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Abstrakt

Préce ukazuje souvislost mezi perzistenci ve vynosech finanénich trhu a jejich
efektivitou. Interpretuje hypotézu efektivnich trhu a predstavuje ruzné modely
casovych tad pouzitelné k analyze financnich trhu. Dukladné vysvétluje kon-
cept dlouhé paméti a analyzuje dva hlavni typy metod k odhadu dlouhé paméti
— metody v ¢asové a frekvenéni doméné. Pomoci Monte Carlo studie srovnava
kvalitu jednotlivych metod a vybrané metody nasledné pouzivd na data z
realného svéta — sménné kurzy a akciové trhy. Prace nenachazi zadné doklady
o dlouhé paméti ve vynosech, nicméné volatilita akciovych trhu vykazuje jasné
znamky perzistence.

Klicova slova: trzni efektivnost, perzistence, metody odhadu dlouhé paméti

Abstract

The thesis shows the relationship between the persistence in the financial mar-
kets returns and their efficiency. It interprets the efficient markets hypothesis
and provides various time series models for the analysis of financial markets.
The concept of long memory is broadly presented and two main types of meth-
ods to estimate long memory are analysed — time domain and frequency domain
methods. A Monte Carlo study is used to compare these methods and selected
estimators are then used on real world data — exchange rate and stock market
series. There is no evidence of long memory in the returns but the stock mar-
ket volatilities show clear signs of persistence.

Keywords: market efficiency, persistence, long memory estimation methods
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Chapter 1

Introduction

Market efficiency problem

A finance professor and a student come
across a $100 bill lying on the ground. As
the student stops to pick it up, the professor
says, "Don’t bother — if it were really a $100
bill, it wouldn’t be there.”

The recent financial crisis has brought many economists and even more bankers
and businessmen to distrust about the efficiency of financial markets. How
could the markets be efficient if they allow for such long term deviations from
their ”equilibrium” and origin of persistent "bubbles”? In this thesis I will
present the theoretical background for the market efficiency analysis by ex-
plaining the Efficient market hypothesis (EMH), its different forms and pro-
posed alternatives. However, the main focus will be given on specific methods
to test for some forms of market efficiency. The long memory property, also

known as persistence, fractional integration or fractality is a set of interrelated
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statistical properties that may indicate the level of market efficiency. You can
basically understand it as a presence of long non-periodical deviations from the
equilibrium and therefore long memory in market returns can indicate lower
efficiency.

Interestingly, fractional integration is closely related to another financial
time series phenomena called scaling or self-similarity. If the probability dis-
tribution of a random process sampled in different timescales is the same after
a power-law transformation, we can say that it shows scaling or that it is a
self-similar process. It shows up that this similarity of market movements on
different timescales coincides with the long memory property and the scaling
coefficient is the same as the coefficient of long memory, the famous Hurst
exponent. Multifractality or multiscaling is then the situation when the scaling
coefficient for higher moments of the series is different from the basic one.

There has been extensive research in this field during the last two decades
and therefore the classical and recent theoretical papers will be presented in
the literature review. Besides the papers aimed at the methodology to esti-
mate long memory there will be also shown main empirical results concerning
efficiency of real world equity, exchange rate and commodity markets.

In the theoretical section emphasis will be given on two themes - efficient
markets theory and the theoretical basis for long memory modelling. It will be
also briefly shown how the presence of long memory can be linked to inefficiency
in the market.

Since the theory of self-similar and long memory processes is based on
solid statistical ground, the models section has to start with the basics of
random processes and its properties. There are two basic types of models
used to approximate the behaviour of financial markets - continuous time and
discrete time models. The most basic continuous time model is the Brownian
motion, which was proposed for financial markets by the legendary Bachelier
(1900). Its long memory counterpart, the fractional Brownian motion, will be

also discussed and recent developments in this area will be mentioned.
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Main focus will be given to the discrete time models - the presentation
will start with the basic AR, MA, ARMA and ARIMA models, which all do
not possess the property of long memory. The long memory model ARFIMA
follows. ARCH and GARCH, models for short memory in volatilities are men-
tioned and FIGARCH, their long memory counterpart will be also presented.

Following chapter is the crucial part of my thesis where the methodology
for estimation of long memory is presented. There are two main types of esti-
mation methods - time domain and frequency domain. Time domain methods
either use the property of long memory series that their autocorrelation func-
tion goes down very slowly with increasing At or cut the series into blocks
and analyse how some type of spread in the block increases with the size of
the block. The most well known time domain methods are the R/S-analysis,
which is connected with the founder of the long memory analysis, H. E. Hurst
(Hurst, 1951) and the DFA, detrended fluctuation analysis (Peng et al., 1994).

Frequency domain methods compute the spectral density using Fourier
transform and the estimation is based on certain features of the spectral den-
sity. Periodogram methods, such as GPH by Geweke and Porter-Hudak (1983)
and its modifications use the periodogram to estimate the sample spectral den-
sity and then regress logarithm of the periodogram. On the other hand the
local Whittle estimator is semiparametric and imposes some restrictions on the
underlying distribution of the time series. Within this restrictions is it very
efficient since it uses the local maximum likelihood estimation technique.

The methods chapter is concluded with a summary of bootstrap tech-
niques. The estimators of long memory are mostly complicated with un-
known small sample distribution and asymptotic properties. Therefore ad-
vanced methods are needed to compute correct confidence intervals for our
estimations. Bootstrap techniques enable us to provide confidence intervals by
resampling the original series we use to estimate the long memory parameter.

Some of the presented methods of long memory estimation are then com-

pared in a small Monte Carlo study. On simulated ARFIMA series with various
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parameters we test the efficiency of the estimators, their bias and variance. We
can compare the estimators by their MSFE, mean square error, to show which
one is the most suitable to determine if there is a long memory present in a
market.

The best estimators chosen in the Monte Carlo study are then used to
estimate long memory in returns and volatilities of real life financial markets -
four major world exchange rates and two stock market indices, US index DJTA
that represents advanced markets and Czech PX50 (now PX) as a representa-
tive of emerging markets. The Hurst exponent for the returns and volatilities
is estimated and bootstrapped confidence intervals tell us if the estimates are

significantly different from the no long memory hypothesis.



Chapter 2
Literature Review

In the literature review, I will shortly present the most relevant papers and
monographs to the topic of long memory estimation. I will start with the
idea of long memory and fractional integration as an extension of the short
memory time series models. Then classical and modern papers introducing
time domain and spectral domain estimators of long memory are presented,
together with their extensions and generalisations and followed by empirical
papers comparing their accuracy and efficiency. The last section of literature
review will be dedicated to the applications of long memory estimation in real
financial markets data, reaching from stock markets to exchange rates and
commodities.

The fractional integration concept was proposed independently by Hosk-
ing (1981) and Granger and Joyeux (1980), both of them following the ideas
of Mandelbrot (1965). It can be seen as an intermediate step between sta-
tionary (/(0)) and integrated (I(1)) time series. Whereas Hosking starts from
the white noise and the Brownian motion as its cumulative sum, Granger’s
approach comes as an extension of the ARMA model halfway towards the
ARIMA. Eventually they both arrive at the fractional differencing operator
(1 — B)? as a generalisation of the differencing operator B defined through
the Taylor expansion. Very good summary of the topic is provided by Baillie
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(1996), he summarises the theoretical properties of both the fractional Brown-
ian motion and the fractional ARIMA model, shows early extensions and tests
for long memory. Also the book by Beran (1994) gives an excellent treatment
of long memory processes.

The R/S analysis was first proposed by Hurst (1951) to capture non-
periodic cyclical behaviour. Its based on a computationally simple method,
but his further research in this field found out that there is a high risk of
false positivity of his tests. The R/S statistics is sensitive to the presence of
short memory and such presence is mistaken for a long memory result. Lo
(1991) therefore proposed a modified R/S statistic depending on the supposed
number of non-zero autocorrelations ¢q. Teverovsky et al. (1999) on the other
hand show that Lo’s modified R/S statistics for finite samples is biased in the
other direction - as the truncation lag ¢ increases, the method shifts towards
accepting the null hypothesis of no long-range dependence.

The discussion was further developed by Hall et al. (2000), who stresses
the use of correct confidence intervals and states that the asymptotic val-
ues cannot be used for small sample estimation. Jin and Frechette (2004)
presents a different correction for the t-test critical values. Alfi et al. (2006)
also calls attention to the finite size properties of the estimator and finally,
Ellis (2006), Ellis (2007) and Couillard and Davison (2005) further analyse the
mis-specification of the R/S analysis and bring further ways to enhance the
estimation. Finally, Mielniczuk and Wojdyllo (2007) brings one of the latest
tips to enhance this classical estimator.

The DFA, detrended fluctuation analysis is somewhat more recent
method, introduced by Peng et al. (1994) and originally used for completely
different purposes. Its basic setup is the same, but it seems to be less prone to
contamination by short memory effects. Bashan et al. (2008) compares differ-
ent detrending methods used for this type of estimator and recommends using
more types of trend-correction procedures to ensure higher quality of results.

Another estimation procedure using detrending is the DMA, detrended
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moving average proposed by Arianos and Carbone (2007). It is based on
generalised variance over a moving window which is then plot in a log-log
graph and a regression gives the final value of Hurst exponent. Carbone et al.
(2004) highly values its independence on probability distribution. Alessio et al.
(2002) compared this method to the DFA and R/S analysis and found very
interesting results concerning the ability to show the scaling of a time series.
Serletis and Rosenberg (2007) then use this method to compute time dependent
Hurst exponent of major US stock market series and their conclusion is anti-
persistence (negative long memory) of these series.

