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Chapter 1

Introduction

1.1 Graph decompositions

Graph decompositions and width-parameters play a very important role in
algorithmic graph theory (as well as structural graph theory). The most well-
known and studied notions include the tree-width, branch-width and clique-
width of graphs. The importance of these notions lie in the fact that many
NP-complete problems can be decided for classes of graphs of bounded tree-
/branch-width in polynomial time. A classical result of Courcelle [4] asserts
that every problem expressible in the monadic second-order logic can be de-
cided in linear time for the class of graphs with bounded tree-/branch-width.
An analogous result for matroids with bounded branch-width representable
over finite fields have been established by Hliněný [7, 8] and generalized using
a more specialized notion of width to all matroids by Král’ [10].

Most of the algorithms for classes of graphs of bounded width require a
decomposition of an input graph as part of input. Fortunately, optimal tree-
decompositions of graphs can be computed in linear time [2] if the width is
fixed and there are even simple efficient approximation algorithms [3]. For
branch-width, Oum and Seymour [13] recently established that the branch-
decompositions of a fixed width of graphs and matroids can be computed
in polynomial-time (or decided that they do not exist). Their algorithm
actually deals with a more general notion of connectivity functions which are
given by an oracle. A fixed-parameter algorithm for the same problem has
been developed by Hliněný and Oum [9].

In this thesis, we study submodular partition functions introduced by
Amini et al. [1]. This general notion includes both graph tree-width and
branch-width as special cases. We postpone the formal definition to Sec-
tion 3.1. In their paper, Amini et al. [1] presented a duality theorem that
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CHAPTER 1. INTRODUCTION 6

implies the known duality theorems for graph tree-width and graph/matroid
branch-width of Robertson and Seymour [16].

Since the duality, an essential ingredient for some of the known algorithms
for computing decompositions of small width, smoothly translates to this
general setting, it is natural to ask whether decompositions of submodular
partition functions with fixed width can be computed in polynomial-time. In
this thesis, we show that such an algorithm cannot be designed in general.
In particular, we present an argument that every algorithm deciding whether
a partition width of an n-element set is at most two must ask an oracle the
number of queries exponential in n.

On a positive side, we were able to develop a notion of loose tangles, a key
ingredient of the algorithm of Oum and Seymour [13], for this more general
concept which we hope to be of some use to design algorithms for special
classes of submodular partition functions.

1.2 Graph tree-width

The notions of tree-decomposition and tree-width were first introduced (un-
der different names) by Halin [6]. Robertson and Seymour reintroduced the
two concepts, apparently unaware of Halin’s paper, in their famous Graph
Minor series. They define it for hypergraphs but we state it for simple graphs.

For a graph G = (V,E), a tree-decomposition is a pair (T, σ) where T is
a tree and σ is a mapping from the vertex set of T to the set of subsets of
vertices of G which satisfy the following conditions.

• For every edge uv ∈ E, there is a node a such that {u, v} ⊆ σ(a).

• For every vertex v ∈ V , the set σ−1(v) induces a non-empty subtree of
T .

For a node a of T , we call σ(a) ⊆ V a bag of a. The width of a tree-
decomposition (T, σ) is the maximum size of a bag of T decreased by one.
The tree-width of G is the minimum width over all tree-decompositions of
G.

There are dual combinatorial objects to tree-decompositions called bram-
bles. A bramble in a graph G is a set B of subsets of vertices of G such that
every set W from B induces a connected subgraph in G and every two sets
W1 and W2 from B touch, i.e., W1 ∪W2 induces a connected subgraph in G.

A subset of V is said to be a hitting set for B if it intersects every element
of B. The order of B is the minimum size of a hitting set for B. The bramble
number of a graph G is the maximum order of a bramble in G. The tree-
decompositions and brambles are connected through the following theorem.
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Theorem 1 (Seymour and Thomas [17]). The tree-width of every graph is
equal to its bramble number increased by one.

1.3 Graph branch-width

The notion of branch-width was also introduced by Robertson and Sey-
mour [16]. Even though it was first defined for hypergraphs, it is natu-
rally generalized to connectivity functions as we show in Section 2.1. Even
Robertson and Seymour proved their duality theorem between branch-width
and tangle number using the general setting of connectivity functions [16].

Let G = (V,E) be a simple graph. A branch-decomposition of G is a
pair (T, σ) where T is a ternary tree and σ is a bijection between the set
of leaves of T and E. Every edge e of T naturally defines a bipartition
(Ae, Ae) of the edge set E. The border ∆ of a subset F of edges is the set
of vertices in V incident with both an edge in F and an edge in F , i.e.,
∆(F ) = {v ∈ V |∃uv ∈ F and ∃u′v ∈ F}. The order of an edge e of T is the
size of the border of Ae, |∆(Ae)|, and the width of a branch-decomposition
(T, σ) is the maximum order of an edge of T . The branch-width of G is the
minimum width of a branch-decomposition of G.

The branch-width and tree-width of graphs describe very similar charac-
teristics of graphs. The following theorem by Robertson and Seymour [16]
shows that the branch-width and the tree-width are linearly dependent.

Theorem 2 (Robertson and Seymour [16]). Let G be a graph of tree-width
k and branch-width b > 1. Then

b− 1 ≤ k ≤

⌊

3

2
b

⌋

− 1.

1.4 Monadic second-order formulas

Different graph properties can be described by logic formulas. The complex-
ity of the property is reflected by the complexity of a formula expressing it.
First-order logic formulas are one of the simplest allowing quantifiers only
over elements of the universe. Second-order logic formulas allow quantifiers
over predicates. Finally, monadic second-order formulas are second-order
logic formulas where quantification is only over unary predicates (and ele-
ments of the universe). Note that unary predicates can be viewed as subsets
of the universe.

For a graph G = (V,E), the universe is the set of vertices V and there
is a predicate E(x, y) (the only binary predicate allowed), indicating the
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adjacency of vertices. This predicate represents the input. For example, the
following formula is true if and only if G is 3-colorable. The variables for
elements are printed in small letters while the variables for predicates are
printed in capital letters.

∃C1∃C2∃C3

(

∀x
3
∨

i=1

Ci(x) ∧ ∀x∀y

(

E(x, y) ⇒
3
∧

i=3

¬(Ci(x) ∧ Ci(y))

))

The well-known theorem of Courcelle [4] states that for every monadic
second-order formula ϕ and every class C of graphs of bounded tree-width,
there is a linear-time algorithm deciding whether a graph from C satisfies ϕ.

Theorem 3 (Courcelle [4]). Let k be a fixed integer and a fixed monadic
second-order logic formula ϕ. There is a linear-time algorithm for deciding
whether a graph of tree-width at most k satisfies ϕ.

1.5 Graph minors

The concepts of graph decompositions are deeply interconnected with one of
the most important theorems in the graph theory, the graph minor theorem.

A graph H is a minor of a graph G, writing H 4 G, if we can obtain
H from a subgraph of G by contracting some of its edges. A reflexive and
transitive relation is called a quasi-ordering. A quasi-ordering 6 on a set X
is a well-quasi-ordering, and the elements of X are well-quasi-ordered by 6,
if for every infinite sequence x0, x1, . . . in X there are indices i < j such that
xi 6 xj .

Actually, if X is well-quasi-ordered, then every infinite sequence in X has
an infinite non-decreasing subsequence. Now, we formulate the graph minor
theorem using these concepts.

Theorem 4 (Graph Minor Theorem; Robertson and Seymour). The finite
graphs are well-quasi-ordered by the minor relation 4.

A class C of graphs closed under isomorphism is closed under taking mi-
nors when, for every graph G ∈ C, all minors of G belong to C. For a class
H of graphs, we define a class

Forb4(H) = {G|H 64 G for all H ∈ H}

of all graphs without a minor in H. We say that H is a set of forbidden
minors for the class Forb4(H).
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Note that Forb4(H) is closed under taking minors. Actually, every class
of graphs that is closed under taking minors can be expressed by forbidden
minors. Naturally, we are interested in the smallest set of forbidden minors
for such a class of graphs. It turns out that there is indeed a unique smallest
such set H. Certainly, the set

HC = {H|H is 4-minimal in C}

satisfies C = Forb4(HC) and is contained in every such a set. Clearly, the
elements of HC are incomparable under the minor relation 4. By Theorem 4,
any set of 4-incomparable graphs must be finite, so every HC is finite. In
other words, every class of graphs closed under taking minors has a finite
number of forbidden minors.

Corollary 5. Every class of graphs that is closed under taking minors can
be expressed as Forb4(H) with finite H.

The graph minor theorem also contributed to the algorithmic graph the-
ory. Robertson and Seymour have shown that testing whether a graph con-
tains a fixed H as a minor can be done polynomial time (in cubic time
although usually with an enormous constant depending on H). Hence, it
can be decided in polynomial time whether a graph G belongs to a class
C closed under taking a minor. It is sufficient to test whether one of the
forbidden minors for C, H1, . . . , Hk, is a minor of G, i.e., Hi 4 G.



Chapter 2

Connectivity functions

2.1 Submodular functions and duality

Submodular functions form an important class of functions. A number of
problems can be reduced to the minimization of a particular submodular
function. When dealing with graph decompositions we will restrict ourselves
to the class of integer-valued submodular functions.

A function f : 2E → N for a finite set E is said to be submodular if the
following holds for every pair of subsets X, Y ⊆ E:

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) . (2.1)

A submodular function f is symmetric if f(X) = f(X), for all subsets
X of E. Finally, a connectivity function is a submodular function that is
symmetric and f(∅) = 0.

The branch-decompositions of graphs are naturally generalized to the
branch-decompositions of connectivity functions. For a connectivity function
f on a ground set E, a branch-decomposition of f is a pair (T, σ) where T
is a ternary tree and σ is a bijection between the set of leaves of T and
E. Every edge e of T naturally defines a bipartition (Ae, Ae) of the ground
set E. The order of an edge e of T is the value f(Ae) and the width of a
branch-decomposition (T, σ) is the maximum order of an edge of T . The
branch-width of f is the minimum width of a branch-decomposition of f .
This notion includes the notion of the usual branch-width of graphs and
matroids.

