are supposed to comply with compatibility conditions of the form

i|2
00 € L7(R), 00 >0, ¢'(z) = 0 whenever gy(z) = O,% cL'(Q),i=1,2,3
0

(2.7)

The question of existence of global-in-time solutions for Navier-Stokes sys-
tem (2.1), (2.2) is far from being solved. The existence of finite energy weak
solutions for (2.1), (2.2) was first proved by Lions [26] for v > £, and then ex-
tended to the range v > % in [15] provided the underlying spatial domain € is
at least of class C*™. In [16], the authors investigate system (2.1), (2.2) posed
on an arbitrary bounded domain €2, where €2 is approximated by a suitable
sequence of smooth domains. By means of this method, one gets a sequence
of approximate solutions that converges to another weak solution of the prob-
lem on the limit domain. Such a solution has bounded total energy but is
not known to satisfy the energy inequality in the differential form. For more
details see Remark following Definition 2.1.2. Certain improvements in this
direction have been achieved in [31], where the existence problem is studied
on Lipschitz domains. Note that all the above cited authors use the so-called
Bogovskii operator - a specific branch of div™' (see e.g. [30]) - in order to get
uniform estimates of the pressure. The basic properties of this operator depend
on regularity of the domain, in particular the latter must be at least Lipschitz.
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Although there have been some attempts to extend Bogovskii operator to a
larger class of domains such as John domains ([3]), an example of a simple
domain with external cusps on which such an operator cannot be defined was
constructed in [18]. The main goal of this paper is to extend the results of [15]
to the class of W1 * domains defined as follows:

Definition 2.1.1 (domain with boundary W' *)

Let Q0 C R™ be a bounded domain, n —1 < s < 4+oo. We say that () is a
domain with a boundary W1 ¢ if there exist positive numbers o, 3, a family of
M Cartesian coordinates systems

r=1,...M : (xp, ..., _,,2,,) = (2., 2,),
and M functions a, € WH5(A,), where

A={z,eR"i=1,..n—1: |z,

<a}l,
such that:

1.Vex € 0, Ir € {1,...,M} and 3z, € A, : v = T,(z),a.(z])), where T,
is a mapping (translation and rotation) of the r-th cartesian coordinate
system (xl., z,, ) onto the global coordinate system (x',x,) .

2. If one denotes

P €0 an(x,) <, <ar(z;) + 0},
V.o ={(2,2,) €R 2, € Ay ar(2)) — B < 2, < an(n7)},
eR"xl € A ya(2)) =2, },

)
then T,(V) Cc Q, T,(V,)) CR"\ Q.

Denoting V, = V;* UV,” U A, we have 802 = UM, A, c UM, V.

n—1

Remark. Note that, due to embedding W*(A,) — C%'~75 (A,), the func-
tions a, are continuous. Consequently, a, € AC(A,) = N/, ACi(4,), where
AC;(A,) is the space of absolutely continuous functions on almost all segments
parallel to the i-axis lying in the set A, .

The class of domains specified in Definition 2.1.1 may contain both internal
and external cusps, where the thinness of the cusps is to be related to v through
relation (2.3). We now give a precise definition of the concept of finite energy
weak solution of problem (2.1), (2.2), (2.6).

Definition 2.1.2 We say that functions o, U represent a finite energy weak
solution of problem (2.1), (2.2), (2.6) if the following conditions are satisfied:
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©0>0,0€eL>0,T;L7(Q));
o e L20,T;W;3(Q));
e the energy defined by

1 a
E(t) = / —oli]* + ——¢" dz,

is locally integrable on (0,T) and the energy inequality

d

1
il [ e+ o] + [ e o i <o

holds in D'(0,T) ;

e the equations (2.1), (2.2) are satisfied in D'((0,T) x Q) ; moreover (2.1)
holds in D'((0,T) x R3) provided ¢, @ were extended to be zero outside of
Q;

e the equation (2.1) is satisfied in the sense of renormalized solutions, more
precisely,
b(0): + div(b(o)u) + (b'(0)o — b(p))divii = 0

holds in D'((0,T) x R?) for any b € C*([0,00)) such that
V(s)=0forall s > M, (2.8)
where the constant M may be different for different functions b .