The Rescaled Variance V/R estimator was introduced by the paper of Gi-
raitis et al. (2003), who shows its similarity to the Lo’s modified R/S analysis
and to the Kwiatkowski et al. (1992) KPSS test. The KPSS test is primarily
used for testing against unit root, but it can be also use against fractional inte-
gration. The newly introduced V/R statistics replaces the range in R/S with
variance and the scaling is accordingly readjusted. Giraitis et al. (2003) derives
the asymptotic theory for this estimator and shows its slight superiority to the
R/S and KPSS. Cajueiro and M. (2005) use this newly discovered statistics in
their paper to perform a Monte Carlo study of efficiency and analyse Pacific
Basin stock markets. Long range dependence is observed in volatilities, but
not in returns of the markets. Lima and Tabak (2007) use this technique in
their survey of emerging markets stock markets and combine it with the scaling
analysis.

The seminal paper of Calvet and Fisher (2002) started a whole new ap-
proach. Their MMAR model is a generalisation of the previous work and at
the same time new estimation method - the scaling analysis was introduced.
The scaling function approach estimates not just the Hurst exponent but its
extension, the generalised Hurst exponent which can differ from the ordinary
Hurst exponent for higher moments of the analysed series. Fillol and Tripier
(2003) and Fillol and Tripier (2004) provided more detailed analysis of the
qualities of the novel approach. Finally, di Matteo (2007) builds on the previ-
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ous papers a synthetic work with systematic explanation of theory and large
number of applications. Liu et al. (2007) further develops this approach by
introducing the Markov switching model MSM as an extension of the MMAR
and shows that it better explains the stylized facts of the financial markets.

The seminal paper for the periodogram estimation branch was Geweke
and Porter-Hudak (1983) and this type of estimator become very popular since
then. Geweke and Porter-Hudak (1983) already developed the asymptotical
properties of the estimator and also computed the empirical confidence inter-
vals. Further authors seeked to improve this estimator, as for example Andrews
and Guggenberger (2003) who introduced the bias-reduced form. Molinares
and Reisen (2009) advise to use robust sample autocorrelation to get an esti-
mator which is robust against additive outliers in ARFIMA models. From the
newer improvements the paper of Andersson (2002) presents two modification
that decrease the MSE thus objectively improving the estimator. Fillol (2007)
again compares the GPH estimator to the scaling function and concludes that
it is outperformed. Lopes and Mendes (2006) analyses the problem of band-
width selection which is crucial for this type of estimators - too wide bandwidth
brings excessive bias but narrow increases the variance.

The Whittle estimator stays a bit apart from the mentioned methods
since it is not a graphical procedure, but it is based on the maximum like-
lihood estimation. Robinson (1995) came with the theoretical basis for this
estimation method and many contemporary papers as took the lead. Shimotsu
and Phillips (2006) presents variations of the estimator whereas Shao and Wu
(2007) and Tabak and Cajueiro (2006) use it directly to assess inefficiency in
stock and exchange rate markets. Wang et al. (2007) compares the Whittle
estimator to the GPH and R/S estimators and concludes that depending on
the underlying process every estimator has its strength and that is desirable to
always use combination to make the final decision about the presence of long
memory.

Most of the applied papers do not restrain themselves to one estimation
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method and combine and asses more methods to get robust results. Taqqu
et al. (1995) provide one of the first such comparison. Clegg (2006) on the other
hand gives a comprehensible summary of estimation methods and compares
them on very long series (100.000 points). Grau-Carles (2005) introduces the
post-blackening bootstrap approach to enhance the testing for long memory by
using more precise data based confidence intervals and critical values. Bisaglia
et al. (2006) show us another use of the bootstrap using it to make not the
confidence intervals, but the estimates themselves more precise.

There are so many applied papers using long memory to characterise and
compare diverse financial markets that we will mention only few as a sam-
ple from those hundreds. Matteo et al. (2005) compute scaling properties of
markets for foreign exchange, stocks and fixed income instruments and try to
differentiate their stage of development. Sadique and Silvapulle (2001) give
an international survey of long memory in stock markets and finds evidence
of inefficiency in some asian stock market data. Finally, Weron (2002) suc-
cessfully uses R/S analysis, DFA and periodogram estimation in his search for

long memory in electricity markets.



Chapter 3

Theoretical Concepts

3.1 Efficient Markets Hypothesis

The efficient market hypothesis, EMH is a well known theoretical concept
brought to life by Eugene Fama (1970) and Paul Samuelson that is until these
days constant source of conflict and even misconception. The original idea was
very simple — a financial market is effective only then if it is not possible to
attain higher earnings than the average of the market on a long term basis.
Famas argument was that all the available information about the market, its
subjects, participants and its history will be used to make profit and every new
piece of information will be almost immediately incorporated into the prices,
such that there is no place for arbitrage. For example the long memory about
that we spoke in the introduction is not possible in such market since even
the slightest long-term trend in the prices will be exploited and effectively
neutralised by the traders using it.

There are three versions of the EMH - weak, semi-strong and strong (Lo,
2008). The weak form states that the market immediately uses all historical
information. Therefore no trend and seasonality should exist in the market.
The semi-strong form of the EMH states that in addition to the historical data,

any public information about the subjects in the market is immediately used

10
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and that you can’t make profit by using publicly available information. This
could mean that in the same moment when the last years profit is announced
the price of the firm changes accordingly.

The strong form of the EMH states that even any private (i.e. insider)
information cannot be used to make extraordinary profit in an efficient market.
This is really quite strong assumption and in many markets is it officially
impossible to attain this because of the laws prohibiting insider trading.

What is more interesting than those three forms is the extension of this
concept that has much stronger implications on the behaviour of the market,
but is in fact not a conclusion of the original EMH. The public and also many
economists interpret the EMH such that an efficient market must follow a mar-
tingale or even a random walk. These simplification come from the problem
that the EMH is by itself very difficult to be tested. The only test possible
is a test of joint hypotheses (Timmermann and Granger, 2004) about the ef-
ficiency of the market and at the same time rationality of the traders, since
otherwise you couldn’t guess the adequate reaction on the available informa-
tion. As Malkiel (2003) argues, if you have agents that are not homogenous
and completely rational then they may exist bubbles in the market because of
the collective misinterpretation of the available information and nobody knows
when these bubbles will burst. Thus even if the market is shown not following
martingale or a random walk path, it could be the result of badly selected
model of agent’s behaviour, not of the inefficiency of the market.

Peters (1994) presents an alternative concept to the EMH, the fractal
market hypothesis, FMH that consists of many types of traders with different
investment horizon that perceive the information flow differently and act ac-
cordingly. The FMH does not constrain the market to any specific distribution
in contrast the EMH that allegedly forces normal distribution (that would be
only true under very specific restrictions, but as we said the true EMH imposes
no such restriction). As we previously stated his hypothesis may contradict

the misinterpretation of the EMH (that we may call RMH, rational market
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hypothesis) where all the agents are identical and completely rational. The
real EMH does not postulate any such restriction. Peters creates a model of
a financial market that can produce time series with long memory, but it has
nothing to do with inefficiency of the market itself, more with the assumptions
about the agents in the market.

On the other hand, there is a possible way to indicate relative market
inefficiency. If one market behaves differently from the others it may have
two reasons. Either are the agents in this market so much different from
the agents in the "more efficient” markets, have different preferences and risk
aversion or the market itself is different. In such case the difference may be in
the efficiency level, since for example transition markets may not be attractive
enough to gather the needed liquidity for smooth and efficient functioning,
price manipulations may be present and above standard returns collected.
Then such market may present e.g. long memory properties in contrast to the
developed markets and thus enabling to prove market inefficiency. The long
memory properties would mirror the fact that the events driving the price
movements do not affect the prices instantaneously but over longer period of
time, which allows arbitrage and is generally considered inefficient. We will
now focus on the theoretical basis of long memory and methods how to test
for long memory. Afterwards we will try to prove the mentioned difference in

market efficiency empirically.

3.2 Notion of Long Memory and Self-similarity

The notion of a long memory in a time series was firstly formalised by British
hydrologist Harold Edwin Hurst in his famous article about Nile river min-
ima (Hurst, 1951). He found out that long term patterns are present in the
water levels of the Nile river. Series of years with high water levels and high
fertilising floods is followed by a series of years with low water level which

leads to low crop and starvation. Mandelbrot called this phenomenon the
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7 Joseph effect” after the Old Testament prophet the foretold ”seven years of
great abundance” and ”seven years of famine”. Hurst proposed a theoretical
treatment to statistically identify this type of dependence.

He presented the "rescaled range analysis” (R/S-analysis) as a tool to
compute the optimal capacity of a water reservoir. He found out that stan-
dardised range of a long memory time series over a time interval follows a
straight line in a log-log plot. The slope of this line is bigger than 0.5 for a
time series with true long memory and exactly 0.5 for a series with only short
memory. The coefficient is named after him the Hurst exponent and the value
0.5 separates long and short memory processes.

Similar dependence can even be found in data that do not have the time
series character. (Smith, 1938) An interesting example of long memory can be
found for spatial data. In agricultural uniformity trials, the variances of yields
for individual plots depend on the Euclidian distance between them. But the
decay with the distance is not exponential, but rather hyperbolic, which results
in slower rate of convergence of the average variance.

