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Studijńı program: Matematika
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Study programme: Mathematics

Specialization: Algebra, number theory and mathematical logic
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e-mail vedoućıho: Tomas.Kepka@mff.cuni.cz

Abstrakt: V této disertaci se budeme zabývat konstruktivńımi metodami

aplikovanými na komutativńı polookruhy a komutativńı radikálové okruhy.

V kapitole 2 budeme studovat tř́ıdu komutativńıch subdiretně ire-

ducibilńıch radikálových okruh̊u. Uvedeme několik konstrukčńıch př́ıstup̊u

a pomoćı reflexe z kategorie komutativńıch okruh̊u do kategorie komuta-

tivńıch radikálových okruh̊u odvod́ıme řadu př́ıklad̊u s r̊uznými vlastnostmi.

Ukážeme, že okruh S ∈ S je noetherovský právě když je konečný. Dále

uvedeme částečné výsledky v klasifikaci faktor̊u okruh̊u v S podle monolitu.

V kapitole 3 pomoćı p-prvoč́ıselných valuaćı každému podpolookruhu v

Q+ přǐrad́ıme množinu jeho characteristických posloupnost́ı. Nalezneme a

klasifikujeme všechny maximálńı podpolookruhy kladných racionálńıch č́ısel

a ukážeme, že každý vlastńı podpolookruh v Q+ je obsažen v nějakém z nich.

Tento výsledek byl publikován v [16].

V kapitole 4 zkonstruujeme, použit́ım metod z kapitoly 4, novou širokou

podtř́ıdu tř́ıdy CongSimp všech vlastńıch kongruenčně jednoduchých pod-

polookruh̊u v Q+, klasifikujeme všechny maximálńı prvky v CongSimp a

ukážeme, že každý prvek CongSimp je obsažen alespoň v jednom z nich.

V kapitole 5 nalezneme ekvivalentńı podmı́nku pro to, aby polookruh

Q+[α] ⊆ C, α ∈ C, byl obsažen v nějakém parapolotělese v C a provedeme

klasifikaci pro př́ıpad, kdy α je algebraický prvek stupně 2. Tento výsledek je

publikován v [18].

Kĺıčová slova: subdirektně ireducibilńı, radikálový okruh, polookruh,

racionálńı č́ıslo, kongruenčně jednoduchý, parapolotěleso
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Supervisor’s e-mail address: Tomas.Kepka@mff.cuni.cz

Abstract: In this dissertation we deal with constructive methods applied

to the commutative semirings and commutative radical rings.

In Chapter 2 we study the class S of the commutative subdirectly irre-

ducible radical rings. We present a few constructive methods for them and

using the reflection of the category of the commutative rings into the category

of the commutative radical rings we derive a lot of examples of rings in S with

various properties. We prove that a ring S ∈ S is noetherian if and only if it

is finite. We show partial results in the classification of factors of S modulo

monoliths.

In Chapter 3 we introduce, using the p-prime valuation for all primes p, a

set of characteristic sequences that can be assign to every subsemiring of Q+.

We find and classify all maximal subsemirings of positive rational numbers and

show that every proper subsemiring of Q+ is contained in at least one of them.

This results was published in [16].

In Chapter 4 we construct, using the approach from the Chapter 4, a

new large subclass of the class CongSimp of all proper congruence-simple sub-

semirings of Q+, classify all the maximal elements of CongSimp and show that

every element of CongSimp is contained in at least one of them.

In Chapter 5 we find an equivalent condition under which is the semiring

Q+[α] ⊆ C, α ∈ C, contained in a parasemifield of C and make a classification

for the case when α is algebraic of degree 2. This results is published in [18].

Keywords: subdirectly irreducible, radical ring, semiring, rational num-

ber, congruence-simple, parasemifield
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Chapter 1

Introduction

In this dissertation we will deal with commutative semirings and commutative

radical rings. The aim of this work is to study constructive methods applied

to these structures and deriving examples of various properties. We will focus

especially on constructions which allow a natural dealing with subsemirings of

rational numbers and with subdirectly irreducible commutative radical rings.

Since all structures in this thesis are considered to be commutative, we will

not emphasize this fact explicitly.

Our first subject of interest - the radical rings - are ones of basic objects

in commutative algebra. Especially in the case of artinian or semilocal rings

(with unit), where the Jacobson radical contains a major part of the ring,

they have an essential influence on the structure of such a ring. Remind

also the well known fact that for an artinian ring R the factor R/J (R) is

totally decomposable. Radical rings can be viewed from various aspects. We

will mostly deal with the universal algebraic approach. Since they form a

variety (with one nullary, two unary and two binary operations), the Birkhoff’s

theorem can be applied, and thus every radical ring is isomorphic to a subdirect

product of subdirectly irreducible radical rings. Simple radical rings are just

zero-multiplication rings Zp for a prime p, but the subdirectly irreducible ones

form a wide and colourful class of rings.

In Chapter 2 we study the class S of the commutative subdirectly irre-

ducible radical rings. We present a few constructive methods for them and

using the reflection of the category of the commutative rings into the category

of the commutative radical rings we derive a lot of examples with various prop-

erties to investigate this class. Especially useful in this case will be the class

of semiradical rings. Since this class is very close to the radical rings, many
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results and examples will be generalized to semiradical rings. Among other we

show that:

• A ring S ∈ S is noetherian if and only if it is finite.

• There is a ring S ∈ S that is one-generated as an S-module, but not nil.

• There is a non-torsion ring S ∈ S such that Ann(S) is finite.

• There is a ring S ∈ S such that the torsion part of S is not reduced and

Ann(S) is finite.

• There is a non-zero-multiplicative ring S ∈ S such that Ann(S/M(S)) =

0.

At last, we show partial results in the classification of factors of S modulo

monoliths.

In the remaining part of the thesis we will be concerned with semirings.

The notion of semirings seems to have first appeared in the literature in a 1934

paper by Vandiver [23]. Semirings are widely used in various branches of math-

ematics and computer science and in everyday practice as well (the semiring

of natural numbers or positive rational numbers, for instance). Although this

concept is a fairy basic one, they are not explored as good as the standard

objects like rings and groups. The structure of subrings and subgroups of ra-

tional numbers is quite well known. On the other hand, structural properties

of subsemirings and subsemigroups of Q are not well understood.

In Chapter 3 we introduce, using the p-prime valuation for all primes p,

a set of characteristic sequences that can be assign to every subsemiring of

Q+. Such sequences can be, on the other hand, used for construction of a

semiring that is in a particular sense a good approximation of the original one.

With help of this idea we find and classify all maximal subsemirings of positive

rational numbers and how that every proper subsemiring of Q+ is contained

in at least one of them. There is, surprisingly, an uncountable amount of the

maximal subsemirings of Q+, in contrast to the countable number of maximal

subrings of Q.

In the rest of the thesis we will put our attention to the questions con-

cerning simple-structural semirings and related problems.

Chapter 4 is a direct continuation of the previous one. Here we will look

for congruence-simple semirings. They have already been characterized with
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the exception of the subsemirings of R+. Even the subsemirings of Q+ have

not been classified yet. We construct, using the approach from the previous

chapter, a new large subclass of the class CongSimp of all proper congruence-

simple subsemirings of Q+, classify all the maximal elements of CongSimp and

show that every element of CongSimp is contained in at least one of them.

Moreover, it seems that the presented class could include all the congruence-

simple subsemirings of Q+.

Further, it is known that every infinite finitely generated congruence-

simple semiring is additively idempotent. On the other hand, it seems to

be an open problem whether this remains true in the ideal-simple case. (Note

that for rings these both properties coincide.) In [14] was shown that this con-

jecture is equivalent to the hypothesis that every parasemifield, that is finitely

generated as a semiring, is additively idempotent.

By [15, 2.2], a parasemifield that is not additively idempotent contains a

copy of the parasemifield Q+. Thus, reformulating the previous conjecture, we

get a hypothesis that every (commutative) parasemifield that contains a copy

of Q+ is not finitely generated as a semiring. (Partial results concerning that

were presented in [15].) In the context of this we can naturally investigate such

parasemifields that need not to be finitely generated, but are (as semirings)

finitely generated over Q+ (i.e. there are of the form Q+[K], where K is a

finite set). A good starting point might be the parasemifields contained in the

field of complex numbers. Although it seemed that Q+ was the only possible

one, we find in the Chapter 5 further examples and characterize the case when

the semiring Q+[α] ⊆ C is a parasemifield, with α ∈ C algebraic of degree 2

over Q.

We will use the following usual notation: N (N0, respectively) be the set

of positive (non-negative, respectively) integers; Z be the ring of integers; Q be

the field of rationals; R be the field of reals; C be the field of complex numbers

and P be the set of prime integers.

For a field F ⊆ R we put F ∗ = F \ {0} and denote F+ (F+
0 , respectively)

the set of positive (non-negative, respectively) elements from F and F− the

set of negative elements from F .
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Chapter 2

Commutative subdirectly

irreducible radical rings

2.1 Basic facts and notions

All rings in this chapter do not need to posses a unit, also the unit does not

have to be inherited by a subring and preserved by a ring homomorphism.

For a ring R we denote

Ann(R) = {x ∈ R|Rx = 0}

the annihilator of R,

J (R) =
⋂

{AnnR(M)| M is a simple R-module}

the Jacobson radical of R,

N (R) = {x ∈ R|(∃n ∈ N) xn = 0}

the nilradical of R,

T (R) = {x ∈ R|(∃n ∈ N) nx = 0}

the torsion part of R and

D(R) =
∑

{D |D is a divisible subgroup of R(+)}

be the divisible part of R.
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The Dorroh extension of a ring R is the ring D(R) = Z ⊕ R with the

multiplication given as follows: (n, a)·(m, b) = (nm,ma+nb+ab) for n,m ∈ Z
and a, b ∈ R. We will identify R with the subring 0 ⊕ R of D(R).

The set R together with the operation a ◦ b = a+ b+ ab forms an adjoint

semigroup R(◦) of the ring R. Clearly, R(◦) is isomorphic to the multiplicative

subsemigroup 1 ⊕R of D(R)(·) via the map x 7→ 1 ⊕ x.

A ring R is radical if there is a ring S such that R = J (S) (in this case

R = J (R)).

Equivalently, a ring R is radical if and only R(◦) is a group, i.e. for every

a ∈ R there is an adjoint element ã ∈ R such that a+ ã+aã = 0. This element

is uniquely determined and we will use this notation for a unary operation.

Note that non-trivial radical ring R cannot contain a unit (otherwise 0 =

(−1) + (−̃1) + (−1)(−̃1) = −1, a contradiction).

A ring R is said to be subdirectly irreducible iff there exists the least non-

zero ideal of R, called a monolith and denoted by M(R). Let M 6= 0 be

an ideal of R. Clearly, a ring R is subdirectly irreducible with a monolith

M(R) = M iff M ⊆ Rx for every x ∈ R \ Ann(R) and M ⊆ Zx′ for every

0 6= x′ ∈ Ann(R) (i.e. iff M ⊆ Rx+ Zx for every 0 6= x ∈ R).

We denote by S the class of all commutative subdirectly irreducible radical

rings.

Proposition 2.1.1. [19, 12.1] Let R ∈ S. Then T (R) is a p-group and

Zp(+) ∼= M(R)(+) ⊆ Ann(R)(+) ∼= Zpn(+), where p ∈ P and 1 ≤ n ≤ ∞.

For a ring R and a subset X ⊆ R we say that R is id-generated by X iff R

is generated by X as an R-module. A radical ring R is said to be rd-generated

by X ⊆ R iff R is generated by X as a radical ring.

2.2 Semiradical rings and the reflection of rad-

ical rings

An important property of the variety of the commutative radical rings is the

existence of a reflection of the category of the commutative rings into the cate-

gory of the commutative radical rings. We present a canonical construction of

such a reflection, which will be consecutively a very effective tool for generating

of examples of the class S. As we will see, an important role in constructions
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of these examples will play the class of so called semiradical rings. We also sur-

vey when another well known construction - the semigroup algebra - is radical

(semiradical, resp.).

We start with a familiar technique that uses localization.

Construction 2.2.1. Let R be a commutative ring, D(R) its Dorroh extension

with a unit 1 = 1D(R). The set 1+R = {(1, r) ∈ D(R)|r ∈ R} is a subsemigroup

of the semigroup D(R)(·). Consider the localization (1 + R)−1D(R) of D(R).

Denote

A(R) = (1 +R)−1R

the subring of (1 +R)−1D(R) and

ϕR : R → A(R)

r 7→ r/1

the appropriate map.

Lemma 2.2.2. Let R be a commutative ring. Then:

(i) A(R) is a radical ring, ˜r/(1 + s) = −r/(1 + r + s) and r/(1 + s) =

r/1 + s̃/1 · r/1 for every r, s ∈ R.

(ii) r/(1 + s) = 0 iff r/1 = 0; ker(ϕR) = {x ∈ R|(∃a ∈ R) x = ax}.

(iii) A(R) = 0 iff ϕR = 0.

Proof. Easy.

Now we show that (A(R), ϕR) is the desired reflection.

Proposition 2.2.3. (A(R), ϕR) is a reflection of the category of the commu-

tative rings into the category of the commutative radical rings (i.e. for every

radical ring T and every ring homomorphism ψ : R → T there is an unique

homomorphism of radical rings f : A(R) → T such that ψ = f ◦ ϕR).

Proof. Due to 2.2.2, we only need to prove that the map ϕR has the appro-

priate properties. First, we show the uniqueness-property. Let there be a

homomorphism f : A(R) → T of radical rings such that ψ = fϕR, where

ψ : R → T is a given ring homomorphism. From r/(1 + s) = r/1 + r/1 · s̃/1,

by (i), follows f(r/(1 + s)) = f(r/1) + f(r/1)f̃(s/1) = ψ(r) + ψ(r)ψ̃(s) for all

r, s ∈ R.
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To show existence, define f as above, i.e. f(r/(1 + s)) = ψ(r)(1 + ψ̃(s))

in the Dorroh extension D(T ).

f is well defined: Let r/(1 + s) = r′/(1 + s′), where r, r′, s, s′ ∈ R, then

(1 + u)w = 0 in D(R) for some u ∈ R, where w = r(1 + s′) − r′(1 + s). Hence

(1 + ψ(u))ψ(w) = 0 and thus ψ(w) = 0, since T is a radical ring. Therefore

ψ(r)(1 + ψ(s′)) = ψ(r′)(1 + ψ(s)) and ψ(r)(1 + ψ̃(s)) = ψ(r)(1 + ψ(s′))(1 +

ψ̃(s′))(1 + ψ̃(s)) = ψ(r′)(1 + ψ(s))(1 + ψ̃(s))(1 + ψ̃(s′)) = ψ(r′)(1 + ψ̃(s′)).

It is easy to show, that f is a ring homomorphism. Hence f(ã) = f̃(a) for

every a ∈ A(R) and f is a homomorphism of radical rings.

Lemma 2.2.4. Let R be a commutative ring.

(i) If R is generated by X (as a ring), then A(R) is rd-generated by ϕR(X).

(ii) Let F (X) be a free commutative ring with a basis X (i.e. F (X) ∼=∑
x∈X xZ[X]). Then ϕF (X) is injective and A(F (X)) is a free radical

ring with a basis ϕF (X)(X).

(iii) Let R be a subdirectly irreducible ring. If ϕR �M(R) is injective, then ϕR
is injective, A(R) ∈ S and M(A(R)) = M(R).

(iv) Let R be id-generated by X, then A(R) is id-generated by ϕR(X).

Proof. (i) Follows immediately from r/(1+s) = r/1+r/1 · s̃/1 for all s, r ∈ R.

(ii) (See also [19, 11.1.2].) Let F (X) =
∑

x∈X xZ[X]. Then ϕF (X) is

injective, by 2.2.2(ii), and A(F (X)) is rd-generated by ϕF (X)(X), by (i). Let

T be a radical ring and g : ϕF (X)(X) → T a map. Then there is a ring

homomorphism ψ : F (X) → T such that g ◦ (ϕF (X) �X) ⊆ ψ. Hence there is

f : A(F (X)) → T a homomorphism of radical rings such that f ◦ ϕF (X) = ψ.

Thus g ⊆ f . Since ϕF (X)(X) rd-generates A(F (X)), is f uniquely determined.

(iii) If ker(ϕR) 6= 0, then by assumption M(R) ⊆ ker(ϕR) and ϕR �M(R)=

0, a contradiction. Let I 6= 0 be an ideal of A(R). We show that M(R) ⊆ I.

Let 0 6= r/(1 + s) ∈ I. Then 0 6= r and thus M(R) ⊆ Rr + Zr. Since

r/1 = r/(1 + s) + s/1 · r/(1 + s) ∈ I and ϕR is injective, we have M(R) ⊆
Rr + Zr ⊆ I. Now, from 0 6= M(R)(+) ⊆ M(A(R))(+) ∼= Zp(+), by 2.1.1,

follows M(R) = M(A(R)).

(iv) Obvious.

Since the reflection is constructed with help of a localization, many prop-

erties of a ring R will also be preserved in the radical ring A(R). In view of
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2.2.4(iii), especially useful will be the case when R is embedded into A(R),

i.e. when ϕR is injective. This brings us naturally to the following notion (see

2.2.2(ii)):

Definition 2.2.5. A commutative ring R will be called semiradical if and only

if (∀x, a ∈ R) (x = xa⇒ x = 0).

Semiradical rings (generally non-commutative) were introduced by V. A.

Andrunakievitch in [1], where also an easy equivalent description of them (in

a commutative case) was presented:

Proposition 2.2.6. [1] Let R be a commutative ring. The following are equiv-

alent:

(i) R is semiradical.

(ii) R is a subring of a radical ring.

(iii) The adjoint semigroup R(◦) is cancellative.

From this characterization we see that the class of semiradical rings

is closed under subrings and products, contains every radical ring and, by

2.2.7(ii), also every free commutative ring. Since any non-trivial ring with

unit can not be semiradical, this class is not closed under homomorphic im-

ages and thus it is not a universal algebraic variety.

In spite of this fact there also exists a reflection of the category of the

commutative rings into the category of the commutative semiradical rings and

it is easy to see that for a commutative ring R is this reflection of the form

(R/ ker(ϕR), πR), where πR : R → R/ ker(ϕR) is the natural projection.

Besides this reflection, there are some basic ways how to obtain semiradical

rings:

Remark 2.2.7. (i) Let R be a commutative ring, then xR[x] and xR[[x]] are

semiradical.

Indeed, for 0 6= f =
∑

i aix
i ∈ xR[[x]] put m(f) = min{n|an 6= 0} ≥ 1.

If 0 6= f = fg for some f, g ∈ xR[[x]] then m(f) = m(fg) ≥ m(f) + m(g).

Hence 0 ≥ m(g), a contradiction.

(ii) Let T be a domain with unit 1T and R be a subring such that 1T 6∈ R.

Then R is semiradical.

Let a = ax, where a, x ∈ R. Then (1T − x)a = 0. Since T is a domain

and 1T 6∈ R, we get a = 0.
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We can now state basic properties of subdirectly irreducible semiradical

rings:

Proposition 2.2.8. Let R be a semiradical ring. Then:

(i) Ann
(
A(R)

)
= Ann(R), N

(
A(R)

)
= (1 + R)−1N (R) and T

(
A(R)

)
=

(1 +R)−1T (R).

(ii) Let R be subdirectly irreducible. Then T (R) is a p-group and Zp(+) ∼=
M(R)(+) ⊆ Ann(R)(+) ∼= Zpn(+), where p ∈ P and 1 ≤ n ≤ ∞.

Proof. (i) Let r/(1 + s) ∈ Ann
(
A(R)

)
. Then ru/(1 + s) = 0 for every u ∈ R.

Hence ru/1 = 0, by 2.2.2(ii), and ru = 0, since R is semiradical. Thus

r ∈ Ann(R) and r/(1 + s) = r/1. The rest is similar.

(ii) Follows from (i) and 2.1.1.