Remark. Using Lebesgue convergence theorem one can show that assumptions
on b in the above definition can be relaxed so that the renormalized continuity
equation holds for any b € C''((0,00)) NC([0,0)) satisfying
b/ (s)s] < (2% + 27) forall s > 0 and certain 6 € (0, %) :
It follows immediately from (2.1), (2.2) that any finite energy weak solution
belongs to the class:

o€ C([0.T); L1, () . 0 € C([0.T): L2, ().

weak weak

and consequently, the initial conditions (2.5) make sense.
Remark. As already pointed out, the main problem when dealing with a
general class of domains is the fact that the weak solutions constructed by
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means of a family of approximate domains satisfy the energy inequality only in
its integrated form

E(t) + / p|Va? + (A + p)|divi*de < By,
Q

for a.a. t > 0.
Our main result is formulated in the following theorem:

Theorem 2.1.1 Assume Q C R3 is a bounded W ¢ domain, where v and s are
related by (2.3), (2.4). Let the data oo, ¢ satisfy the compatibility conditions
(2.7). Then given T > 0 arbitrary, there exists a finite energy weak solution g,
U of the problem (2.1), (2.2), (2.6) in the sense of Definition 2.1.2 satisfying
the initial conditions (2.5).

The proof of Theorem 2.1.1 will be done by means of three level approxima-
tion scheme based on a modified system:

o0 + div(owd) + 0" = Ao, (2.9)

(ou®); + div(ou'd) + a(0")s, + 6(0")s, +eVu'-Vo + %QH”ui =
= pAu' + (A + p)(divid),, i=1,2,3, (2.10)

on (0,7)xQ., wheree > 0,6 >0, v > 0 are small, § > 0 sufficiently large, 2.
is a sequence of smooth domains approximating €2, and (2.9) is supplemented
by the homogeneous Neumann boundary conditions

Vo-iilg, =0. (2.11)

(i) The first step in the proof of Theorem 2.1.1 consists in solving the mod-
ified system (2.9), (2.10) by means of a Faedo-Galerkin approximation scheme
where (2.9), (2.11) is solved directly while (2.10) is replaced by a finite di-
mensional system. The term '™ is used to pass to the limit for ¢ — 0 in
the energy inequality. The extra terms eVu'- Vo and $o'™u’ are necessary to
keep the energy inequality valid at this level of approximation.

(i) In the second step, we let the artificial viscosity terms and other terms
represented by the € quantities go to zero. This is a delicate matter due to the
lack of suitable estimates on the density component o. Here we use a certain
special test functions and the technique developed by Lions [26] and extended
by Feireisl et al. [15] based on regularity of the effective viscous flux ag? — (A +
2p)divi .

(iii) The final step of the proof consists in getting rid of the artificial pressure
term §o” . At this stage, we follow the same line of arguments as in [15].
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2.2 The Faedo-Galerkin approximation

Let v, 0<v < % , be a fixed number and Q C R? be a smooth domain of class
at least C*™. Our first goal is to solve the problem (2.9), (2.10) supplemented
by the boundary conditions:

Vo il =0, (2.12)
oo =0, (2.13)

and modified initial data:
0(0) = 0o € C***(€2),0 < 0 < 0o(x) <0, Voo 7i|on =0, (2.14)
(0)(0) =7,7=[¢",¢* . ¢*],¢' € C*(Q),i=1,2,3. (2.15)

In virtue of Proposition 7.3.3 in [29] the following statement holds:

Lemma 1 Assume i be a given vector function belonging to the class
@€ C([0,T];[C*()]%), i]oa=0. (2.16)

Then there exists § > 0 such that the initial-boundary value problem (2.9),
(2.12) (2.14) has a unique solution o : [0,0] x  — R such that o and all the
spatial derivatives o, , for i = 1,2,3, are continuous in [0,6] x Q, and o,
Ao are continuous in (0,5] x Q. Moreover, o can be extended to a mazimally
defined solution o(t,x,00) : I(00) x Q& — R, I(gy) being relatively open in
0,T].

From this lemma and Theorem 5.1.21 in [29] (where we take f = o™ ) we
obtain a higher regularity of the solution o, namely o € Ct2t%([0,4] x Q),
which allows us to use the comparison principle, together with Proposition 52.7

in [33], in order to get
0>0. (2.17)

Lemma 2 Solution o can be extended to the interval [0,T] in such a way that
0 € CHH0,T) x Q). (2.18)

Proof. From the comparison principle, Proposition 52.7 in [33], applied to
the system (2.9), (2.12), (2.14) compared with the following system:

re + div(rad) + er'™ > eAr,
r(0) =0, (2.19)
Vr - ﬁ‘ o0 — 0,
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we get that its solution r(t,z) = gexp (f(f ||divﬁ(s)]|Loo(Q)ds) satisfies

t
o(t,r) < oexp (/ Hdivﬁ(s)HLoo(Q)ds),for (t,z) €[0,8] x Q. (2.20)
0

The estimate (2.20) holds for each ¢ < I(gp), and is independent on §, and
s0 o is bounded on I(gy) x Q. According to Proposition 7.3.4 in [29] it holds,
I(0o) = [0,7]. Then Theorem 5.1.21 in [29] gives (2.18) which concludes
the proof. O

We are now allowed to repeat the procedure used in [15] (page 362 - 369) to
get the following assertion:

