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Chapter 1

Introduction

One of the most challenging problems of mathematics in recent decades con-
cerns with the equations describing motion of a viscous, compressible and heat
conducting fluid:

̺t + div(̺~u) = 0 ,

(̺~u)t + div(̺~u⊗ ~u) + ∇p = div S + ̺~f ,

(̺s)t + div(̺s~u) + div(
~q

ϑ
) =

1

ϑ
S : ∇~u− ~q · ∇ϑ

ϑ2
,

d

dt

∫

Ω

(1

2
̺|~u|2 + ̺e

)

dx =

∫

Ω

̺~f · ~udx+

∫

∂Ω

q dSx ,

(1.1)

in (0 , T ) × Ω , where we will assume that the boundary ∂Ω is compact. The
set of the introduced equations corresponds to a family of physical laws:

• The first equation expresses the conservation of mass, i.e. the rate at
which mass enters a system is equal to the rate at which mass leaves the
system.

• The second equation is the momentum equation expressing the Newton
second law: the Rate of change of momentum of a body is equal to the
resultant force acting on the body, and takes place in the direction of the
force.

• The third equation, called the entropy balance equation, can be viewed as
a mathematical formulation of the second law of thermodynamics.

• The last one is the conservation of energy, i.e. total amount of energy
changes only because of action of external forces or its flux through the
boundary.

7
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The system (1.1) is supplemented with the complete slip boundary condition

~u · ~n| ∂Ω = 0 , S~n× ~n| ∂Ω = 0 , ~q · ~n| ∂Ω = q , (1.2)

which expresses impermeability of the boundary ∂Ω and the fact that tangential
component of the normal stress forces vanishes on the boundary, or the no-slip
boundary conditions for the velocity

~u|∂Ω = 0 . (1.3)

Moreover, if the magnetic field is taken into account, the system (1.1) reads
as follows

̺t + div(̺~u) = 0 ,

(̺~u)t + div(̺~u⊗ ~u) + ∇p = div S + ̺~f + ~J × ~B ,

(̺s)t + div(̺s~u) + div(
~q

ϑ
) =

1

ϑ
S : ∇~u− ~q · ∇ϑ

ϑ2
+
λ

µ
|curl ~B|2 ,

d

dt

∫

Ω

(1

2
̺|~u|2 + ̺e+

1

2µ
| ~B|2

)

dx =

∫

Ω

̺~f · ~udx+

∫

∂Ω

q dSx ,

~Bt + curl( ~B × ~u) + curl(λcurl ~B) = 0 ,

(1.4)

where the last equation is the Maxwell equation. Since the system is assumed
to be energetically isolated, we prescribe the additional boundary condition

~B · ~n| ∂Ω = 0 . (1.5)

The formulation of the systems (1.1) and (1.4) is by no means complete.
The behavior of the system’s unknowns density, velocity, temperature (and
magnetic induction in case of (1.4)) is determined also by the particular kind
of interactions inside the fluid and set of laws governing the electromagnetic
field. This is described by so called constitutive relations on the structure of

the viscous stress tensor S , the pressure p , the external force ~f , and the heat
flux ~q .

The question of the existence of the solution of (1.1), (1.4) can be studied
by two approaches: the way of strong solutions, and the route of weak solution.
The main tool for the first approach is the fixed point argument which assures
smooth solutions but under the following restrictive assumptions: small initial
data or short time intervals. This drawbacks are overcome by the route of weak
solutions. This approach is based on the construction using Faedo-Galerkin
approximation coupled with addition of vanishing mollifying terms into the
system and then passing to the limit in the mollified system. This method
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provides the existence result for both large initial data and long time intervals.
Despite the lack of regularity property, the weak solution is still enough to
ensure that the physical principles motivating (1.1), (1.4) are valid.

The existence of weak solutions for the special case of (1.1) (e.i. the case that
the temperature ϑ is not taken into account, called also Navier-Stokes system,
and the pressure p(̺) ∼ ̺γ with γ ≥ 9

5
) was first proved by Lions [26], and

then extended by Feireisl to the range γ > 3
2

in [15] provided the underlying
spatial domain Ω is at least of class C2+ν . In [16], the authors investigate the
above mentioned special case of (1.1) posed on an arbitrary bounded domain Ω,
where Ω is approximated by a suitable sequence of smooth domains. By means
of this method, one gets a sequence of approximate solutions that converges to
another weak solution of the problem on the limit domain. Such a solution has
bounded total energy but is not known to satisfy the energy inequality in the
differential form. Certain improvements in this direction have been achieved
by Poul in [31], where the existence problem is studied on Lipschitz domains.
Note that all the above cited authors use the so-called Bogovskii operator - a
specific branch of div−1 (see e.g. [30]) - in order to get uniform estimates of
the pressure. The basic properties of this operator depend on regularity of the
domain, in particular the latter must be at least Lipschitz. The main goal of
the first part of this thesis is to extend the results of [15] to the class of certain
domains that may contains cusps.

The rest of the thesis is devoted to investigation of singular limits of systems
that arise from the systems (1.1), (1.4). The importance of the singular limits
arises from the fact that the full Navier-Stokes-Fourier system (1.1) or the equa-
tions of magnetohydrodynamics (1.4) describe the entire spectrum of possible
motions - ranging from sound waves, cyclone waves in the atmosphere, to mod-
els of gaseous stars in astrophysics. This approach consists of two steps: scaling
and asymptotic analysis. By scaling the equations, the parameters determin-
ing the behavior of the system become explicit. Asymptotic analysis provides
a useful tool in the situation when certain of these parameters called charac-
teristic numbers vanish or become infinite. The main goal of the asymptotic
analysis is to derive a simplified set of equations solvable either analytically or
with less numerical effort.

Let’s repeat some basic features of scaling, explained in [13], Chapter 4. For
all physical quantities appearing in (1.1), (1.4), we can identify their charac-
teristic values: the reference time Tref , the reference density ̺ref , the reference
length Lref , the reference velocity Uref , the reference temperature ϑref , the ref-
erence magnetic induction Bref , together with the characteristic values of other
composed quantities pref , eref , µref , ηref , κref , λref , and the source term fref .
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Introducing new independent and dependent variables X ′ = X/Xref , consid-
ering such special scaling that only certain characteristic numbers (specified
later) occur in the resulting system, and omitting the primes in the rescaled
system, we arrive at the following system:

̺t + div(̺~u) = 0 ,

(̺~u)t + div(̺~u⊗ ~u) +
1

Ma2∇p = div S +
1

Fr2
̺~f ,

(̺s)t + div(̺s~u) +
1

Pe
div(

~q

ϑ
) =

1

ϑ

(

Ma2
S : ∇~u− 1

Pe

~q · ∇ϑ
ϑ

)

,

d

dt

∫

Ω

(Ma2

2
̺|~u|2 + ̺e

)

dx =

∫

Ω

Ma2

Fr2 ̺
~f · ~udx+ Cref

∫

∂Ω

q dSx ,

(1.6)

or for the magnetohydrodynamics equations:

̺t + div(̺~u) = 0 ,

(̺~u)t + div(̺~u⊗ ~u) +
1

Ma2∇p = div S +
1

Fr2̺
~f +

1

Al2
~J × ~B ,

(̺s)t + div(̺s~u) +
1

Pe
div(

~q

ϑ
) =

1

ϑ

(

Ma2
S : ∇~u− 1

Pe

~q · ∇ϑ
ϑ

+
λ

µ
|curl ~B|2

)

,

d

dt

∫

Ω

(Ma2

2
̺|~u|2 + ̺e+

Ma2

Al2
1

2µ
| ~B|2

)

dx =

∫

Ω

Ma2

Fr2
̺~f · ~udx+ Cref

∫

∂Ω

q dSx ,

~Bt + curl( ~B × ~u) + curl(λcurl ~B) = 0 ,
(1.7)

where

Cref =
qrefLref

Urefpref

is boundary flux intensity constant ,

Ma = Uref

√
̺ref

pref

is Mach number ,

Fr =
Uref√
Lreffref

is Froude number ,

Pe =
prefLrefUref

ϑrefκref
is Peclet number ,

Al =
Uref

Bref

√
̺refµref is Alfven number .

As we mentioned above, the interesting cases for the asymptotic analysis are
cases when some of these parameters called characteristic numbers vanish or
become infinite. Similarly to the previously mentioned existence, the asymp-
totic analysis can be also studied by two approaches. The first one means that
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the limit solutions are investigated in the classical sense. One of the first results
of this approach was achieved by Klainerman and Majda in [21] where the exis-
tence of the limit solution for the Navier-Stokes system is proved in the classical
sense, but on a sufficiently small time interval. They proved that the solu-
tions of the compressible magnetohydrodynamics equations tend to a solution
of the incompressible magnetohydrodynamics equations under the assumption
that the Mach number tends to zero. Another approach to this topic was pro-
posed by Lions and Masmoudi in [27], where the existence is shown in a weak
sense. Similar problems were further developed by Desjardins and Grenier [6].
The same strategy was later adapted for the full Navier-Stokes-Fourier system
by Feireisl and Novotný in [14].

We study two problems of singular limits in this thesis. In the first one we
consider the system (1.7) with the both Mach and Alfvén numbers proportional
to ε together with certain special initial conditions. It is shown that when ε
tends to zero than the limit quantities are weak solutions to the incompress-
ible system of the equations of magnetohydrodynamics. This extends results
written by Klainerman and Majda, [21] or Zank and Matthaeus, [39] because
in comparison with [21], [39], the temperature ϑ is taken into account in our
problem.

The second studied problem consists of the full Navier-Stokes-Fourier system
(1.6) under the assumption that the Mach and Froude number are equal to ε
and the Péclet number together with the scaling constant 1/Cref equal to ε2 .
Moreover we focus our attention to the case when (1.6) is defined on unbounded
domain in R

3 with a non empty compact boundary. The investigation of its
singular limits leads to the analysis of local decay of acoustic waves which can
be studied by several methods. Desjardins and Grenier in [6] use the so-called
Strichartz estimates (see [36]). But these estimates become too complicated for
the case of general unbounded domain and require certain restriction on the
shape of the domain, and thus are not usable for our case. Instead of them we
use approach developed by Feireisl, Novotný and Petzeltová in [17] based on
weighted time-space estimates for abstract wave equations. By means of these
tools, we finally show that the limit system can be viewed as a simple model
of the fluid motion in the stellar radiative zones as introduced in [5].

The results published in this thesis are included in the articles written by the
author. The chapters with original scientific results correspond to the following
articles:

• Chapter 2, On the Existence of Finite Energy Weak Solutions to the
Navier-Stokes Equations in Irregular Domains corresponds to the article
On the Existence of Finite Energy Weak Solutions to the Navier-Stokes
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Equations in Irregular Domains [23] published by the author in Mathe-
matical Methods in Applied Sciences.

• Chapter 3, Singular Limits of the Equations of Magnetohydrodynamics is
covered by the article Singular Limits of the Equations of Magnetohydro-
dynamics [24] accepted for publication in Journal of Mathematical Fluid
Mechanics.

• Chapter 4, Incompressible Limits for the Navier-Stokes-Fourier Systems
on Unbounded Domains under Strong Stratification corresponds to the ar-
ticle Incompressible limits for the Navier-Stokes-Fourier Systems on Un-
bounded Domains under Strong Stratification [22] submitted for publica-
tion to Archive Rational Mech. Anal.



Chapter 2

On the Existence of Finite
Energy Weak Solutions to the
Navier-Stokes Equations in
Irregular Domains

Corresponds to the article by Kukučka P.: On the Existence of Finite Energy Weak Solutions to the

Navier-Stokes Equations in Irregular Domains, Math. Meth. Appl. Sci., 32(11) 1428-1451, 2009.

Abstract: This paper studies the existence of weak solutions of the Navier-Stokes system defined

on a certain class of domains in R
3 that may contain cusps. The concept of such a domain and weak

energy solution for the system is defined and its existence is proved. However, thinness of cusps

must be related to the adiabatic constant appearing in the pressure law.

2000 Mathematics Subject Classification. 35A05, 35Q30

Keywords: Navier-Stokes system, renormalized solution, energy inequality

2.1 Introduction

We prove the global existence of weak solutions of the Navier-Stokes equations
of an isentropic compressible fluid:

̺t + div(̺~u) = 0 , (2.1)

(̺ui)t + div(̺ui~u) + a(̺γ)xi
= µ∆ui + (λ+ µ)(div ~u)xi

, i = 1 , 2 , 3 . (2.2)

Here the density ̺ = ̺(t , x) and the velocity ~u = [u1(t , x) , u2(t , x) , u3(t , x)]
are functions of the time t ∈ (0 , T ) and the spatial coordinate x ∈ Ω , where

13
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Ω ⊂ R3 is a domain belonging to the class W 1, s specified below. We assume
that

3γ

2γ − 3
≤ s < +∞ . (2.3)

The viscosity coefficients µ , λ satisfy

µ > 0 , λ+
2

3
µ ≥ 0 ,

a > 0 is a positive constant, and the adiabatic constant γ is subjected to the
constraint

γ >
3

2
. (2.4)

We prescribe the initial conditions for the density and the momentum:

̺(0) = ̺0 , (̺ui)(0) = qi , i = 1 , 2 , 3 , (2.5)

together with the no-slip boundary conditions for the velocity:

ui|∂Ω = 0 , i = 1 , 2 , 3 . (2.6)

The data ̺0 , ~q are supposed to comply with compatibility conditions of the form

̺0 ∈ Lγ(Ω) , ̺0 ≥ 0 , qi(x) = 0 whenever ̺0(x) = 0 ,
|qi| 2
̺0

∈ L1(Ω) , i = 1 , 2 , 3.

(2.7)
The question of existence of global-in-time solutions for Navier-Stokes sys-

tem (2.1), (2.2) is far from being solved. The existence of finite energy weak
solutions for (2.1), (2.2) was first proved by Lions [26] for γ ≥ 9

5
, and then ex-

tended to the range γ > 3
2

in [15] provided the underlying spatial domain Ω is
at least of class C2+ν . In [16], the authors investigate system (2.1), (2.2) posed
on an arbitrary bounded domain Ω, where Ω is approximated by a suitable
sequence of smooth domains. By means of this method, one gets a sequence
of approximate solutions that converges to another weak solution of the prob-
lem on the limit domain. Such a solution has bounded total energy but is
not known to satisfy the energy inequality in the differential form. For more
details see Remark following Definition 2.1.2. Certain improvements in this
direction have been achieved in [31], where the existence problem is studied
on Lipschitz domains. Note that all the above cited authors use the so-called
Bogovskii operator - a specific branch of div−1 (see e.g. [30]) - in order to get
uniform estimates of the pressure. The basic properties of this operator depend
on regularity of the domain, in particular the latter must be at least Lipschitz.
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Although there have been some attempts to extend Bogovskii operator to a
larger class of domains such as John domains ([3]), an example of a simple
domain with external cusps on which such an operator cannot be defined was
constructed in [18]. The main goal of this paper is to extend the results of [15]
to the class of W 1, s domains defined as follows:

Definition 2.1.1 (domain with boundary W 1, s)
Let Ω ⊂ Rn be a bounded domain, n − 1 < s ≤ +∞ . We say that Ω is a
domain with a boundary W 1, s if there exist positive numbers α, β, a family of
M Cartesian coordinates systems

r = 1, ... ,M : (xr1
, ... , xrn−1

, xrn) = (x′r, xrn),

and M functions ar ∈W 1, s(∆r) , where

∆r = {x′r ∈ R
n−1| i = 1, ..., n− 1 : | xri

| < α} ,
such that:

1. ∀x ∈ ∂Ω , ∃r ∈ {1, ...,M} and ∃x′r ∈ ∆r : x = Tr(x
′
r, ar(x

′
r)) , where Tr

is a mapping (translation and rotation) of the r-th cartesian coordinate
system (x′r, xrn) onto the global coordinate system (x′, xn) .

2. If one denotes

V +
r = {(x′r, xrn) ∈ Rn| x′r ∈ ∆r , ar(x

′
r) < xrn < ar(x

′
r) + β} ,

V −
r = {(x′r, xrn) ∈ Rn| x′r ∈ ∆r , ar(x

′
r) − β < xrn < ar(x

′
r)} ,

Λ−
r = {(x′r, xrn) ∈ Rn| x′r ∈ ∆r , ar(x

′
r) = xrn} ,

then Tr(V
+
r ) ⊂ Ω , Tr(V

−
r ) ⊂ R

n \ Ω .

Denoting Vr = V +
r ∪ V −

r ∪ Λr we have ∂Ω =
⋃M

r=1 Λr ⊂
⋃M

r=1 Vr .

Remark. Note that, due to embedding W 1, s(∆r) →֒ C 0,1−n−1

s (∆r), the func-
tions ar are continuous. Consequently, ar ∈ AC(∆r) =

⋂n−1
i=1 ACi(∆r) , where

ACi(∆r) is the space of absolutely continuous functions on almost all segments
parallel to the i-axis lying in the set ∆r .

The class of domains specified in Definition 2.1.1 may contain both internal
and external cusps, where the thinness of the cusps is to be related to γ through
relation (2.3). We now give a precise definition of the concept of finite energy
weak solution of problem (2.1), (2.2), (2.6).

Definition 2.1.2 We say that functions ̺ , ~u represent a finite energy weak
solution of problem (2.1), (2.2), (2.6) if the following conditions are satisfied:
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• ̺ ≥ 0 , ̺ ∈ L∞(0 , T ;Lγ(Ω)) ;

• ~u ∈ L2(0 , T ;W 1, 2
0 (Ω)) ;

• the energy defined by

E(t) =

∫

Ω

1

2
̺|~u|2 +

a

γ − 1
̺γ dx ,

is locally integrable on (0 , T ) and the energy inequality

d

dt

[ ∫

Ω

1

2
̺|~u| 2 +

a

γ − 1
̺γdx

]

+

∫

Ω

µ|∇~u| 2 + (λ+ µ)|div ~u| 2dx ≤ 0 ,

holds in D′(0 , T ) ;

• the equations (2.1), (2.2) are satisfied in D′((0 , T ) × Ω) ; moreover (2.1)
holds in D′((0 , T )×R3) provided ̺ , ~u were extended to be zero outside of
Ω ;

• the equation (2.1) is satisfied in the sense of renormalized solutions, more
precisely,

b(̺)t + div(b(̺)~u) + (b′(̺)̺− b(̺))div~u = 0

holds in D′((0 , T )× R3) for any b ∈ C1([0 ,∞)) such that

b′(s) = 0 for all s ≥M , (2.8)

where the constant M may be different for different functions b .

Remark. Using Lebesgue convergence theorem one can show that assumptions
on b in the above definition can be relaxed so that the renormalized continuity
equation holds for any b ∈ C1((0 ,∞)) ∩ C([0 ,∞)) satisfying

|b′(s)s| ≤ c(zθ + z
γ
2 ) for all s > 0 and certain θ ∈ (0 ,

γ

2
) .

It follows immediately from (2.1), (2.2) that any finite energy weak solution
belongs to the class:

̺ ∈ C([0 , T ] ;Lγ
weak(Ω)) , ̺~u ∈ C([0 , T ] ;L

2γ
γ+1

weak(Ω)) ,

and consequently, the initial conditions (2.5) make sense.
Remark. As already pointed out, the main problem when dealing with a
general class of domains is the fact that the weak solutions constructed by
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means of a family of approximate domains satisfy the energy inequality only in
its integrated form

E(t) +

∫

Ω

µ|∇~u|2 + (λ+ µ)|div~u|2dx ≤ E0 ,

for a.a. t > 0.

Our main result is formulated in the following theorem:

Theorem 2.1.1 Assume Ω ⊂ R3 is a bounded W 1, s domain, where γ and s are
related by (2.3), (2.4). Let the data ̺0 , ~q satisfy the compatibility conditions
(2.7). Then given T > 0 arbitrary, there exists a finite energy weak solution ̺ ,
~u of the problem (2.1), (2.2), (2.6) in the sense of Definition 2.1.2 satisfying
the initial conditions (2.5).

The proof of Theorem 2.1.1 will be done by means of three level approxima-
tion scheme based on a modified system:

̺t + div(̺~u) + ε̺1+ν = ε∆̺ , (2.9)

(̺ui)t + div(̺ui~u) + a(̺γ)xi
+ δ(̺β)xi

+ ε∇ui ·∇̺+
ε

2
̺1+νui =

= µ∆ui + (λ+ µ)(div~u)xi
, i = 1 , 2 , 3 , (2.10)

on (0 , T )×Ωε, where ε > 0 , δ > 0 , ν > 0 are small, β > 0 sufficiently large, Ωε

is a sequence of smooth domains approximating Ω , and (2.9) is supplemented
by the homogeneous Neumann boundary conditions

∇̺ · ~n|Ωε = 0 . (2.11)

(i) The first step in the proof of Theorem 2.1.1 consists in solving the mod-
ified system (2.9), (2.10) by means of a Faedo-Galerkin approximation scheme
where (2.9), (2.11) is solved directly while (2.10) is replaced by a finite di-
mensional system. The term ε̺1+ν is used to pass to the limit for ε → 0 in
the energy inequality. The extra terms ε∇ui · ∇̺ and ε

2
̺1+νui are necessary to

keep the energy inequality valid at this level of approximation.
(ii) In the second step, we let the artificial viscosity terms and other terms

represented by the ε quantities go to zero. This is a delicate matter due to the
lack of suitable estimates on the density component ̺ . Here we use a certain
special test functions and the technique developed by Lions [26] and extended
by Feireisl et al. [15] based on regularity of the effective viscous flux a̺γ − (λ+
2µ)div~u .

(iii) The final step of the proof consists in getting rid of the artificial pressure
term δ̺β . At this stage, we follow the same line of arguments as in [15].
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2.2 The Faedo-Galerkin approximation

Let ν , 0 < ν ≤ 1
5
, be a fixed number and Ω ⊂ R3 be a smooth domain of class

at least C2+ν . Our first goal is to solve the problem (2.9), (2.10) supplemented
by the boundary conditions:

∇̺· ~n| ∂Ω = 0 , (2.12)

~u| ∂Ω = 0 , (2.13)

and modified initial data:

̺(0) = ̺0 ∈ C2+α(Ω) , 0 < ̺ ≤ ̺0(x) ≤ ̺ ,∇̺0 · ~n| ∂Ω = 0 , (2.14)

(̺~u)(0) = ~q , ~q = [q1 , q2 , q3] , qi ∈ C2(Ω) , i = 1 , 2 , 3 . (2.15)

In virtue of Proposition 7.3.3 in [29] the following statement holds:

Lemma 1 Assume ~u be a given vector function belonging to the class

~u ∈ C([0 , T ] ; [C2(Ω)]3) , ~u| ∂Ω = 0 . (2.16)

Then there exists δ > 0 such that the initial-boundary value problem (2.9),
(2.12) (2.14) has a unique solution ̺ : [0 , δ] × Ω → R such that ̺ and all the
spatial derivatives ̺xi

, for i = 1 , 2 , 3 , are continuous in [0 , δ] × Ω , and ̺t ,
∆̺ are continuous in (0 , δ] × Ω . Moreover, ̺ can be extended to a maximally
defined solution ̺(t , x , ̺0) : I(̺0) × Ω → R , I(̺0) being relatively open in
[0 , T ] .