Reflection also always allows to define a covariant functor in the following

way:

Let f : R → T be a ring homomorphism, ϕR : R → A(R) and ϕT :

T → A(T ) reflections. Then there is a unique homomorphism of radical rings

f ∗ : A(R) → A(T ) such that f ∗ϕR = ϕTf . Hence

R 7→ A(R)

f 7→ f ∗

is a well defined covariant functor from the category of the commutative rings

into the category of the commutative radical rings.

Basic properties are listed in following remark.

Remark 2.2.9. (i) If f : R→ T is surjective, then f ∗ is surjective.

(ii) Let R be a ring with a unit, such that J (R) 6= 0. Then the inclusion

i : J (R) → R is injective, but i∗ : J (R) → A(R) = 0 is a zero homomorphism.

On the other hand, if R is a semiradical ring and ν : T → R is an injective

ring homomorphism, then ν∗ is, of course, injective.

(iii) The sequence of semiradical rings 0 → 2xZ[x]
i→ xZ[x]

π→ xZ2[x] →
0, where i is inclusion and π natural projection, is exact, but Im(i∗) 6= ker(π∗).

Thus the functor A is right exact, but not exact, even for the semiradical rings.

Indeed, denote R = xZ[x] and I = 2R. Then Im(i∗) = {r/(1+s)|r, s ∈ I}
and ker(π∗) = {r/(1 + s)|r ∈ I, s ∈ R}. We show that 2x/(1 + x) ∈ ker(π∗) \
Im(i∗). Suppose, on contrary, that 2x/(1+x) = 2xf(x)/(1+2xg(x)) for some
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f(x), g(x) ∈ Z[x]. Then 2x(1+2xg(x)) = 2xf(x)(1+x), since R is semiradical,

and thus 1+2xg(x) = f(x)(1+x). Using a natural projection σ : Z[x] → Z2[x]

we obtain 1 = f(x)(1 + x) in Z2[x], a contradiction, by comparing the degrees

of the polynomials.

To illustrate the fact that semiradical rings will be more useful for con-

structing suitable examples of the class S than just working with radical rings

we will consider one of the natural constructions of rings - the semigroup alge-

bra (contracted version, resp.). Remind that the contracted semigroup algebra

R0[A] over a ring R and a semigroup A with an zero element o (i.e. ao = o for

all a ∈ A) is defined as R0[A] = R[A]/Ro, where R[A] is the usual semigroup

algebra.

Following statement (see 2.2.10) shows that the contracted semigroup al-

gebra constructed using common rings (e.g., with unit) is radical only if it is

nil. Such algebras provide thus only a limited class of examples to choose.

Since commutative subdirectly irreducible radical rings arise as certain factors

of commutative radical rings, and we will look especially for the non-nil ones,

we will need to use another constructions or use a wider class of rings.

Proposition 2.2.10. Let R be a ring that is not radical, A be a semigroup

with a zero element o and R0[A] be the contracted semigroup algebra.

Then R0[A] is a radical ring if and only if A is nil. In this case R0[A] is

nil.

Proof. (⇐) S is generated by the set {λa|λ ∈ R, a ∈ A} of nilpotent elements

and hence is it a nil ring and therefore a radical ring.

(⇒) Since R 6= J (R), there is at least one ring R′ with unit that is an

homomorphic image of R. Then R′
0[A] (as an homomorphic image) is also

radical and we can therefore without loss of generality assume that R contains

a unit.

Suppose now, on contrary, that some o 6= a ∈ A is not nilpotent. Then

there is ã =
n∑
i=1

λiai ∈ R0[A] such that a+ ã+aã = 0, where n ≥ 1, 0 6= λi ∈ R,

o 6= ai ∈ A for all i = 1, . . . , n and ai 6= aj for all i 6= j. We show by induction

on k ∈ N0 that:

”If k ≤ n then ã =
k∑
i=1

(−1)iai +
n∑

i=k+1

λ′ia
′
i for some 0 6= λ′i ∈ R and

o 6= a′i ∈ A such that a′i 6= a′j for i 6= j.”
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For k = 0 is it obvious. Suppose now, that the statement is true for k ≥ 0.

Then

0 = a+
( k∑

i=1

(−1)iai +
n∑

i=k+1

λ′ia
′
i

)
+ a ·

( k∑

i=1

(−1)iai +
n∑

i=k+1

λ′ia
′
i

)
=

=
(
a +

k∑

i=1

(−1)iai −
k+1∑

i=2

(−1)iai
)

+

n∑

i=k+1

λ′ia
′
i +

n∑

i=k+1

λ′iaa
′
i =

= (−1)kak+1 +

n∑

i=k+1

λ′ia
′
i +

n∑

i=k+1

λ′iaa
′
i.

Let k < n. If ak+1 6= a′i for all k + 1 ≤ i ≤ n, then, since ak+1 6= 0,

there would be n−k+1 pairwise different non-zero elements ak+1, a′k+1, . . . , a
′
n

and no more than n − k pairwise different non-zero elements aa′k+1, . . . , aa
′
n,

which would be in contradiction with the zero combination in the sum. Hence

(without loss of generality) ak+1 = a′k+1.

Suppose now that λ′k+1 6= (−1)k+1. Then 0 = µa′k+1 +
n∑

i=k+2

λ′ia
′
i +

n∑
i=k+1

λ′iaa
′
i, where µ = λ′k+1 + (−1)k 6= 0. Considering again the numbers of

pairwise different non-zero elements in the sum, we get a′i = aa′π(i) for all i and

some permutation π on the set {k+ 1, . . . , n}. Obviously, a′i = ama′πm(i) for all

m ∈ N and πm0 = id for some m0 ∈ N. Hence o 6= a′k+1 = am0 · a′k+1, a contra-

diction, supposing R0[A] being radical. Thus a′k+1 = ak+1 and λ′k+1 = (−1)k+1.

From ã =
n∑
i=1

(−1)iai and a + ã + aã = 0 now follows 0 = (−1)nan+1 and

a is nilpotent, a contradiction.

Comparing to the radical rings, the contracted semigroup algebra is semi-

radical (for a ring with unit) if and only if the appropriate semigroup is also

semiradical (see 2.2.13). Such semigroups thus extend a much wider class of

rings, which will be very useful for the constructions in the next section.

Definition 2.2.11. Let A be a commutative semigroup. We call A semiradical

if every x ∈ A, such that x = ax for some a ∈ A, is a zero element.

Remark 2.2.12. Let K be a finite non-empty set and ϕ : K → K a map. Then

there are a ∈ K and k ∈ N such that ϕk(a) = a.

Indeed, choose x ∈ K. Since K is finite, there must be m,n ∈ N, m < n

such that ϕm(x) = ϕn(x). Now, put a = ϕm(x) and k = n−m.
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Proposition 2.2.13. Let R be a ring, A be a semigroup with a zero element

o and R0[A] be the contracted semigroup algebra. Then:

(i) Let R have a non-zero idempotent. If R0[A] is semiradical, then A is

semiradical.

(ii) Let A be semiradical. Then R0[A] is semiradical.

Proof. (i) Easy.

(ii) Suppose, for contradiction, that (
n∑
i=1

λiai)·(
m∑
j=1

µjbj) =
n∑
i=1

λiai inR0[A],

where n,m ≥ N, λi, µj ∈ R \ {0}, ai, bj ∈ A \ {o} for all i, j and ai 6= aj,

bi 6= bj for all i 6= j. From the multiplication in R0[A] follows that there are

maps ϕ : {1, . . . , n} → {1, . . . , n} and ψ : {1, . . . , n} → {1, . . . , m} such that

ai = aϕ(i)bψ(i) for every i = 1, . . . , n. By 2.2.12, there are i0 ∈ {1, . . . , n} and

k ∈ N such that ϕk(i0) = i0. Hence ai0 = aϕ(i0)bψ(i0) = aϕ2(i0)bψϕ(i0)bψ(i0) =

· · · = aϕk(i0)bψϕk(i0)bψϕk−1(i0) . . . bψ(i0). Thus o 6= ai0 = ai0 .b for some b ∈ A, a

contradiction.

Note that, unlike the contracted version, the usual semigroup algebra

yields, surprisingly, different results:

Corollary 2.2.14. Let R be a ring, A be a semigroup and R[A] be the semi-

group algebra. Then:

(i) Let R be a non-radical ring. Then the semigroup algebra R[A] is never

a radical ring.

(ii) Let R have a non-zero idempotent and A have an idempotent (e.g., an

zero element). Then R[A] is not semiradical.

(iii) Let A be semiradical without a zero element. Then R[A] is semiradical.

Proof. (i) Suppose that R[A] is radical. Put A′ = A ∪ {o}, where o is a new

element such that ao = oa = oo = o for all a ∈ A. Then A′ is a semigroup

with a zero element o. Obviously R[A] ∼= R0[A′]. Hence R0[A
′] is a radical

ring and, by the previous lemma, must A′ be nilpotent. Thus for every a ∈ A

there is n ∈ N such that an = o, a contradiction, since o 6∈ A.

(ii) Let 0 6= e ∈ R and a ∈ A be idempotents. Then 0 6= eo = (eo)(eo).

Hence R[A] is not semiradical.
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(iii) Again, put A′ = A ∪ {o}, where o is new element and set ao = oa =

oo = o for every a ∈ A. Then A′ is a semiradical semigroup with a zero element

o. Then, by 2.2.13(ii), R0[A′] is a semiradical ring. Since R[A] ∼= R0[A′], it

follows that R[A] is also semiradical.

2.3 Noetherian and artinian case

Commutative subdirectly irreducible rings were already studied by N.H. Mc-

Coy [20] and N. Divinsky [4]. In [20] was shown that these rings are of the

following three types:

(α) Fields.

(β) Every element is a zero divisor.

(γ) There exists both non-divisors of zero and nilpotent elements.

The subdirectly irreducible commutative (semi)radical rings are of type (β),

since the annihilator of such a ring contains the monolith and thus is non-

empty (see 2.2.8(ii)). In addition, by [5, Theorem 14], if the rings of type

(β) satisfy either the descending or the ascending chain condition, they are

nilpotent.

We show that the only noetherian commutative subdirectly irreducible

semiradical rings are the finite ones. First, we remind some basic properties.

Lemma 2.3.1. Let R be a ring, X ⊆ R be a subset. Let Xn = 0 for some

n ∈ N and suppose that R is id-generated by X.

Then R is generated by X as a ring and Rn = 0 (i.e. R is nilpotent).

Proof. Obviously, R = X1 + R · X1, where X1 = {∑i xi|xi ∈ X}. Now, by

induction, if R = X1 + · · · + Xk + R · Xk, then R = X1 + · · · + Xk + (X1 +

R ·X1) ·Xk = X1 + · · · + Xk + Xk+1 + R ·Xk+1. Hence R = X1 + · · · + Xn

and Rn = 0.

Lemma 2.3.2. Let R be a noetherian ring. Then there is m ∈ N such that

mT (R) = 0.

Proof. Let P = {p1, p2, . . .} be the set of all prime numbers. Put In = {a ∈
R|(∃k ∈ N)(p1 . . . pn)ka = 0}. Then {In}n∈N is an increasing sequence of

ideals of R and T (R) =
⋃
n In. Hence T (R) = In0

for some n0. Further,
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put Jk = {a ∈ R|(p1 . . . pn0
)ka = 0}. Then {Jk}k∈N is an increasing sequence

of ideals of R and T (R) =
⋃
k Jk. Hence T (R) = Jk0 for some k0. Thus

(p1 . . . pn0
)k0T (R) = 0.

Lemma 2.3.3. Let S ∈ S and M(S) be a p-group.

(i) If T (S) 6= S, then for every n ∈ N there exists a subgroup Gn ⊆ S(+)

such that M ⊆ Gn
∼= Zpn(+).

(ii) A noetherian S is torsion.

Proof. (i) Let a ∈ S be a torsion-free element, n ∈ N. Then pn−1a is also

torsion-free and hence pn−1a 6∈ Ann(S), by 2.1.1. Thus there is b ∈ S such

that 0 6= b ·(pn−1a) ∈ M(S). Therefore ba is of order pn and we put Gn = 〈ba〉.
(ii) T (S) is a p-group, hence there is n ∈ N such that pnT (S) = 0, by

2.3.2. Suppose that S 6= T (S). Then, by (i), for every k ∈ N there is a ∈ T (S)

of order pk, a contradiction.

Proposition 2.3.4. Let S ∈ S. The following are equivalent:

(i) S is finite,

(ii) S is finitely rd-generated,

(iii) S is noetherian.

Proof. (i)⇒(ii): Obvious.

(ii)⇒(iii): It is enough to prove that a free commutative radical ring U

with a finite basis is noetherian. By 2.2.4(ii), there is a free commutative

ring T =
n∑
i=1

xiZ[x1, . . . , xn] and a reflection ϕT : T → (1 + T )−1T such that

U = (1 + T )−1T . We prove that every ideal I in U is finitely generated as

a U -module. Obviously K = ϕ−1
T (I) is finitely generated T -module, since T

is a noetherian ring. Hence (1 + T )−1ϕT (K) = I is also finitely generated

(1 + T )−1T -module.

(iii)⇒(i): S is a finitely id-generated ring. By [5, Theorem 14], S is nil

and hence, by 2.3.1, finitely generated as a ring. Moreover, mR = 0 for some

m ∈ N, by 2.3.2 and 2.3.3(ii). Hence S is finite.

Corollary 2.3.5. Let S be a commutative subdirectly irreducible semiradical

ring. Then S is noetherian if and only it is finite. In particular, if S is

noetherian then it is also artinian.
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Proof. (⇐) Easy.

(⇒) Let S be noetherian, then A(S) = (1 + S)−1S is also noetherian (by

the argument of finitely generated ideals). By 2.3.4, A(S) is finite and since S

is embedded into A(S), is S finite too.

Now we present several examples of finite rings in S. Remind that every

finite commutative radical ring has to be nilpotent (see for instance [19, 7.12]).

Using the reflection, this implies that every finite semiradical ring needs to be

nilpotent and hence radical.

Example 2.3.6. (i) Let Zpn , n ∈ N, be a ring with the standard multiplication

mod pn. Put S(k, n) = pkZpn, 1 ≤ k < n. The ring S(k, n) is an ideal of

J (Zpn), hence S(k, n) ∈ S. We have

Ann(S(k, n)) =

{
S(n− k, n) , if 2k ≤ n

S(k, n) , if 2k ≥ n.

(ii) Rings of the form R(F,A,Zp, π) or R(Zpi , A,Zpk , ν) (see 2.4.8), where

F is a finite field, charF = p, k ∈ N, k ≥ i ∈ N and A is the nil semigroup

from 2.4.7(i). These rings are in S by 2.4.5.

(iii) Rings arising using the ”gluing” construction (see 2.4.10) from a finite

family of a finite rings from S with isomorphic monoliths.

Every finitely generated commutative ring is noetherian. Infinite fields are

easy examples of noetherian rings that are not finitely generated. Following

example shows a noetherian radical ring that is not finitely rd-generated.

Example 2.3.7. Let R = xZn[[x]], where n = 0 or n ≥ 2. Then:

(i) R is id-generated by x.

(ii) R is a noetherian semiradical ring.

(iii) A(R) is a noetherian radical ring which is not finitely (not even count-

ably) rd-generated.

Proof. (i) Let f(x) = λ1x+ λ2x
2 + · · · ∈ R, then −λ1x+ f(x) = xg(x) ∈ Rx

for some g(x) ∈ R. Hence f(x) ∈ Rx+ Zx.

(ii) The ring Zn is noetherian, hence Zn[[x]] is noetherian. An ideal I of R

is also an ideal of Zn[[x]]. Hence R is noetherian. By 2.2.7 (i), R is semiradical.

(iii) R is uncountable. The rest follows by localization and 2.2.2.
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Remark 2.3.8. Ring Zp∞, p ∈ P, with a trivial multiplication is an example of

a ring in the class S that is artinian, but not noetherian.

As was mentioned above (in [5, Theorem 14]), any artinian ring from S
needs to be nilpotent. To find an artinian ring from S, that is nilpotent of

degree n ∈ N, consider following example:

Take any finite nilpotent ring S ∈ S of degree n (use for instance 2.3.6)

and ”glue” it (see 2.4.10) with Zp∞ . Such a ring will be artinian and (since S

will be a subring) also nilpotent of degree n.

Finally, we mention a property of artinian semiradical rings:

Proposition 2.3.9. Let R 6= 0 be a commutative artinian semiradical ring.

Then Ann(R) 6= 0.

Proof. Suppose, for contradiction, that Ann(R) = 0 and let 0 6= a ∈ R. Then

there is 0 6= b ∈ R such that 0 6= ab. Hence there exists a sequence a1, a2, . . .

such that 0 6= an+1 ∈ Ran for every n ∈ N. Put In = Ran. Then {In}n∈N is

a decreasing sequence of ideals and an+1 ∈ In \ In+1, since R is semiradical.

Hence R is not artinian, a contradiction.

2.4 Constructions of subdirectly irreducible

radical rings

In this section we will present several examples and constructive methods of

the subdirectly irreducible radical rings to investigate structural properties of

these ring and find out what type of such rings may arise. Besides we survey

the relations between the nilradical, the torsion part, the divisible part and

the annihilator.

Our usual approach will be to take a subdirectly irreducible semiradical

ring R with desired properties and then construct the reflection A(R) = (1 +

R)−1R (see 2.2.2). By 2.2.4(iii), A(R) ∈ S and, since it is a localization and

the reflection is a monomorphism, many of the properties ofR will be preserved

in A(R).

First we collect necessary examples to get a better insight and then we

draw conclusions.

According to the proof of Birkhoff’s theorem, a commutative subdirectly

irreducible radical ring can be obtained in the following way:
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Let R be a radical ring and 0 6= a ∈ R. By Zorn’s lemma there is an ideal

K of R maximal with respect to the property a /∈ K. Then S = R/K ∈ S.

Moreover, M(S) = (K + Ra)/K, if Ra 6⊆ K, and M(S) = (K + Za)/K, if

Ra ⊆ K. (It is easy to see that every element of S is of this form.)

Applying this method on the one-generated F -algebras inspires us to the

following construction:

Definition 2.4.1. Let A be a commutative semigroup with a zero element o.

Put Ann(A) = {a ∈ A|(∀ x ∈ A) ax = o} and A∗ = A \ Ann(A).

Construction 2.4.2. Let A be a commutative semigroup with a zero element o

and let Ann(A) = {o,m}, where m 6= o.

Let R be a commutative ring, G(+) be a commutative group and ϕ :

R(+) → G(+) be a group homomorphisms.

Put R(R,A,G, ϕ) = (
⊕
a∈A∗

R · a) ⊕ G · m and set the multiplication as

follows:

( ∑

a∈A∗

λa ·a+g ·m
)
·
( ∑

b∈A∗

µb ·b+h ·m
)

=
∑

c∈A∗

( ∑

ab=c

λaµb
)
·c+ϕ

( ∑

ab=m

λaµb
)
·m

where λa, µb ∈ R and g, h ∈ G.

It is easy to verify that R(R,A,G, ϕ) is a commutative ring.

The following remark confirms, that subdirectly irreducible factors of a

one-generated F -algebra are indeed of the form of 2.4.2.

Remark 2.4.3. Let F be a field. It is not difficult to show that every ideal I

of a one-generated F -algebra R = xF [x]/(xn+1F [x]), n ∈ N, is of the form

I = Hxk ⊕ Fxk+1 ⊕ · · · ⊕ Fxn, where 1 ≤ k ≤ n and H(+) is a subgroup of

F (+).

Now, easily follows that any subdirectly irreducible factor of R has indeed

the form R(F,A,G, π), where A =
〈
a| ak+1 = o

〉
is a multiplicative group with

zero element o, 1 ≤ k ≤ n,

G =

{
Zp , if charF = p > 0

Zp∞ , p ∈ P , if charF = 0

and π : F (+) → G(+) is an epimorphism of groups.

Further, we add some assumptions to the construction 2.4.2 to obtain a

subdirectly irreducible semiradical ring.
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Remark 2.4.4. Let A be a commutative semigroup with a zero element o.

(i) If A is nil, then A is semiradical. Indeed, from x = ax follows, by

induction, x = anx for every n ∈ N. Since a is nilpotent, x is a zero element.