Lemma 1 Suppose 3 > max{4,~v}. Let Q C R? be a bounded domain with
C** boundary. Assume the initial data oo, ¢ satisfy (2.14), (2.15). Then
there exists a weak solution o, U of the problem (2.9) - (2.15) such that o €
LPHL((0,T) x Q) and the following estimates hold:

sSup HQ( )HL’Y(Q <CE5[QO>@]> (221)
tel0,T)
5 sup [lot)sey < cEsloo (2.22)
tel0, T
sup |a®) )| 2y < cEsloo. . (2.23)
te[0,T)
T T
/0 ()20 + / [V(0) 220t < cEslo0 .. (2.24)
T
[ IV Bt < (5.5 00.). (2.9
0
o"dxdt < cEsloo, q] (2.26)
g ' B+v
i 0" dxdt < cEsloo, q], (2.27)
- 0 Q

where the constant c¢ is either independent of the shape of ) or bounded for
uniformly bounded sets of domains ). Moreover, the energy inequality

d 1 K a % _6 &) = 2 .2
&[/QﬁQ\U\ +7_1Q +ﬂ_1g da:]+/ﬂ,u\Vu\ + (A + p)|div d| “dz+

o
Sl / o' dx + ¢ g rdx <0,
v—1Ja f—-1Ja

(2.28)
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holds in D'(0,T). Finally, there exists r > 1 such that o,. Ao belong to
L™((0,T) x Q) and the equation (2.9) is satisfied a.e. in (0,T) x 2.

2.3 The vanishing viscosity limit

2.3.1 Solution on approximate domains

In order to handle a general W domain , let us first approximate it by
the following sequence of C'*° domains €2., for 8 > ¢ > 0 sufficiently small.
Defining the functions

az(zl) = (a, * w)(z).) — " (e), r=1,---,M (2.29)

T

where a, have the same meaning as in Definition 2.1.1, and ¢’ = £'(¢), £” =
" () are chosen so that ¢’(¢) — 0, and €”(¢) — 0 ase — 07, and

a-(z)) — (a, xw)(x)) +€"(e) > 0,

we get a decreasing sequence of C* domains €2, such that Q C Q.. Moreover it
holds that for each compact set K C R? \ﬁ there exists e x such that X C R3 \ﬁg
forall e < ef.

Now consider the system (2.9), (2.10) approximating (2.1), (2.2) on €. x
(0,T), supplemented by the boundary conditions:

Vo filoga. =0, (2.30)
i o0, =0, (2.31)
and initial data:
0(0) = 006 , (2.32)
(010)(0) = G- - (2.33)

where functions ggs. and ¢. are introduced in the following lemma that can be
proved in the same way as in [15] page 381 - 382:

Lemma 3 There erxists a sequence gps. € C2V () such that

0 <e < 0pse §€_%, Voos: - 1]oa. =0, 2.34)
l00se — 006ll26(.) =0, ase— 0", and § >0, 2.35)

(

(
where 0gs 1S considered to be zero outside of 2. Moreover ggs € CQ+”(§) and

(

0<6< 005 <07, 2.36)
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l00s — 0ol — 0, asd—0". (2.37)
Finally, there exists a sequence gs. such that
i |2
(/3 arebounded in L'(€).), independently of ¢ > 0 andeach § >0 (2.38)
00 6
and 4 '
5. — g5l i) = 0ase — 0%, and 6 >0, (2.39)
where 5 is considered to be zero outside € and such that
il2
/i areboundedin L'(9), independently of 6§ > 0, (2.40)
006
and 4 '
g5 = 'l 1) — 0 as d — 07 (2.41)

Throughout this section we will work with a fixed § . According to Proposi-
tion 1 established in the previous section there exists a solution of (2.9), (2.10),
(2.30) - (2.33) which will be denoted by g, , i, . The aim of the present section
is to pass to the limit in (2.9), (2.10), (2.30) - (2.33) letting € — 0.

2.3.2 On a special test function

In order to estimate the density in a vicinity of the non-Lipschitz part of the
boundary, we use a special test function constructed below. Let us define a
function v, by formula:

UT(IL’;,, -Trn) = (-Trn - ar(x;’)))\> (-T/Ta Ty,) € V;Jr UA,, (2'42)

where 0 < A < 1. Basic properties of the function (2.42) are summarized in
the following statement.

Lemma 4 Let 1 <p < s < 400 beagwennumberandl—%<)\<1. Then
the function v, defined by (2.42) is continuous on V" UA, and v, € WhP(V ).

