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ické. V této práci jsou kvadratické kvazigrupy popsány a klasifikovány podle
jejich vlastností. Nakonec je představena teorie, kterou je možné využít k jejich
konstrukci.

Klíčová slova: kryptografie s veřejným klíčem, kvadratické rovnice o více proměn-
ných, kvadratické kvazigrupy

Title: Quasigroup Based Cryptography
Author: Bc. Adam Christov
Department: Department of Algebra
Supervisor: RNDr. David Stanovský, Ph.D.
Supervisor’s e-mail address: David.Stanovsky@mff.cuni.cz

Abstract: Public-key cryptographic schemes based on the complexity of solving
multivariate quadratic equations over a finite field represent an alternative to
widely used schemes relying on the complexity of factorization or on the discrete
logarithm. Such a scheme was proposed by D. Gligoroski et al. [8]. Keys
in this scheme are constructed using a special kind of quasigroups, the so-
called quadratic quasigroups. In this paper we try and describe the quadratic
quasigroups and classify them according to their properties. Finally, we present
a theory which can be used to generate such quasigroups.

Keywords: public-key cryptography, multivariate quadratic equations, quadratic
quasigroups

4



Introduction

Nowadays, cryptology became a part of our daily life even though most people
do not realize it. One of the important categories of cryptology is the public-
key cryptography (or asymmetric cryptography), which was devised by Diffie
and Hellman [3]. In the public-key cryptosystem, we use a couple of different
keys – a public key and a private key. The secret encrypted by the public
key can be decrypted only by the corresponding private key. It provides us
with the potential of establishing an encrypted connection without having to
share the secret, moreover, it enables us to sign data digitally. The security
of the public-key schemes, which are currently used in practice, relies on just
a small number of problems. Mostly, it involves either the problem of factor-
ization (e.g., RSA [10]), or the discrete logarithm (e.g., ECC [9]). Therefore,
the research on new cryptography schemes, particularly based on other classes
of problems, is of utmost importance.

In this thesis we will focus on an innovative structure of a public-key
scheme based on multivariate quadratic quasigroups (MQQ, [8]). It repre-
sents a special type of an MQ-scheme. In general, the MQ-schemes rely on
the problem of finding a solution of a system of multivariate quadratic equa-
tions (MQ-problem, [13]). The private key in the MQ-scheme is a soluble
system of n quadratic equations P(x) in n variables over the field F2, and two
automorphisms of vector space Fn

2 , denoted by L1 and L2. The public key is
the system of equations

P ′(x) = L2

(
P(L1(x)

))
.

Therefore, finding the private key based on knowledge of the public key in the
MQ-scheme relies on the complexity of decomposition of P ′(x) into L1, L2,
and P [13]. MQQ is based on an algorithm generating the system P(x) from
a special kind of quasigroups, the so-called quadratic quasigroups. The authors
of MQQ use a heuristic algorithm for generating quadratic quasigroups that
can discover only some of them and that might be not quick enough. They do
not provide any theoretical background that would describe the structure of
quadratic quasigroups in general. Such a theory is presented in this thesis.
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In Theorem 2.40 we show that every quadratic quasigroup can be described
by means of four parameters. Two of which depend upon permutations of Fn

2

that can be described by quadratic forms (we call them quadratic permuta-
tions). The further two parameters are a translation vector and a bilinear map.
Our ability to generate quadratic quasigroups depends, to a large extent, upon
the ability to find quadratic permutations efficiently. Chapter 3 is devoted to
this topic and we give two possible ways how quadratic permutations can be
constructed. In Theorem 3.8 we show that each quadratic form which is a part
of a quadratic permutation is determined up to equivalence only by the dimen-
sion of its kernel. Using this fact, it is possible to find all such quadratic forms.
Composition of these forms provides the first possible nondeterministic way.
The second one is fully deterministic and uses a Matsumoto-Imai scheme [13].

The property of being a quadratic quasigroup is not isotopically invari-
ant. However, if the permutations used by an isotopy are linear and one of
the quasigroups is quadratic, then the other quasigroup is quadratic as well.
Under certain additional conditions this is true also in the case when the iso-
topy permutations are quadratic. A large part of Chapter 2 is hence devoted
to the study of isotopies. The achieved results can be used to derive quickly
many further quadratic quasigroups that are isotopic to a known quadratic
quasigroup.

Quadratic loops have only two structural invariants (cf. Theorem 2.48), i.e.,
a unit and a bilinear map. In Theorem 2.50 we present necessary conditions for
bilinear map to represent a quadratic loop. It provides a heuristic algorithm
for generating these loops. They can be used for generating further quadratic
quasigroups, but they are also interesting as an algebraic object. One can
ask questions about the laws (associative, Moufang etc.) that such a loop can
fulfil. While these questions are certainly interesting, they are out of the scope
of this thesis and I have deferred them to future studies.

The mentioned results except for basic and known facts about quasigroups,
boolean functions, bilinear and quadratic forms are achieved newly in this
thesis.

Preliminaries

We will use just basic knowledge of linear algebra [1], groups [4], commutative
rings [5], and finite fields [12], conforming to the notation commonly used in
those areas of mathematics. The Galois field of characteristic 2 will be denoted
by F2. In would denote an n× n matrix, having 1’s on the main diagonal and
0’s elsewhere. δi,j denotes the Kronecker delta. It is a function of two variables
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which is 1 if they are equal, and 0 otherwise, i.e.,

δij =

{
1, if i = j,

0, if i 6= j.
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Chapter 1

Basic Quasigroup Theory

In this chapter we introduce a definition of a general quasigroup and its basic
properties [6, 11].