In the following, Greek letters will be used for sequences of subsets, i.e.,
α can stand for a sequence A1, . . . , Ak of subsets of a set E. Such a sequence
α is called a covering of E if all elements of E are contained in some Ai. The
overlap o(α) of α is the set of elements that belong to at least two parts of
α. Finally, α is a partition if it is a covering with empty overlap.

10
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We introduce shorthands for operations with sequences of subsets we want
to use: if α is such a sequence A1, . . . , Ak and A is another subset, then α∩A
stands for the sequence A1 ∩ A, . . . , Ak ∩ A. We use α \ A in a similar way.
Finally, (A, α) stands for the sequence obtained from α by inserting A to the
sequence. Note that empty sets are allowed in the sequences.

A partial branch-decomposition T of f for a partition α is a branch-
decomposition of a connectivity function fα obtained from f by identifying
the parts of α, i.e., the ground set of fα are the parts of α. We call the
partition α the displayed partition of T .

A set A ⊆ E is small if f(A) ≤ k. A partial branch-decomposition of f
over a set A of small subsets of E is a partial branch-decomposition of f for
a partition which parts are small subsets of sets contained in A.

A set A ⊆ E is k-branched if there is a partial branch-decomposition of
f of width at most k for the partition (A|{e1}| . . . |{er}|), ei ∈ A. Note that
E is k-branched if and only if f has branch-width at most k.

For a graph G = (V,E), the connectivity function of G is the function δ2,
defined as d2(X) = |∆(X)| where ∆ is the border introduced in Section 1.3.

There is a dual object to branch-decompositions called a tangle, intro-
duced by Robertson and Seymour [16]. A set T of subsets of E is called an
f -tangle of order k + 1 if T satisfies the following three axioms:

(T1) For all A ⊆ E, if f(A) ≤ k, then either A ∈ T or A ∈ T .

(T2) If A,B,C ∈ T , then A ∪B ∪ C 6= E.

(T3) For all e ∈ E, we have E \ {e} 6∈ T .

Robertson and Seymour [16] proved the following duality theorem be-
tween branch-decompositions and tangles.

Theorem 6 (Robertson and Seymour [16]). Let f be a connectivity function
on a ground set E. There is no f -tangle of order k + 1 if and only if the
branch-width of f is at most k.

Proof. Suppose that there is an f -tangle T of order k + 1 and that there is
a branch-decomposition T of f of width at most k. Since the width of T is
at most k, f(Ae) ≤ k for all edges e of T , where Ae is one of the parts of the
bipartition given by e. Hence, one of the sets Ae or Ae is in T . Only one
of these sets can belong to T because of (T2). Therefore we can orient the
edges of T toward the subtree corresponding to the part in T . Since T has
|E(T )| + 1 vertices, there is a vertex v with no edge leading to it. It cannot
be a leaf, since E \ σ(v) does not belong to T because of (T3). Hence, v is
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an internal vertex corresponding to a partition A,B,C all belonging to T .
But then A ∪B ∪ C = E violating (T2) – a contradiction.

We prove a stronger version of the other implication. Let A be an arbi-
trary set of small subsets of E. If there is no f -tangle T of order k + 1 such
that A ⊆ T , then there is a partial branch-decomposition of width at most
k over A.

We proceed by induction on the number r of small sets A (recall that
A is small if f(A) ≤ k) such that neither A nor A is a subset of a set in
A. We suppose first that r = 0. Let T be the set of all small subsets
of a set in A. Since A ⊆ T , T is not an f -tangle by the assumption.
For every small set A, either A ∈ T or A ∈ T since r = 0. If (T3) is
violated, then there is e ∈ E such that E \ {e} belongs to T . Hence, the tree
consisting of two leaves displaying the partition (E \ {e}, {e}) is a partial
branch-decomposition over A. Thus (T2) is violated and there exist sets
A,B,C ∈ T with A ∪ B ∪ C = E. We can assume that A, B, and C are
mutually disjoint since by submodularity

2k ≥ f(A) + f(B) ≥ f(A \B) + f(B \ A)

and we take one of A\B or B\A instead. The tree on four vertices displaying
the partition (A|B|C) is a partial branch-decomposition over A.

Now assume that r > 0. Choose a small set A ⊆ E such that neither A
nor A is a subset of any member of A and subject to that with |A| minimal.
Let A1 = A ∪ {A} and A2 = A ∪ {A}. Since there is no f -tangle T with
A ⊆ T , there is no f -tangle T with A1 ⊆ T and A2 ⊆ T . By the induction
there are partial branch-decompositions (T1, σ1) over A1 and (T2, σ2) over
A2. A leaf t of T1 is bad if σ1(t) is not a subset of a set in A. We define a
bad leaf in T2 similarly.

Consider such a bad leaf t of T1. Since σ1(t) is a subset of a set in A1,
σ1(t) has to be a subset of A. On the other hand, σ1(t) cannot be a proper
subset of A by our choice of A. Hence, σ1(t) = A and there can be only
one bad leaf in T1. We may assume that T1 has a bad leaf t1 for otherwise
(T1, σ1) is the desired partial branch-decomposition over A.

Let (T2, σ2) be a partial branch-decomposition of f over A2 such that
it has minimum number of bad leaves. If T2 has no bad leaf, then (T2, σ2)
is the desired partial branch-decomposition over A. Hence suppose that T2

has a bad leaf t2. Since t2 is bad, σ2(t) is a small subset of A. Let T be
a tree constructed from T1 and T2 by deleting t1 and t2 and joining the
former neighbors of t1 and t2 by an edge. Now, T is not generally a partial
branch-decomposition since the leaves of T form a covering of E with possibly
non-empty overlap. We will refine this covering to get a partition of E and
show that the resulting tree is a partial branch-decomposition over A.
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First, take a set C such that σ2(t2) ⊆ C ⊆ A with f(C) minimal. We
define a mapping σ on the set of leaves of T as follows. For a leaf b1 of T1,
we let b1 represent only the elements that are in C, σ(b1) := σ1(b1) ∩ C.
For a leaf b2 of T2, we let b2 represent only the elements that are not in
C, σ(b2) := σ2(b2) \ C. We have to show that for every edge e in (T, σ),
f(Ae) ≤ k. If e1 ∈ T1, let Y denote the part of (Ae1

, Ae1
) where Y ⊆ A

and if e2 ∈ T2, let Z denote the part of (Ae2
, Ae2

) where Z ⊆ σ2(t2). In
T the edges e1 and e2 separate the sets Y ∩ C and Z \ C instead. By the
submodularity and symmetry of f we get:

f(C) + f(Y ) ≥ f(C ∩ Y ) + f(C ∪ Y ),

f(C) + f(Z) = f(C) + f(Z) ≥ f(C \ Z) + f(Z \ C).

By the choice of C, f(C ∪ Y ) ≥ f(C) and f(C \ Z) ≥ f(C) giving that
f(C ∩ Y ) ≤ f(Y ) ≤ k and f(Z \ C) ≤ f(Z) ≤ k. Hence, the order of
every edge in (T, σ) is at most k. It is easy to check that the leaves of
(T, σ) form a partition of E. Since σ(t) ⊆ σ1(t) or σ(t) ⊆ σ2(t), the parts of
the displayed partition of T are subsets of sets in A2 and (T, σ) is a partial
branch-decomposition of f over A2 with smaller number of bad leaves than
T2 — a contradiction.

2.2 Minimization of submodular functions

It was shown by Grötschel, Lovász, and Shrijver [5] that the minimum value
of a rational-valued submodular function f on E can be found in polynomial
time, if f is given by an oracle and an upper bound B is given on the nu-
merators and denominators of the values of f . The running time is bounded
by a polynomial in |E| and logB.

However, we deal with connectivity functions for which much simpler
minimization algorithm exists. Queyranne [14, 15] gave the following easy
combinatorial algorithm to find a non-empty proper subset A of E minimizing
f(A), where f is given by an oracle. The running time of the following
algorithm is O(|E|3γ), where γ is the oracle query time.

Call an ordering e1, . . . , en of the elements of E a legal order of E for f
if, for each i = 1, . . . , n,

f({e1, . . . , ei−1, x}) − f({x})

is minimized over x ∈ E \ {e1, . . . , ei−1} by x = ei. One easily finds a legal
order by O(|E|2) oracle calls.
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A set A splits a set X if both X ∩A and X \A are non-empty. Now the
algorithm is:

Algorithm 1 (Queyranne [14, 15]). Finds a non-empty proper subset A of
E minimizing f(A).

(M1) Find a legal order (e1, . . . , en) of E for f .

(M2) Determine (recursively) a non-empty proper subset B of E not splitting
{en−1, en}, minimizing f(B). This can be done by identifying en−1 and
en.

(M3) Then the minimum value of f(A) over non-empty proper subsets A of
E is equal to min{f(B), f({en})}.

The correctness of the algorithm follows from, for n ≥ 2:

f(A) ≥ f({en}) for each A ⊆ E splitting {en−1, en}. (2.2)

This is proved as follows. Define b0 := e1. For i = 1, . . . , n−1, define bi := ej ,
where j is the smallest index such that j > i and such that A splits {ei, ej}.
For i = 0, . . . , n, let Ai := {e1, . . . , ei}. Note that for each i = 1, . . . , n − 1
one has

f(Ai−1 ∪ {bi}) − f({bi}) ≥ f(Ai−1 ∪ {bi−1}) − f({bi−1}), (2.3)

since if bi−1 = bi this is trivial, and if bi−1 6= bi, then bi−1 = ei, and (2.3)
follows from the legality of the order.

We will show that the following holds for each i = 1, . . . , n− 1:

f(Ai∪A)−f(Ai−1∪A)+f(Ai∪A)−f(Ai−1∪A) ≤ f(Ai∪{bi})−f(Ai−1∪{bi}).
(2.4)

In proving this, we may assume (by symmetry of A and A) that ei ∈ A.
Then Ai ∪A = Ai−1 ∪A and bi ∈ A. By submodularity we get the following:

f(Ai ∪ {bi}) + f(Ai−1 ∪A) ≥ f(Ai−1 ∪ {bi}) + f(Ai ∪ A).

