
Charles University, Prague
Faculty of Mathematics and Physics

Department of Computational Mathematics

Ph.D. Thesis

Jaroslav Hájek

Aerodynamic optimization of airfoils and wings using fast

solvers
Supervisor: Prof. Ing. Pavel Šafař́ık, CSc.

Study branch: Scientific and technical computing

Prague 2009



At this place I would like to give my sincere thanks to prof. Pavel Šafař́ık for his
undying perseverance in guiding my work. My thanks are further directed towards
Mgr. András Szöllös and Ing. Zdeněk Pátek, my colleagues from the Aeronautical
Research and Test Institute, where most of this work was conducted, and to the
Czech Ministry of Education. I also thank my wife for her patience while I was
writing the thesis.

I hereby declare I have written my PhD thesis on my own using none but the
referenced sources.



Contents

1 Introduction 9

2 Airfoil flow solution 11

2.1 2D inviscid incompressible irrotational flow . . . . . . . . . . . . . . . 11

2.2 XFOIL: A panel method coupled with boundary layer model . . . . . 14

3 Airfoil optimization 16

3.1 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Airfoil parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 GPARSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Description of basic GPARSEC . . . . . . . . . . . . . . . . . 19

3.3.2 Choice of base functions . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Limitations of GPARSEC . . . . . . . . . . . . . . . . . . . . 22

3.3.4 Extension to more DOFs . . . . . . . . . . . . . . . . . . . . . 22

3.4 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 The µ-ARMOGA algorithm . . . . . . . . . . . . . . . . . . . 23

3.4.2 Updating the Pareto archive . . . . . . . . . . . . . . . . . . . 24

3.5 Practical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Example: Hybrid regime airfoil optimization . . . . . . . . . . . . . . 28

4 Wing flow solution 29

4.1 3D potential flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Prandtl’s lifting line model . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 The nonlinear lifting line method . . . . . . . . . . . . . . . . . . . . 35

4.4 Implementation: NLWing2 . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Solving nonlinear equations . . . . . . . . . . . . . . . . . . . 37

4.4.2 Interpolating polars . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Wing optimization - a case study 42

5.1 Parallel evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Design variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Problem degeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



6 Conclusions and future work 50

7 Appendix 52

7.1 Green’s identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Induced velocities calculation . . . . . . . . . . . . . . . . . . . . . . 54

References 56



Title: Aerodynamic optimization of airfoils and wings using fast solvers
Author: Jaroslav Hájek
Department: Department of Numerical Mathematics
Supervisor: Prof. Ing. Pavel Šafař́ık, CSc.
Supervisor’s e-mail address: pavel.safarik@fs.cvut.cz
Abstract: This thesis is concerned with aerodynamic optimization of airfoils and
wings. It focuses at using very fast solvers based on hybrid potential methods to
evaluate the aerodynamic performance of the airfoils and wings. Compared to more
widely used CFD solvers which are more computationally demanding, use of fast
solvers brings different possibilities and different problems to tackle, some of which
are analyzed in this work. A state-of-the-art fast solver for airfoils is presented, and
a fast solver for slender wings is developed, and some of its aspects are discussed.
An innovative evolutionary optimization algorithm is presented and both solvers are
then utilized to solve real-life airfoil and wing optimization problems.
Keywords: optimization, fast solver, airfoil, wing

Název: Aerodynamická optimalizace profil̊u a kř́ıdel s použit́ım rychlých řešič̊u
Autor: Jaroslav Hájek
Katedra: Katedra numerické matematiky
Vedoućı dizertačńı práce: Prof. Ing. Pavel Šafař́ık, CSc.
e-mail vedoućıho: pavel.safarik@fs.cvut.cz
Abstrakt: Tato práce se zabývá aerodynamickou optimalizaćı kř́ıdel a jejich profil̊u.
Zaměřuje se na použit́ı velmi rychlých řešič̊u založených na hybridńıch potenciálńıch
metodách pro vyhodnocováńı aerodynamické výkonnosti těchto profil̊u a kř́ıdel. Ve
srovnáńı s š́ı̌reji použ́ıvanými CFD řešiči, které jsou výpočetně náročněǰśı, použit́ı
rychlých řešič̊u přináš́ı nové možnosti a nové problémy k řešeńı, některé z nichž
jsou analyzovány v této práci. Je prezentován zavedený rychlý řešič pro profily a
vyvinut rychlý řešič pro št́ıhlá kř́ıdla, jehož některé aspekty jsou diskutovány. Je
představen inovativńı evolučńı optimalizačńı algoritmus a oba řešiče jsou použity k
řešeńı reálných optimalizaćı profil̊u a kř́ıdel.
Kĺıčová slova: optimalizace, rychlé řešiče, profil, kř́ıdlo



Selected notation

α angle of attack [1]

cL lift coefficient [1]

cD drag coefficient [1]

cM momentum coefficient [1]

Γ, γ circulation [m2s−1]

v velocity [ms−1]

v velocity vector [ms−1]

vx, vy, vz, vr, vθ velocity components [ms−1]

f objective vector

x design vector

fi i-th objective

ψ streamline function (section 2) [m2s−1]

ψ base function for parametrization (section 3)

F,J,Γ,. . . vectors and matrices

CL(α) lift coefficient as function of angle of attack



Dictionary of terms

Airfoil The shape of a vertical cut through a wing.

Chord The longest segment inside an airfoil.

Degree of freedom See Design variable.

Design variable A variable (1 . . .N) of the parametrization.

Design vector A vector of design variables, element of R
N .

Design space The set of all admissible design vectors.

Flowfield The vector field corresponding to the velocity of a flow.

Freestream The flow velocity at infinity; velocity of undisturbed flow.

GPARSEC Generalized PARSEC. A parametrization method for airfoils, see Sec.
3.

GNU Octave Software for numerical programming, data analysis and plotting.
See <http://www.octave.org>

Lift Upwards force; acting in direction orthogonal to freestream velocity.

Drag Backwards force; acting in the direction of freestream velocity.

NLWing2 Free software for viscous analysis of slender wings. See Sec. 4.

Objective A decision-making function of the design.

Objective vector A vector of objectives.

Objective space The set of all possible objective vectors.

Pareto dominance A partial ordering between objective vectors, inequality in all
components.

Population A working set of designs. Can denote either the set of design vectors,
or their corresponding objective vectors.

Potential vortex Elemental inviscid irrotational incompressible flow. See Sec. 2.

Potential source Elemental inviscid irrotational incompressible flow. See Sec. 2.

Kutta-Joukowski law A fundamental relation between vorticity and induced lift.



Parametrization A mapping from R
N to geometric designs.

Population A finite set of design vectors.

Streamline function A scalar field determining an irrotational inviscid incom-
pressible flow. See Sec. 2.

Superposition A flowfield obtained by summing several other flowfield.

Vortex thread, vortex line An element of 3D potential flow, generalization of
2D potential vortex. See Sec. 4.

Vortex segment A straight finite part of a vortex line or vortex thread.

XFOIL Free software for visual aerodynamic analysis of airfoils. See Sec. 2.

XFEVAL Software for automatic parallel evaluation of airfoils using XFOIL.

Wing section See Airfoil.



1 Introduction

In the area of 2-dimensional aerodynamic analysis, especially the analysis of airfoils
(wing sections), it has long ago become possible to analyze hundreds or thousands
of airfoils within relatively short time, thus opening the door to their optimization
based on general nonlinear optimization algorithms.

Aerodynamic analysis of 3-dimensional flows is a different story. Most of the
current attention is focused onto CFD methods. These methods are based on funda-
mental flow equations, like the Navier-Stokes equations, and attempt to numerically
solve these equations by employing methods for solving partial differential equa-
tions. These methods usually employ meshes with many cells, leading to sometimes
enormously large systems of equations, from thousands to many million unknowns.
The performance of current computers and efficient methods for solving large sparse
linear systems already allow these methods to be applied on real-world problems
and evaluate aerodynamic properties of aerodynamic designs in acceptable time.

Looking at a typical CFD method, based on finite-volume (FV) or finite-element
(FE) scheme from a physicist’s perspective, we see that each cell is usually a simplis-
tic physical model of the physical phenomenon in question, interacting in a simple
manner with neighboring models. For instance, in the FV method, the physical
quantities are assumed to be constant in the cell, reducing the governing equations
to simple relations. It is the number of these elementary models that gives the finite
volume and finite element methods their ability to model complex physical phenom-
ena. The necessity of this approach stems from the fact that the governing partial
differential equations are nonlinear.

It is well known that an irrotational, inviscid and incompressible flow admits a
solution using velocity potential, satisfying the Laplace equation. We speak of a
potential flow. The model of irrotational inviscid incompressible flow is very simple
and almost unphysical; however, it is able to deliver surprisingly good approximate
solutions for many real problems.

Moreover, there is a huge advantage in reducing the problem to a potential flow.
A number of exact solutions for potential flow, corresponding to idealized models
of physical phenomena, such as sources, sinks, vortexes and doublets, are known.
And because the Laplace equation is linear, more complex potential flows can be
obtained by superposition of the elementary flows. Usually, these flow elements can
be only distributed along the boundary of the solution domain, i.e., when dealing
with external aerodynamics, at object surfaces. Therefore, compared to the FV
and FE approaches, the resulting discrete problem is much smaller. A necessary
tradeoff is that the interaction of non-neighboring elements cannot be neglected,
because they interact through the induced effect in the domain interior. As a result,
instead of dealing with large sparse problems, these methods usually lead to much

9



smaller dense (non-sparse) problems. This approach has been extensively exploited
before solving Navier-Stokes equations directly by FV and FE methods became
computationally tractable.

Because the potential flow model is unable to model certain effects resulting from
viscosity, in particular the boundary layer development, researchers were trying to
combine the potential flow with supplementary models allowing to catch the viscous
effects, yet retaining the computation advantages. As performance of computers
increased, most of these research directions were abandoned in favor of focusing on
CFD methods, that do not carry the theoretical limitations of potential flow.

However, the transition from mere performance evaluation to design optimization
increases the computational complexity by several orders of magnitude, because
instead of evaluating individual designs, hundreds or thousands are required. A
CFD computation taking several hours is acceptable for fine tuning and assessing
the performance of final designs. For preliminary stages of the optimization, where
performance is preferred to accuracy, it is natural to ask whether we can utilize the
fast potential flow methods to provide cheap yet sufficiently accurate predictions
of aerodynamic performance, allowing us to locate the most promising regions of
design space to proceed further with CFD methods.