Granger (1966) in his article ”"The typical spectral shape of an economic
variable.” shows that we can find similar relationship for many economic time
series. He finds a different implication of the same effect in estimates of the
spectral density. The typical shape for economic time series is a function with
a pole at the origin, i.e. for the lowest frequencies, even after the seasonal
and cyclical pattern is removed. He states that “the same basic shape is found
regardless of the length of the data available”.

This is a related phenomenon called self-similarity, self-affinity or simply
scaling. A self-similar process is always similar regardless the time scale. If
the scale undergoes a power-law transformation, the probability distribution
of the process stays the same. For a short memory processes, the power-
law coefficient is 0.5. The well known example of this phenomenon is the
Brownian motion, also called random walk. Its probability distribution differs

t0'5

with increasing time ¢ only by the factor t"°. Long memory processes show
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similar behaviour, but the power of the factor is different from 0.5.

The fractional integration, introduced by Granger and Joyeux (1980) and
Hosking (1981) is practically the same effect as long memory. The only differ-
ence is in the notation. The fractional integration coefficient, d, is equal to 0
for short memory processes and is bigger then 0 for fractionally integrated (or
in other words long memory) processes. There is a simple relationship between
the d and the Hurst exponent H: H = d + 0.5. Third related phenomenon is
the fractal dimension of the process trajectory, hence fractality. The fractal
dimension can be understood as a generalisation of the common dimension
notion, but without further technicalities we will just state that the fractal
dimension D = 2 — H for uni-fractal processes.

There are several equivalent definitions of the long-memory in a time
series. The definitions in the time domain (in the original series dependent on
t) are based on the autocorrelation function. For a series with just a short-
term memory (e.g. ARIMA)the autocorrelation function decays exponentially
to zero with the distance between the two time points. As a result, the sum
of the absolute values of autocorrelation function is finite. For a time series
with long memory, the opposite is true. The autocorrelation function decays
slower than exponentially, e.g. as a hyperbole. Effect of this is that the sum
of absolute autocorrelations is infinite.

Alternative definition of long memory can be based on the frequency do-
main and the spectral density function. The periodogram (squared absolute
fourier coefficients) of a long-memory series has a pole in the origin and the
spectral density of a long-memory time series is proportional to w=2#~!

In terms of long memory we can divide all stationary processes into one
of three classes: Persistent processes (also know and mean-reverting) with
H > 0.5, non-persistent or short memory processes with H = 0.5 and anti-
persistence processes which have H < 0.5 and instead of reverting to the mean
they fluctuate even more. Example of the three types of processes can be seen

in the Figure 3.1.
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. ; Not persistent ;
Anti-persistent (only short memory) Persistent

fracai simin = 1000,ar =

Figure 3.1: Anti-persistent, non-persistent and persistent process

If we examine more than one moment of the series (e.g. mean and variance
as the first two), we can identify different persistence characteristics. This
is not consistent with the model of an uni-fractal process and therefore such
processes that have different Hurst exponents for different moments are known

as multifractal.



Chapter 4
Time Series Models

The entities and theoretical concepts in this are defined according to field
specific monographs (e.g. Brockwell and Davis (2006)). We start with a ab-
stract probability space {Q2, F, P} with Q being the sample space of elementary
events, F a sigma algebra defined on the sample space and P being a proba-
bility measure on {2. We introduce an index 7' that can be either discrete or

continuous, e.g. T'=R or T' = 7Z. Now, we can state the formal definition:

Definition 1. (Stochastic process)
Let (), F,P) be a probability space. Then a family of random wvariables
{Xi,t € T} defined on this space is called a Stochastic process. Functions

{X(w),w € Q} of T are known as the realisations of this process, or time series.

In reality, we have just one realisation from a certain stochastic process,
i.e. w is fixed and we typically only have finite number of points, i.e. T is
finite. Therefore we usually suppress the w and simply write {X;}. We will
use the term time series for both the process {X;} and its realisation.

Now we introduce the autocovariance function as an extension of the co-

variance matrix for a random vector.

16



CHAPTER 4. TIME SERIES MODELS 17

Definition 2. (The Autocovariance function)
If {Xi,t € T} is a stochastic process such that Var(X;) < oo for each t € T,
then the autocovariance function vx(-,-) of {X;} is defined by

vx(r,s) = Cov(X,, X,) = F[(X, — EX,)(Xs — EX})], r,seT (4.1)

It would be useful, if we could easily describe time series that model
repetitive events. For this task, we first define the two types of stationarity -
weak and strict (strong).

Definition 3. (Stationarity - weak stationarity)
The time series { Xy, t € Z} with index set 7 = {0, £1, 42, ...}, is said to be
stationary if
(i) E|X:| < oo forall t €Z,
(ii) E(Xy) =m forall t € Z,

and
(11i) vx(r,s) =vx(r+t,s+1t) for all r,s,t€Z.

This form of stationarity is in the literature often referred to as covariance
stationarity or weak stationarity in contrast to strict stationarity.

Definition 4. (Strict stationarity)

The time series {X;,t € Z} is said to be strictly stationary if the joint distri-
butions of (X4, ..., Xe,) and (Xy4n, ..., Xy+n)" are the same for all positive
integers k and for all ty,... ty, h € Z.

We can easily see that strictly stationary time series with finite second
moments is also weakly stationary. The converse is not necessarily true. A
weakly stationary process does not have to follow the restrictions on higher
moments.

If {X;,t € Z} is stationary then yx(r,s) = vx(r — s,0) and we can write
the autocovariance function as a function of one variable:

vx(h) = vx(h,0) = Cov(Xyyn, X¢) for all ¢, h € Z. Analogously we define the

autocorrelation function (ACF) as

px = vx(h)/7x(0) = Corr(Xpin, Xy) V1, h € Z.
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If () and p(-) are autocovariance and autocorrelation functions of a random
process {X;}, following properties can be proved:

e 7(0) = Var(X;) >0, p(0) =1

o |v(k)| <~(0) and p(k) <1 forall k € Z

o (k) =~(—k) foral k € Z

We further introduce the partial autocorrelation function as a correlation

of residuals from an orthogonal projection on the intermediate observations:
Definition 5. The partial autocorrelation function (PACF) a(-) of a station-
ary time series {X;} is defined by

a(l) = Corr(Xo, X1) = p(1) and

(4.2)
a(k) = Corr(Xit1 — P xo,. x03Xk+1, X1 — Plixo, x0X1), k2> 2

where P is the projection of X on the intermediate variables in Hilbert space
L*{Q, F,P}.

For finite samples P has the form of a; + Z?:z a; X;, where the coeffi-
cients a; come from a least squares regression Xy = a; + Z?ZQ a; X; + €, €
independent of Xs,..., X;. PACF is therefore a correlation of X; and Xy,
with exclusion of the influence of the intermediate variables.

Let us now define two special types of processes.

Definition 6. (White noise) White noise is a special case of a weakly station-
;1S

ary process. {&} is a white noise if E(e;) =0 and ~.(i,j) = 0d;; where §;;

the Kronecker symbol. It can be written ¢, ~ WN (0, c?).
Definition 7. (Gaussian time series) The process {X:} is a Gaussian time
series if and only if the distribution functions of {X;} are all multivariate

normal. A stationary Gaussian process is automatically strictly stationary.

4.1 Spectral Analysis

Sometimes it is useful to decompose a stationary time series to its individual

frequencies. Using the Fourier analysis, we are able to write the series as a
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sum of of sinusoidal components with uncorrelated random coefficients. This
is often referred as spectral analysis or frequency domain anaysis in contrast
to time domain analysis which takes into account the individual observations
X;. The spectral analysis can show movements of low frequencies which would
normally be covered by the high frequency fluctuations. We will now intro-
duce spectral density of a stationary process X; and its sample estimate, the
periodogram.

Theorem 1. (Herglotz’s theorem)

A complez-valued function v(-) defined on the integers is non-negative definite
iof and only of

y(k) = / eik”dF(y) forallk=0,%1,..., (4.3)

where F(-) is a right-continuous, non-decreasing, bounded function on [—7, 7]
and f(—m) = 0. The function is called the spectral distribution function
of v and if f(\) = fj‘ﬁ fw)dv, —m < X < 7, then f is called a spectral
density of (-).

PROOF: See (Brockwell and Davis, 2006), p. 118.

Since necessary and sufficient condition for an autocovariance function is
that it is even and non-negative definite, we have a spectral representation for
every possible autocovariance function. From the evenness of the autocovari-
ance function we get the following property of F(:): for any 0 < a < b < 7,
we have F'(b) — F(a) = F(—a) — F(=b), i.e. F' has symmetric increments.

The spectral density function f(-) exists if F' is everywhere continuous
and differentiable and the equation 4.3 simplifies to

v(k) = /W e®Af(N)d\ forall k=0,=+1,.. ., (4.4)

In terms of an autocovariance function the following theorem can be proven:
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Theorem 2. An absolutely summable complex valued function v(-) defined on

the integers is the autocovariance function of a stationary process if and only

if .

e *on(k) >0 for allw € [~ 7], (4.5)

=—00

() =

in which case f(-) is the spectral density of y(-).
PROOF: See (Brockwell and Davis, 2006), p. 120.

If we need a sample estimation of the spectral density function to perform
the spectral analysis of a time series, we can start by constructing the peri-
odogram. Though we must be careful with its use, since some of its asymptotic

properties are undesirable.