Definition 1.1. A quasigroup (Q, ∗) or just Q is a set Q with a binary oper-
ation ∗, such that for each u and v in Q there exist unique elements x and y

in Q which satisfy

u ∗ x = v,

y ∗ u = v.

A quasigroup is called finite if it has a finite number of elements. The number
of elements is called the order of the quasigroup.

The unique solution x is denoted by u\v where \ is a binary operation
in Q (called the left division) and the unique solution y by v/u where / is also
a binary operation in Q (called the right division).

Lemma 1.2. The quasigroup (Q, ∗) with the left and right divisions satisfies
the identities

u ∗ (u\v) = v,

(v/u) ∗ u = v,

u\(u ∗ v) = v, and

(v ∗ u)/u = v

for all u, v ∈ Q.

Proof. The first two identities follow directly from the definition of the divi-
sions. From the definition of \ we know that u\(u∗v) is a solution of u∗x = u∗v

8



CHAPTER 1. BASIC QUASIGROUP THEORY 9

for every u, v ∈ Q. On the other hand, we also know that v solves this equa-
tion. From the uniqueness of the solution we obtain u\(u ∗ v) = v. Similarly,
the equation y ∗u = v ∗u is solved by both v and (v ∗u)/u. Thus v = (v ∗u)/u

for every u, v ∈ Q.

Observation 1.3. Let (Q, ∗) be a quasigroup and operations \ and / be left
and right divisions. Then (Q, \) and (Q, /) are also quasigroups.

Definition 1.4. Let (Q, ∗) be a quasigroup. An element er ∈ Q is called
a right unit if u ∗ er = u for all u ∈ Q. Similarly, an element el ∈ Q is called
a left unit if el ∗ u = u for all u ∈ Q. If e ∈ Q is both a left unit, and a right
unit, then it is called simply a unit. A quasigroup with a unit is called a loop.

Observation 1.5. If the quasigroup (Q, ∗) contains a right unit er and also
a left unit el, then er = el ∗ er = el.

Example 1.6. A Latin square is an n× n square containing n copies of each
of n symbols, arranged in such a way that no symbol is repeated in any row
or column. Exactly the same rules have to be satisfied by the Cayley table
of a finite quasigroup. It means every finite quasigroup corresponds to some
Latin square. In Figure 1.1 we can see an example of a Latin square 3× 3 on
the left and the corresponding finite quasigroup of order 3 on the right.

1 0 2
0 2 1
2 1 0

* 0 1 2
0 1 0 2
1 0 2 1
2 2 1 0

Figure 1.1: The Latin square and the corresponding finite quasigroup

Example 1.7. The cyclic group Z with a nonassociative binary operation
“minus” is an example of an infinite quasigroup. We can easily observe that
the element 0 ∈ Z is a right unit of (Z,−) because k − 0 = k, but 0− k = −k

for every k ∈ Z.

Definition 1.8. A map

α : (Q1, ∗1) → (Q2, ∗2)

between quasigroups (Q1, ∗1) and (Q2, ∗2) is a homomorphism if

α(u ∗1 v) = α(u) ∗2 α(v)
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for all u, v ∈ Q1. A bijective homomorphism is an isomorphism. If there exists
an isomorphism between Q1 and Q2, we call quasigroups isomorphic, denoted
by Q1

∼= Q2.
A triple of maps

α, β, γ : (Q1, ∗1) → (Q2, ∗2)

between quasigroups (Q1, ∗1) and (Q2, ∗2) is called a homotopy if

α(u) ∗2 β(v) = γ(u ∗1 v)

for all u, v in Q1. We call the triple an isotopy if the maps α, β, γ are bijective.
If there exists an isotopy between Q1 and Q2, we call the quasigroups isotopic,
notation Q1 ∼ Q2 .

Observation 1.9. Let (Q1, ∗1) be a quasigroup, and let Q2 be a set, such that
|Q1| = |Q2|. Let α, β, γ be a bijective maps Q2 → Q1. Then (Q2, ∗2), where

u ∗2 v = γ−1
(
α(u) ∗1 β(v)

)
,

for all u, v in Q2, is a quasigroup, and (α, β, γ) is an isotopy between (Q2, ∗2)

and (Q1, ∗1).

The isotopy (α, β, γ) between (Q1, ∗1) and (Q2, ∗2) can be transformed
into the isotopy (γ−1α, γ−1β, IdQ1) between (Q1, ∗1) and (Q1, ∗3), where ∗3 is
defined as u ∗3 v = γ−1(γ(u) ∗2 γ(v)) for all u, v ∈ Q1. We can see that γ

becomes an isomorphism between (Q1, ∗3) and (Q2, ∗2).
It follows that to find all quasigroups which are isotopic to (Q, ∗) up to

isomorphism we have to go through all quasigroups (Q, ◦) such that

u ◦ v = α(u) ∗ β(v) for all u, v ∈ Q,

where α and β permute Q. Such a quasigroup will be denoted by Q[α, β].