Although analogical in theory, in practice aerodynamic optimization using a
cheap solver is significantly different from that based on an expensive solver. An
expensive solver may cause a single trial design evaluation to take hours or even
days; usually, in that case the computational overhead of the algorithm itself be-
comes negligible, and the sole concern is to get an acceptable solution using as few
trial designs as possible. A cheap solver, being orders of magnitude faster, allows
us to operate with equivalently more trial designs. Usually we want to exploit this
advantage to search our design space more thoroughly to escape possible local min-
ima, and deliver more complete results (such as the Pareto front described in further
sections). Obviously, this typically means a different sort of algorithms need to be
employed for each case.

This thesis focuses on exploiting cheap aerodynamic computational methods
based on potential flow in aerodynamic optimization. Such an optimization can
serve as a preliminary stage for optimization using CFD methods; however, it is
shown that for some real-world problems their results are directly applicable.

Four incremental steps are taken towards the final goal. The first section is
concerned by the solution of flow around airfoils, explains basic concepts and theory
and describes XFOIL, a state-of-the-art engineering software for airfoil design and
performance evaluation. In the second section, an approach to airfoil optimization
based on evolutionary algorithms is described in detail, including the discussion of
design parametrization and practical aspects of parallel evaluation. The third section
explains how to utilize results of two-dimensional computations in the nonlinear

10



lifting line model to allow a very efficient performance evaluation of slender wings.
This method is then utilized in aerodynamic optimization of wings, described in the
fourth section.

2 Airfoil flow solution

Airfoils are basic two-dimensional aerodynamic shapes forming cross sections of
wing, turbine blades and other aerodynamic objects. Airfoils are studied in the frame
of two-dimensional flow, and their aerodynamic properties are probably the most
thoroughly explored and understood in the whole field of aerodynamics. This sec-
tion describes the basic relations in two-dimensional potential flow and flow around
airfoils, which will also become important in building the model for solving three-
dimensional flows around wings.

The importance of studying two-dimensional flows around airfoils stems from
the fact that such flows are equivalent to three-dimensional flows around wings of
infinite span. Although in practice the span is always finite, the simplified two-
dimensional models can still provide us with a lot of information about the true
three-dimensional flows around a wing, especially for long-spanned wings.

There is a lot of existing software that can be used to evaluate aerodynamic per-
formance of airfoils. The XFOIL code ([1]), which is a free software, ranks amongst
the most highly regarded tools based on potential flow. In this section, capabilities
of the XFOIL software for evaluating aerodynamic performance of airfoils, are de-
scribed. These capabilities form the basis for airfoil optimizations described in the
next section, and are also important for solving wing flows.

2.1 2D inviscid incompressible irrotational flow

The most simple model of flow is the inviscid incompressible irrotational flow. In
two dimensions, denoting vx and vy the local velocity in the x, resp. y directions,
the incompressibility condition is written as

∂vx

∂x
+
∂vy

∂y
= 0 (1)

and the irrotationality as
∂vy

∂x
− ∂vx

∂y
= 0. (2)

As a result, it is possible to introduce both a velocity potential and a streamline

function. The velocity potential is a scalar field φ such that

∂φ

∂x
= vx

∂φ

∂y
= vy. (3)

11



The streamline function ψ, on the other hand, satisfies

∂ψ

∂x
= vy

∂ψ

∂y
= −vx. (4)

This equation implies that ψ has zero derivative in the flow direction in each point
of the flow, i.e. that ψ is constant along streamlines.

From substituting Eqs. (3), (4) into Eqs. (1), (2) it follows that both the velocity
potential and the streamline function are harmonic, i.e. they satisfy the Laplace
equation:

∆φ = ∆ψ = 0 (5)

Since we deal with inviscid flow, we impose the following condition on the airfoil
boundary:

vxnx + vyny = 0, (6)

where n = (nx, ny) is the unit outer normal vector to the boundary. In terms of the
potential and streamline function, this can be written as

∂φ

∂n
= 0,

∂ψ

∂t
= 0 (7)

i.e. the normal derivative of potential and the tangential derivative of the streamline
function are zero.

For the following description of elementary potential flows, it is convenient
to work with the polar coordinates, r and θ, defined by the standard relations
x = r cos θ and y = r sin θ. For a velocity field the transformation is vr = vx cos θ +
vy sin θ, vθ = −vx sin θ + vy cos θ. The elementary potential flow with greatest im-
portance for the following sections is the two-dimensional potential vortex, given by
the equations:

vr = 0, vθ =
γ

r
. (8)

Its streamline function is given by

ψ = γ log r. (9)

The constant γ is sometimes called the strength of the vortex. The importance
of a potential vortex is that it is fundamentally related to lift generated in two-
dimensional flow. The relation is known as Kutta-Joukowski law and states that a
potential flow obtained as a superposition of uniform flow and a potential vortex of
strength γ generates a force at the vortex axis that is perpendicular to the freestream
velocity (the velocity of the uniform flow component) with magnitude L (per unit
span) given by

L = ρv∞γ (10)

12



ρ is the air density, v∞ is the freestream speed. The lift effect of two-dimensional
potential flow on any object is usually expressed by the dimensionless lift coefficient

cL:

L =
1

2
ρv2

∞cLc, (11)

where c is some characteristic length (for airfoils, it is the chord length). Similar
definitions are used to measure drag coefficient cD:

D =
1

2
ρv2

∞cDc, (12)

where D is the drag force per unit span, and momentum coefficient cM :

M =
1

2
ρv2

∞cMc
2, (13)

where M is the rotational momentum per unit span (related to aerodynamic center
described below).

Potential source is another important elementary flow. It is described by equa-
tions

vr =
σ

r
, vθ = 0. (14)

Its streamline function is given by

ψ = σθ. (15)

Yet another useful concept is the aerodynamic center of an airfoil, which can
be defined as the unique point where the momentum is independent of lift, i.e. the
point where the lift acts. Hence, for calculating lift, it makes sense to replace an
airfoil by a potential vortex located at the airfoil’s aerodynamic center. In thin airfoil
theory, using a model of infinitely thin airfoil, it can be analytically derived that the
aerodynamic center is located at one quarter of the chord (i.e. it divides the chord
in 1:3 ratio, being closer to the leading edge). This approximation is widely used
in practice for most airfoils, and forms the basis of the lifting line approximation of
wing flow, as described in section 4.2. For more details, see [2].

In principle, it is possible to solve the Laplace equation for the velocity potential
or the streamline function using finite element or finite difference method. This
approach leads to solving a single large sparse system of linear equations, for which
efficient methods exist. On the contrary, solving the nonlinear Navier-Stokes equa-
tions usually requires many even larger sparse systems to be solved. Still, both
approaches are based on direct local approximations to differential equations, and
thus lead to systems with number of uknowns proportional to the area (or, in 3D,
volume) of the problem domain.

13



Let us consider an arbitrary 2D function ξ defined outside a domain Ω, and let
the gradient of the function be vanishing at infinity:

∇ξ(x, y) → 0 as x2 + y2 → ∞ (16)

Let also (x0, y0) be an arbitrary point outside Ω. Then, using the Green’s third
identity (see Appendix), we get:

ξ(x0, y0) =
1

2π

∮

∂Ω

− [ξ∇(log r) − (log r)∇ξ] · n dS (17)

where
r =

√

(x− x0)2 + (y − y0)2. (18)

Let us see what happens if we substitute the streamline function ψ for ξ in this
equation. Eq. (6) says that ψ is constant on ∂Ω. Using again the Green’s identity,
the first integral then simplifies to a constant independent of x0:

∮

∂Ω

ψ∇(log r) · n dS = ψ ↾∂Ω (19)

What remains is the integral

∮

∂Ω

∇ψ · n log r dS. (20)

Considering Eq. (9), it is apparent that the integrand of Eq. (20) is a streamline
function of a potential vortex. Now, taking the derivatives of Eqs. (19), (20) with
respect to x0, y0 will yield integral expressions for velocities vx, vy at (x0, y0).

Together, this shows that if a streamline function can be introduced for a flow in
the whole domain with a constant limiting velocity at infinity, then the flow can be
expressed as an integral superposition of potential vortices (of infinitesimal strength)
along the domain boundary and a uniform flow field. Specifically, it can be shown
that the streamline function exists for a simple inviscid incompressible irrotational
flow around an airfoil. This result forms the basis for modeling flow by panel method
in XFOIL, as described in the following section.

2.2 XFOIL: A panel method coupled with boundary layer

model

XFOIL is free software aerodynamic code released under the General Public License.
It is a visual tool for visual design and performance evaluation of airfoils. Its in-
teractive nature, while useful for manual design, is actually an obstacle when use

14



as an automated optimization solver is intended. In the following section, means
of overcoming this obstacle are described. The flow solution in XFOIL is based on
vortex panel method, coupled with a boundary layer model.

The result in previous section suggests approximating the flow around an air-
foil using a distribution of potential vortices along the airfoil surface (boundary),
superimposed on an uniform flow given by the freestream velocity.

Figure 1 describes the model of flow used by XFOIL. The inviscid part is ap-
proximated by a piecewise linear distribution of potential vortices around the airfoil
surface. This piecewise linear distribution is determined by the vorticity values
in nodes distributed along the surface, γ1, . . . , γN . Segments connecting successive
nodes are called panels; hence the name panel method. The boundary layer influence
is modeled by the so-called “wall transpiration” model, using a piecewise constant
distribution of potential sources. The zero normal flux boundary condition is im-
posed by requiring that the streamfunction be equal at all nodes to some constant
ψ0. Together, this gives a system of the form

N
∑

j=1

aijγj +
N+Nw−2

∑

j=1

bijσj = ψ0 + vx∞yi + vy∞xi, (21)

where the influence coefficients aij , bij are determined from unit streamfunctions of
a potential vortex and potential source, as given by Eqs. (9), (15).

The Kutta condition is imposed by requiring that γ1 + γN = 0. A panel is also
placed on the trailing edge if it has a nonzero thickness; the vorticity and source
strength on this panel are determined by γ1, γN . Another chain of panels, but with
no vorticity, only sources, is used to model the wake.

1

2
3

γi

γi+1

s σj

N-1
N

N+1

N+2 N+Nw

Figure 1: XFOIL flow model

The boundary layer model employed in XFOIL is quite complicated and its de-
scription is beyond the scope of this thesis. An interested reader may find more
details in [3] and [4]. Let us just briefly summarize the nature of the method here:

15



The model is based on standard integral momentum and kinetic energy shape param-
eter equations for the boundary layer, forming a system of two ordinary differential
equations. Empirical functional dependencies are assumed amongst the relevant
boundary layer quantities to close the equations. Different dependencies are as-
sumed for laminar and turbulent boundary layer region, respectively, giving rise to
two different systems of equations. The transition points are determined using the
e9 method (see again the above mentioned papers [3] and [4] for further references).