This gives (2.4).
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Then we have:

f(en) − 2f(A)

= f(An−1 ∪A) + f(An−1 ∪A) − f(A0 ∪A) − f(A0 ∪ A)

=
n−1
∑

i=1

(f(Ai ∪A) − f(Ai−1 ∪ A) + f(Ai ∪ A) − f(Ai−1 ∪ A))

≤
n−1
∑

i=1

(f(Ai ∪ {bi}) − f(Ai−1 ∪ {bi}))

≤
n−1
∑

i=1

(f(Ai ∪ {bi}) − f(Ai−1 ∪ {bi−1}) + f({bi−1}) − f({bi}))

= f(An−1 ∪ {bn−1}) − f({bn−1}) − f({b0}) + f({b0}) = −f(en)

where the first inequality follows from (2.4), and the second inequality follows
from (2.3). This establishes (2.2) and finishes the proof.

2.3 Computing branch-decompositions

For a fixed k, Oum and Seymour [13] devised a polynomial-time algorithm
for deciding whether the branch-width of a connectivity function f is at most
k, if f is given by an oracle. In this section we will present their algorithm.

Let f be a connectivity function on E. We define a function fmin on pairs
of disjoint subsets of E as follows.

fmin(A,B) = min
A⊆Z⊆B

f(Z)

Let us state two auxiliary lemmas.

Lemma 7 (Oum and Seymour [13]). Let A, B, C, D be subsets of E such
that A ∩B = C ∩D = ∅. It holds for a connectivity function f on E,

fmin(A,B) + fmin(C,D) ≥ fmin(A ∩ C,B ∪D) + fmin(A ∪ C,B ∩D).

Proof. Let S be a subset of E such that A ⊆ S ⊆ B and f(S) = fmin(A,B).
Let T be a subset of E such that C ⊆ T ⊆ D and f(T ) = fmin(C,D). By
the submodularity of f , we get

fmin(A,B) + fmin(C,D) = f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).
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Since A∩C ⊆ S∩T ⊆ B ∪D, we conclude that f(S∩T ) ≥ fmin(A∩C,B∪D).
Similarly, since A ∪ C ⊆ S ∪ T ⊆ B ∩D, we get that f(S ∪ T ) ≥ fmin(A ∪
C,B ∩D). The result follows.

Lemma 8 (Oum and Seymour [13]). Let g : 2E → Z be a submodular
function such that g(∅) = 0 and g(X) ≤ g(Y ) if X ⊆ Y . For all X ⊆ E,
there exists a subset A of X such that |A| ≤ g(X) and g(A) = g(X).

Proof. We proceed by induction on |X|. If X = ∅, then it is trivial.
Suppose |X| = k > 0. We assume that this lemma is true when |X| < k.

Let A be a minimal subset of X such that g(A) = g(X). If A = ∅, then
g(X) = g(A) = g(∅) = 0 ≥ |A| and the lemma holds. Let e be an element of
A maximizing g(A \ {e}). By our assumption, g(A \ {e}) ≤ k − 1.

By the induction hypothesis, there exists a subset B of A \ {e} such
that |B| ≤ k − 1 and g(B) = g(A \ {e}). If B = A \ {e}, then |A| ≤ k
and we are done. Thus, we may assume that B 6= A \ {e} and there exists
d ∈ (A \ {e}) \B. By the choice of e, we know that g(A \ {d}) ≤ g(A \ {e}).
Since B ⊆ A\{d}, we deduce that g(A\{e}) = g(B) ≤ g(A\{d}). Therefore
g(A \ {e}) = g(A \ {d}). Moreover, g(A \ {d, e}) = g(A \ {e}) because
g(B) ≤ g(A \ {d, e}) ≤ g(A \ {e}). Now let us apply the submodularity:

g(A \ {e}) + g(A \ {d}) ≥ g(A \ {d, e}) + g(A) ≥ g(A \ {e}) + k

We deduce that g(A \ {e}) ≥ k, a contradiction.

Now, we are ready to prove an important lemma implying that every set
is a minimal separator for two small sets.

Lemma 9 (Oum and Seymour [13]). For a connectivity function f on E and
a subset Z of E, there exist a subset A of Z and a subset B of Z such that

max{|A|, |B|} ≤ fmin(A,B) = f(Z).

Proof. For a subset X of Z, let g1(X) = fmin(X,Z). By Lemma 7, g1(X) +
g1(Y ) ≥ g1(X ∩ Y ) + g1(X ∪ Y ) for two subsets X, Y of Z. In addition,
0 ≤ g1(∅) ≤ f(∅) = 0 and g1(X) ≤ g1(Y ) if X ⊆ Y ⊆ Z. By Lemma 8, there
exists a subset A of Z such that

|A| ≤ g1(Z) = f(Z) and g1(A) = fmin(A,Z) = f(Z).

For subset X of Z, let g2(X) = fmin(A,X). It is again routine to show
that g2 satisfies all conditions of Lemma 8. Therefore there exists a subset
B of Z such that

|B| ≤ g2(Z) = fmin(A,Z) and

g2(B) = fmin(A,B) = fmin(A,Z) = f(Z).

Therefore max{|A|, |B|} ≤ fmin(A,B) = f(Z).
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We will apply the following lemma from [13].

Lemma 10 (Oum and Seymour [13]). Let f be a connectivity function on
E, A,B ⊆ E two k-branched sets, and C ⊆ A ∪ B. If f(C) ≤ k, then there
exists a k-branched set C ′ such that C ⊆ C ′ ⊆ A ∪ B.

Proof. Pick Z such that A \ B ⊆ Z ⊆ A and f(Z) is minimum. We claim
that Z and B\Z are k-branched. It is enough to show that for each subset Y
of A (or B), if f(Y ) ≤ k, then f(Y ∩Z) ≤ k (or f(Y \Z) ≤ k, respectively).
This follows from the submodular inequalities:

f(Y ) + f(Z) ≥ f(Y ∩ Z) + f(Y ∪ Z) ≥ f(Y ∩ Z) + f(Z) if Y ⊆ A, and

f(Y ) + f(Z) ≥ f(Y \ Z) + f(Z \ Y ) ≥ f(Y \ Z) + f(Z) if Y ⊆ B.

So Z and B \ Z are both k-branched. Now, take a set C ′ such that C ⊆
C ′ ⊆ A ∪ B and that f(C ′) is minimum. We use the same trick to show
that Z ∩ C ′ and (B \ Z) ∩ C ′ are k-branched. Let Y ⊆ Z, or Y ⊆ B \ Z,
respectively. In both cases, it follows from the submodularity that

f(Y ) + f(C ′) ≥ f(Y ∩ C ′) + f(Y ∪ C ′) ≥ f(Y ∩ C ′) + f(C ′)

and therefore Z∩C ′ and (B\Z)∩C ′ are k-branched. Since f(C ′) ≤ f(C) ≤ k,
(Z ∩ C ′) ∪ ((B \ Z) ∩ C ′) = C ′ is k-branched.

A key ingredient of the algorithm of Oum and Seymour [13] is the notion
of a loose tangle which we now recall. For a connectivity function f on E, a
loose f -tangle of order k+1 is a set T of subsets of E satisfying the following
three axioms:

(L1) ∅ ∈ T and {e} ∈ T for every e ∈ E such that f({e}) ≤ k.

(L2) If A,B ∈ T , C ⊆ A ∪B, and f(C) ≤ k, then C ∈ T .

(L3) E 6∈ T .

The following theorem by Oum and Seymour [13] states that the loose
f -tangles are also dual objects to branch-decompositions of connectivity func-
tions.

Theorem 11 (Oum and Seymour [13]). Let f be a connectivity function on
E. Then, no loose f -tangle of order k+1 exists if and only if the branch-width
of f is at most k.
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Proof. Let B be the set of all k-branched subsets of E and let B′ = {X|X ⊆
Y, Y ∈ B, f(X) ≤ k}.

We claim that B′ satisfies (L1) and (L2). (L1) is obvious. To see that (L2)
holds, suppose that A,B ∈ B′ and C ⊆ A ∪ B such that f(C) ≤ k. We can
assume that A and B are k-branched since we can take instead of them such
supersets of A and B that are. By Lemma 10, there exists a k-branched set
C ′ such that C ⊆ C ′ ⊆ A ∪B. Hence C ′ ∈ B and C ∈ B′.

Now let us prove the theorem. If the branch-width of f is greater than
k, then E 6∈ B′ and so B′ is a loose f -tangle.

If the branch-width of f is at most k, then E is k-branched. It is easy to
see that every k-branched set having at least two elements is a union of two
proper subsets that are k-branched. By (L1) and (L2), every loose f -tangle
should contain all k-branched sets. Since E is k-branched, there is no loose
f -tangle.

A loose tangle can contain exponentially many sets making it difficult to
work with in a polynomial-time algorithm. Hence Oum and Seymour [13]
introduced a more compact structure, loose tangle kits. A pair (P, µ) is called
a loose f -tangle kit of order k + 1 if

P = {(A,B)|A,B ⊆ E,A ∩B = ∅,max{|A|, |B|} ≤ fmin(A,B) ≤ k}

and µ : P → 2E is a function satisfying the following three axioms.

(K1) For every e ∈ E, f({e}) ≤ k, there exists (A,B) ∈ P such that A ⊆
{e} ⊆ B, f({e}) = fmin(A,B), and e ∈ µ(A,B).

(K2) If (A,B), (C,D), (F,G) ∈ P , F ⊆ X ⊆ (µ(A,B) ∪ µ(C,D)) \ G, and
f(X) = fmin(F,G), then X ⊆ µ(F,G).

(K3) µ(∅, ∅) 6= E.

We will show that a loose f -tangle exists if and only if a loose f -tangle
kit exists.