Proof. Function v, is continuous and belongs to W!?(V*) because a, is con-
tinuous on A, . Since a, belongs to Wh*(A,) and n — 1 < s, the classical

derivative D,, a,(7;) exists a. e. in A, and D,, a,(z}) = g;r’“_ (x]) a. e. ,where
ggg—‘i’f(x;,) denotes the weak derivative. This is true for all i = 1,...,n — 1. It is

easy to check that the classical derivative of v, with respect to each variable
exists a. e. in V,. and

Dy, vn(2), 2y,) = =M@, — ap(2))" ' Dy, ap(a), i=1,...,n—1, (2.43)

T T
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Dy, v (27, @r,) = My, — a ()" (2.44)
Moreover, a direct computation gives
) ar(z.)+6 1)
1D 0y =3 [ 1Daara)l [, = 4w P sy, dap <
Ar ar(x}.)
<A1+p(A—1))arD=DFA-DH D, q,| o) fori—1,...,n—1

and a similar calculation for D,, v, implies D, v, € LP (V.F) fori=1,.

It remains to prove that classical derivatives defined a. e. by (2.43), (2 44)
coincide with the weak derivatives of v,. Let ¢ € {1,...,n — 1} be an arbitrary
index. Obviously, z,, — a,.(z!.) is absolutely continuous on almost all segments
parallel with each i—axis and lying in V©. Let us take such a segment and
denote it by P}. Then there exists (@, ..., Ty, Tr\ys s Ty ) 5 [T, | < afor j €
{1,..,n—1},j # i, and an interval I’ such that (z,, ..., %y, , & T\ )y oos Tpy) €
PN VF for V€ € I . Function

§— Xy — A (Trys ooy Ty & Ty ooy Ty )

is absolutely continuous and strictly positive on each compact interval It C J¢,
which implies that v,(z,,, ..., %, & T,y s .o, Ty, ) is absolutely continuous on
I'. Similarly, the same holds for n—axis giving v, € AC(V,"). But then the
weak derivative g:c—zj exists and is equal to Dxri v, a. e. in V.7 which concludes
the proof. ' O

Lemma 5 Let Q C R" be a W5 domain in the sense of Definition 2.1.1, and
u € WHP(R™) such that u =0 a.e. inR"\Q,1<p<oo. Thenuc W, ?(Q).

Proof. Let us take Q, = T,.(V;) from Definition 2.1.1, and Q;41 C Qp41 C Q
such that @ UM Q.. Moreover, let {®,}*4! be a partition of unity subor-
dinate to the family of open sets {Q yML

Because T, is a mapping (translation and rotation) of the r-th cartesian coor-
dinate system (x/,x,, ) onto the global coordinate system (z’,z,), we have
T.(r,) = A,z, + b,, where we have denoted z, := (z/,x, ), and where
A, € M(R™) is an orthogonal matrix with determinant equal to one, and
b, € R™. If one takes

u(z) =u(lr —eAye,), r=1,..,M,

and ui(x) = u(z) for r = M + 1, then it is easy to check that

M+1

_ £
= E D,u
r=1
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belongs to Wy '?(€2) . Using a simple estimate

M
||ue — u||’;v1,p(R3) < C’Z / lu(z —ea,) — u(x)|? + |Du(x — ea,) — Du(x)[Pdx ,
r=1 Q

where a, = A,¢,, together with the fact that u € WhP(R"), we get
u. — u in WHP(R") . (2.45)

Since u. € W,'P(Q) there exists a sequence u* € C5°(Q) such that u* — u, in
Wy P(Q2), which, combined with (2.45), gives u € W, ?(Q). O

Lemma 2 Let 1 < p < 400 be a given number. Then for any s, p < s < 400
and any domain Q C R"™ with boundary WY% in the sense of Definition 2.1.1,
there exists a vector function ¢ € Wy 'P(Q) N C(Q), ¢laa = 0 enjoying the
following property:

For all K > 0, there exists 6 > 0 such that

divg(z) > K whenever dist(z, 0Q) < 4. (2.46)

Proof. Similarly to the proof of the previous lemma, we take

M
pi=) @0, (2.47)
r=1
where
v, (x) == A 0,...,0,v,(AT(z — b)), 2.48
() ( : v, (A, (z ) (2.48)

and v, is defined by (2.42). In particular, p € Wh?(Q). It is easy to check
that 3|sq = 0 since v,]s, = 0, and ¢ € C(Q), which yields ¢ € W, *(€) for
each ' O Q. Using Lemma 5 we obtain ¢ € W,'?(Q) . Moreover, by means of
a direct computation,

div g(z) =Y VO,(2).0,(x) + Y _ () aa;: (AT(z —b,)) aein Q. (2.49)

The function v} can be continuously extended into the compact set V:r ,

v|z, = 0, which implies, due to the uniform continuity, Ye > 0 3§ > 0 such
that V! € V&, dist(2),A,) < § : vMzl) < e. Using this fact we observe

s s
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VK > 03 > 0 such that V. € V.* | dist(z],A,) < ¢ : %(aﬁ;) > K.