The coupling between the inviscid potential model and the viscous boundary
layer model is realized through the tangential velocity, ue, which, taking into account
Eq. (4) is assumed equal to ∇ψ · n on the suction side of the airfoil, and −∇ψ · n
on the pressure side of the airfoil. According to Eq. (20), in a control point on the
airfoil surface we get the equations

±uei = γi + vx∞nxi − vy∞nyi, (22)

where nx, ny are components of a unit normal vector of the airfoil. In the wake,
there is no such simple relation, it is necessary to express the dependence of ∇ψ · n
on the freestream and all vortex and source elements, to end up with a linear system

uei = vx∞nxi − vy∞nyi +
N

∑

j=1

cijγj +
N+Nw−2

∑

j=1

dijσj . (23)

The influence coefficients cij, dij are again evaluated using the equations by Eqs. (8),
(14). The normal direction to the wake is oriented so as to match the normal
direction on the suction side of the airfoil.

3 Airfoil optimization

Airfoil optimization is usually used as a preliminary step to wing optimization.
Given the relation to wings of infinite span (cf. Sec. 2, page 9), it is reasonable
to expect that good aerodynamic performance of an airfoil will be reflected in good
properties of a wing having this airfoil as a cross section.

In practice, usually when we speak of airfoil optimization, we can have two
different flavors of the problem in mind: a refinement optimization or an explorative
optimization. Refinement means the process starts from a baseline design, usually
an existing industrial airfoil, and applies relatively small perturbations to its shape
to optimize the desired objective. Since standard industrial airfoils are already well
optimized with respect to typical flight conditions, only small deviations in both
objectives and shape are expected. By “explorative” optimization, on the other
hand, we mean a process where there is no baseline design, and the objectives are

16



such that standard airfoils are not close to satisfactory. In such case, we expect to
search with less detail but broader scope, to cover a wide range of airfoil shapes. An
explorative stage is often followed by a refinement.

While equivalent in pure theory, in practice explorative and refinement opti-
mization differ fundamentally. The focus of this section will be on the explorative
optimization which is less common and less understood.

3.1 Multi-objective optimization

We begin with the simplest mathematical formulation of a general optimization
problem. That is, to find

min
x∈Rn

f(x), (24)

where f : R
n → R is a real function defined on n-dimensional vectors of real numbers,

called objective function. Usually, we assume at least continuity of f , often first- or
even second-order differentiability is required. This type of optimization problem is
called unconstrained optimization. Equivalently, we may want to maximize f , but
that is only a matter of convention, as maximizing f equals minimizing −f . The
standard form of an optimization problem is minimization.

In real situations, the classical formulation of optimization problem, as intro-
duced in the previous paragraph, is often too simplistic. For instance, when we
optimize a wing section, we are not just interested in low drag; we also want high
lift, low momentum, stability at high angles of attack, etc. Mathematically, we
speak of multi-objective optimization. Instead of a single objective function F , we
define a vector-valued function F , assigning to each design vector x an objective vec-

tor f = F (x). The set of all possible objective vectors determines the design space.
Unlike single-objective optimization, the solution of a multi-objective optimization
problem is not a single design vector, but rather a set of so-called non-dominated

or (Pareto-non-dominated) vectors, often called the Pareto front. The definition of
this concept is as follows: Given two objective vectors, f1 and f2, we say that f1

dominates f2 if it holds

f 1
i ≤ f 2

i for all i = 1 . . .D, (25a)

f 1
i < f 2

i for at least one i = 1 . . .D. (25b)

This is also called strong dominance. If we omit the condition (25b), we speak of
weak dominance.

The Pareto front is simply the set of all objective vectors that are not dominated
by any other vector. It constitutes a (D− 1)-dimensional manifold in the objective
space. Alternatively, we may speak of the set of the corresponding design vectors,

17



which is also a (D − 1)-dimensional manifold, but in design space. The distinction
is usually clear from context.

In theory, the solution of a multi-objective optimization problem is the Pareto
front. In practice, however, individual solutions need to be picked from the Pareto
front according to some secondary objectives. But unlike single-objective optimiza-
tion based on some reduction of the multiple objectives (e.g., a weighted sum), the
true multi-objective approach allows us to select a posteriori, i.e. we can use the
knowledge of the shape of the true Pareto front in our decision. For more details,
see [5].

3.2 Airfoil parametrization

When dealing with an airfoil optimization problem (or design optimization in gen-
eral), we seek an optimum design from the set of all admissible designs, usually
called the design space. Ideally, we would want to consider all airfoils. The set of
all possible airfoil shapes forms an infinite-dimensional affine space; working with
such a complex space is not practical. Since optimization algorithms are usually
abstracted to the form given by Eq. (24), we need to constitute a mapping that
maps vectors from R

D to airfoil shapes. This mapping is usually called parametriza-

tion. Parametrization inevitably constitutes a set of parametrized designs, which is
a subset of all possible designs. Objective functions, however, are defined on airfoils
directly - lift, drag, thickness and other aerodynamic or geometric properties. By
choosing a parametrization for our optimization problem, we essentially form a new
objective function (or functions) defined on R

D.

It is, therefore, not surprising that the choice of parametrization has a funda-
mental impact on the optimization problem and its results.

In a refinement optimization, usually some flexible general parametrization of the
shape difference is used. If, however, an explorative optimization is intended, with a
novel combination objectives, often there is no baseline design to start from. Indeed,
in such case, we want our parametrization to yield a wide range of airfoil shapes.
Opposing to flexibility, however, there is the complexity of the parametrization,
given by number of parameters. A more complex parametrization yields a more
dimensional design space, that is more difficult to search for any general optimization
algorithm. In the explorative optimization case, we want our parametrization to be a
good compromise between simplicity and flexibility, to yield a wide range of varying
airfoil shapes using a moderate number of variables.

Of course, best results can be achieved using a parametrization specially tailored
to a problem, incorporating prior knowledge about the problem. The GPARSEC
parametrization, described in the next subsection, is an example of such a specific-
purpose parametrization designed for subsonic and transonic airfoils.

18



3.3 GPARSEC

Airfoil sections are traditionally and most easily described by coordinates of sample
points on the airfoil. For the purposes of optimization, however, a simpler descrip-
tion of the airfoil shape is usually desirable. Various methods can be employed for
this purpose, e.g. the extended Joukowski transformation [6], B-spline curves [7] or
Hicks-Henne shape functions [8]. This work generalizes the PARSEC parametriza-
tion described in [9]. PARSEC differs from the above mentioned methods in the
aspect that the design variables are real important geometric characteristics of the
airfoil shape, which provides easier control over the generated airfoil shapes. The
scheme is generalized to include arbitrary base functions and extended to provide
more degrees of freedom. Further, several variants of the scheme are employed in
a real airfoil optimization problem with four objectives to show that much better
results than with the original PARSEC can be obtained.

3.3.1 Description of basic GPARSEC

The generalized PARSEC (GPARSEC) parametrization assumes the leading edge
of the airfoil in the origin of two-dimensional plane and the trailing edge on the line
x = 1. The upper (U) and lower (L) airfoil surfaces are given by the equations:

zU =
6

∑

i=1

aiUψiU(
√
x), zL =

6
∑

i=1

aiLψiL(
√
x). (26)

Here ψiU , ψiL are suitable base functions with continuous second derivative on (0, 1),
satisfying the conditions:

ψiU(0) = ψiL(0) = 0. (27a)

ψiU(1), ψiL(1), ψ′
iU(0), ψ′

iL(0), ψ′
iU(1), ψ′

iL(1) are finite. (27b)

The design variables for GPARSEC are given by 12 geometric characteristics of the
airfoil shape, as described by Fig. 2. These geometric characteristics express the
upper and lower radius of curvature of the leading edge rLELO, rLEUP, the positions
of extrema of both surfaces XUP, XLO, ZUP, ZLO, the reciprocal curvatures (second
derivatives) in these extrema ZXXLO, ZXXUP, the trailing edge angle βTE, distortion
αTE, z-coordinate ZTE and thickness ∆ZTE.

Given the geometric characteristics, the GPARSEC coefficients aiU , aiL satisfy

19



Figure 2: Design variables for GPARSEC

the following equations:

∑6

i=1
ψ′

iU(0) aiU = rLEUP, (28a)
∑6

i=1
ψiU (

√

XUP) aiU = ZUP, (28b)
∑6

i=1
ψ′

iU (
√

XUP) aiU = 0, (28c)
∑6

i=1
ψ′′

iU (
√

XUP) aiU = 4ZXXUPXUP, (28d)
∑6

i=1
ψiU(1) aiU = ZTE + ∆ZTE/2, (28e)

∑6

i=1
ψ′

iU(1) aiU = −2 tan(αTE + βTE/2), (28f)

∑6

i=1
ψ′

iL(0) aiL = −rLELO, (29a)
∑6

i=1
ψiL(

√

XLO) aiL = ZLO, (29b)
∑6

i=1
ψ′

iL(
√

XLO) aiL = 0, (29c)
∑6

i=1
ψ′′

iL(
√

XLO) aiL = 4ZXXLOXLO, (29d)
∑6

i=1
ψiL(1) aiL = ZTE − ∆ZTE/2, (29e)

∑6

i=1
ψ′

iL(1) aiL = −2 tan(αTE − βTE/2). (29f)

20



These two systems are square, and the aiU , aiL coefficients are fully determined. In
this case, it is also possible to easily compute the derivatives of the coefficients with
respect to the design variables, and, consequently, the sensitivity of the airfoil shape.

This scheme allows the construction of a wide family of parametrization by choos-
ing various base functions satisfying the conditions (27a, 27b). Regardless of the
choice of these functions, the shape of the airfoil is controlled by the twelve geo-
metric characteristics described above. As has already been suggested, the principal
advantage of this approach is that if convenient base functions are employed, de-
sign variables in reasonable boundaries always create meaningful airfoils, yet, at the
same moment, very distinct shapes can be obtained. GPARSEC is thus especially
suitable for global airfoil optimizations, when there is no initial or baseline shape to
be perturbed. This is often true in multi-objective optimization. Another advantage
is that necessary geometric constraints (such as minimum trailing edge thickness)
can be directly expressed or approximated by simple constraints on design variables.
This property can simplify the optimization process.

3.3.2 Choice of base functions

For the optimization problem presented in section 3.6, three sets of 12 base functions
(6 for each surface) are considered:

1. The sobieczky set, according to the original PARSEC ([9]):

ψiU (t) = ψiL(t) = t2i−1, (30)

2. The vzlu2 set, consisting of trigonometric functions,

3. The vzlu3 set, consisting of polynomials.

The choice of base functions for GPARSEC can be a matter of experiment. The
base functions should be sufficiently independent to produce reasonable airfoil shapes
for most GPARSEC geometric characteristics. In particular, the linear systems (28a-
28f), (29a-29f) should not become too ill-conditioned. The left-hand side matrices
of these systems depend only on the variables XUP, XLO. It is, thus, a good idea
to inspect the dependence of the condition number of these matrices on XUP, XLO

in advance, in order to grant reasonable behavior in the area of interest (e.g. 0.1 ≤
XUP ≤ 0.5).