Theorem 12 (Oum and Seymour [13]). Let f be a connectivity function on
E. Then, a loose f -tangle of order k+1 exists if and only if a loose f -tangle
kit of order k + 1 exists.

Proof. Suppose that T is a loose f -tangle of order k + 1. We construct a
loose f -tangle kit of order k + 1 as follows. Let

P = {(A,B)|A,B ⊆ E,A ∩ B = ∅,max{|A|, |B|} ≤ fmin(A,B) ≤ k}.
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For each (A,B) ∈ P , let

TA,B = {X|A ⊆ X ⊆ B, fmin(A,B) = f(X), and X ∈ T },

µ(A,B) =
⋃

X∈TA,B

X.

If TA,B = ∅, then µ(A,B) = ∅. Notice that µ(A,B) may be different from
µ(B,A), even though f is symmetric.

First we show that if (A,B) ∈ P , then µ(A,B) ∈ T . Since (A,B) ∈ P ,
we have f(∅) = 0 ≤ fmin(A,B) ≤ k and therefore ∅ ∈ T . So we may
assume that TA,B 6= ∅. We claim that if X, Y ∈ TA,B, then X ∪ Y ∈ TA,B.
Since 2fmin(A,B) = f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) and f(X ∩ Y ) ≥
fmin(A,B), f(X∪Y ) ≥ fmin(A,B), we have f(X∪Y ) = fmin(A,B). By (L1),
X ∪ Y ∈ TA,B. We conclude that µ(A,B) ∈ TA,B ⊆ T .

We claim that (P, µ) is a loose f -tangle kit of order k + 1. (K3) is
trivial by (L3). To show (K2), suppose that (A,B), (C,D), (F,G) ∈ P ,
F ⊆ X ⊆ (µ(A,B) ∪ µ(C,D)) \ G, and f(X) = fmin(F,G) ≤ k. By (L2),
X ∈ T and therefore X ∈ TF,G. So X ⊆ µ(F,G). Finally, to show (K1),
consider an element e ∈ E such that f({e}) ≤ k. By Lemma 9, there exists
(A,B) ∈ P such that fmin(A,B) = f({e}) and A ⊆ {e} ⊆ B. By (L1),
{e} ∈ T and therefore {e} ∈ TA,B. Thus, e ∈ µ(A,B). We conclude that
(P, µ) is a loose f -tangle kit of order k + 1.

Conversely, suppose that (P, µ) is a loose f -tangle kit of order k+ 1. We
define

T = {X| there exists (A,B) ∈ P such that A ⊆ X ⊆ B,

fmin(A,B) = f(X), and X ⊆ µ(A,B)}.

We claim that T is a loose f -tangle of order k+1. (L3) is trivial by (K3). To
show (L2), suppose that X, Y ∈ T , Z ⊆ X ∪Y , and f(Z) ≤ k. By Lemma 9,
there exists (F,G) ∈ P such that F ⊆ Z ⊆ G and f(Z) = fmin(F,G).
By construction of T , there are (A,B), (C,D) ∈ P such that X ⊆ µ(A,B)
and Y ⊆ µ(C,D). Then F ⊆ Z ⊆ (µ(A,B) ∪ µ(C,D)) \ G and therefore
Z ⊆ µ(F,G). We conclude that Z ∈ T . Now it remains to show (L1).
Consider an element e ∈ E such that f({e}) ≤ k. By (K1), there exists
(A,B) ∈ P such that A ⊆ {e} ⊆ B, f({e}) = fmin(A,B), and e ∈ µ(A,B).
By construction of T , {e} ∈ T . We conclude that T is indeed a loose f -tangle
of order k + 1.

2.3.1 Algorithm of Oum and Seymour

Let f be a connectivity function on E. We want to find a polynomial-time
algorithm to decide whether the branch-width of f is at most k for fixed k,
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when f is given by an oracle. Instead of searching for a tree-decomposition
of width at most k, we will search for a loose f -tangle kit of order k + 1.

Algorithm 2 (Oum and Seymour [13]). Decide whether branch-width of f
is at most k.

(A1) Construct

P = {(A,B)|A,B ⊆ E,A ∩ B = ∅,max{|A|, |B|} ≤ fmin(A,B) ≤ k}.

(A2) Let µ(∅, ∅) = {e ∈ E|f({e}) = 0}.
For each e ∈ E, if 0 < f({e}) ≤ k, then find a subset B of E \ {e}
such that |B| ≤ fmin({e}, B) = f({e}). Let µ({e}, B) = {e}.
For all other (A,B) ∈ P , let µ(A,B) = ∅.

(A3) Test (K3).
If it fails, there is no loose f -tangle kit of order k + 1. Stop.

(A4) Test (K2).
If it fails, then we have (A,B), (C,D), (F,G) ∈ P and X such that F ⊆
X ⊆ (µ(A,B) ∪ µ(C,D)) \ G, f(X) = fmin(F,G), and X 6⊆ µ(F,G).
We make µ(F,G) to be µ(F,G) ∪ X, thus increasing |µ(F,G)| by at
least 1. Go back to (A3).

(A5) (P, µ) is a loose f -tangle kit of order k + 1. Stop.

Proposition 13 (Oum and Seymour [13]). The running time of the Algo-
rithm 2 is O(γn8k+5), where n = |E| and γ is the time of an oracle query.

Proof. Let n = |E|. We claim that the running time of this algorithm is
polynomial in n. We first note that

|P | ≤

(

k
∑

i=0

(

n

i

)

)2

= O(n2k).

(A1) can be done in polynomial time by using submodular function min-
imization algorithm from Section 2.2. For (A2), for each e, we may enu-
merate all subsets V of E \ {e} having at most f({e}) elements such that
fmin({e}, B) = f({e}). There are at most O(nk) subsets of E of size at most
k and therefore (A2) can be done in polynomial time. There always exists a
set B as in (A2) because of Lemma 9. (A3) is easy.
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(A4) is more difficult than others. For every possible triple (A,B), (C,D),
(F,G) ∈ P , we try to find X such that

F ⊆ X ⊆ (µ(A,B) ∪ µ(C,D)) \G, f(X) = fmin(F,G), and

X 6⊆ µ(F,G). (2.5)

Let U = (µ(A,B) ∪ µ(C,D)) \ G to simplify the notation. There is no X
satisfying (2.5) if and only if for every e ∈ U \ µ(F,G), fmin(A ∪ {e}, U) >
fmin(F,G). Therefore, to test (K2), we evaluate fmin for each triple (A,B),
(C,D), (F,G) ∈ P and for all e ∈ U\µ(F,G). If the test fails, the submodular
function minimization algorithm outputsX such that f(X) = fmin(F,G) and
F ∪ {e} ⊆ X ⊆ U . Then we increase |µ(F,G)| by at least 1. The number
of iterations of the loop between (A3) and (A4) is at most O(n2k)×O(n) =
O(n2k+1). In the (A4) step of each iteration, we test O(n6k+1) choices of
triples and elements. To calculate fmin, we use the submodular function
minimization algorithm from Section 2.2 whose running time is O(n3γ) where
γ is the time to compute f(X) for any X. Thus, our algorithm runs in time
O(n2k+1n6k+1n3γ) = O(γn8k+5).

Let us prove that Algorithm 2 is correct. We need a lemma.

Lemma 14 (Oum and Seymour [13]). Let f be a connectivity function on
E and (P, µ) be a loose f -tangle kit of order k + 1. Let e ∈ E be an element
such that f({e}) ≤ k. For all (A,B) ∈ P such that A ⊆ {e} ⊆ B, if
fmin(A,B) = f({e}), then e ∈ µ(A,B).

Proof. By (K1), there exists (A′, B′) ∈ P such that A′ ⊆ {e} ⊆ B′ and
e ∈ µ(A′, B′). Then A ⊆ {e} ⊆ µ(A′, B′) \ B and fmin(A,B) = f({e}).
By (K2), e ∈ µ(A,B).

Theorem 15 (Oum and Seymour [13]). Algorithm 2 is correct.

Proof. If the algorithm stops at (A5), then (P, µ) is clearly a loose f -tangle
kit of order k1, because it satisfies (K1)–(K3).

Now let us assume that the algorithm stops at (A3). We will show that
there is no loose f -tangle kit of order k + 1. Let µi be the function µ after i
iterations of (A3).

We claim that if there exists a loose f -tangle kit (P, µ′) of order k+1, then
for all i, µi satisfies (K1) and µi(A,B) ⊆ µ′(A,B) for all (A,B) ∈ P . If this
claim is true, then E = µ(∅, ∅) ⊆ µ′(∅, ∅) and therefore (P, µ′) violates (K3)
— a contradiction.
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We proceed by induction on i. Right after (A2) is done (when i = 0), (K1)
is true. If µ0(A,B) = ∅, then µ0(A,B) ⊆ µ′(A,B) trivially. If µ0(A,B) = {e}
and f({e}) > 0, then A = {e} and e ∈ µ′({e}, B) by Lemma 14 since
fmin({e}, B) = f({e}). It remains that (A,B) = (∅, ∅). Suppose that there
is e ∈ µ0(∅, ∅), f({e}) = 0, such that e 6∈ µ′(∅, ∅). Then by (K1), there is
(A,B) ∈ P , such that A ⊆ {e} ⊆ B, f({e}) = fmin(A,B), and e ∈ µ′(A,B).
By (K2) we get that e ∈ µ′(∅, ∅) since f({e}) = 0 = fmin(∅, ∅).

Suppose the induction hypothesis is true when i = m. When i = m+ 1,
we update µm+1(F,G) = µm(F,G)∪X. (K2) implies that X ⊆ µ′(F,G) and
therefore µm+1(F,G) ⊆ µ′(F,G). It is easy to see that (K1) is again true for
µm+1.

Algorithm 2 decides whether a connectivity function f has branch-width
at most k for fixed k by searching for a loose f -tangle kit. But this does
not necessarily mean that we can find a branch-decomposition of width at
most k when the algorithm outputs that such a branch-decomposition exists.
The following procedure to find a branch-decomposition is given in Oum and
Seymour [13].