(ii) Define a new operation ” ? ” on the set B = (A \ Ann(A)) ∪ {o} as

follows:

a ? b =

{
ab , if ab /∈ Ann(A)

o , if ab ∈ Ann(A)

where a, b ∈ B. From (a ? b) ? c 6= o follows a ? (b ? c) 6= o. Hence ? is a

commutative and associative operation. Clearly, is B(?) isomorphic to A/ ∼,

where ∼ is a congruence generated by the set {o} × Ann(A). We will denote

the semigroup B(?) as A/Ann(A).

(iii) If A is semiradical, then A/Ann(A) is also semiradical.

Lemma 2.4.5. Suppose assumptions from the construction 2.4.2. If A is semi-

radical, then R(R,A,G, ϕ) is also semiradical. Moreover, if A is nil then

R(R,A,G, ϕ) is also nil.

Proof. Denote S = R(R,A,G, ϕ). Let x = ax for some x, a ∈ S. Clearly,

S/Gm ∼= R0[A/Ann(A)]. Since A/Ann(A) is semiradical by 2.4.4(iii), we get

that S/Gm is semiradical by 2.2.13(ii). Now, since [x] = [x] · [a] in S/Gm, we

get x ∈ Gm ⊆ Ann(S). Hence x = ax = 0.

The rest is obvious.

Now we show some sufficient conditions under which will the ring from

2.4.2 be subdirectly irreducible.

Remind that every subdirectly irreducible group is of the form Zpn(+),

where p ∈ P and 1 ≤ n ≤ ∞. Hence the only rings in S with the trivial

multiplication are just these ones.

Proposition 2.4.6. Let A be a commutative semigroup with zero element o,

Ann(A) = {o,m}, m 6= o and such that for every a1, . . . , an ∈ A∗, n ≥ 1, there

are 1 ≤ i0 ≤ n and b ∈ A such that ai0b = m and aib = o for ai 6= ai0.

Further, let R be a commutative ring, G be a commutative subdirectly

irreducible p-group and ϕ : R(+) → G(+) be a group homomorphism such that

ϕ(Rλ) 6= 0 for every 0 6= λ ∈ R.

Then R(R,A,G, ϕ) is a subdirectly irreducible ring with monolith Zp ·m
and annihilator G ·m.
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Proof. Denote S = R(R,A,G, ϕ). If x ∈ S \Gm then x =
n∑
i=1

λiai+gm, where

n ≥ 1, g ∈ G, 0 6= λi ∈ R and ai ∈ A∗ for every i. By assumption, there are i0
and b ∈ A such that ai0b = m and aib = 0, if ai 6= ai0 . Further, there is µ ∈ R

such that ϕ(µλi0) 6= 0. Hence 0 6= (µb)x ∈ Gm.

Now, easily follows that Ann(S) = Gm and (Sy+Zy)∩Gm 6= 0 for every

0 6= y ∈ S. Since G is a subdirectly irreducible p-group, we get that Zp ·m is

a monolith of S.

In the next remark we show some examples of semigroups fulfilling the

condition of 2.4.6.

Remark 2.4.7. Is is easy to see that a semigroups A is semiradical and fulfils

the conditions of 2.4.6 in these cases:

(i) Let A =
〈
x1, . . . , xk| xni+1

i = o, i = 1, . . . , k
〉

be a presentation of a com-

mutative semigroup with zero element o, where ni ∈ N for all i. Then

Ann(A) = {o, xn1

1 · · ·xnk

k }.

(ii) Let X 6= ∅ be a set. Let A be a presentation of a commutative semigroup

with zero element o with respect to the basis X ∪ {m} ∪ (X × N) (a

disjoint union with a new symbol m) and relations
(
{m}∪(X×N)

)2
= o,

X ·m = o, xy = x(y, i) = o and

x(x, i) =

{
(x, i− 1) , if i ≥ 2

m , if i = 1

for every i ∈ N, x, y ∈ X and x 6= y. Then Ann(A) = {o,m}.

(iii) The semigroup constructed in 2.5.3(3).

Now we can introduce particular examples of rings constructed in 2.4.6.

(Remind also that the divisible part D commutes with the direct sum ⊕.)

Example 2.4.8. Let A be a semiradical semigroup fulfilling the conditions of

2.4.6 (e.g. see 2.4.7).

(i) Let F be a field and set

G =

{
Zp , if charF = p > 0

Zp∞ , p ∈ P , if charF = 0.

Let π : F → G be a group epimorphism.
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Then S = R(F,A,G, π) is a subdirectly irreducible semiradical ring,

M(S) = Zp ·m, Ann(S) = G ·m,

T (S) =

{
S , if charF > 0

Ann(S) ∼= Zp∞ , if charF = 0.

and

D(S) =

{
0 , if charF > 0

S , if charF = 0.

(ii) Let be p ∈ P, i ∈ N and i ≤ k ≤ ∞. Let ν : Zpi(+) → Zpk(+) be an

inclusion.

Then S = R(Zpi , A,Zpk , ν) is a subdirectly irreducible semiradical ring,

M(S) = Zp ·m, Ann(S) = Zpk ·m and

D(S) =

{
0 , if k <∞
Ann(S) ∼= Zp∞ , if k = ∞.

Remark 2.4.9. It is easy to see, that every commutative ring that is torsion

and additively divisible has trivial multiplication (see for instance [19, 1.14]).

This means that every such a ring from S needs to be a subdirectly irreducible

group and hence isomorphic to Zp∞ for some p ∈ P. In particular, every

additively divisible S ∈ S that is torsion is also nil.

Using examples from 2.4.8(ii) we can find a ring in S that is additively

divisible, but not nil. Just take A(S) ∈ S, where S = R(Q, A,Zp∞ , π) (see

2.4.8(ii)) and A be the semigroup from 2.4.7(ii).

The next construction is a direction how to ”glue together” rings from S,

with isomorphic monoliths, to get a new one.

Construction 2.4.10. Let {Si}i∈X ⊆ S be a family of rings with isomorphic

monoliths. Let {Ann(Si)}i∈X be a naturally directed system of groups (i.e.,

for every i, j ∈ X such that |Ann(Si)| ≤ |Ann(Sj)| there is a monomorphism

νi,j : Ann(Si) → Ann(Sj) with appropriate properties).

Let S =
⊕
i∈X

Si be a direct sum of rings and I be an ideal of S generated

by the set {x− νi,j(x)|x ∈ Ann(Si), |Ann(Si)| ≤ |Ann(Sj)|, i, j ∈ X}.

Then S/I ∈ S, Ann(S/I) = lim
−→

{Ann(Sj)|j ∈ X} =
( ⊕
j∈X

Ann(Sj)
)
/I,

M(S/I) = lim
−→

{M(Sj)|j ∈ X} =
(
M(Si) + I

)
/I and µi : Si → S/I, µi(x) =

[x], x ∈ Si, is a ring monomorphism for every i ∈ X.
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Proof. Denote Mi = M(Si). Clearly, M =
( ⊕
j∈X

Mj + I
)
/I is a direct limit of

{Mi}i∈X and N =
( ⊕
j∈X

Ann(Sj)
)
/I is a direct limit of {Ann(Si)}i∈X . Hence

M = (Mi + I)/I ∼= Mi 6= 0 for every i ∈ I and N ∼= Zpn , where 1 ≤ n ≤ ∞.

Let 0 6= a = [
∑

i xi] ∈ S/I, xi ∈ Si. If xi0 ∈ Si0 \ Ann(Si0) for some i0,

then there is ri0 ∈ Si0 such that 0 6= ri0xi0 ∈ Mi0 , hence 0 6= [ri0][
∑

i xi] =

[ri0xi0 ] ∈ M . Thus [
∑

i xi] 6∈ Ann(S/I). On the other hand, if xi ∈ Ann(Si)

for every i, then 0 6= a ∈ N ∼= Zpn , hence 0 6= pka ∈M ⊆ N for some k ∈ N.

Therefore M is the least nonzero ideal of S/I and Ann(S/I) = N .

Finally, since I ⊆ ⊕
j∈X

Ann(Sj) and Ann(Si) is embedded into N , we get

that x = 0 for every x ∈ Ann(Si) ∩ I. Hence µi is a monomorphism for every

i ∈ X.

In the next part we will construct subdirectly irreducible rings with help

of the subdirectly irreducible modules.

Remind that for a commutative ring R and a commutative R-algebra K

is R ⊕ K with the multiplication given as (r, x) · (s, y) = (rs, ry + sx + xy),

where r, s ∈ R, x, y ∈ K, again a commutative ring, that contains R and K

as subrings. If K is only an R-module, we will suppose the multiplication on

K to be trivial.

Lemma 2.4.11. Let N be a R-module.

(i) If R is a semiradical ring and FixN(r) = {a ∈ N |ra = a} = 0 for every

r ∈ R, then R ⊕N is semiradical.

(ii) Let N be a faithful (i.e. AnnR(N) = {r ∈ R|(∀a ∈ N)ra = 0} = 0)

subdirectly irreducible R-module with a monolith M .

Then S = R ⊕ N is a subdirectly irreducible ring, M(S) = M and

Ann(S) = {a ∈ N |(∀r ∈ R)ra = 0}.

Proof. (i) Easy.

(ii) Clearly, M is an ideal of S. Let 0 6= x = (r, a) ∈ S. We need to

show that M ∩ (Sx+ Zx) 6= 0. We can assume that r = 0 (and a 6= 0), since

for r 6= 0 there is x ∈ N such that rx 6= 0, thus 0 6= (0, rx) = (r, a)(0, x) ∈
Sx + Zx. Now, since a 6= 0 and M is a subdirectly irreducible R-module, we

have 0 6= M ∩ (Ra+ Za) ⊆ M ∩ (Sx+ Zx).

The rest is easy.
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We already know that a finitely rd-generated ring in S has to be finite

(se 2.3.4), hence nil. Now we present an example of a ring S ∈ S, that is just

κ-id-generated for a given cardinal κ 6= 0, but not nil.

Example 2.4.12. Let X be a non-empty set, k ∈ N ∪ {∞}. Let m be a new

symbol, A = {ei}i∈(X×N)∪{m} ∪ {o} be a semigroup with trivial multiplication

and zero element o. Let N = (Zpk)0[A] be the contacted semigroup algebra.

Put

T (X) =





⊕
x∈X

xZpk [x] , k ∈ N
⊕
x∈X

xZ[x] , k = ∞

a direct sum of rings.

For x ∈ X let αx ∈ End(N(+)) be an endomorphism such that

αx(λei) =





λe(x,l−1) , i = (x, l) and l ≥ 2

λm , i = (x, 1)

0 , i = m

where λ ∈ Zpk , i ∈ (X × N) ∪ {m}.

Since αx ◦ αy = 0 for x 6= y, there is a ring endomorphism

α :
⊕

x∈X

xZ[x] → End(N(+))

x 7→ αx

for every x ∈ X. Since pkxZ[x] ⊆ ker(α) for every x ∈ X (in case k <∞),

N is a T (X)-module. Further:

(i) R = T (X) ⊕ N is a subdirectly irreducible semiradical ring, M(R) =

Zp ·m and Ann(R) = Zpk ·m.

(ii) S = A(R) ∈ S is id-generated by X and is not a nil ring. Moreover, if S

is id-generated by a set Y ⊆ S, then |Y | ≥ |X|.

(iii) Ann(S) = Zpk ·m,

N (S) =

{
(1 +R)−1(pT (X) ⊕N) , k ∈ N
(1 +R)−1N , k = ∞
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and

D(S) =

{
0 , k ∈ N
(1 +R)−1N , k = ∞.

Proof. (i) First, we show that R is semiradical. For 0 6= a = λm +
∑

i λiei ∈
N \Zpk ·m denote D(a) = min{l ∈ N|(∃x ∈ X)λ(x,l) 6= 0}, for 0 6= a ∈ Zpk ·m
put D(a) = 0 and, finally, set D(0) = −1. Now, clearly D(f · a) < D(a) for

every f ∈ T (X) and 0 6= a ∈ N . Hence FixN (f) = 0 for every f ∈ T (X) and

R is semiradical by 2.4.11(i).

Now, we show that N is a faithful T (X)-module. Let 0 6= f =∑
x,n λ(x,n)x

n ∈ T (X) and n0 ∈ N be the least such that λ(x0,n0) 6= 0 for some

x0 ∈ X. Clearly, there is µ ∈ Zpk such that λx0,n0
µ 6= 0. Put a = µe(x0,n0) ∈ N .

Then fa 6= 0. Hence N is a faithful T (X)-module.

Finally, we prove that the T (X)-module N is subdirectly irreducible with

monolith Zp · m. Let 0 6= a = λm +
∑

i λiei ∈ N . If D(a) = l ≥ 1 and

λ(x0,l) 6= 0, for some x0 ∈ X, then 0 6= xl0a ∈ Zp · m. If D(a) = 0 then

0 6= pja ∈ Zp · m, for some j ∈ N0. Hence N is a subdirectly irreducible

T (X)-module with monolith Zp ·m.

The rest now easily follows using 2.4.11.

(ii) By 2.2.4, S is id-generated by X. Since T (X) is a subring of S, is S

not nil. Now, let R be id-generated by Y . Put I = pR + N +
∑

x∈X xT (X).

Then I is an ideal of R. Let π : R → R/I be a natural homomorphism. Since

π∗ : A(R) → A(R/I) is an epimorphism, is A(R/I) id-generated by π∗(Y ).

Hence A(R/I) ∼= (Zp)
(X) is generated by π∗(Y ) as a vector space over Zp and

thus |X| = dimA(R/I) ≤ |π∗(Y )| ≤ |Y |.
(iii) The annihilator follows by 2.4.11. For k ∈ N and the ring of poly-

nomials Zpk [x] is N (Zpk [x]) = pZpk [x]. Further (f + a)n = fn + nfn−1a for

every f ∈ T (X), a ∈ N and n ∈ N. The rest now follows easily (use again the

commutativity between the divisible part and the direct sum).

Note that in case k ∈ N (not for k = ∞!) the ring R from 2.4.12 is

isomorphic to R(Zpk , A,Zpk , idZ
pk

) = (Zpk)0[A], where A is the semigroup

from 2.4.7(ii).

Now we have gathered enough examples to try to answer whether in the

class S is possible to reverse some standard implications that hold in the class
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of all commutative rings (radical rings, respectively) - see the remarks 2.4.13

and 2.4.14.

Remark 2.4.13. For a ring R we have the following sequence of implications:

R is a zero-multiplication ring
(1)⇒ R is nilpotent

(2)⇒ R is a nil ring
(3)⇒ R is

a radical ring.

Even in the class S, no two of these properties coincide. Consider following

counterexamples: for (1) see 2.3.6(ii), for (2) see 2.4.16 and for (3) see 2.4.12.

Remark 2.4.14. For a radical ring S and a subset Y ⊆ S we have this sequence

of implications:

S is generated by Y (as a ring)
(1)⇒ S is rd-generated by Y (i.e. generated

as a radical ring)
(2)⇒ S is id-generated by Y (i.e. generated as an R-module).

Now we have a look at whether these implication can be reversed for

S ∈ S.

(i) Implication (1) can be reversed for Y finite. Indeed, by 2.3.4, every

finitely rd-generated S ∈ S is finite and hence nilpotent (see for instance

[19, 10.4]). Now by 2.3.1, S is generated by Y .

(ii) Implication (1) can not be generally reversed for infinite cardinality of

Y . Actually, consider the ring S = A(T (X) ⊕ N) from 2.4.12 and put

Y = X ∪ {ei}i∈(X×N)∪{m}, where X is infinite. Then |Y | = |X| and

Y rd-generates S. On the other hand, take the natural projection π :

T (X) ⊕ N → T (X). If Y generates S then π∗(Y ) = π∗(X) generates

π∗(S) = A(T (X)) = ⊕x∈XA(T (x)). But this is impossible, since π∗(x) =

x/1 does not generates a free radical ring A(T (x)) (see 2.2.4(ii)).

(iii) Implication (2) can not be generally reversed for any (non-zero) cardinal-

ity of Y . Indeed, suppose again the ring S = A(T (X) ⊕N) from 2.4.12

and put Y = X. By 2.4.12(ii), S is generated by Y . Since T (X) ⊕N is

semiradical, we have, by 2.2.9(ii), that A(T (X)) is a proper subring of

S. Since Y rd-generates A(T (X)), it does not rd-generates S. Moreover,

by 2.3.4, S is not even finitely rd-generated.

It is well known that for a commutative ring S holds D(S) · T (S) =

0 (see for instance [19, 1.13.(iii)]). This implies
(
D(S) ∩ T (S)

)2
= 0 and

D(S)∩T (S) ⊆ N (S). It is natural to ask whether there are some other (non-

trivial) relations (inclusions, in particular) between the ideals N (S), T (S),
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D(S), D(S) ∩N (S), T (S) ∩N (S) and D(S) ∩ T (S) in the case when S ∈ S.

The following remark gives a negative answer to this question (except the

inclusion mentioned above) and the class S is thus in this sense as various as

the class of all commutative radical rings.

Remark 2.4.15. For a ordered couple (A,B) of sets denote (I) the case when

A $ B, (II) the case when A % B and (III) the case when A = B. Now

consider following couples:

(D(S),N (S)): For (I) see 2.4.12 (with k ∈ N). For (II) see 2.4.9. For

(III) see 2.4.12 (k = ∞).

(D(S), T (S)): For (I) see 2.4.8(ii) (with k ∈ N). For (II) see 2.4.9. For

(III) see 2.3.8.

(N (S), T (S)): For (I) see 2.4.12 (with k ∈ N). For (II) see 2.4.3 (with

charF = 0). For (III) see 2.4.3 (with charF > 0) and 2.3.6.

D(S) ∩N (S) 6⊆ T (S): See 2.4.9 (charF = 0 with 2.4.7(i)).

T (S) ∩N (S) 6⊆ D(S) 6= 0: See 2.4.8(ii) (i < k = ∞ with 2.4.7(i)).

In the rest of this section we will deal with the annihilator.

The construction used for examples 2.3.6, 2.4.3, 2.4.8 and 2.4.12 forced

an infinite annihilator (i.e. Ann(S) ∼= Zp∞) for a ring S ∈ S assuming that

T (S) 6= S. The following example shows that such assertion not true in

general.

Example 2.4.16. Let S(1, k) = pZpk ∈ S, where k ≥ 3, be as in 2.3.6(i).

Then Ann(S(1, k)) = M(S(1, k)) ∼= Zp. Let T =
( ∞⊕
k=3

S(1, k)
)
/I be the

ring from the ”gluing construction” (see 2.4.10). Put ϕ : pZ → End(T (+)),

ϕ(pk)(x) = pkx, x ∈ T . Clearly, T is a pZ-algebra (via ϕ). Then:

(i) R = pZ⊕T is a subdirectly irreducible semiradical ring, M(R) = M(T ),

T (R) 6= R and D(R) = 0.

(ii) For S = A(R) ∈ S we have T (S) 6= S, D(S) = 0 and Ann(S) = M(S).

Proof. (i) First, we show that R is semiradical. Let (pk, a) = (pk, a)(pl, b) =

(p2kl, pkb + pla + ab), where k, l ∈ Z, a, b ∈ T . Then pk = p2kl, thus k =

0. Hence we have a = pla + ba and (1 − pl)a = ba. By induction, we get
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(1 − pl)na = bna for every n ∈ N. Hence (1 − pl)n0a = 0 for some n0, since T

is a nil ring. But a is of order pm for some m ∈ N0. Hence a = 0 and R is

semiradical.

Now, we prove the R is subdirectly irreducible. Let 0 6= x = (pk, a) ∈ R.

If k 6= 0 then, by the definition of T , there is b ∈ T such that ba = 0 and

the order of b is greater than |pk|. Then (pk, a)(0, b) = (0, pkb) 6= 0. Hence

R(0, a′) + Z(0, a′) ⊆ Rx+ Zx for some 0 6= (0, a′) ∈ R. Since T is subdirectly

irreducible, by 2.4.10, we have M(T ) ⊆ Ta′ + Za′ ⊆ R(0, a′) + Z(0, a′) ⊆
Rx+ Zx. The ring R is thus subdirectly irreducible.