An interesting option is employing other airfoil sections as base functions. In
this way, we could obtain a parametrization that can exactly represent selected
airfoil sections of particular interest; therefore, one might expect that the resulting
parametrization could inherit the properties of these airfoils to some extent. This
idea has not yet been experimentally tested, however.

21



3.3.3 Limitations of GPARSEC

The principal limitation of GPARSEC is that leading edge of the airfoil is assumed
at the origin, while the chord should be situated approximately along the x-axis.
For certain types of airfoils (e.g. strongly curved turbine blades), these assumptions
are unsatisfiable and such airfoils are thus unsuitable for GPARSEC. An example
of such an airfoil is given in Fig. 3. Another issue with GPARSEC might be its
limited number of design variables. When GPARSEC is included in more complex
parametrization schemes for whole wings or airplanes, which typically contain sev-
eral airfoils, this is more likely an advantage. But for a pure airfoil optimization,
especially when restricted to symmetric airfoils (in which case the effective number
of GPARSEC design variables equals six), more degrees of freedom might be desired.
This is addressed in the following section.

-0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

Figure 3: An airfoil unsuitable for GPARSEC

3.3.4 Extension to more DOFs

The basic 12 degrees of freedom may be insufficient for some applications. Therefore,
it is desirable to have a way of extending the basic GPARSEC scheme with more
design variables if this proves necessary, while not losing the ability to directly
control the geometric characteristics. To achieve this goal, a modification of the
Hicks-Henne shape functions [10] are employed and four types of additive bump
functions are introduced:

HFU(x, β) = H(

√
x√

XUP

, β) HBU(x, β) = H(
1 −√

x

1 −
√
XUP

, β) (31)

HFL(x, β) = H(

√
x√

XLO

, β) HBL(x, β) = H(
1 −√

x

1 −
√
XLO

, β) (32)

where

H(t, β) =

{

sin3(πtβ) for 0 ≤ t < 1
0 for t ≥ 1

(33)

22



and β > 1/3 is a parameter that controls the position of the maximum of the bump.
The key property of these functions is that adding small multiples of HFU , HBU to
the upper airfoil surface or HFL, HBL to the lower airfoil surface does not interfere
with any of the GPARSEC geometric characteristics of the airfoil shape (i.e., these
are preserved). It is thus possible to easily augment the basic GPARSEC scheme
which controls the main geometric characteristics of the airfoil with these additive
bump functions that provide fine tuning of the airfoil. This can be referred to as
the extended GPARSEC parametrization.

3.4 Genetic algorithms

Genetic optimization algorithms are a class of optimization algorithms based on
random generation and recombination of design vectors, called individuals. They
typically maintain a set of individuals called a population; using random generation
and recombination “operators” (mutation, crossover), and comparing according to
the objective (fitness), the population is let to evolve towards the most promising
individuals, corresponding to optimal designs.

Compared to local search methods, genetic algorithms typically lack the strong
local convergence properties; indeed, they require much more objective evaluations
when applied to nice quadratic-like functions. Their strength, however lies in their
robustness, i.e. their ability to overcome local minima, failed evaluations, and noisy
objectives.

3.4.1 The µ-ARMOGA algorithm

The µ-ARMOGA algorithm is a micro-genetic algorithm targeted at multi-objective
optimization using small populations and an elitist Pareto archive. Pareto archive
is a set of non-dominated individuals.

A simplistic description of the algorithm follows: In each cycle, an initial popula-
tion is randomly initialized using the population statistics (see below). Afterwards,
selected members from the Pareto archive are injected into the population. Then,
crossover is applied to the population, combining the existing vectors in pairs and
replacing them. The individuals of the updated population are then evaluated for
objectives. The evaluated individuals are used for possibly updating the Pareto
archive, and (once per several generations), they are also used to update the pop-
ulation statistics. Population statistics is a nonlinear transformation used to focus
the evolution to a certain area of the design space. For each design variable xi,
i = 1, . . . , D, we introduce the mean µi and deviation σi, and define the trans-

23



formed variable x̂i by

x̂i =
2√
π

∫ xi

0

e−(u−µi)
2/(2σ2

i
)du (34)

The transformed variables satisfy −1 < x̂i < 1. Note that some authors use an
alternative transformation

x̂i =
1√
π

∫ xi

−∞

e−(u−µi)2/(2σ2
i
)du (35)

so that 0 < x̂i < 1. The former approach has the advantage that the center is around
zero, where machine numbers have finer resolution. The transformed variables are
used instead of the true design variables in evolution operations such as crossover
and reinitialization. Inverse transformation is applied to the newly created design
vectors to get the true (untransformed) design variables suitable for evaluation. The
mechanism for updating the population statistics is called adaptation.

The above basic descriptions allows a number of further choices and modifica-
tions. The precise way how to do crossovers, adaptation and how to inject archive
members into the resulting population is something that has no fixed optimum and
can vary from problem to problem.

The µ-ARMOGA algorithm has been implemented in VZLU in the ARMOGA
software. A new, improved implementation is being worked on. In the next section,
one of the novel features of the µ-ARMOGA algorithm is described in detail.

3.4.2 Updating the Pareto archive

As has been stated above, a key component of our evolutionary algorithm is the
Pareto archive. It acts as a collector of promising individuals during the evolution,
and is also used to actually yield the resulting Pareto front approximation when
the algorithm terminates. The archive is informed each time new population are
evaluated, optionally allowed to store its individuals if they are non-dominated.
Information is retrieved back from the archive by injecting archive members into the
reinitialized population, prior to crossovers. This simple interaction makes it possible
to try various archiving strategies and to study them in their own right. In this
section, a novel strategy for updating the Pareto archive in a (micro-)evolutionary
algorithm is briefly described. The details are described in [12].

In a real updating strategy, putting a limit on the number of archive members is
needed, not only to keep the complexity under control, but also to achieve a good
diversity of the final approximation of the Pareto front. In the presented strategy,
a fixed upper limit on the number of Pareto archive members is used. The aim is
to terminate the algorithm with an archive of Pareto-optimal solutions that is “well
spread” over the true Pareto front of the problem. This approach is dealing with

24



a single new individual at a time. This makes it suitable for micro-evolutionary
approaches, where only several new individuals appear in each generation.

When a new individual arrives, it is first checked for Pareto dominance with all
existing members of the archive. Then, the following three cases are distinguished:

• The new individual is dominated by one or more individuals from the archive.
In this case, the new individual is discarded.

• The new individual dominates one or more individuals in the archive. The
dominated individuals are removed, and the new individual is added to the
archive and the internal information of the archive is updated (see below).

• The new individual is non-dominated and non-dominating. If the number
of individuals in the archive has not yet reached the upper limit, the new
individual is added as in the previous case. In the opposite case, at least one
individual needs to be discarded (either the newcomer or one from archive),
but this can not be decided by Pareto dominance. That is when the algorithm
proceeds to the secondary decision procedure, described below.

When the case that can not be resolved by Pareto dominance occurs, the sec-
ondary goal is to maximize the distance between neighboring individuals, based on
some distance measure in the objective space. In this thesis, the standard Euclidean
distance is used.

First, consider the minimum pairwise distance, i.e.

min
i,j∈P
i6=j

‖fi − fj‖, (36)

where P denotes the set of archived individuals and fi stands for the vector of objec-
tive values of individual i. Take the pair of individuals that achieves the minimum
in the above expression. If there are multiple such pairs, take any of them. Without
loss of generality, assume that the minimum pair is f1, f2. Further, denote g the
vector of objective values of the new individual. If

min
k∈P
k 6=1

‖fk − g‖ ≥ ‖f1 − f2‖, (37)

one can replace f1 by g. Alternatively, if

min
k∈P
k 6=2

‖fk − g‖ ≥ ‖f1 − f2‖, (38)

one can replace f2 by g. If either of the above conditions is satisfied, the overall
minimum pairwise distance will be improved by the substitution or, if there were

25



multiple minimal pairs, it will stay the same but the number of minimal pairs will
reduce. Let us call this the global improvement check.

If neither of these conditions is satisfied, consider the closest archived individual
to g, say, fc instead. If

min
k∈P
k 6=c

‖fk − g‖ > min
k∈P
k 6=c

‖fk − fc‖, (39)

replace fc by g. If this condition holds, there is a certain subset of the archived
individuals whose pairwise minimum will improve. This is the local improvement

check.

If neither check is successful, the new individual is discarded.

Searching for the minimum-distance pair of the archive afresh each time an in-
dividual is considered would be too costly. To make the procedure efficient, it is
necessary to maintain for each archived individual a pointer to its closest neighbor
(or any of them). Thus, searching for the pairwise minimum in Eq. (36) requires only
one pass through the archive. Similarly, the right-hand side of Eq. (39) is simply the
distance of fc to its closest neighbour. Thus, these two checks only require comput-
ing the distances of the new individual to all archived individuals, and computing
the minima on left-hand sides of Eqs. (37),(38),(39). Thus, deciding whether to add
a new individual has linear complexity in terms of number of archived individuals
(evaluating mutual pairwise dominance is also linear).

If the new individual is to be added, the existing closest-neighbor links need to
be updated. Each resulting archive member is considered in turn. If the link is valid
(i.e. the closest neighbor in the archive was not discarded), we simply check if the
newcomer is closer, and possibly update the link. This takes only constant time.
However, if the link became invalid (the former closest neighbor was discarded), the
closest neighbor needs to be computed afresh by computing objective distances of
the updated individual to all others.

This case is experimentally analyzed in [11], where it is asserted that in real runs,
only a few invalid links occur on average per update. Hence, the algorithm runs in
linear time in practice.

3.5 Practical aspects

Let us now consider some practical aspects of an optimization process by a micro-
genetic algorithm, i.e. a genetic algorithm exploiting small populations. In particu-
lar, we will be concerned with a key parameter of any micro-genetic algorithm, the
micro-population size.

First, we will note that there are at least three ways to measure an algorithm’s
performance, i.e. speed of convergence. First, we can count the number of objective

26



evaluations (i.e. candidate vectors) needed to achieve a certain progress; second, we
can count the populations needed; and third, measure the actual time consumed by
the computation. In general, the convergence speed measured by number of pop-
ulations will increase with the micro-population size, because more information is
gained per population. Measured by number of evaluations, however, the perfor-
mance will tend to degrade with increasing population size, because less information
is shared, on average, between successively evaluated individuals. To describe the
second phenomenon more closely: if a population of size N is split into two subpop-
ulations of size N/2, then the information from the first subpopulation can be used
for better selection of the second subpopulation, thus leading to a faster convergence
in terms of number of evaluated individuals.