We summarize the previous discussion in the following statement:

For any K > 0 there exists § > Osuchthat,if dist(x, T, (A,)) < dforallr €
{1,..., M}, then %(A?(:ﬂ —b,)) > Kfora.a.z € ,. Substituting this in-

equality into (2.49), taking into account Zi\il ®, = 1, and observing that the
first term of (2.49) tends uniformly to zero as dist (z, 9€2) — 0, we obtain (2.46).
[

2.3.3 Weak convergence of the density

We are going to use the special test function constructed in the previous section
to prove a weak convergence of o2, o7 in L*((0,T) x ). The following lemma
usually called Lemma de la Vallé Pousin ([9]) provides a necessary and sufficient
condition for the weak convergence in the L' space.

Lemma 6 Let F C L'(Q). Then the following conditions are equivalent:
i) Yo, € F Fu,, , ve LY Q) such that v,, — v in L'(Q).
i) Ye > 030 > 0 such that [, |v(z)dx <e forVve F,¥VBCQu(B)<9.

Our aim is to verify that both ¢ and o7 satisfy condition ii) of Lemma 6 on
the set (0,7) x Q.

Let € > 0 be arbitrary and consider ¢’ > 0 given by Proposition 2 (where
one takes K = é) Furthermore, let 2;, €25 and {23 be smooth domains such
that

ﬁgCQQCﬁQCQl Cﬁlcﬁ,

dist(z,00) < ¢, Vo € 0€;,
dist(x,09) < %6’, Vr € 08y,
dist(x,00) < 30", Vo € 08 .
Then
div p(z) > é, for a.a. x € Q, dist(z,00) > ¢§'. (2.50)

Remark : Due to the good approximations of the initial conditions that follows
from (2.35) and (2.38), the estimates contained in Proposition 1 are independent
of €.

The following lemma shows estimates of the density on €2, :
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Lemma 7 Let o., i. be the sequence of solutions of the problem (2.9), (2.10),
(2.50) - (2.33) constructed above. Then there exists a constant
c=c(0,00s, 5,21, s) independent of € such that

||l 1.0, 7y x22) + [10e | La+1((0, Ty x2) S € (2.51)

Proof: Let ¢ € D(£;) be such that 0 < ¢ < 1, ¢(z) = 1 for each z € Qy,
and ¢ € D(0,T) such that 0 <1 < 1. Extending o. to be zero outside €., we
consider a test function

G(t,x) = P(t)o(z)Ale] ,
where the operator A, is defined via the Fourier transformation F,_.¢ :
—1&;
€1°

By virtue of the classical Mikhlin multiplier theorem the following estimates
hold:

Ajo] = F2L [ Foell], j=1.2,3.

—w

[A;[0]llwr @) < els, )l
1A [Vl Laon) < g s, Q)l[vllpsmsy, g <00, ;=1 — 3, (2.52)

- s
A 0]l oo (@) < (s, Q)[[vllLors) , i s > 3.

L5(R3) 1<$<OQ7

[l

Due to the regularity property established in Proposition 1, especially (2.22),
we shall use ¢ as a test function for the system (2.10) and benefit from [15],
Section 3.2. After simple manipulation by help of the above introduced esti-
mates, we deduce the required inequality (2.51). O

In order to verify the second hypothesis of Lemma 6, we have to examine the
behavior of the approximate solutions in a neighborhood of the non-smooth
part of the boundary 02 specified in the following lemma.

Lemma 8 Let o, i. be the sequence of solutions of the problem (2.9), (2.10),
(2.50) - (2.33) constructed above. Then there exists a constant
c=c(0,00s, 5,21, Q) independent of € such that

T
/ / aol +60Pdxdt < ce’. (2.53)
0o Jone,

Proof: Let ¢ € D(R?) such that 0 < ¢ < 1, ¢(x) = 0 for each z € Q3
¢(x) =1 for each x € Q\ Oy, and p € D(0,T) such that 0 < ¢ < 1. Consider

Pt ) = (t)o(x)p(x),
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where ¢ is the vector function from Proposition 2, which can be used as a test
function for the system (2.10). After similar calculations as in the previous

lemma, one obtains:

T
/ Volagl + 507 divg da dt =
0o Jo\as
- / Ypocts - pdrdt + / / ppVeo - Vulp'de di+
0 JO\Qs 0 Ja\Q;
T ' 4 T
/ / ppoVu, - Vo'de dt — / V0.V - t.p -, dr dt—
0 JNQ3 0 Ja\Q;
T
/ Yoo.uli, - V@' do dt + / / A+ ) divi.Vo - ¢ da dt+
0 JO\Q3 O\