Since T and pZ are reduced, R is also reduced.

(ii) Follows from (i).

To have an infinite annihilator for S ∈ S we need of course D(S) 6= 0. An

easy observation can be made:

Let S ∈ S. Assume that T (S) = S and D(S) 6= 0 . Since D(S)·T (S) = 0,

we get, by 2.1.1, that D(S) = Ann(S) ∼= Zp∞, p ∈ P.

In this case we have D(T (S)) = D(S) 6= 0. By weakening this condition

to D(T (S)) 6= 0, we can ask whether this assumption implies Ann(S) ∼= Zp∞

again. Indeed, for the previous examples 2.3.6, 2.4.3, 2.4.8, 2.4.12 and 2.4.16

is this conjecture true, but as the following example 2.4.17 shows, the general

answer is negative again.

Example 2.4.17. Let a1 be an element of order p in Zp∞. Put U = (Zp∞ ⊕
Zp∞)/K, where K is a subgroup of Zp∞ ⊕ Zp∞ generated by (a1,−a1). Let

T = pZ × pZ be a product of rings. Put

ϕ : T → End(U(+))

ϕ(pk, pl)
(

(a, b) +K
)

= (pka, plb) +K,

for (a, b) ∈ Zp∞ ⊕ Zp∞ . Clearly, U is a T -module. Further:

(i) R = T ⊕ U is a subdirectly irreducible semiradical ring, Ann(R) =

M(R) = (Zp ⊕ Zp)/K, and T (R) = U is a divisible group.

(ii) For S = A(R) ∈ S we have D(T (S)) = T (S) 6= 0 and Ann(S) = M(S).

Proof. (i)First, for 0 6= a ∈ U is clearly the order of a greater than the order

of (pk, pl)a for every (pk, pl) ∈ U . Hence R is semiradical by 2.4.11(i).
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Now, let 0 6= (pk, pl) ∈ T . Obviously there are a, b ∈ Zp∞ such that at

least one of the elements pka, plb is of order at least p2. Then (pk, pl) · ((a, b)+

K) 6= 0. Hence U is a faithful T -module.

Finally, let 0 6= (a, b) + K ∈ U . Suppose that (a, b) + K /∈ M , where

M = (Zp⊕Zp)/K. Then at least one of the orders of the elements a, b (say a)

must be pk, where k ≥ 2. Hence 0 6= (pk−1, 0) · ((a, b) +K) ∈ M . Thus U is a

subdirectly irreducible T -module with monolith M .

The rest follows by 2.4.11.

(ii) Easy by (i).

2.5 Factors of the subdirectly irreducible rad-

ical rings by their monoliths

Having a subdirectly irreducible (universal) algebra, we can study the following

natural question:

”Which algebras are homomorphic images of subdirectly irreducible alge-

bras?”

T. Kepka asked for a characterization of those algebras in [17]. This

question was answered by J. Ježek and T. Kepka in [11] and independently by

D. Stanovský in [22] for the case of a variety of all algebras of a given signature

with at least one at least binary operation. For varieties of all algebras with

only unary operations was the problem partially solved in [12]. For the variety

of semigroups was the complete answer given in [3]. In [21], the answer was

given for quasigroups and groups. For lattices, an easy construction was found

by Ralph Freese (unpublished).

In this section we study this question for the variety of (commutative)

radical rings. We give some necessary conditions for such factors and make a

characterization of the case when the factor is a zero-multiplication ring.

Proposition 2.5.1. Let S ∈ S. Then:

(i) Every element of S/M(S) is a zero divisor.

(ii) If S2 6= 0 then Ann(S) $ N (S). In particular, if S/M(S) 6= 0 then

N (S/M(S)) 6= 0.

(iii) T (S/M(S)) is a p-group for some p ∈ P and Ann(S/M(S)) ⊆
T (S/M(S)).
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(iv) S/M(S) is noetherian if and only if it is finite.

Proof. (i) Let [0] 6= [a] ∈ S/M(S). If a ∈ Ann(S), then [a] ∈ Ann(S/M(S))

and hence is a zero-divisor. If a 6∈ Ann(S), then there is b ∈ S such that

0 6= ba ∈ M(S) and hence [b] · [a] = [0] and [b] 6= [0] (otherwise would be

b ∈ M(S) ⊆ Ann(S) and ba = 0, a contradiction).

(ii) Let a ∈ S \ Ann(S). Suppose that a 6∈ N (S). Then a2 6∈ Ann(S)

and hence there is b ∈ S such that 0 6= ba2 ∈ M(S) ⊆ Ann(S). Thus ba ∈
S\Ann(S) (otherwise ba2 = (ba)a = 0, a contradiction) and (ba)2 = b(ba2) = 0.

Therefore ba ∈ N (S) \ Ann(S). Hence Ann(S) $ N (S).

(iii) By 2.1.1, T (S/M(S)) is a p-group. Now, if [a] ∈ Ann(S/M(S)),

then ra ∈ M(S) for every r ∈ R. Since M(S) ∼= Zp we have r(pa) = p(ra) ∈
pM(S) = 0 for every r ∈ S and hence pa ∈ Ann(S). The additive group

Ann(S) is a p-group and thus a ∈ T (S).

(iv) Follows from 2.3.4.

It is not difficult to see that considering S ∈ S from the examples 2.3.6,

2.4.3, 2.4.8 (with the semigroup taken from 2.4.7(i),(ii)), 2.4.12, 2.4.16 and

2.4.17, we have Ann(S/M(S)) 6= 0, provided that S/M(S) 6= 0. Now we con-

struct a subdirectly irreducible radical ring without this property (see 2.5.4).

First, we construct a semiradical semigroup A that will have slightly

stronger properties than those ones in 2.4.6, namely

(i) Ann(A) = {o,m} $ A, where m 6= o.

(ii) (∀ a ∈ A∗)(∃ b ∈ A) ab = m.

(iii) For all n ∈ N, a1, . . . , an ∈ A∗ there exist 1 ≤ i0 ≤ n and b ∈ A such

that ai0b ∈ A∗ and aib = o for ai 6= ai0 .

Definition 2.5.2. Let A be a commutative semigroup with a zero element o

is said to have a basis B ⊆ A∗ (with respect to A∗) iff every element x ∈ A∗

has (up to commutativity) unique form x = bi11 · · · binn , where n ∈ N, bk ∈ B

are pairwise different and ik ∈ N for k = 1, . . . , n.

Let a, b ∈ A. We say that a divides b if either a = b or there is c ∈ A such

that b = ac.

Construction 2.5.3. Let A be a commutative semigroup with a zero element o

and a basis B ⊆ A∗.
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(1) Let FX be a free commutative semigroup with a basis X. Put

FX(A) = A ∪ FX ∪ (A∗ × FX) (a disjoin union of sets) and set a commu-

tative binary operation ∗ on FX(A) as follows:

a ∗ b = ab a ∗ w = w ∗ a =

{
o , a ∈ Ann(A)

(a, w) , a ∈ A∗

u ∗ w = uw a ∗ (c, v) = (c, v) ∗ a =

{
o , ac ∈ Ann(A)

(ac, v) , ac ∈ A∗

u ∗ (c, v) = (c, v) ∗ u = (c, uv) (c, v) ∗ (d, t) =

{
0 , cd ∈ Ann(A)

(cd, vt) , cd ∈ A∗

for a, b ∈ A, u, w ∈ FX and (c, v), (d, t) ∈ A∗ × FX .

Then FX(A) is a commutative semigroup with a zero element o and a

basis B ∪X, A is a subsemigroup of FX(A) and Ann(A) = Ann(FX(A)).

Proof. Put Ã = A ∪ {1A} and F̃ = FX ∪ {1F}, where 1A and 1F are new

symbols (units), such that a1A = 1Aa = a, 1A1A = 1A and w1F = 1Fw = w,

1F1F = 1F for every a ∈ A, w ∈ FX . Further denote S = Ã× F̃ a product of

semigroups, W = (Ann(A)×FX) ∪ {(o, 1F )} and ρ = idS ∪ W×W a relation

on S. It is easy to see, that ρ is a congruence on S. Set ϕ : FX(A) → S/ρ,

where a 7→ (a, 1F )/ρ, w 7→ (1A, w)/ρ and (a, w) 7→ (a, w)/ρ with a ∈ A,

w ∈ FX , (a, w) ∈ A∗ × FX . Now is easy to verify, that ϕ is a monomorphism

and hence FX(A) is a semigroup.

Let z = a1 . . . anx1 . . . xk = a′1 . . . a
′
mx

′
1 . . . x

′
l ∈ A∗×FX , where n,m, k, l ≥

1, ai, a
′
j ∈ A, xi, x

′
j ∈ FX . Then a1 . . . an = a′1 . . . a

′
m and x1 . . . xk = x′1 . . . x

′
l.

Hence, by assumption, z has an unique decomposition (up to commutativity)

with respect to B ∪X. The rest is easy.

(2) Suppose there is o 6= m ∈ Ann(A). Then there exists a commutative

semigroup A′ such that:

(i) A is a subsemigroup of A′, o is a zero element in A′ and Ann(A′) =

Ann(A).

(ii) A′ has a basis B′ such that B ⊆ B′.

(iii) (∀ a ∈ A∗)(∃ b ∈ A′) ab = m.
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(iv) For all n ∈ N, a, a1, . . . , an ∈ A∗ such that ai does not divide a for any

i = 1, . . . , n there exists b ∈ A′ such that aib = 0 for all i = 1, . . . , n and

ab ∈ (A′)∗.

Proof. Set X1 = {xa|a ∈ A∗}, X2 = {yK |K is a finite subset of A∗} (new

symbols) and X = X1 ∪ X2 (a disjoin union of sets). Now, let FX(A) be

a semigroup as in (1). Further put U = {(a, xa)|a ∈ A∗}, V = {(a, yK) ∈
A∗×X|K is a finite subset of A∗, a ∈ K} and Z = V ∪FX(A) ·V ∪FX(A) ·U .

By the definition of multiplication in FX(A), we have U ∩ Z = ∅ and m /∈ Z

It follows that σ = idFX(A) ∪ (U × {m}) ∪ ({m} × U) ∪ U × U ∪ Z × Z is

clearly a congruence on FX(A).

Put A′ = FX(A)/σ and ϕ : A → FX(A)/σ, a 7→ [a] = a/σ. Then ϕ is a

monomorphism and A can be identified with a subsemigroup of A′.

(i) Ann(A′) = Ann(A): For a ∈ A∗ we obviously have a 6∈ Ann(A′) and

for w ∈ FX is also [w] 6∈ Ann(A′), since [w]2 6= [o].

Now, for (a, w) ∈ A∗ × FX such that [(a, w)] 6∈ Ann(A) suppose that

[(a, w)] · [w] = [o]. Then, by the definition of σ, ((a, w2), o) ∈ Z × Z. Hence

(a, w2) ∈ FX(A) · U ∪ FX(A) · V and there is z ∈ FX(A) such that either

z(b, xb) = (a, w2) for some (b, xb) ∈ U or z(c, yK) = (a, w2) for some (c, yK) ∈
V , where K is finite subset of A∗ and c ∈ K. Hence xb (or yK) divides w2

and therefore, due to the basis of FX(A), xb (or yK) divides w. It follows that

(a, w) ∈ Z and thus [(a, w)] = [o], a contradiction. Hence [(a, w)] · [w] 6= [o]

and we have proved that [(a, w)] 6∈ Ann(A′).

(ii) Put B′ = ϕ(B ∪ X). Obviously [xa] 6= [xb] for a 6= b. Now, if

[z1 . . . zn] = [z′1 . . . z
′
m] 6∈ Ann(A′) where zi, z

′
j ∈ B ∪X, then, since [z] = [o] for

every z ∈ Z, we have, by the definition of σ, that z1 . . . zn = z′1 . . . z
′
m. Hence

the decomposition is unique, since B ∪X is a basis of FX(A).

(iii) For [a] = a ∈ A∗ we have [a] · [xa] = [m] = m, where xa ∈ X1.

(iv) Let a ∈ A∗ and K = {a1, . . . , an} ⊆ A∗, n ∈ N, be such that ai
doesn’t divide a for any i = 1, . . . , n. Then, obviously, [ai] · [yK ] = [o]. Suppose

now, for contradiction, that [(a, yK)] ∈ Ann(A′). Then [(a, y2
K)] = [0]. Hence,

by the definition of σ, ((a, y2
K), o) ∈ Z × Z. Thus (a, y2

K) ∈ FX(A) · V . Due

to the multiplication in FX(A) and the basis B′, we get that either (a, y2
K) =

yK(a, yK), where (a, yK) ∈ V , or (a, y2
K) = (b, yK)(c, yK), where (c, yK) ∈ V .

In the first case we get a ∈ K and in the second case we have c ∈ K and

a = cb for b ∈ A. Hence there is 1 ≤ i ≤ n such that ai ∈ K divides a, a

contradiction.
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(3) There is a (countable) commutative semigroup A1 with a zero element

o such that:

(i) Ann(A1) = {o,m} $ A1, where m 6= o.

(ii) A1 is semiradical.

(iii) (∀ a ∈ A∗
1)(∃ b ∈ A1) ab = m.

(iv) For all n ∈ N, a1, . . . , an ∈ A∗
1 there exist 1 ≤ i0 ≤ n and b ∈ A1 such

that ai0b ∈ A∗
1 and aib = o for ai 6= ai0 .

Proof. Let D0 = {0, m}, m 6= 0 be a zero multiplicative semigroup, X = {x}.

Put D1 = FX(D0). Further, by the induction, set Dn+1 = (Dn)′ (see (2))

for n ∈ N. Now, put A1 =
⋃
nDn. Let Bn be the appropriate bases for Dn,

n ∈ N. Since D1 is infinite, we have, by the proof of (2), that B2 is also

infinite. Now, clearly, A1 has an infinite basis B =
⋃
nBn. Finally, for all

n ∈ N, a, a1, . . . , an ∈ A∗
1 such that ai does not divide a for any i = 1, . . . , n

there exists b ∈ A1 such that aib = 0 for all i = 1, . . . , n and ab ∈ A∗
1.

(i) and (iii). Obvious.

(ii) Let o 6= a ∈ A1 such that ab = a 6= o for some b ∈ A1. Then

a, b 6∈ Ann(A1) and hence there are two different decomposition of a in the

basis B, a contradiction. Hence A1 is semiradical.

(iv) Let n ∈ N and a1, . . . , an ∈ A∗
1 be pair-wise different elements.

First, suppose that n = 1. Since B is infinite, there is b0 ∈ B that does

not divide a1. Hence, by the property of A1, we have c = a1b ∈ A∗
1 and b0b = o

for some b ∈ A1.

Now, let n ≥ 2. Then there is i0 such that ai doesn’t divide ai0
for every i 6= i0. Indeed, suppose on the contrary, that there is a map

ϕ : {1, . . . , n} → {1, . . . , n} such that ai = biaϕ(i) for every i, where bi ∈ S.

Then, by 2.2.12, ϕk(i′) = i′ for some i′ ∈ {1, . . . , n} and k ∈ N. Hence

ai′ = bi′aϕ(i′) = bi′bϕ(i′)aϕ2(i′) = · · · = bi′ . . . bϕk−1(i′)aϕk(i′), a contradiction with

the semiradicality of A1.

Now, again, by the property of A1, we have that there exists b ∈ A1 such

that ai0b ∈ A∗
1 and aib = o for ai 6= ai0 .

Now we find the desired counterexample.

Example 2.5.4. Let A1 be the semigroup constructed in 2.5.3 (3) with a zero

element o and Ann(D) = {o,m}, m 6= o. Let p be a prime number. Let

R = (Zp)0[A1] be the contracted semigroup algebra. Then:
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(i) R is a subdirectly irreducible semiradical ring and M(R) = Zp · m =

Ann(R).

(ii) For every x ∈ R \ Ann(R) there is y ∈ R such that xy ∈ R \ Ann(R).

(iii) S = A(R) ∈ S, Ann(S) = M(S) and Ann(S/M(S)) = 0.

Proof. (i) and (ii). Let x ∈ R \ Zp · m. We show that xb = µc for some

0 6= µ ∈ Zp, b ∈ A1 and c ∈ A∗
1.

Clearly, x =
∑n

i=1 λiai + λm, where n ≥ 1, λ, λi ∈ Zp, ai ∈ A∗
1, λi 6= 0

for all i = 1, . . . , n and ai 6= aj for i 6= j. By 2.5.3(3)(iv), there exist 1 ≤
i0 ≤ n and b ∈ A1 such that aib = 0 for i 6= i0 and c = ai0b ∈ A∗

1. Hence

xb = λi0ai0b = λi0c.

Since xb 6= 0, we have x ∈ R\Ann(R) and we have proved that Ann(R) ⊆
Zp ·m. The other inclusion is trivial. Hence Ann(R) = Zp ·m = M(R) and

xb ∈ R \ Ann(R).

The rest follows from by 2.2.13(ii).

(iii) Follows from 2.2.8, (i) and (ii).

In the rest we classify such zero-multiplication rings that are isomorphic

to S/M(S) for some S ∈ S.

Construction 2.5.5. Let G(+) be a commutative group, p ∈ P, µ : G × G →
Zp be a symmetric bi-additive form such that 0 6= ker(µ){x ∈ S|(∀a ∈
S)(µ(x, a) = 0)} ⊆ Zp∞ and 0 6= m ∈ ker(µ) be an element of order p.

Put S(G, µ,m) = G and set the following multiplication a · b = µ(a, b)m for

a, b ∈ G. Then:

(i) S = S(G, µ,m) ∈ S, M(S) = Zp ·m and Ann(S) = ker(µ).

(ii) S/M(S) is a zero-multiplication ring.

Proof. First we show the associativity of the multiplication. For a, b, c ∈ S we

have (ab)c = (µ(a, b)m)c = µ(µ(a, b)m, c)m = 0, since m ∈ ker(µ) and hence

a(bc) = (bc)a = 0 = (ab)c. The distributivity is easy to verify. Further put

ã = −a + µ(a, a)m for a ∈ S. Then a + ã + aã = a + (−a + µ(a, a)m) +

µ(a,−a+µ(a, a)m)m = µ(a, a)m−µ(a, a)m+µ(a, µ(a, a)m)m = 0 and hence

S is a radical ring.

For a ∈ S \ ker(µ) there is b ∈ S such that ba = µ(a, b)m 6= 0 and for

a ∈ ker(µ) there is k ≥ 0 such that pka = m, thus S is a subdirectly irreducible

with a monolith Zp ·m. The rest is clear.
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Proposition 2.5.6. Let S ∈ S be such that S/M(S) is a zero-multiplication

ring. Then there are p ∈ P, a bi-additive symmetric form µ : S × S → Zp and

0 6= m ∈ M(S) such that S ∼= S(G, µ,m).

Proof. Let M(S) ∼= Zp. Take 0 6= m ∈ M(S). Since S/M(S) is a a zero-

multiplication ring, we have S2 ⊆ M(S). Now, just set µ(a, b) = λ, where

ab = λm, a, b ∈ S. The rest is clear.

Lemma 2.5.7. Let G(+) be a commutative group, p ∈ P, µ : G×G→ Zp be

a symmetric bi-additive form such that 0 6= ker(µ){x ∈ S|(∀a ∈ S)(µ(x, a) =

0)} ⊆ Zp∞ and 0 6= m ∈ ker(µ) be an element of order p.

Then G = H ⊕K, where H and K are subgroups of G such that pH = 0

and either K = ker(µ) (in this case pG = p ker(µ)) or K ∼= Zpk for some

2 ≤ k ∈ N and pK = ker(µ) (in this case p ker(µ) $ pG = ker(µ)).

Proof. We have p ker(µ) ⊆ pG ⊆ ker(µ) ⊆ Zp∞ since µ(pa, x) = pµ(a, x) = 0

for all a, x ∈ G. Hence ker(µ) ∼= Zpn, where 1 ≤ n ≤ ∞. If n = ∞ then

p ker(µ) = pG = ker(µ) and we put K = ker(µ). If n ∈ N, then either

p ker(µ) = pG (and we put K = ker(µ) again) of p ker(µ) $ pG = ker(µ) and

then there is an element a ∈ G of order pn+1. In the later case we put K = 〈a〉
and we have pK = ker(µ).