Definition 8. (Periodogram) Let X1, ..., X, be a sequence from a stationary
time series { X} with meany and absolutely summable autocovariance function
v(-). The periodogram of {Xi,...,X,} is defined at the Fourier frequencies
w; =27mj/n, w; € [—m, 7|, by

2

I(w;) =n"" (4.6)

n
E Xte—’itwj
t=1

b The periodogram is a discrete Fourier transform of the vector of obser-

vations X and it decomposes || X ||? into sum a of components associated with
n Fourier frequencies w;, j € F,, = {—[(n—1)/2],...,[n/2]}, where [z] denotes

the integer part of . Thus || X||? =Y., I(w;). The raw periodogram is an

JEF,
unbiased, but not a consistent estimator of the spectral density function.
Theorem 3. If X, is stationary with mean p and absolutely summable auto-

covariance function ~(-), then

(i) E1,(0) — nu? — 27 f(0)
and (4.7)
(ii) El,(w) — 27 f(w) if w # 0.

(If 1 = 0 then El,(w) converges uniformly to 27 f(w) on [—m, 7).
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PROOF: See (Brockwell and Davis, 2006), p. 343.

Further analysing the convergence of the periodogram, Brockwell and
Davis (2006), p. 350 prove that [,(\)/27 is not a consistent estimator of
f(A). But we can average the periodogram ordinates over a small neighbour-
hood of A to get a consistent estimator. This procedure is called smoothing or

tapering.

4.2 Brownian Motion

Brownian motion or Wiener process VW, is defined as a continuous time
stochastic process with independent Gaussian increments with a distribution
Wi — W, ~ N(0,t — s). The increments process, the Gaussian noise is a sta-
tionary process, but the brownian motion itself is not. The Brownian motion
has some very nice mathematical properties and it is the simplest continuous
time process that can be used as a basis to create continuous time long mem-
ory process, the fractional Brownian motion. However we will now turn to the

discrete time models and design a long memory model based on the well know
Box-Jenkins ARMA methodology.

4.3 The Box-Jenkins Methodology

The most popular approach to the modelling of time series is the ARIMA
methodology of Box and Jenkins (1970). It uses autoregressive and moving
average sequences to supply simple and efficient models to wide class of time
series. We will discuss their methodology as a short memory basis for our
approach to long memory modelling. Before we start with discussing the of
short memory time series modelling, we introduce a a useful simplification of

our notation - the backshift operator B:
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Definition 9. (Backshift and identity operator) Let X, be a time series. The
backshift of X, is defined as

BX,:=X,,, B’X = B(BX,) = X, 9, ..., B*X, = X, (4.8)

and the identity operator I is defined as I X; = X;.
Introducing the backshift operator B and identity operator I enables us

to write a time series model in a compact form that is easy to manipulate and

deal with.

4.3.1 Autoregressive (AR) Models

Suppose that the current observed value is Y; and the p past values are avail-

able, ¥;_1,...,Y;_,. An AR model with order p can be expressed as follows:
Yi=aY1 +aYi o+ +ayYp + e, (4.9)

where Y, is weakly stationary, a,...,a, are constants and a, # 0. Unless
otherwise stated, we assume that {¢;} is a white noise series with zero mean
and constant variance.

Using the backshift operator B, equation 4.9 can be rewritten as

p
(I -y aTBT> Y, = ¢ (4.10)
r=1

or in more compact notation as a(B)Y = ¢, where a(B) is a p'™ order polyno-
mial

a(B): 1—a1B+a232+"'+apo' (4]‘1)

The process Y; is weakly stationary if the polynomial a(B) has all roots
outside the unit circle (Box and Jenkins, 1970).

The ACF plot of an AR(p) process has p initial spikes and then damps
out as a mixed exponential decay of order p (never 0). The PACF plot has p
initial spikes and then cuts off. It makes perfect sense that in terms of ACF

and PACF plots, correlations between two events become smaller and smaller
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as the time interval becomes larger and larger. Figure 4.1 shows an example
of the ACF and PACF plots of a simulated AR(2) process with a; = 0.7 and

as = 0.2 based on 1000 observations.

A simulated AR(2) process with a1=0.7,a2=0.2, 1000 observations
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Figure 4.1: The ACF and PACF of a simulated AR(2) process

4.3.2 Moving Average (MA) Models

The AR processes are defined as a modified sum of past observations. On
the other hand, the moving average (MA)is based on the past error terms,
which are unobservable and cannot be accounted for by the autoregressive
component. A zero mean stationary process Y; is called a moving average

process of order ¢ if Y; satisfies

}/;5 =€+ b1€t71 + b26t72 + -+ qut,q, (412)
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where ¢, is a white noise. Again, this equation can be rewritten as
Yi= (I +b,B+byB*>+ - +b,Be, (4.13)

or in the more compact form as Y = b(B)e, where b(B) is the polynomial
in backshift operator B of degree q. There is a duality between the moving
average process and the autoregressive process (see Box and Jenkins (1970)),
that is, the moving average equation above can be inverted into an autoregres-
sive form of infinite order. However, analogous to the stationarity condition
described above, this can only be done if the moving average parameters follow

certain conditions, i.e. the model is invertible.

A simulated MA(2) process with b1=0.7,b2=0.2, 1000 observations
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Figure 4.2: The ACF and PACF of a simulated MA(2) process

Due to the duality between MA and AR models, we can easily find that
for a MA(q) model, the PACF plot has ¢ initial spikes and then damps out as
an exponential decay of order ¢ (never 0). The ACF plot has ¢ initial spikes
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and then cuts off. The sample ACF and PACF plots of a simulated MA(2)
process with b; = 0.7 and by = 0.2 based on 1000 observations are shown in

figure 4.2.

4.3.3 Autoregressive Moving Average (ARMA) Models

An ARMA(p;q) process is a mixture of p autoregressive components and ¢
moving average components. In short, it can be expressed as a(B)Y; = b(B)e;
where ¢, is white noise, and a(B) and b(B) are the polynomials of degree p
and ¢ respectively. In a mixed model ARMA(p; q) process, neither the ACF
nor the PACF cut off at a certain lag. Both the ACF and PACF exhibit mixed
exponential decay. This happens because AR(p) component brings mixed ex-
ponential decay into the ACF, while the MA component brings mixed expo-
nential decay into the PACF. Figure 4.3 is an example of ACF and PACF plots
of a simulated ARMA(1,1) process with a; = 0.5 and b; = 0.2 based on 1000

observations.

4.3.4 Autoregressive Integrated Moving Average
(ARIMA) Model

In the above sections we discussed ARMA models that require weak station-
arity of time series data. However, weak stationarity is not always achieved
in real life series, and non-stationarity can be caused by unit roots existing
in the AR component of an ARMA model. Such phenomena can be dealt
with ARMA models including an extra integrating (or differencing) parame-
ter d, i.e., ARIMA models. We define Y; to be an ARIMA(p;d; q) process if
a(B)Y; = b(B)e;, where:

e p is the number of autoregressive terms,

e d is the number of differences and d takes positive integer values,

e ¢ is the number of moving-average terms.
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A simulated ARMA(1,1) process with a1=0.5,b2=0.2, 1000 observations
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Figure 4.3: The ACF and PACF of a simulated ARMA(1,1) process

To identify the appropriate ARIMA model for a time series, we start by
identifying the order of differencing needed to stabilise the series and remove
the seasonality, perhaps in conjunction with a variance-stabilising transfor-
mation such as logarithmic transformation of dividing by a deflator. After
stabilising the data, we can start looking for an appropriate ARMA model to
fit the data. Therefore, fitting an ARIMA model is basically a combination of
differencing the data and fitting an ARMA model. Figure 4.4 shows time series
plots of a simulated ARIMA(1; 1; 1) process with a; = 0.7 and b; = 0.2 based
on 1000 observations and its single differenced transformation. The time series
plot of raw data does not exhibit stationarity. It decreases first until the lag
390 and then increases thereafter. However, after one differencing, the process
seems to be more stationary with zero mean and constant variance. Hence, an

appropriate ARMA model can be fitted to the differenced data.
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Time Series plot of a simulated ARIMA(1,1,1) process
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Figure 4.4: Sample path and first difference series of a simulated ARIMA(1,1,1)

process

4.4 Long Memory

There are two basic theoretical models for long memory processes - Fractional
Brownian motion fBm and Autoregressive fractionally integrated moving av-
erage (ARFIMA). Fractional Brownian motion, introduced by Mandelbrot
(1965) is a generalisation to a standard Brownian motion. It can be perceived
as a fractional derivative of the standard Brownian motion, B(%).

In this thesis we will be mainly concerned with discrete time series and
hence with the second model — ARFIMA. Before discussing the ARFIMA
model into detail, we first introduce the formal definition of long memory in

both the time and frequency domains.
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Let {X;} be a stationary process with autocorrelation function () and
spectral density f(-).
Definition 10. (Time domain) {X;} is called a stationary process with long
memory property if there exist a real number H € (0.5,1) and a constant ¢, > 0
such that
lim %) (4.14)

f—oo e k2H-D)
where H 1s called the Hurst parameter and d = H - 0.5 is called the long
memory parameter or fractional differencing parameter in ARFIMA(p;d;q)
processes.
Definition 11. (Frequency domain) {X,} is called a stationary process with
long memory property if there exits a constant cy > 0 such that

lim —f(y> = lim f(v)

L e

=1 (4.15)

We can see in Figure 4.5 how the long memory properties translate into the
autocovariance function (slow hyperbolic decay) and into the spectral density

(pole in the origin).