T T
/ / O\ + oo divii, divg dz dt + = / VOV 0. - VL@ da dt+
O\Q3 0o Ja\as

T 10
/ Yool - pdrdt — / Y(agl +50°)Vo - pdrdt = le.
O\ Q3 0 Q3 j=1
(i) By virtue of (2.22), (2.23), we get

T T
L <ec / e Va1 Bl oy dt < (8, 005 @5, 1 s D) / e
0 0

(ii) Similarly, using (2.24) we have
|I5] < C/OT | Viie|| 20 dt < e(d, 005,35, , ).
(iii) By the same token,
bl < e [ IVl Vel < o6, s )
(iv) From (2.22), (2.23), it follows that
ni<e / VB [T < (8 0055 . )

(v) Since s > 5=, relations (2.22), (2.24) imply

T
’15’ < C/ HQSHLT(QS)Hﬁsug/Vl2(95)"95“W1’9(Q)dt < C((S , 006 (j(% ) Ql ) QZ) ;
0
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__ _3s
where r = ;2%

(vi) Analogously,

T
uaSc/\wammmastwwﬂaabmy
0

(vii) As in the previous steps,

T
‘[7‘ S C/ HVIJEHLQ(QE)"V¢"L2(Q)dt S 0(5 » 0056 5 % ; Ql 792) :
0

(viii) Relations(2.24), (2.25) imply

T
|Is| < 80/ IV -l 200 | Ve || 2. dt < (8, 005, G5, D, Q2) -
0

(ix) From (2.22), (2.24), we immediately get

T
LMSc/'m&wpﬁﬂmmmmwgcwwmﬂaﬂbm»
0

(x) Finally, using (2.21), (2.22) we conclude

T
‘[10’ S C/ QHQEHZ’Y(QE) + 6HQ8H€ﬂ(QE)dt S 0(57 0056 , % ) Ql ) QQ) :
0

Now, applying the above estimates and the fact that divip(x) > L in order to

5/

handle the left hand side of our identity, we obtain the desired result. ([l
If we combine the above lemmas, together with Lemma 6, we get

Lemma 3 There exist functions py ,ps € L'((0,T) x Q) such that

ol = p1 in L'((0,7) x Q),
0 —py in L'((0,T) x Q).

Proof : It follows from Lemma 7 that g. converge weakly in L' ((0,7) x €2)
and LPT1((0,T)xy) , in particular, o7 , of converge weakly in L((0,T) x ) .
Now implication (i) = (ii) of Lemma 6 assures the existence of §” > 0 such

that
62|10, myxm) <€ forVB C Qo p(B) <",

2.54
HQ?HLI((O,T)XB) <e forVB C Qy, u(B) <d”. ( )

If we denote ¢ := min {¢’, "}, then the second hypothesis (ii) of Lemma 6 is
satisfied and the proposition follows directly from Lemma 6.
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Indeed, if B C Qy, p(B) < 0, then (i) holds because of (2.54). Otherwise,
if B C Q\ Qy, then Lemma 8 implies

10211 220, yxB) < €€’ (2.55)
108\ £2 (0, 7yx ) < €’

and the last case BN Qy £ 0, BN (2 Q) # () can be handled by means of a
combination of (2.54) and (2.55). The proof is complete. O

2.3.4 The vanishing viscosity limit passage

At this stage, we are ready to pass to the limit for ¢ — 0 to get rid of the e—

quantities in the equations (2.9), (2.10). Note that the parameter ¢ is kept fixed

throughout this procedure so that we may use the estimates derived above.
To begin, it is easy to deduce from (2.24), (2.25) that

||8VQ5'VUJ§HL1((O7T)XQ€) —>0, 1= 1,2,3, (256)

and, analogously,
HgAQEHLQ(O,T;W—LQ(Q)) — O . (257)

Moreover, it follows from (2.54) and the fact that 7. € Wy *(.)
. — @ weaklyin L*(0,T; Wy (1)), (2.58)
on each fixed 2. . Thus, using Lemma 5 we get
ie LX0,T;W,2(Q)).

Other convergence properties are established in the following lemma:

Lemma 9
0- — 0in C([0,T]; L5, 1 (), (2.59)
0cti — ot in C([0,T]; LT0 (), (2.60)
o-ulu! — ou'u! in D'((0,T)x Q), i,j=1,2,3. (2.61)