Hence we always have pG = pK. Now, there obviously is a group H ⊆
Soc(G) such that Soc(G) = H ⊕ (K ∩ Soc(G)).

We show that G = H ⊕ K. Obviously, H ∩K = H ∩K ∩ Soc(G) = 0.

Let x ∈ G. Since pK = pG, there is b ∈ K such that px = pb and hence

x = b+ (x− b) ∈ K +H .

Corollary 2.5.8. A zero-multiplication ring R is isomorphic to S/M(S) for

some S ∈ S if and only if R(+) ∼= (Zp)
(κ) ⊕ Zpn, with p ∈ P, κ an ordinal

number and 1 ≤ n ≤ ∞.

Proof. (⇒) Follows from 2.5.6, 2.5.7 and 2.5.5, since the monolith is contained

in the annihilator.

(⇐) Let R(+) ∼= (Zp)
(κ) ⊕ F , where F = Zpn, 1 ≤ n ≤ ∞. If n = ∞

put K = F and if n < ∞ put K = Zpn+1 . Now, set G = (Zp)
(κ) ⊕ K. Let

{eα|α < κ} be a basis of (Zp)
κ. Set µ(

∑
α

λαeα + a,
∑
β

µβeβ + b) =
∑
α

λαµα for

λα, µβ ∈ Zp and a, b ∈ F . Let m ∈ F be a element of order p. Now, by 2.5.5,

R ∼= S/M(S), where S = S(G, µ,m) ∈ S.
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The previous classification gives us a hint to find an example of a finite

radical ring, that cannot be isomorphic to any factor of a subdirectly irreducible

radical ring by its monolith.

Example 2.5.9. Let R = Zp2 ⊕ Zp2 be a zero-multiplication ring. Then R is

radical, but there is no S ∈ S such that S/M(S) ∼= R.

Indeed, suppose that ϕ : S → R is such an epimorphism. Then

ψ : S/Soc(S) → R/Soc(R), ψ(x + Soc(S)) = ϕ(x) + Soc(R) is also an epi-

morphism, where Soc(G) = {a ∈ G|pa = 0} is the socle for a p-group G. But

S/Soc(S) is cyclic by 2.5.6 and 2.5.8, while R/Soc(R) ∼= Zp⊕Zp, a contradic-

tion.

The further classification of factors (the nilpotent case for instance) seems

to be quite difficult at this point. Remark, that even for commutative rings

with unit no similar classification was done yet.
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Chapter 3

Subsemirings of rational

numbers

3.1 Introduction

A (commutative) semiring is an algebraic structure with two commutative and

associative binary operations (an addition and a multiplication) such that the

multiplication distributes over the addition. Although the literature concern-

ing semirings is not so voluminous as for the rings, several sources can be found

in the books [6], [7], [8], [9] and [10].)

Under a homomorphism of semirings we will understand a map that pre-

serves addition and multiplication. In this chapter a ring may be with or

without unit.

For a semirings S and a subset X ⊆ S we denote 〈X〉 the subsemiring

generated by X.

For all p ∈ P and q ∈ Q∗, there exists a uniquely determined integer vp(q)

such that q = ±∏
p∈P p

vp(q); (of course, only finitely many of the numbers vp(q)

are non-zero).

The map vp : Q∗ → Z for a prime p has the usual properties of a valuation:

(i) vp(−r) = vp(r),

(ii) vp(rs) = vp(r) + vp(s),

(iii) vp(r + s) ≥ min(vp(r), vp(s)), provided that r 6= −s,

(iv) vp(r + s) = min(vp(r), vp(s)), provided that vp(r) 6= vp(s)
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for every r, s ∈ Q∗.

In the beginning notice, that every subsemiring of Q is either contained

in Q+
0 or is a ring (see 3.1.1).

Proposition 3.1.1. Let S be a subsemiring of Q such that S ∩Q− 6= ∅. Then

S is a subring of Q.

Proof. If x ∈ S ∩ Q−, then x2 ∈ S ∩ Q+, Now it is enough to show that every

subsemigroup of Q(+), that contains at least one positive and at least one

negative element, is a group.

Indeed, let a, b, c, d ∈ N be such that a/b ∈ S and −c/d ∈ S. Then

bc− 1 ∈ N0, ad ∈ N and hence, −a/b = (bc− 1)a/b+ ad(−c/d) ∈ S. Similarly,

bc ∈ N, ad− 1 ∈ N0 and c/d = bc(a/b) + (ad− 1)(−c/d) ∈ S.

Thus S is a subring.

Now we recall the well known classification of subrings (not necessary with

unit) of Q (for more details see for instance [16]). For a non-zero subring A of

Q denote χ(A) = min(A ∩ N).

Proposition 3.1.2. [16, 10.4] There exists a bi-unique correspondence between

(non-zero) subrings of Q and ordered pairs (P,m), where m ∈ N and P is a

subset of P such that p ∈ P \ P whenever p ∈ P divides m.

If A is a subring of Q, then the corresponding pair is (pA, χ(A)), where

pA = {p ∈ P| χ(A)/p ∈ A}.
If (P,m) is a pair as above, then the corresponding subring is A(P,m) =

{q ∈ Q∗|vp(q) ≥ vp(m) for every p ∈ P \ P} ∪ {0}. Moreover:

(i) If A1 and A2 are subrings of Q, then A1 ⊆ A2 if and only if χ(A2) divides

χ(A1) and pA1
⊆ pA2

and A1
∼= A2 if and only if A1 = A2.

(ii) If A is a subring of Q, then A is a finitely generated ring if and only if

the set pA is finite.

Moreover, there is a classification for the unitary subring of Q too.

Proposition 3.1.3. [16, 10.2] There exists a bi-unique correspondence between

unitary subrings of Q and subsets of P.

If A is a unitary subring of Q, then the corresponding subset is pA = {p ∈
P| 1/p ∈ A}.

If P is a subset of P, then the corresponding unitary subring is AP = {q ∈
Q∗|vp(q) ≥ 0 for every p ∈ P \ P} ∪ {0}. Moreover:
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(i) If A1 and A2 are unitary subrings of Q, then A1 ⊆ A2 if and only if

pA1
⊆ pA2

and A1
∼= A2 if and only if A1 = A2.

(ii) If A is a unitary subring of Q, then A is a finitely generated ring if and

only if the set pA is finite.

(iii) pZ = ∅.

(iv) pQ = P.

Since any subsemiring of Q+
0 can be assumed (without loss of generality)

to be without zero, the classification of all subsemirings of Q means now to

classify subsemirings of Q+.

The following remark says that different subsemirings of Q are non-

isomorphic. For the classification this means to find just all subsemirings

of Q+, which is a quite big task, since, as we will see, this class is much more

colorful, complicated and relatively bigger than the class of subrings of Q.

Remark 3.1.4. Let S1 and S2 be subsemirings of Q and let ϕ : S1 → S2 be

a homomorphism (i.e., ϕ is a mapping such that ϕ(a + b) = ϕ(a) + ϕ(b) and

ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ S1).

(i) First, assume that S1 ⊆ N0. If 0 ∈ S1, then ϕ(0) = ϕ(0 + 0) =

ϕ(0)+ϕ(0), so that ϕ(0) = 0 ∈ S2. If m ∈ S1\{0} then ϕ(m)ϕ(m) = ϕ(m2) =

mϕ(m), and hence either ϕ(m) = 0 or ϕ(m) = m. If m,n ∈ S1\{0} are such

that ϕ(m) = 0 and ϕ(n) 6= 0, then ϕ(n) = n, ϕ(m + n) = ϕ(n) = n 6= 0, and

hence ϕ(m + n) = m + n and m = 0, a contradiction. We have shown that

either 0 ∈ S2 and ϕ = 0 or S1 ⊆ S2 and ϕ = idS1
.

(ii) Next, assume that S1 ⊆ Q+
0 . Again, if 0 ∈ S1, then ϕ(0) = 0. If

a/b ∈ S1, a, b ∈ N, then a = b ·a/b ∈ T = S1∩N and ϕ(a) = bϕ(a/b), ϕ(a/b) =

ϕ(a)/b. Put ψ = ϕ �T . According to (i), either 0 ∈ S2 and ψ = 0 or T ⊆ S2

and ψ = idT . In the former case, we get ϕ(a) = 0 and ϕ(a/b) = 0. In the

latter case, we get ϕ(a) = a and ϕ(a/b) = a/b. We have thus shown again

that either 0 ∈ S2 and ϕ = 0 or S1 ⊆ S2 and ϕ = idS1
.

(iii) Assume, finally, that S1 6⊆ Q+
0 . By 3.1.1, S1 is a subring of Q. If

a ∈ S1 ∩ Q−, then −a ∈ S1 ∩ Q+ and 0 = ϕ(a − a) = ϕ(a) + ϕ(−a) and

ϕ(a) = −ϕ(−a). Using (ii), we see that either 0 ∈ S2 and ϕ = 0 or S1 ⊆ S2

and ϕ = idS1
.

(iv) Combining (ii) and (iii), we conclude that either 0 ∈ S2 and ϕ = 0 or

S1 ⊆ S2 and ϕ = idS1
.
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(v) It follows immediately from (iv) that different subsemirings of Q are

non-isomorphic.

3.2 First approach to subsemirings of Q+

Throughout this section, let S be a subsemiring of Q+.

First, we look into the behaviour of S with respect to the valuation vp
and to the interval (0, 1).

Lemma 3.2.1. Let p ∈ P. Then either there exists m ∈ N0 such that vp(S) =

{m,m + 1, . . .} or vp(S) = Z.

Proof. Let a ∈ S. First, suppose vp(a) = k ≥ 0 and k ≤ n ∈ N0. Then

pn−ka ∈ S and vp(p
n−ka) = n− k + k = n.

Now, let vp(a) = −k < 0 and n ∈ Z. Then b = pk−1a ∈ S and vp(b) = −1.

For n ≥ 0 we have x = pn+1b ∈ S and vp(x) = n. For −n < 0 we have

x = bn ∈ S and vp(x) = n.

The assertion follows now easily.

Lemma 3.2.2. [2, 9.4] Let a, b, c, d ∈ N be such that a < b, c < d and

gcd(a, b) = gcd(c, d) = gcd(a, c) = 1. Then 1/lcm(b, d) ∈ 〈a/b, c/d〉.

Lemma 3.2.3. Let m ∈ N. Let p1, . . . , pm be pairwise different prime integers

and let a1, . . . , am ∈ S ∩ (0, 1) be such that vpi
(ai) ≤ 0 for every 1 ≤ i ≤ m.

Then there is b ∈ S ∩ (0, 1) such that vpi
(b) ≤ 0 for all i = 1, . . . , m.

Proof. First of all, find an integer n such that m < n and ani <

1/
(
m(p1 . . . pm)m

)
, for every i = 1, 2, . . . , m. Put bi = (p1 . . . pi−1pi+1 . . . pm)iani

and b =
∑

i bi. We have bi < (p1 . . . pm)iani ≤ (p1 . . . pm)mami < 1/m and

b < 1. Clearly, b ∈ 〈a1, . . . , am〉 ⊆ S. Moreover, vpi
(bi) = nvpi

(ai) ≤ 0

and vpi
(bj) = nvpi

(aj) + j for j 6= i. If vpi
(bj1) = vpi

(bj2) for j1 < j2,

j1 6= i 6= j2, then n(vpi
(aj1) − vpi

(aj2)) = j2 − j1, 1 ≤ j2 − j1 < m,

a contradiction with m < n. Similarly, if vpi
(bi) = vpi

(bj) for i 6= j,

then n(vpi
(ai) − vpi

(aj)) = j, 1 ≤ j < m, again a contradiction. We

see that the numbers vpi
(b1), . . . , vpi

(bm) are pair-wise different, and hence

vpi
(b) = min{vpi

(bj)|1 ≤ j ≤ m} ≤ vpi
(bi) ≤ 0.

As we see, the set S∩(0, 1) together with the primes p such that vp(S) = Z
play an important role in the structure of S.

43



Definition 3.2.4. Put

p(S) = {p ∈ P|vp(S) = Z}.

(That is, p ∈ p(S) if and only if vp(a) < 0 for at least one a ∈ S.)

Let p ∈ P. A semiring S will be called p-paradivisible if S ∩ (0, 1) 6= ∅ and

vp(a) > 0 for every a ∈ S ∩ (0, 1).

We denote by pd(S) the set of all p ∈ P such that S is p-paradivisible.

Remark 3.2.5. Let S1 and S2 be subsemirings of Q+ such that S1 ⊆ S2. Then

p(S1) ⊆ p(S2). Moreover, if S1 ∩ (0, 1) 6= ∅, then pd(S2) ⊆ pd(S1).

Lemma 3.2.6. Let S ∩ (0, 1) 6= ∅. If p ∈ p(S) is such that S is not p-

paradivisible, then there exists x ∈ S ∩ (0, 1), such that vp(x) < 0.

Proof. Since p ∈ p(S), there exists x′ ∈ S, such that vp(x
′) < 0. Suppose that

x′ ≥ 1 (otherwise we are done). Since S ∩ (0, 1) 6= ∅ and S is not p-divisible,

there exists y ∈ S, such that 0 < y < 1 and vp(y) ≤ 0. Hence 0 < ynx′ < 1

and vp(y
nx′) < 0 for suitable n ∈ N and we can put x = ynx′.

Proposition 3.2.7. Assume that S ∩ (0, 1) 6= ∅ and that pd(S) = ∅.
Then S =

〈
{1
p
|p ∈ p(S)}

〉
= {x ∈ Q+|

(
∀ q ∈ P \ p(S)

)
vq ≥ 0}.

Proof. Set S̃ =
〈
{1
p
|p ∈ p(S)}

〉
. The inclusion S ⊆ S̃ is obvious.

S̃ ⊆ S: We show that if p ∈ p(S) then 1/p ∈ S. By 3.2.6, there is
a
b
∈ S ∩ (0, 1), such that p does not divide a but divides b. Let a = pk11 . . . pkn

n

be composition into powers of primes. By assumption, for every pi there is

xi ∈ S ∩ (0, 1) such that vpi
(xi) ≤ 0. Using 3.2.3, there exists c/d ∈ S ∩ (0, 1)

such that pi does not divide c for all i. Now, by 3.2.2, follows that 1/s ∈ S,

where s is the least common multiple of b and d. Hence p divides s and

therefore 1/p = k(1/s) ∈ S for suitable k ∈ N.

The rest is obvious.

Now we have fully classified those subsemirings that are not p-

paradivisible for any prime p and have a non-empty intersection with the

interval (0, 1). For a better understanding of the remaining ones we need

another notion. A suitable machinery will be introduced in the next section.
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3.3 Characteristic sequences

Throughout this section, again, let S be a subsemiring of Q+.

Denote R̄+
0 = R+

0 ∪ {∞} the set of positive reals together with ”∞” and

equipped with the standard topology, ordering and algebraic structure, where

a ≤ ∞ and a + ∞ = ∞ + a = ∞ + ∞ = a · ∞ = ∞ · a = ∞ · ∞ = ∞ for

every a ∈ R+
0 (i.e. ∞ is the greatest element and absorbing element for both

operations).

We start with assigning of characteristic sequences to S. All operations

and ordering on sequences are supposed to be component-wise.

Definition 3.3.1. For n ∈ Z and p ∈ P we put

un(S, p) =

{
inf{x ∈ S|vp(x) ≤ n} , n ∈ vp(S)

∞ , n /∈ vp(S).

We call the sequence u(S, p) = (un(S, p))n∈Z ⊆ R̄+
0 a characteristic p-sequence

of a semiring S ⊆ Q+.

Further denote e(∞,0) = (en)n∈Z ⊆ R̄+
0 a sequence such that

en =

{
∞ , n < 0

0 , n ≥ 0.

Remark 3.3.2. Let p ∈ P. Let S1 ⊆ S2 be subsemirings of Q+. Then u(S2, p) ≤
u(S1, p).

The following proposition gathers the basic properties of p-characteristic

sequences.

Proposition 3.3.3. Let n,m ∈ Z and p ∈ P. Then:

(i) n ≤ m ⇒ um(S, p) ≤ un(S, p).

(ii) un+m(S, p) ≤ un(S, p) · um(S, p).

Proof. (i) Follows easily by 3.2.1.

(ii) First, suppose that un+m(S, p) = ∞. Then, by definition and 3.2.1,

vp(S) ⊆ N0. Hence m+n < d = min vp(S) and it follows that either m < d or

n < d. Thus um(S, p) = ∞ or un(S, p) = ∞ and our assertion is true.

Now, we can assume without loss of generality, that all the three

members in the inequality are finite. By definition, there exist sequences
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(xk)k∈N, (yk)k∈N ⊆ S such that vp(xk) ≤ n, vp(yk) ≤ m for every k ∈ N
and xk

k→∞−→ un(S, p) and yk
k→∞−→ um(S, p). Hence vp(xkyk) ≤ n + m and

un+m(S, p) ≤ xkyk
k→∞−→ un(S, p) · um(S, p).

Proposition 3.3.4. Assume S ∩ (0, 1) 6= ∅. Then there is a finite subset

K ⊆ P such that either u(S, p) = 0 or u(S, p) = e(∞,0) for every p ∈ P \K.

Proof. Take x0 ∈ S ∩ (0, 1) and set K = {p ∈ P|vp(x0) 6= 0}. Then K is finite.

Let p ∈ P \K. Then u0(S, p) ≤ x0 < 1. Since u0(S, p) ≤ u0(S, p)u0(S, p) by

3.3.3, we have u0(S, p) = 0. If vp(S) 6= Z then, by 3.2.1 and 3.3.3, u(S, p) =

e (∞,0). If vp(S) = Z then, by 3.3.3, un(S, p) ≤ un(S, p)u0(S, p) = 0 for every

n ∈ Z.

Taking only the properties from 3.3.3 of a sequence (indexed by integers)

we get, surprisingly, a quite good insight into the semiring S. That´s why we

will more explore further properties of such sequences.

Definition 3.3.5. Denote < the set of all sequences r = (rn)n∈Z ⊆ R̄+
0 such

that

(i) n ≤ m ⇒ rm ≤ rn.

(ii) rn+m ≤ rn · rm.

for all n,m ∈ Z. The elements of < will be called characteristic sequences.

Further, let < denotes the set of such sequences r = (rn)n∈Z ∈ < that

rn <∞ for every n ∈ Z.

Now we notice some properties of the characteristic sequences.

Lemma 3.3.6. Let r, s ∈ <.

(i) If r−1 <∞, then r ∈ <.

(ii) Let k ∈ N0. Put tn = rn for n ≥ k and tn = ∞ for n < k. Then

t = (tn)n∈Z ∈ <. In particular, e(∞,0) ∈ <.

(iii) r · s ∈ <.

(iv) Let {tα|α ∈ I} ⊆ < be a family of characteristic sequences, then t =

sup{tα|α ∈ I} ∈ <.
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Proof. (i) Clearly, rn ≤ r−1 < ∞ for n ∈ N0 and, by the definition, r−m ≤
(r−1)m <∞ for m ∈ N.

(ii) and (iii). Easy.

(iv) Let n,m ∈ N and tk = sup{(tβ)k|β ∈ I} for k ∈ Z. Then (tα)n+m ≤
(tα)n(tα)m ≤ tntm for every α ∈ I. Hence tn+m = sup{(tβ)n+m|β ∈ I} ≤ tntm.

The rest is obvious.

Lemma 3.3.7. Let r ∈ <. Then either lim
n→+∞

rn = 0 or rn ≥ 1 for every

n ∈ N0.

Moreover, if r ∈ < then either r = 0 or r−n ≥ 1 and rn > 0 for every

n ∈ N0.

Proof. First, assume that rk < 1 for some k ≥ 0. Since r is decreasing, we can

suppose k > 0. Now, if n ≥ 2k then n = lk + j for some l ≥ 2 and 0 ≤ j < k.