Definition 1.10. Let (Q, ∗) be a quasigroup. For each a ∈ Q define the left
translation La as a map La : x 7→ a∗x and similarly the right translation Ra as
a map Ra : x 7→ x∗a for all x ∈ Q. Both maps are bijections and L−1

a : x 7→ a\x
and R−1

a : x 7→ x/a.

Lemma 1.11. Let (Q, ∗) be a quasigroup. Q[α, β] is a loop if and only if
there exist a, b ∈ Q such that α = Rb

−1 and β = La
−1.

Proof. Suppose (Q[α, β], ◦) is a loop with unit e ∈ Q. Then u = u ◦ e =

α(u) ∗ β(e) and α(u) = u/β(e) for all u ∈ Q. Similarly v = e ◦ v = α(e) ∗ β(v)

and β(v) = α(e)\v for all v ∈ Q. So b = β(e) and a = α(e).
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Now, consider that α = Rb
−1 and β = La

−1. We will show that a ∗ b is
a unit.

u ◦ (a ∗ b) = α(u) ∗ β(a ∗ b) = (u/b) ∗ (a\(a ∗ b)) = (u/b) ∗ b = u,

(a ∗ b) ◦ v = α(a ∗ b) ∗ β(v) = ((a ∗ b)/b) ∗ (a\v) = a ∗ (a\v) = v,

for all u, v ∈ Q.

We call the loop (Q[Rb
−1, La

−1], ◦) a principal isotope of (Q, ∗).

Corollary 1.12. Every quasigroup is isotopic to a principal isotope.



Chapter 2

Quadratic Quasigroups

2.1 Boolean Maps

In this section we show that every map

m︷ ︸︸ ︷
Fn

2 × · · · × Fn
2 → Fn

2

can be represented by a vector of Boolean polynomials [7]. The quasigroup
upon Fn

2 can be understood as such a kind of map. Restriction to quadratic
polynomials provides the definition of a quadratic quasigroup [8].

Definition 2.1. Let F2[x1, x2, . . . , xn] be a ring of polynomials in variables
x1, x2, . . . , xn over the field F2. We call the elements of the quotient ring

F2[x1, x2, . . . , xn]/〈x2
1 − x1, . . . , x

2
n − xn〉

Boolean polynomials.

Each Boolean polynomial can be expressed as

f =
∑

I⊆{1,...,n}
aI

∏
i∈I

xi,

where the coefficients aI ∈ F2 (suppose that
∏

i∈I xi = 1 for I = ∅). The maxi-
mal cardinality of I such that aI = 1 is called a degree of the polynomial f and
is denoted by deg(f). As a degree of a zero polynomial we set −∞. For every
subset I = {i1, . . . , im} ⊆ {1, . . . , n} we call the Boolean polynomial xi1 · · · xim

a monomial and denote it shortly by xI .

Definition 2.2. A map α : Fn
2 → F2 is called a Boolean function of the arity n

(or an n-ary Boolean function).

12
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We can assign a Boolean function f̄ of the arity n to each Boolean polyno-
mial f ∈ F2[x1, . . . , xn], where f̄ is defined as an evaluation of the polynomial f :

f̄ : (u1, . . . , un) 7→ f(u1, . . . , un).

Theorem 2.3. Every n-ary Boolean function can be uniquely represented as
a Boolean polynomial from F2[x1, . . . , xn].

Proof. We will show that a map ϕ : f 7→ f̄ is an isomorphism between
the ring of Boolean polynomials and the ring of Boolean functions. Let f and
g be Boolean polynomials from F2[x1, . . . , xn]. Then, we can easily observe
that (fg)(u1, . . . , un) = f(u1, . . . , un) · g(u1, . . . , un) and (f + g)(u1, . . . , un) =

f(u1, . . . , un) + g(u1, . . . , un), so fg = f̄ · ḡ and f + g = f̄ + ḡ, and ϕ is a ho-
momorphism of the rings. Let f =

∑
I⊆{1,...,n} aIxI be a nonzero Boolean

polynomial. We pick such an I ⊆ {1, . . . , n} which satisfies aI = 1 and
the cardinality of I is minimal. Suppose the vector u = (u1, . . . , un) ∈ Fn

2

obeys uj = 1 for j ∈ I, and uj = 0 otherwise. If J ( I, then aJ = 0. If
J \ I 6= ∅, then xJ(u1, . . . , un) = 0. Hence f(u1, . . . , un) = xI(u1, . . . , un) = 1

and f̄ is also nontrivial. It means that ϕ is injective. There exist exactly
2n Boolean monomials in F2[x1, . . . , xn], therefore, the cardinality of the ring
of Boolean polynomials is 22n . The ring of Boolean functions has also 22n

elements because |Fn
2 | = 2n. An injective map between two rings of the same

finite cardinality is surjective, as well.