We will use Algorithm 2 as a black box. Let E be a finite set with at least
three elements. Let f be a connectivity function on E. For distinct d, e ∈ E,
let E/de = E \{d, e}∪{de} and let f/de be a connectivity function on E/de
defined as follows:

(f/de)(X) =

{

f(X) if de 6∈ X and

f((X \ {de}) ∪ {d, e}) if de ∈ X.

Suppose that (T, σ) is a branch-decomposition of f having width at most
k. We may assume that no vertex of T has degree two, otherwise we may
contract one of the two incident edges. Then T must have two leaves u, v of
T sharing a common neighbor w of degree three. Let d = σ(u), e = σ(v). We
claim that f/de has branch-width at most k. To see this, let T ′ = T \ {u, v}
and let σ′ be a bijection between leaves of T ′ and E/de such that σ′(w) = de
and σ′(x) = σ(x) for other leaves of T ′. Then it is obvious that (T ′, σ′) is a
branch-decomposition of f/de having width at most k.

Conversely, if we have a branch-decomposition (T ′, σ′) of f/de of width
at most k, then it is trivial to extend (T ′, σ′) to the branch-decomposition
(T, σ) of f as long as f({d}) ≤ k and f({e}) ≤ k. We can attach two leaves
u and v to the leaf σ′−1(de) of T ′ corresponding to de and the let σ(u) = d
and σ(v) = e.

So the algorithm is as follows. The correctness follows easily from the
above argument.
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Algorithm 3 (Oum and Seymour [13]). Output the branch-decomposition of
width at most k if there exists.

(B1) If |V | < 1, then no branch-decomposition exists. If |V | = 2, then there
is a unique branch-decomposition. Its width is determined by f . If
f({e}) > k for some e ∈ E, then branch-width is larger than k. Stop.

(B2) Find a pair {d, e} of E such that branch-width f/de is at most k by
Algorithm 2.

(B3) If no such a pair exists, then the branch-width of f is larger than k.
Stop.

(B4) Obtain branch-decomposition (T ′, σ′) of f/de of width at most k by
calling this algorithm recursively.

(B5) Extend (T ′, σ′) to a branch-decomposition (T, σ) of f by attaching two
leaves u and v to the leaf σ−1(de) of T ′ corresponding to de and then
letting σ(u) = d and σ(v) = e.

It is easy to compute the running time of the above algorithm. If M is
the running time of Algorithm 2, then Algorithm 3 runs in time O(n3M).

2.3.2 Algorithm of Hliněný and Oum

The parameterized algorithms can be divided to basic two classes according
to the dependence of the running time on the parameter. An algorithm
with a parameter k is fixed-parameter tractable if the time complexity of the
algorithm can be written in form f(k)×nO(1), i.e., the order of the polynomial
of n does not depend on k.

As we have seen, the algorithm of Oum and Seymour is not fixed-param-
eter tractable. However, Hliněný and Oum [9] used the knowledge on de-
compositions of matroids to derive an algorithm for finding decompositions
of connectivity functions. The algorithm finds a branch-decomposition for
a connectivity function f of width at most k or outputs that f has width
larger than k in time O(n3), for a fixed parameter k.

In the construction of the algorithm, Oum and Seymour put together two
previously separate lines of research. Hliněný and Oum combined Oum and
Seymour’s work on rank-width and on branch-width of submodular func-
tions [12, 13] with Hliněný’s works [7, 8] on parameterized algorithms for
matroids over finite fields.

In particular, Hliněný [7] has presented a parameterized algorithm run-
ning in time O(n3) which either outputs a branch-decomposition of width
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3k+1 of an input matroid M represented over a fixed finite field, or confirms
that the branch-width of M is more than k + 1. Using the ideas of [8] and
minor-monotonicity of the branch-width, he has constructed an O(n3) fixed-
parameter tractable algorithm [7] for deciding whether the branch-width of
an input matroid M represented over a fixed finite field is at most k.



Chapter 3

Submodular partition functions

3.1 Partition functions and duality

We now introduce the concept of submodular partition functions that pro-
vides a unified view on branch-decompositions of connectivity functions and
tree-decompositions of graphs.

A partition function is a function from the set of all partitions to non-
negative integers that satisfies ψ((∅, α)) = ψ(α) for every partition α. A
partition function ψ is submodular if the following holds for every two parti-
tions (A, α) and (B, β):

ψ((A, α)) + ψ((B, β)) ≥ ψ((A ∪B, α ∩ B)) + ψ((B ∪ A, β ∩ A)) (3.1)

The submodularity condition (3.1) is a too strong condition to cover some
of the widths like branch-width. Therefore, we have to weaken the condition
a little.

A partition function ψ is weakly submodular if for every two partitions
(A, α) and (B, β) with A ∩ B 6= ∅, there exists a non-empty set F ⊆ A ∩ B
such that at least one of the following holds:

• ψ((A, α)) ≥ ψ((A ∪ F, α \ F ))

• ψ((B, β)) ≥ ψ((B ∪ F, β \ F ))

It is straightforward to verify that a submodular partition function is also
weakly submodular. Just consider the set F = A ∩B.

Similarly to branch-decompositions, Amini et al. [1] defined a decomposi-
tion tree of a partition function ψ. A decomposition tree on a finite set E is a
tree T with a bijection σ between its leaves and E. Every internal node v of
T corresponds to the partition of E whose parts are the leaves contained in

25
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subtrees of T \ v. A decomposition tree is compatible with a set of partitions
P of E if all partitions corresponding to the internal nodes of T belong to P.

A partial decomposition tree for a partition α is a decomposition tree T
with a bijection between its leaves and the parts of α. We call this partition
the displayed partition of T . The set P↑ consists of all displayed partitions
arising from all partial decomposition trees compatible with P. A partial
decomposition tree for A ⊆ E is a partial decomposition tree for a partition
(A|{e1}| . . . |{er}|), ei ∈ A.

Note that P↑ is exactly the smallest superset of P such that if (A, α),
(A, β) ∈ P↑, then (α, β) ∈ P↑. Since the partitions in P↑ come from partial
decomposition tree, we can retrace the creation of the partial decomposition
tree by contracting a vertex whose all neighbors are leaves but one to a single
vertex. We define this more precisely. For any (A, α) ∈ P↑, there exists
(C, γ) ∈ P, A ⊆ C, such that either (A, α) = (C, γ) or (A, α) = (A, γ, µ) for
some (C, µ,A) ∈ P↑. Such a (C, γ) decomposes (A, α).

Amini et al. [1] introduced in their paper the notion of a bramble for
submodular partition functions. A P-bramble B on E is a set of pairwise
intersecting subsets of E which contains a part of every partition of P. We
say that P admits the bramble B.

Lemma 16 (Lyaudet, Mazoit, Thomassé [11]). A set B is a P-bramble if
and only if B is a P↑-bramble.

Proof. For two partitions (A, α), (A, β) ∈ P↑, if B meets both of them, it
cannot contain both A and A so it meets (α, β). The forward implication
follows.

The backwards implication follows from P ⊆ P↑.

Fix a set S ⊆ 2E closed under taking subsets; the sets of S are referred
as small and the sets not in S are referred as big. A P-bramble B is S-big if
B∩S = ∅ and a partition α ∈ P is S-small if all the parts of α are contained
in S. The set of partitions P is dualising if for any S ⊆ 2E closed under
taking subsets there exists an S-big bramble if and only if P has no S-small
partition.

Let α = {Ai|i ∈ I} and β = {Bi|i ∈ J} be coverings of E. We say that α
is smaller than β if |I| ≤ |J | and α is finer than β if there exists a bijection
f : I → J such that Ai ⊆ Bf(i), for all i ∈ I. Note that if α is finer than β
it is also smaller than β.

A set of partitions P is refining if for any two partitions (A, α), (B, β) ∈ P
with A and B disjoint, P contains a partition finer than the covering (α, β).

Theorem 17 (Lyaudet, Mazoit, Thomassé [11]). P is refining if and only if
it is dualising.
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Proof. Suppose that P is refining and contains no S-small partition for S ⊆
2E . There exists a set closed under taking supersets that contains a big part of
every partition in P. We claim that any such B taken inclusion-wise minimal
is an S-big P-bramble. Clearly, B contains one part of every partition in P
that is not S-small. We have to show that every two sets of B intersect. If
not, take A,B inclusion-wise minimal disjoint sets in B. Since B \ {A} and
B \ {B} are upward close and B is minimal, there exists (A, α), (B, β) ∈ P
such that B does not meet (α, β). The fact that P is refining implies that P
contains γ finer than (α, β). Since B is closed under taking superset, γ ∩ B
is empty, a contradiction.

For the backwards implication, suppose that P is not refining. Let
(A, α), (B, β) ∈ P with A and B disjoint and such that P contains no par-
tition finer than (α, β). Consider the set of all subsets of parts of (α, β) as
a set S of small sets. We claim that P contains no S-small partition and
that no S-big P-bramble exists. Indeed, since no partition of P is finer than
(α, β), P contains no S-small partition. Since a bramble cannot contain both
A and B as they are disjoint, it must contain a small set to meet both (A, α)
and (B, β). We conclude that no S-big P-bramble exists.

A set of partitions P is pushing if for every pair of partitions (A, α) and
(B, β) in P with A ∩ B 6= ∅, there exists a non-empty set F ⊆ A ∩ B with
(A ∪ F, α \ F ) ∈ P or (B ∪ F, β \ F ) ∈ P.

Theorem 18 (Lyaudet, Mazoit, Thomassé [11]). If P is pushing, then P↑

is refining.

Proof. Suppose for a contradiction that P is pushing, (A, α), (B, β) belong
to P↑ with A and B disjoint, and yet P↑ contains no partition finer than
(α, β). Choose (A, α) and (B, β) such that (α, β) is the smallest and then
the finest. Let O = o((α, β)) = A ∩ B, i.e., O contains those elements that
are contained in two parts of (α, β).