4.5 Autoregressive Fractional Integrated

Moving Average (ARFIMA) model

Long memory processes are detected in many applications and plays an in-
creasingly important role in time series analysis. Autoregressive Fractional In-
tegrated Moving Average (ARFIMA) models were introduced independently
by Granger and Joyeux (1980) and Hosking (1981) to deal with long memory
series in discrete time. An ARFIMA (p; d; q) process is defined by

a(B)(1 — B)YY; = b(B)e,, (4.16)

where {Y;} is the process of interest and ¢, ~ WN(0,0?); B is the backward
shift operator; a(B), b(B) polynomials with degrees p, ¢ respectively. The
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Figure 4.5: Time and spectral definition of long memory

operator (1 — B)? is the fractional differencing operator defined by

>, TI'(k—d)B*
(1-B)!= ; F(k;<+ 1)3(_60 (4.17)

with I'(-) being the gamma function. ARFIMA(p;d;q) is stationary and in-
vertible if |d| < 0.5 and the roots of the a(B) and b(B) lie outside the unit
circle. Note that the ARMA and ARIMA models can be thought of as particu-
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lar cases of ARFIMA models having d = 0 and d = 1,2, ... respectively. ACF
and PACF of an ARFIMA(p; d; q) process never cut off. Moreover, because of
the long memory property, it has slower decay of autocorrelation than those of
short memory models, e.g ARMA. This is shown in Figure 4.6 by comparison
of their ACF and PACF.
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A simulated ARMA(1,1) process with a1=0.5,b2=0.2, 1000 observations
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Figure 4.6: Comparison of the ACF and PACF of a simulated ARMA(1,1) and
ARFIMA(1,1,1) processes



Chapter 5

Estimation Methods

The two classes of ARFIMA estimation methods are developed, i.e. two-step
and one-step procedures. The majority of applications utilize the two-step
approach. In the first step, an estimate of the long memory parameter d is
obtained (usually in the frequency domain). In second, the data is fractionally
differenced using the estimated d and a standard ARMA estimation procedure
is applied to the adjusted data.

The alternative one-step method is to simultaneously estimate the long
memory parameter d using the maximum likelihood procedure in either time or
frequency domain. The main drawbacks of the one-step approach are the need
for accurate initial guess parameter values, the potential existence of local
maxima in the likelihood function and very high computational complexity.
We will therefore focus our attention on separate estimators of d.

Many methods are available for detecting the existence of long-memory
and estimating the fractional differencing parameter d. Some of them are well
described in the monograph of Beran (1994). These techniques include graph-
ical methods (e.g., classic rescaled adjusted range analysis, i.e., R/S analysis;
aggregated variance method etc.), parametric methods (e.g., Whittle maxi-
mum likelihood estimation method) and semi-parametric method (e.g., GPH

method and local Whittle method). Graphical methods are useful to heuristi-

32
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cally test if there exists a long-range dependence in the data and to find a first
estimate of d, but they generally are inaccurate and sensitive to short range
serial correlations. The parametric methods obtain consistent estimates of d
via maximum likelihood estimation of parametric long-memory models. They
give a more accurate estimate of d, but generally require knowledge of the true
model which is in fact always unknown. Semi-parametric methods, such as the
GPH method of Geweke and Porter-Hudak (1983), seek to estimate d under
few prior assumptions concerning the spectral density of a time series and, in
particular, without specifying a finite parameter model for the d-th difference

of the time series.

5.1 Time Domain Methods

5.1.1 R/S analysis

In classical R/S analysis, for a given time series {X;},t = 1,2,..., N, with
the n-th partial sum Y; = >°"  X;,;n = 1,2,..., N and the sample variance
S2 =ty (X; —nY,)%n = 1,2,..., N, the rescaled adjusted range
statistic or R/S-statistic is defined by

R/S(n) = Sin [max (Yt - %Yn) —Orgtiéln (Y} - %Yn)} ,n=12...,N
(5.1)
The original specification of the classical rescaled adjusted range provided
by Hurst (1951) was such that the exponent was estimated for the whole sample
length N. The procedure was later modified by Mandelbrot and Wallis (1969)
to incorporate OLS regression techniques where the exponent (denoted H )

was estimated over several subseries, n < N as

log(R/S), = a+ Hlog(n) + ¢ (5.2)

where log(R/S),, is the logarithm of the mean rescaled range for a subseries of

length n, log(n) the logarithm of the subseries length and H the series Hurst
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exponent. The Hurst exponent is the slope coefficient in a regression of the

individual R/S points in a log-log graph - see Figure 5.1

R/S Method
H=0.6775
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Figure 5.1: Estimation of the Hurst exponent by R/S analysis: log-log plot

The OLS procedure described in 5.2 is now the standard for estimation
of the Hurst exponent by R/S-analysis. It is established that for a Gaussian
series given long subseries lengths the value of the exponent will tend to its
asymptotic H = 0.5. Yet when n is small the classical R/S-analysis may
exhibit a variety of biases. The choice of n is therefore crucial for the precision
of the estimator. Not less important is also the choice of individual subseries

- it can be either contiguous or overlapping.
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The use of alternative techniques for the division of the series length into
subseries is analysed i. e. by Ellis (2007) who identifies the manner in which
the series length was divided into subseries significant to the estimation of the
Hurst exponent. Two alternative techniques based on overlapping subseries
are mentioned - the F-Hurst and G-Hurst. Whereas F-Hurst uses full set of
subseries, G-Hurst is satisfied with only a subgroup. Another approach is
described by Peters (1994), P-Hurst, which is claimed to be superior to both
previous possibilities. It uses non-overlapping subseries of lengths being powers
of 2. The choice of optimal subseries (scales) is beyond the scope of this thesis,
for a detailed references see di Matteo (2007) and Weron (2002).

The classical R/S analysis is sensitive to the presence of explicit short-
range dependence structures, and lacks a distribution theory for the underlying
statistic. To overcome these shortcomings, Lo (1991) proposed a modified R/S
statistic that is obtained by replacing the denominator S; in Eq. 5.1, i.e., the
sample standard deviation, by a modified standard deviation S, which takes
into account the autocovariances of the first ¢ lags, in order to discount the
influence of the short-range dependence structure that might be present in the
data. Instead of considering multiple lags as in Eq. 5.1, only focus on lag

Jj =n. The S, is defined as

" " 1/2
1 - 2 o — —
Sy = <ﬁ Z(Xj - X))+ - ij(Q) [ Z (Xi — Xo)(Xij — Xn)])
j=1 j=1 i=j+1
(5.3)
where X,, denotes the sample mean of the time series, and the weights w;(q)
are given by w;(q¢) = 1—3/(¢+1),q < n. Then the Lo’s modified R/S statistic
is defined by

0<i<n 4 0<i<n 4
J=1 J=1

R/S(n,q) = Slq [max (X; —X,) — min Y (X, - 771)] . (5.4)

If a series has no long-range dependence, Lo (1991) showed that given the
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right choice of ¢, the distribution of n=" 2Qn.4 is asymptotic to that of

W = max V(r) — min V(r). (5.5)

0<r<1 0<r<1

where V' is a standard Brownian bridge, that is V(r) = B(r) — rB(1), where
B denotes standard Brownian motion. Since the distribution of the random

variable W is known as

P(W<a)=1+2) (1—42?%)e 2", (5.6)

j=1
he gave the critical values of = for hypothesis testing at sixteen significance
levels using Eq. 5.6, which can be used for testing the null hypothesis Hy that

there is only short-term memory in a time series at a significance level a.

5.1.2 Aggregated-variance Method

A characteristic trait of long-memory processes is that the variance of an N-
member sample mean decreases more slowly than N~! (Beran, 1994). He also

shows that given N data points X;,2=1,..., N

N
1 2d—1
Var (N ;Xz) =N as N — 0. (5.7)

This suggests the following method for estimating d. Divide the series

into kK = N/m blocks of size m and compute the mean for each block

km

1
Tp(m) = — Z X;,where k=1,...,N/m. (5.8)

(k—1)m+1

Variance of the block means

N/m
1
s*(m) = —— E (zx(m) — Z)?, where 7 is the overall mean.  (5.9)
N/(m —1)

Now a log-log plot of s*(m) against m should yield a straight line with a

slope of 2d — 1. This is known as aggregated variance method.
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A drawback of this method is that inhomogeneity in the data can produce
a positive value of d even in the absence of long memory. A modification of
the above method is called the differenced variance method, which avoids this

problem.

5.1.3 Differenced-variance Method

The main idea of the differenced variance method is to study the first-order

difference of the above variances
Vs*(m) = s*(m + 1) — s*(m). (5.10)

Teverovsky et al. (1999) show that a log-log plot of this quantity against m
will again asymptotically produce a straight line with slope 2d — 1 and the
value of d is not affected by the inhomogeneity of the data.