From this lemma and Theorem 5.1.21 in [29] (where we take f = ε̺1+ν ) we
obtain a higher regularity of the solution ̺ , namely ̺ ∈ C1, 2+α([0 , δ] × Ω),
which allows us to use the comparison principle, together with Proposition 52.7
in [33], in order to get

̺ > 0 . (2.17)

Lemma 2 Solution ̺ can be extended to the interval [0 , T ] in such a way that

̺ ∈ C1, 2+α([0 , T ] × Ω) . (2.18)

Proof. From the comparison principle, Proposition 52.7 in [33], applied to
the system (2.9), (2.12), (2.14) compared with the following system:

rt + div(r~u) + εr1+ν ≥ ε∆r ,
r(0) = ̺ ,

∇r · ~n| ∂Ω = 0 ,

(2.19)
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we get that its solution r(t , x) = ̺ exp
(∫ t

0
‖div~u(s)‖L∞(Ω)ds

)

satisfies

̺(t , x) ≤ ̺ exp

(∫ t

0

‖div~u(s)‖L∞(Ω)ds

)

, for (t , x) ∈ [0 , δ] × Ω . (2.20)

The estimate (2.20) holds for each δ < I(̺0) , and is independent on δ , and
so ̺ is bounded on I(̺0) × Ω . According to Proposition 7.3.4 in [29] it holds,
I(̺0) = [0 , T ] . Then Theorem 5.1.21 in [29] gives (2.18) which concludes
the proof. �

We are now allowed to repeat the procedure used in [15] (page 362 - 369) to
get the following assertion:

Lemma 1 Suppose β > max {4 , γ} . Let Ω ⊂ R3 be a bounded domain with
C2+ν boundary. Assume the initial data ̺0 , ~q satisfy (2.14), (2.15). Then
there exists a weak solution ̺ , ~u of the problem (2.9) - (2.15) such that ̺ ∈
Lβ+1((0 , T ) × Ω) and the following estimates hold:

sup
t∈[0, T ]

‖̺(t)‖γ
Lγ(Ω) ≤ cEδ[̺0 , ~q] , (2.21)

δ sup
t∈[0, T ]

‖̺(t)‖β
Lβ(Ω)

≤ cEδ[̺0 , ~q] , (2.22)

sup
t∈[0, T ]

‖√̺(t)~u(t)‖2
L2(Ω) ≤ cEδ[̺0 , ~q] , (2.23)

∫ T

0

‖~u(t)‖2
L2(Ω) +

∫ T

0

‖∇~u(t)‖2
L2(Ω)dt ≤ cEδ[̺0 , ~q] , (2.24)

ε

∫ T

0

‖∇̺(t)‖2
L2(Ω)dt ≤ c(β , δ , ̺0 , ~q) , (2.25)

ε
aγ

γ − 1

∫ T

0

∫

Ω

̺γ+νdx dt ≤ cEδ[̺0 , ~q] , (2.26)

ε
δβ

β − 1

∫ T

0

∫

Ω

̺β+νdx dt ≤ cEδ[̺0 , ~q] , (2.27)

where the constant c is either independent of the shape of Ω or bounded for
uniformly bounded sets of domains Ω . Moreover, the energy inequality

d

dt

[ ∫

Ω

1

2
̺|~u| 2 +

a

γ − 1
̺γ +

δ

β − 1
̺βdx

]

+

∫

Ω

µ|∇~u| 2 + (λ+ µ)|div ~u| 2dx+

ε
aγ

γ − 1

∫

Ω

̺γ+νdx+ ε
δβ

β − 1

∫

Ω

̺β+νdx ≤ 0 ,

(2.28)
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holds in D′(0 , T ) . Finally, there exists r > 1 such that ̺t . ∆̺ belong to
Lr((0 , T ) × Ω) and the equation (2.9) is satisfied a.e. in (0 , T ) × Ω .

2.3 The vanishing viscosity limit

2.3.1 Solution on approximate domains

In order to handle a general W 1, s domain Ω , let us first approximate it by
the following sequence of C∞ domains Ωε , for β > ε > 0 sufficiently small.
Defining the functions

aε
r(x

′
r) := (ar ∗ ωε′)(x

′
r) − ε′′(ε) , r = 1 , · · · ,M (2.29)

where ar have the same meaning as in Definition 2.1.1, and ε′ = ε′(ε) , ε′′ =
ε′′(ε) are chosen so that ε′(ε) → 0 , and ε′′(ε) → 0 as ε→ 0+, and

ar(x
′
r) − (ar ∗ ωε′)(x

′
r) + ε′′(ε) > 0 ,

we get a decreasing sequence of C∞ domains Ωε such that Ω ⊂ Ωε . Moreover it
holds that for each compact setK ⊂ R3\Ω there exists εK such thatK ⊂ R3\Ωε

for all ε < εK .
Now consider the system (2.9), (2.10) approximating (2.1), (2.2) on Ωε ×

(0 , T ), supplemented by the boundary conditions:

∇̺· ~n| ∂Ωε = 0 , (2.30)

~u| ∂Ωε = 0 , (2.31)

and initial data:
̺(0) = ̺0 δε , (2.32)

(̺~u)(0) = ~qδε . (2.33)

where functions ̺0 δε and ~qε are introduced in the following lemma that can be
proved in the same way as in [15] page 381 - 382:

Lemma 3 There exists a sequence ̺0 δε ∈ C2+ν(Ωε) such that

0 < ε ≤ ̺0 δε ≤ ε−
1

β , ∇̺0 δε · ~n| ∂Ωε = 0 , (2.34)

‖̺0 δε − ̺0 δ‖Lβ(Ωε) → 0 , as ε→ 0+ , and δ > 0 , (2.35)

where ̺0 δ is considered to be zero outside of Ω . Moreover ̺0 δ ∈ C2+ν(Ω) and

0 < δ ≤ ̺0 δ ≤ δ−
1

β , (2.36)
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‖̺0 δ − ̺0‖Lγ(Ω) → 0 , as δ → 0+ . (2.37)

Finally, there exists a sequence ~qδε such that

|qi
δε| 2
̺0 δε

are bounded in L1(Ωε) , independently of ε > 0 and each δ > 0 (2.38)

and
‖qi

δε − qi
δ‖L1(Ωε) → 0 as ε → 0+ , and δ > 0 , (2.39)

where ~qδ is considered to be zero outside Ω and such that

|qi
δ| 2
̺0 δ

are bounded in L1(Ω) , independently of δ > 0, (2.40)

and
‖qi

δ − qi‖L1(Ω) → 0 as δ → 0+ . (2.41)

Throughout this section we will work with a fixed δ . According to Proposi-
tion 1 established in the previous section there exists a solution of (2.9), (2.10),
(2.30) - (2.33) which will be denoted by ̺ε , ~uε . The aim of the present section
is to pass to the limit in (2.9), (2.10), (2.30) - (2.33) letting ε→ 0 .

2.3.2 On a special test function

In order to estimate the density in a vicinity of the non-Lipschitz part of the
boundary, we use a special test function constructed below. Let us define a
function vr by formula:

vr(x
′
r, xrn) := (xrn − ar(x

′
r))

λ , (x′r, xrn) ∈ V +
r ∪ Λr , (2.42)

where 0 < λ < 1 . Basic properties of the function (2.42) are summarized in
the following statement.

Lemma 4 Let 1 < p ≤ s < +∞ be a given number and 1 − 1
p
< λ < 1 . Then

the function vr defined by (2.42) is continuous on V +
r ∪Λr and vr ∈W 1, p(V +

r ) .

Proof. Function vr is continuous and belongs to W 1, p(V +
r ) because ar is con-

tinuous on ∆r . Since ar belongs to W 1, s(∆r) and n − 1 < s , the classical
derivative Dxri

ar(x
′
r) exists a. e. in ∆r , and Dxri

ar(x
′
r) = ∂ ar

∂xri
(x′r) a. e. ,where

∂ ar

∂xri
(x′r) denotes the weak derivative. This is true for all i = 1, ..., n − 1 . It is

easy to check that the classical derivative of vr with respect to each variable
exists a. e. in Vr and

Dxri
vr(x

′
r, xrn) = −λ(xrn − ar(x

′
r))

λ−1Dxri
ar(x

′
r) , i = 1, ..., n− 1 , (2.43)
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Dxrn
vr(x

′
r, xrn) = λ(xrn − ar(x

′
r))

λ−1 . (2.44)

Moreover, a direct computation gives

‖Dxri
vr‖p

Lp(V +
r )

= λ

∫

∆r

|Dxri
ar(x

′
r)|p

∫ ar(x′

r)+β

ar(x′
r)

(xrn − ar(x
′
r))

(λ−1)p dxrn dx′r ≤

≤ λ(1 + p (λ− 1))α(n−1)(1− p
s
)βp(λ−1)+1‖Dxri

ar‖p
Ls(∆r) for i− 1, ..., n− 1

and a similar calculation for Dxrn
vr implies Dxri

vr ∈ Lp(V +
r ) for i = 1, ..., n .

It remains to prove that classical derivatives defined a. e. by (2.43), (2.44)
coincide with the weak derivatives of vr . Let i ∈ {1, ..., n− 1} be an arbitrary
index. Obviously, xrn − ar(x

′
r) is absolutely continuous on almost all segments

parallel with each i−axis and lying in V +
r . Let us take such a segment and

denote it by P i
r . Then there exists (xr1

, ..., xri−1
, xri+1

, ..., xrn) , |xrj
| < α for j ∈

{1, ..., n−1} , j 6= i , and an interval I i
r such that (xr1

, ..., xri−1
, ξ, xri+1

, ..., xrn) ∈
P i

r ∩ V +
r for ∀ξ ∈ I i

r . Function

ξ → xrn − ar(xr1
, ..., xri−1

, ξ, xri+1
, ..., xrn−1

)

is absolutely continuous and strictly positive on each compact interval I i
r ⊂ J i

r,
which implies that vr(xr1

, ..., xri−1
, ξ, xri+1

, ..., xrn) is absolutely continuous on
I i
r . Similarly, the same holds for n−axis giving vr ∈ AC(V +

r ) . But then the
weak derivative ∂vr

∂xri
exists and is equal to Dxri

vr a. e. in V +
r which concludes

the proof. �

Lemma 5 Let Ω ⊂ Rn be a W 1, s domain in the sense of Definition 2.1.1, and
u ∈W 1, p(Rn) such that u = 0 a.e. in Rn \Ω , 1 ≤ p <∞ . Then u ∈ W 1, p

0 (Ω) .

Proof. Let us take Ωr = Tr(Vr) from Definition 2.1.1, and ΩM+1 ⊂ ΩM+1 ⊂ Ω

such that Ω ⊂ ⋃M+1
r=1 Ωr . Moreover, let {Φr}M+1

r=1 be a partition of unity subor-
dinate to the family of open sets {Ωr}M+1

r=1 .
Because Tr is a mapping (translation and rotation) of the r-th cartesian coor-
dinate system (x′r, xrn) onto the global coordinate system (x′, xn) , we have
Tr(xr) = Arxr + br , where we have denoted xr := (x′r, xrn), and where
Ar ∈ M(Rn) is an orthogonal matrix with determinant equal to one, and
br ∈ Rn . If one takes

uε
r(x) = u(x− εAr~en) , r = 1 , ... ,M ,

and uε
r(x) = u(x) for r = M + 1 , then it is easy to check that

uε :=
M+1∑

r=1

Φru
ε
r ,
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belongs to W 1, p
0 (Ω) . Using a simple estimate

‖uε − u‖p
W 1, p(R3) ≤ C

M∑

r=1

∫

Ωr

|u(x− εar)− u(x)|p + |Du(x− εar)−Du(x)|pdx ,

where ar = Ar~en, together with the fact that u ∈W 1, p(Rn) , we get

uε → u in W 1, p(Rn) . (2.45)

Since uε ∈ W 1, p
0 (Ω) there exists a sequence uk

ε ∈ C∞
0 (Ω) such that uk

ε → uε in
W 1, p

0 (Ω), which, combined with (2.45), gives u ∈W 1, p
0 (Ω) . �

Lemma 2 Let 1 < p < +∞ be a given number. Then for any s , p ≤ s < +∞
and any domain Ω ⊂ R

n with boundary W 1, s in the sense of Definition 2.1.1,
there exists a vector function ϕ̃ ∈ W 1, p

0 (Ω) ∩ C(Ω) , ϕ̃| ∂Ω = 0 enjoying the
following property:

For all K > 0, there exists δ > 0 such that

divϕ̃(x) > K whenever dist(x, ∂Ω) < δ. (2.46)

Proof. Similarly to the proof of the previous lemma, we take

ϕ̃ :=

M∑

r=1

Φr~vr , (2.47)

where
~vr(x) := Ar(0, ..., 0

︸ ︷︷ ︸

n−1

, vr(A
T
r (x− br)))

T , (2.48)

and vr is defined by (2.42). In particular, ϕ̃ ∈ W 1, p(Ω) . It is easy to check
that ϕ̃| ∂Ω = 0 since vr|Λr = 0 , and ϕ̃ ∈ C(Ω) , which yields ϕ̃ ∈ W 1, p

0 (Ω′) for
each Ω′ ⊃ Ω . Using Lemma 5 we obtain ϕ̃ ∈ W 1, p

0 (Ω) . Moreover, by means of
a direct computation,

div ϕ̃(x) =
M∑

r=1

∇Φr(x).~vr(x) +
M∑

r=1

Φr(x)
∂ vr

∂ xrn

(AT
r (x− br)) a.e in Ω . (2.49)

The function vλ
r can be continuously extended into the compact set V

+

r ,
vr|Λr

= 0 , which implies, due to the uniform continuity, ∀ǫ > 0 ∃δ > 0 such
that ∀x′r ∈ V +

r , dist(x′r,Λr) < δ : vλ
r (x′r) < ǫ . Using this fact we observe
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∀K > 0 ∃δ > 0 such that ∀x′r ∈ V +
r , dist(x′r,Λr) < δ : ∂vr

∂xrn
(x′r) ≥ K .

We summarize the previous discussion in the following statement:
For any K > 0 there exists δ > 0 such that , if dist(x, Tr(Λr)) < δ for all r ∈
{1, ...,M}, then ∂vr

∂xrn
(AT

r (x − br)) ≥ K for a.a. x ∈ Ωr . Substituting this in-

equality into (2.49), taking into account
∑M

r=1 Φr = 1 , and observing that the
first term of (2.49) tends uniformly to zero as dist (x, ∂Ω) → 0, we obtain (2.46).
�

2.3.3 Weak convergence of the density

We are going to use the special test function constructed in the previous section
to prove a weak convergence of ̺β

ε , ̺γ
ε in L1((0 , T )×Ω) . The following lemma

usually called Lemma de la Vallé Pousin ([9]) provides a necessary and sufficient
condition for the weak convergence in the L1 space.

Lemma 6 Let F ⊂ L1(Ω) . Then the following conditions are equivalent:

i) ∀vn ∈ F ∃vnk
, v ∈ L1(Ω) such that vnk

⇀ v in L1(Ω) .

ii) ∀ε > 0 ∃δ > 0 such that
∫

B
|v(x)| dx ≤ ε for ∀v ∈ F , ∀B ⊂ Ω µ(B) ≤ δ .

Our aim is to verify that both ̺β
ε and ̺γ

ε satisfy condition ii) of Lemma 6 on
the set (0 , T ) × Ω .

Let ε′ > 0 be arbitrary and consider δ′ > 0 given by Proposition 2 (where
one takes K = 1

ε′
). Furthermore, let Ω1 , Ω2 and Ω3 be smooth domains such

that
Ω3 ⊂ Ω2 ⊂ Ω2 ⊂ Ω1 ⊂ Ω1 ⊂ Ω ,

dist(x , ∂Ω) < δ′ , ∀x ∈ ∂Ω3 ,

dist(x , ∂Ω) < 2
3
δ′ , ∀x ∈ ∂Ω2 ,

dist(x , ∂Ω) < 1
3
δ′ , ∀x ∈ ∂Ω1 .

Then

div ϕ̃(x) ≥ 1

ε′
, for a.a. x ∈ Ω , dist(x , ∂Ω) > δ′ . (2.50)

Remark : Due to the good approximations of the initial conditions that follows
from (2.35) and (2.38), the estimates contained in Proposition 1 are independent
of ε .
The following lemma shows estimates of the density on Ω2 :
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Lemma 7 Let ̺ε , ~uε be the sequence of solutions of the problem (2.9), (2.10),
(2.30) - (2.33) constructed above. Then there exists a constant
c = c(δ , ̺0 δ, ~qδ,Ω1,Ω2) independent of ε such that

‖̺ε‖Lγ+1((0, T )×Ω2) + ‖̺ε‖Lβ+1((0, T )×Ω2) ≤ c . (2.51)

Proof: Let φ ∈ D(Ω1) be such that 0 ≤ φ ≤ 1 , φ(x) = 1 for each x ∈ Ω2 ,
and ψ ∈ D(0 , T ) such that 0 ≤ ψ ≤ 1 . Extending ̺ε to be zero outside Ωε, we
consider a test function

ϕ̂(t , x) = ψ(t)φ(x)A[̺ε] ,

where the operator Aj is defined via the Fourier transformation Fx→ξ :

Aj[v] = F−1
ξ→x

[−iξj
|ξ| 2 Fx→ξ[v]

]

, j = 1 , 2 , 3.

By virtue of the classical Mikhlin multiplier theorem the following estimates
hold:

‖Aj[v]‖W 1, s(Ω1) ≤ c(s ,Ω1)‖v‖Ls(R3) , 1 < s <∞ ,

‖Aj[v]‖Lq(Ω1) ≤ c(q , s ,Ω1)‖v‖Ls(R3) , q <∞ , 1
q
≥ 1

s
− 1

3
,

‖Aj[v]‖L∞(Ω1) ≤ c(s ,Ω1)‖v‖Ls(R3) , if s > 3 .

(2.52)

Due to the regularity property established in Proposition 1, especially (2.22),
we shall use ϕ̂ as a test function for the system (2.10) and benefit from [15],
Section 3.2. After simple manipulation by help of the above introduced esti-
mates, we deduce the required inequality (2.51). �

In order to verify the second hypothesis of Lemma 6, we have to examine the
behavior of the approximate solutions in a neighborhood of the non-smooth
part of the boundary ∂Ω specified in the following lemma.

Lemma 8 Let ̺ε , ~uε be the sequence of solutions of the problem (2.9), (2.10),
(2.30) - (2.33) constructed above. Then there exists a constant
c = c(δ , ̺0 δ, ~qδ,Ω1,Ω2) independent of ε such that

∫ T

0

∫

Ω\Ω2

a̺γ
ε + δ̺β

ε dx dt ≤ c ε′ . (2.53)

Proof: Let φ ∈ D(R3) such that 0 ≤ φ ≤ 1 , φ(x) = 0 for each x ∈ Ω3 ,
φ(x) = 1 for each x ∈ Ω \Ω2 , and ψ ∈ D(0 , T ) such that 0 ≤ ψ ≤ 1 . Consider

ϕ̂(t , x) = ψ(t)φ(x)ϕ̃(x) ,
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where ϕ̃ is the vector function from Proposition 2, which can be used as a test
function for the system (2.10). After similar calculations as in the previous
lemma, one obtains:

∫ T

0

∫

Ω\Ω3

ψφ(a̺γ
ε + δ̺β

ε ) divϕ̃dx dt =

−
∫ T

0

∫

Ω\Ω3

ψtφ̺ε~uε · ϕ̃dx dt+

∫ T

0

∫

Ω\Ω3

µψ∇φ · ∇ui
εϕ̃

idx dt+

∫ T

0

∫

Ω\Ω3

µψφ∇ui
ε · ∇ϕ̃idx dt−

∫ T

0

∫

Ω\Ω3

ψ̺ε∇φ · ~uεϕ̃ · ~uε dx dt−
∫ T

0

∫

Ω\Ω3

ψφ̺εu
i
ε~uε · ∇ϕ̃i dx dt+

∫ T

0

∫

Ω\Ω3

(λ+ µ)ψ div~uε∇φ · ϕ̃ dx dt+

∫ T

0

∫

Ω\Ω3

(λ+ µ)ψφ div~uε divϕ̃dx dt+ ε

∫ T

0

∫

Ω\Ω3

ψφ∇̺ε · ∇ui
εϕ̃

i dx dt+

ε

2

∫ T

0

∫

Ω\Ω3

ψφ̺1+ν
ε ~uε · ϕ̃dx dt−

∫ T

0

∫

Ω\Ω3

ψ(a̺γ
ε + δ̺β

ε )∇φ · ϕ̃ dx dt =
10∑

j=1

Ij .

(i) By virtue of (2.22), (2.23), we get

|I1| ≤ c

∫ T

0

|ψt|‖
√
̺ε‖L2(Ωε)‖

√
̺ε~uε‖L2(Ωε)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2)

∫ T

0

|ψt|dt .

(ii) Similarly, using (2.24) we have

|I2| ≤ c

∫ T

0

‖∇~uε‖L2(Ωε)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) .

(iii) By the same token,

|I3| ≤ c

∫ T

0

‖∇~uε‖L2(Ωε)‖∇ϕ̃‖L2(Ω)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) .

(iv) From (2.22), (2.23), it follows that

|I4| ≤ c

∫ T

0

‖√̺ε‖L2(Ωε)‖
√
̺ε~uε‖L2(Ωε)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) .

(v) Since s ≥ 3γ
2γ−3

, relations (2.22), (2.24) imply

|I5| ≤ c

∫ T

0

‖̺ε‖Lr(Ωε)‖~uε‖2
W 1, 2(Ωε)

‖ϕ̃‖W 1, s(Ω)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) ,
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where r = 3s
2s−3

.
(vi) Analogously,

|I6| ≤ c

∫ T

0

‖∇~uε‖L2(Ωε)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) .

(vii) As in the previous steps,

|I7| ≤ c

∫ T

0

‖∇~uε‖L2(Ωε)‖∇ϕ̃‖L2(Ω)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) .

(viii) Relations(2.24), (2.25) imply

|I8| ≤ ε c

∫ T

0

‖∇̺ε‖L2(Ωε)‖∇~uε‖L2(Ωε)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) .

(ix) From (2.22), (2.24), we immediately get

|I9| ≤ c

∫ T

0

‖̺1+ν
ε ‖L2(Ωε)‖~uε‖L2(Ωε)dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) .

(x) Finally, using (2.21), (2.22) we conclude

|I1 0| ≤ c

∫ T

0

a‖̺ε‖γ
Lγ(Ωε)

+ δ‖̺ε‖β
Lβ(Ωε)

dt ≤ c(δ , ̺0 δ , ~qδ ,Ω1 ,Ω2) .

Now, applying the above estimates and the fact that divϕ̃(x) ≥ 1
ε′

in order to
handle the left hand side of our identity, we obtain the desired result. �

If we combine the above lemmas, together with Lemma 6, we get

Lemma 3 There exist functions p1 , p2 ∈ L1((0 , T ) × Ω) such that

̺γ
ε ⇀ p1 in L1((0 , T ) × Ω) ,
̺β

ε ⇀ p2 in L1((0 , T )× Ω) .

Proof : It follows from Lemma 7 that ̺ε converge weakly in Lγ+1((0 , T )×Ω2)
and Lβ+1((0 , T )×Ω2) , in particular, ̺γ

ε , ̺β
ε converge weakly in L1((0 , T )×Ω2) .

Now implication (i) ⇒ (ii) of Lemma 6 assures the existence of δ′′ > 0 such
that

‖̺γ
ε‖L1((0, T )×B) < ε′ for∀B ⊂ Ω2 , µ(B) < δ′′ ,

‖̺β
ε‖L1((0, T )×B) < ε′ for∀B ⊂ Ω2 , µ(B) < δ′′ .

(2.54)

If we denote δ := min {δ′ , δ′′}, then the second hypothesis (ii) of Lemma 6 is
satisfied and the proposition follows directly from Lemma 6.
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Indeed, if B ⊂ Ω2 , µ(B) < δ, then (ii) holds because of (2.54). Otherwise,
if B ⊂ Ω \ Ω2, then Lemma 8 implies

‖̺γ
ε‖L1((0, T )×B) < cε′ ,

‖̺β
ε‖L1((0, T )×B) < cε′ ,

(2.55)

and the last case B ∩ Ω2 6= ∅ , B ∩ (Ω \ Ω2) 6= ∅ can be handled by means of a
combination of (2.54) and (2.55). The proof is complete. �

2.3.4 The vanishing viscosity limit passage

At this stage, we are ready to pass to the limit for ε → 0 to get rid of the ε−
quantities in the equations (2.9), (2.10). Note that the parameter δ is kept fixed
throughout this procedure so that we may use the estimates derived above.

To begin, it is easy to deduce from (2.24), (2.25) that

‖ε∇̺ε · ∇ui
ε‖L1((0, T )×Ωε) → 0 , i = 1 , 2 , 3 , (2.56)

and, analogously,
‖ε∆̺ε‖L2(0, T ;W−1, 2(Ω)) → 0 . (2.57)

Moreover, it follows from (2.54) and the fact that ~uε ∈W 1, 2
0 (Ωε)

~uε → ~u weakly in L2(0 , T ;W 1, 2
0 (Ωε′)) , (2.58)

on each fixed Ωε′ . Thus, using Lemma 5 we get

~u ∈ L2(0 , T ;W 1, 2
0 (Ω)) .