From practical point of view, of course, the actual time taken by the optimization
process is the most important quantity. Let us for a moment assume that evaluating
any individual takes up a constant time on a single processor; and that we have M
processors available for parallel evaluation. Using a similar reasoning as in the
previous paragraph, we can conclude that the optimal population size is M (or the
minimal population size required by the optimization algorithm if that is greater
than M). Indeed, if N is the population size, then if N < M we can supply the
remaining M − N individuals at random, providing additional information for the
algorithm. Based on our assumption that the algorithm can utilize information
effectively, it is apparent that population size M is at least as good as that of size
M . Conversely, if N > M , let us consider evaluating MN successive individuals

1. using M populations of size N ,

2. using N populations of size M .

In a genetic algorithm, the information available for selecting an individual is that
of all previously evaluated populations. Considering the above two schemes, de-
noting kM , kN , the number of individuals providing information for selecting the
k-th individual from the first and second scheme, respectively, we see that kM is
the greatest multiple of M less than k, and kN is the greatest multiple of N less
than k; thus, kM ≥ kN for all k, and kM > kN for some of them. Again, based on
our assumption of efficient utilization of information by the algorithm, we conclude
that a population of size M provides at least as good performance as size N . The
final conclusion is that in the case of constant-time evaluation of each individual,
the optimal micro-population size is equal to the number of available processors.

In practice, the situation is more difficult, because time consumed by evaluating
an individual may vary. Generally, when a population of size M is evaluated using
N parallel processors, we can define the efficiency index as

η =

∑

m tm
N maxn Tn

. (40)

27



Here tm denotes the time consumption by the m-th job, and Tn is the time to
complete the n-th process, computed as

Tn =
∑

i∈In

ti + scheduling overhead, (41)

where In denotes the set of job indices assigned to the n-th processor.

Using a similar reasoning as above, we can show that if η = 100%, for a certain
M = M0, the optimum population is at most M0, i.e. using population size greater
than M brings no additional benefit. On the other hand, it is apparent that if
the time taken to evaluate an individual is variable, M = N will generally give
η < 100%. The situation is easily to visualize: individuals are distributed evenly
amongst processors, and one individual that is being evaluated slowly blocks the
whole process, while the rest of the population is already evaluated. When M > N ,
one possibility how to distribute the M jobs amongst the processors is to split
them into N equal (or approximately equal) groups and assign each group to a
single processor. In parallel computing, this approach is usually referred to as static

scheduling. On the contrary, dynamic scheduling loops sequentially through the jobs,
waiting until a processor becomes idle; the job is then assigned to the processor and
the cycle proceed to the next job. It is apparent that dynamic scheduling will tend
to yield better efficiency indices, due to the broader ability to balance processor
loads. However, dynamic scheduling is also harder to implement, because it requires
interprocess communication.

Parallel automatic evaluation of airfoils using dynamic scheduling has been im-
plemented in VZLU in the XFEVAL software, for the purpose of solving multi-
objective aerodynamic optimization problems using the µ-ARMOGA algorithm.
XFEVAL provides an encapsulation for XFOIL, which does not itself support batch
or parallel processing. The requested aerodynamic characteristics (computable by
XFOIL) are specified using a simple “evaluation scripts”. Examples include lift at
certain angle of attack, drag at certain lift (or angle), momentum, or maximum lift
in a certain range of angles of attack. XFEVAL works by forking a requested number
of threads, feeding new designs to idle threads and collecting results. Each thread
repeatedly requests designs from the main thread and evaluates them. During the
process, XFEVAL calculates the evaluation efficiency as described in the previous
paragraphs. Experiments with utilizing the computed efficiency for adapting the
population size are currently in progress.

3.6 Example: Hybrid regime airfoil optimization

Using the techniques described in this section, we solved a multi-objective optimiza-
tion problem, optimizing an airfoil shape for a rear wing section of a small business

28



aircraft. Eventually, two utility models were produced from solving this problem:
[13] and [14].

The objectives were given as follows:

• Flight regime (obj1): minimize CD at α = 0◦, Re = 6 · 106, M = 0.3.

• Maneuvering regime (obj2): minimize CD at α = 5◦, Re = 6 · 106, M = 0.3.

• Takeoff and landing with a side wind (obj3): maximize Cmax
L at Re = 2e6,

M = 0.12.

Here, Re denotes the Reynolds number, and M denotes the Mach number of the
flow. All of these objectives can be considered either with a free transition of laminar
boundary layer (denoted obj1x, obj2x, obj3x), or with forced transition at 7% of
the chord (denoted obj1y, obj2y, obj3y).

We solved three optimization problems: one with the above objectives with free
transition, one with forced transition, and one with both free and forced transition
(giving a total of six objectives). These are called the laminar, turbulent, and hybrid
case, respectively.

The airfoils were parametrized using the GPARSEC parametrization. The op-
timization has been carried by the µ-ARMOGA algorithm. The populations of
candidate designs were transformed to coordinate representation by the GPARSEC
utilities, and then efficiently evaluated by means of the XFEVAL evaluator. We
have experimented with various settings of the µ-ARMOGA algorithm, including
the population size, which was adjusted according to the evaluation efficiency index
calculated by XFEVAL, to ensure full loading of 8 processors used in parallel.

Figure 4 shows the resulting Pareto front of the free transition problem opti-
mization problem, Figure 5 shows the Pareto front of the forced transition problem.
For the hybrid problem, two projections of the (six-dimensional) Pareto front are
shown: projection on the free trans. objectives in Fig. 6 and projection on the
forced trans. objectives in Fig. 7.

4 Wing flow solution

4.1 3D potential flow

The potential (or locally potential) flow model can also be applied in 3 dimensions.
To facilitate studying complex vortex structures that can arise in 3-dimensional
flows, it is useful to introduce the notion of vorticity (rotation)

ω = rotv =

(

∂vz

∂y
− ∂vy

∂z
,
∂vx

∂z
− ∂vz

∂x
,
∂vy

∂x
− ∂vx

∂y

)

. (42)

29



 0.003
 0.004

 0.005
 0.006

 0.007
 0.008 0.0064

 0.0068

 0.0072

 0.0076

 0.008

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

obj3x

obj1x

obj2x

obj3x

Figure 4: Pareto front of the free transition problem

30



 0.0076
 0.0078

 0.008
 0.0082

 0.0084
 0.0086

 0.0088 0.0084

 0.0086

 0.0088

 0.009

 0.0092

 0.0094

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

obj3y

obj1y

obj2y

obj3y

Figure 5: Pareto front of the forced transition problem

31



 0.0035
 0.004

 0.0045
 0.005

 0.0055 0.0064

 0.0066

 0.0068

 0.007

 0.0072

 0.0074

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

obj3x

obj1x

obj2x

obj3x

Figure 6: Pareto front of the hybrid problem - free trans. projection

32



 0.0076
 0.0077

 0.0078
 0.0079

 0.008
 0.0081 0.0082

 0.0084

 0.0086

 0.0088

 0.009

 1.44
 1.46
 1.48
 1.5

 1.52
 1.54
 1.56
 1.58
 1.6

 1.62
 1.64
 1.66

obj3y

obj1y

obj2y

obj3y

Figure 7: Pareto front of the hybrid problem - forced trans. projection

33



Zero vorticity in a certain domain means a locally potential flow in that domain.
The vorticity is fundamentally related to circulation (around a closed curve) by the
Kelvin-Stokes theorem:

∮

∂A

v · ds =

∫

A

rotv · dA. (43)

In other words, normal flux of vorticity through a surface A is equal to the circu-
lation along its boundary ∂A. This also implies that the vorticity is a conservative
quantity, i.e. that div rotv = 0. By vortex tube we usually denote the flow that
is irrotational everywhere outside a thin tube. Using the Kelvin-Stokes theorem
and the conservativity of vorticity, we can easily conclude that the normal flux of
vorticity through any cross-section of the tube is constant, and around any simple
closed curve encircling the vortex tube there is a constant circulation. A limiting
case, vortex tube of infinitesimal thickness, is called a vortex thread or vortex fila-

ment. Again, there must be a constant (nonzero) circulation around the filament,
no matter what curve is used. This also means that a vortex thread cannot have free
endpoints inside the fluid. More complex systems of vortex filaments with branches
and crossings are possible, however; such systems must satisfy the Kirchhoff’s law:
the amount of circulation incoming to a node must equal to the total circulation
coming out.

The computational advantage of using vortex filament systems lies in the fact
that the local velocity of the locally potential flow determined by the vortex system
S, usually called the induced velocity, can be computed using the Biot-Savart law :

v(x0) =
Γ

4π

∫

S

x − x0

‖x − x0‖3 × dx. (44)

In the case when S is composed of segments, lines and half-lines, the integrals
corresponding to the components can even be evaluated analytically (see Appendix).

4.2 Prandtl’s lifting line model

Armed by the theory of three-dimensional potential vortices presented in the previ-
ous section, we consider Prandtl’s lifting line model of the wing. The fact that in
two-dimensional flow, airfoil can be approximated by a potential vortex leads natu-
rally to an attempt to approximate a wing by a vortex segment stretched along the
span. The Helmholtz’s law, however, prohibits the existence of an isolated vortex
segment. Following real-life observations, Prandtl modeled the wing by a horseshoe
vortex, consisting of one segment along the wing span and two half-lines carrying
the vorticity to infinity in the freestream direction. Due to Helmholtz’s law, such
a model yields constant circulation along the span. Prandtl thus later refined his
model to a distribution of half-line vortices along the span and variable distribution

34



of vorticity on the bound segment. The free vortex half-lines actually model the
wake behind the wing, which is observed in real flows.

Prandtl considered continuous distribution, yielding an integral equation (Prandtl’s
integral equation) that can be solved numerically:

Γ(y)

c(y)
=

1

4

∫ b/2

−b/2

1

y − ȳ
dΓ(ȳ) (45)

Similarly as before, we will consider instead an early discretization scheme, using
discrete distribution of vortices in the wake. As we already know, every valid vortex
system in three dimensions must obey the Helmholtz’s law and, consequently, the
Kirchhoff’s law at vortex crossings. One elegant way to ensure this is to build our
system from small horseshoe vortices, consisting of a small bound segment (position
on the wing). The resulting model is shown in figure 8. Like in the two-dimensional
case, the wing moving through the air generates circulation; and, therefore, lift. This
is approximated by the bound vortex segments positioned along the wing’s span.
The broken line consisting of these segments is usually called the lifting line, hence
the model’s name. The free vortices, shedding from the bound vortex segments
toward infinity in the freestream direction, ensure the Helmholtz law is satisfied by
detracting circulation from the lifting line. They model the wake formed by the
wing. As mentioned above, an elegant way to automatically satisfy Helmholtz law
is to view the model as a superposition of N horseshoe vortices. The strengths
(circulations) of these vortices form unknown variables for our problem. If these
variables are known, the velocity of the flow can be determined in arbitrary point
using the Biot-Savart law.