5.1.4 Detrended Fluctuation Analysis

The method of Detrended Fluctuation Analysis (DFA) by Peng et al. (1994)
is an improvement of classical fluctuation analysis (FA), which is similar to
Hurst’s rescaled range R/S analysis (Hurst, 1951). They allow determining
the correlation properties on large time scales. All three methods are based

on random walk theory. One first calculates the "profile’

X(n) =Y (a;— (z)) (5.11)

i=1
of a time (x;),7 = 1,..., N (with mean (z)), which can be considered as the
position of a random walker on a linear chain after n steps. Then the profile
is divided into Ny = [N/s| non-overlapping segments of equal length (’scale’)
s. The mean-squared fluctuation function of the FA method is given by

1 &

F2(s) = A D IX((v = 1)s) = X(vs))? (5.12)

v=1
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In Hurst’s R/S analysis, one calculates in each segment v the range
R of X(n) given by the difference between maximal and minimal value,
R(s) = Xyazr — Xmin- The "rescaling of range” is done by dividing R(s) by
the corresponding standard deviation S(s) = o(X(n)) of the same segment v.
The mean of all quotients at a particular scale s is equivalent to F'(s) (except
for multi-fractal data) and usually shows a power-law scaling relationship with
s. While both, FA and Hurst’s method fail to determine correlation properties
if linear or higher order trends are present in the data, DFA explicitly deals
with monotonous trends in a detrending procedure. This is done by estimat-

ing a piecewise polynomial trend ygp )(n) within each segment v by least-square

fitting. Le., y§p ) (n) consists of concatenated polynomials of order p which are
calculated separately for each of the segments. The detrended profile function

X,(n) on scale s is determined by ('detrending’):

Xs(n) = X(n) —y®(n). (5.13)

s

The degree of the polynomial can be varied in order to eliminate linear
(p = 1), quadratic (p = 2) or higher order trends of the profile function.
Conventionally the DFA is named after the order of the fitting polynomial
(DFA1, DFA2,...). Note that DFA1 is equivalent to Hurst’s analysis in terms

of detrending. The variance of X,(n) yields the fluctuation function on scale s

N 1/2
F(s) = [%ZXj(n)] . (5.14)

This function, which has to be calculated for different scales s, corresponds
to the trend-eliminated root mean square displacement of the random walker
mentioned above and is related to the auto-correlation function by an integral
expression.

If F(s) increases for increasing s asymptotically as
F(s) ~ s, (5.15)

with 0.5 < H < 1, one finds Hurst exponent, H. If the type of trends in

given data is not known beforehand, the fluctuation function F(s) should be
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calculated for several orders p of the fitting polynomial. If p is too low, F(s)
will show a pronounced crossover to a regime with larger slope for large scales
s. The maximum slope of log F'(s) versus logs is p + 1. The crossover will
move to larger scales s or disappear when p is increased, unless it is a real
crossover in the intrinsic fluctuations and not due to trends. Hence, one can
find p such that detrending is sufficient. However, p should not be larger than

necessary, because deviations on short scales s increase with increasing p.

5.2 Frequency Domain Methods

5.2.1 Periodogram Method

The periodogram method is based on the equation 4.6. In particular, the power
spectral density of a long memory process obeys a power law near the origin,
ie. f(v) ~ ¢|lv|™® as v — 0. Thus, by taking logarithm on both sides, we
get log f(v) ~ —2dlog(|v]), as v — 0.

Since the spectral density f(v) is the Fourier transform of the autocorrela-
tion function, an estimate of the spectral density can be obtained by taking the
inverse Fourier transform of the estimate of the autocorrelation function. This
estimator is referred to as a periodogram I(v). Therefore, the long memory

parameter d can be estimated from the least squares regression
log(I(v;)) = ¢ —2dlog(v;) +mn5, 7=1,2,...,n (5.16)

where v; = 27j/T,j = 1,....,T — 1,n = ¢g(T) < T, and T is the sample
size. I(v;) is the periodogram of the series at frequency v; as defined by the
equation 4.6.

The periodogram plot is the graph of {log(v;),log(v;)},j =1,2,...,n.
The typical threshold value utilised in detection of d is n = T°®. Theoretically
the log-log plot should provide a straight line with a slope of —2d =1 — 2H.

An example of such regression is shown in Figure 5.2
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Figure 5.2: Estimation of the Hurst exponent by the periodogram method:
log-log plot

5.2.2 GPH Estimator

Geweke and Porter-Hudak (1983) proposed a semi-parametric approach to the
testing for long-memory. Given a fractionally integrated process {X;}, its

spectral density is given by:

flw) =12 sin(w/2)]_2dfu(w) (5.17)

where w is the Fourier frequency, f,(w) is the spectral density corresponding to
uy, and uy is a stationary short memory disturbance with a zero mean. Consider
the set of harmonic frequencies w; = (27j/n),j =0,1,...,n/2, where n is the

sample size. By taking the logarithm of the spectral density f(w), we have

In f,(w;) = In f,(w) — dIn[4sin®(w;/2)] (5.18)
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which may be written in the alternative form

In fu(w;) = In fu(w) — dIn [4sin*(w;/2)] + In[fu(w;)/ fu(0)] (5.19)

The fractional difference parameter d can be estimated by the regres-
sion equations constructed from Eq. 5.19. Geweke and Porter-Hudak (1983)
showed that using a periodogram estimate of f(w,), if the number of frequen-
cies used in the regression Eq. 5.19 is a function g(n) (a positive integer) of
the sample size n where g(n) = n® with 0 < a < 1, the least squares estimate
d using the above regression is asymptotically normally distributed in large

samples:
2

5 ™

d~ N —
"oy, oy

where U; = In[4sin®(w;/2)] and U is the sample mean of Uj,j = 1,...,g(n).

) (5.20)

Under the null hypothesis of no long-memory (d = 0), the t-statistic

) ~1/2
too =d U 5.21
(629 n)( )2) ( )

has a limiting standard normal distribution. The GPH estimator is similar

to the Periodogram estimator, they both use the periodogram as the left side

regression variable.

5.3 Whittle Estimator

We begin with the formula for maximum likelihood estimation (MLE) of frac-
tional differencing parameter d. The Gaussian log-likelihood of a long-memory
ARFIMA process X defined by Eq. 4.16 is given by

1
log L(n, 0?) = ——10g(27r) — = log |Z| — X X (5.22)

where n = (a1,...,a,;d;by,...,b,) is the parameter vector; ¥ denotes the

n x n covariance matrix of X depending on 1 and ¢?, and |3| denotes the
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determinant of ¥. The maximum likelihood estimators 7 and 62 can be found
by maximising log L(n, 0?) with respect to n and o?.

Due to computation problems (Beran, 1994), p. 108, an approximate
MLE’s are needed. According to (Wang et al., 2007), the Whittle’s estimator

is the result of minimisation of the function:

"IN " .
v = [ f()\;n)d/\Jr/ﬂlogf(/\,n)d)\ (5.23)

where the subscript W stands for Whittle; f(\;n) is the spectral density and

I()) is the periodogram of the process. Instead of using the full maximum

likelihood, we concentrate our attention just on the frequencies near to 0.

5.4 Bootstrap

The bootstrap technique can be used to estimate the small-sample distribution
of a statistic. Introduced by Efron (1979), the bootstrap enables correction
of size distortions for tests or data-based confidence intervals for estimations.
For details, see Davison and Hinkley (1997). The original test, designed for iid
observations, fails for dependent observations. There are many improvements
that are aimed at dependent data. The moving-block bootstrap and model-
based resampling methods perform better for short-range dependence. Short-
and long-memory processes are examined using the post-blackened moving-
block bootstrap method studied by Srinivas and Srinivasan (2000), which is
an approach intermediate between both and appears to capture the dependence
structure of the data, even using a small number of bootstrap replications. The
idea underlying the block-resampling is that if the blocks are long enough, the
original dependence is preserved in the resampled series.
The procedure works as follows for a given time series x;,t =1,...,T"
1. Compute the estimate (R/S, periodogram or DFA) and obtain H
2. ”Pre-whiten” the time series, fitting an AR(p) model with a suitably large

number of lags and obtain the estimated residuals e; and the centered
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residuals et — e. The order of the autorregresive model is estimated using
the Schwartz criterion.

3. Resample blocks of the centered residuals from the estimated model using
the moving-block bootstrap to generate B bootstrap samples.

4. "Post-blacken” the resampled centered residuals using the estimated pa-
rameters of the AR model to generate B bootstrap samples of x denoted
a?.

5. For each bootstrapped sample, compute the statistic estimate H°.

6. Check, if the estimated statistics is in the p% confidence interval for the
null hypothesis of no long memory. Following Davison and Hinkley (1997)

the estimated bootstrap p-value for a two tailed confidence interval is
defined by

pH) = 3 SO I(H > A1) (5.24)

where I(+) equals one if the inequality is satisfied and zero otherwise. The

null hypothesis is rejected when the selected significance level exceeds
p(H).



Chapter 6

Comparison of estimators

6.1 Monte Carlo Study

The advantage of working with simulated datasets in the context of long mem-
ory processes, i.e. ARFIMA(p; d; q), is that we know the true long memory
parameters. Thus, for each simulated series, four long memory estimation
methods are applied to detect the degree of persistence, which enables to
carry out the detailed comparative study and evaluate the performance of
each method. In our case, several parameters may influence the estimation of
parameter d in ARFIMA (p; d; q) models. For examples, the order of autore-
gressive part, i.e. p, and moving-average part, i.e. ¢. In particular, the aim of
this simulation is to provide the insights regarding the parameter estimation

of d from the four estimation methods with various p and gq.

6.2 Simulation Description

The performance of each method is measured with respect to two criterions,
bias and variance, that are calculated on Monte Carlo (MC) simulations of a
long memory process from a given ARFIMA ((p; d; ¢) model. Bias is the average

difference between the MC estimates and the true d, i.e. mean(d —d) . Variance

44
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reflects the spread of the MC estimates from different simulated time series
around the estimated d, i.e. var(d; —CZ) The method that provides the smallest
variance and bias is considered to be the most preferable procedure. We will
then combine these two criteria together to get the MSE, mean square error
which is defined as the variance around the true value of d, i.e. var(d;—d). The
MSE can be computed as M SE = bias® + var and gives an overall measure of
estimator performance.

We simulate time series processes from a selection of ARFIMA(0; d; 0) and
(1;d; 1) models and compare the results by variance, bias ad MSE provided
by each method. For each simulated data set, we use the four methods that
are the most used in current literature. We detect the persistence by classical
periodogram method, denoted by PER in Table 6.1, Peng’s detrended fluc-
tuation analysis denoted by DFA| classical R/S analysis denoted by R/S and
Whittle estimator denoted by WHIT.