Other convergence properties are established in the following lemma:

Lemma 9
̺ε → ̺ in C([0 , T ] ;Lβ

weak(Ω)) , (2.59)

̺ε~uε → ̺~u in C([0 , T ] ;L
2γ

γ+1

weak(Ω)) , (2.60)

̺εu
i
εu

j
ε → ̺uiuj in D′((0 , T )× Ω) , i, j = 1 , 2 , 3 . (2.61)

Proof. In accordance with Proposition 1, the continuity equation (2.9) is
satisfied a.e. in (0 , T ) × Ωε. Thus we can multiply (2.9) by a test function
ϕ ∈ D(Ω) and integrate by parts to obtain
∫

Ω

̺ε(t)ϕ dx =

∫

Ω

̺0 εϕ dx+

∫ t

0

∫

Ω

̺ε~uε ·∇ϕ−ε̺1+ν
ε ϕ−ε∇̺ε ·∇ϕ dx ds . (2.62)
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Using the estimates (2.22), (2.24), (2.25) one can deduce ̺ε ∈ C([0 , T ];Lβ
weak(Ω)).

Now let Ωε′ be a fixed domain, and consider ε < ε′ and ̺ε , ~uε extended by
zero outside Ωε . Then (2.22) implies uniform boundedness of ̺ε in Lβ(Ωε′) .
Furthermore, because ̺ε being extended by zero admits the partial derivative
with respect to t , it is easy to see that the continuity equation (2.22) is satisfied
a.e. in (0 , T ) × R3, which allows us to use an arbitrary test function ϕ ∈
W 1 ,2

0 (Ωε′) to get

∫

Ωε′

(̺ε(t) − ̺ε(t
′))ϕ dx =

∫ t

t′

∫

Ωε′

̺ε~uε · ∇ϕ− ε̺1+ν
ε ϕ− ε1Ωε∇̺ε · ∇ϕ dx ds.

This implies that the sequence ̺ε is uniformly continuous in W−1, 2(Ωε′) .
According to Lemma 6.2 in [30] page 301, it holds at least for a chosen

subsequence that
̺ε → ̺ε′ in C([0 , T ] ;Lβ

weak(Ωε′)) . (2.63)

Let now ε′ and ε′′ be arbitrary, sufficiently small. Then each ϕ ∈ Lβ′

(Ω)
extended by zero belongs to Lβ′

(Ωε′)∩Lβ′

(Ωε′′), and, according to convergence

in C([0 , T ] ;Lβ
weak(Ω)), we get ̺ε′ = ̺ε′′ a.e. on (0 , T ) × Ω which concludes

the proof of (2.59).
Relation (2.63) together with (2.58) yield

̺ε~uε → ̺~u weakly −⋆ in L∞(0 , T ;L
2γ

γ+1 (Ω)) . (2.64)

Now, consider an arbitrary small number denoted by ε1 > 0 , and let ϕ ∈
L

2γ
γ−1 (Ω) . Then there exists a δ1 > 0 such that

‖̺uiϕ‖L1(B) < ε1 , ‖ϕ‖
L

2γ
γ−1 (B)

< ε1 for ∀B ⊂ Ω , µ(B) < δ1 , i = 1 , 2 , 3 .

(2.65)

Finally, let us take a smooth subdomain Ω
′ ⊂ Ω such that µ(Ω\Ω′) < δ1 . Now

we can benefit from Lemma 7 to get a uniform estimate

‖̺ε‖Lβ+1((0, T )×Ω′) ≤ c ,

where c is independent of ε . Thus we are allowed to use the standard technique
from [30] to show

̺ε~uε → ̺~u in C([0 , T ] ;L
2γ

γ+1

weak(Ω
′)) . (2.66)

The relation (2.60) is now a direct consequence of the estimates (2.65) and
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(2.66) applied to the inequality

∣
∣
∣

∫

Ω

(̺ε~uε − ̺~u)ϕ dx
∣
∣
∣ ≤

∣
∣
∣

∫

Ω′

(̺ε~uε − ̺~u)ϕ dx
∣
∣
∣ +

∫

Ω\Ω′

|̺ε~uεϕ| dx+

∫

Ω\Ω′

|̺~uϕ| dx < Kε1 ,

for a.a. t ∈ [0 , T ] , where K is independent of ε1 and ε .
Finally, seeing that 2γ

γ+1
> 6

5
, we can use the relations (2.59), (2.60) to prove

(2.61). �

Thus we have proved that the limits ̺ , ~u satisfy the following system of equa-
tions:

̺t + div(̺~u) = 0 , (2.67)

(̺ui)t+div(̺ui~u)+ap1xi
+δp2xi

= µ∆ui+(λ+µ)(div~u)xi
, i = 1 , 2 , 3 , (2.68)

in D′((0 , T ) × Ω) . Moreover, in accordance with (2.59), (2.60) and (2.35),
(2.39), the limit functions ̺ , ̺~u satisfy the initial condition

̺(0) = ̺0 δ , (̺~u)(0) = ~qδ ,

where ̺0 δ and ~qδ are the same as in Lemma 3.

2.3.5 Strong convergence of the density

We conclude this section by showing p1 = ̺γ , p2 = ̺β , and, consequently,
strong convergence of the sequence ̺ε . We shall need the following assertion:

Lemma 10 Let ̺ , ~u be a solution of (2.67) in D′((0 , T )×Ω) with the properties
specified in the last subsection. Then, for ̺ , ~u extended to be zero on R3 \ Ω ,
the equation (2.67) holds in D′((0 , T ) × R3) .

First, by means of Lemma 10, we are able to prove the relation

∫ T

0

∫

Ω

̺div ~u dx dt =

∫

Ω

̺0 δ ln ̺0 δdx−
∫

Ω

̺(T ) ln ̺(T )dx , (2.69)

taking b(z) = z ln z in Lemma 6.9 ([30], page 307).
Now because of the additional term ε̺1+ν in the continuity equation, we

need to generalize the so-called renormalized inequality with dissipation.
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Lemma 11 Assume that Ω is a domain in R3 . Let 2 ≤ β < ∞, and let
1 ≤ p <∞ . Suppose that a couple (̺ , ~u) satisfies

̺ ∈ L∞(0 , T ;Lβ
loc(Ω)) , ∆̺ ∈ Lp

loc((0 , T ) × Ω) ,

̺ ≥ 0 a.e. in (0 , T ) × Ω , ~u ∈ L2(0 , T ;W 1, 2
loc (Ω)) ,

∂t̺+ div̺~u+ ε̺1+ν − ε∆̺ = 0 , inD′((0 , T ) × Ω) .

Then for any convex function b ∈ C1([0 ,∞)) ∩ C2((0 ,∞)) satisfying growth
condition

|b′(t)| ≤ ct−λ1 , t ≥ 1 , −1 < λ1 ≤
β

2
− 1 , c > 0 ,

it holds

∂tb(̺) + div(b(̺)~u) + {̺b′(̺) − b(̺)}div~u+ ε̺1+νb′(̺) − ε∆b(̺) ≤ 0 ,

in D′((0 , T ) × Ω) .

Proof: Let Ω′ , Ω′ ⊂ Ω be a bounded domain. The for any sufficiently small
α > 0 , we have

∂tSα(̺) + div(Sα(̺)) + εSα(̺1+ν) − ε∆Sα(̺) = rα(̺ , ~u) a.e. in (0 , T ) × Ω′ ,
(2.70)

where Sα is the standard mollifying operator with respect to the space variables,
and

rα(̺ , ~u) = div(Sα(̺)~u) − div(Sα(̺)~u) .

We multiply (2.70) by b′(Sα(̺)) to obtain

∂tb(Sα(̺)) + div[b(Sα(̺))~u] + εSα(̺1+ν)b′(Sα(̺))+

[Sα(̺)b′(Sα(̺)) − b(Sα(̺))]div~u− εb′(Sα(̺))∆Sα(̺) =

b′(Sα(̺))rα(̺ , ~u) a.e. in (0 , T ) × Ω′ .

(2.71)

If we use equation (2.71) and the convexity of b, we obtain

∂tb(Sα(̺)) + div[b(Sα(̺))~u] + εSα(̺1+ν)b′(Sα(̺))+

[Sα(̺)b′(Sα(̺)) − b(Sα(̺))]div~u− ε∆b(Sα(̺)) ≤
b′(Sα(̺))rα(̺ , ~u) a.e. in (0 , T ) × Ω′ .

Letting α→ 0+ , using the Lebesgue dominated convergence Theorem, Vitali’s
convergence Theorem, and the fact that rα tends to zero as α → 0+ ([30]
page 304, Lemma 6.7), we finally arrive at

∂tb(̺) + div(b(̺)~u) + {̺b′(̺) − b(̺)}div~u+ ε̺1+νb′(̺) − ε∆b(̺) ≤ 0 ,
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in D′((0 , T )×Ω′) . Since Ω′ was an arbitrary bounded subdomain of Ω, the last
inequality implies the desired result. �

Lemma 12 Let ̺ε , ~uε be a couple of solutions of (2.9). Then the following
inequality holds
∫

Ωε

̺ε(T ) ln ̺ε(T )−̺0 δε ln ̺0 δε dx+

∫ T

0

∫

Ωε

̺εdiv~uε+ε̺
1+ν
ε (1+ln ̺ε) dx dt ≤ 0 .

(2.72)

Proof: The functions ̺ε , ~uε, and b(s) = s ln (s+ h) , where h > 0 , satisfy
the hypotheses of Lemma 11; whence the renormalized inequality with dissipa-
tion introduced in Lemma 11 holds. In fact, by virtue of the regularity proper-
ties of ̺ε established in the second section of this paper, we get that the renor-
malized inequality from the previous lemma holds not only in D′((0 , T ) × Ωε)
but even almost everywhere, namely

∂t[̺ε ln (̺ε + h)] + div[̺ε ln (̺ε + h))~uε] + ε̺1+ν
ε [1 + ln (̺ε + h)]+

̺2
ε

̺ε + h
div~uε − ε[̺ε ln (̺ε + h)] ≤ 0 a.e. in (0 , T )× Ωε .

(2.73)

Now integrating (2.73) over Ωε and applying the Stokes formula, we get
∫

Ωε

̺ε(T ) ln (̺ε(T ) + h) dx−
∫

Ωε

̺0 δε ln (̺0 δε + h) dx+

∫ T

0

∫

Ωε

̺2
ε

̺ε + h
div~uε dx dt+

∫ T

0

∫

Ωε

ε̺1+ν
ε [1 + ln (̺ε + h)] dx dt ≤ 0 .

The conclusion of the lemma is proved by letting h → 0+ and using the
Lebesgue dominated convergence Theorem. �

We can now complete the main goal of this subsection. Take two nonde-
creasing sequences ψn , φn of nonnegative functions such that

ψn ∈ D(0 , T ) , ψn → 1 , φn ∈ D(Ω) , φn → 1 .

Combining Lemma 3.2 in [15], page 374, together with (2.69), (2.72), and
Lemma 3, we obtain

lim sup
ε→0+

∫ T

0

ψm

∫

Ω

φm(a̺γ
ε +δ̺β

ε )̺εdx dt ≤
∫ T

0

∫

Ω

(ap1 +δp2)̺ dx dt , m = 1 , 2 , . . .
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To conclude the proof of strong convergence, we make use of Minty’s trick and
the above introduced inequality to show

‖̺ε‖Lβ((0, T )×Ω) → ‖̺‖Lβ((0, T )×Ω) , (2.74)

see [15] for details. Furthermore, from (2.22), (2.59) we obtain ̺ε ⇀ ̺ in
Lβ((0 , T )×Ω), which, together with (2.74), implies strong convergence of ̺ε in
Lp((0 , T )× Ω) , 1 ≤ p ≤ β . Let us review the result achieved in this section:

Lemma 4 Let Ω ⊂ R3 be a bounded domain of class W 1, s, where s satisfies
(2.3), and let

β > max
{ 6γ

2γ − 3
, 4

}

.

Then, given initial data ̺0 δ , ~qδ as in (2.36), (2.40), there exists a weak solution
̺ , ~u of the problem

̺t + div̺~u = 0 , (2.75)

(̺ui)t+div(̺ui~u)+(a̺γ +δ̺β)xi
= µ∆ui+(λ+µ)(div~u)xi

, i = 1 , 2 , 3 , (2.76)

~u| ∂Ω = 0 , (2.77)

̺(0) = ̺0 δ , ̺~u(0) = ~qδ . (2.78)

Moreover, the equation (2.75) holds in the sense of renormalized solutions on
D′((0 , T )× R

3) provided ̺ , ~u were extended to be zero on R
3 \ Ω .

Finally, ̺ , ~u satisfy the estimates:

sup
t∈[0, T ]

‖̺(t)‖γ
Lγ(Ω) ≤ cEδ[̺0 δ , ~qδ] , (2.79)

δ sup
t∈[0, T ]

‖̺(t)‖β
Lβ(Ω)

≤ cEδ[̺0 δ , ~qδ] , (2.80)

sup
t∈[0, T ]

‖√̺~u(t)‖2
L2(Ω) ≤ cEδ[̺0 δ , ~qδ] , (2.81)

‖~u‖2
L2(0, T ;W 1, 2(Ω)) ≤ cEδ[̺0 δ , ~qδ] , (2.82)

where the constant c is independent of δ > 0 . Moreover, the energy inequality

d

dt

[ ∫

Ω

1

2
̺|~u| 2 +

a

γ − 1
̺γ +

δ

β − 1
̺βdx

]

+

∫

Ω

µ|∇~u| 2 + (λ+ µ)|div ~u| 2dx ≤ 0 ,

(2.83)
holds in D′(0 , T ) .
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Proof: It remains to prove estimates and the energy inequality. Estimates
(2.79) - (2.82) follow from (2.21) - (2.24), (2.58) and (2.74). We will pass
the limit ε → 0+ in (2.28), where Ω , ̺ , ~u are replaced by Ωε , ̺ε , ~uε . Due to
(2.58), (2.74) and (2.23), we have

∫

Ωε

̺ε|~uε|2dx→
∫

Ω

̺|~u|2dx weakly in L2(0 , T ) . (2.84)

Moreover, relation (2.74) also gives
∫

Ω

a̺γ
ε + δ̺β

ε dx→
∫

Ω

a̺γ + δ̺βdx weakly in L1(0 , T ) . (2.85)

Now let ψn ∈ D′(0 , T ) be a sequence of non-negative functions with uni-
formly bounded derivatives such that ψn ր 1 . Then using ψn as test functions
in energy inequality (2.28) and estimates (2.79) - (2.81) we get estimate

ε
δβ

β − 1

∫ T

0

ψn

∫

Ωε

̺β+ν
ε dx dt ≤

∫ T

0

∂tψn

∫

Ωε

1

2
̺ε|~uε| 2 +

a

γ − 1
̺γ

ε +
δ

β − 1
̺β

ε dx dt ≤ cEδ[̺0 δ , ~qδ] ,

where c > 0 is independent of both ε , δ . Passing to the limit for n → ∞ in
the above derived estimate we have

ε

∫ T

0

∫

Ωε

̺β+ν
ε dx dt ≤ c(δ , ̺0 δ , ~qδ) . (2.86)

By means of Hölder’s inequality we obtain
∫ T

0

∫

Ωε\Ω

̺β
ε dx dt ≤ ε−

β
β+ν

(

Tµ(Ωε \ Ω)
) ν

ν+β
(

ε

∫ T

0

∫

Ωε

̺β+ν
ε dx dt

) β
β+ν

.

Thus using (2.86), under the assumption µ(Ωε \Ω) → 0 sufficiently fast, which
is possible to reach by means of suitable choice of ε′ , ε′′ in (2.29), one has

∫ T

0

∫

Ωε\Ω

̺β
ε dx dt→ 0 for ε→ 0+ . (2.87)

Consequently, using (2.84), (2.85), and (2.87), it is easy to see that the first
term in (2.28) converge to the first term of (2.83). The second and the third
term in (2.28) converges to the second and the third term of (2.83), respec-
tively, due to lower semicontinuity of norms and weak convergence of ~uε, which
concludes the proof. �
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2.4 Passing to the limit in the artificial pressure term

2.4.1 On integrability of the density

Our ultimate goal is to let δ → 0 in (2.76) and also in (2.78). To get this result,
we first derive estimates of the density ̺δ independent of δ > 0 . The technique
is the same as in the previous section.

Similarly to the previous section, let ε′ > 0 be arbitrary and consider the
δ′ > 0 given by Proposition 2 . Furthermore, let Ω1 , Ω2 and Ω3 be smooth
domains defined as in Section 3.3 and satisfying (2.50). We note that, due to
the (2.37), (2.40) and (2.41), the right sides of estimates (2.79) - (2.82) are
bounded independently of δ to be used in what follows. The following lemma
provides estimates of the density on the domain Ω2 :

Lemma 13 Let ̺ε , ~uδ be the sequence of solutions of the problem (2.75) -
(2.78). Then there exists a constant c = c(̺0, ~q,Ω1,Ω2) independent of δ and
constant θ > 0 , depending only on γ, such that

‖̺δ‖γ+θ
Lγ+θ((0, T )×Ω2)

+ δ‖̺δ‖β+θ
Lβ+θ((0, T )×Ω2)

≤ c . (2.88)

Proof: Let φ ∈ D(Ω1) such that 0 ≤ φ ≤ 1 , φ(x) = 1 for each x ∈ Ω2 and
ψ ∈ D(0 , T ) such that 0 ≤ ψ ≤ 1 . Extending ̺δ by zero outside Ω consider
the function

ϕ̂(t , x) = ψ(t)φ(x)A[Sα[b(̺δ)]] ,

where b(s) = sθ , for 0 < θ < 2 . Following [15] page 382 - 384 we use ϕ̂ as a
test function for the system (2.76), which yields desired estimate. �

In order to show the second assumption of Lemma 6 we have to investigate the
behavior of solutions in a vicinity of the non-smooth part of the boundary ∂Ω.
We report the following lemma that can be proved in the same way as Lemma 8.

Lemma 14 Let ̺δ , ~uδ be the sequence of solutions of the problem (2.75) -
(2.78) constructed above. Then there exists a constant c = c(̺0, ~q,Ω1,Ω2) in-
dependent of δ such that

∫ T

0

∫

Ω\Ω2

a̺γ
δ + δ̺β

δ dx dt ≤ c ε′ . (2.89)

If we combine the above lemmas together with Lemma 6 we get

Lemma 5 There exists a function p ∈ L1((0 , T ) × Ω) such that

̺γ
δ ⇀ p in L1((0 , T )× Ω) ,

δ̺β
δ ⇀ 0 in L1((0 , T ) × Ω) .
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Proof : It follows from Lemma 13 that ̺δ converges weakly in Lγ+θ((0 , T )×Ω2)

and δ
1

β+θ̺δ converges weakly in Lβ+θ((0 , T ) × Ω2) , which implies that ̺γ
δ ,

δ
β

β+θ̺β
δ converge weakly in L1((0 , T ) × Ω2) . Now implication (i) ⇒ (ii) in

Lemma 6 assures the existence of δ′′ > 0 such that

‖̺γ
δ‖L1((0, T )×B) < ε′ for∀B ⊂ Ω2 , µ(B) < δ′′ ,

δ‖̺β
δ ‖L1((0, T )×B) < δ

β
β+θ‖̺β

δ ‖L1((0, T )×B) < ε′ for∀B ⊂ Ω2 , µ(B) < δ′′ ,
(2.90)

for all δ sufficiently small. If we denote δ′′′ := min {δ′ , δ′′}, then the second
condition (ii) of the Lemma 6 is satisfied and we have

̺γ
δ ⇀ p in L1((0 , T )× Ω) ,

δ̺β
δ ⇀ p′ in L1((0 , T ) × Ω) ,

(2.91)

yielding the first part of the claim. Indeed, if B ⊂ Ω2 , µ(B) < δ′′′, then (ii)
holds because of (2.90).

Otherwise, if B ⊂ Ω \ Ω2, then Lemma 14 implies

‖̺γ
δ‖L1((0, T )×B) < cε′ ,

δ‖̺β
δ ‖L1((0, T )×B) < cε′.

(2.92)

The last case B ∩ Ω2 6= ∅ , B ∩ (Ω \ Ω2) 6= ∅ can be treated by means of
combination of (2.90) and (2.92), which completes the proof of (2.91).

It remains to prove
p′ = 0 a.e. in (0 , T )× Ω . (2.93)

Let us suppose µ({p′ 6= 0}) := h > 0 , and consider an increasing sequence of
Lipschitz domains Ωn , Ωn ⊂ Ω constructed as follows:

an
r (x′r) := (ar ∗ ωkn)(x′r) +

1

n
, r = 1 , ... ,M,

where the functions ar describing the boundary of Ω are taken as in Defini-
tion 2.1.1. Moreover,

i) lim
n→∞

kn = 0,

ii) an
r (x′r) − ar(x

′
r) > 0 .

From the construction of the sequence, one can observe that µ(Ω \Ωn) → 0 for
n tending to infinity. If we show that

p′ = 0 a.e. in (0 , T ) × Ωn , (2.94)
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for an arbitrary n we get a contradiction with the fact that h > 0 , and thus
(2.93) holds. Since Ωn ⊂ Ω and Ωn is Lipschitz, we can use the same procedure
as in the proof of Lemma 13 to get the estimate

δ‖̺δ‖β+θ
Lβ+θ((0, T )×Ωn)

≤ cn ,

which yields

δ
β

β+θ̺β
δ ⇀ pn in L1((0 , T )× Ωn) , (2.95)

and thus
δ̺β

δ ⇀ 0 in L1((0 , T )× Ωn) . (2.96)

But (2.95) and uniqueness of the limit gives (2.94). �

2.4.2 The limit passage

At this stage we can pass to the limit for δ → 0 to eliminate the artificial
pressure term in (2.76). Let Ω′ be an arbitrary Lipschitz domain such that
Ω ⊂ Ω′ . Then it follows from (2.82) and the fact ~uδ ∈W 1, 2

0 (Ω′) that

~uδ → ~u weakly in L2(0 , T ;W 1, 2
0 (Ω′)) , (2.97)

on each fixed Ω′, where ~uδ is extended by zero outside Ω . Thus we have from
Lemma 5

~u ∈ L2(0 , T ;W 1, 2
0 (Ω)) .

Other convergence properties are provided by the following lemma:

Lemma 15
̺δ → ̺ in C([0 , T ] ;Lγ

weak(Ω)) , (2.98)

̺δ~uδ → ̺~u in C([0 , T ] ;L
2γ

γ+1

weak(Ω)) , (2.99)

̺δu
i
δu

j
δ → ̺uiuj in D′((0 , T ) × Ω) , i, j = 1 , 2 , 3 . (2.100)

Proof. Since the continuity equation (2.75) is satisfied in D′((0 , T ) × Ω) (see
Lemma 10), we have

d

dt

∫

Ω′

̺δϕ dx =

∫

Ω′

̺δ~uδ · ∇ϕ dx in D′(0 , T ) , ϕ ∈ D(Ω′) ,

which implies ̺δ ∈ C([0 , T ] , Lγ
weak(Ω

′)), and, moreover, ̺δ are uniformly con-

tinuous in W−1, 2γ
γ+1 (Ω′) . Moreover ̺δ are uniformly bounded in Lγ(Ω′) . Ac-

cording to Lemma 6.2 in [30], we have, at least for a chosen subsequence,

̺δ → ̺′ in C([0 , T ] , Lγ
weak(Ω

′)) , (2.101)
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where ̺′ depends on Ω′ .
On the other hand, using the arguments of Lemma 9 we easily get (2.98).

Statements (2.99) and (2.100) can be proved in the same way as (2.60), (2.61)
in Lemma 9, where we take into account estimates of ̺δ in Lβ+θ , Lγ+θ instead
of Lβ+1 . �

Consequently, ̺ , ~u satisfy the continuity equation (2.1) in D′((0 , T )×R3) , and

(̺ui)t + div(̺ui~u) + apxi
= µ∆ui + (λ+ µ)(div ~u)xi

, i = 1 , 2 , 3 . (2.102)

in D′((0 , T ) × Ω) .
Moreover, due to relations (2.98), (2.99), and Lemma 3, the limits ̺ and ~u

satisfy the initial conditions (2.5). In order to conclude the proof, we have to
show strong convergence of ̺δ in L1 or, equivalently, p = ̺γ . But this can be
shown exactly as in [15] page 385 - 391. According to Proposition 5, we are
allowed to pass to the limit for δ → 0 in (2.83) to obtain the energy inequality
introduced in Definition 2.1.2. The proof of Theorem 2.1.1 is complete.

2.5 Concluding remarks

• The proof of Theorem 2.1.1 remains basically unchanged if the motion of
the fluid is driven by a bounded external force, i.e., when (2.2) contains

an additional term ̺~f(t , x), with ~f bounded and measurable function.