We have rn ≤ rk+j · r(l−1)k ≤ rk+j · rl−1
k . Therefore rn ≤ rk+j · r(n−j−k)/k

k and it

follows that lim
n→+∞

rn = 0.

Now, let r ∈ <. If rn0
= 0 for some n0 ∈ Z then 0 ≤ rn ≤ rn−n0

rn0
= 0

for every n ∈ Z. Suppose hence that rn 6= 0 for every n ∈ Z. Since r0 ≤ r0r0,

it follows that 1 ≤ r0 ≤ r−n for every n ∈ N.

Following lemma records a very significant property of characteristic se-

quences, which will be later especially important in finding of all maximal

subsemirings of Q+.

Lemma 3.3.8. Let k ∈ N and {rk, rk+1, . . . } ⊆ R+
0 be a sequence such that

rn+m ≤ rnrm for every n,m ≥ k.

Then lim
n→+∞

r
1/n
n = inf{r1/n

n |n ≥ k}.

Proof. Set λ = inf{r1/n
n |n ≥ k}. Let k ≤ m and 2m ≤ n. Then n = lm + j

for some l ≥ 2 and 0 ≤ j < m. We have rn ≤ rm+j · r(l−1)m ≤ rm+j · rl−1
m , and

therefore r
1/n
n ≤ r

1/n
m+j · r(l−1)/n

m = r
1/n
m+j · (r

1/m
m )(n−j−m)/n. Using this, one sees

easily that lim sup
n→+∞

r
1/n
n ≤ r

1/m
m . Consequently, λ ≤ lim inf

n→+∞
r
1/n
n ≤ lim sup

n→+∞
r
1/n
n ≤

λ, and so λ = lim
n→+∞

r
1/n
n .

Definition 3.3.9. For r ∈ < denote

λ+(r) = inf{r1/n
n |n ≥ 1}

and

λ−(r) = inf{r1/n
−n |n ≥ 1}.
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Corollary 3.3.10. Let r ∈ <. Then:

(i)
(
λ+(r)

)n ≤ rn and
(
λ−(r)

)n ≤ r−n for every n ∈ N.

(ii) lim
n→+∞

r
1/n
n = λ+(r). Moreover, if r 6= ∞ then λ+(r) ≤ 1.

(iii) lim
n→+∞

r
1/n
−n = λ−(r). Moreover, if r 6= 0 then λ−(r) ≥ 1.

(iv) λ+(r) · λ−(r) ≥ 1, provided that r 6= 0.

(v) If 0 6= r ∈ < then 0 < λ+(r) ≤ 1 ≤ λ−(r) < ∞. Moreover, if rn < 1 for

at least one n ∈ N then 0 < λ+(r) < 1 < λ−(r) <∞.

Proof. (i) Follows from 3.3.9.

(ii) Let r 6= ∞. Then there is n0 ∈ N such that rn0
< ∞. Hence

r
1/n
n ≤ r

1/n
n0 for every n ≥ n0 and inf{r1/n

n |n ≥ n0} ≤ inf{r1/n
n0 |n ≥ n0} = 1.

For the rest see 3.3.8.

(iii) If r−1 = ∞ then our assertion is clear. Now, if r−1 < ∞, then, by

3.3.6(i), r ∈ <. Now use 3.3.7. For the rest see 3.3.8.

(iv) If r−1 = ∞ then λ+(r) = ∞ and λ+(r) · λ−(r) = ∞ ≥ 1. Now, if

r−1 < ∞ then r ∈ <, by 3.3.6(i). Since r 6= 0, we have 1 ≤ r
1/n
0 ≤ r

1/n
n · r1/n

−n

for every n ≥ 1, by 3.3.7. Hence 1 ≤ λ+(r) · λ−(r), by (ii) and (iii).

(v) For 0 6= r ∈ < use (ii),(iii) and (iv). If, in addition, 0 < rn0
< 1 for

some n0 ∈ N then λ+(r) = inf{r1/n
n |n ≥ 1} ≤ r

1/n0

n0 < 1. Hence λ−(r) > 1, by

(iv).

We have already assigned characteristic sequences to a semiring. But, on

the other hand, a semiring can be assigned to a characteristic sequence in a

very natural way (see 3.3.11 and 3.3.13).

Definition 3.3.11. For p ∈ P and r ∈ < denote

V(p, r) = {x ∈ Q+|rvp(x) ≤ x}.

We will also often need the following observation concerning density.

Lemma 3.3.12. Let m ∈ N, p1, p2, . . . , pm ∈ P be pair-wise different prime

numbers and n1, n2, . . . , nm ∈ Z.

Then {x ∈ Q∗|vpi
(x) = ni, 1 ≤ i ≤ m} is a dense subset of Q.
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Proof. Let r, s ∈ Q, r < s. Find p0 ∈ P \ {p1, . . . , pm} such that a =

pn1+1
1 · · · pnm+1

m /p0 < (s− r)/2. Then 2a < s− r and a = p1 · · · pmb > b, where

b = pn1

1 · · · pnm
m /p0. Obviously there is k ∈ Z such that (k − 1)a ≤ r < ka and

we put t = ka+ b = (kp1 · · · pm + 1)b. Clearly, r < ka < t = (k− 1)a+ a+ b ≤
r + a + b < r + 2a < r + (s − r) = s; thus r < t < s. Moreover,

vpi
(t) = vpi

((kp1 · · · pm + 1)b) = vpi
(kp1 . . . pm + 1) + vpi

(b) = vpi
(b) = ni,

for 1 ≤ i ≤ n.

In the next few statements we gather some knowledge about the semirings

V(p, r).

Proposition 3.3.13. Let p ∈ P and ∞ 6= r ∈ <. Then:

(i) V(p, r) is a subsemiring of Q+.

(ii) u(V(p, r), p) = r.

(iii) u(V(p, r), q) = inf r for p 6= q ∈ P.

(iv) V(p, r) is unitary if and only if r0 ∈ {0, 1}.

(v) V(p, r) ∩ (0, 1) 6= ∅ if and only if inf r = 0.

(vi) p(V(p, r)) ⊇ P \ {p}. Moreover, p ∈ p(V(p, r)) if and only if r ∈ <.

(vii) pd(V(p, r)) ⊆ {p}. Moreover, pd(V(p, r)) = {p} if and only if inf r = 0

and r0 ≥ 1.

Proof. Set V = V(p, r).

(i) First, we show that V 6= ∅. Since r 6= ∞, there is n0 ∈ N such that

rn0
<∞. By 3.3.12, there is x ∈ Q+ such that rn0

< x and vp(x) = n0. Hence

x ∈ V .

Now, we prove that V is closed under addition and multiplication. Let

a, b ∈ V . Suppose, without loss of generality, that vp(a) = min{vp(a), vp(b)} ≤
vp(a + b). Hence rvp(a+b) ≤ rvp(a) ≤ a ≤ a + b and a + b ∈ V . Further,

rvp(ab) = rvp(a)+vp(b) ≤ rvp(a) · rvp(b) ≤ ab. Thus ab ∈ V .

(ii) Let n ∈ Z. Suppose first that rn = ∞. Then, by 3.3.11, n 6∈ vp(V ).

Hence un(V, p) = ∞. Let be now rn < ∞. Take x ∈ V such that vp(x) ≤ n.

Then rn ≤ rvp(x) ≤ x. Hence rn ≤ inf{x ∈ V |vp(x) ≤ n} = un(V, p). Finally,

by 3.3.12, for every ε ∈ R+ there is x0 ∈ Q+ such that rn < x0 < rn + ε and

vp(x0) = n. Hence rn = un(V, p).
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(iii) Put c = inf r . Let n ∈ Z and q be a prime number different from

p. Clearly, c ≤ inf V . Hence c ≤ un(V, q). For every ε ∈ R+ there is m ∈ Z
such that c ≤ rm < c + ε. Now again, by 3.3.12, there is x0 ∈ Q+ such

that c ≤ rm < x0 < c + ε, vp(x0) = m and vq(x0) = n. Hence x0 ∈ V and

c ≤ un(V, q) < c + ε for every ε ∈ R+. Thus c = un(V, q).

(iv) Clearly, V is unitary if and only if r0 ≤ 1. Since r0 ≤ r0r0, we get

that this is equivalent to r0 ∈ {0, 1}.

(v) By (iv), inf r = inf V . The rest now follows easily by 3.3.7.

(vi) Follows immediately from (ii) and (iii).

(vii) If inf r > 0 then, by (v), pd(V ) = ∅. Suppose now that inf r = 0.

By (iii), u(V, q) = 0 for every q ∈ P different from p. Hence q /∈ pd(V ) for any

q 6= p. Finally, p ∈ pd(V ) if and only if r0 ≥ 1.

Remark 3.3.14. Let p ∈ P and r ∈ <. Then:

(i) V(p, r) = ∅ if and only if r = ∞. (Use 3.3.13.)

(ii) V(p, r) = Q+ if and only if r = 0. (Use 3.3.13(ii) and 3.3.12.)

(iii) Let {rα|α ∈ I} ⊆ < be a family of characteristic sequences. Then⋂
α∈I

V(p, rα) = V(p, s), where s = sup{rα|α ∈ I}.

Proposition 3.3.15. Let p, q ∈ P and r, s ∈ <. Then V(p, r) ⊆ V(q, s) if and

only if at least one of the following four conditions holds:

(i) s = 0.

(ii) r = ∞.

(iii) p = q and s ≤ r.

(iv) p 6= q and sup s ≤ inf r.

Proof. If one of the conditions (i), (ii) or (iii) holds, our assertion is clearly

true. Suppose the condition (iv). Let x ∈ V(p, r) and vp(x) = n. Then

svq(x) ≤ sup s ≤ inf r ≤ rn ≤ x. Hence x ∈ V(q, s).

The reverse implication follows from 3.3.13(ii),(iii) and 3.3.2.

To see that also the case (iv) in previous proposition can occur, look at

the next example.

Example 3.3.16. Let a ∈ R+, 1 ≤ a. If r = (rn)n∈Z ⊆ R+ is a descending

sequence such that a ≤ inf r ≤ sup r ≤ a2, then r ∈ <.
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Remark 3.3.17. It follows easily from 3.3.15 that the subsemirings V(p, r) are

pair-wise different for different pairs (p, r) , where p ∈ P and r ∈ <, r not

constant. Due to 3.1.4, they are pair-wise non-isomorphic as well.

Notice that if r = r ∈ < is constant, then r = 0 or r ≥ 1 and V(p, r) =

{x ∈ Q+|r ≤ x}.

3.4 Maximal subsemirings of Q+

It is quite easy to show that for p ∈ P is Up = {x ∈ Q∗|vp(x) ≥ 0} ∪ {0}
a maximal subring of Q and that every proper subring of Q is contained in

at least one of such rings. According to 3.1.1, these subrings are maximal as

subsemirings as well. Further, it follows that if S is a proper subsemiring of

Q such that S 6⊆ Q+
0 , then S is a subring by 3.1.1, and hence S ⊆ U(p) for a

prime p ∈ P.

We conclude easily that the subsemiring Q+
0 and the sub(semi)rings Up,

p ∈ P, are just all maximal subsemirings of Q and every proper subsemiring

of Q is contained in one of them.

Now, we will look for maximal subsemirings of Q+.

Definition 3.4.1. Denote

Q+
1 = {x ∈ Q+|1 ≤ x}.

Proposition 3.4.2. Q+
1 is a (proper, unitary) maximal subsemiring of Q+.

Further:

(i) Q+
1 = V(p, r) for any p ∈ P and r = 1.

(ii) u(Q+
1 , p) = 1 for every p ∈ P.

(iii) p(Q+
1 ) = P.

(iv) pd(Q+
1 ) = ∅.

(v) The difference ring Q+
1 − Q+

1 is the field Q.

Proof. We show that Q+
1 is maximal. Take a ∈ Q+∩(0, 1). Let x ∈ Q+∩(0, 1).

Then there is n ∈ N such that y = x(a−1)n ≥ 1. Hence x ∈ Q+
1 and x = yan ∈〈

Q+
1 ∪ {a}

〉
and therefore

〈
Q+

1 ∪ {a}
〉

= Q+.

The rest is easy and follows from 3.3.13.
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Definition 3.4.3. For p ∈ P denote

Sp = {x ∈ Q+|vp(x) ≥ 0}.

Proposition 3.4.4. Let p ∈ P. Then Sp is a (proper, unitary) maximal sub-

semiring of Q+. Further:

(i) Sp = Q+ ∩ Up = V(p, r), where r = e(∞,0).

(ii) u(Sp, q) = 0 for every q ∈ P different from p.

(iii) p(Sp) = P \ {p}

(iv) pd(Sp) = ∅.

(v) The difference ring Sp − Sp is the ring Up.

Proof. Clearly, Sp is a unitary subring of Q+. We show that it is maximal. Let

a ∈ Q+ be such that vp(a) < 0. Then a = b/pkc for some b, c, k ∈ N, where

p does not divide b. We have c/b ∈ Sp and 1/p = pk−1 · a · c/b ∈ 〈Sp ∪ {a}〉.
Consequently, Q+ = 〈{1/q|q ∈ P}〉 ⊆ 〈Sp ∪ {a}〉. The remaining assertions

are easy to check (use 3.3.13).

Definition 3.4.5. For p ∈ P and a ∈ (0, 1) ⊆ R put

W(p, a) = {x ∈ Q+|avp(x) ≤ x}.

Proposition 3.4.6. Let p ∈ P and a ∈ (0, 1). Then W(p, a) is a proper

unitary subsemiring of Q+. Further:

(i) Q+
1 ∩ Sp ⊆ W(p, a).

(ii) W(p, a) = V(p, r), where rn = an for every n ∈ Z.

(iii) u(W(p, a), q) = 0 for every q ∈ P different from p.

(iv) p(W(p, a)) = P.

(v) pd(W(p, a)) = {p}.

(vi) The difference ring W(p, a) − W(p, a) is the field Q.
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Proof. First, we show (vi). Denote A = W(p, a)−W(p, a). Let x ∈ Q+ be such

that vp(x) < 0. Take p1 ∈ P such that avp(x) < p1. Then vp(p1 + x) = vp(x)

and avp(p1+x) = avp(x) < p1 < p1 + x. Hence p1 + x ∈ W(p, a). Of course,

p1 ∈ W(p, a), thus x = (p1 + x) − p1 ∈ A. Since vp(1/qp) < 0 for every q ∈ P,

we get that 1/q = p(1/qp) ∈ A. Hence Q+ ⊆ A and A = Q.

The rest is easy. Use 3.3.13.

To see that also the semirings W(p, a) are maximal in Q+ we will first

need a few lemmas. In the end we show that the semirings mentioned above

are indeed all maximal ones and every proper subsemiring of Q+ is contained

in one of them.

Lemma 3.4.7. Let p, q ∈ P and a, b ∈ (0, 1) be such that W(p, a) ⊆ W(q, b).

Then p = q and a = b.

Proof. By 3.4.6(ii) and 3.3.15, p = q and bn ≤ an for every n ∈ Z. Hence

a = b.

Lemma 3.4.8. Let S be a subsemiring of Q+. Then S ⊆ V(p,u(S, p)) for

every p ∈ P.

Proof. Obvious.

Lemma 3.4.9. Let S be a subsemiring of Q+, p ∈ P and a ∈ (0, 1). Then:

(i) S ⊆ Q+
1 if and only if S ∩ (0, 1) = ∅.

(ii) P \ p(S) = {p ∈ P|S ⊆ Sp}.

(iii) S ⊆ W(p, a) if and only if a ≤ λ+(u(S, p)).

Proof. (i) and (ii). Obvious.

(iii) First, let S ⊆ W(p, a). By 3.3.2 and 3.3.13(ii), an = un(W(p, a), p) ≤
un(S, p) for every n ∈ Z. Hence a ≤ λ+(u(S, p)), by 3.3.9.

Suppose now, on the other hand, that 0 < a ≤ λ+(r) for r = u(S, p).

Then 0 < an ≤ rn for every n ∈ N. Hence, since r is decreasing and r0 ≤ r2
0,

we have r0 6= 0 and 1 ≤ r0. If r−1 = ∞, then a−n ≤ ∞ = r−n for every n ∈ N.

Assume that r−1 < ∞. Then r ∈ <, by 3.3.6(i). Since r 6= 0, we

get, by 3.3.10(iv),(v), that λ+(r)λ−(r) ≥ 1 and λ+(r), λ−(r) ∈ R+. Thus

a−n ≤ (λ+(r))−n ≤ (λ−(r))n ≤ r−n for every n ∈ N.

We conclude with an ≤ rn for every n ∈ Z. Hence S ⊆ V(p, r) ⊆ W(p, a),

by 3.4.8 and 3.3.15(iii).
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Lemma 3.4.10. Let S be a proper subsemiring of Q+ such that S 6⊆ Q+
1 and

S 6⊆ Sp for every p ∈ P. Then:

(i) p(S) = P and pd(S) 6= ∅.

(ii) If q ∈ pd(S), then a = λ+(u(S, q)) ∈ (0, 1) and S ⊆ W(q, a).

Proof. (i) Clearly, if q ∈ P \ p(S), then S ⊆ Sq. Hence p(S) = P. Assume

now that pd(S) = ∅. By 3.2.7, S =
〈
{1
p
|p ∈ p(S)}

〉
. Since p(S) = P, we get

S = Q+, a contradiction.

(ii) By (i), q ∈ P = p(S), hence u(S, q) ∈ <. Since q ∈ pd(S), we have

u0(S, q) ≥ 1. Since S 6⊆ Q+
1 , there is x0 ∈ S ∩ (0, 1). Hence uk(S, q) ≤ x0 < 1

for k = vq(x0) ∈ Z (in fact, k ≥ 1 by the q-paradivisibility). Now, by 3.3.10(v),

a = λ+(u(S, q)) ∈ (0, 1) and, by 3.4.9(iii), S ⊆ W(q, a).

Proposition 3.4.11. For all p ∈ P and a ∈ (0, 1), the subsemiring W(p, a) is

maximal in Q+.

Proof. Put W = W(p, a). By 3.4.6(iv),(v), we have p(W ) = P and pd(W ) =

{p}. Consequently, W 6⊆ Q+
1 and W 6⊆ Sp1 for every p1 ∈ P. Now, let S be a

proper subsemiring of Q+ such that W ⊆ S. By 3.4.10, S ⊆ W(p2, b) for some

p2 ∈ pd(S) and b ∈ (0, 1). Thus W(p, a) ⊆ W(p2, b) and we get p = p2 and

a = b, by 3.4.7. Thus W(p, a) is a maximal subsemiring of Q+.

Theorem 3.4.12. The semirings Q+
1 , Sp and W(p, a), p ∈ P, a ∈ (0, 1) are

just all (proper) maximal subsemirings of Q+. These subsemirings are pair-

wise different (and hence non-isomorphic). Every proper subsemiring of Q+

is contained in (at least) one of them.

Proof. By 3.4.2, 3.4.4 and 3.4.11, all the indicated subsemirings are maximal

in Q+. If S is a maximal subsemiring of Q+ such that S 6= Q+
1 and S 6= Sp for

every p ∈ P, then, according to 3.4.10, we have S = W(q, a) for some q ∈ pd(S)

and a ∈ (0, 1).

Comparing the characteristic sequences (see 3.4.2, 3.4.4 and 3.4.11) we get

that all these subsemirings are pair-wise different, hence, by 3.1.4, pair-wise

non-isomorphic.

The rest follows from 3.4.10.

Remark 3.4.13. Note that all the maximal subsemirings of Q+ are unitary and

of the form V(p, r) for suitable p ∈ P and r ∈ < (see 3.4.2, 3.4.4 and 3.4.11).
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Apart from 3.4.12, there is also a non-constructive way how to show, that

every proper subsemiring of Q+ is contained in a maximal subsemiring of Q+.

The next remark uses only Zorn’s lemma and maximal subsemirings Q+
1 and

Sp, p ∈ P.

Remark 3.4.14. Every proper subsemiring of Q+ is contained in a maximal

subsemiring of Q+.