Let (C, γ) and (D, δ) decompose (A, α) and (B, β), respectively. Since
A ⊆ C and B ⊆ D, C∩D ⊆ A∩B = O. We claim that O ⊆ C∩D. Suppose
for a contradiction that O 6⊆ C. Hence C∩O 6= ∅ and since O ⊆ A, O∩A = ∅
and we conclude that (C, γ) 6= (A, α). Since (C, γ) decomposes (A, α), let
(C, µ,A) ∈ P↑ be such a partition that (A, γ, µ) = (A, α). Since (C, µ,A) is
strictly smaller than (A, α), there exists (C ′, µ′, β ′) ∈ P↑ finer than (C, µ, β).
Now, (C, γ) and (C ′, µ′, β ′) belong to P↑ with C and C ′ disjoint and thus the
set (γ, µ′, β ′) is a covering of E with an overlap o((γ, µ′, β ′)) a subset of C.
Therefore the covering (γ, µ′, β ′) is strictly finer than (α, β), a contradiction.

So suppose that C ∩ D = O. Since P is pushing and C ∩ D = O is
non-empty, let F ⊆ O be a non-empty set such that, say, (C ∪F, γ \F ) ∈ P.
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If (C, γ) = (A, α), then (γ \F, β) = (α \F, β) is strictly finer than (α, β),
a contradiction.

If (C, γ) 6= (A, α), let (C, µ,A) ∈ P↑ with (A, γ, µ) = (A, α). Since
(C, µ,A) is strictly smaller than (A, α), there exists (C ′, µ′, β ′) ∈ P↑ finer
than (C, µ, β). Since O ⊆ C, µ = µ′. IfO∩C ′ 6= ∅, then the covering (γ, µ, β ′)
is strictly finer than (α, β), a contradiction. Suppose that O ∩C ′ = ∅. Since
C ∪ F and C ′ ⊆ C \ O are disjoint, the set (γ \ F, µ, β ′) is a covering of E.
Since the overlap o((γ \F, µ, β ′)) is a subset of O \F , it is strictly finer than
(α, β), a contradiction.

Let Pk[ψ] denote the set of partitions α of E such that ψ(α) ≤ k.

Corollary 19 (Lyaudet, Mazoit, Thomassé [11]). For a weakly submodular
partition function ψ, Pk[ψ]↑ is dualising.

Proof. First we show that Pk[ψ] is pushing. Let (A, α) and (B, β) be two
partitions from Pk[ψ] with A ∩ B 6= ∅. By weak submodularity of ψ, there
is a non-empty set F ⊆ A ∩ B such that ψ((A, α)) ≥ ψ((A ∪ F, α \ F )) or
ψ((B, β)) ≥ ψ((B ∪ F, β \ F )). Since ψ((A, α)) ≤ k and ψ((B, β)) ≤ k, we
conclude that at least one of ψ((A ∪ F, α \ F )) and ψ((B ∪ F, β \ F )) is at
most k and thus at least one of partitions (A ∪ F, α \ F ) and (B ∪ F, β \ F )
belongs to Pk[ψ].

Theorem 18 now implies that Pk[ψ]↑ is refining and Theorem 17 that
Pk[ψ]↑ is dualising.

The width of a weakly submodular partition function ψ is the smallest
integer k such that there exists a decomposition tree compatible with Pk[ψ].
The concepts of submodular partition functions and decomposition trees in-
clude graph tree-width and branch-width as special cases as we now explain.

3.1.1 Partition function for tree-width

The tree-width corresponds to the width of a particular partition function δ.
For a graph G = (V,E), δ is defined on the set of partitions of E as the size
of the border of the partition, δ(α) = |∆(α)|, where

∆(α) = {x ∈ V |∃xy ∈ Ai and ∃xz ∈ Aj , i 6= j}

is the border of α. This definition extends the definition of border for bipar-
titions given in Section 1.3.

Proposition 20 (Amini, Mazoit, Nisse, Thomassé [1]). The partition func-
tion δ is submodular.
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Proof. Let G = (V,E) be a graph. Let (A, α) and (B, β) be partitions of E.
We want to prove that:

δ((A, α)) + δ((B, β)) ≥ δ((A ∪B, α ∩ B)) + δ((B ∪A, β ∩ A)) (3.2)

Let x be a vertex of G. These cases can happen:

• The contribution of x to the right-hand side of (3.2) is zero.

• The contribution of x to the right-hand side of (3.2) is one, say x
belongs to the border of (A ∪ B, α ∩ B). If x belongs to the border of
B, it contributes to δ((B, β)). If not, x belongs to the border of some
part of α. In both cases, its contribution to the left-hand term is at
least one.

• Assume now that x belongs both to the borders of δ((A∪B, α∩B)) and
δ((B ∪A, β ∩A)). Since x belongs to the border of δ((A ∪B, α ∩B)),
there is an edge ex containing x in some Ai ∩ B, where Ai is one of
parts of α. Similarly, there is an edge fx containing x in some Bj ∩A,
where Bj is one of parts of β. Since ex 6∈ A and fx ∈ A, x is in the
border of (A, α). Similarly, x is also in the border of (B, β), and thus
contributes also twice to the left-hand side of (3.2).

The following proposition shows that the tree-width of a graph G is equal
to the branch-width of the submodular partition function δ. A bramble B is
non-principal if it contains no singleton.

Proposition 21 (Amini, Mazoit, Nisse, Thomassé [1]). Let G = (V,E) be
a graph with minimum degree at least two and let δ be the partition function
as defined above. There exists a bramble in G of order k + 1 if and only if
there exists a non-principal Pk[δ]-bramble.

Proof. Given a subset X of vertices of G, let E(X) denote the set of edges
incident to at least one vertex in X. The key idea behind this proof is that,
in a graph without isolated vertices, two sets of vertices X and Y touch if
and only if E(X) and E(Y ) intersect.

Suppose that G has a bramble B of order k + 1. Let α = {Ai|i ∈ I} be
a partition of E that belongs to Pk[δ]. Since B has order k + 1, there is an
element B of B disjoint from ∆(α). Let Aα be the part of α containing E(B).
Let B′ be the set of all these sets Aα for all partitions α ∈ Pk[δ]. We claim
that B′ is a Pk[δ]-bramble. Indeed, let X and Y be some elements of B′.
Assume that X and Y contain E(BX) and E(BY ) for BX ∈ B and BY ∈ B.
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Since BX and BY touch, ∅ 6= E(BX)∩E(BY ) ⊆ X ∩ Y . This proves that B′

is a Pk[δ]-bramble.
Since G has minimum degree at least two, if a partition α contains a

singleton {e}, both ends of e are in the border of α. Hence there is no
non-empty set of vertices B such that E(B) ⊆ {e}, the sets Aα cannot be
singletons and therefore B′ is non-principal.

Assume now that E has a non-principal Pk[δ]-bramble B′. Let us fix a
subset S ⊆ V of size at most k. For S there are non-principal partitions
in Pk[δ] whose border is a subset of S, i.e., ∆(α) ⊆ S. We choose such a
partition α = {Ai|i ∈ I} ∈ Pk[δ] where the sets Ai are minimal in inclusion.
Since B′ is a non-principal Pk[δ]-bramble, one of Ai with at least two edges
is in B′. Since Ai is minimal, Xi = V (Ai) \ S induces a nonempty connected
subgraph in G. Now, let B be the set of these Ai for all sets S. We claim
that B is a bramble of order k+1. Indeed, let X and Y be any two elements
of B. Since E(X) and E(Y ) both belong to B′, E(X) ∩ E(Y ) 6= ∅ and thus
X and Y touch. Hence B is a bramble. And since any hitting set of B has
at least k + 1 elements, the order of B is at least k + 1.

By Theorem 1, Corollary 19, and Proposition 21, there is a tree-decom-
position of a graph G = (V,E) of width at most k if and only if there is a
decomposition tree of E compatible with Pk[δ].

3.1.2 Partition function for branch-width

The branch-width of a connectivity function f corresponds to the width of
the weakly submodular partition function (maxf )3, i.e., the maximum f(Ai)
of partitions α containing at most three parts. A formal definition and a
proof of weak submodularity of this function is given in this section.

For a weakly submodular partition function ψ we define a partition func-
tion ψp by letting ψp(α) = ψ(α) when the number of non-empty parts of α
is at most p and ψp(α) = +∞ otherwise.

Proposition 22 (Amini, Mazoit, Nisse, Thomassé [1]). Let ψ be a weakly
submodular partition function and p ≥ 2 an integer. Then the function ψp is
a weakly submodular partition function.

Proof. Let (A, α) and (B, β) be partitions with A ∩ B non-empty. By weak
submodularity of ψ, there is F ⊆ A ∩ B such that, say, ψ(A, α) ≥ ψ(A ∪
F, α \ F ). If (A, α) has at most p parts, then ψp(A, α) ≥ ψp(A ∪ F, α \ F )
since (A∪F, α\F ) has also at most p parts. If (A, α) has more than p parts,
then ψp(A, α) = +∞ ≥ ψp(A ∪ F, α \ F ).
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For a connectivity function f , we define a partition function maxf by
maxf(α) = max{f(A)|A ∈ α}.

Proposition 23 (Lyaudet, Mazoit, Thomassé [11]). Let f be a connectivity
function. Then the function maxf is a weakly submodular partition function.

Proof. Let (A, α) and (B, β) be partitions with A ∩B non-empty. Let F be
such that A \ B ⊆ F ⊆ B \ A and such that f(F ) is minimum. We claim
that maxf ((A, α)) ≥ maxf ((A ∪ F, α)).