• Similar result can be proved in two space dimensions.
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for Mathematical Modelling, project LC06052, financed by MŠMT of the Czech
Republic.
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3.1 Introduction

3.1.1 Problem formulation

The basic principles of continuum mechanics and electrodynamics assert the bal-
ance or conservation of mass, momentum, energy, and Maxwell equations that
can be expressed through a system of equations (see e.g. Ducomet and Feireisl
[7]):

̺t + div(̺~u) = 0 , (3.1)

(̺~u)t + div(̺~u⊗ ~u) + ∇p = div S + ~J × ~B , (3.2)

39
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(̺s)t + div(̺s~u) + div(
~q

ϑ
) = σ , (3.3)

d

dt

∫

Ω

(1

2
̺|~u|2 + ̺e+

1

2µ
| ~B|2

)

dx = 0 , (3.4)

~Bt + curl( ~B × ~u) + curl(λcurl ~B) = 0 , (3.5)

where the density ̺ = ̺(t , x) , the velocity field ~u = ~u(t , x) , the absolute

temperature ϑ = ϑ(t , x) , and the magnetic induction field ~B = ~B(t , x) are
state variables depending on the time t ∈ (0 , T ) and the spatial position
x ∈ Ω ⊂ R

3 , and where Ω is a bounded domain. For the more specific ex-
planation of the physical background of the introduced system, the reader may
consult e.g. Weiss [38], where it is used in order to model the solar and stellar
magnetoconvection.

We shall assume that the pressure p = p(̺ , ϑ) , the specific entropy s =
s(̺ , ϑ) and the specific internal energy e = e(̺ , ϑ) are given functions of
the state variables ̺ , ϑ obeying the Gibbs relation

ϑds = de+ p d
(1

̺

)

. (3.6)

Since we focus our attention on Newtonian fluids, the viscous stress tensor,
denoted by the symbol S , can be expressed as a linear function of the velocity
gradient

S = ν(∇~u+ ∇~uT − 2

3
div~u I) + ηdiv~u I , (3.7)

where ν = ν(ϑ , ~B) > 0 and η = η(ϑ , ~B) > 0 are viscosity coefficients.
Similarly, the heat flux will be given by Fourier’s law

~q = ~qR + ~qF , (3.8)

with the radiation heat flux ~qR given by

~qR = −κRϑ
3∇ϑ , with a constant κR > 0 , (3.9)

and
~qF = −κF∇ϑ , (3.10)

with a positive heat conductivity coefficient κF = κF (̺ , ϑ , ~B) .
In general, if the motion is not known to be smooth, the dissipation rate

of the mechanical energy may exceed the value S : ∇~u , and then the entropy
production rate σ satisfies inequality

σ ≥ 1

ϑ

(

S : ∇~u− ~q · ∇ϑ
ϑ

+
λ

µ
|curl ~B|2

)

, (3.11)
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and the electric current ~J satisfies Ampère law

µ ~J = curl ~B , µ > 0 (3.12)

where the constant µ stands for permeability of the free space, and λ =
λ(̺ , ϑ , ~B) > 0 is the magnetic diffusivity.

Since the fluid occupies a bounded domain Ω , we need to prescribe some
boundary conditions. In order to eliminate the effect of a boundary layer on
propagation of the acoustic waves, we suppose that the velocity ~u satisfies
the complete slip boundary conditions

~u · ~n| ∂Ω = 0 , S~n× ~n| ∂Ω = 0 (3.13)

In agreement with (3.4) the total energy is supposed to be a constant of motion,
whence we need

~q · ~n| ∂Ω = 0 . (3.14)

Because we want the system to be energetically isolated we assume

~B · ~n| ∂Ω = 0 . (3.15)

To complete the formulation it remains to determine the initial data

̺(0 , ·) = ̺0 , ~u(0 , ·) = ~u 0 , ϑ(0 , ·) = ϑ 0 , ~B(0 , ·) = ~B 0 . (3.16)

We are now able to introduce the Mach and Alfvén numbers into our system
which can be done in two different ways, either by finding a suitable changes
of independent variables as used for Navier-Stokes system in e.g. Alazard [2] or
via recasting the system in the dimensionless form by scaling each variable by
its characteristic value (see Feireisl, Novotný [13], Chapter 4.). Motivated by
[13] we use the second approach in order to get

̺t + div(̺~u) = 0 ,

(̺~u)t + div(̺~u⊗ ~u) +
1

Ma2∇p = div S +
1

Al2
~J × ~B ,

(̺s)t + div(̺s~u) + div(
~q

ϑ
) = σ ,

d

dt

∫

Ω

(Ma2

2
̺|~u|2 + ̺e+

Ma2

Al2
1

2µ
| ~B|2

)

dx = 0 ,

~Bt + curl( ~B × ~u) + curl(λcurl ~B) = 0 ,

together with the modified entropy production rate

σ ≥ 1

ϑ

(

Ma2
S : ∇~u− ~q · ∇ϑ

ϑ
+
λ

µ
|curl ~B|2

)

.
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We now set both Mach and Alfvén number equal to ε , and thus the resulting
system reads

̺t + div(̺~u) = 0 , (3.17)

(̺~u)t + div(̺~u⊗ ~u) +
1

ε2
∇p = div S +

1

ε2
~J × ~B , (3.18)

(̺s)t + div(̺s~u) + div(
~q

ϑ
) = σε , (3.19)

d

dt

∫

Ω

(ε2

2
̺|~u|2 + ̺e+

1

2µ
| ~B|2

)

dx = 0 , (3.20)

~Bt + curl( ~B × ~u) + curl(λcurl ~B) = 0 , (3.21)

where

σε ≥
1

ϑ

(

ε2
S : ∇~u− ~q · ∇ϑ

ϑ
+
λ

µ
|curl ~B|2

)

. (3.22)

The goal of this paper is to execute the limit process for ε→ 0 in (3.17) - (3.22)
under the below introduced additional assumptions.

Singular limits in the equations of fluid dynamics are studied extensively,
and many results have already been achieved in this field. The first result was
proved by Lions and Masmoudi in [27]. The limit solutions for Navier-Stokes
system when the Mach number tends to zero was studied by Alazard in [2]
and extended for the full Navier-Stokes-Fourier system by Feireisl and Novotný
in [14]. In cited papers, the limit solutions are proved in a weak sense on
an arbitrary time interval (0 , T ) . Other approach to this topic was studied by
Klainerman and Majda in [21] where the existence of the limit solution is proved
in the classical sense, but on a sufficiently small time interval. They proved
that the solutions of the compressible magnetohydrodynamics equations tend
to a solution of the incompressible magnetohydrodynamics equations under
the assumption that the Mach number tends to zero. Other results concerning
this topic have been summarized by Zank and Matthaeus in [39], and also by
Rubini in [35]. But only the density, the velocity and the magnetic induction
is taken into account in both these papers, not the temperature. We extend
this results taking the temperature into account for a special kind of initial
conditions.

3.1.2 Variational solution

We adopt the mathematical theory of the weak solution for the equations of
magnetohydrodynamics developed in [7] for a certain special type of initial
conditions.
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Let Ω ⊂ R3 be a bounded domain with boundary of class C2+δ , δ > 0 , and
suppose that the initial data (3.16) are given such that

̺0 ∈ L
5

3 (Ω) , ̺0~u0 ∈ L1(Ω ; R3) , ϑ0 ∈ L∞(R3) , ~B0 ∈ L2(Ω ; R3) ,

̺0 ≥ 0 , ϑ0 > 0 ,

̺0s(̺0 , ϑ0) ,
1

̺0
|̺0~u0|2 , ̺0e(̺0 , ϑ0) ∈ L1(Ω) ,

div ~B0 = 0 inD′(Ω) , ~B0 · ~n| ∂Ω = 0 .

(3.23)

and let (3.6) - (3.10), (3.12), and (3.22) hold. Let’s notice that, due to the

Theorem 1. 4 in [37], assumptions on ~B0 make sense. We say that a quan-

tity {̺ , ~u , ϑ , ~B} is a variational solution of (3.17) - (3.21) on (0 , T ) × Ω with
boundary conditions (3.13) - (3.15) and initial data (3.16), obeying (3.23) if

•
̺ ≥ 0 , ̺ ∈ L∞(0 , T ;L

5

3 (Ω)) ,

~u ∈ L2(0 , T ;V ) , V = {~u ∈ W 1, 2(Ω)| ~u · ~n|∂Ω = 0} ,
ϑ , log ϑ ∈ L2(0 , T ;W 1, 2(Ω)) ,

~B ∈ L2(0 , T ;W 1, 2(Ω)) , div ~B(t) = 0 , ~B · ~n|∂Ω = 0 for a.a. t ∈ (0 , T ) ;
(3.24)

• The continuity equation (3.17) is satisfied in the sense of renormalized
solutions which means that the following identity holds

∫ T

0

∫

Ω

̺B(̺)
(

∂tϕ+ ~u · ∇ϕ
)

dx dt

=

∫ T

0

∫

Ω

b(̺)div~uϕdx dt−
∫

Ω

̺0B(̺0)ϕ(0 , ·)dx ,
(3.25)

for any ϕ ∈ D([0 , T ) × Ω) and any b ∈ L∞ ∩ C[0 ,∞) where

B(̺) = B(0) +

∫ ̺

1

b(z)

z2
dz ;

•
∫ T

0

∫

Ω

(

̺~u∂tϕ + ̺[~u⊗ ~u] : ∇ϕ+
1

ε2
p(̺ , ϑ)divϕ

)

dx dt

=

∫ T

0

∫

Ω

(

S : ∇ϕ− 1

ε2
~J × ~B · ϕ

)

dx dt−
∫

Ω

(̺0~u0) · ϕdx ,

(3.26)

for any ϕ ∈ D([0 , T ) × Ω ; R3) , ϕ · ~n|∂Ω = 0 ;
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•
∫

Ω

(ε2

2
̺|~u|2 + ̺e(̺ , ϑ) +

1

2µ
| ~B|2

)

(t)dx

=

∫

Ω

(ε2

2
̺0|~u0|2 + ̺0e(̺0 , ϑ0) +

1

2µ
| ~B0|2

)

dx , for a. a. t ∈ (0 , T ) ;

(3.27)

•
∫ T

0

∫

Ω

̺s(̺ , ϑ)
(

∂tϕ+ ~u · ∇ϕ
)

dx dt+

∫ T

0

∫

Ω

~q

ϑ
· ∇ϕdx dt

+ < σε , ϕ >[M,C]([0,T ]×Ω)= −
∫

Ω

̺0s(̺0 , ϑ0)ϕ(0 , ·)dx ,
(3.28)

for any ϕ ∈ D([0 , T ) × Ω) , where σε ∈ M+([0 , T ] × Ω) ,

σε ≥
1

ϑ

(

ε2
S : ∇~u− ~q

ϑ
· ∇ϑ+

λ

µ
|curl ~B|2

)

;

•
∫ T

0

∫

Ω

(

~B ·∂tϕ−( ~B×~u+λcurl ~B)·curlϕ
)

dx dt =

∫

Ω

~B0 ·ϕ(0 , ·)dx , (3.29)

for any ϕ ∈ D([0 , T ) × Ω ; R3) .

Similarly we now define here so called the Oberbeck-Boussinesq approxi-
mation supplemented by the Maxwell equation. We say that ~U , Θ and ~B is
a weak solution of magnetohydrodynamics equations with temperature if

~U ∈ L∞(0 , T ;L2(Ω ; R3)) ∩ L2(0 , T ;W 1, 2(Ω ; R3)) ,

Θ ∈W 1, q(0 , T ;Lq(Ω)) ∩ Lq(0 , T ;W 2, q(Ω)) for a certain q > 1 ,

~B ∈ L2(0 , T ;W 1, 2(Ω ; R3)) ,

and the following holds:

•
div~U = 0 a.a. on (0 , T )× Ω , ~U · ~n|∂Ω = 0 in the sense of traces. (3.30)

•
∫ T

0

∫

Ω

(

̺ ~U · ∂tϕ+ ̺ ~U ⊗ ~U : ∇ϕ
)

dx dt

=

∫ T

0

∫

Ω

(

ν(ϑ , 0)[∇~U + ∇T ~U ] : ∇ϕ− ~J × ~B · ϕ
)

dx dt−
∫

Ω

(̺ ~U0) · ϕdx ,

(3.31)
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for any ϕ ∈ D([0 , T ) × Ω ; R3) , divϕ = 0 in Ω , ϕ · ~n|∂Ω = 0 .

•

̺cp(̺ , ϑ)
(

∂tΘ + ~U · ∇Θ
)

− div
(

(κF (̺ , ϑ , 0) + κRϑ
2
)∇Θ

)

= 0

a.a. in (0 , T )× Ω ,

∇Θ · ~n|∂Ω = 0 ,

Θ(0 , ·) = Θ0 ,

r + ̺α(̺ , ϑ)Θ = 0 ,

(3.32)

where

cp(̺ , ϑ) =
∂e(̺ , ϑ)

∂ϑ
+ α(̺ , ϑ)

ϑ

̺

∂p(̺ , ϑ)

∂ϑ
,

α(̺ , ϑ) =
1

̺

∂ϑp

∂̺p
(̺ , ϑ) .

(3.33)

•
∫ T

0

∫

Ω

(

~B ·∂tϕ−( ~B×~U+λ(̺ , ϑ , 0)curl ~B)·curlϕ
)

dx dt =

∫

Ω

~B0 ·ϕ(0 , ·)dx ,
(3.34)

for any ϕ ∈ D([0 , T ) × Ω ; R3) .

3.1.3 Main result

Before formulating rigorously our main result it is convenient to specify the con-
stitutive equations relating the pressure p , the internal energy e , the entropy
s , and the transport coefficients ν , η , λ , and κF to the scalar variables ̺ and
ϑ . The restrictions are motivated by the existence theory established in [7].
Specifically, we set

p(̺ , ϑ) = pF (̺ , ϑ) + pR(ϑ) , pF = ϑ
5

2P
( ̺

ϑ
3

2

)

, pR =
a

3
ϑ4 , a > 0 , (3.35)

e(̺ , ϑ) = eF (̺ , ϑ) + eR(̺ , ϑ) , eF =
3

2

ϑ
5

2

̺
P

( ̺

ϑ
3

2

)

, eR = a
ϑ4

̺
, (3.36)

s(̺ , ϑ) = sF (̺ , ϑ) + sR(̺ , ϑ) , sF = S
( ̺

ϑ
3

2

)

, sR =
4

3
a
ϑ3

̺
, (3.37)

where

S ′(Z) = −3

2

5
3
P (Z) − ZP ′(Z)

Z2
for allZ > 0 . (3.38)
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Furthermore, we assume P ∈ C1[0 ,∞) ∩ C2(0 ,∞) ,

P (0) = 0 , P ′(Z) > 0 for all Z ≥ 0 , (3.39)

0 <
5
3
P (Z) − ZP ′(Z)

Z
≤ sup

z>0

5
3
P (z) − zP ′(z)

z
<∞ , (3.40)

lim
Z→∞

P (Z)

Z
5

3

= p∞ > 0 . (3.41)

For the sake of simplicity, the transport coefficients ν , η , λ , and κF are assumed
to be continuously differentiable functions satisfying the growth conditions

0 < ν(1 + ϑ) ≤ ν(ϑ , ~B) ≤ ν(1 + ϑ) ,

0 ≤ η(ϑ , ~B) ≤ η(1 + ϑ)

}

for all ϑ ≥ 0 , (3.42)

0 < κ(1 + ϑ) ≤ κF (̺ , ϑ , ~B) ≤ κ(1 + ϑ3) , (3.43)

0 < λ(1 + ϑ) ≤ λ(̺ , ϑ , ~B) ≤ λ(1 + ϑ3) , (3.44)

where ν , ν , η , κ , κ , λ , and λ are positive constants.
Finally, we consider the initial data in the form

̺(0 , ·) = ̺0, ε = ̺+ ε̺
(1)
0, ε , ~u(0 , ·) = ~u0, ε ,

ϑ(0 , ·) = ϑ0, ε = ϑ+ εϑ
(1)
0, ε , ~B(0 , ·) = ~B0, ε = ε ~B

(1)
0, ε ,

(3.45)

where

̺ > 0 , ϑ > 0 ,

∫

Ω

̺
(1)
0, εdx =

∫

Ω

ϑ
(1)
0, εdx = 0 for all ε > 0. (3.46)

Our main result reads as follows:

Theorem 3.1.1 Let Ω ⊂ R3 be a bounded domain of class C2+ν. Assume that
p , e , s satisfy hypothesis (3.35) - (3.41), and the transport coefficients meet

the growth restrictions (3.42) - (3.44). Let {̺ε , ~uε , ϑε , ~Bε}ε>0 be a family of
weak solutions to the scaled MHD equations (3.17) - (3.22) on (0 , T ) × Ω ,
supplemented with the boundary conditions (3.13) - (3.15), and the initial data
(3.45) - (3.46) and

̺
(1)
0, ε → ̺

(1)
0 weakly − (∗) in L∞(Ω) ,

~u0, ε → ~U0 weakly − (∗) in L∞(Ω ; R3) ,

ϑ
(1)
0, ε → ϑ

(1)
0 weakly − (∗) in L∞(Ω) ,

~B
(1)
0, ε → ~B

(1)
0 weakly − (∗) in L∞(Ω ; R3) ,

(3.47)
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as ε→ 0 . Then
ess sup

t∈(0, T )

‖̺ε(t) − ̺‖
L

5
3 (Ω)

≤ εc , (3.48)

and, at least for a suitable subsequence,

~uε → ~U weakly in L2(0 , T ;W 1, 2(Ω ; R3)) ,

ϑε − ϑ

ε
= ϑ(1)

ε → Θ weakly in L2(0 , T ;W 1, 2(Ω ; R3)) ,

~Bε

ε
= ~B(1)

ε → ~B weakly in L2(0 , T ;W 1, 2(Ω ; R3)) ,

(3.49)

where ~U , Θ and ~B is a weak solution to the magnetohydrodynamics equations
with temperature (3.30) - (3.34), with the initial distribution of the temperature

Θ0 =
ϑ

cp(̺, ϑ)

(∂s(̺, ϑ)

∂̺
̺

(1)
0 +

∂s(̺, ϑ)

∂ϑ
ϑ

(1)
0

)

.

We notice that the existence of the weak solutions {̺ε , ~uε , ϑε , ~Bε}ε>0 can
be shown by means of the theory developed in [7].

The limit system (3.30) - (3.34) is used for the so-called Direct Numerical
Simulation method explained by Elliot in [10] which is used for simulations of
the solar magnetoconvection. For more detailed explanation of the physical
interpretation of this magnetoconvection the reader may consult [32].

The rest of the paper is devoted to the proof of Theorem 3.1.1. The ideas
of our strategy, motivated by [13], Chapter 5., may be characterized as follows:

(i) As a consequence of hypotheses (3.42) - (3.43), one can prove that the

family of solutions {̺ε , ~uε , ϑε , ~Bε}ε>0 admits uniform estimates. Simi-
larly, uniform estimates on the amplitude of the entropy production σε are
obtained.

(ii) These estimates are used to prove convergence of these quantities in suit-
able topologies and passing to the limit for ε → 0 is executed. The most
complicated term is ̺ε~uε⊗~uε in the momentum equation which in general
is not expected to tend to ̺~U ⊗ ~U .

(iii) The most delicate issue is to show that the term ̺~U ⊗ ~U = ̺~U ⊗ ~U in a
weak limit. This is done by means of Helmholtz decomposition applied to
the so-called acoustic equation.
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3.2 Uniform estimates

3.2.1 Total dissipation balance

Out first goal is to derive suitable estimates on the sequence {̺ε , ~uε , ϑε , ~Bε} ,
uniformly with respect to ε > 0 . Firstly, we introduce the following subsets of
R2 as

Mess = {(̺ , ϑ) ∈ R
2| ̺/2 < ̺ < 2̺ , ϑ/2 < ϑ < 2ϑ} ,

Mres = {(̺ , ϑ) ∈ [0 ,∞)2| (̺ , ϑ) /∈ Mess} .
(3.50)

Similarly, for a measurable function h let’s define its so called essential and
residual part

[h]ess = χ(̺ε , ϑε)h , χ ∈ D((0 ,∞)2) , 0 ≤ χ ≤ 1 , χ|Mess = 1 ,

[h]res = (1 − χ(̺ε , ϑε))h .
(3.51)

It is easy to see
h = [h]ess + [h]res . (3.52)

Of course, this decomposition depends on ε .
By combining the relations (3.27), (3.28) we obtain the dissipation equality

∫

Ω

(ε2

2
̺ε|~uε|2 +Hϑ(̺ε , ϑε) +

1

2µ
| ~Bε|2

)

(t)dx+ ϑ < σε ; [0 , t] × Ω >

=

∫

Ω

(ε2

2
̺0, ε|~u0, ε|2 +Hϑ(̺0, ε , ϑ0, ε) +

1

2µ
| ~B0, ε|2

)

dx ,

(3.53)

satisfied for a.a. t ∈ (0 , T ) , where Hϑ is the Helmholtz function (see [13], page
25) defined as follows

Hϑ(̺ , ϑ) = ̺
(

e(̺ , ϑ) − ϑs(̺ , ϑ)
)

, (3.54)

and ϑ is a positive constant.
In accordance with hypotheses (3.45), (3.46), the total mass

∫

Ω

̺ε(t)dx = ̺|Ω| , (3.55)

is a constant of motion independent of ε . Due to this fact, relation (3.53) can
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be rewritten in the form
∫

Ω

(1

2
̺ε|~uε|2 +

1

2ε2µ
| ~Bε|2

)

(t)dx+
ϑ

ε2
< σε ; [0 , t] × Ω > +

∫

Ω

1

ε2

(

Hϑ(̺ε , ϑε) − (̺ε − ̺)
∂Hϑ(̺ , ϑ)

∂̺
−Hϑ(̺ , ϑ)

)

(t)dx

=

∫

Ω

(1

2
̺0, ε|~u0, ε|2 +

1

2ε2µ
| ~B0, ε|2

)

dx+

∫

Ω

1

ε2

(

Hϑ(̺0, ε , ϑ0, ε) − (̺0, ε − ̺)
∂Hϑ(̺ , ϑ)

∂̺
−Hϑ(̺ , ϑ)

)

dx .

(3.56)

In order to exploit the dissipation balance (3.56), we have to ensure that its
right-hand side determined in terms of the initial data is bounded uniformly
with respect to ε . Since the initial data are given by (3.45) and satisfy (3.47),

{√̺0, ε~u0, ε} is bounded in L2(Ω ; R3) , (3.57)

and
{̺(1)

0, ε} , {ϑ(1)
0, ε} , { ~B(1)

0, ε} are bounded in L∞(Ω) . (3.58)

Consequently, using Lemma 5.1 in [13] we deduce from (3.56) that

ess sup
t∈(0, T )

∥
∥
∥

[̺ε − ̺

ε

]

ess
(t)

∥
∥
∥

L2(Ω)
≤ c , (3.59)

ess sup
t∈(0, T )

∥
∥
∥

[ϑε − ϑ

ε

]

ess
(t)

∥
∥
∥

L2(Ω)
≤ c , (3.60)

ess sup
t∈(0, T )

‖[̺εe(̺ε , ϑε)]res(t)‖L1(Ω) ≤ ε2c , (3.61)

ess sup
t∈(0, T )

‖[̺εs(̺ε , ϑε)]res(t)‖L1(Ω) ≤ ε2c . (3.62)

In addition, we have

ess sup
t∈(0, T )

‖√̺ε~uε‖L2(Ω; R3) ≤ c , (3.63)

ess sup
t∈(0, T )

∥
∥
∥

~Bε

ε

∥
∥
∥

L2(Ω; R3)
≤ c , (3.64)

< σε ; [0 , T ] × Ω >≤ ε2c , (3.65)

and as a direct consequence of Lemma 5.1 in [13],

ess sup
t∈(0, T )

∣
∣
∣

{

x ∈ Ω
∣
∣
∣ (̺ε , ϑε)(t , x) ∈ Mres

}∣
∣
∣ ≤ ε2c . (3.66)
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3.2.2 Uniform estimates

We now use the structural properties imposed through the constitutive relations
(3.35) - (3.44) in order to prove uniform estimates introduced in the following
Lemma.