Proof. In accordance with Proposition 1, the continuity equation (2.9) is
satisfied a.e. in (0,7) x Q.. Thus we can multiply (2.9) by a test function
¢ € D(Q) and integrate by parts to obtain

t
/Qe(t)wdx:/goﬁpdx‘f‘/ /Qgﬁg-Vgo—egiJ“’go—aVQg-Vgpdxds. (2.62)
) Q 0 Ja
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Using the estimates (2.22), (2.24), (2.25) one can deduce o. € C([0,T); L?__, (Q)).
Now let Q.. be a fixed domain, and consider ¢ < ¢’ and g, , U, extended by
zero outside €. . Then (2.22) implies uniform boundedness of g, in L?(Q./).
Furthermore, because p. being extended by zero admits the partial derivative
with respect to ¢, it is easy to see that the continuity equation (2.22) is satisfied
a.e. in (0,7) x R? which allows us to use an arbitrary test function ¢ €

Wy 2(Q) to get

J

This implies that the sequence o. is uniformly continuous in W~12(Q.) .
According to Lemma 6.2 in [30] page 301, it holds at least for a chosen
subsequence that

t
(Qe(t) - Qe(t/))@dx = / / Qaﬁe . Vgp — 69;—’—”90 — 5195er . VQO dz ds.
4 !

El

0- — Qal in C([0,T]; Lieak(Qe/)) ) (2.63)

Let now & and &’ be arbitrary, sufficiently small. Then each ¢ € L7 ()
extended by zero belongs to L? (Q.) N L (Q.+), and, according to convergence
in C([0,T); L2 (), we get o = ¢°" ae. on (0,T) x Q which concludes

weak

the proof of (2.59).
Relation (2.63) together with (2.58) yield

0.1, — oi weakly —x in L®(0,T; L3%1(Q)). (2.64)

Now, consider an arbitrary small number denoted by €; > 0, and let ¢ €
2
L5-1(€2). Then there exists a d; > 0 such that

louell s <er, loll, 2z, <erfor VBCQ, p(B) <dr, i=1.2,3.

(2.65)

Finally, let us take a smooth subdomain €' C € such that (Q\ €) < d; . Now
we can benefit from Lemma 7 to get a uniform estimate

| 0cll La+1(0, Tyxev) < €5
where c is independent of €. Thus we are allowed to use the standard technique

from [30] to show

0<ti: — ot in C([0, T]; Lyiar(€Y)) - (2.66)

weak

The relation (2.60) is now a direct consequence of the estimates (2.65) and
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(2.66) applied to the inequality

‘/(Qaﬁe — @ﬁ)wdx) <
Q

)/ (@sﬁa—pﬁ)wdx‘Jr/ Igsﬁaw\der/ lotip| dz < Key,
/ Q\ Q\Q’

for a.a. t € [0,T], where K is independent of &7 and €.

Finally, seeing that % > £ we can use the relations (2.59), (2.60) to prove

(2.61). 0

Thus we have proved that the limits o, u satisfy the following system of equa-
tions:

ot + div(ow) =0, (2.67)

(ou");+div(ou'd) +-apiy, + 0oy, = pAu'+(A+p)(divid),,, i=1,2,3, (2.68)

in D'((0,7) x Q). Moreover, in accordance with (2.59), (2.60) and (2.35),
(2.39), the limit functions ¢, ot satisfy the initial condition

0(0) = 005, (0t)(0) = G5,

where gps and g5 are the same as in Lemma 3.

2.3.5 Strong convergence of the density

We conclude this section by showing p; = ¢7,p2 = 07, and, consequently,
strong convergence of the sequence p.. We shall need the following assertion:

Lemma 10 Let o, i be a solution of (2.67) inD'((0,T)x2) with the properties
specified in the last subsection. Then, for o, U extended to be zero on R3\ 2,
the equation (2.67) holds in D'((0,T) x R3) .

First, by means of Lemma 10, we are able to prove the relation

T
/ / odividrdt = / 006 1 g sdx — / o(T)In o(T)dz, (2.69)
0o Ja Q Q
taking b(z) = zInz in Lemma 6.9 ([30], page 307).
Now because of the additional term ep;,, in the continuity equation, we
need to generalize the so-called renormalized inequality with dissipation.
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Lemma 11 Assume that Q is a domain in R®. Let 2 < 3 < oo, and let
1 <p<oo. Suppose that a couple (¢ ,u) satisfies

0€ L*(0,T5 L), Ao € Lio((0,T) x Q)
0>0aein(0,T)xQ, @eL*0,T; W),

loc

Opo + divoil 4+ o' — eAg =0, inD'((0,7) x Q).

Then for any convex function b € C*([0,00)) N C*((0,00)) satisfying growth
condition 5

W) <ect ™, t>1, “l<M <o -1, >0,
it holds
9ib(0) + div(b(e)d) + {ob'(0) — b(0) }divi + '™V (0) — cAb(0) <0,
in D'((0,T) x Q) .