By the choice of F , f(F ∩ A) ≥ f(F ), and by submodularity, since
f(A) + f(F ) ≥ f(A ∩ F ) + f(A ∪ F ), we have f(A) ≥ f(A ∪ F ). For every
X ∈ α, we have by submodularity of f :

f(X) + f(F ) ≥ f(X ∩ F ) + f(X ∪ F ) (3.3)

Since f(F ) is minimum, f(F ) ≤ f(F \X), and thus f being symmetric:

f(X ∪ F ) ≥ f(F ) (3.4)

Comparing (3.3) and (3.4), we obtain f(X) ≥ F (X ∩ F ). Therefore

maxf((A, α)) ≥ maxf((A ∪ F, α \ F )),

as claimed.
Similarly maxf ((B, β)) ≥ maxf((B ∪ F , β ∩ F )). Now at least one of

FA = F ∩ (A ∩ B) and FB = F ∩ (A ∩ B), say FA, is non-empty. Since
(A∪F, α \F ) = (A∪FA, α \FA), there exists a non-empty FA ⊆ A∩B with
maxf((A, α)) ≥ maxf((A ∪ FA, α \ FA)) which proves that maxf is weakly
submodular.

Now, we will link the tangles with brambles.

Lemma 24 (Amini, Mazoit, Nisse, Thomassé [1]). For every A,B,C in a
Pk[(maxf)3]-bramble B, the intersection A ∩ B ∩ C is non-empty.

Proof. Suppose for the sake of contradiction that there exists A,B,C ∈ B
with A ∩ B ∩ C = ∅. Choose A,B,C inclusion-wise maximal with this
property. Since by submodularity and symmetry

f(A) + f(B) = f(A) + f(B) ≥ f(A∩B) + f(A∪B) = f(A \B) + f(B \A),

we can assume that A \ B is small, i.e., f(A \ B) ≤ k. We now claim that
A ∩ C is small.

Indeed, let C ′ = (A\B)∪C. Either A\B ⊆ C, and, since A∩B∩C = ∅,
A \ B = A ∩ C and the claim follows. Or A \ B 6⊆ C and C ′ 6∈ B by the
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choice of A, B, and C, since A ∩ B ∩ C ′ = ∅. Since C ′ ∩ C = ∅, C ′ is also
not in B and we conclude that f(C ′) > k. By submodularity of f , we have

f(A \B) + f(C) ≥ f(C ′) + f((A \B) ∩ C).

Therefore (A\B)∩C is small. Finally, since A∩B∩C = ∅, A∩C = (A\B)∩C
and the claim follows.

Similarly as above, we get by submodularity that

f(A) + f(C) ≥ f(A \ C) + f(C \ A).

Hence at least one of A \ C or C \ A is small. Suppose that A \ C is small.
Since the sets A, A ∩ C, and A \ C are all small and mutually disjoint, the
partition (A,A ∩ C,A \ C) belongs to Pk[(maxf)3]. But this is impossible
since these three sets are respectively disjoint from A, B, and C which all
belong to B. Now suppose that C \ A is small. Similarly as above, the sets
C, A ∩ C and C \ A are all small and mutually disjoint and the partition
(C,A∩C,C \A) belongs to Pk[(maxf )3]. This is a contradiction since these
three sets are respectively disjoint from C, B, and A which all belong to
B.

Now we are ready to prove the claimed equivalence between the branch-
width of a connectivity function f and the branch-width of the weakly sub-
modular partition function (maxf)3.

Proposition 25 (Amini, Mazoit, Nisse, Thomassé [1]). An f -tangle of order
k exists if and only if a non-principal Pk[(maxf )3]-bramble does.

Proof. Let T be an f -tangle of order k. We claim that the set of comple-
ments of T , B = {A|A ∈ T }, is a non-principal Pk[(maxf )3]-bramble. First,
observe that the condition that A ∪ B 6= E, for A,B ∈ T , implies that the
complements A,B ∈ B are intersecting.

For every partition (A,B,C) from Pk[(maxf)3], exactly one set among
A, B, and C does not belong to T , since A ∪ B ∪ C = E and A ∪ B = E.
Therefore B contains an element of every partition in Pk[(maxf)3]. Finally,
(T3) imposes that B is non-principal.

Now, let B be a non-principal Pk[(maxf)3]-bramble. We claim that T =
{A|A ∈ B} is an f -tangle of order k. By construction, T satisfies (T1). (T2)
follows directly from Lemma 24. Finally, B being non-principal imposes (T3).
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3.2 Loose tangles

Similarly to the loose tangles of Oum and Seymour [13] we introduce loose
tangles for submodular partition functions. A loose P-tangle is a set T of
subsets of E closed under taking subsets satisfying the following three axioms.

(P1) ∅ ∈ T , {e} ∈ T , for all e ∈ E such that the partition ({e}, {e}) belongs
to P.

(P2) If A1, A2, . . . , Ap ∈ T , Ci ⊆ Ai, for i = 1, . . . , p, (C1, . . . , Cp,∪
p
i=1Ci) ∈

P, then ∪p
i=1Ci ∈ T .

(P3) E 6∈ T .

To prove the main theorem of this section, we need a lemma.

Lemma 26. Let ψ be a submodular partition function and (A, α) a partition.
Then ψ((A, α)) ≥ ψ((A,A)).

Proof. Suppose that the partition (A, α) has at least three non-empty parts
and let (A,B, β) = (A, α). By submodularity,

ψ((A, α)) + ψ((B,B)) ≥ ψ((A ∪ B, α ∩ B)) + ψ((B ∪ A,B ∩A))

= ψ((B,B)) + ψ((A,A)).

The result follows.

In the following theorem, we show that for classes of partitions of bounded
width, the loose tangle is a dual object to the decomposition tree.

Theorem 27. Let ψ be a submodular partition function. There is no decom-
position tree compatible with Pk[ψ] if and only if there is a loose Pk[ψ]-tangle.

Proof. Suppose there is a decomposition tree (T, σ) compatible with Pk[ψ]
and a loose Pk[ψ]-tangle T . We will show that T violates (P3). Choose
an arbitrary leaf x of T as a root. Every internal node v of T corresponds
to a partition αv. Let Cv be a union of all parts of αv except the one
containing x. Define Cv of a leaf v as the singleton σ(v). We will show by
backward induction on the distance from x that for every node v of T , the
set Cv belongs to T . Since T is a decomposition tree of E compatible with
Pk[ψ], there is a partition ({e}, αe) in Pk[ψ], for each e ∈ E. By Lemma 26,
ψ(({e}, {e})) ≤ ψ(({e}, αe)). Hence, ({e}, {e}) belongs to Pk[ψ] and {e} is
in T by (P1). For an inner node v, all his children u1, . . . , up are farther from
x than v and therefore all Cui

are in T . By (P2), since (Cui
,∪Cui

) belongs
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to Pk[ψ], Cv ≡ ∪Cui
∈ T . Finally, let v be the only child of x. Since Cv ∈ T

and {σ(x)} ∈ T , by (P2), Cv ∪ {σ(x)} = E also belongs to T . (P3) is now
violated.

Define T to be a subset of 2E closed under taking subsets, containing all
singletons and all k-branched sets. We will show that T is a loose tangle. (P1)
trivially holds since all k-branched singletons are in T . Let A1, . . . , Ap ∈ T
and Ci ⊆ Ai, i = 1, . . . , p, such that (C1, . . . , Cp,∪Ci) ∈ Pk[ψ]. We can
assume that Ai are k-branched (otherwise take such a superset of it instead).
Let Y1, . . . , Yp, Yi ⊆ Ai, be such sets that ∪Ci ⊆ ∪Yi and ψ((Y1, . . . , Yp,∪Yi))
is minimum. We will show that the set ∪Yi is k-branched.

To this end, we modify the partial decomposition tree Ti for Ai to be
a partial decomposition tree for Yi. At first, we delete from Ti all leaves
corresponding to elements not in Yi. We then repeatedly contract all nodes
of degree two or less until we get a ternary tree T ′

i . We claim T ′
i is compatible

with Pk[ψ]. Suppose for a contradiction that there is an internal node v′ of
T ′

i corresponding to an internal node v of Ti such that αv′ 6∈ Pk[ψ]. Assume
i = 1 since we can relabel the parts so. Let (A, α) = αv such that A is the
part of αv that contains A1. We infer from the submodularity of the function
ψ that

ψ((A, α)) + ψ((Y1, Y2, . . . , Yp,∪Yi)) ≥ ψ((A ∪ Y 1, α ∩ Y1))

+ ψ((Y1 ∪ A, Y2 ∩A, . . . Yp ∩A,∪Yi ∩ A))

The choice of Y1, . . . , Yp yields that

ψ((Y1 ∪ A, Y2 ∩ A, . . . , Yp ∩A,∪Yi ∩ A)) ≥ ψ((Y1, . . . , Yp,∪Yi)).

Hence, ψ((A∪Y 1, α∩Y1)) ≤ ψ((A, α)) ≤ k and T ′
1 is compatible with Pk[ψ].

Now, construct a partial decomposition tree T by connecting T ′
i to a single

node corresponding to a partition (Y1, . . . , Yp,∪Yi). This partition belongs
to Pk[ψ] since ψ((Y1, . . . , Yp,∪Yi)) ≤ ψ((C1, . . . , Cp)) ≤ k by the minimality
of ψ((Y1, . . . , Yp,∪Yi)). Therefore T is a partial decomposition tree for ∪Yi

compatible with Pk[ψ] and thus ∪Yi ∈ T . Since ∪Ci ⊆ ∪Yi, also ∪Ci ∈ T as
required.

If E ∈ T , then E is k-branched and the partial decomposition tree for E
is actually a decomposition tree for ψ. This contradicts the fact that ψ does
not have a decomposition tree compatible with Pk[ψ]. Therefore, E 6∈ T
and (P3) holds. We conclude that T is a loose Pk[ψ]-tangle.
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3.3 Hardness of submodular partition func-

tions

We first have to define several auxiliary functions before we can establish our
hardness result. Let gn be the function gn : 2E → N for E = {1, . . . , 2n}
defined as gn(X) = min{|X|, |X|}. We start our exposition with showing
that gn is submodular.

Lemma 28. The function gn is submodular for every n.

Proof. Consider two subsets X and Y . If both |X| ≤ n and |Y | ≤ n, then

gn(X) + gn(Y ) = |X| + |Y | = |X ∩ Y | + |X ∪ Y |

≥ gn(X ∩ Y ) + gn(X ∪ Y ).