6.3 Summary of results

We generate 100 Monte Carlo simulations of an ARFIMA (p; d; q) process with
a sample size of 1000 observations and summarise our findings below for each
considered ARFIMA model by comparing bias and variance and MSE, mean
square error of the estimated d. We also show the empirical 95% confidence
intervals for for the Hurst exponent H to see if it can be seen statistically
significantly different from 0.5.

We have done two series of tests — first against the "pure” long memory
(ARFIMA(0,d,0) and second to test for robustness against short memory con-
tamination for ARFIMA(1,d,1) with d and MA coefficient constant of 0.3 and
AR increasing from 0.2 up to 0.8. The length of the simulated series was 1000
observation which seems a reasonable number considering it is about 4 years

of daily financial market data.
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All time series were simulated by the classical Durbin-Levinson algorithm
as presented in Durbin (1960). The computational time was in range of seconds
for all the estimators except Whittle which was a bit slower and particularly
DFA, which took several minutes for computation of those hundreds of esti-
mates. For the R/S analysis we use the subseries starting from 16 up to 512
and the P-Hurst modification. The threshold for the periodogram estimator
was set to t%5 as advised by Lobato and Robinson (1996) and Baillie (1996)
and the DFA polynomial is of degree 1 - i. e. linear.

ARFIMA (0; d; 0)

The first series of tests shows the raw performance of the estimators in an
ideal case without the presence of any jamming. In the table 6.1 we can see
sample bias, sample variance and total MSE of the estimators and also the
95% empirical quantiles for all five cases. (The Whittle estimator could not
be computed for the Gaussian noise.) We can conclude that the biases are
low for lower levels of H but for H = 0.8 and 0.9 the Whittle’s estimator bias
is so big that the confidence interval does not cover the true value. In terms
of MSE none of the estimators is uniformly better than the others. Although
Whittle seems to take the lead for the lower values of H, it is beaten in the
H = 0.8 case by all the other estimators. Second in performance may be the
DFA followed by the PER etimator. The R/S performs almost consistently
the worst.

The confidence intervals in the table show us that Whittle estimator has a
tendency to underestimate and in the last two cases the true value is completely
out of the empirical 95% quantile. The rest of the estimators seem to cover the
true value quite well although the confidence intervals are pretty wide. Only
the Whittle estimator can reject the null hypothesis of no long dependence for
H = 0.6 which is for 1000 observations a weak result, but all the other three

lower bounds are very close to rejecting.
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ARFIMA(1;d; 1)

In this subsection we consider the multiple-parameter case ARFIMA(1;d;1).
Those models allow to combine the long and short memory components. Ad-
ditional part of the estimation error arises here through the difficulty in dis-
cerning between the AR part and the long memory associated with H, since
the AR part and long memory parameter H can imply similar patterns of
autocorrelation for the first few lags. This agrees with our simulation results
presented in table 6.2. Our findings reveal that MSEs of all estimators are
higher than that in ARFIMA (0;d;0). The results for one of the models can
be analysed also in the form of histograms for all four estimators in Figure 6.1

If we compare the results for individual estimators we the the R/S per-
forms consistently without being affected by the AR component. the DFA
is again one of the best, having bad performance only for the highest AR-
contamination. The periodogram estimator performs very good in the first
two cases but then shows very high bias and also MSE. Finally the Whittle
estimator completely breaks down for the last two models, gravely overesti-
mating the true value of the Hurst exponent H. Overall we can say the for the
highest AR contamination of the data (AR coefficient = 0.8) are the estimator
completely unusable, three of four not covering the true value of estimated
parameter in the empirical confidence intervals.

The boxplot diagrams from all estimates in this chapter are present in the

Appendix.
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Method | BIAS VAR | MSE | Q5% | Qo7.5%
Gaussian noise - H=0.5
R/S 0.0569 | 0.0080 | 0.0112 | 0.3984 | 0.7317
DFA | -0.0174 | 0.0019 | 0.0022 | 0.4008 | 0.5767
PER | -0.0044 | 0.0060 | 0.0060 | 0.3624 | 0.6713
ARFIMA(0,0.1,0) - H=0.6
R/S 0.0233 | 0.0062 | 0.0068 | 0.4894 | 0.7730
DFA | -0.0284 | 0.0017 | 0.0025 | 0.4901 | 0.6525
PER | 0.0080 | 0.0051 | 0.0051 | 0.4617 | 0.7451
WHIT | -0.0193 | 0.0004 | 0.0008 | 0.5486 | 0.6255
ARFIMA(0,0.2,0) - H=0.7
R/S 0.0115 | 0.0096 | 0.0097 | 0.5024 | 0.8789
DFA | -0.0326 | 0.0018 | 0.0028 | 0.5877 | 0.7390
PER | 0.0121 | 0.0048 | 0.0050 | 0.5839 | 0.8334
WHIT | -0.0376 | 0.0004 | 0.0018 | 0.6262 | 0.7039
ARFIMA(0,0.3,0) - H=0.8
R/S | -0.0407 | 0.0083 | 0.0088 | 0.5991 | 0.9155
DFA | -0.0369 | 0.0023 | 0.0085 | 0.6846 | 0.8514
PER | 0.0279 | 0.0057 | 0.0079 | 0.6822 | 0.9500
WHIT | -0.0595 | 0.0005 | 0.0107 | 0.7059 | 0.7801
ARFIMA(0,0.4,0) - H=0.9
R/S | -0.0737 | 0.0061 | 0.0115 | 0.6692 | 0.9660
DFA | -0.0368 | 0.0035 | 0.0048 | 0.7695 | 0.9725
PER | 0.0372 | 0.0062 | 0.0076 | 0.7426 | 1.0576
WHIT | -0.0681 | 0.0004 | 0.0050 | 0.7908 | 0.8663

Table 6.1: Comparative analysis of the four methods for estimation of the long
memory parameter d in ARFIMA(0; d; 0) processes with 1000 observations and

100 Monte Carlo simulations per model.
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Method | BIAS | VAR | MSE | Qasn | Qorsn
ARFIMA(0.2,0.3,0.3) - H=0.8
R/S |-0.0407 | 0.0099 | 0.0115 | 0.6111 | 0.9567
DFA | -0.0655 | 0.0027 | 0.0070 | 0.6229 | 0.8382
PER | 0.0082 | 0.0057 | 0.0058 | 0.6782 | 0.9456
WHIT | -0.1158 | 0.0004 | 0.0138 | 0.6402 | 0.7209
ARFIMA(0.4,0.3,0.3) - H=0.8
R/S |-0.0227 | 0.0077 | 0.0082 | 0.6115 | 0.9313
DFA | -0.0134 | 0.0029 | 0.0031 | 0.6881 | 0.8871
PER | 0.0447 | 0.0047 | 0.0067 | 0.7019 | 0.9510
WHIT | 0.0103 | 0.0005 | 0.0006 | 0.7599 | 0.8539
ARFIMA(0.6,0.3,0.3) - H=0.8
R/S | 0.0304 | 0.0074 | 0.0084 | 0.6352 | 0.9906
DFA | 0.0782 | 0.0023 | 0.0084 | 0.7787 | 0.9697
PER | 0.1389 | 0.0061 | 0.0254 | 0.7817 | 1.0925
WHIT | 0.1558 | 0.0003 | 0.0245 | 0.9237 | 0.9802
ARFIMA(0.8,0.3,0.3) - H=0.8
R/S | 0.0847 | 0.0055 | 0.0127 | 0.7121 | 0.9917
DFA | 0.2408 | 0.0030 | 0.0610 | 0.9393 | 1.1475
PER | 0.3585 | 0.0066 | 0.1350 | 1.0070 | 1.3161
WHIT | 0.1976 | 3-10~7 | 0.0390 | 0.9965 | 0.9984

Table 6.2: Comparative analysis of the four methods for estimation of the
long memory parameter d in ARFIMA(1;d;1) processes with AR coefficient
increasing from 0.2 to 0.8, 1000 observations and 100 Monte Carlo simulations

per model.
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Figure 6.1: Histograms of the empirical distributions of the four estimators

in Monte Carlo study. Underlying distribution is ARFIMA(0.4,0.3,0.3), 1000

observations, 100 samples



Chapter 7

Efficiency of Financial Markets

7.1 Data Description

We examine the long range dependence of four exchange rate series and re-
turns and volatilities of two stock market index series. Firstly, we consider
the nominal dollar spot rates per US Dollar for British pound (GBP), Euro
(EUR), Swiss frank (SFR), and Japanese yen (JPY). Daily exchange rates from
January 1974 to December 1987 are obtained from the FXHistory website at:
http://www.oanda.com/convert /fxhistory. The Euro data are only available
from December 15, 1998 to December 30, 2004. Time series plots of the data
are presented in Fig. 7.1.

The two chosen stock markets indices are Dow Jones Industrial Average
(DJIA) from NYSE (New York Stock Exchange) as a representant of a de-
veloped market and PX50, the index of Prague Stock Exchange as a typical
transition country stock market. The data are obtained from Yahoo Finance,
http://finance.yahoo.com. The DJIA series is a daily index value and reaches
from January 1950 to December 2008 having 14825 observations. The PX50
series also has a daily timescale and reaches from July 1997 until December

2008 having 2825 observations. The time series plots are in Fig. 7.2.
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Figure 7.1: Time series plots of four major currency exchange rates
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Figure 7.2: Time series plots of two stock market return series
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7.2 Preliminary Analysis

We start from the preliminary transformations of the raw data in order to make
the time series being weakly stationary. The logarithmic transformation and
classical differencing techniques are applied to all data sets. Graphs of the first-
differenced log data are presented in Figure 7.3 Exchange-rate changes appear
to have zero mean and constant variance over the sample period, which implies
that the filtered (transformed) data are approximately weakly stationary.