Let α be a map

α :

m︷ ︸︸ ︷
Fn

2 × · · · × Fn
2 → Fn

2

and E = {e1, e2, . . . en} be a base of the vector space Fn
2 . {v}E will denote

coordinates of a vector v ∈ Fn
2 relative to the basis E. Note that v 7→ {v}E

is an automorphism of the vector space Fn
2 . There exists exactly one map αE

such that

αE :

m︷ ︸︸ ︷
Fn

2 × · · · × Fn
2 → Fn

2 ,

αE : (x1
1, . . . , x

1
n), . . . , (xm

1 , . . . , xm
n ) 7→ (y1, . . . , yn),

where (xj
1, . . . , x

j
n) = {uj}E, (y1, . . . , yn) = {v}E and vectors uj, v ∈ Fn

2 for
j = 1, . . . ,m satisfy α(u1, . . . , um) = v. Each yi, i = 1, . . . , n is uniquely
determined by the bit values {xj

i ; i = 1, . . . , n, j = 1, . . . , m}. Thus, we can
represent yi as a mn-ary Boolean function

f̄i :

m︷ ︸︸ ︷
Fn

2 × · · · × Fn
2 → F2,

f̄i : (x1
1, . . . , x

1
n), . . . , (xn

1 , . . . , x
m
n ) 7→ yi, i = 1, 2, . . . , n.
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Using Theorem 2.3 we obtain a Boolean polynomial fi for all such Boolean
functions f̄i. We can thus state

Theorem 2.4. Let α be a map

α :

m︷ ︸︸ ︷
Fn

2 × · · · × Fn
2 → Fn

2 .

For each base E of Fn
2 there exists exactly one vector of Boolean polynomials

(f1, f2, . . . , fn) ∈ (
F2[x

j
i ; i = 1, . . . , n, j = 1, . . . , m]

)n, such that

{α(u1, . . . , um)}E =
(
f1({u1}E, . . . , {um}E), . . . , fn({u1}E, . . . , {um}E)

)

for all u1, . . . , um ∈ F2.

We call the vector of the Boolean polynomials (f1, f2, . . . , fn) a Boolean
polynomial representation (or just representation) of the map α in the base E,
denoted by αE = (f1, f2, . . . , fn) .

Definition 2.5. Let α be a map

α :

m︷ ︸︸ ︷
Fn

2 × · · · × Fn
2 → Fn

2

and E be a base of the vector space Fn
2 . Then we call α a Boolean map of degree

d in the base E if d = max{deg(fi), i = 1, . . . , n}, where αE = (f1, f2, . . . , fn).

Proposition 2.6. The degree of a Boolean map is independent of the selected
base of Fn

2 .

Proof. Let E, E ′ be two bases of the vector space Fn
2 and let R be a transfor-

mation matrix from base E to base E ′, i.e., {u}E = {u}E′R for u ∈ Fn
2 . Recall

that the matrix R is regular. Let f ∈ F2[x
j
i ; i = 1, . . . , n, j = 1, . . . , m] be

a Boolean polynomial. Then g = f
(
(x1

1, . . . , x
1
n)R, . . . , (xm

1 , . . . , xm
n )R

)
is also

Boolean polynomial and satisfies deg(g) ≤ deg(f). Using the transformation
matrix R−1 for g in the same way, we get deg(f) = deg(g). Now let (g1, . . . , gn)

be a vector of Boolean polynomials from F2[x
j
i ; i = 1, . . . , n, j = 1, . . . ,m]n.

Then (h1, . . . , hn) = (g1, . . . , gn)R−1 is also a vector of Boolean polynomials
and satisfies

max{deg(hi), i = 1, . . . , n} ≤ max{deg(gi), i = 1, . . . , n}.

Using the transformation matrix R for (h1, . . . , hn) in the same way, we obtain

max{deg(hi), i = 1, . . . , n} = max{deg(gi), i = 1, . . . , n}.
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Let α be a map

α :

m︷ ︸︸ ︷
Fn

2 × · · · × Fn
2 → Fn

2 .

with a Boolean polynomial representation (f1, f2, . . . , fn) in the base E. Then



g1

g2

...
gn


 = (RT )−1




f1

(
(x1

1, . . . , x
1
n)R, . . . , (xm

1 , . . . , xm
n )R

)

f2

(
(x1

1, . . . , x
1
n)R, . . . , (xm

1 , . . . , xm
n )R

)
...

fn

(
(x1

1, . . . , x
1
n)R, . . . , (xm

1 , . . . , xm
n )R

)




is a Boolean polynomial representation of α in E ′ and from the calculations
above we get max{deg(fi), i = 1, . . . , n} = max{deg(gi), i = 1, . . . , n}.

2.2 Bilinear and Quadratic Forms

In this section we present definitions of quadratic and bilinear forms over a fi-
nite field, particularly, F2 [2], which is used in the next section.

Definition 2.7. Let V be a vector space upon a field F . A bilinear form on V

is a map b : V × V → F which is linear in each argument separately, i.e.,
satisfies:

(i) b(u + w, v) = b(u, v) + b(w, v)

(ii) b(u, v + w) = b(u, v) + b(u,w)

(iii) b(λu, v) = b(u, λv) = λb(u, v)

for every u, v, w ∈ V and λ ∈ F .

We say that a bilinear form b is symmetric if b(u, v) = b(v, u) for every
u, v ∈ V . The bilinear form is called alternating if b(u, u) = 0 for every u ∈ V .
In this paper we suppose that the vector space V is always finite.

Lemma 2.8. Let b be a bilinear form on a vector space V upon a field F

and let E = {e1, e2, . . . , en} be a base of V . Then the value of b(u, v), where
u, v ∈ V and {u}E = (x1, x2, . . . , xn),{v}E = (y1, y2, . . . , yn), can be expressed
as

b(u, v) =
∑

i,j=1,...,n

xiyjb(ei, ej). (2.1)
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Proof. We just use the properties of a bilinear form repeatedly.

b(u, v) = b

(
n∑

i=1

xiei,

n∑
j=1

yjej

)
=

n∑
i=1

b

(
xiei,

n∑
j=1

yjej

)

=
n∑

i,j=1

b(xiei, yjej) =
n∑

i,j=1

xiyjb(ei, ej).