Proof: Let ', ¥ C Q be a bounded domain. The for any sufficiently small
a > 0, we have

0154 (0) + div(S,(0)) +Sa(0") — eAS4(0) = ro(0, 1) a.e.in (0, T) x ',
(2.70)
where S, is the standard mollifying operator with respect to the space variables,
and

ro(0, @) = div(S,(0)ud) — div(S, (o)) .
We multiply (2.70) by 0'(S.(0)) to obtain
0ub(Sa(0)) + div[b(Sa(e))u] + Sa(e" )V (Sale))+
[Sa(0)b'(Sa(0)) — b(Sa(e))ldivii — b (Sa(0)) ASa(e) = (2.71)
V' (Sa(0))ralo, ) ae.in(0,7T) x Q.
If we use equation (2.71) and the convexity of b, we obtain
0:b(Sa(0)) + div[b(Sa(0))d] + eSa(e")V' (Sale))+
[Sa (@) (Sal)) = b(Sa(0))]divii — eAb(Sa(0)) <
V' (Sa(0))ralo, ) a.e.in(0,T) x Q.
Letting @ — 01 | using the Lebesgue dominated convergence Theorem, Vitali’s

convergence Theorem, and the fact that r, tends to zero as a — 07 ([30]
page 304, Lemma 6.7), we finally arrive at

db(o) + div(b(o)i@) + {ob'(0) — bo) }divii + £ (0) — eAb(o) <0,
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inD'((0,7T)x Q). Since ' was an arbitrary bounded subdomain of €2, the last
inequality implies the desired result. O

Lemma 12 Let ., u. be a couple of solutions of (2.9). Then the following
inequality holds

T
/ 0-(T) In 0-(T') — 00 5c I 00 5¢ dx+/ / o:-divii. +e0l ™ (1+1Ing.)drdt < 0.

€ O €
(2.72)

Proof: The functions g., ., and b(s) = sln(s+ h), where h > 0, satisfy
the hypotheses of Lemma 11; whence the renormalized inequality with dissipa-
tion introduced in Lemma 11 holds. In fact, by virtue of the regularity proper-
ties of o. established in the second section of this paper, we get that the renor-
malized inequality from the previous lemma holds not only in D’((0,7") x )
but even almost everywhere, namely

Ao 1n (0 + h)] + div[e: In (- + h))ii.] + o[l + In (0. + h)]+

2 2.73
. jShdivﬁ8 —¢lo-In (0. + h)] <0 a.e.in(0,7T) x .. (2.73)

Now integrating (2.73) over €. and applying the Stokes formula, we get

/Q QE(T) In (QE(T) + h) dx — / 00 6¢ In (Q065 —+ h) dl‘—l—

Qe

T o? T
/ / c—divi, dz dt + / / g0l ™1 +1In (0. +h)]dzdt <0.
0 € Oc + h 0 €

The conclusion of the lemma is proved by letting h — 0" and using the
Lebesgue dominated convergence Theorem. 0

We can now complete the main goal of this subsection. Take two nonde-
creasing sequences v, , ¢, of nonnegative functions such that

v, € DO0,T), ¥, —1, ¢, €D, ¢, — 1.

Combining Lemma 3.2 in [15], page 374, together with (2.69), (2.72), and
Lemma 3, we obtain

T T
limsup/ Yo /gf)m(agz—i—égg)geda:dt S/ /(ap1+6p2)gdxdt, m=1,2,...
0 Q o Ja

e—0t
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To conclude the proof of strong convergence, we make use of Minty’s trick and
the above introduced inequality to show

HQsHLﬁ((O,T)xQ) - HQHLB((O,T)xQ)> (2.74)

see [15] for details. Furthermore, from (2.22), (2.59) we obtain 9. — p in
LP((0,T) x Q), which, together with (2.74), implies strong convergence of g, in
LP((0,T) x ), 1 <p <. Let us review the result achieved in this section:

Lemma 4 Let Q C R3 be a bounded domain of class W5, where s satisfies

(2.83), and let
ﬂ > max {276%3 ,4} .

Then, given initial data 0gs , s as in (2.56), (2.40), there exists a weak solution
0, U of the problem
or + diVQﬁ =0 s (
(ou')y +div(ou'd) 4 (a0” +00° )y, = pAu’ + (A -p)(divid),, , i =1,2,3, (2.76
ﬁ‘ o0 — 0 ’ (
0(0) = 005, 0(0) =gs. (2.78

Moreover, the equation (2.75) holds in the sense of renormalized solutions on
D'((0,T) x R?) provided o, @ were extended to be zero on R3\ 2.
Finally, o, U satisfy the estimates:

sup [lo(t)[1 70y < cEsloos » @) (2.79)
tel0,T)
5 sup [|o(O2a0y < cEsloos . ). (2.80)
t€[0,T]
sup |[v/ei(t)|72) < cEsloos, @, (2.81)
t€[0, T
10720, 7, w.2(0y) < ¢Esloos - Bs) 4 (2.82)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>