If both |X| > n and |Y | > n, we get the same result by the symmetry of g.

gn(X) + gn(Y ) = gn(X) + gn(Y ) ≥ gn(X ∩ Y ) + gn(X ∪ Y )

= gn(X ∪ Y ) + gn(X ∩ Y )

So suppose that |X| > n and |Y | ≤ n. We get

gn(X) + gn(Y ) = |X| + |Y | = |X \ Y | + |Y \X| + 2|X ∩ Y |

≥ gn(X \ Y ) + gn(Y \X) = gn(X ∩ Y ) + gn(X ∩ Y )

= gn(X ∪ Y ) + gn(X ∩ Y ).

This finishes the proof.

The function gn can be extended to a partition function φn on the ground
set E = {1, . . . , 2n} by setting

φn(α) = max
i∈I

gn(Ai).

A part Ai of α is dominating if gn(Ai) = φn(α). Note that, if α has a part
with at least n elements, then that part is dominating.

We proceed by showing that the function φn is submodular.

Lemma 29. The function φn is submodular for every n.

Proof. We check the following inequality for all partitions (A, α) and (B, β):

φn((A, α)) + φn((B, β)) ≥ φn((A ∪ B, α ∩B)) + φn((B ∪ A, β ∩ A)).
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Observe that at least one of the parts A ∪ B or B ∪ A in this inequality is
dominating since one of A,A and one of B,B has at least n elements. If both
A∪B and B ∪A are dominating, then the submodularity of φn follows from
the submodularity of g:

φn((A, α)) + φn((B, β)) ≥ gn(A) + gn(B) = gn(A) + gn(B)

≥ gn(A ∩B) + gn(A ∪ B) = gn(A ∪ B) + gn(A ∪B)

= φn((A ∪ B, α ∩ B)) + φn((B ∪A, β ∩ A))

Suppose that A∪B is not dominating, so take an Ai ∈ α such that Ai ∩B is
dominating. Since |B| ≥ n and Ai ⊆ A, it holds that gn(Ai∪B) ≥ gn(B∪A).
We use this inequality to prove the submodularity as follows:

φn((A, α)) + φn((B, β)) ≥ gn(Ai) + gn(B) ≥ gn(Ai ∩ B) + gn(Ai ∪ B)

≥ gn(Ai ∩B) + gn(B ∪ A)

= φn((A ∪B, α ∩ B)) + φn((B ∪A, β ∩A))

The case when B ∪ A is not dominating follows by symmetry.

Values of the function φn range between 0 and n. We now truncate the
function and define the following partition function φn,k on E = {1, . . . , 2n}
as follows:

φn,k(α) = min{φn(α), k}.

Next, we show that the function φn stays submodular after the truncation.

Lemma 30. The function φn,k is submodular for every n and k.

Proof. Let us consider two partitions (A, α) and (B, β) that violates the
inequality (3.1):

φn,k((A, α)) + φn,k((B, β)) ≥ φn,k((A ∪ B, α ∩B)) + φn,k((B ∪ A, β ∩ A)).

Since φn,k(γ) ≤ φn(γ) for all partitions γ, at least one of φn((A, α)) or
φn((B, β)) is larger than k. If both of them are, then the inequality triv-
ially holds. Suppose that φn((A, α)) < k. We will show that at least one of
φn((A ∪ B, α ∩ B)) or φn((B ∪A, β ∩A)) is smaller or equal to φn((A, α)).

If |A| ≥ n, then φn((A ∪ B, α ∩ B)) ≤ φn((A, α)) since A ∪ B is the
dominating part and gn(A ∪ B) ≤ gn(A) ≤ φn((A, α)). If |A| < n, then
φn((B ∪ A, β ∩ A)) ≤ φn((A, α)) since B ∪ A is the dominating part and
gn(B ∪ A) ≤ gn(A) ≤ φn((A, α)). This finishes the proof.
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Now, we use the function φn,3 to construct partition functions φ∗
n and φ∗

n,β

which appear in our hardness result. The function φ∗
n is defined as

φ∗
n(α) =

{

φn,3(α) if α has at most three non-empty parts, and
3 otherwise.

For a partition β of {1, . . . , 2n} into n two-element subsets, the function φ∗
n,β

is then defined as

φ∗
n,β(α) =







φn,3(α) if α has at most three non-empty parts,
2 if α = β, and
3 otherwise.

First, we show that these functions are submodular.

Lemma 31. The function φ∗
n is submodular for every n.

Proof. Observe the following:

• If φ(α) = 0, then also φ∗
n(α) = 0.

• If φ(α) = 1, then φ∗
n(α) = 1 unless α is a set of singletons where

φ∗
n(α) = 3.

• If φ(α) = 2, then φ∗
n(α) = 2 unless α has more than three parts. In

this case, every part of α is a pair or a singleton.

Therefore the functions φn,3 and φ∗
n differ only on partitions consisting of

singletons and pairs.
Let us assume for a contradiction that φ∗

n is not submodular. Since
φ∗

n(α) ≥ φn,3(α) for all partitions α, the violation of the submodularity is
caused by an increase on the right-hand side of (3.1). Consider partitions
(A, α) and (B, β) violating the inequality (3.1). Hence, say, γ = (A∪B, α∩B)
is that partition containing only singletons and pairs. Since γ has all parts of
size at most two, |B| ≤ 2. If A ∩B = ∅, then B ⊆ A and A ⊆ B. Therefore
γ = (A, α), (B ∪A, β ∩A) = (B, β) and the inequality trivially holds. So we
can assume that |B∪A| > |B| and since 2n−2 ≤ |B| < 2n, by the definition
of φ∗

n

φ∗
n((B, β)) > φ∗

n((B ∪A, β ∩A)) . (3.5)

Since the number of non-empty parts of γ is at least 4, the number of
non-empty parts of (A, α) is at least 3 and therefore φ∗

n((A, α)) ≥ 2 by the
definition of φ∗

n. The submodularity follows from (3.5) and the fact that
φ∗

n(γ) ≤ 3 ≤ φ∗
n((A, α)) + 1.
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Lemma 32. The function φ∗
n,β is submodular for every n ≥ 4 and for every

partition β consisting only of two-element sets.

Proof. Since φ∗
n and φ∗

n,β differ only on the partition β where φ∗
n(β) ≥ φ∗

n,β(β),
β has to be on the left-hand side of the inequality (3.1) to violate it. Let
(A, α) and β = (C, γ) be the partitions violating the inequality (3.1):

φ∗
n,β((A, α)) + φ∗

n,β((C, γ)) ≥ φ∗
n,β((A ∪ C, α ∩ C)) + φ∗

n,β((C ∪A, γ ∩ A))

Since |C| = 2, φ∗
n,β((A ∪ C, α ∩ C)) ≤ 2. Hence φ∗

n,β((A, α)) ≤ 2. If |A| ≤ 2,

then |C ∪A| ≥ 2n− |A| and φ∗
n,β((C ∪A, γ ∩A)) ≤ φ∗

n,β((A, α)), contradict-
ing the assumption. Therefore A has to have at least 2n − 2 elements and
φ∗

n,β((A ∪ C, α ∩ C)) ≤ φ∗
n,β((A, α)).

If C ⊆ A, then A ⊆ C and φ∗
n,β((C ∪ A, γ ∩ A)) = φ∗

n,β((C, γ)), con-

tradicting the assumption. Therefore |A ∪ C| > |A| giving φ∗
n,β((A, α)) >

φ∗
n,β((A ∪ C, α ∩ C)). Since φ∗

n,β(β) + 1 = 3 ≥ φ∗
n,β((C ∪ A, γ ∩ A)), the

inequality (3.1) holds — a contradiction.

In the proof of the main theorem we will use the fact that the width
of the function φ∗

n is three while the width of the modified function φ∗
n,β

is two. To see that branch-width of φ∗
n,β is at most two, just consider the

following branch-decomposition T of φ∗
n,β. T has a root x with n children

v1, . . . , vn each vi connected to two leaves corresponding to the two elements
in βi. Since φ∗

n,β(αx) = φ∗
n,β(β) = 2 and φ∗

n,β(αvi
) = 2, for i = 1, . . . , n, the

branch-decomposition T has width two. In the next lemma, we show that
the branch-width of φ∗

n is three.

Lemma 33. For n ≥ 4, the branch-width of φ∗
n is three.

Proof. Let T be a branch-decomposition of φ∗
n of width smaller than three.

We assume there are no nodes of degree two in T since we can contract them
obtaining a smaller branch-decomposition of the same width. Since every
internal node v of T of degree larger than three corresponds to a partition
αv of E with more than three parts (thus φ∗

n(αv) = 3), there are no such
vertices in T and T is a ternary tree. Consider an arbitrary internal node v
of T with less than two leaves as neighbors. There have to be such a vertex
v since there are at most n vertices with two leaves as neighbors but there
are 2(n− 1) internal nodes. For such a vertex v, αv contains a part with at
least three elements and at most 2n− 3 elements implying φ∗

n(αv) = 3. This
finishes the proof.

We are now ready to establish our hardness result. We assume the exis-
tence of an algorithm and show that it cannot discover a small discrepancy
between a submodular partition function having width three and two.
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Theorem 34. There is no sub-exponential algorithm for determining whether
the branch-width of an oracle-given submodular partition function on a set
with 2n elements is at most two.

Proof. Assume that there exists such a sub-exponential algorithm A and run
A for the submodular partition function φ∗

n. The algorithm A must clearly
output that the width φ∗

n is at least three. Since the running time of the
algorithm is sub-exponential, for n sufficiently large, there exists a partition
β of {1, . . . , 2n} into n two-element subsets such that A never queries β (there
are (2n)!/(n!2n) such partitions and A cannot query all of them because of
its running time). However, the algorithm A for φ∗

n,β performs the same
steps and thus it outputs that the width of φ∗

n,β is at least three which is not
correct.
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