Lemma 16 Let all assumptions introduced in the first section be satisfied and
{̺ε , ~uε , ϑε , ~Bε} be a family of solutions satisfying (3.24) - (3.29). Then we
have

ess sup
t∈(0, T )

∫

Ω

(

[̺ε]
5

3
res + [ϑε]

4
res

)

(t)dx ≤ ε2c , (3.67)

∫ T

0

‖~uε(t)‖2
W 1, 2(Ω; R3)dt ≤ c , (3.68)

∫ T

0

∥
∥
∥

(ϑε − ϑ

ε

)

(t)
∥
∥
∥

2

W 1, 2(Ω)
dt ≤ c , (3.69)

∫ T

0

∥
∥
∥

( log ϑε − logϑ

ε

)

(t)
∥
∥
∥

2

W 1, 2(Ω)
dt ≤ c , (3.70)

∫ T

0

∥
∥
∥

~Bε(t)

ε

∥
∥
∥

2

W 1, 2(Ω; R3)
dt ≤ c , (3.71)

∫ T

0

∥
∥
∥

[̺εs(̺ε , ϑε)

ε

]

res
(t)

∥
∥
∥

q

Lq(Ω)
dt ≤ c , (3.72)

∫ T

0

∥
∥
∥

[̺εs(̺ε , ϑε)

ε

]

res
~uε(t)

∥
∥
∥

q

Lq(Ω; R3)
dt ≤ c , (3.73)

∫ T

0

∥
∥
∥

[κF (̺ε , ϑε , ~Bε)

ϑε

]

res

(∇ϑε

ε

)

(t)
∥
∥
∥

q

Lq(Ω; R3)
dt ≤ c , (3.74)

for a certain q > 1 , where the constant c is independent of ε .

Proof.

(i) Estimate (3.67) follows from (3.36), (3.39), (3.41) applied to estimate
(3.61).

(ii) Substituting (3.7) - (3.10) and (3.22) into (3.65), together with the hy-
pothesis (3.42) - (3.44), give rise to

∫ T

0

‖∇~uε + ∇T~uε −
2

3
div~uεI‖2

L2(Ω; R3×3)dt ≤ c ,
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Now we can use this estimate together with (3.63) and (3.66) in the gen-
eralized Korn’s inequality (see [13], Proposition 2.1) in order to derive
(3.68).

(iii) In a similar way, we deduce from (3.65) a uniform bound
∫ T

0

(∥
∥
∥∇

(ϑε

ε

)∥
∥
∥

2

L2(Ω)
+

∥
∥
∥∇

( log ϑε

ε

)∥
∥
∥

2

L2(Ω)

)

dt ≤ c ,

which, together with (3.60), (3.66) and the generalized Poincare’s inequal-
ity ([13], Proposition 2.2) gives rise to (3.69), (3.70).

(iv) In a same way as in the two previous cases we use (3.22), (3.44) and (3.65)
to derive the estimate

∥
∥
∥curl

~Bε

ε

∥
∥
∥

2

L2(Ω; R3)
≤ c .

From this estimate and (3.64), (3.24) we see that ~Bε/ε satisfies the as-
sumptions of the embedding Theorem 6.1 in [8]. Thus (3.71) follows from
it immediately.

(v) By virtue of (3.37) - (3.40) we can write

|̺εs(̺ε , ϑε)| ≤ c
(

1 + ̺ε| log ̺ε| + ̺ε| logϑε − log ϑ| + ϑ3
ε

)

. (3.75)

But from (3.66) it follows that

ess sup
t∈(0, T )

∥
∥
∥

[1

ε

]

res
(t)

∥
∥
∥

L2(Ω)
≤ c , (3.76)

while the first term in (3.67) yields

ess sup
t∈(0, T )

∥
∥
∥

[̺ε log ̺ε

ε

]

res
(t)

∥
∥
∥

Lq(Ω)
≤ c , (3.77)

for any 1 ≤ q < 5
3
. Furthermore above derived estimates (3.67) and (3.70)

give rise
∫ T

0

∥
∥
∥

[̺ε(log ϑε − log ϑ)

ε

]

res
(t)

∥
∥
∥

2

Lp(Ω)
dt ≤ c , (3.78)

for a certain p > 1 , and finally the last term in (3.75) can be estimated
by the second term in (3.67) which implies

ess sup
t∈(0, T )

∥
∥
∥

[ϑ3
ε

ε

]

res
(t)

∥
∥
∥

L
4
3 (Ω)

≤ c , (3.79)
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Now substituting relations (3.76) - (3.79) into (3.75) yields (3.72).

(vi) In order to prove estimate (3.73), we use (3.63), (3.67) and (3.70) to obtain

∫ T

0

∥
∥
∥

[̺ε(logϑε − log ϑ)~uε

ε

]

res

∥
∥
∥

q

Lq(Ω; R3)
dt ≤ c ,

for a certain q > 1 , which combined with the estimates the previous steps
and (3.66), gives rise to (3.73).

(vii) Finally, according to (3.43),

[κF (̺ε , ϑε , ~Bε)

ϑε

]

res

∣
∣
∣
∇ϑε

ε

∣
∣
∣ ≤ c

(∣
∣
∣
∇ logϑε

ε

∣
∣
∣ + [ϑ2

ε]res

∣
∣
∣
∇ϑε

ε

∣
∣
∣

)

,

where, as a consequence of (3.67), (3.69) we have {[ϑε]res}ε>0 is bounded in
L∞(0 , T ;L2(Ω))∩L1(0 , T ;L3(Ω)) . This fact together with (3.69), (3.70)
and interpolation inequality implies (3.74).

�

3.3 Convergence

The uniform estimates established in Lemma 16 will be used in order to let
ε → 0 in (3.25) - (3.29) and to identify the limit problem. Since the residual
parts of the quantities are small of order ε , we focus on the essential parts.

3.3.1 Equation of continuity

We first show that the continuity equation (3.25) reduces to the incompress-
ibility condition (3.30). From the uniform estimate (3.68), we deduce

~uε → ~U weakly in L2(0 , T ;W 1, 2(Ω ; R3)) . (3.80)

Furthermore, we have

̺ε − ̺

ε
=

[̺ε − ̺

ε

]

ess
+

[̺ε − ̺

ε

]

res
,

where the second term tends to zero in L∞(0 , T ;L
5

3 (Ω)) due to (3.66), (3.67)
and [̺ε − ̺

ε

]

ess
→ ̺(1) weakly − (∗) in L∞(0 , T ;L2(Ω)) , (3.81)
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and thus
̺ε − ̺

ε
→ ̺(1) weakly − (∗) in L∞(0 , T ;L

5

3 (Ω)) , (3.82)

especially

̺ε → ̺ in L∞(0 , T ;L
5

3 (Ω)) . (3.83)

We are now able to pass to the limit for ε → 0 in (3.25) to conclude
∫ T

0

∫

Ω

~U · ∇ϕdx dt = 0 ,

for all ϕ ∈ D((0 , T )×Ω) . Since ~U ∈ L2(0 , T ;W 1, 2(Ω ; R3)) and the boundary
of Ω is Lipschitz, (3.30) is proved.

3.3.2 Entropy balance

With regard to (3.25), the entropy balance (3.28) can be recast in the form
∫ T

0

∫

Ω

̺ε

(s(̺ε , ϑε) − s(̺ , ϑ)

ε

)(

∂tϕ+ ~uε · ∇ϕ
)

dx dt

−
∫ T

0

∫

Ω

(κF (̺ε , ϑε , ~Bε)

ϑε
+ κRϑ

2
ε

)

∇
(ϑε

ε

)

· ∇ϕdx dt

+
1

ε
< σε ;ϕ >[M, C]([0, T ]×Ω)= −

∫

Ω

̺0, ε

(s(̺0, ε , ϑ0, ε) − s(̺ , ϑ)

ε

)

ϕ(0 , ·)dx
(3.84)

to be satisfied for any ϕ ∈ D([0 , T )× Ω) .
Using estimate (3.60), we get

[ϑε − ϑ

ε

]

ess
→ ϑ(1) weakly − (∗) in L∞(0 , T ;L2(Ω)) , (3.85)

and since the measure of the residual subset tends to zero as mentioned in
(3.66), we deduce from (3.69).

ϑε − ϑ

ε
→ ϑ(1) weakly in L2(0 , T ;W 1, 2(Ω)) . (3.86)

In order to pass to the limit in (3.84) we proceed by several steps to prove
required limits.

We first rewrite

̺ε

(s(̺ε , ϑε) − s(̺ , ϑ)

ε

)

= [̺ε]ess
[s(̺ε , ϑε)]ess − s(̺ , ϑ)

ε

+
[̺ε

ε

]

res

(

[s(̺ε , ϑε)]ess − s(̺ , ϑ)
)

+
[̺εs(̺ε , ϑε)

ε

]

res
,

(3.87)
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where the second term of the right-hand side converges to zero in L∞(0 , T ;L
5

3 (Ω))
due to (3.67) and the last term tends also to zero in Lp((0 , T )×Ω) for a certain
p > 1 which can be proved using (3.66), (3.70). Moreover, when we take into
account (3.66), (3.73), (3.80), we obtain

[̺ε

ε

]

res

(

[s(̺ε , ϑε)]ess − s(̺ , ϑ)
)

~uε → 0 in Lp(0 , T ;Lp(Ω ; R3)) ,

[̺εs(̺ε , ϑε)

ε

]

res
~uε → 0 in Lp(0 , T ;Lp(Ω ; R3)) ,

(3.88)

for a certain p > 1 . Finally Proposition 5.2 in [13] together with (3.83) yields

[̺ε]ess
[s(̺ε , ϑε)]ess − s(̺ , ϑ)

ε
→ ̺

(∂s(̺ , ϑ)

∂̺
̺(1) +

∂s(̺ , ϑ)

∂ϑ
ϑ(1)

)

, (3.89)

weakly-(*) in L∞(0 , T ;L2(Ω ; R3)) , which solves the limit of the first term in
(3.84).

The entropy flux can be rewritten similarly as

(κF (̺ε , ϑε , ~Bε)

ϑε
+ κRϑ

2
ε

)

∇
(ϑε

ε

)

=
[κF (̺ε , ϑε , ~Bε)

ϑε

]

ess
∇

(ϑε − ϑ

ε

)

+κR[ϑ2
ε]ess∇

(ϑε − ϑ

ε

)

+
([κF (̺ε , ϑε , ~Bε)

ϑε

]

res
+ κR[ϑ2

ε]res

)

∇
(ϑε

ε

)

.

(3.90)

Obviously
~Bε → 0 in L2(0 , T ;W 1, 2(Ω ; R3)) (3.91)

which together with (3.83), (3.85), (3.86) yields

([κF (̺ε , ϑε , ~Bε)

ϑε

]

ess
+ κR[ϑ2

ε]ess

)

∇
(ϑε − ϑ

ε

)

→
(κF (̺ , ϑ , 0)

ϑ
+ κRϑ

2
)

∇ϑ(1) ,

(3.92)
weakly in L2(0 , T ;L2(Ω ; R3)) . In accordance with (3.66), (3.67), (3.69) (3.74)
it is easy to see

[κF (̺ε , ϑε , ~Bε)

ϑε

]

res
∇

(ϑε

ε

)

→ 0 in Lp(0 , T ;Lp(Ω ; R3)) ,

κR[ϑ2
ε]res∇

(ϑε

ε

)

→ 0 in Lp(0 , T ;Lp(Ω ; R3)) ,

(3.93)

for a certain p > 1 which handles the second integral in (3.84).
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The most complicated term in (3.84) is the second part of the first integral.
In order to deal with this limit, consider the following vector fields defined on
(0 , T )× Ω

~Uε =
(

[̺ε]ess
[s(̺ε , ϑε)]ess − s(̺ , ϑ)

ε
,

[s(̺ε , ϑε)]ess − s(̺ , ϑ)

ε
~uε −

[κF (̺ε , ϑε , ~Bε)

ϑε

]

ess
∇

(ϑε

ε

))

,

~Vε = (G(~uε) , 0 , 0 , 0) ,

for an arbitrary function G ∈W 1,∞(R3) . Using results proved in the previous

steps together with (3.67), one can check that ~Uε , ~Vε meet assumptions of Div-
Curl Lemma 4.24 in [30]. From those statement and since G is an arbitrary we
get the

[̺ε]ess
[s(̺ε , ϑε)]ess − s(̺ , ϑ)

ε
~uε → ̺

(∂s(̺ , ϑ)

∂̺
̺(1) +

∂s(̺ , ϑ)

∂ϑ
ϑ(1)

)

~U , (3.94)

weakly in L2(0 , T ;L
3

2 (Ω ; R3)) .
We are now able to pass to the limit for ε → 0 in the entropy inequality

(3.84) to get

∫ T

0

∫

Ω

̺
(∂s(̺ , ϑ)

∂̺
̺(1) +

∂s(̺ , ϑ)

∂ϑ
ϑ(1)

)(

∂tϕ+ ~U · ∇ϕ
)

dx dt

−
∫ T

0

∫

Ω

(κF (̺ , ϑ , 0)

ϑ
+ κRϑ

2
)

∇ϑ(1) · ∇ϕdx dt

= −
∫

Ω

̺
(∂s(̺ , ϑ)

∂̺
̺

(1)
0 +

∂s(̺ , ϑ)

∂ϑ
ϑ

(1)
0

)

ϕ(0 , ·)dx ,

(3.95)

for any ϕ ∈ D([0 , T ) × Ω) . In the next section we establish relation between
̺(1) and ϑ(1) and then (3.95) gives rise (3.32).

3.3.3 Momentum equation

It follows from (3.80), (3.83) that

̺ε~uε → ̺~U weakly in L2(0 , T ;L
30

23 (Ω ; R3)) . (3.96)

Moreover, we deduce from (3.63), (3.67) that

{̺ε~uε}ε>0 is bounded in L∞(0 , T ;L
5

4 (Ω ; R3)) , (3.97)
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which combined with (3.80), gives rise to

̺ε~uε ⊗ ~uε → ̺~U ⊗ ~U weakly in L2(0 , T ;L
30

23 (Ω ; R3×3)) . (3.98)

Next, as a consequence of (3.67), (3.69)

{ϑε}ε>0 is bounded in L∞(0 , T ;L4(Ω)) ∩ L2(0 , T ;L6(Ω)) . (3.99)

Thus hypothesis (3.42), together with (3.80), (3.91), (3.99), give rise to

Sε → ν(ϑ , 0)(∇~U + ∇T ~U) weakly in Lq(0 , T ;Lq(Ω ; R3)) , (3.100)

for a certain q > 1 .
Moreover, one can use (3.29) together with estimates (3.64), (3.71) and

Aubin-Lions Theorem 1.71 in [30] to derive

~Bε

ε
→ ~B weakly in L2(0 , T ;W 1, 2(Ω ; R3)) and strongly in L2((0 , T ) × Ω ; R3) ,

(3.101)
and consequently,

1

µ
curl

( ~Bε

ε

)

×
~Bε

ε
→ 1

µ
curl ~B × ~B weakly in Lq((0 , T ) × Ω ; R3) ,

for a certain q > 1 .
Now, it is easy to let ε → 0 in the momentum equation (3.26) as soon as

the test function ϕ is divergenceless. If this is the case, we get

∫ T

0

∫

Ω

(

̺~U · ∂tϕ+ ̺~U ⊗ ~U : ∇ϕ
)

dx dt+

∫

Ω

(̺~U0) · ϕdx

=

∫ T

0

∫

Ω

(

ν(ϑ , 0)[∇~U + ∇T ~U ] : ∇ϕ− 1

µ
curl ~B × ~B · ϕ

)

dx dt ,

(3.102)

for any test function ϕ ∈ D([0 , T )× Ω ; R3) , divϕ = 0 in Ω , ϕ · ~n|∂Ω = 0 .
To complete this part, it remains to establish relation between ̺(1) and ϑ(1) .

We begin writing as usual

p(̺ε , ϑε) = [p(̺ε , ϑε)]ess + [p(̺ε , ϑε)]res ,

where, in accordance with hypothesis (3.39), (3.41),

0 ≤ [p(̺ε , ϑε)]res

ε
≤ c

([1

ε

]

res
+

[̺
5

3
ε

ε

]

res
+

[ϑ4
ε

ε

]

res

)

. (3.103)



CHAPTER 3. SINGULAR LIMITS OF THE EQUATIONS OF MHD 57

Consequently, this estimate together with (3.66), (3.67) imply that

ess sup
t∈(0, T )

∥
∥
∥

[p(̺ε , ϑε)

ε

]

res

∥
∥
∥

L1(Ω)
≤ εc . (3.104)

Thus by means of proposition 5.2 in [13] and the previous estimate (3.104), we
multiply the momentum equation (3.26) by ε and pas to the limit for ε→ 0 to
obtain

∫ T

0

∫

Ω

(∂p(̺ , ϑ)

∂̺
̺(1) +

∂p(̺ , ϑ)

∂ϑ
ϑ(1)

)

divϕdx dt = 0 , (3.105)

for all ϕ ∈ D((0 , T )× Ω ; R3) . We also deduce from (3.95) that
∫

Ω

̺
(∂s(̺ , ϑ)

∂̺
̺(1) +

∂s(̺ , ϑ)

∂ϑ
ϑ(1)

)

(t)dx

∫

Ω

̺
(∂s(̺ , ϑ)

∂̺
̺

(1)
0 +

∂s(̺ , ϑ)

∂ϑ
ϑ

(1)
0

)

dx for a.a. t ∈ (0 , T ) .

Since the mean of ̺ε is constant and the total mass is conserved, one gets due
to (3.82) that ̺(1) has zero mean. Then the previous relation may be reduced
to ∫

Ω

ϑ(1)(t)dx =

∫

Ω

ϑ(1)(t)dx for a.a. t ∈ (0 , T ) .

Assuming, in addition (3.46) we conclude
∫

Ω

ϑ(1)(t)dx = 0 for a.a. t ∈ (0 , T ) . (3.106)

Since ̺(1) and ϑ(1) has zero mean we get from (3.105) the desired conclusion

̺(1) = −pϑ

p̺
(̺ , ϑ)ϑ(1) . (3.107)

Expressing ̺(1) in (3.95) by means of (3.107) and using Gibbs relation (3.6),
we have

∫ T

0

∫

Ω

̺cp(̺ , ϑ)ϑ(1)
(

∂tϕ+ ~U · ∇ϕ
)

dx dt

−
∫ T

0

∫

Ω

(

κF (̺ , ϑ , 0) + κRϑ
2
)

∇ϑ(1) · ∇ϕdx dt =

−
∫

Ω

̺ϑ
(∂s(̺ , ϑ)

∂̺
̺

(1)
0 +

∂s(̺ , ϑ)

∂ϑ
ϑ

(1)
0

)

ϕ(0 , ·)dx ,

(3.108)
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for any ϕ ∈ D([0 , T ) × Ω) , where cp and α are expressed in (3.33). If we set
Θ = ϑ(1) then we can see that (3.108) is a weak formulation of (3.32) together
with the boundary and initial conditions.

Moreover, it follows from estimate (3.63) combined with (3.80), (3.83) that

√
̺ε~uε →

√

̺~U weakly in L∞(0 , T ;L2(Ω ; R3)) ,

in particular,

~U ∈ L∞(0 , T ;L2(Ω ; R3)) ∩ L2(0 , T ;W 1, 2(Ω ; R3)) ,

and finally div(~Uϑ(1)) ∈ Lq((0 , T ) × Ω) for a certain q > 1 . Now we use the
theory of linear parabolic equation to prove higher regularity of ϑ1 :

ϑ(1) ∈W 1, q(0 , T ;Lq(Ω)) ∩ Lq(0 , T ;W 2, q(Ω)) for a certain q > 1 .

When we set Θ = ϑ(1) again, we prove that (3.32) is satisfied a.e. in (0 , T )×Ω .
The Boussinesq relation in (3.32) can be deduced directly by putting r = ̺(1)

in (3.107).

3.3.4 Maxwell equation

From (3.80), (3.101) it is easy to see

~Bε

ε
× ~uε → ~B × ~U weakly in Lq(0 , T ;Lq(Ω ; R3)) , (3.109)

for a certain q > 1 , and due to hypothesis (3.44) and (3.83), (3.86), (3.91)

λ(̺ε , ϑε , ~Bε)curl
~Bε

ε
→ λ(̺ , ϑ , 0)curl ~B weakly in L1(0 , T ;L1(Ω ; R3)) .

(3.110)
We can now divide equation (3.29) by ε , and send to the limit for ε → 0 to
obtain (3.34).

3.4 Concluding remarks

So far we have almost completely proved Theorem 3.1.1, but the only missing
thing is to show

∫ T

0

∫

Ω

̺~U ⊗ ~U : ∇ϕdx dt =

∫ T

0

∫

Ω

̺~U ⊗ ~U : ∇ϕdx dt , (3.111)
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for any ϕ ∈ D((0 , T ) × Ω ; R3) , divϕ = 0 , ϕ · ~n|∂Ω = 0 . The main idea how
to show this fact, is to use Helmholtz decomposition (see [30], page 286) which
says that each vector function ~v ∈ Lp(Ω ; R3) may be written as

~v = H[~v ] + H⊥[~v ] ,

where H[~v ] is called as a solenoidal part and H⊥[~v ] as a gradient part. In order
to show (3.111) let’s write

̺ε~uε ⊗ ~uε = H[̺ε~uε ] ⊗ ~uε + H⊥[̺ε~uε ] ⊗H[~uε ] + H⊥[̺ε~uε ] ⊗H⊥[~uε ] , (3.112)

where, in accordance with (3.63), (3.67) and (3.80), the first term in (3.112)

H[̺ε~uε ] ⊗ ~uε → ̺~U ⊗ ~U weakly in L2(0 , T ;L
30

29 (Ω ; R3)) .

Moreover, combining (3.82) with (3.96) we infer that

H⊥[̺ε~uε ] ⊗ H[~uε ] → 0 weakly in L2(0 , T ;L
30

29 (Ω ; R3)) .

It remain to show that the last term in (3.112) tends to zero in the sense

∫ T

0

∫

Ω

H⊥[̺ε~uε ] ⊗H⊥[~uε ] : ∇ϕdx dt → 0 , (3.113)

for any ϕ ∈ D((0 , T )× Ω ; R3) , divϕ = 0 , ϕ · ~n|∂Ω = 0 .
Because our estimates don’t provide any bound for the last term in (3.112),

verification of (3.113) must be done by means of detailed analysis. The first
part is to derive so-called Acoustic equation, which was done in [13], section 5.4.
The last part is to investigate the spectrum of corresponding wave operator.
Since the quantity 1

ε2µ
~Jε× ~Bε is bounded uniformly in Lp((0 , T )×Ω ; R3) , for a

certain p > 1 , we are able to repeat the same steps as done in [13], section 5.4.
to derive the desired result (3.113), which completes the proof of Theorem 3.1.1.

• The proof of Theorem 3.1.1 remains basically unchanged if instead of
boundary conditions (3.13) - (3.15), we suppose that all quantities are
spatially periodic, or equivalently if Ω = T 3 , where T 3 ⊂ R3 is a torus.

• Similar result can be proved if the motion of the fluid is driven by a bounded
external force, i.e., when (3.18) contains an additional term ̺∇F and en-
ergy inequality (3.20) contains −̺F or even we can implement Froude
number into (3.17) - (3.22) Fr =

√
ε which means (3.18) contains 1

ε
̺∇F

and (3.20) −ε̺F .
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Chapter 4

Incompressible limits for the
Navier-Stokes-Fourier systems
on unbounded domains under
strong stratification

Corresponds to the article by Kukučka P.: Incompressible Limits for the Navier-Stokes-Fourier Sys-

tems on Unbounded Domains under Strong Stratification, submitted for publication to Archive

Rational Mech. Anal.

Abstract: This paper studies the asymptotic limit for solutions to the full Navier-Stokes-Fourier

system under the strong stratification on unbounded domains. Such system models many problems

arising in astrophysics. More precisely, the original Navier-Stokes-Fourier system is rescaled such

that the both Mach and Froude number are equal to ε , and the Péclet number is proportional to ε
2 .