We call the expression (2.1) a coordinate representation of the bilinear form
in the base E.

Lemma 2.9. Let A = [ai,j] be a matrix from F n×n and E = {e1, e2, . . . , en}
be a base of the vector space V . Define a map b : V × V → F by

b(u, v) =
∑

i,j=1,...,n

xiyjai,j,

where u, v ∈ V and {u}E = (x1, x2, . . . , xn), {v}E = (y1, y2, . . . , yn). Then b is
a bilinear form.

Proof. It is easy to observe that b(λu, v) = b(u, λv) = λb(u, v) for all λ ∈ F

and u, v ∈ V . Now let u, v, w ∈ V and {u}E = (x1, . . . , xn), {v}E = (y1, . . . , yn),

{w}E = (z1, . . . , zn). Then

b(u + w, v) = b

(
n∑

i=1

(xi + zi)ei,

n∑
i=1

yiei

)
=

∑
i,j=1,...,n

(xi + zi)yjai,j

=
∑

i,j=1,...,n

xiyjai,j +
∑

i,j=1,...,n

ziyjai,j = b(u, v) + b(w, v).

Using the same method we will get b(u, v + w) = b(u, v) + b(u,w), thus b is
a bilinear form.

In other words, each bilinear form can be fully described by a matrix and
also each matrix defines a bilinear form. We can formulate these facts in
a corollary:

Corollary 2.10. Let V be a vector space upon a field F and E = {e1, . . . , en}
be a base of V . Let b be a map V × V → F . Then b is a bilinear form if and
only if there exists a matrix A ∈ F n×n such that

b(u, v) = (x1, . . . , xn)A(y1, . . . , yn)T

for every u, v ∈ V , where {u}E = (x1, x2, . . . , xn), {v}E = (y1, y2, . . . , yn).
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Definition 2.11. Let b be a bilinear form on the vector space V . We define
the left and right radical as follows:

RadL b = {u ∈ V ;b(u,w) = 0,∀w ∈ V },
RadR b = {u ∈ V ;b(w, u) = 0,∀w ∈ V }.

It is easy to observe that RadL b, and RadR b are vector subspaces of V .
Since the rank of the matrix is the same as the rank of its transpose, hance
dim RadL b = dim RadR b.

A bilinear form b is said to be non-degenerate if RadL b = RadR b = {0}.
Definition 2.12. Let V be a vector space upon a field F . A quadratic form
on V is a map q : V → F which satisfies the conditions

(i) q(λv) = λ2q(v) for all λ ∈ F, v ∈ V .

(ii) The map b : V × V → F defined by

q(v + w) = q(v) + q(w) + b(v, w)

is a bilinear form.

We say that the bilinear form b is associated with the quadratic form q.
Directly from the definition follows that b(v, w) = b(w, v), thus the associ-
ated bilinear form is always symmetric. The properties of quadratic forms are
different in the case the characteristic of the field F is 2 or different. We will
focus only on the case the characteristic is 2. So from now on, assume that
F = F2. We can see that in this case b(v, v) = 0 for every v ∈ V which means
that b is alternating. Also, because λ2 = λ for all λ ∈ F2, we have

q(λv) = λq(v) for all v ∈ V.

Definition 2.13. Let q be a quadratic form on Fn
2 and b be its associated

bilinear form. Then the set

Radq = {u ∈ Fn
2 ;b(u,w) = b(w, u) = 0,∀w ∈ Fn

2}
is called the radical of the quadratic form q. We can see that Radq =

RadL b = RadR b. Therefore, Radq is a vector subspace of Fn
2 .

Lemma 2.14. Let q be a quadratic form on a vector space Fn
2 with a base

E = {e1, e2, . . . , en} and let b be its associated bilinear form. Then the image
of v ∈ Fn

2 , where {v}E = (x1, x2, . . . , xn), can be expressed as

q(v) =
n∑

i=1

xiq(ei) +
∑

i,j=1,...,n
i<j

xixjb(ei, ej). (2.2)
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Proof. We will use an induction on n. For n = 1 the statement holds. Suppose
that the assertion holds for n = k−1. Then, using the definition of a quadratic
form, we have

q

(
k∑

i=1

xiei

)
= q

(
k−1∑
i=1

xiei

)
+ q(xkek) + b

(
k−1∑
i=1

xiei, xkek

)

=
k−1∑
i=1

xiq(ei) +
∑

i,j=1,...,k−1
i<j

xixjb(ei, ej) + xkq(ek) +
k−1∑
i=1

xixkb(ei, ek)

=
k∑

i=1

xiq(ei) +
∑

i,j=1,...,k
i<j

xixjb(ei, ej).

We call the expression (2.2) a coordinate representation of the quadratic
form in the base E.

Lemma 2.15. Let A = [ai,j] be a symmetric matrix in Fn×n
2 such that ai,i = 0

for every i = 1, . . . , n and let (b1, b2, . . . , bn) be a vector in Fn
2 . Let E =

{e1, e2, . . . , en} be a base of the vector space Fn
2 . Now define a map q : Fn

2 → F2

by

q(v) =
n∑

i=1

xibi +
∑

i,j=1,...,n
i<j

xixjai,j,

where v ∈ Fn
2 and {v}E = (x1, x2, . . . , xn). Then q is a quadratic form and

q(ei) = bi for every i = 1, 2, . . . , n.