4.3 The nonlinear lifting line method

The method starts from the assumption that the flow around the wing can be
modeled by a system of horseshoe vortices, as shown on Fig. 8. The bound segments
of these vortices model the circulation around the wing, while the free segments
form the wake. Given a single horseshoe vortex with known strength (circulation),
its induced velocity in any point in the 3D space can be calculated using the Biot-
Savart law, (44).

Given the vortex strengths, we can, using the above method, calculate induced
velocities in the midpoints of the bound vortex segments (the influence of a bound
segment on itself is set to zero). The induced velocity is a vector in three-dimensional
space; however, we will only be interested in its projection into a section plane
(perpendicular to the wing):

vxi =
∑

gxikΓk (46)

vyi =
∑

gyikΓk (47)

35



Γ1

Γ2

Γ3

Γ4 Γ5
Γ6

Γ7
Γ8

Γ1 ∆Γ1 ∆Γ2 ∆Γ3 ∆Γ4 ∆Γ5 ∆Γ6 ∆Γ7 Γ8

Figure 8: A horseshoe vortex model of a wing

Here, vxi is the chordwise velocity component and vyi is the component perpendicular
to the chord in i-th section (panel). gxik and gyik define the induced velocity tensor.
These induced velocities are superimposed onto the freestream velocity to get local
stream velocity and local angle of attack (in the following equations, we omit the
subscript i for brevity):

v =
√

(vx + vx∞)2 + (vy + vy∞)2, (48)

α = arctg ((vy + vy∞)/(vx + vx∞)) − αtwist. (49)

The local lift coefficient is interpolated from the local lift curves:

cL = CL(α) (50)

and the equations are closed using the following equation:

cLvc = 2Γ, (51)

which results from combining Eqs. (10) and (11). Choosing the local circulations as
unknown variables, one ends with a system of nonlinear equations of the form

Γi = Fi

(

∑

gxikΓk,
∑

gyikΓk

)

(52)

where Fi are scalar nonlinear functions of two variables. These functions depend
not only on the wing geometry and the section polars, but also on the global angle
of attack.

36



4.4 Implementation: NLWing2

NLWing2 ([15]) is an implementation of the nonlinear lifting line method developed
at VZLÚ. In vector notation (bold symbols denote vector or matrix variables and
functions), we can write this nonlinear system in the form

F(Γ(α), α) = 0. (53)

The computation proceeds by continuously tracking Γ(α) using a predictor-corrector

approach. At any angle of attack α, we choose a step ∆α and use approximate
differentiation of Eq. (53) with respect to α to obtain the predictor in the form:

∇F(Γ, α) · ∆Γ = −∆α F(Γ, α + ∆α) (54)

with ∆Γ unknown, obtained as a solution of the linear system above. Afterwards,
we replace Γ + ∆Γ → Γ, α + ∆α → α and use the new value of Γ as a starting
point for the corrector applied to the system of nonlinear equations (53). The
corrector consists in iterative solution of a system of nonlinear equations, discussed
below. In this manner, the parametrized solution, constituting a multi-dimensional
curve, is tracked with increasing angle of attack. NLWing2 implements an adaptive
stepping mechanism that can choose a smaller step when local conditions approach
the maximum local lift or if the corrector fails. This will be subject of further
research.

NLWing2 is able to calculate integral as well as span-wise local quantities, in-
cluding lift, viscous drag, induced drag and momentum. Of particular interest in
our optimizations was the point of the initial stall of local lift, which is also output.

Figures 9 and 11 show a comparison between NLWing2 and Glauert, another
software used at VZLÚ. Glauert solves the linear Prandtl’s integral equation using
Fourier series approximations, called Glauert’s method. Figure 9 shows the integral
lift curve; the differences between the linear and nonlinear approach are clearly
visible. Figure 10 shows the polar curves (lift/drag dependences). For the nonlinear
method, both inviscid (i.e. induced drag only) and viscous polars are shown. In
Figure 11 the span-wise distributions of local lift are compared; again, it is clearly
visible that at lower angles of attack the differences are small but at higher angles
the linear method significantly over-estimates the lift.

In the two sections below, we shall touch two particular areas regarding the
details of the method implemented in NLWing2.

4.4.1 Solving nonlinear equations

Let us consider a general nonlinear system

F(x) = 0. (55)

37



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18

li
ft

co
effi

ci
en

t
(C

L
)

angle of attack (α)

linear
nonlinear

Figure 9: Comparison of lift curves of linear vs. nonlinear method

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

li
ft

co
effi

ci
en

t
(C

L
)

drag coefficient (CD)

linear inviscid
nonlinear inviscid
nonlinear viscous

Figure 10: Comparison of polar curves of linear vs. nonlinear method

38



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-8 -6 -4 -2 0 2 4 6 8

li
ft

co
effi

ci
en

t
(C

L
)

span (z)

linear
nonlinear

Figure 11: Comparison of span-wise lift distribution of linear vs. nonlinear method

A general solution of this system by an iterative method with a starting point
produces a sequence of approximate solutions xk, k = 1, 2, . . .. We will also denote
Fk = F(xk), Jk = ∇F(xk) and sk = xk+1−xk. Various methods differ in the way the
sequence xk is constructed. The most basic method for solving systems of nonlinear
equations is the Newton method:

sk = −J−1
k Fk. (56)

The Newton method exhibits quadratic convergence in a sufficiently close neigh-
borhood of the true solution with an invertible jacobian. It’s global convergence
properties, however, are poor if started too far off the true solution. In NLWing2
the corrector method can be chosen amongst a tuned Levenberg-Marquardt method
and Powell’s hybrid method.

The Levenberg-Marquardt (see [16]) method uses the steps

sk = −(JT
k Jk + λI)−1JT

KFk, (57)

where λ is a positive parameter adapted in each step, representing a smooth transi-
tion between a Newton step (λ = 0) and a steepest descent step (λ large). Instead
of (57), the L-M corrector in NLWing2 solves the following equivalent problem:

(

Jk√
λI

)

sk =

(

−Fk

0

)

(58)

39



in the least squares sense. This is somewhat slower but avoids dealing with the
squared matrix JT

k Jk which is twice as ill-conditioned as Jk. A step is only taken if
‖Fk+1‖ < ‖Fk‖. The λ parameter is increased after a successful step and decreased
after an unsuccessful step. For the precise strategy that has been somewhat tuned
to the real problems being solved by NLWing2, we defer the reader to the source
code.

We have implemented the Powell’s hybrid method in Octave’s fsolve function.
In each step, this method approximately solves the following so-called trust-region
subproblem to determine the step length:

min
Dksk≤∆

‖Jksk + Fk‖ , (59)

where Dk is a diagonal scaling matrix that is automatically adjusted according to
column norms of Jk. This is a difficult problem in general, requiring either an
iterative method or a singular value decomposition (see [17]). To avoid this, sk is
only searched along a special path in the 2-dimensional subspace

span
{

J−1
k Fk,D

−2
k JT

KFk

}

, (60)

called the double dogleg path. The details can be found in [18]. The first of the
above basis vectors represents the Newton direction, while the second is the so-called
Cauchy point. In cases when J is computed by finite differences or is significantly
more expensive to compute than F (this is usually true in real-life problems, and
is also true in NLWing2), the Powell’s hybrid method can avoid recalculating the
Jacobian in certain steps by performing a Broyden (secant) update of the Jacobian,
i.e. adding a matrix of rank 1 to Jk so that Jk+1 satisfies the secant equation:

Jk+1sk = Fk+1 − Fk. (61)

Amongst all such possible matrices, the one with the smallest scaled Frobenius norm
is selected, namely

Jk+1 = Jk +
(Fk+1 − Fk)D2

k sT
k

‖Dksk‖2 . (62)

Even with Broyden’s update, the Jacobian must be factorized in each step to get the
Newton direction for the dogleg trust-region problem. To reduce the computational
cost even further, the method maintains and updates a QR factorization of the
Jacobian QkRk rather than Jk directly. The Newton direction is then obtained as
J−1

k Fk = R−1
k QT

k Fk which is much more efficient because Rk is triangular. Updating
the QR decomposition after an additive rank-1 update can be done efficiently by
using Givens rotations. For details, see [17]. Since version 1.1.0, NLWing2 is able to
optionally employ the more efficient fsolve algorithm as a corrector. This will prob-
ably become the default once the algorithm becomes well-tested (its implementation
in Octave is still fresh).

40



4.4.2 Interpolating polars

In Eq. (50), we used the notion of “local lift curve”. That means, at the colloca-
tion points along the span, we need a function transforming local angle of attack
(given by Eq. (49)) into local lift coefficient. These lift curves are supposed to be
supplied by external means; e.g., by a prior viscous two-dimensional computation or
an experiment. In real life, however, we won’t have the lift curve supplied for each
collocation point; because we do not know them beforehand and their number may
be relatively high. It is, therefore, necessary to have a means to combine two lift
curves CA

L , CA
L , given at span-wise coordinates zA, zB to a single lift curve CL at

z. We shall refer to this procedure as polar interpolation, because it can be actually
used to interpolate also the drag and moment curve. In NLWing2, two methods of
polar interpolation were tested: the trivial interpolation and feature interpolation.

Trivial interpolation calculates a linear interpolation coefficient

η =
z − zA

zB − zA
(63)

and then defines the combined lift curve using a simple linear interpolation:

CL(α) = η CA
L (α) + (1 − η)CB

L (α) (64)

Feature interpolation is a more elaborate approach: For each lift curve, we de-
termine the angles of zero lift and maximum lift:

Ci
L(αi

0) = 0, i = A,B, (65a)

Ci
L(αi

max) = max
α

Ci
L(α), i = A,B. (65b)

Now, we define
α0 = ηαA

0 + (1 − η)αB
0 , (66)

αmax = ηαA
max + (1 − η)αB

max, (67)

and

CL(α) = η CA
L

[

α̃(αA
max − αA

0 ) + αA
0

]

+ (1 − η)CB
L

[

α̃(αB
max − αB

0 ) + αB
0

]

, (68)

where

α̃ =
α− α0

αmax − α0
. (69)

Now, substituting Eqs. (66), (69) into Eq. (68), we get

CL(α0) = η CA
L (αA

0 ) + (1 − η)CB
L (αB

0 ) = 0, (70)

41



which means that α0 is again a zero lift angle for the interpolated lift curve.