Indeed, let S be a proper subsemiring of Q+. If S ∩ (0, 1) = ∅, then

S ⊆ Q+
1 and our result is true. Henceforth, we can assume that S ∩ (0, 1) 6= ∅.

If p(S) 6= P, then S ⊆ Sp for p ∈ P \ p(S). Thus suppose p(S) = P. Since S is

a proper subsemiring of Q+, we have pd(S) 6= ∅ by 3.2.7.

Let T denote the set of proper subsemirings T of Q+ such that S ⊆ T .

Then S ∈ T and the set T is ordered by inclusion. Since S ⊆ T , we have

P = p(S) ⊆ p(T ), and so p(T ) = P. Now, again, pd(T ) 6= ∅ follows from

3.2.7. Taking into account that vp(1/2) ≤ 0 for all primes p ∈ P, we conclude

that 1/2 6∈ T for every T ∈ T . Consequently, the ordered set T is upwards

inductive and it contains at least one maximal subsemiring.

Proposition 3.4.15.
⋂
p∈P

Sp = Q+
1 ∩ ⋂

p∈P

Sp = N.

Proof. It is obvious.

Proposition 3.4.16. Let S be a subsemiring of Q+. Then S =
⋂
p∈P

Sp for a

subset P ⊆ P if and only if either S is unitary and p(S) = ∅ or 1/m ∈ S for

some 2 ≤ m ∈ N.

Proof. (⇒) If P = P then S = N, by 3.4.15. If p ∈ P \ P then 1/p ∈ S.

(⇐) If S is unitary and p(S) = ∅, then S = N and we can set P = P (see

3.4.15). If 1/m ∈ S and m ≥ 2, then S ∩ (0, 1) 6= ∅ and pd(S) = ∅. Hence, by

3.2.7, S =
〈
{1
p
|p ∈ p(S)}

〉
=

⋂
p∈P\p(S)

Sp.

Apart from the maximal-property of the set of all subsemirings in Q+,

there holds another interesting statement namely, that taking a subsemiring S

of R+ and having an ”initial part” of a semiring (i.e., a set M ⊆ S∩ (0, 1) that

fulfills the condition (i) and (ii) in 3.4.17), we have not only the least semiring

T ⊆ S such that T ∩ (0, 1) = M , but also the greatest one with this property

(see 3.4.17).

Proposition 3.4.17. Let and M ⊆ S ∩ (0, 1) be a subset such that
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(i) (∀ x, x′ ∈M)(xx′ ∈ M).

(ii) (∀ x, x′ ∈M)(x+ x′ < 1 ⇒ x+ x′ ∈M).

Denote M = {y ∈ S ∩ 〈1,+∞)|(∀ x ∈M)(xy < 1 ⇒ xy ∈M)}.
Then S(M) = M ∪M is a unitary semiring and it is the greatest element

of the set {T ⊆ S|T is a semiring, T ∩ (0, 1) = M}.

Proof. First, we show that S(M) is closed under multiplication.

For x, x′ ∈M is xx′ ∈M by assumption.

Let x ∈ M and y ∈ M . If xy < 1, then xy ∈ M . Suppose xy ≥ 1. We

show that xy ∈ M . If x′ ∈ M is such that x′(xy) < 1, then x′(xy) = (x′x)y ∈
M , since xx′ ∈M and y ∈M .

Let y, y′ ∈M . We show that yy′ ∈M . Let x ∈M be such that x(yy′) < 1.

Then xy < 1, since y′ ≥ 1. Therefore xy ∈ M and thus x(yy′) = (xy)y′ ∈ M ,

since y′ ∈M .

Further, we prove that S(M) is closed under multiplication.

Let a, b ∈ S(M). If a+ b < 1 then a, b < 1. Hence a, b ∈ M and therefore

a + b ∈M .

Suppose a + b ≥ 1. Then we need to show, that a + b ∈ M . Let x ∈ M

be such that x(a + b) < 1. Then xa < 1 and xb < 1. Since S(M) is closed

under multiplication, we have xa, xb ∈ S(M) and it follows that a′ = xa ∈M ,

b′ = xb ∈ M . Now, since a′ + b′ < 1, we get x(a + b) = a′ + b′ ∈ M . We have

shown that a+ b ∈M .

The rest is obvious.
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Chapter 4

Congruence-simple subsemirings

of rational numbers

4.1 Introduction

In this chapter we will use the notation and results from the previous part.

Let S be a semiring. A non-empty subset I of S is an ideal of S if SI ⊆ I

and I + I ⊆ I. A non-empty subset I of S is a bi-ideal of S if SI ⊆ I and

S + I ⊆ I.

A semiring S is said to be

(1) congruence-simple if it possess just two congruences.

(2) ideal-simple if S is non-trivial and it is the only ideal containing at least

two elements.

(3) bi-ideal-simple if S is non-trivial and it is the only bi-ideal containing at

least two elements.

Commutative congruence-simple semirings were characterized in [2, 10.1].

They are divided into several categories:

• There are just five non-isomorphic two-element semirings.

• The additively idempotent semirings V (G):

Let G(·) be an abelian group, o /∈ G. Put V (G) = G ∪ {o} and define

x+ y = y+ x = o, x+ x = x and xo = ox = o for all x, y ∈ V (G), x 6= y.
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• The additively idempotent and multiplicatively cancellative semirings

W (A):

Let A be a non-zero subsemigroup of R(+) such that A ∩ R+ 6= ∅ 6=
A ∩ R−. Denote W (A) = W (⊕,�) the following semiring: W (A) = A,

a⊕ b = b⊕ a = min{a, b} and a� b = b� a = a+ b for all a, b ∈ A.

• Fields.

• Zero-multiplication rings of finite prime order.

• (Congruence-simple) subsemirings of the semiring R+ of positive real

numbers.

As we see from this list, only the subsemirings of R+ are not classified up

to isomorphism yet. They are characterized though (see 4.1.1 and 4.1.2), but

no explicit form of all of them is known. In this chapter we focus on the case

of subsemirings of Q+.

Following assertions simplify the characterization of them.

Theorem 4.1.1. [2, 8.2] Let S be a non-trivial semiring that is additively and

multiplicatively cancellative. Then S is congruence-simple if and only if the

following three conditions are satisfied:

(i) S is archimedean: for all a, b ∈ S there exist c ∈ S and n ∈ N such that

b+ c = na.

(ii) S is conical: for all a, b, c, d ∈ S, a 6= b, there exist e, f ∈ S such that

ae + bf + c = af + be+ d.

(iii) S is bi-ideal-simple: for all a, b ∈ S there exist c, d ∈ S such that

bc + d = a.

Lemma 4.1.2. [2, 9.1] A subsemiring S of Q+ is archimedean and conical if

and only if for every n ∈ N there exists m ∈ N such that k/n ∈ S for every

k ≥ m.

Theorem 4.1.3. [2, 9.5] Let S be a congruence-simple subsemiring of Q+ such

that 1 ∈ S. Then S = Q+.
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Hence every proper congruence-simple subsemiring of positive rationals

has to be non-unitary.

Remind also that, due 3.1.4, different subsemirings of Q+ are non-

isomorphic. Hence the classification of the congruence-simple ones means to

find all particular examples of them.

So far, only certain congruence-simple subsemirings of Q+ were found (see

[13]), namely

Tp(a) = {x ∈ Q+|avp(x) < x}
where p ∈ P and a ∈ (0, 1), and their finite intersections.

Inspired by the machinery of the previous chapter we present a much

bigger class of them.

4.2 A new class

Definition 4.2.1. Denote <◦ = {r = (rn)n∈Z ∈ <| lim
n→+∞

rn = 0}.

For r = (rn)∈Z ∈ < and p ∈ P set

V◦(p, r) = {x ∈ Q+|rvp(x) < x}.

Lemma 4.2.2. Let ∞ 6= r ∈ < and p ∈ P. Then V◦(p, r) is a semiring and

u(V◦(p, r), p) = r.

Proof. Set V = V◦(p, r). First, we show that V 6= ∅. Since r 6= ∞, there is

n0 ∈ N such that rn0
< ∞. By 3.3.12, there is x ∈ Q+ such that rn0

< x and

vp(x) = n0. Hence x ∈ V .

Now, we prove that V is closed under addition and multiplication. Let

a, b ∈ V . Suppose, without loss of generality, that vp(a) = min{vp(a), vp(b)} ≤
vp(a + b). Hence rvp(a+b) ≤ rvp(a) < a < a + b and a + b ∈ V . Further,

rvp(ab) = rvp(a)+vp(b) ≤ rvp(a) · rvp(b) < ab. Thus ab ∈ V .

Finally, V ⊆ V(p, r). Hence, by 3.3.2 and 3.3.13(ii), we have r =

u(V(p, r), p) ≤ u(V, p). Let n ∈ Z. We can assume, without loss of gen-

erality, that rn < ∞. Now, by 3.3.12, for every ε ∈ R+ there is x0 ∈ Q+ such

that rn < x0 < rn + ε and vp(x0) = n. Hence rn = un(V, p).

Comparing the previous lemma with 3.3.13(ii) we see that also V◦(p, r)

has similar properties as V(p, r).
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Lemma 4.2.3. Let p ∈ P and r1, . . . , rn ∈ <. Then
n⋂
i=1

V◦(p, ri) = V◦(p, r),

where r = sup{ri|i = 1, . . . , n} ∈ <.

Proof. Obvious.

Now we introduce a new class of congruence-simple subsemirings of Q+.

Proposition 4.2.4. Let r1, . . . , rn ∈ <◦ and p1, . . . , pn ∈ P.

Then S =
n⋂
i=1

V◦(pi, ri) is a congruence-simple subsemiring of Q+.

Moreover, if p1, . . . , pn are pair-wise different and p ∈ P, then u(S, p) = ri

if p = pi, and u(S, p) = 0 otherwise.

Proof. First, we show that S 6= ∅. In view of 4.2.3, we can assume, without

loss of generality, that pi are pair-wise different. Now, choose k ∈ N. By 3.3.12,

there is x0 ∈ Q+ such that sup{(ri)k|i = 1, . . . , n} < x0 and vpi
(x0) = k for

every i = 1, . . . , n. Hence x0 ∈ S. By 4.2.2, S is a semiring.

Now, we prove that S is archimedean and conical. Let m ∈ N. Take k ∈ N
such that k > max{m(ri)−vpi

(m)|i = 1, . . . , n}. Then for every l ∈ N such that

l ≥ k we have l/m ≥ k/m > (ri)−vpi
(m) ≥ (ri)−vpi

(m)+vpi
(l) = (ri)vpi

(l/m) for

every i = 1, . . . , n. Hence l/m ∈ S. By 4.1.2, S is archimedean and conical.

Finally, we prove that S is bi-ideal-simple. According to 4.1.1, we have to

show that for all a, b ∈ S there exists c ∈ S such that a− bc ∈ S.

So let a, b ∈ S. Set s = min{a − (ri)vpi
(a)|i = 1, . . . , n} > 0. Since

lim
k→+∞

(ri)k = 0 for every i, there exists k0 ∈ N such that t = max{(ri)k0 |i =

1, . . . , n} < s/b and max{vpi
(a) − vpi

(b)|i = 1, . . . , n} < k0.

By 3.3.12, there exists c ∈ Q+ such that (ri)k0 ≤ t < c < s/b and

vpi
(c) = k0 for every i = 1, . . . , n. Hence c ∈ S.

Now, vpi
(c) = k0 > vpi

(a) − vpi
(b), thus vpi

(a) < vpi
(bc) and therefore

vpi
(a − bc) = min{vpi

(a), vpi
(−bc)} = vpi

(a) for every i = 1, . . . , n. Hence

a− bc > a− s ≥ (ri)vpi
(a) = (ri)vpi

(a−bc) and a− bc ∈ S. We have proved that

S is bi-ideal-simple.

Thus, by 4.1.1, S is a congruence-simple semiring.

Finally, assume that p1, . . . , pn are pair-wise different. Choose i ∈
{1, . . . , n}. Since S ⊆ V(pi, r i), we get, by 3.3.2 and 3.3.13, that r i ≤ u(S, pi).

Let m ∈ Z. Since r j ∈ <◦ for every j, there is k0 ∈ N such that

max{(rj)k0 |j = 1, . . . , n} < (ri)n. By 3.3.12, for every ε ∈ R+ there is x0 ∈ Q+

such that (rj)k0 < (ri)m < x0 < (ri)m + ε, vpi
(x0) = m and vpj

(x0) = k0 for
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every j such that j 6= i. Hence x0 ∈ S and it follows that (ri)m = um(V, pi).

We have proved that r i = u(S, pi) for every i = 1, . . . , n.

Now, let p ∈ P be different from any pi. Set r = 0. Then V◦(p, r) = Q+.

Hence S ′ = S ∩ V◦(p, r) = S. Now, it easily follows that 0 = r = u(S ′, p) =

u(S, p).

The next statements show that a general congruence-simple subsemiring

of Q+ is very close to those that were already mentioned, namely there is

a semiring from the new class that contains such particular semiring and,

moreover, has the same characteristic sequences (see 4.2.6).

Proposition 4.2.5. Let S ⊆ Q+ be a congruence-simple semiring. Then:

(i) S ∩ (0, 1) 6= ∅.

(ii) p(S) = P.

(iii) u(S, p) ∈ <◦ for every p ∈ P.

(iv) (∀x ∈ S)(∀p ∈ P)(uvp(x)(S, p) < x).

Proof. (i) Suppose that S ∩ (0, 1) = ∅. Take a ∈ S. By 4.1.1, S is bi-

ideal-simple and we have a = ac + d for some c, d ∈ S, where a, c, d ≥ 1, a

contradiction.

(ii) Let p ∈ P. By 4.1.1, S is conical and archimedean and, by 4.1.2, there

is m ∈ N such that k/p ∈ S for every k ≥ m. If gcd(k, p) = 1 then, obviously,

vp(k/p) = −1. Hence p ∈ p(S), by 3.2.1.

(iii) Let p ∈ P. Take x0 ∈ S ∩ (0, 1). Set n0 = vp(x0). Then un0
(S, p) ≤

x0 < 1. By (ii), u(S, p) ∈ <. Since u(S, p) is descending, we get, by 3.3.7,

that lim
n→+∞

un(S, p) = 0.

(iv) Suppose, for contradiction, that 0 6= a = uvp(a)(S, p) for some a ∈ S

and p ∈ P. Hence, since u(S, p) ∈ <, by (ii), we get, by 3.3.7, that u0(S, p) ≥ 1.

By 4.1.1, S is bi-ideal-simple and hence there exists c ∈ S such that

a−ac ∈ S and c 6= 1. Therefore uvp(a)(S, p) = a > a−ac ≥ uvp(a−ac)(S, p) and

thus, by 3.3.3(i), vp(a) + vp(1 − c) = vp(a− ac) > vp(a). Hence vp(1 − c) > 0

and therefore vp(c) = 0. Altogether, we have c ≥ uvp(c)(S, p) = u0(S, p) ≥ 1.

Now, c ≥ 1 and it follows that 0 ≥ a− ac ∈ S, a contradiction.

Corollary 4.2.6. Let S ⊆ Q+ be a congruence-simple semiring.

Put KS = {p ∈ P|u(S, p) 6= 0} and TS =
⋂

p∈KS

V◦(p,u(S, p)). Then:
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(i) KS is a finite set.

(ii) TS is a congruence-simple semiring.

(iii) S ⊆ TS.

(iv) u(S, p) = u(TS, p) for every p ∈ P.

Proof. (i) Follows from 3.3.4 and 4.2.5(ii).

(ii) Use 4.2.4 and 4.2.5.

(iii) Follows from 4.2.5(iv).

(iv) Follows from 4.2.4.

Now we know that a finite intersection of the semirings of type V◦(p, r)

is congruence-simple. We can ask whether this remains true for an arbitrary

intersection. The next statement shows that in the case when such a semiring is

congruence-simple, it must be a finite intersection of semirings of type V◦(p, r).

Proposition 4.2.7. Let I be a set. Let {rα|α ∈ I} ⊆ <◦ be a family of

characteristic sequences and {pα|α ∈ I} ⊆ P be a family of primes.

Let S =
⋂
α∈I

V◦(pα, rα) be a congruence-simple semirings. Then there are

s1, . . . , sn ∈ <◦ and q1, . . . , qn ∈ P such that S =
n⋂
i=1

V◦(qi, si).

Proof. We can assume, without loss of generality, that I 6= ∅ and rα 6= 0 for

every α ∈ I.

We show that {pα|α ∈ I} ⊆ KS (see 4.2.6). Suppose, on contrary, that

there is α0 ∈ I such that pα0
/∈ KS. Since S ⊆ V(pα0

, rα0
), we get, by 3.3.2

and 3.3.13(ii), that 0 6= rα0
≤ u(S, pα0

) = 0, a contradiction.

Now, there are q1, . . . , qn ∈ P such that Ii = {α ∈ I|pα = qi} 6= ∅ for

every i = 1, . . . , n and I = ∪ni=1Ii. Set s i = sup{rα|α ∈ Ii}. By 3.3.14(iii),

S ⊆ ⋂
α∈Ii

V(qi, rα) = V(qi, s i). Hence, by 3.3.2, 3.3.13(ii) and 4.2.5(iii), s i ≤
u(S, qi) ∈ <◦. Thus, by 3.3.6(iv), si ∈ <◦.

Put Si =
⋂
α∈Ii

V◦(qi, rα). Clearly, V◦(qi, s i) ⊆ Si and S =
n⋂
j=1

Sj . Hence

n⋂
j=1

V◦(qj , sj) ⊆ S and thus, by 3.3.2 and 4.2.4, u(S, qi) ≤ s i for every i =

1, . . . , n. Therefore u(S, qi) = s i. Finally, by 4.2.6, S ⊆
n⋂
j=1

V◦(qj ,u(S, qj)) =

n⋂
j=1

V◦(qj , sj). We conclude with S =
n⋂
j=1

V◦(qj, sj).
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The following example shows that an infinite intersection of congruence-

simple semirings needs not to be congruence-simple again.

Example 4.2.8. Remind that Tp(b) = {x ∈ Q+|bvp(x) < x} for b ∈ (0, 1) is a

congruence-simple semiring.

Let p ∈ P. Take a ∈ Q+ ∩ (0, 1) such that vp(a) = 1 (such a exists by

3.3.12). Let {a1, a2, . . . } ⊆ (0, 1) be a sequence such that a1 < a2 < · · · and

lim
n→+∞

an = a. Consider T =
∞⋂
n=1

Tp(an).

Then T is a semiring that is not congruence-simple, although it is an

(infinite) intersection of congruence-simple semirings.

Indeed, a
vp(a)
n = an < a for every n ∈ N, hence a ∈ T and u1(T, p) ≤ a.

Further, T ⊆ Tp(an), hence, by 3.3.2 and 4.2.4, an = u1(Tp(an), p) ≤ u1(T, p)

for every n ∈ N. Thus uvp(a)(T, p) = u1(T, p) = a and T is not congruence-

simple, by 4.2.5(iv).

Finally, denote CongSimp = {S $ Q+|S is a congruence-simple semiring }.

We prove that this class has similar properties as the class of all proper sub-

semirings of Q+ (compare to 3.4.12).

Proposition 4.2.9. The semirings Tp(a), where p ∈ P, a ∈ (0, 1), are just all

maximal elements of the set CongSimp. These subsemirings are pair-wise dif-

ferent (and hence non-isomorphic). Every element of CongSimp is contained

in (at least) one of them.

Proof. Let S ∈ CongSimp. By 4.2.5(i),(ii), S 6⊆ Q+
1 and S 6⊆ Sp for every

p ∈ P. Hence, by 3.4.12, there are q ∈ P and a ∈ (0, 1) such that S ⊆ W(q, a).

Thus an ≤ un(S, q) for every n ∈ Z, by 3.3.2. Finally, S ⊆ V◦(q,u(S, q)) ⊆
Tq(a), by 4.2.6.

Comparing the characteristic sequences of Tp(a) (using 4.2.4), we obtain

that all these semirings are pair-wise different.