Proof. It can be easily observed that q(λv) = λq(v) for all λ ∈ F2, v ∈ Fn
2 .

Now let u, v ∈ Fn
2 and {u}E = (x1, . . . , xn), {v}E = (y1, . . . , yn). Then

q(u + v) =

= q

(
n∑

i=1

(xi + yi)ei

)
=

n∑
i=1

(xi + yi)bi +
∑

i,j=1,...,n
i<j

(xi + yi)(xj + yj)ai,j

=
n∑

i=1

xibi +
∑

i,j=1,...,n
i<j

xixjai,j +
n∑

i=1

yibi +
∑

i,j=1,...,n
i<j

yiyjai,j

+
∑

i,j=1,...,n
i<j

xiyjai,j +
∑

i,j=1,...,n
i<j

xjyiai,j

= q(u) + q(v) +
∑

i,j=1,...,n

xiyjai,j.
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It follows from Lemma 2.9 that b =
∑

i,j=1,...,n xiyjai,j represents a bilinear
form associated with q. The fact that q(ei) = bi follows directly from the def-
inition of q.

The lemmas above also yield that every quadratic form is fully determined
by an alternating symmetric bilinear form and a vector (b1, b2, . . . , bn) ∈ Fn

2

which defines values of the form on the elements of the base.

Corollary 2.16. Let q be an n-ary Boolean function and E = {e1, e2, . . . , en}
be a base of the vector space Fn

2 . Then q is a quadratic form if and only if
there exist values ai,j, i, j = 1, . . . , n, i < j, bk, k = 1, . . . , n such that

q(v) =
n∑

i=1

xibi +
∑

i,j=1,...,n
i<j

xixjai,j

for every v ∈ Fn
2 where {v}E = (x1, x2, . . . , xn).

It will come in handy to use the quadratic form q directly as its representa-
tion in a previously given base. It means that for u ∈ Fn

2 , {u}E = (x1, . . . , xn)

we will write just q(x1, . . . , xn) instead of q(u) and we will work with q as if
it were a polynomial q(x1, . . . , xn) ∈ Fn

2 [x1, . . . , xn]. The same convention will
be used for bilinear forms.

Corollary 2.17. Let p ∈ Fn
2 [x1, . . . , xn] be a Boolean polynomial of degree 2

and let E = {e1, e2, . . . , en} be a base of the vector space Fn
2 . Then there exists

exactly one quadratic form q and a vector c ∈ F2 such that

p(x1, . . . , xn) = q(x1, . . . , xn) + c.

2.3 Bilinear Maps and Quadratic Permutations

Now, we define bilinear maps and quadratic permutations which can be used to
describe a quadratic quasigroup. We show that bilinear maps consist of bilinear
forms, whereas quadratic permutations of quadratic forms.

Definition 2.18. Let γ be a Boolean map

γ : Fn
2 × Fn

2 → Fn
2 .

Then we say that γ is bilinear if it satisfies conditions

(i) γ(u + w, v) = γ(u, v) + γ(w, v)

(ii) γ(u, v + w) = γ(u, v) + γ(u,w)
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(iii) γ(λu, v) = γ(u, λv) = λγ(u, v)

for every u, v, w ∈ V and λ ∈ F2. The last condition follows from the first
two conditions, i.e., γ(0u, v) = γ(u + u, v) = γ(u, v) + γ(u, v) = o = γ(u, v) +

γ(u, v) = γ(u, v + v) = γ(u, 0v).

Consider a representation γE = (f1, . . . , fn) in some base E. Then for
u, v, w ∈ V where {u}E = x, {v}E = y, {w}E = z is γE(x + z, y) = γE({u}E +

{w}E, {v}E) = γE({u+w}E, {v}E) = {γ(u+w, v)}E = {γ(u, v)+γ(w, v)}E =

{γ(u, v)}E + {γ(w, v)}E = γE(x, y) + γE(z, y). The other two conditions for
bilinearity are similarly satisfied, thus, γE is also bilinear. Then, each fi as
a component of γE has to satisfy the same conditions, therefore, fi is a repre-
sentation of a bilinear form.

On the other hand, if we construct a Boolean map γ′ from a representation
(b1, . . . ,bn) where b1, . . . ,bn are bilinear forms on the vector space Fn

2 in
a representation form, then the Boolean map γ′ surely satisfies all conditions
to be bilinear. We can claim

Lemma 2.19. Let γ be a Boolean map

γ : Fn
2 × Fn

2 → Fn
2

and E be a base of the vector space Fn
2 . Then γ is bilinear if and only if there

exist bilinear forms Fn
2 b1, . . . ,bn on the vector space such that (b1, . . . ,bn) is

a representation of γ in the base E.

Note that for each base there exists different vector of bilinear forms. Let
(b1, . . . ,bn) be a representation of γ in the base E and (b′1, . . . ,b

′
n) be a rep-

resentation of γ in the base E ′. If R is a transformation matrix from E to E ′

then (b1, . . . ,bn) = (b′1, . . . ,b
′
n)R.