Also, plugging the relations

CA
L (ᾱ) ≤ CA

L (αA
max) for any ᾱ, (71a)

CB
L (ᾱ) ≤ CB

L (αB
max) for any ᾱ, (71b)

into Eq. (68) we get

CL(ᾱ) ≤ η CA
L (αA

max) + (1 − η)CB
L (αB

max) for any ᾱ. (72)

On the other hand, substituting Eq. (67) into Eq. (68) we obtain

CL(αmax) = η CA
L (αA

max) + (1 − η)CB
L (αB

max). (73)

Together with Eq. (72), this yields

CL(ᾱ) ≤ CL(αmax) for any ᾱ, (74)

which shows us that αmax is the maximum lift angle for the interpolated lift curve,
and the maximum lift itself is given by the simple interpolation in Eq. (73).

In other words, each lift curve is split into three components: the zero lift angle,
the maximum lift angle, and the normalized lift curve. Interpolation is performed
on these components separately and the results are then combined back into a
single lift curve. In this manner, three key “features” of the interpolated lift curves,
i.e. the zero lift angle, the maximum lift angle, and the maximum lift itself, can
be obtained by interpolation separately and are thus kept under strong control.
Also, the interpolated lift curves are guaranteed to have a single maximum. Trivial
interpolation provides no such guarantee; the interpolated polar may end up having
have multiple maxima.

Computational experiments also suggest that feature interpolation yields results
closer to true lift curves that would be obtained by re-evaluating each inner section.

Figure 12 compares interpolated lift curves created by trivial vs. feature inter-
polation, using lift curves of two industrial airfoils as a basis. It is clearly visible
that the maximum lift position varies significantly more smoothly with feature in-
terpolation.

5 Wing optimization - a case study

Armed by the tools to evaluate aerodynamic performance of wings, we can proceed
towards wing optimization. We do so in the form of a case study. The particu-
lar optimization problem analyzed in this section is concerned with optimizing the

42



1.2

1.4

1.6

1.8

2

2.2

8 10 12 14 16 18 20
angle of attack

feature interpolation

1.2

1.4

1.6

1.8

2

2.2

8 10 12 14 16 18 20

lif
t

angle of attack

trivial interpolation

Figure 12: Comparison of polar interpolation methods

43



32 designs 1024 designs
# Processors time speed-up time speed-up

1 100.7s 1.00 55m 14s 1.00
2 50.0s 2.01 27m 28s 2.01
4 25.5s 3.95 13m 44s 4.02
8 13.4s 7.51 6m 52s 8.05

Table 1: Time consumption by NLWing2 evaluating wing designs

geometry of a symmetric wing for a standard-class glider, with respect to two and
later three objectives and one primary constraint. This constraint is what uniquifies
this study to a strong extent, because it is quite difficult to employ in alternative
optimization approaches.

5.1 Parallel evaluation

With an optimized build of Octave, using fsolve as a corrector, NLWing2 works
very fast. Still it is possible to speed-up evaluations by parallelizing them. Because
NLWing2 is an Octave package, we aimed to create an efficient general parallel
evaluation tool.

To this end, we contributed the parcellfun function into the general package of
OctaveForge. This function work analogously to Octave’s built-in cellfun function,
which allows to conveniently evaluate an arbitrary function multiple times with
different arguments. The difference is that parcellfun can perform the jobs in
parallel using a specified number of processors. Parcellfun works using the POSIX
fork call, which can clone running processes. At parcellfun startup, the Octave
interpreter process is cloned multiple times, and individual jobs are distributed to
the forked processes using POSIX pipes. Results are collected back again via pipes.
This particular implementation overcomes the difficulty that the Octave interpreter
is, by design, not thread-safe.

Table 1 shows timings of parallel evaluation of wings from the design space of
the wing optimization problem (described in next section). It is apparent that
parcellfun scales extremely well; for larger design sets, essentially the maximum
theoretical scalability is achieved. The tiny excess over the theoretical maxima is
caused by extra initialization work done in the first evaluation.

5.2 Design variables

In this section we describe a real wing optimization problem carried out as part of
the CESAR project at VZLU.

44



Optimize the planform of a symmetric wing, consisting of four (two for each
half-wing) trapezoids. The geometry is to be determined by the following five design
variables:

• Sw: The wing planform area 23 − 27m2

• TR: Taper ratio (tip depth / root depth) 0.4 − 0.6

• ttw: Tip twist 0 − 4◦

• xbr: Relative break position 0 − 0.5

• btr: Deviation from straight wing −1 − 1

The last two variables deserve a more precise description. Say that the root chord
length is crw, cbr is the chord length separating the root (inner) and tip (outer)
trapezoid, and ctw is the tip chord length. Further, let br and bt be the root and tip
trapezoid span, respectively.

xbr =
br

br + bt
(75)

and

btr =
cbr − cb0
crw − cb0

, cb0 = xbrctw + (1 − xbr)crw. (76)

Further, crw = 1.955m, dihedral angle is 1.5◦, and the quarter-chord line is assumed
straight. These constraints determine the geometry of the wing. The somewhat
strange definition of btr is chosen to avoid creating geometries with too sharp
angles, which are never feasible and for which NLWing2 may even fail to produce
a meaningful result. Also, the fact that if btr = 0, the wing simplifies to a single
trapezoid, is useful in the following investigations.

5.3 Objectives

The aerodynamic performance of the wing is measured by the following two quan-
tities:

• cdsw: CD · Sw at CL · Sw = 7.558,

• cmcsw: CM · cMAC · Sw at CL · Sw = 7.558.

where CL, CD, CM are the lift, drag and momentum coefficients of the wing, re-
spectively. cMAC is the mean aerodynamic camber of the wing. Multiplying CL and
CD by Sw is used to achieve independence of the varying geometry; the result is

45



essentially a normalized force. The role of cMAC · Sw for CM is analogous. The opti-
mization is not, however, concerned only with performance. An important factor for
glider wings design is flight safety, especially in the take-off and landing regimes. In
these regimes, the wing typically operates close to its maximum lift and its critical
angle of attack, where separation of the boundary layer starts to develop on the
wing. During the flight, exceeding the critical angle of attack leads to a sudden
drop of lift. To facilitate flight safety, it is important to keep the separated region
away from flight control devices positioned at the wing, such as ailerons and flaps,
typically located near the tip of the wing. Therefore, we introduced the primary
constraint requiring that

• sep ≤ 65%: where sep = ZSEP

b/2

where b is the wing span and ZSEP is the smallest (in absolute value) span-wise
coordinate where, as the global angle of attack increases, the local lift coefficient
first reaches its maximum (i.e. critical angle of attack of the local wing section)
and, presumably, the separated region is formed and starts to spread. The global
angle of attack where this occurs is referred to as αcrit. For reasons described later,
the following additional objective needs to be introduced:

• clmaxsw: CLSw at αcrit.

5.4 Results

Given the outstanding performance of our evaluation mechanism (NLWing2 com-
bined with parcellfun), we could even afford using a brute force approach. That
means, sample the whole design space using a cartesian grid, evaluate all designs,
and then simply pick the non-dominated designs satisfying our constraints, accord-
ing to the definitions given by Eqs. (25a), (25b). In this simple manner, we can
obtain a crude approximation of the Pareto front. The result of brute force grid
sampling is shown in Fig. 13. Red markers indicate all sample designs, blue mark-
ers denote the Pareto front approximation. The 5-dimensional design space was
sampled using an 8×8×8×8×8 grid, giving 32768 total designs, whose evaluation
lasted approximately 3.5 hours.

The grid sampling approach can be viewed as a very simplistic optimization algo-
rithm. Despite its simplicity, it possesses certain attractive properties not provided
by more elaborate algorithms: First, it is very robust in the sense that a sufficiently
broad global optimum is guaranteed to be found; and second, the objectives and

46



 0.22
 0.23

 0.24
 0.25

 0.26
 0.27

 0.28
 0.29

 0.3
 0.31

 0.32

-8
-7.5

-7
-6.5

-6
-5.5 30

 35

 40

 45

 50

 55

 60

clsep

all designs
pareto optimal

cdsw

cmcsw

clsep

Figure 13: Wing optimization results - grid sampling

47



constraint can be tweaked to some extent without actually doing any new compu-
tations. For instance, in the grid sampling we evaluate the objectives and sep for
all designs, but we only proceed with those designs satisfying sep ≤ 65%. If, later,
we want to tighten this constraint to 60% instead of 65%, no new computations are
needed; we simply start over with the complete grid data.

Figure 14 compares the approximate Pareto front obtained from grid sampling
with one delivered by µ-ARMOGA(as described in section 3).

 0.22
 0.23

 0.24
 0.25

 0.26
 0.27

 0.28
 0.29

 0.3
 0.31

 0.32

-7.6
-7.4

-7.2
-7

-6.8
-6.6

-6.4
-6.2

-6
-5.8

-5.6
-5.4 30

 35

 40

 45

 50

 55

 60

clsep

grid sampling
genetic algorithm

cdsw

cmcsw

clsep

Figure 14: Wing optimization results - grid sampling vs. µ-ARMOGA

5.5 Problem degeneration

We now reveal the motivation for adding the third objective, clsep. Let us consider
our optimization problem with clsep dropped. Further, let us fix btr to zero,
restricting the design space to wings consisting of a single trapezoid. The resulting
Pareto front for this simplified optimization problem is shown as red in Fig. 15.

48



Now, let us put btr back to the game, allowing it to span the range from −1 to 1.
Amazingly enough, the Pareto front degenerates to a single optimum point, shown
as green in Fig. 15.

-7.6

-7.4

-7.2

-7

-6.8

-6.6

-6.4

-6.2

-6

-5.8

-5.6

-5.4

 0.22  0.23  0.24  0.25  0.26  0.27  0.28  0.29  0.3

cm
cs

w

cdsw

3 variables
5 variables

5 vars. 3 objs. projection

Figure 15: Wing optimization results - simplified problem

What happened? In the one-trapezoid case, the primary mechanism that can
push the point of separation sep towards the root (and thus towards satisfying the
primary constraint) is increasing the tip twist. By allowing a “broken” wing, we
introduced another, completely different mechanism that allows to accomplish the
same - creating a spike on the local critical lift distribution. This is pictured by Fig.
16. The left part displays the span-wise lift distribution of a design with nonzero
btr. On the right side btr is set to zero, while other variables remain the same. Now
it is clearly visible how the mechanism works: the spike in local chord length distri-
bution induces a spike in local maximum lift distribution. The span-wise position
of the spike determines the separation point, which can then be directly controlled.
Apparently, an adverse effect is that the separation will occur earlier, i.e. at a lower

49



total lift and angle of attack. This is a hidden tradeoff that does not occur when
only the single-trapezoid designs (3 variables) are allowed. Hence the motivation to
add the third objective. This objective explicitly expresses this tradeoff, turning a
degenerate 2-dimensional Pareto front into a regular 3-dimensional one.