Special attention is focused to the acoustic waves which analysis is based on certain L
2 estimates

for abstract operators in a Hilbert space. Then the convergence to the target system is shown.
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Keywords: Navier-Stokes-Fourier system, acoustic equation, strong stratification

4.1 Introduction

Singular limits in the equations of fluid dynamics are studied extensively, and
many results have already been achieved in this field. One of the first result
was proved by Klainerman and Majda in [21] where the existence of the limit
solution for the Navier-Stokes system is proved in the classical sense, but on
a sufficiently small time interval. This idea was then taken by Alazard in [2]

61
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where the limit solutions for full Navier-Stokes system was studied under the
assumption that the Mach number tends to zero. Another approach to this
topic was proposed by Lions and Masmoudi in [27], where the existence is
shown in a weak sense. Similar problems were further developed by Desjardins
and Grenier [6]. The same strategy was later adapted for the full Navier-Stokes-
Fourier system by Feireisl and Novotný in [14] and summarized in [13]. In cited
papers, the limit solutions are proved in a weak sense on an arbitrary time
interval (0 , T ) and a bounded domain Ω ⊂ R3 or the whole space R3. Several
more interesting problems when the domain Ω ⊂ R3 is unbounded were solved
by Feireisl, Novotný and Petzeltová in [17], [12]. In [17] the incompressible
limit for the Navier-Stokes system under strong stratification is studied and
the second paper [12] studies the full Navier-Stokes-Fourier system in which
Mach number tends to zero. Our presented problem arises in astrophysics
and it concerns flow dynamics in stellar radiative zones representing a major
challenge of the current theory of stellar interiors. Under these circumstances,
the fluid is a plasma with the strong radiative transport due to hot and energetic
radiation fields prevailing in it. Furthermore, such plasma is characterized by
strong stratification effects and the feature that the convective motions are
much slower than the speed of sound. In this paper we extend the results
from last mentioned papers for the full Navier-Stokes-Fourier system under
the strong stratification. Our problem is defined on an unbounded domain in
Ω ⊂ R3 which seems to be more natural for astrophysics in comparison with
problem studied in [13], Chapter 6., where an infinite slab bounded above and
below by two parallel planes is taken as a domain.

Consider an unbounded domain Ω ⊂ R3 with a compact regular boundary
∂Ω and a family of bounded domains {Ωε}ε>0 approximating Ω in the following
sense:

Ωε ⊂ Ω , ∂Ω ⊂ ∂Ωε , εdist[x , ∂Ωε] → ∞ as ε→ 0 , for any x ∈ Ω . (4.1)

Motivated by the Chapter 6. in [13] we consider the following re-scaled Navier-
Stokes-Fourier system

̺t + div(̺~u) = 0 , (4.2)

(̺~u)t + div(̺~u⊗ ~u) +
1

ε2
∇pε(̺ , ϑ) = div Sε +

1

ε2
̺∇F , (4.3)

(̺sε(̺ , ϑ))t + div(̺sε(̺ , ϑ)~u) +
1

ε2
div(

~qε
ϑ

) = σε , (4.4)

d

dt

∫

Ωε

(ε2

2
̺|~u|2 + ̺eε(̺ , ϑ) − ̺F

)

dx =

∫

∂Ω

β1ϑ
ϑ− ϑ

εβ
dSx , (4.5)
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where the density ̺ = ̺(t , x) , the velocity field ~u = ~u(t , x) , the absolute
temperature ϑ = ϑ(t , x) are state variables depending on the time t ∈ (0 , T )
and the spatial position x ∈ Ωε , F = F (x) is an external force defined on
Ω , β1 is a positive constant, and 1 < β < 2. pε = pε(̺ , ϑ) , eε = eε(̺ , ϑ) ,
sε = sε(̺ , ϑ) denote the re-scaled pressure, the internal energy and the entropy
obeying Gibbs’ relation

ϑdsε = deε + pε d
(1

̺

)

, (4.6)

where the re-scaling is introduced as follows

pε(̺ , ϑ) =
ϑ

5

2

εα
P

(εα̺

ϑ
3

2

)

+ ε
a

3
ϑ4 , a > 0 , (4.7)

eε(̺ , ϑ) =
3

2

ϑ
5

2

̺εα
P

(

εα ̺

ϑ
3

2

)

+ εa
ϑ4

̺
, (4.8)

sε(̺ , ϑ) = S
(

εα ̺

ϑ
3

2

)

− S(εα) + ε
4

3
a
ϑ3

̺
, (4.9)

with 2 < α < 3 . The rescaled viscous stress tensor Sε obeys the Newton’s law

Sε = (ε2α/3µ0 + µ1ϑ)
(

∇~u+ ∇~uT − 2

3
div~u I

)

, (4.10)

while the heat flux ~qε is given by Fourier’s law

~qε = −
(

ε2+2α/3κ0 + ε2κ1ϑ+ dϑ3
)

∇ϑ , (4.11)

with a positive constants d , µ0 , µ1 , κ0 , κ1 . The entropy production rate σε is
a non-negative measure on the set [0 , T ] × Ωε satisfying

σε ≥
1

ϑ

(

ε2
Sε : ∇~u− 1

ε2

~qε · ∇ϑ
ϑ

)

, (4.12)

as a consequence of the Second law of thermodynamics, where

1

ϑ

(

ε2
Sε : ∇~u− 1

ε2

~qε · ∇ϑ
ϑ

)

≥
ε2

2
µ1

∣
∣
∣∇~u+ ∇~uT − 2

3
div~u I

∣
∣
∣

2

+ ε2α/3κ0|∇ logϑ|2 +
κ1

ϑ
|∇ϑ|2 +

d

ε2
ϑ|∇ϑ|2 .

(4.13)
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Since pε , eε , sε are related by (4.6), S must satisfy

S ′(Z) = −3

2

5
3
P (Z) − ZP ′(Z)

Z2
for allZ > 0 . (4.14)

Here we assume P ∈ C2[0 ,∞) such that

P (0) = 0 , P ′(0) = p0 > 0 , (4.15)

and since we assume that both the specific heat ∂e/∂ϑ and the compressibility
∂p/∂̺ are positive, P has to obey

P ′(Z) > 0 ,
5
3
P (Z) − ZP ′(Z)

Z
> 0 for allZ > 0 , (4.16)

0 < sup
Z>0

5
3
P (Z) − ZP ′(Z)

Z
<∞ , lim

Z→∞

P (Z)

Z
5

3

= p∞ > 0 . (4.17)

In order to eliminate the effect of the boundary layer on propagation of
acoustic waves, the system is supplemented with complete slip boundary con-
ditions

~u · ~n|∂Ωε = 0 , [Sε~n] × ~n|∂Ωε = 0 . (4.18)

In agreement with the energy equality (4.5)

~qε(ϑ ,∇ϑ) · ~n = β1ϑ(ϑ− ϑ)|∂Ω (4.19)

is imposed on the ∂Ω part of the boundary of Ωε, while the rest of the boundary
is thermally insulated

~qε(ϑ ,∇ϑ) · ~n|∂Ωε\∂Ω = 0 . (4.20)

Ill-prepared initial data will be prescribed in the following form

̺(0 , ·) = ̺0, ε = ˜̺+ε̺
(1)
0, ε , ~u(0 , ·) = ~u0, ε , ϑ(0 , ·) = ϑ0, ε = ϑ+εϑ

(1)
0, ε , (4.21)

where ϑ > 0 , and ˜̺ is the unique positive solution to the static problem

p0ϑ∇ ˜̺− ˜̺∇F = 0 in Ω , lim
|x|→∞

˜̺ = ̺∞ > 0 . (4.22)

Integral means for both ̺
(1)
0, ε and ϑ

(1)
0, ε are supposed to be zero which reads

∫

Ωε

̺
(1)
0, εdx =

∫

Ωε

ϑ
(1)
0, εdx = 0 for all ε > 0. (4.23)
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Equations (4.3) - (4.5) contain singular terms on a small parameter ε result-
ing from a suitable scaling of the original Navier-Stokes-Fourier system. This
corresponds to the singular limit of the Navier-Stokes-Fourier system, where
both the Mach and the Froude number are proportional to ε and the Péclet
number is proportional to ε2 . Physically speaking, the fluid is almost incom-
pressible and strongly stratified. The characteristic temperature of the system
is large of order ε−2α/3 , and εβ is a scaling of the heat flux through the bound-
ary. The aim of this paper is to pass to the limit for ε → 0 in (4.2) - (4.5).
We first collect all uniform estimates, independent of ε , resulting from he total
dissipation balance. These estimates enable us to pass to the limit for ε → 0
in all terms except of ̺ε~uε ⊗ ~uε which is the most delicate issue. In order to
overcome this problem we show that {~uε}ε>0 converges strongly. This will be
viewed as a consequence of the local energy decay of acoustic waves for ε → 0 .
The so-called ”flat” case when F = 0 and Ω = R3 is solved in [6] by using
the so-called Strichartz estimates (see [36]). However, for a general exterior
domain, the Strichartz estimates become much more delicate and require some
restrictions on the shape of ∂Ω , and thus are not available in general. Local
decay of the acoustic energy in exterior domains was also shown by Alazard
[1] in the context of the Euler system, and his method is based on the concept
of certain semiclassical defect measures. We use other approach developed in
[17] based on weighted space-time estimates for abstract wave equations due to
Kato [20]. We exploit that the velocity field ~uε is locally compact with respect
to the space variable. Accordingly, it is enough to apply the mentioned Kato’s
result to fixed range of frequencies of acoustic waves. In such a way, the prob-
lem is reduced to the validity of the limiting absorption principle for a modified
wave operator which is shown in the last section.

4.1.1 Preliminaries and main result

Let {̺ε , ~uε , ϑε}ε>0 be a family of weak solutions to the Navier-Stokes-Fourier
system (4.2) - (4.5) supplemented with the boundary and initial conditions
(4.21), (4.23). Their existence is assured by Theorem 3.1, 3.2 in [13] which
reads as follows:

•
̺ε ≥ 0 , ̺ε ∈ L∞(0 , T ;L

5

3 (Ωε)) ,

~uε ∈ L2(0 , T ;V ) , V = {~u ∈W 1, 2(Ωε)| ~u · ~n|∂Ωε = 0} ,
ϑε > 0 , ϑε ∈ L2(0 , T ;W 1, 2(Ωε)) ∩ L∞(0 , T ;L4(Ωε)) ,

(4.24)

• The continuity equation (4.2) is satisfied in the sense of renormalized so-
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lutions:
∫ T

0

∫

Ωε

̺εB(̺ε)
(

∂tϕ+ ~uε · ∇ϕ
)

dx dt

=

∫ T

0

∫

Ωε

b(̺ε)div~uεϕdx dt−
∫

Ωε

̺0, εB(̺0, ε)ϕ(0 , ·)dx ,
(4.25)

for any ϕ ∈ D([0 , T ) × Ωε) and any b ∈ L∞ ∩ C[0 ,∞) where

B(̺) = B(0) +

∫ ̺

1

b(z)

z2
dz ;

• Momentum equation:
∫ T

0

∫

Ωε

(

̺ε~uε · ∂tϕ+ ̺ε[~uε ⊗ ~uε] : ∇ϕ+
1

ε2
pε(̺ε , ϑε)divϕ

)

dx dt

=

∫ T

0

∫

Ωε

(

Sε : ∇ϕ− 1

ε2
̺ε∇F · ϕ

)

dx dt−
∫

Ωε

(̺0, ε~u0, ε) · ϕ(0 , ·)dx ,
(4.26)

for any ϕ ∈ D([0 , T ) × Ωε ; R3) , ϕ · ~n|∂Ωε = 0 ;

• Total energy balance:
∫

Ωε

(ε2

2
̺ε|~uε|2 + ̺eε(̺ε , ϑε) − ̺εF

)

(t)dx =

∫ t

0

∫

∂Ω

β1ϑε
ϑ− ϑε

εβ
dSxds

+

∫

Ωε

(ε2

2
̺0, ε|~u0, ε|2 + ̺0, εeε(̺0, ε , ϑ0, ε) − ̺0, εF

)

dx , for a. a. t ∈ (0 , T ) ;

(4.27)

• Entropy balance equation:
∫ T

0

∫

Ωε

̺εsε(̺ε , ϑε)
(

∂tϕ+ ~uε · ∇ϕ
)

dx dt+
1

ε2

∫ T

0

∫

Ωε

~qε
ϑε

· ∇ϕdx dt

+ < σε , ϕ >[M,C]([0,T ]×Ωε)
−

∫ T

0

∫

∂Ω

β1
ϑε − ϑ

εβ
ϕdSxdt

= −
∫

Ωε

̺0, εsε(̺0, ε , ϑ0, ε)ϕ(0 , ·)dx ,
(4.28)

for any ϕ ∈ D([0 , T ) × Ωε) , where σε ∈ M+([0 , T ] × Ωε) ,

σε ≥
1

ϑε

(

ε2
Sε : ∇~uε −

1

ε2

~qε
ϑε

· ∇ϑε

)

.
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We now introduce our target system consisting of

• the hydrostatic balance equation:

p0ϑ∇ ˜̺− ˜̺∇F = 0 ; (4.29)

• the anelastic constraint:
div(˜̺~U) = 0 ; (4.30)

• the momentum equation supplemented with the complete slip boundary
condition:

∂t(˜̺~U) + div(˜̺~U ⊗ ~U) + ˜̺∇Π = µ1ϑ∆~U +
1

3
µ1ϑ∇div~U +

˜̺

ϑ
FΦ ,

~U · ~n|∂Ω = 0 ,
[

µ1ϑ
(

∇~U + ∇T ~U
)

~n
]

× ~n|∂Ω = 0 ;

(4.31)

• and the ”gradient” of the temperature Φ is related with the velocity
through

− ˜̺∇F · ~U = dϑ
3
divΦ in Ω , Φ · ~n|∂Ω = 0 . (4.32)

This resulting problem can be viewed as a simple model of the fluid motion in
the stellar radiative zones. For detailed physical explanation of it, see e.g. [5],
[25].
Remark: A suitable weak formulation of the momentum equation (4.31) reads:

∫ T

0

∫

Ω

(

˜̺~U · ϕ+ ˜̺~U ⊗ ~U : ∇ϕ+
˜̺

ϑ
FΦ · ϕ

)

dx dt =

∫ T

0

∫

Ω

(

µ1ϑ
(

∇~U + ∇T ~U − 2

3
div~UI

)

: ∇ϕdx dt−
∫

Ω

˜̺~U0 · ϕ(0 , ·)dx
(4.33)

to be satisfied for any test function

ϕ ∈ C∞
c ([0 , T ) × Ω ; R3) , ϕ · ~n|∂Ω = 0 , div(˜̺ϕ) = 0 .

Before we formulate main result of this paper, let’s introduce the concept of
so-called weighted Helmholtz decomposition

Definition 4.1.1 For ~v ∈ L2
1/ ˜̺(Ω ; R3) , we introduce the weighted Helmholtz

decomposition in the form

~v = H ˜̺[~v] ⊕H⊥
˜̺ [~v] , withH⊥

˜̺ [~v] = ˜̺∇Ψ ,
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where Ψ ∈ D1, 2(Ω) is the unique solution of the problem
∫

Ω

˜̺∇Ψ · ∇ϕdx =

∫

Ω

~v · ∇ϕdx for allϕ ∈ D1, 2(Ω) .

The space D1, 2(Ω) is defined as a completion of C∞
c (Ω) with respect to the norm

‖∇ϕ‖L2(Ω) . For the more detailed explanation see e.g. [13], page 204.

The main result reads as follows.

Theorem 4.1.1 Let Ω ⊂ R3 be an unbounded domain with a compact boundary
of class C∞ and F ∈ C1, 1(Ω) ∩ Cc(Ω). Let {̺ε , ~uε , ϑε}ε>0 be a family of weak
solutions to the Navier-Stokes-Fourier system (4.2) - (4.5) on (0 , T ) × Ωε ,
supplemented with the boundary and initial conditions (4.21), (4.23), and let
all assumptions of the previous section be satisfied too. Moreover we will assume
that

{̺(1)
0, ε}ε>0 , {ϑ(1)

0, ε}ε>0 are bounded in L2 ∩ L∞(Ω) ,

{~u0, ε}ε>0 is bounded in L2 ∩ L∞(Ω) .

Then at least for a suitable subsequence we have

̺ε → ˜̺ a.a. in (0 , T ) × Ω ,

~uε → ~U a.a. in (0 , T ) × Ω ,

ϑε → ϑ a.a. in (0 , T )× Ω ,

∇
(ϑε − ϑ

ε2

)

→ Φ weakly in L1(0 , T ;L1(K ; R3)) ,

where ˜̺ , ~U ,Φ is a weak solution of (4.29) - (4.32), with the initial condition

˜̺~U(0) = H ˜̺[ ˜̺~U0] , ~u0, ε → ~U0 weakly in L2(K ; R3)

for each compact set K ⊂ Ω .
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4.2 Uniform estimates

4.2.1 Total dissipation balance

Combining the entropy production equation and (4.28) with the total energy
balance (4.27) we arrive at total dissipation balance:

∫

Ωε

[1

2
̺ε|~uε|2 +

1

ε2

(

Hε
ϑ
(̺ε , ϑε) − ̺εF

)]

(τ , ·)dx

+
ϑ

ε2
σε

[

[0 , τ ] × Ωε

]

+

∫ τ

0

∫

∂Ω

β1
(ϑε − ϑ)2

ε2+β
dSxdt

=

∫

Ωε

[1

2
̺0, ε|~u0, ε|2 +

1

ε2

(

Hε
ϑ
(̺0, ε , ϑ0, ε) − ̺0, εF

)]

dx for a. a. τ ∈ [0 , T ] ,

(4.34)
where Hε

ϑ
(̺ , ϑ) = ̺eε(̺ , ϑ) − ϑ̺sε(̺ , ϑ) .

Since the functions pε , eε and sε satisfy Gibbs’ equation (4.6), we easily
compute

∂2Hε
ϑ
(̺ , ϑ)

∂̺2
=

1

̺

∂pε(̺ , ϑ)

∂̺
=
ϑ

̺
P ′

(

εα ̺

ϑ
3

2

)

, (4.35)

whence
∂Hε

ϑ
(˜̺ε , ϑ)

∂̺
− ˜̺ε∇F = const , (4.36)

where ˜̺ε is the solution of the static problem

∇pε(˜̺ε , ϑ) − ˜̺ε∇F = 0 in Ω , lim
|x|→∞

˜̺ε = ̺∞ > 0 . (4.37)

Due to (4.36), relation (4.34) may be rewritten in the form
∫

Ωε

[1

2
̺ε|~uε|2 +

1

ε2

(

Hε
ϑ
(̺ε , ϑε) −Hε

ϑ
(̺ε , ϑ)

)]

(τ , ·)dx

+
ϑ

ε2
σε

[

[0 , τ ] × Ωε

]

+

∫ τ

0

∫

∂Ω

β1
(ϑε − ϑ)2

ε2+β
dSxdt

+
1

ε2

∫

Ωε

(

Hε
ϑ
(̺ε , ϑ) − (̺ε − ˜̺ε)

∂Hε
ϑ
(˜̺ε , ϑ)

∂̺
−Hε

ϑ
(˜̺ε , ϑ)

)

(τ , ·)dx

=

∫

Ωε

[1

2
̺0, ε|~u0, ε|2 +

1

ε2

(

Hε
ϑ
(̺0, ε , ϑ0, ε) −Hε

ϑ
(̺0 ,ε , ϑ)

)]

dx

+
1

ε2

∫

Ωε

(

Hε
ϑ
(̺0 ,ε , ϑ) − (̺0 ,ε − ˜̺ε)

∂Hε
ϑ
(˜̺ε , ϑ)

∂̺
−Hε

ϑ
(˜̺ε , ϑ)

)

dx

(4.38)
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for a.a. τ ∈ [0 , T ] . As the pressure pε is determined in terms of the function
P through (4.7), it is easy to check that the positive solution ˜̺ε of the problem
(4.37) satisfies

ϑp0 log ˜̺ε(x) + ϑ
5

2Q
( εα

ϑ
3

2

˜̺ε(x)
)

− ϑ
5

2Q
( εα

ϑ
3

2

̺∞

)

= F (x) + p0ϑ log ̺∞ , (4.39)

where

Q′(r) =

{
P ′(r)−p0

r
for r > 0 ,

P ′′(0) for r = 0 .

Formula (4.39) implies the existence of constants ̺ , ̺ such that

0 < ̺ < inf
x∈Ω

˜̺(x) ≤ sup
x∈Ω

˜̺(x) < ̺ <∞ , (4.40)

uniformly for ε→ 0 . Moreover since F is compactly supported we observe that

‖ ˜̺ε − ˜̺‖C(Ω) ≤ εαc , ˜̺ε = ˜̺ = ̺∞ inΩ \ supp[F ] . (4.41)

We now show that the right-hand side of (4.38) is bounded uniformly for ε → 0 .
Indeed, from the Gibbs’ equation (4.6) and (4.17) one may compute

1

ε2

∣
∣
∣Hε

ϑ
(̺0, ε , ϑ0, ε) −Hε

ϑ
(̺0, ε , ϑ)

∣
∣
∣ ≤ c1

∣
∣
∣
ϑ0, ε − ϑ

ε

∣
∣
∣

2

≤ c2

which together with the assumptions of the Theorem 4.1.1 implies the bound-
edness of the first integral. Similarly, in accordance with (4.35) we have

1

ε2

∣
∣
∣Hε

ϑ
(̺0 ,ε , ϑ) − (̺0 ,ε − ˜̺ε)

∂Hε
ϑ
(˜̺ε , ϑ)

∂̺
−Hε

ϑ
(˜̺ε , ϑ)

∣
∣
∣ ≤ c1

∣
∣
∣
̺0, ε − ˜̺ε

ε

∣
∣
∣

2

≤ c2

(∣
∣
∣
̺0, ε − ˜̺

ε

∣
∣
∣

2

+
∣
∣
∣
˜̺− ˜̺ε

ε

∣
∣
∣

2)

,

whence the desired uniform bound follows from (4.41). The hypothesis of ther-
modynamic stability (4.16) together with above results imply that all integrated
quantities on the left-hand side of (4.38) are non-negative, and consequently
we deduce the following estimates

ess sup
t∈(0, T )

‖√̺ε~uε‖L2(Ωε; R3) ≤ c , (4.42)

‖σε‖M+([0, T ]×Ωε)
≤ ε2c , (4.43)

∫ T

0

∫

∂Ω

∣
∣
∣
ϑε − ϑ

ε

∣
∣
∣

2

≤ εβc . (4.44)
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In order to estimate other terms of the right-hand side, we first observe

Hε
ϑ
(̺ε , ϑε) −Hε

ϑ
(̺ε , ϑ) ≥ c|ϑε − ϑ|2 (4.45)

as soon as ̺/2 < ̺ε < 2̺ , ϑ/2 < ϑε < 2ϑ where, as a direct consequence
of (4.6), (4.16), c is independent of ε . Indeed, from Gibb’s equation (4.6) we
obtain

∂Hε
ϑ
(̺ , ϑ)

∂ϑ
= ̺(ϑ− ϑ)

[

− 3

2ϑ
S ′(Z)Z + ε

4a

̺
ϑ2

]

,

for Z = εα̺/ϑ
3

2 . Now (4.45) follows from (4.16). Similarly as defined in [13],
consider the essential and the residual parts of function h defined on (0 , T )×Ω

h = [h]ess + [h]res ,

where hess = hχMε
ess

, and hres = hχMε
res

,

Mε
ess = {(t , x) ∈ (0 , T ) × Ωε | ̺/2 < ̺ε < 2̺ , ϑ/2 < ϑε < 2ϑ} ,

Mε
res = ((0 , T ) × Ωε) \Mε

ess .