Let o = (0, . . . , 0) ∈ Fn
2 denote a vector of zeros. Then {o}E = (0, . . . , 0)

for every base E of Fn
2 .

Definition 2.20. Let γ be a bilinear map on the vector space Fn
2 . We define

the left and right radical as follows:

RadL γ = {u ∈ V ; γ(u,w) = o, ∀w ∈ V },
RadR γ = {u ∈ V ; γ(w, u) = o, ∀w ∈ V }.

It is easy to observe that RadL γ, and RadR γ are vector subspaces of Fn
2 .

Let (b1, . . . ,bn) be a representation of the bilinear map γ in the base E.
Then, we can equivalently set

RadL γ =
n⋂

i=1

RadL bi,
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and

RadR γ =
n⋂

i=1

RadR bi.

Definition 2.21. Let α be a permutation of the vector space Fn
2 . We call α

a quadratic permutation if it has degree 2 in the sense of Definition 2.5 and we
call α a linear permutation if it has degree 1.

Lemma 2.22. Let α be a linear permutation of the vector space Fn
2 with

a representation (f1, . . . , fn) in a base E. Then the representation can be
expressed as 



f1

f2

...
fn


 = AxT + cT , (2.3)

where the matrix A ∈ Fn×n
2 and the vector c ∈ Fn

2 are uniquely determined
and A is regular.

Also for each regular matrix A′ and a vector c′ ∈ Fn
2 , A′xT + c′T is a repre-

sentation of a linear permutation.

Proof. The polynomial fi is linear for every i = 1, . . . , n, thus, fi = ai
0 +∑n

j=1 ai
jxj for some ai

j ∈ F2, j = 1, . . . , n. Then, we can define the matrix A as

A =




a1
1 a1

2 . . . a1
n

a2
1 a2

2 . . . a2
n

...
an

1 an
2 . . . an

n


 ,

and the vector c as
c = (a1

0, a
2
0, . . . , a

n
0 ),

which satisfy (2.3). Since the permutation α is invertible, the equation

yT = AxT + cT

has to have a unique solution x for every y ∈ Fn
2 . That’s possible if and only

if the matrix A is invertible and so

xT = A−1(yT − cT ).

As we have just rewritten the expression in a matrix form, the uniqueness is
clear.

The rest follows by direct verification.
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Corollary 2.23. Let α be a linear permutation of the vector space Fn
2 . Then

α−1 is also a linear permutation.

Lemma 2.24. Let β be a quadratic permutation of the vector space Fn
2 with

a representation (f1, . . . , fn) in a base E. Then there exists exactly one vector
of quadratic forms (q1,q2, . . . ,qn) on the vector space Fn

2 and exactly one
vector c ∈ Fn

2 such that the representation (f1, . . . , fn) can be expressed as



f1

f2

...
fn


 =




q1(x1, . . . , xn)

q2(x1, . . . , xn)
...

qn(x1, . . . , xn)


 + cT . (2.4)

Proof. The polynomial fi is quadratic for every i = 1, . . . , n, therefore, we can
use Corollary 2.17 to find a quadratic form qi and a constant ci ∈ F2 such that
the claim holds.

Lemma 2.25. Let α be a Boolean map

α :

m︷ ︸︸ ︷
Fn

2 × · · · × Fn
2 → Fn

2

of degree d, d > 0 and L be a linear permutation of Fn
2 . Then maps

α′ : u1, . . . , um 7→ α(u1, . . . ,L(ur), . . . , um)

where 1 ≤ r ≤ m, and

α′′ : u1, . . . , um 7→ L(
α(u1, . . . , um)

)

are also of degree d.

Proof. Let (f1, . . . , fn), where fi ∈ F2[xj; j = 1, . . . , mn], i = 1, . . . , n, be
a representation of α in a base E. Let xL + c, where L = [li,j] is a regular
matrix n × n and c = (c1, . . . , cn) ∈ Fn

2 , be a representation of L in the base
E. We will choose some monomial xI from fi. Now we divide the set I to
I1 = I ∩ {(r − 1)n + 1, . . . , rn} and I2 = I \ {(r − 1)n + 1, . . . , rn}. We will
denote xk = (x(k−1)n+1, x(k−1)n+2, . . . , xkn). Then

xI

(
x1, . . . , xr−1, xrL + c, xr+1, . . . , xm

)

= xI

(
x1, . . . ,

n∑
i=1

l1,ixr(n−1)+i + c1, . . . ,

n∑
i=1

ln,ixr(n−1)+i + cn, . . . , xmn

)

=
∏
j∈I1

(
n∑

i=1

lj,ixr(n−1)+i + cj

)
· xI2 =

∑
J⊆I1

aJxJ · xI2 =
∑
J⊆I1

aJxJ∪I2 ,
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where aJ ∈ F2, thus, the degree of monomial xI after the composition with
L is not greater than |I|. Note that deg(xJ1 + xJ2) ≤ max{|J1|, |J2|} for
sets J1, J2 ⊆ {1, 2, . . . , mn} (the degree is equal to −∞ if J1 = J2), con-
sequently, the polynomial gi = fi

(
x1, . . . , xr−1, xrL + c, xr+1, . . . , xm

)
satisfies

deg(gi) ≤ deg(fi). The same procedure works for the polynomial gi and the lin-
ear permutation L−1, providing deg(fi) ≤ deg(gi), thus deg(fi) = deg(gi). All
polynomials fi, gi, i = 1, . . . , n fulfil this identity. It is clear that the maps α

and α′ have the same degree since (g1, . . . , gn) represents the map α′ .
Now, suppose that (h1, . . . , hn) represents the map α′′ = L(α) in the base E.