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

lif
t c

oe
ffi

ci
en

t (
c L

)

span

straight

cLw = 1.36
cLw = 1.52
cLw = 1.65
cLw = 1.76
cLw = 1.85

local max cL

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

lif
t c

oe
ffi

ci
en

t (
c L

)

span

spiked

cLw = 1.34
cLw = 1.48
cLw = 1.60
cLw = 1.66
cLw = 1.66

local max cL

Figure 16: The effect of chord length spike on the point of separation

6 Conclusions and future work

This work develops a methodology for optimizing airfoils and wings for subsonic flow
conditions using fast aerodynamic performance evaluation methods (solvers). The
basis of aerodynamic performance evaluation of airfoils is represented by the state-of-
the-art free software XFOIL. The underlying computational model used by XFOIL is
briefly described in this thesis, especially the key concepts of inviscid incompressible

50



irrotational flow. Since XFOIL is designed for human-driven visual design, the
Python module XFEVAL was developed, encapsulating XFOIL, to allow automatic
parallel evaluation of multiple airfoils in symmetric multiprocessor machines. The
aspects of this parallel evaluation are discussed in this work.

To express the shape of an airfoil using a set of numbers, which is necessary
for optimization, the novel GPARSEC parametrization method is developed. This
method uses a set of geometric characteristics of an airfoil as the design variables,
allows employing arbitrary basis functions and extension to more DOFs in a man-
ner not interfering with the geometric meaning of the basic set of design variables.
To carry out the actual optimization, an evolutionary algorithm, µ-ARMOGA, was
developed. A detailed description of µ-ARMOGAis given in a cited paper ([11]); in
this thesis, only a brief summary is presented, pointing out the algorithm’s key fea-
tures. However, one of its most innovative parts, a novel strategy for updating the
Pareto archive, is described and discussed in detail. This approach relies on main-
taining and updating nearest-neighbor information in the Pareto archive, and using
it as a secondary (to standard Pareto dominance) criterion for accepting or discard-
ing a new individual. The approach is particularly suitable for micro-evolutionary
approaches (such as µ-ARMOGA). Further details as well as numerical experiments
are given in a cited paper ([11]).

These methods are then applied to a real-life problem - optimizing a subsonic
airfoil subject to standard flight conditions in both laminar and turbulent boundary
layer regime. The objectives are discussed, and numerical results of the optimization
are presented.

Concerning performance evaluation of wings, a special-purpose solver, NLWing2,
was developed in the form of an extension package to the GNU Octave environment
([20]). It is based on an extension of the Prandtl’s lifting line method, allowing
curved and swept wings with dihedral angle, and incorporating nonlinear local de-
pendencies of lift on angle of attack. For the arising system of nonlinear parametric
equation, a solution method based on the predictor-corrector paradigm was devel-
oped. Originally, the corrector was a simple Levenberg-Marquardt method; later, a
general nonlinear equation solver was developed for Octave, based on a trust-region
technique with factorized Broyden updating. This solver (fsolve) can be employed
as a more efficient and robust corrector component for the NLWing2 algorithm. A
problem basically unique to the nonlinear lifting-line method is interpolation of air-
foil polars. Two possible approaches, trivial and feature interpolation, are described
in detail and advantages of the latter are highlighted.

Finally, optimization of wings is considered, in the form of a case study for a cer-
tain multi-objective optimization problem. Parallel evaluation with NLWing2 using
the capabilities of GNU Octave is also addressed. Design variables and objectives
for the optimization problem are discussed in detail, and it is shown how the choice

51



of objectives influences the nature of the optimization problem. Numerical results
of optimization are also presented.

The tools and methodology developed and described in this thesis forms a useful
framework to approach complex design optimization problems of simple subsonic
airfoils and wings, in particular problems with relatively simple geometry yet diffi-
cult objectives. The diagram presented in Fig. 17 shows how all the tools can work
together and the flow of information between them. The component showing a ques-
tion mark is of particular concern for future work: the transition from suitable design
variables to a wing geometry (i.e., a wing parametrization) is not yet addressed by
any general software tool; rather, custom program (GNU Octave scripts) is created
for each particular problem. This will be a subject of future research. Other areas
providing possible future research directions include the polar interpolation prob-
lem, better automatic continuation method for NLWing2, extending the nonlinear
lifting-line method to work with less slender wings, and improving the µ-ARMOGA
algorithm. So far, the methodology was successfully used for a couple of commercial
and research jobs at VZLÚ. Two utility models were registered, with more planned.

7 Appendix

7.1 Green’s identities

The Green’s second identity states that for ξ, χ defined inside a domain Ω, it holds:
∫

Ω

(ξ∆χ− χ∆ξ)dV =

∮

∂Ω

(ξ∇χ− χ∇ξ) · n dS (77)

This identity is also valid if ξ is smooth but ∆χ only exists in the sense of distribu-
tions. This allows us to make the following choice of χ, also known as the Green’s
function for the Laplace equation:

χ(x) =

{

1
2π

− log ‖x− x0‖ if n = 2,
1
4π

1
‖x−x0‖

if n = 3.
(78)

where n is the spatial dimension. Formula for general n also exists. With this
definition, it can be shown that

∆χ = δ(x− x0) (79)

in the sense of distributions, where δ is the Dirac delta distribution. Substituting
this into Green’s second identity, we obtain the Green’s third identity:

ξ(x0) =

∫

Ω

(χ∆ξ)dV +

∮

∂Ω

(ξ∇χ− χ∇ξ) · n dS (80)

52



Figure 17: Workflow diagram of complex optimization framework

53



allowing us to express the value of ξ in any point as an integral involving its Laplacian
inside Ω plus certain integrals over the boundary. If ∆ξ is known or is zero in Ω
(solution of Poisson’s or Laplace’s equation), then the values ξ inside the domain
are uniquely determined by its values on the boundary.

7.2 Induced velocities calculation

Let us consider a vortex segment with endpoints A, B and of strength Γ. Let RA,
RB be the radiusvectors from a collocation point C to A, B, respectively. Then the
induced velocity in C can be expressed analytically by integrating the infinitesimal
Biot-Savart law (Eq. (44)). We get

vI =
Γ

4π

∫ 1

0

(tRB + (1 − t)RA) × (RB − RA)

‖(tRB + (1 − t)RA)‖3 dt (81)

which simplifies to (the numerator is constant)

vI =
Γ

4π
(RA × RB)

∫ 1

0

dt

‖(tRB + (1 − t)RA)‖3 . (82)

Using Lagrange’s identity, one can find the antiderivative of the integrand to be

(tRB + (1 − t)RA) · (RB − RA)

‖(tRB + (1 − t)RA)‖ (‖RB‖2 ‖RA‖2 − RB · RA)
(83)

which after some manipulations leads to the final expression

vI =
Γ

4π

(‖RA‖ + ‖RB‖)(RA × RB)

‖RA‖ ‖RB‖ (‖RA‖ ‖RB‖ + RA · RB)
. (84)

This result can be written in multiple forms, but this form has the advantage of not
being singular if C lies on the line AB but outside the segment AB. This property
is important in the nonlinear lifting line method.

The velocity induced by a half-infinite ray starting at A going in the direction
of v can be found by substituting RB = RA + tv into Eq. (84) and taking the limit
t→ +∞, yielding

vI =
Γ

4π

RA × v

‖RA‖ (‖RA‖ ‖v‖ + RA · v)
. (85)

54



References

[1] http://web.mit.edu/drela/Public/web/xfoil/

[2] Katz, J., Plotkin, A., Low-speed Aerodynamics, Cambridge University Press,
2001, ISBN 0521665523, 9780521665520

[3] Drela, M., Giles, M.B., Viscous-Inviscid Analysis of Transonic an Low Reynolds
Numer Airfoils, AIAA Journal, 1986, Vol. 25, No. 10

[4] Drela, M., Low-Reynolds-Number Airfoil Design for the M.I.T. Daedalus Proto-
type: A Case Study, Journal of Aircraft, 1988, Vol. 25, No. 8

[5] Stewart, T.J.: A Critical Survey on the Status of Multiple Criteria Decision
Making and Practice, International Journal of Management Science, Vol. 20 No.
5/6, 1992

[6] Douglas Aircraft Company: Study of High-Speed Civil Transports, NASA-
CR4236, 1990.

[7] Jones, R.T.: Wing Theory, Princeton University Press, Princeton, NJ, 1990
(Chap. 7)

[8] Wu, H.Y., Yang, S.C., Liu, F. and Tsai, H.M., Comparison of Three Geomet-
ric Representations of Airfoils for Aerodynamic Optimization, AIAA 2003-4095,
16th AIAA CFD Conference, June 23-26, Orlando, FL, 2003

[9] Sobieczky, H.: Parametric Airfoils and Wings, Notes on Numerical Fluid Me-
chanics, edited by K. Fuji and G.S. Dulikravich, Vol. 68, Vieweg Verlag, 1998,
pp. 71-88

[10] Samareh, J.A., Survey of Shape Parameterization Techniques for High-Fidelity
Multidisciplinary Shape Optimization, AIAA Journal, Vol. 39, No. 5, 2001, pp.
877-884

[11] Hájek, J., Š́ıstek, J., Szöllös, A.: A New Mechanism for Maintaining Diver-
sity of Pareto Archive in Multiobjective Optimization, submitted to Journal of
Evolutionary Computation.

[12] Hájek,J., Szöllös,A., Šmı́d,M.: Aerodynamic Optimization via Multi-Objective
Micro-genetic Algorithm with Range-Adaptation, Knowledge-Based Reinitial-
ization, eps-Dominance and Crowding, Advances in Engineering Software, Vol.
40, 2009, pp. 419-430

55



[13] Pátek, Z., Szöllös, A., Hájek, J.: Aerodynamic airfoil of glider wing without
flaps (in Czech), Utility model CZ 17179 U1, Czech Republic, Appl. no. 2006-
17864, Int. Cl. B64C 3/14. Owner Výzkumný a Zkušebńı Letecký Ústav, a.s.

[14] Hájek, J., Pátek, Z., Szöllös, A.: Aerodynamic airfoil (in Czech),
Utility model CZ 18600 U1, Czech Republic, Appl. no. 2007-19280,
Int. Cl. B64C 3/14, F15D 1/10. Owner Výzkumný a Zkušebńı Letecký Ústav,
a.s.

[15] http://octave.sourceforge.net/packages/nlwing2.html

[16] Nocedal, J., Wright, S. J., Numerical Optimization, Springer Verlag, 2000,
ISBN 0387987932, 9780387987934

[17] Golub, G. H., Van Loan, C. F., Matrix Computations (3rd edition), Johns
Hopkins University Press, 1996, ISBN 0801854148

[18] Dennis, J. E., Schnabel, R. B., Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, SIAM, 1996, ISBN 0898713641, 9780898713640

[19] Saffman, P. G. (1992), Vortex Dynamics, Cambridge University Press, ISBN
9780521477390

[20] http://www.octave.org

56