From (4.45) one can obtain

ess sup
t∈(0, T )

∥
∥
∥

[ϑε − ϑ

ε

]

ess

∥
∥
∥

L2(Ωε)
≤ c . (4.46)

Furthermore, it follows from hypothesis (4.15) - (4.17) that

∂2Hε
ϑ
(̺ , ϑ)

∂̺2
≥ c

̺
(4.47)

and consequently

ess sup
t∈(0, T )

∥
∥
∥

[̺ε − ˜̺

ε

]

ess

∥
∥
∥

L2(Ωε)
≤ c . (4.48)

Similarly, as derived in [13], page 209, one can show

ess sup
t∈(0, T )

|Mε
res[t]| ≤ ε2c , (4.49)

where Mε
res[t] = Mε

res|{t}×Ωε . In addition by virtue of (4.47), (4.49),

ess sup
t∈(0, T )

‖[̺ε log ̺ε]res‖L1(Ωε) ≤ ε2c . (4.50)
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On the other hand, by virtue of Proposition 3.2 in [13], page 71,

Hε
ϑ
(̺ , ϑ) ≥ 1

4

(

̺eε(̺ , ϑ) + ϑ̺|sε(̺ , ϑ)|
)

−
∣
∣
∣(̺− ̺)

∂Hε
2ϑ

∂̺
(̺ , 2ϑ) +Hε

2ϑ
(̺ , 2ϑ)

∣
∣
∣

for any ̺ , ϑ and therefore we can conclude that

ess sup
t∈(0, T )

‖[̺εeε(̺ε , ϑε)]res‖L1(Ωε) ≤ ε2c , (4.51)

ess sup
t∈(0, T )

‖[̺εsε(̺ε , ϑε)]res‖L1(Ωε) ≤ ε2c . (4.52)

In accordance with hypothesis (4.8), (4.16),

ess sup
t∈(0, T )

‖[̺εϑε]res‖L1(Ωε) ≤ ε2c , (4.53)

ess sup
t∈(0, T )

‖[ϑε]
4
res‖L1(Ωε) ≤ εc , (4.54)

ess sup
t∈(0, T )

‖[̺ε]
5

3
res‖L1(Ωε) ≤ ε2−2α/3c . (4.55)

In accordance with (4.12), (4.13) and (4.43), we deduce immediately that
∫ T

0

∫

Ωε

|∇~uε + ∇T~uε −
2

3
div~uεI|2dx dt ≤ c , (4.56)

∫ T

0

∫

Ωε

ϑε

∣
∣
∣∇

(ϑε − ϑ

ε2

)∣
∣
∣

2

dx dt ≤ c , (4.57)

∫ T

0

∫

Ωε

1

ϑε

∣
∣
∣∇

(ϑε − ϑ

ε

)∣
∣
∣

2

dx dt ≤ c , (4.58)

∫ T

0

∫

Ωε

∣
∣
∣∇

(

log ϑε − logϑ
)∣
∣
∣

2

dx dt ≤ ε2−2α/3c . (4.59)

Combining estimates (4.42), (4.49), (4.56), and by help of Korn’s inequality
formulated in Proposition 2.1 in [13], page 30, we get

‖~uε‖L2(0, T ; W 1,2(Ωε)) ≤ c . (4.60)

Similarly, by means of Poincarè inequality stated in Proposition 2.2, [13], page
32, relations (4.49), (4.53) together with (4.57) - (4.59) yield

∥
∥
∥
ϑε − ϑ

ε

∥
∥
∥

L2(0, T ; W 1,2(Ωε))
≤ c , (4.61)
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∥
∥
∥

√
ϑε −

√
ϑ

ε

∥
∥
∥

L2(0, T ; W 1,2(Ωε))
≤ c , (4.62)

and
‖ logϑε − log ϑ‖L2(0, T ;W 1,2(Ωε)) ≤ ε1−α/3c . (4.63)

We now have to remark that the Proposition 2.2 from [13] can be used for (4.61)
- (4.63), because the domain Ωε can be written as a union of finite number of
unit cubes with mutually disjoint interiors and Proposition 2.2 will be used to
each of them separately.

4.2.2 Pressure estimates

The upper bound (4.55) on the residual component of the density is not suf-
ficient for our requirements, and so we have to go into deeper considerations
based on some pressure estimates. In order to show them, we will use the Bo-
govskii operator B (see e.g. [30]) which is defined only for bounded domains.
Thus we will fix an arbitrary compact set K ⊂ Ω with a Lipschitz boundary
and define the following quantities

ϕ(t , x) = ψ(t)B
[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

, ψ ∈ C∞
c (0 , T )

to be used as a test functions in the momentum equation (4.26). After some
computation we arrive at the following relation:

1

ε2

∫ T

0

∫

K

ψpε(̺ε , ϑε)b(̺ε)dx dt =
1

ε2|K|

∫ T

0

∫

K

ψpε(̺ε , ϑε)dx
(∫

K

b(̺ε)dx
)

dt

− 1

ε2

∫ T

0

∫

K

ψ̺ε∇F · B
[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

dx dt+ Iε ,

(4.64)
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where we have set

Iε =

∫ T

0

∫

K

ψSε : ∇B
[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

dx dt

−
∫ T

0

∫

K

ψ̺ε~uε ⊗ ~uε : ∇B
[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

dx dt

−
∫ T

0

∫

K

∂tψ̺ε~uε · B
[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

dx dt

+

∫ T

0

∫

K

ψ̺ε~uε · B[div(b(̺ε)~uε)]dx dt

+

∫ T

0

ψ

∫

K

̺ε~uε · B
[

(̺εb
′(̺ε) − b(̺ε))div~uε

− 1

|K|

∫

K

(b(̺ε) − b′(̺ε)̺ε)div~uεdx
]

dx dt .

Taking the uniform estimates established in the previous section we can show,
that all integrals contained in Iε are bounded uniformly for ε→ 0 as soon as

|b(̺)| + |̺b′(̺)| ≤ c̺γ for 0 < γ < 1 , (4.65)

where γ will be specified later. For example let us take b such that

b(̺) =







0 for 0 ≤ ̺ ≤ 2̺ ,
∈ [0 , ̺γ] for 2̺ ≤ ̺ ≤ 3̺ ,
̺γ for ̺ > 3̺ .

It is easy to see that b(̺ε) = b([̺ε]res) which together with (4.50) gives

ess sup
t∈(0, T )

∫

Ωε

b(̺ε)dx ≤ cε2 . (4.66)

Consequently, the first integral at the right-hand side of (4.64) is bounded. In
order to control the second term, let us rewrite it, using the fact that ˜̺ , ϑ solve
the static problem (4.22), in the following way

1

ε2

∫

K

̺ε∇F · B
[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

dx

=
1

ε

∫

K

[̺ε − ˜̺

ε

]

ess
∇F · B

[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

dx

+

∫

K

[̺ε − ˜̺

ε

]

res
∇F · B

[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

dx

+
p0

ε2

∫

K

˜̺ϑ
[

b(̺ε) −
1

|K|

∫

K

b(̺ε)dx
]

dx ,
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where the last integral is uniformly bounded due to (4.66). In accordance with
(4.66), (4.50)

‖b(̺ε)‖q
Lq(Ωε) ≤ ‖[̺ε]

γq
res‖L1(Ωε) ≤ ‖[̺ε log ̺ε]res‖L1(Ωε) ≤ c ε2 (4.67)

as soon as γ ≤ 1/q . Then the first two terms at the right-hand side may be
estimated using Holder inequality and estimates (4.48), (4.49), (4.55) together
with (4.67) which yield a uniform bound of the second term at the right-hand
side of (4.64). Consequently, we conclude that

∫ T

0

∫

K

pε(̺ε , ϑε)b(̺ε)dx dt ≤ ε2c(K) . (4.68)

4.3 Convergence to the target system

4.3.1 Anelastic constraint

The uniform estimates deduced in the previous section enable us to pass to the
limit in the family {̺ε , ~uε , ϑε}ε>0 . Let K ⊂ Ω be an arbitrary compact set.
Then, by virtue of (4.48), (4.49), (4.55) we have

̺ε → ˜̺ inL∞(0 , T ;L
5

3 (K)) ∩ C(0 , T ;Lq(K)) for any 1 ≤ q <
5

3
. (4.69)

Moreover, in accordance with (4.60), we may assume

~uε → ~U weakly inL2(0 , T ;W 1, 2(K ; R3)) , (4.70)

and since (4.18) holds we can show

~U · ~n|∂Ω = 0 in the sense of traces. (4.71)

Combining (4.69), (4.70) we let ε→ 0 in (4.25) in order to obtain the so-called
anelastic constraint

div(˜̺ ~U) = 0 a.a. in (0 , T ) × Ω . (4.72)

4.3.2 Momentum equation

Similarly as in the previous section, consider the compact subset K ⊂ Ω . Then
it follows from (4.61) that

ϑε → ϑ inL2(0 , T ;W 1, 2(K)) . (4.73)

The convergence of the pressure term is described in the following lemma.
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Lemma 17 Let K ⊂ Ω be an arbitrary compact subset of Ω . Then

1

ε2

(

pε(̺ε , ϑε) − p0̺εϑε − ε
a

3
ϑ

4
)

→ 0 in L1((0 , T ) ×K) .

Proof: Let us examine the quantity

1

ε2

(

pε(̺ε , ϑε) − p0̺εϑε − ε
a

3
ϑ

4
)

=
1

ε2

[ϑ
5

2

εα
P

(

εα ̺ε

ϑ
3

2

)

− ϑ
5

2

εα
εαP ′(0)

̺ε

ϑ
3

2

]

ess

+
1

ε2

[ϑ
5

2

εα
P

(

εα ̺ε

ϑ
3

2

)

− ϑ
5

2

εα
εαP ′(0)

̺ε

ϑ
3

2

]

res
+
a

3

ϑ4
ε − ϑ

4

ε
.

(4.74)
Since P is twice continuously differentiable, we deduce

1

ε2

∣
∣
∣

[ϑ
5

2

εα
P

(

εα ̺ε

ϑ
3

2

)

− ϑ
5

2

εα
εαP ′(0)

̺ε

ϑ
3

2

]

ess

∣
∣
∣ ≤ cεα−2

[ ̺2
ε

ϑ
1

2
ε

]

ess
, (4.75)

which tends to zero uniformly on (0 , T )×K since α > 2 . Now, it follows from
the pressure estimate (4.68) that

1

ε2

∫ T

0

∫

K

[̺ε]
5/3+γ
res dx dt ≤ cK . (4.76)

In order to show that the second term at the right-hand side of (4.74) tends to
zero, we use (4.17), (4.49), (4.76) to estimate

1

ε2

∫ T

0

∫

K

∣
∣
∣

[ϑ
5

2

εα
P

(

εα ̺ε

ϑ
3

2

)

− ϑ
5

2

εα
εαP ′(0)

̺ε

ϑ
3

2

]

res

∣
∣
∣dx dt ≤ c

ε2α/3

ε2

∫ T

0

∫

K

[̺ε]
5/3
resdx dt

≤ c
ε2α/3

ε2

(∫ T

0

∫

K∩{0≤̺ε≤L}

[̺ε]
5/3
resdx dt+

∫ T

0

∫

K∩{̺ε>L}

[̺ε]
5/3
resdx dt

)

≤ c(K)(ε2α/3L5/3 + L−γ) ,

from which we conclude

ε2α/3

ε2
[̺ε]

5/3
res → 0 inL1((0 , T ) ×K) . (4.77)

Finally the residual part of the radiation pressure can be simply estimated
by means of Holder inequality and (4.49), (4.54), (4.61)

∫ T

0

∫

Ω′

|[ϑ4
ε − ϑ

4
]res|dx dt ≤ c

∫ T

0

∫

Ω′

|ϑε − ϑ|([ϑε]
3
res + [ϑ]3res)dx dt

c(Ω′)‖ϑε − ϑ‖L2(0, T ;L4(K))ess sup
t∈(0, T )

(

‖[ϑε]
3
res‖L

4
3 (K)

+ ‖[ϑ]3res‖L
4
3 (K)

)

≤ c(Ω′)ε
7

4 ,

(4.78)



CHAPTER 4. SINGULAR LIMITS FOR THE NSF SYSTEMS 77

where Ω′ ⊂ Ω is a bounded Lipschitz domain such that ∂Ω ⊂ ∂Ω′ . In order
to control its essential component, we first use the Poincarè inequality (see e.g.
[11])

‖ϑ
3

2
ε − ϑ

3

2‖2
L2((0, T )×Ω′) ≤ c

[

‖
√

ϑε∇ϑε‖2
L2((0, T )×Ω′) +

(∫ T

0

∫

∂Ω

|ϑ
3

2
ε − ϑ

3

2 |dSx dt
)2]

≤ c
(

ε4 +

∫ T

0

∫

∂Ω

|ϑε − ϑ|2dSx dt

∫ T

0

∫

∂Ω

(ϑε + ϑ)dSx dt
)

,

(4.79)
where the constant c depends on the subdomain Ω′ . Then the following simple
inequality

c1|[ϑε − ϑ]ess| ≤ |[ϑp
ε − ϑ

p
]ess| ≤ c2|[ϑε − ϑ]ess| , p > 0 ,

applied to (4.79), together with (4.44) implies

‖[ϑp
ε − ϑ

p
]ess‖L2((0, T )×Ω′) ≤ c‖[ϑ

3

2
ε − ϑ

3

2 ]ess‖L2((0, T )×Ω′) ≤ c(p) ε1+β/2 , p > 0 ,
(4.80)

which together with (4.78) yields

∥
∥
∥
ϑ4

ε − ϑ
4

ε

∥
∥
∥

L1((0, T )×K)
≤ c(K)εmin { 3

4
, β
2
} . (4.81)

Consequently summing up the estimates (4.75), (4.77), (4.81) we get the state-
ment of the Lemma. �

Our next aim is to determine the limit of the driving force term which is
contained in the following statement

Lemma 18 Let Ω′ ⊂ Ω be a bounded Lipschitz subdomain, and ϕ ∈ C∞
c ([0 , T )×

Ω′ ; R3) be a function such that div(˜̺ϕ) = 0 . Then

ϑ
(2)
Ω′, ε → ϑ

(2)
Ω′ weakly in Lq(0 , T ;W 1, q(Ω′)) for a certain q > 1 , (4.82)

where the function ϑ
(2)
Ω′, ε is defined as follows

ϑ
(2)
Ω′, ε =

ϑε − ϑ

ε2
− 1

|Ω′|

∫

Ω′

ϑε − ϑ

ε2
dx ,

and it holds

1

ε2

∫ T

0

∫

Ω′

(

p0̺εϑεdivϕ + ̺ε∇F · ϕ
)

dx dt = p0

∫ T

0

∫

Ω′

(˜̺ϑ
(2)
Ω′, ε + χε)divϕdx dt ,

(4.83)
where χε → 0 in L1((0 , T )× Ω′) .
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Proof: Let’s rewrite the quantity

1

ε2

∫ T

0

∫

Ω′

(

p0̺εϑεdivϕ+ ̺ε∇F · ϕ
)

dx dt =
p0

ε2

∫ T

0

∫

Ω′

ϑ

˜̺
̺εdiv(˜̺ϕ)dx dt

+
p0

ε2

∫ T

0

∫

Ω′

(̺ε − ˜̺)(ϑε − ϑ)divϕdx dt+ p0

∫ T

0

∫

Ω′

˜̺ϑ
(2)
Ω′, εdivϕdx dt

+
p0

|Ω′|

∫ T

0

( ∫

Ω′

ϑε − ϑ

ε2
dx

) ∫

Ω′

˜̺divϕdx dt .

(4.84)
The first term on the right-hand side of (4.84) is equal to zero and after a simple
manipulation ∫

Ω′

˜̺divϕdx =

∫

Ω′

(

1 + log ˜̺
)

div(˜̺ϕ)dx ,

we see that the last term also vanishes. A straightforward consequence of the
estimates (4.48), (4.80) gives

∥
∥
∥

[̺ε − ˜̺

ε

]

ess

[ϑε − ϑ

ε

]

ess

∥
∥
∥

L1((0, T )×Ω′)
≤ εβ/2c(Ω′) → 0 . (4.85)

In addition, using (4.61) in combination with the continuous embeddingW 1, 2 →֒
L6 and interpolation inequality and finally applying the uniform bounds (4.49),
(4.50), (4.55) we obtain

∥
∥
∥

[̺ε − ˜̺

ε

]

res

(ϑε − ϑ

ε

)∥
∥
∥

L1((0, T )×Ω′)

≤ c(Ω′)ess sup
t∈(0, T )

∥
∥
∥

[̺ε − ˜̺

ε

]

res

∥
∥
∥

7

12

L1(Ω′)

∥
∥
∥

[̺ε − ˜̺

ε

]

res

∥
∥
∥

5

12

L
5
3 (Ω′)

≤ ε
1

6 c(Ω′) → 0 .

(4.86)
Thus we proved that the second term on the right-hand side of (4.84) converges
to zero which complete the proof of (4.83). In order to show (4.82), let’s write

√

ϑ∇ϑε − ϑ

ε2
=

√
ϑ−

√
ϑε

ε
∇ϑε − ϑ

ε
+

√

ϑε∇
ϑε − ϑ

ε2
,

where, by virtue of (4.46), (4.54), (4.62), and the embedding W 1, 2 →֒ L6 ,

{
√
ϑ−

√
ϑε

ε

}

ε>0
is bounded in L∞(0 , T ;L1(Ω′)) ∩ L2(0 , T ;L6(Ω′)) .

Consequently, by means of (4.57), (4.61), and interpolation inequality, we have

∥
∥
∥∇

(ϑε − ϑ

ε2

)∥
∥
∥

Lq(0, T ;Lq(Ω′; R3))
≤ c for a certain q > 1 , (4.87)
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which proves (4.82). �

Remark: It is easy to see that if we take two domains Ω1 , Ω2 in the previous

lemma then ∇ϑ(2)
Ω1

= ∇ϑ(2)
Ω2

in Ω1 ∩Ω2 . Thus we can define the vector function

Φ ∈ L1(0 , T ;L1
loc(Ω ; R3)) such that Φ = ∇ϑ(2)

Ω′ at Ω′ .
At this stage, we can use all obtained limits together with the previous

lemmas, in order to let ε → 0 in the momentum equation (4.26). We thereby
obtain

∫ T

0

∫

Ω

(

˜̺~U · ϕ+ ̺~U ⊗ ~U : ∇ϕ
)

dx dt

=

∫ T

0

∫

Ω

(

S : ∇ϕ− 1

ϑ
˜̺FΦ · ϕ

)

dx dt−
∫

Ω

˜̺~U0ϕ(0 , ·)dx ,
(4.88)

for any ϕ ∈ C∞
c ([0 , T ) × Ω ; R3) , ϕ · ~n|∂Ω = 0 , div(˜̺ϕ) = 0 , where

S = µ1ϑ
(

∇~U + ∇T ~U − 2

3
div~UI

)

, (4.89)

and ̺~U ⊗ ~U is a weak limit of {̺ε~uε ⊗ ~uε}ε>0 .

4.3.3 Asymptotic limit in entropy balance

This section of the paper will be concluded by the analysis of the entropy
equation (4.28). First, let’s observe that due to (4.43), (4.44)

< ϑε ;ϕ >[M;C]([0, T ]×Ω) −
∫ T

0

∫

∂Ω

β1
ϑε − ϑ

εβ
ϕdSxdt→ 0 as ε→ 0 , (4.90)

for ϕ ∈ C∞
c ((0 , T ) × Ω) . Similarly, by virtue of (4.61), (4.63),

ε2α/3κ0∇ log ϑε + κ1∇ϑε → 0 in L2((0 , T ) ×K ; R3) ,

for any compact set K ⊂ Ω , which implies

− lim
ε→0

∫ T

0

∫

Ω

1

ε2

~qε
ϑε

· ∇ϕdx dt = lim
ε→0

∫ T

0

∫

Ω

dϑ2
ε∇ϑ(2)

Ω′, ε · ∇ϕdx dt

= lim
ε→0

∫ T

0

∫

Ω

d
(

[ϑε]
2
ess∇ϑ(2)

Ω′, ε + [ϑε]
3/2
res

√

ϑε∇
(ϑε

ε2

))

· ∇ϕdx dt

= dϑ
2
∫ T

0

∫

Ω

Φ · ∇ϕdx dt ,
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for any ϕ ∈ C∞
c ((0 , T ) × Ω) , where we have used (4.73), (4.82) for the first

term and (4.54), (4.57) for the second one.
Finally, in order to handle the convective term in (4.28) let’s decompose

̺εsε(̺ε , ϑε) as follows

̺εsε(̺ε , ϑε) = ̺ε

[

S
(

εα ̺ε

ϑ
3

2
ε

)

−S(εα)
]

+ε
4

3
aϑ3

ε := ̺εsM, ε(̺ε , ϑε)+̺εsR, ε(̺ε , ϑε) ,

where in accordance with (4.52),

[̺εsε(̺ε , ϑε)]res → 0 in L1((0 , T ) ×K) (4.91)

for any compact set K ⊂ Ω . Similarly, by virtue of (4.54), (4.70),

̺εsR, ε(̺ε , ϑε) → 0 in L∞(0 , T ;L
4

3

loc(Ω)) , (4.92)

̺εsR, ε(̺ε , ϑε)~uε → 0 in L2(0 , T ;L
12

11

loc(Ω ; R3)) . (4.93)

On the other hand due to (4.14), (4.17)

|̺εsM, ε(̺ε , ϑε)| ≤
∣
∣
∣̺ε

∫ εα̺ε

ϑ
3/2
ε

εα

S ′(Z)dZ
∣
∣
∣ ≤ c̺ε(| log ̺ε| + | logϑε|) .

Consequently, using the uniform estimates established in (4.42), (4.50), (4.55),
and (4.63), we get

[̺εsε(̺ε , ϑε)]res~uε → 0 in Lq((0 , T )×K) (4.94)

for any compact set K ⊂ Ω , and a certain q > 1 . It remains to determine the
limit of [̺εsM, ε(̺ε , ϑε)]ess . To this end, write

S(Z) = − logZ + S̃(Z) ,

where

S̃ ′(Z) = −3

2

5
3
(P (Z) − p0Z) − (P ′(Z) − p0)Z

Z2
.

Since P is twice continuously differentiable and satisfies (4.17), we have |S̃ ′(Z)| ≤
c , from which we obtain

[̺εsM, ε(̺ε , ϑε)]ees → p0 ˜̺
(3

2
logϑ− log ˜̺

)

in Lq((0 , T ) ×K) (4.95)

for any compact set K ⊂ Ω , and a certain 1 ≤ q <∞ .
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Now passing to the limit for ε→ 0 in (4.28) and resuming relations (4.90) -
(4.95) together with (4.72) and (4.70) we conclude

−dϑ2
∫ T

0

∫

Ω

Φ · ∇ϕdx dt = p0

∫ T

0

∫

Ω

˜̺ log ˜̺~U · ∇ϕdx dt (4.96)

for any ϕ ∈ C∞
c ((0 , T ) × Ω) which is a weak formulation of (4.32).

4.4 Analysis of acoustic waves

4.4.1 Acoustic equation

In order to complete the proof of Theorem 4.1.1, it remains to handle the term

̺~U ⊗ ~U , which will be investigated in the rest of the paper.
Taking ϕ/ ˜̺ as a test function in (4.25) we obtain

∫ T

0

∫

Ωε

(

ε
̺ε − ˜̺

ε ˜̺
∂tϕ+ ˜̺

̺ε~uε

˜̺
· ∇ϕ

˜̺

)

dx dt = −
∫

Ωε

ε
̺0, ε − ˜̺

ε ˜̺
ϕ(0 , ·)dx (4.97)

to be satisfied for any ϕ ∈ C∞
c ([0 , T )×Ωε) . Similarly, the momentum equation

(4.26) gives rise to

∫ T

0

∫

Ωε

(

ε̺ε~uε · ∂tϕ+ p0ϑ
̺ε − ˜̺

ε ˜̺
div(˜̺ϕ)

)

dx dt = −
∫

Ωε

ε̺0, ε~u0, ε · ϕ(0 , ·)dx

+

∫ T

0

∫

Ωε

(

εhεdivϕ+ εGε : ∇ϕ− p0
ϑ− ϑε

ε
∇ ˜̺ · ϕ− p0 ˜̺∇

(ϑ− ϑε

ε

)

· ϕ
)

dx dt ,

(4.98)
for any ϕ ∈ C∞

c ([0 , T ) × Ωε ; R3) , ϕ · ~n|∂Ωε = 0 , where

hε =
1

ε2

(

p0̺εϑε − pε(̺ε , ϑε)
)

+ p0

( ˜̺− ̺ε

ε

)(ϑε − ϑ

ε

)

,

and
Gε = Sε − ̺ε~uε ⊗ ~uε .

The term hε may be rewritten such as

hε =
1

ε2

(

p0̺εϑε − pε(̺ε , ϑε)
)

+ p0

[ ˜̺− ̺ε

ε

]

ess

[ϑε − ϑ

ε

]

ess

+
˜̺[1]res

ε

(ϑε − ϑ

ε

)

− [̺εϑε]res

ε2
+
ϑ[̺ε]res

ε2
,



CHAPTER 4. SINGULAR LIMITS FOR THE NSF SYSTEMS 82

where on the right hand side we apply the uniform estimates (4.48), (4.49),
(4.50), (4.55), (4.59), (4.61), (4.74), (4.75) to get

‖hε‖L1(0, T ; L1(Ωε)) ≤ c .