The rest now follows easily.
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Chapter 5

Subparasemifields of C

A (commutative) parasemifield is a semiring where the multiplicative part is

a group. Clearly, a non-trivial parasemifield can not contain a zero element.

The class of all parasemifield thus form a universal algebraic variety.

Let S be a parasemifield and let P denotes the smallest subparasemifield

of S (i.e. the subparasemifield generated by 1S (as a parasemifield)), then

either P is trivial and S is additively idempotent or P ∼= Q+ and S is not

additively idempotent (see [15, 2.2]).

In [15] a conjecture was raised saying that every parasemifield that is

finitely generated over Q+ as a semiring (i.e., is of the form Q+[K] for some

finite set K) is not finitely generated as a semiring. So far this is known for

|K| ≤ 2 ( for |K| ≤ 1 it was shown in [15] and the other result was not

published yet).

In this section we will study the question when a semiring Q+[α] ⊆ C,

α ∈ C, is a parasemifield. We find an equivalent condition under which is such

a semiring contained in a parasemifield of C. Moreover, we make a classification

for the case when α is algebraic of degree 2 .

5.1 Preliminaries

First, we need to prove some auxiliary results.

For n ∈ N0 and a, b, c, d ∈ R set following polynomials

hn(c, d) = (x+ 1)
n∏

i=0

(
(x2 + d)2i

+ (cx)2i) ∈ R[x]
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gn(a, b, c, d) = (x2 + b− ax)hn(c, d) ∈ R[x]

and

fn(a, b) = gn(a, b, a, b).

Lemma 5.1.1. fn(a, b) = (x+ 1)
(
(x2 + b)2n+1 − (ax)2n+1

)
and gn(a, b, c, d) are

monic polynomials of the same degree equal to 2n+2 + 1 for all a, b, c, d ∈ R.

Proof. Put f = x2 + b and g = ax. We proceed by induction on n ∈ N0. For

n = 0 we have f0(a, b) = (f − g)(x+ 1)(f + g) = (x+ 1)(f 2 − g2).

Now, suppose fn(a, b) = (x + 1)(f 2n+1 − g2n+1

). Then fn+1(a, b) =

fn(a, b)(f 2n+1

+ g2n+1

) = (x+ 1)(f 2n+1 − g2n+1

)(f 2n+1

+ g2n+1

) = (x+ 1)(f 2n+2 −
g2n+2

). The rest is obvious.

Let fn(a, b) =
2n+2+1∑
k=0

rk(n, a, b)x
k ∈ R[x], where rk(n, a, b) ∈ R.

Lemma 5.1.2. Let n ∈ N0. Assume that b > 0 and a 6= 0. Then the following

conditions are equivalent:

(i) rk(n, a, b) > 0 for every 0 ≤ k ≤ 2n+2 + 1.

(ii)
(
2n+1

2n

)
(b/a2)2n

> 1.

Proof. By 5.1.1, we have fn(a, b) =
(
(x2 + b)2n+1 − (ax)2n+1

)
(x + 1) =(

2m∑
i=0

(
2m
i

)
(x2i + x2i+1)b2m−i

)
− a2m(x2m + x2m+1), where m = 2n.

Hence rk(n, a, b) > 0 for every 0 ≤ k ≤ 2n+2+1 if and only if
(
2m
m

)
bm > a2m

with m = 2n.

Lemma 5.1.3. Assume that 4b > a2 > 0. Then there are n0 ∈ N and c, d ∈ Q
such that (x2 + b− ax)hn0

(c, d) ∈ R+
0 [x].

Proof. First, let gn(a, b, u, v) =
2n+2+1∑
k=0

sk(n, a, b, u, v)xk ∈ R[x], where

sk(n, a, b, u, v) ∈ R. Clearly, sk(n, a, b, ·, ·) : R × R → R are polynomial

functions and sk(n, a, b, a, b) = rk(n, a, b) for every a, b ∈ R, n ∈ N and

0 ≤ k ≤ 2n+2 + 1.

Now, put rm =
(
2m
m

)
(b/a2)m for m ∈ N. Since lim

m→∞

rm+1

rm
=

lim
m→∞

(2m+2)(2m+1)b
(m+1)2a2

= 4b
a2
> 1, we have lim

m→∞
rm = ∞. Hence, by 5.1.2, there are

n0 ∈ N and ε ∈ R+ such that sk(n0, a, b, a, b) = rk(n0, a, b) > ε > 0 for every
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0 ≤ k ≤ 2n0+2 + 1. Since the functions sk(n0, a, b, ·, ·) are continuous, there are

c, d ∈ Q such that sk(n0, a, b, c, d) > 0 for every 0 ≤ k ≤ 2n0+2 + 1. It follows

that (x2 + b− ax)hn0
(c, d) = gn0

(a, b, c, d) ∈ R+
0 [x].

Proposition 5.1.4. Let F be a subfield of R and 0 6= f ∈ F [x]. The following

conditions are equivalent:

(i) There exists 0 6= h ∈ Q[x] such that hf ∈ F+
0 [x].

(ii) The polynomial f has no positive real root (in C).

Proof. (i)⇒(ii). Let 0 6= g = hf ∈ F+
0 [x]. Suppose, on contrary, that f(a) = 0

for some a ∈ R+. Then 0 < g(a) = h(a)f(a) = 0, a contradiction.

(ii)⇒(i). We can assume f to be monic. Let f = f1 · · · fn be the decom-

position of f into monic polynomials fi that are irreducible in R[x]. Clearly,

deg(fi) ∈ {1, 2} and no fi has a positive real root.

Let deg(fi) = 1. Then fi = x+e for some e ∈ R+
0 and we set hi = 1 ∈ Q[x].

Now, let deg(fi) = 2. Then fi = x2 − ax+ b, where a, b ∈ R and a2 − 4b < 0.

Thus b > 0. If a ≤ 0 we set, again, hi = 1 ∈ Q[x]. Now, if a > 0, then there

is, by 5.1.3, 0 6= hi ∈ Q[x] such that hifi ∈ R+
0 [x].

For every i = 1, . . . , n we have found 0 6= hi ∈ Q[x] such that hifi ∈ R+
0 [x].

Now, we just set h = h1 · · ·hn ∈ Q[x].

5.2 The subsemirings Q+[α], α ∈ C

For α ∈ C let Q+[α] denote the subsemiring of C generated by Q+ ∪ {α}.

Clearly, Q+[α] = {f(α)|0 6= f ∈ Q+
0 [x]}.

For α ∈ C algebraic (over Q) denote minQ(α) ∈ Q[x] the minimal monic

polynomial in Q[x] with a root α.

Remark 5.2.1. (i) If α ∈ C is transcendental, then Q+[α] ∼= Q+[x].

(ii) Let α, β ∈ C be algebraic numbers with the same minimal polynomial

in Q[x]. Then the mapping f(α) 7→ f(β), f ∈ Q+[x], is an isomorphism of the

semiring Q+[α] onto the semiring Q+[β].

Indeed, if f1(α) = f2(α), then minQ(α) divides the difference f1 − f2. But

then (f1 − f2)(β) = 0, and hence f1(β) = f2(β). The rest is clear.

Proposition 5.2.2. Let 0 6= α ∈ C be an algebraic number. The following

conditions are equivalent:
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(i) Q+[α] is a subfield of C.

(ii) 0 ∈ Q+[α].

(iii) The minimal polynomial minQ(α) has no positive real roots.

Proof. (ii)⇒(i). Put A = Q+[α] ∩ Q. If 0 ∈ Q+[α], then there are n ∈ N and

a0, . . . , an ∈ Q+
0 such that 0 = a0 + a1α + · · · + anα

n and an 6= 0. Assume

that n is the smallest possible. Then a0 > 0 and −a0 = a1α + · · · + anα
n ∈

Q+[α] ∩ Q− ⊆ A.

Now, A is a subsemiring of Q, Q+ ⊆ A and A ∩ Q− 6= ∅. Consequently,

Q = A ⊆ Q+[α] and Q+[α] = Q[α] is a field.

(i)⇒(iii). Clearly, 0 ∈ Q+[α]. Hence there is 0 6= g ∈ Q+
0 [x] such that

g(α) = 0. Thus g is divisible by f = minQ(α) ∈ Q[x] and there is 0 6= h ∈ Q[x]

such that hf = g ∈ Q+
0 [x]. Now, by 5.1.4, f has no positive real root.

(iii)⇒(ii). Suppose f = minQ(α) ∈ Q[x] has no positive real root. By

5.1.4, there is 0 6= h ∈ Q[x] such that 0 6= g = hf ∈ Q+
0 [x]. Hence 0 = g(α) ∈

Q+[α].

Denote ∞

√
1 = {z ∈ C|(∃n ∈ N)(zn = 1)} the subgroup of all element of

finite order in C∗.

Corollary 5.2.3. Let α ∈ C be an algebraic number.

Then Q+[α] is a field if and only if ∞

√
1 ∩ Q+[α] 6= {1}.

Proof. (⇒) If Q+[α] is a field, then −1 ∈ ∞

√
1 ∩ Q+[α].

(⇐) There is 1 6= β ∈ Q+[α], such that βm = 1 for some m ≥ 2. We have

βγ = γ, where γ = 1 + β + · · · + βm−1 ∈ Q+[α]. Since β 6= 1, it follows that

γ = 0, and hence 0 ∈ Q+[α]. It remains to use 5.2.2.

The multiplicative group of a parasemifield needs always to be torsion-free

(see [15, 2.8]). Comparing to the result in 5.2.3, we have that for a parasemifield

S ⊆ C holds ∞

√
1 ∩ S = {1}.

Corollary 5.2.4. Let α ∈ C. The following conditions are equivalent:

(i) Q+[α] is contained in a subparasemifield of C.

(ii) 0 6∈ Q+[α].

(iii) Either α is transcendental or α 6= 0 is algebraic and the minimal polyno-

mial minQ(α) has a positive real root.
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Proof. (i)⇒(ii). Obvious.

(ii)⇒(iii). Follows from 5.2.2.

(iii)⇒(i). If α is transcendental then Q+[α] ∼= Q+[x] and thus it can not

contain a zero-element. If α 6= 0 is algebraic and the minimal polynomial

minQ(α) has a positive real root then, by 5.2.2, 0 6∈ Q+[α]. In both cases

P = {ab−1|a, b ∈ Q+[α]} ⊆ C is a parasemifield.

Now, we have found a equivalent condition under which is the semiring

Q+[α] contained in a subparasemifield of C. However, this inclusion can hap-

pen to proper and such a semiring needs not to be a parasemifield. We will

see it in the next classification of the case when α is algebraic of degree 2.

Remark 5.2.5. (i) Let α ∈ C be algebraic of degree 2. Then the minimal

polynomial minQ(α) has a positive real root if and only if there exist q ∈ Q+

and t ∈ Q such that −t < √
q 6∈ Q and either α =

√
q + t or α = −√

q + t.

(ii) Let q ∈ Q+ be such that
√
q 6∈ Q. Denote (a + b

√
q)∗ = a − b

√
q for

a, b ∈ Q. The map ϕ : Q[
√
q] → Q[

√
q], ϕ(x) = x∗ for x ∈ Q[

√
q], is the only

non-trivial isomorphism of the field Q[
√
q] that is identical on Q. Moreover,

if β ∈ Q[
√
q] is algebraic of degree 2, then β∗ is the associated root for β, i.e.

minQ(β) = (x− β)(x− β∗).

(iii) Clearly, P = {x ∈ Q[
√
q]|x > 0, x∗ > 0} = {a + b

√
q|a, b ∈ Q, a >

|b|√q} is a parasemifield. Moreover, P = Q[
√
q]+ ∩ϕ(Q[

√
q]+) and ϕ(P ) = P .

Lemma 5.2.6. Let a, b ∈ Q+ and Q+ ⊆ A ⊆ R+ be a semiring. Then:

(i) If −√
q + a,−√

q + b ∈ A, then −√
q + ab+q

a+b
∈ A and

√
q < ab+q

a+b
< a, b.

(ii) If
√
q−a,−√

q+b ∈ A, then
√
q− ab+q

a+b
∈ A and 0 < a < ab+q

a+b
<

√
q < b.

Proof. (i) We have −√
q+ ab+q

a+b
= 1

a+b
(−√

q+a)(−√
q+b) ∈ A. Since A ⊆ R+,√

q < ab+q
a+b

. Finally, q < a2, hence q + ab < a2 + ab and ab+q
a+b

< a. Similarly,
ab+q
a+b

< b.

(ii) We have
√
q − ab+q

a+b
= 1

a+b
(
√
q − a)(−√

q + b) ∈ A. Since A ⊆ R+,
ab+q
a+b

<
√
q. Finally, a2 < q, hence a2 + ab < q + ab and a < ab+q

a+b
.

Lemma 5.2.7. Let Q+ ⊆ A ⊆ R+ be a semiring.

(i) If −√
q + r ∈ A for some r ∈ Q+, then −√

q + a ∈ A for every a ∈ Q+

such that
√
q < a.

(ii) If
√
q− r ∈ A for some r ∈ Q+, then

√
q− a ∈ A for every a ∈ Q+ such

that a <
√
q.
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Proof. (i) First, we find a descending sequence (rn)n∈N ⊆ Q+ such that −√
q+

rn ∈ A for every n ∈ N and lim
n→∞

rn =
√
q.

We proceed by induction. Put r1 = r. Now, suppose that rn is already

defined. Put rn+1 = r2n+q
2rn

. Since −√
q + rn ∈ A, we have, by 5.2.6(i), that√

q < rn+1 < rn and −√
q + rn+1 ∈ A. Now, our sequence is descending

and
√
q < rn for every n ∈ N. Thus it has a limit λ ∈ R+ and we have

λ = lim
n→∞

rn+1 = lim
n→∞

r2n+q
2rn

= λ2+q
2λ

. Hence λ =
√
q.

Finally, let a ∈ Q+ be such that
√
q < a. Then rn0

< a for some n0 ∈ N
and we have a− rn0

∈ Q+ and −√
q + a = (−√

q + rn0
) + (a− rn0

) ∈ A.

(ii) Put s = r2+q
2r

∈ Q+. Then −√
q+ s = −√

q+ r2+q
2r

= 1
2r

(
√
q− r)2 ∈ A.

We find, similarly, an ascending sequence (sn)n∈N ⊆ Q+ such that
√
q −

sn ∈ A for every n ∈ N and lim
n→∞

sn =
√
q.

We proceed by induction. Put s1 = r. Now, suppose that sn is already

defined. Put sn+1 = sns+q
sn+s

. Since
√
q− sn,−√

q + s ∈ A, we have, by 5.2.6(ii),

that sn < sn+1 <
√
q and

√
q − sn+1 ∈ A. Now, our sequence is ascending

and sn <
√
q for every n ∈ N. Thus it has a limit µ ∈ R+ and we have

µ = lim
n→∞

sn+1 = lim
n→∞

sns+q
sn+s

= µs+q
µ+s

. Hence µ =
√
q.

Finally, if a ∈ Q+ is such that a <
√
q, then a < sn0

for some n0 ∈ N and

we have sn0
− a ∈ Q+ and

√
q − a = (

√
q − sn0

) + (sn0
− a) ∈ A.

Note that for a semiring A ⊆ C that does not contain 0, the set AA−1 =

{ab−1|a, b ∈ A} is a parasemifield generated (as a parasemifield) by the set A.

Proposition 5.2.8. Let α =
√
q + t, where q ∈ Q+, t ∈ Q and

√
q /∈ Q. Put

A = Q+[α]. Then:

(i) If t < −√
q, then A = Q[

√
q] and A∗ = Q[

√
q] \ {0}.

(ii) If −√
q < t < 0, then A = A∗ = AA−1 = Q[

√
q]+.

(iii) If t = 0, then A = Q+[
√
q], A∗ = {a, a√q|a ∈ Q+} and AA−1 = Q[

√
q]+.

(iv) If 0 < t <
√
q, then A $ Q+[

√
q], A∗ = Q+ and AA−1 = Q[

√
q]+.

(v) If
√
q < t, then A $ Q+[

√
q], A∗ = Q+ and AA−1 = {a + b

√
q|a, b ∈

Q, a > |b|√q} $ Q[
√
q]+.

Proof. (i) By 5.2.5 and 5.2.2, A = Q[α] = Q[
√
q].
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(ii) Clearly, A ⊆ Q[
√
q]+. We show that Q[

√
q]+ = {a + b

√
q > 0|a, b ∈

Q} ⊆ A. In particular, since Q+ ⊆ A, it is enough to prove that
√
q − r ∈ A

for every r ∈ Q, r <
√
q, and that −√

q + s ∈ A for every s ∈ Q,
√
q < s.

First, we have
√
q+t = α ∈ A, where t < 0. Hence, by 5.2.7(ii),

√
q−r ∈ A

for every r ∈ Q such that 0 < r <
√
q. If 0 ≥ r ∈ Q, then −t − r ∈ Q+ and√

q − r = (
√
q + t) + (−r − t) ∈ A.

Further, −√
q + t2+q

−2t
= 1

−2t
(
√
q + t)2 ∈ A. Since t2+q

−2t
> 0, we get, by

5.2.7(i), that −√
q + s ∈ A for every s ∈ Q,

√
q < s.

We conclude with Q[
√
q]+ = A.

(iii) and (iv). Let 0 ≤ t <
√
q, then, clearly, A ⊆ Q+[

√
q] = {a+b

√
q|a, b ∈

Q+
0 , a + b 6= 0}. Now, let a + b

√
q ∈ A∗, a, b ∈ Q+, a + b 6= 0. Of course,

a/c + (−b/c)√q = (a + b
√
q)−1 ∈ Q+[

√
q], where c = a2 − b2q 6= 0. Hence

b = 0, if c > 0, and a = 0, if c < 0. The assertion for A∗ now follows easily.

Finally, put U = AA−1. Since A ⊆ Q+[
√
q], we have U ⊆ Q+[

√
q].

Obviously, there is r ∈ Q such that t < r <
√
q and

√
q + r ∈ A. Thus√

q − r
q−r2

= (q − r2)(
√
q + r)−1 ∈ A−1 ⊆ U . Hence, since 0 < r

q−r2
<

√
q, we

get, by (ii), that Q[
√
q]+ = Q+[

√
q − r

q−r2
] ⊆ U . Thus Q[

√
q]+ = U .

(v) Take 0 < t′ <
√
q, t′ ∈ Q. Clearly, by (iv), Q+ ⊆ A∗ ⊆ Q+[t′]∗ = Q+

and A∗ = Q+.

Now, by 5.2.5(iii), P = {a + b
√
q|a, b ∈ Q, a > |b|√q} is a parasemifield

and Q+ ∪ {α} ⊆ P . Hence A = Q+[α] ⊆ P and AA−1 ⊆ P . Now, −√
q + t =

(t2 − q)(
√
q+ t)−1 ∈ A−1 ⊆ AA−1, since

√
q < t. By 5.2.7(i), −√

q+ c ∈ AA−1

for every c ∈ Q+ such that
√
q < c. Hence

√
q+c = (c2−q)(−√

q+c)−1 ∈ AA−1

for every c ∈ Q+ such that
√
q < c. Now, easily follows that {a + b

√
q|a, b ∈

Q, a > |b|√q} ⊆ AA−1.

Remark 5.2.9. Let α =
√
q + t, where q ∈ Q+, t ∈ Q and

√
q /∈ Q. Using the

isomorphism x 7→ x∗ (see 5.2.5(ii)) of Q[α] and 5.2.8 we can state an analogical

classification for the associated root α∗ = −√
q + t and B = Q+[α∗].

Corollary 5.2.10. Let α ∈ C be algebraic of degree 2. Then Q+[α] is a

parasemifield if and only if there exist q ∈ Q+ and t ∈ Q− such that
√
q 6∈ Q,√

q > −t and either α =
√
q + t or α = −√

q + t.

Moreover, if α =
√
q+ t, then Q+[α] = Q[

√
q]+ and, if α = −√

q+ t, then

Q+[α] = {a− b
√
q|a, b ∈ Q, a > −b√q}.

Proof. Combine 5.2.4, 5.2.5(i), 5.2.8 and 5.2.9.
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