Indeed, the augmented Dickey-Fuller test for a unit root on each individual
exchange-rate change series yields p-values of less than 0.1, which along with
the empirical assessment of Figure 7.3 indicates the likely weak stationarity.
One should be careful though in relying solely on the Dickey-Fuller test, since
this standard unit-root test has low power for long memory processes.

The analysis of the stock market series is similar. The log-differenced data
are presented in Figure 7.4. Also the stock market data appear to have zero
mean, but the variance does not seem to be constant. We will for now settle
with this mild heteroskedasticity and analyse it later when we will be testing

for long memory in volatilities.

7.3 Summary of Results

The following methods are applied to estimate the long memory parameter
H: R/S analysis (R/S), Detrended fluctuation analysis (DFA), classical peri-
odogram method (PER) and Local Whittle estimator (WHIT). The point es-
timates will be supplemented by bootstrapped confidence intervals computed
according to the algorithm in 5.4 with blocks of size 32.

We can say there exists an evidence of long memory if the estimate of H is
significantly larger than 0.5. The results from various methods are compared,
and our conclusion is that we can not solely rely on a single method. The

results supported by most methods can be considered more reliable. Table
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Figure 7.3: Four major currency exchange rates changes

7.1 presents the estimates of H from various methods for four major foreign
exchange-rate change series and the respective bootstrapped confidence inter-
vals. Following table 7.2 presents the estimates of H for DJIA and PX50
returns and volatilities. Volatilities are estimated as absolute returns.

For Euro most of the methods suggest that H is only slightly over 0.5
and the bootstrapped confidence intervals do not reject the null hypothesis
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Figure 7.4: Stock market log-returns for DJIA and PX50
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Figure 7.5: Stock market log-absolute returns for DJIA and PX50

of no long memory for all methods except the Whittle estimator. Seeing the

performance of Whittle estimator in the Monte Carlo study we must conclude
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that we cannot reject the null hypothesis of no long range dependence.

When testing the GBP series, DFA and Whittle estimator according to
the bootstrapped confidence intervals reject the null hypothesis of only short
memory, but the other two methods do not. Three of the estimates are over
0.65 and the lower confidence bound of the Per estimate being 0.49 gives us
GBP as the most likely candidate for a long memory presence.

For the last two exchange rate series, the JPY and SFR, only the Whittle
method suggests that the value of H is elevated. It seems to be an outlier, since
all the other methods do not report any higher values. Also the confidence
intervals do not reject the null hypothesis. Of the four exchange rate series,
the most plausible is the existence of long memory in the GBP time series and
even there it is questionable.

For the stock market time series, we estimate the H for returns and as a
proxy for market volatility we use the absolute returns. Use of squared returns
is also mentioned in the literature, but absolute returns perform as well and
are asymptotically equivalent. In the Figure 7.6 the plots of the periodogram
estimator are shown for comparison for both the DJIA and PX50 returns and
volatilities.

The DJIA returns give for two estimation methods the value of H over
0.5 and for the other two below 0.5. In combination with the bootstrapped
confidence intervals we conclude that there is no long memory present in the
DJIA returns, either positive or negative. In the second series, the PX50
returns we can see that three of four of the H estimates are over 0.5, but
only slightly and the confidence intervals lead us the the following verdict —
no evidence of long memory.

On the other hand both of the series of market volatilities, DJIA and PX50
show strong evidence of long memory in volatility. Also the bootstrapped con-
fidence intervals suggest that the null hypothesis of no long memory should be
rejected. Therefore our final statement is that both DJIA and PX50 volatility
is strongly persistent. Standard volatility modelling techniques such as ARCH
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Method H Q25% | Qor.5%
EUR

R/S 0.5503 | 0.3784 | 0.6874
DFA | 0.5575 | 0.3812 | 0.7132
PER | 0.5250 | 0.3622 | 0.6636
WHIT | 0.7877 | 0.5231 | 0.9656
GBP
R/S 0.5633 | 0.4182 | 0.7044
DFA ] 0.6824 | 0.5257 | 0.8192
PER | 0.6656 | 0.4912 | 0.7875
WHIT | 0.6907 | 0.5437 | 0.8593
JPY
R/S 0.5933 | 0.4732 | 0.7530
DFA | 0.5515 | 0.4214 | 0.6637
PER | 0.5631 | 0.4439 | 0.6902
WHIT | 0.7619 | 0.5682 | 0.8876
SFR
R/S 0.5191 | 0.4088 | 0.6269
DFA | 0.5239 | 0.3774 | 0.6691
PER | 0.6306 | 0.4941 | 0.7244
WHIT | 0.6602 | 0.5369 | 0.8005

Table 7.1: Estimates of H for four exchange-rate change series
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and GARCH would then produce biased results which could be significantly
improved by the use of FIGARCH, fractionally integrated GARCH model.
We can say that we have proven the presence of multifractality in both
DJIA and PX50 stock market indices. The market returns (first moments)
show no indication of persistence (H = 0.5) while the variance is persistent
(H > 0.5). Thus the moments of the stock market returns series (both de-
veloped and emerging) show different degree of persistence (different Hurst

exponents) which is the definition of multifractality.

ogiscale) logiscale)

DJIA - volatility PX50 - volatility

Figure 7.6: Comparison of the periodogram estimator for DJIA and PX50
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Method H Q25% | Qors5%
DJIA

R/S | 0.5667 | 0.4882 | 0.6340
DFA | 0.4647 | 0.3480 | 0.5547
PER | 0.4769 | 0.3605 | 0.6010
WHIT | 0.5210 | 0.4118 | 0.6037
PX50
R/S | 0.5586 | 0.4223 | 0.7055
DFA | 0.4872 | 0.3901 | 0.6397
PER | 0.5235 | 0.3778 | 0.6859
WHIT | 0.5249 | 0.3632 | 0.6781
DJIA - volatility
R/S | 0.8014 | 0.6907 | 0.9447
DFA | 0.7330 | 0.5279 | 0.8351
PER | 0.8686 | 0.6736 | 0.9755
WHIT | 0.6601 | 0.5230 | 0.7709
PX50 — volatility
R/S |0.6774 | 0.5189 | 0.8306
DFA | 0.7176 | 0.5822 | 0.8633
PER | 0.9850 | 0.7723 | 1.0959
WHIT | 0.6563 | 0.5465 | 0.7977

Table 7.2: Estimates of H for stock market returns and volatilities



Chapter 8
Conclusion

The main goal of this thesis was to present the possible relationship between
persistence in returns or volatilities of financial markets and their efficiency.
We have thoroughly analysed the theoretical basis of the Efficient market hy-
pothesis and its variant versions. The loose formulation of the EMH allows for
apparent irregularities in the market as long as they are not permanent and
are coming from the preferences of the agents using the market. One possible
way to indicate market inefficiency would be to show that a market inhabited
by essentially similar agents as other markets shows consistently abnormal
behaviour. The reason for the abnormality would then be in the market it-
self, not in the behaviour of the agents. Long memory in the market returns
could eventually be interpreted as a signal of such anomalous development in
a financial market.

We have presented the theoretical basis for several long memory mod-
els and many corresponding estimators. Some of them we tested in a Monte
Carlo study and compared their performance on simulated artificial long mem-
ory time series. The results of the study strengthened the importance of cor-
rect bootstrapped confidence intervals due to often large bias of the selected
methods. Finally we tried to prove long memory presence in the PX50 re-

turns time series, an impersonator of an emerging market. The results differed
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slightly from those of the DJIA index, a representative of the developed mar-
kets group. Whereas the former showed light tendency to persistence, the
latter tended more to anti-persistent behaviour. Unfortunately none of the
results was significant, which would enable us to prove our point.

Despite the momentarily inconclusive results is the question of long mem-
ory in returns still tempting and attractive. And our second empirical result,
the common presence of long memory in volatility in both the developed and
emerging markets tends to be almost equally important and interesting and
urging for future research. We have at least proven the multifractal nature
of the chosen stock markets, since the Hurst exponent for the second moment
(variance) is significantly different from the Hurst exponent of the first moment

(returns), which is typical for multifractal series.
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Figure 8.1: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is Gaussian noise with H = 0.5,
1000 observations, 100 samples
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Figure 8.2: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is ARFIMA(0,0.1,0), 1000 obser-

vations, 100 samples
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Figure 8.3: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is ARFIMA(0,0.2,0), 1000 obser-

vations, 100 samples
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Figure 8.4: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is ARFIMA(0,0.3,0), 1000 obser-

vations, 100 samples
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Figure 8.5: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is ARFIMA(0,0.4,0), 1000 obser-

vations, 100 samples
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Figure 8.6: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is ARFIMA(0.2,0.3,0.3), 1000

observations, 100 samples
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Figure 8.7: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is ARFIMA(0.4,0.3,0.3), 1000

observations, 100 samples
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Figure 8.8: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is ARFIMA(0.6,0.3,0.3), 1000

observations, 100 samples
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Figure 8.9: Boxplot of the empirical distributions of the four estimators in
Monte Carlo study. Underlying distribution is ARFIMA(0.8,0.3,0.3), 1000

observations, 100 samples