By virtue of (4.42), (4.54), (4.55), (4.60), we get that the norms of Gε are
bounded in Lq(0 , T ;Lq(Ωε ; R3)) uniformly with respect to ε , for a certain
q > 1 . In addition, relation (4.80) implies

∥
∥
∥

[ϑε − ϑ

ε

]

ess

∥
∥
∥

L2((0, T )×K∩Ωε)
≤ εβ/2c(K) ,

for each compact set K ⊂ Ω , and (4.49), together with (4.61), give rise to

∥
∥
∥

[ϑε − ϑ

ε

]

res

∥
∥
∥

L1((0, T )×Ωε)
≤ εc .

Finally, using (4.57), (4.58) and Holder inequality we can see

∥
∥
∥∇

(ϑε − ϑ

ε

)∥
∥
∥

2

L2(0, T ; L2(Ωε))
≤ εc .

Thus, when we introduce the quantities

rε =
̺ε − ˜̺

ε ˜̺
, ~Vε = ̺ε~uε , r0, ε = rε(0 , ·) , ~V0, ε = ~Vε(0 , ·) ,

and we rewrite the last integral of (4.98) according to above shown estimates,
the system (4.97), (4.98) reads as follows

∫ T

0

∫

Ωε

(

εrε∂tϕ+ ~Vε · ∇
(ϕ

˜̺

))

dx dt = −
∫

Ωε

εr0, εϕ(0 , ·)dx (4.99)

for any ϕ ∈ C∞
c ([0 , T ) × Ωε) .

∫ T

0

∫

Ωε

(

ε~Vε∂tϕ+ p0ϑrεdiv(˜̺ϕ)
)

dx dt = −
∫

Ωε

ε~V0, εϕ(0 , ·)dx

+εβ/2

∫ T

0

∫

Ωε

(

(F1
ε + F

2
ε) : ∇ϕ+ (F1

ε + F2
ε) · ϕ

)

dx dt

(4.100)
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for any ϕ ∈ C∞
c ([0 , T )×Ωε ; R3) , ϕ·~n|∂Ωε = 0 , where due to above consideration

{r0, ε}ε>0 bounded in L2(Ωε) ,

{~V0, ε}ε>0 bounded in L2(Ωε ; R3) ,

{F1
ε}ε>0 bounded in L2(0 , T ;L1(Ωε ; R3×3)) ,

{F2
ε}ε>0 bounded in L2(0 , T ;L2(Ωε ; R3×3)) ,

{F1
ε}ε>0 bounded in L2(0 , T ;L1(Ωε ; R3)) ,

{F2
ε}ε>0 bounded in L2(0 , T ;L2(Ωε ; R3)) .

(4.101)

Similarly uniform bounds (4.48), (4.49) imply that

rε = r1
ε + r2

ε , (4.102)

with
{r1

ε}ε>0 bounded in L∞(0 , T ;L1(Ωε)) ,

{r2
ε}ε>0 bounded in L∞(0 , T ;L2(Ωε)) ,

(4.103)

and (4.42), (4.49), (4.56) give rise to

~Vε = ~V 1
ε + ~V 2

ε , (4.104)

with
{~V 1

ε }ε>0 bounded in L∞(0 , T ;L1(Ωε ; R3)) ,

{~V 2
ε }ε>0 bounded in L∞(0 , T ;L2(Ωε ; R3)) .

(4.105)

The system (4.99), (4.100) is called stratified acoustic equation.

4.4.2 Regularization and extension

In order to facilitate the future analysis of the acoustic equation (4.99), (4.100),
we regularize it and extend it to the whole domain Ω . By virtue of (4.1), any
solution of extended system will coincide with the original one on any compact
set K as the speed of sound is proportional to 1/ε .

For a fixed ε > 0 , there exist families of smooth functions {r0, ε, δ}δ>0 ⊂
C∞

c (Ωε) , {~V0, ε, δ}δ>0 ⊂ C∞
c (Ωε ; R3) , such that

{r0, ε, δ}ε, δ>0 bounded in L2(Ω) , (4.106)

{~V0, ε, δ}ε, δ>0 bounded in L2(Ω ; R3) , (4.107)
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and in addition
∫

Ω

r0, ε, δϕdx →
∫

Ωε

r0, εϕdx for any ϕ ∈ C∞
c (Ωε) ,

∫

Ω

~V0, ε, δ · ϕdx→
∫

Ωε

~V0, ε · ϕdx for any ϕ ∈ C∞
c (Ωε ; R3) ,

as δ → 0 .
Similarly, we can find

{
Fε, δ = F1

ε, δ + F2
ε, δ ,F

i
ε, δ ∈ C∞

c ((0 , T ) × Ωε ; R3) , i = 1 , 2 ,

Fε, δ = F1
ε, δ + F2

ε, δ ,F
i
ε, δ ∈ C∞

c ((0 , T )× Ωε ; R3×3) , i = 1 , 2 ,

}

such that { {F1
ε, δ}ε>0 bounded in L2(0 , T ;L1(Ω ; R3)) ,

{F2
ε, δ}ε>0 bounded in L2(0 , T ;L2(Ω ; R3)) ,

}

(4.108)

{ {F1
ε, δ}ε>0 bounded in L2(0 , T ;L1(Ω ; R3×3)) ,

{F2
ε, δ}ε>0 bounded in L2(0 , T ;L2(Ω ; R3×3)) ,

}

(4.109)

and

F1
ε, δ → F1

ε in L2(0 , T ;L1(Ωε ; R3)) , F2
ε, δ → F2

ε in L2(0 , T ;L2(Ωε ; R3)) ,

F1
ε, δ → F1

ε in L2(0 , T ;L1(Ωε ; R3×3)) , F2
ε, δ → F2

ε in L2(0 , T ;L2(Ωε ; R3×3)) ,

for any ϕ ∈ C∞
c ([0 , T ] × Ωε) , as δ → 0 .

Now, consider the solution rε, δ , ~Vε, δ of the initial-boundary value problem

ε∂trε, δ +
1

˜̺
div~Vε, δ = 0 in (0 , T ) × Ωε , (4.110)

ε∂t
~Vε, δ + p0ϑ ˜̺∇rε, δ = εβ/2divFε, δ − εβ/2Fε, δ in (0 , T ) × Ωε , (4.111)

~Vε, δ · ~n|∂Ωε = 0 , (4.112)

rε, δ(0 , ·) = r0, ε, δ , ~Vε, δ(0 , ·) = ~V0, ε, δ . (4.113)

Keeping ε > 0 fixed and letting δ → 0 we check that

ess sup
t∈(0, T )

∣
∣
∣

∫

Ωε

(~Vε − ~Vε, δ)(t , ·) · ϕdx
∣
∣
∣ → 0 as δ → 0 (4.114)

for any ϕ ∈ C∞
c (K ; R3) , and any compact set K ⊂ Ω .
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System (4.110), (4.111) admits a finite speed of propagation of order
√

p0ϑ/ε .
This can be easily proved by multiplying equation (4.110) by p0ϑ ˜̺rε, δ , taking

the scalar product of (4.111) with ~Vε, δ/ ˜̺ , and integrating the resulting expres-
sion over the set

{

(t , x)
∣
∣
∣t ∈ [0 , τ ] , x ∈ Ωε , |x| < r −

√

p0ϑ

ε
t
}

,

where r > 0 . Consequently, by virtue of (4.1), we may assume, extending

the data in (4.110) - (4.113) by zero outside of Ωε , that rε, δ , ~Vε, δ are smooth,
compactly supported in [0 , T ] × Ω , and solve the acoustic equation (4.110) -
(4.113) in (0 , T ) × Ω .

4.4.3 Strong convergence of speed and compactness of the solenoidal
part

As it was mentioned at the beginning of this section, we have to deal with the

term ̺~U ⊗ ~U . Throughout this section we will suppose K ⊂ Ω is a compact
set. If we show

~uε → ~U strongly in L2((0 , T ) ×K) , (4.115)

then
∫ T

0

∫

Ωε

̺ε[~uε ⊗ ~uε] : ∇ϕdx dt→
∫ T

0

∫

Ω

˜̺[~U ⊗ ~U ] : ∇ϕdx dt , (4.116)

for any ϕ ∈ C∞
c ((0 , T ) × Ω ; R3) , div(˜̺ϕ) = 0 , ϕ · ~n|∂Ω = 0 . (4.115) will be

true, as soon as we show

[

t→
∫

Ωε

~Vε(t , ·) · ~wdx
]

→
[

t→
∫

Ω

~V (t , ·) · ~wdx
]

in L2(0 , T ) , (4.117)

for any ~w ∈ C∞
c (Ω ; R3) , where ~V = ˜̺~U .

Indeed, relation (4.117) together with uniform bounds (4.48), (4.49), (4.50),
(4.60) and the standard embedding relation W 1, 2(Ω) →֒ L6(K) gives rise

[

t→
∫

Ωε

~uε(t , ·) · ~wdx
]

→
[

t→
∫

Ω

~U(t , ·) · ~wdx
]

in L2(0 , T ) , (4.118)

for any ~w ∈ C∞
c (Ω ; R3) . But (4.118) together with (4.70) and compactness of

the embedding W 1, 2(Ω) →֒ L2(K) , yields the desired convergence (4.115).
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This part will be concluded by an observation that the solenoidal part (in

the sense of weighted Helmholtz decomposition) of the vector field ~Vε is weakly
compact in time, specifically,

[

t→
∫

Ωε

1

˜̺
~Vε(t , ·) · ~wdx

]

→
[

t→
∫

Ω

1

˜̺
~V (t , ·) · ~wdx

]

in C[0 , T ] , (4.119)

for any ~w ∈ C∞
c (Ω ; R3) , div~w = 0 , as a direct consequence of Lemma 17,

Lemma 18 and (4.69), (4.70) applied to the momentum equation (4.26).

4.4.4 Compactness of the gradient part

In view of (4.119) it remains s to establish compactness of the gradient part

of the vector filed ~Vε . Then the relation (4.117) will be true and the proof of
Theorem 4.1.1 will be completed. But with respect to the fact (4.114), it is

enough to show (4.117) for the gradient part H⊥
˜̺ [~Vε, δ(ε)] for δ(ε) small enough.

In what follows, we drop the subscript δ and replace the weak formulation of the
acoustic equation (4.99), (4.100) by its classical counterpart (4.110), (4.111),
supplemented by (4.112), (4.113) in (0 , T ) × Ω .

To this end, we apply the Helmholtz projection to equation (4.111), specifi-
cally, we consider test function in the form ϕ = ∇Ψ , with

div(˜̺∇Ψ) = ˜̺χ ∈ C∞
c ([0 , T )×Ω) , ∇Ψ · ~n|∂Ω = 0 , Ψ(t , ·) ∈ D1, 2(Ω) (4.120)

to obtain
∫ T

0

∫

Ω

˜̺
(

− εφε∂tχ+ rεχ
)

dx dt

= ε

∫

Ω

˜̺φ0, εχ(0 , ·)dx+ εβ/2

∫ T

0

∫

Ω

(

F
1
ε + F

2
ε

)

: ∇2Ψ +
(

F1
ε + F2

ε

)

· ∇Ψdx dt ,

(4.121)
where

∇φε =
1

˜̺
H⊥

˜̺ [~Vε] . (4.122)

Accordingly, equation (4.110) can be rewritten as

∫ T

0

∫

Ω

(

εrε∂tϕ + p0ϑ ˜̺∇φε · ∇
(ϕ

˜̺

))

dx dt = −ε
∫

Ω

r0, εϕ(0 , ·)dx (4.123)

for any ϕ ∈ C∞
c ([0 , T ) × Ω) .
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We now rewrite the system (4.121), (4.123) in terms of a single differential
operator

∆ ˜̺, N [v] =
p0ϑ

˜̺
div(˜̺∇v) ,

defined in weighted Lebesgue space L2
˜̺(Ω)

D(∆ ˜̺, N) = {w ∈ L2
˜̺(Ω) |w ∈W 2, 2(Ω) , ∇w · ~n|∂Ω = 0} .

Since ˜̺(x) = ̺∞ for |x| large enough, we can show that −∆ ˜̺, N is a self-
adjoint, non-negative operator in L2

˜̺(Ω) , with an absolutely continuous spec-
trum [0 ,∞) , and satisfies the limiting absorption principle

sup
λ∈C, 0<α≤Re[λ]≤β<∞, Im[λ] 6=0

‖V ◦ (−∆ ˜̺, N −λ)−1 ◦ V ‖L[L2
˜̺
(Ω); L2

˜̺
(Ω)] ≤ cα, β ,

(4.124)
where V (x) = (1 + |x|2)− s

2 , s > 1 , see [28].
Furthermore, from (4.120) we can see

∆ ˜̺, N [Ψ] = p0ϑχ . (4.125)

We claim that the mapping

χ 7→
∫

Ω

(

F
1
ε + F

2
ε

)

: ∇2Ψ +
(

F1
ε + F2

ε

)

· ∇Ψdx ,

where Ψ , χ are interrelated through (4.125), is a bounded linear functional for

χ ∈ D(−∆ ˜̺, N) ∩ D
( 1

√
−∆ ˜̺, N

)

, (4.126)

the norm of which can be estimated in terms of ‖F
1
ε‖L1(Ω; R3×3) , ‖F

2
ε‖L2(Ω; R3×3) ,

‖F1
ε‖L1(Ω; R3) , ‖F2

ε‖L2(Ω; R3) . This can be proved by an observation that for χ
specified in (4.126), the function Ψ defined trough (4.125) has two derivatives
bounded in L2 ∩ L∞(Ω) .

Thus using the standard Riezs representation theorem, the system (4.121)
may be rewritten in the form

∫ T

0

(−ε < Φε ; ∂tχ > ˜̺ + < rε ;χ > ˜̺)dt = ε < Φ0, ε ;χ(0 , ·) > ˜̺

+ εβ/2

∫ T

0

(

< h1
ε ; ∆ ˜̺, N [χ] > ˜̺ + < h2

ε ;
1

√
−∆ ˜̺, N

[χ] > ˜̺

)

dt

(4.127)
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for any test function

χ ∈ C∞
c

(

[0 , T ); D(∆ ˜̺, N) ∩ D
( 1

√
−∆ ˜̺, N

))

,

with
{h1

ε}ε>0 , {h2
ε}ε>0 bounded in L2((0 , T ) × Ω) . (4.128)

Similarly, equation (4.123) reads
∫ T

0

(

ε < rε ; ∂tχ > ˜̺ + <
√

−∆ ˜̺, N [Φε] ;
√

−∆ ˜̺, N [χ] > ˜̺

)

dt

= −ε < r0, ε ;χ(0 , ·) > ˜̺

(4.129)

for all χ ∈ C∞
c ([0 , T ) ;D(∆ ˜̺, N)) .

Solutions to (4.127), (4.129) can be expressed by means of Duhamel’s for-
mula as

< Φε(t , ·) ;G(−∆ ˜̺, N)[χ] > ˜̺

=
1

2

〈

G(−∆ ˜̺, N)
[

exp
(

i
t

ε

√

−∆ ˜̺, N

)

+ exp
(

− i
t

ε

√

−∆ ˜̺, N

)]

[χ] ; Φ0, ε

〉

˜̺

+
1

2

〈 iG(−∆ ˜̺, N)
√

−∆ ˜̺, N

[

exp
(

i
t

ε

√

−∆ ˜̺, N

)

− exp
(

− i
t

ε

√

−∆ ˜̺, N

)]

[χ] ; r0, ε

〉

˜̺

+εβ/2−1

∫ t

0

〈

∆ ˜̺, N G(−∆ ˜̺, N ) cos
(t− s

ε

√

−∆ ˜̺, N

)

[χ] ; h1
ε(s , ·)

〉

˜̺
ds

+εβ/2−1

∫ t

0

〈G(−∆ ˜̺, N)
√
−∆ ˜̺, N

cos
(t− s

ε

√

−∆ ˜̺, N

)

[χ] ; h2
ε(s , ·)

〉

˜̺
ds

(4.130)
for any G ∈ C∞

c (0 ,∞) and any χ ∈ L2(Ω) .
To deduce the desired space-time decay estimates, we use the mentioned

result of Kato [20] (see also [4]):

Theorem 4.4.1 ([34] (Theorem XIII.25)) Let A be a closed densely de-
fined linear operator and H a self-adjoint densely defined operator in a Hilbert
space X . For λ /∈ R , let RH [λ] = (H − λId)−1 denote the resolvent of H .
Suppose that

sup
λ/∈R ,v∈D(A∗), ‖v‖=1

‖A ◦RH [λ] ◦ A∗[v]‖X <∞ . (4.131)

Then

sup
w∈X, ‖w‖X=1

π

2

∫ ∞

−∞

‖Aexp(−itH)[w]‖2
Xdt ≤ Γ2 .
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We apply the above mentioned theorem for the spaceX = L2
˜̺(Ω) , and operators

H =
√

−∆ ˜̺, N , A[v] = ϕG(−∆ ˜̺, N)[v] for v ∈ X , where G ∈ C∞
c (0 ,∞) and

ϕ ∈ C∞
c (Ω) are given. In order to use it, we have to verify (4.131).

But since

A ◦RH [λ] ◦ A∗ = ϕG(−∆ ˜̺, N)
1

√
−∆ ˜̺, N − λ

G(−∆ ˜̺, N)ϕ ,

it is enough to consider the values of λ belonging to the set

λ ∈ Q = {z ∈ C |Re[z] ∈ [a , b] , 0 < |Im[z]| < d} ,

where 0 < a < b <∞ , supp[G] ⊂ (a2 , b2) , and d > 0 .
Furthermore, we have

A ◦RH [λ] ◦ A∗ = ϕ ◦ 1

(−∆ ˜̺, N ) − λ2
G(−∆ ˜̺, N )G(−∆ ˜̺, N )(

√

−∆ ˜̺, N + λ) ◦ ϕ ,

and recalling (4.124), it is enough to show that

V −1 ◦H(
√

−∆ ˜̺, N ) ◦ ϕ (4.132)

is a bounded linear operator on L2
˜̺ provided H ∈ C∞

c (0 ,∞) . In order to obtain
boundedness of it we follow the arguments of Isozaki [19].

We first use the Fourier transformation to write

H(
√

−∆ ˜̺, N) =

∫ ∞

−∞

exp
(

i
√

−∆ ˜̺, N t
)

H̃(t)dt , (4.133)

where H̃ denotes the inverse Fourier transformation of H .
Since w = exp

(

i
√

−∆ ˜̺, N t
)

solves the wave equation

wtt − ∆ ˜̺, N [w] = 0 ,

that admits a finite propagation of speed, we may estimate

∥
∥
∥V −1exp

(

i
√

−∆ ˜̺, N t
)

[ϕv]
∥
∥
∥

2

L2
˜̺
(Ω)

=

∫

Ω

V −2
∣
∣
∣exp

(

i
√

−∆ ˜̺, N t
)

[ϕv]
∣
∣
∣

2

˜̺dx

=

∫

Br+t

V −2
∣
∣
∣exp

(

i
√

−∆ ˜̺, N t
)

[ϕv]
∣
∣
∣

2

˜̺dx ≤ c(1 + t2s)
∥
∥
∥exp

(

i
√

−∆ ˜̺, N t
)

[ϕv]
∥
∥
∥

2

L2
˜̺
(Ω)

≤ c(1 + t2s)‖v‖2
L2

˜̺
(Ω) ,
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where r is the radius of support of ϕ . Now, combining the above derived
estimate together with (4.133) we deduce (4.132).

Now we can apply Theorem XIII.25 from [34] to obtain

∫ T

0

∥
∥
∥ϕG(−∆ ˜̺, N)exp

(

± i
t

ε

√

−∆ ˜̺, N

)

[Φ0, ε]
∥
∥
∥

2

L2
˜̺
(Ω)

dt

≤ εc1

∫ ∞

−∞

∥
∥
∥ϕG(−∆ ˜̺, N)exp

(

± it
√

−∆ ˜̺, N

)

[Φ0, ε]
∥
∥
∥

2

L2
˜̺
(Ω)

dt ≤ εc2‖∇Φ0, ε‖2
L2(Ω) .

(4.134)
Similarly

∫ T

0

∥
∥
∥ϕ

G(−∆ ˜̺, N)
√

−∆ ˜̺, N

exp
(

± i
t

ε

√

−∆ ˜̺, N

)

[r0, ε]
∥
∥
∥

2

L2
˜̺
(Ω)

dt

≤ εc1

∫ ∞

−∞

∥
∥
∥ϕ

G(−∆ ˜̺, N)
√

−∆ ˜̺, N

exp
(

± it
√

−∆ ˜̺, N

)

[Φ0, ε]
∥
∥
∥

2

L2
˜̺
(Ω)

dt ≤ εc2‖∇r0, ε‖2
L2(Ω) .

(4.135)
Finally, by means of similar arguments,

εβ−2

∫ T

0

∫ t

0

∥
∥
∥ϕ∆ ˜̺, N G(−∆ ˜̺, N)exp

(

± i
t− s

ε

√

−∆ ˜̺, N

)

[h1
ε(s , ·)]

∥
∥
∥

2

L2
˜̺
(Ω)

ds dt

≤ εβ−1

∫ T

0

∫ ∞

−∞

∥
∥
∥ϕ∆ ˜̺, N G(−∆ ˜̺, N)exp

(

± i
(

t− s

ε

)√

−∆ ˜̺, N

)

[h1
ε(s , ·)]

∥
∥
∥

2

L2
˜̺
(Ω)
dt ds

≤ εβ−1c1

∫ T

0

∥
∥
∥exp

(

± i
s

ε

√

−∆ ˜̺, N

)

[h1
ε(s , ·)]

∥
∥
∥

2

L2
˜̺
(Ω)

ds = εβ−1c1

∫ T

0

‖h1
ε‖2

L2
˜̺
(Ω)ds ;

(4.136)
and

εβ−2

∫ T

0

∫ t

0

∥
∥
∥ϕ

G(−∆ ˜̺, N)
√
−∆ ˜̺, N

exp
(

± i
t− s

ε

√

−∆ ˜̺, N

)

[h2
ε(s , ·)]

∥
∥
∥

2

L2
˜̺
(Ω)

ds dt

≤ εβ−1

∫ T

0

∫ ∞

−∞

∥
∥
∥ϕ

G(−∆ ˜̺, N )
√

−∆ ˜̺, N

exp
(

± i
(

t− s

ε

)√

−∆ ˜̺, N

)

[h2
ε(s , ·)]

∥
∥
∥

2

L2
˜̺
(Ω)

dt ds

≤ εβ−1c1

∫ T

0

∥
∥
∥exp

(

± i
s

ε

√

−∆ ˜̺, N

)

[h2
ε(s , ·)]

∥
∥
∥

2

L2
˜̺
(Ω)

ds = εβ−1c1

∫ T

0

‖h2
ε‖2

L2
˜̺
(Ω)ds .

(4.137)
Combining relations (4.134) - (4.137) with the uniform estimates (4.106),

(4.107) and (4.128) we may infer from (4.130) that

‖G(−∆ ˜̺, N)[Φε]‖2
L2((0, T )×K) ≤ εβ−1c(K ,G) , (4.138)
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for any compact K ⊂ Ω , and any G ∈ C∞
c (0 ,∞) .

Let’s return now to the expression (4.117) for the gradient part of ~Vε . We
have ∫

Ω

~Vε · ∇ϕdx =
1

p0ϑ

〈√

−∆ ˜̺, N [Φε] ;
√

−∆ ˜̺, N [ϕ]
〉

˜̺

=
1

p0ϑ
< G(−∆ ˜̺, N)[Φε] ; ∆ ˜̺, N [ϕ] > ˜̺

+
1

p0ϑ

〈√

−∆ ˜̺, N [Id −G(−∆ ˜̺, N )][Φε] ;
√

−∆ ˜̺, N [ϕ]
〉

˜̺
,

where, by virtue of (4.138), the former expression on the right-hand side tends
to zero in L2(0 , T ) as ε → 0 for any fixed ϕ ∈ C∞

c (Ω) , G ∈ C∞
c (0 ,∞) , while

1

p0ϑ

〈√

−∆ ˜̺, N [Id −G(−∆ ˜̺, N)][Φε] ;
√

−∆ ˜̺, N [ϕ]
〉

˜̺

=

∫

Ω

Φε[G(−∆ ˜̺, N) − Id][∆ ˜̺, N [ϕ]]dx .

It is easy to check that for G ≈ 1 , the quantity [Id − G(−∆ ˜̺, N)][ϕ] will be
small in L2 ∩L∞(Ω ; R3) . In view of fact that Φε is classical solution which can
be expressed by means of Duhamel’s formula. Using it we obtain the expression
similar to (4.130) which implies the uniform boundedness of Φε . Consequently,
(4.117) is valid and Theorem 4.1.1 is proved.
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