For each k = 1, . . . , n we can express the polynomial hk as hk =
∑n

i=1 lk,ifi+ck.
Then deg(hk) ≤ max{fi, i = 1, . . . , n}, and that’s why degree of α′′ is less or
equal to degree of α. Using the same procedure for α = L−1(α′′) we will obtain
equality of the degrees.

Lemma 2.26. Let α be a permutation of Fn
2 . Then there exists a permutation

β of the same degree and a vector c ∈ Fn
2 such that β(o) = o and

α(u) = β(u) + c,

for every u ∈ Fn
2 .

Proof. We set c = α(o) and β(u) = α(u) + c for every u ∈ Fn
2

Lemma 2.27. Let β be a quadratic permutation of Fn
2 , which satisfies β(o) =

o. Then the map β̃ : Fn
2 × Fn

2 → Fn
2 defined by

β(u + v) = β(u) + β(v) + β̃(u, v) (2.5)

is bilinear.

Proof. Suppose β has a representation in a base E in the form (q1,q2, . . . ,qn)+

c, where qi, i = 1, . . . , n are quadratic forms as in Lemma 2.24. Then, since
β(o) = o, hence c = o. The rest is clear using the definition of a quadratic
form and Lemma 2.19.

We say that the bilinear map β̃ is associated with the quadratic permuta-
tion β. It is clear that the bilinear map β̃ is symmetric and alternating, i.e.,
β̃(u, v) = β̃(v, u) and β̃(u, u) = o for all u, v ∈ Fn

2 . Furthermore, the map β is
linear if and only if β̃ is trivial.

Lemma 2.28. Let β be a permutation of Fn
2 such that β(o) = o. Then β is

quadratic permutation if and only if β̃, defined by (2.5), is a nontrivial bilinear
map.
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Proof. It follows directly from Lemmas 2.24 and 2.19, and the definition of
a quadratic form.

Definition 2.29. Let β be quadratic permutation of Fn
2 such that β(o) = o.

Then the set

Rad β = {u ∈ Fn
2 ; β̃(v, u) = β̃(u, v) = 0,∀v ∈ Fn

2}

is called the radical of the quadratic permutation β. We can see that Rad β =

RadL β̃ = RadR β̃. Therefore, Rad β is a vector subspace of Fn
2 .

Let E be a base of Fn
2 and let (q1,q2, . . . ,qn) be a representation of

the quadratic permutation β in the base E. We see that

Rad β =
n⋂

i=1

Radqi.

Lemma 2.30. Let β be a quadratic permutation of Fn
2 such that β(o) = o.

Then, for every u, v ∈ Rad β, is

β(u + v) = β(u) + β(v),

i.e., the restriction of β to Rad β is linear.

Proof. The claim follows directly from the definition of a radical. For every
u, v ∈ Rad β is β̃(u, v) = o, thus

β(u + v) = β(u) + β(v) + β̃(u, v) = β(u) + β(v).

Lemma 2.31. Let β be a quadratic permutation of Fn
2 such that β(o) = o,

and let c ∈ Fn
2 . We define a quadratic permutation α by α(u) = β(u)+ β̃(u, c).

Then, α is a quadratic permutation of Fn
2 .

Proof. Let L1 and L2 be linear permutations L1 : u 7→ u + c and L2 : u 7→
u + β(c). Then the composition L2 ◦ β ◦ L1 is a quadratic permutation and
satisfies

L2(β(L1(u))) = β(u + c) + β(c)

= β(u) + β̃(u, c) + β(c) + β(c) = β(u) + β̃(u, c) = α(u).
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Lemma 2.32. Consider a bilinear Boolean map α on the vector space Fn
2 .

Then, for every fixed c ∈ Fn
2 , the maps defined by u 7→ α(u, c) and v 7→ α(c, v)

are linear.

Proof. Let E be base of Fn
2 . Then, using Lemma 2.19, we can find a vector of

bilinear forms (b1, . . . ,bn) such that it represents the bilinear map α. Then
for each bk, k = 1, . . . , n there exist ak

i,j, i, j = 1, . . . , n such that
∑n

i,j=1 ak
i,jxiyj

represents the bilinear form bk. Put (c1, . . . , cn) = {c}E. Then,
(

n∑
i=1

( n∑
j=1

a1
i,jcj

)
xi, . . . ,

n∑
i=1

( n∑
j=1

an
i,jcj

)
xi

)

is representation of the map u 7→ α(u, c) and
(

n∑
j=1

( n∑
i=1

a1
i,jci

)
yj, . . . ,

n∑
j=1

( n∑
i=1

an
i,jci

)
yj

)

is representation of the map v 7→ α(c, v), where {u}E = (x1, . . . , xn) and
{v}E = (y1, . . . , yn). It follows directly from the form of the representations
that the both maps are linear.

2.4 Boolean Quasigroups

In this section we finally define quadratic quasigroups ([8]). Then, we use
the theory presented in the previous sections to represent a quadratic quasi-
group as a sum of two quadratic permutations, a bilinear map, and a vector in
the vector space Fn

2 . This representation is unique and provides a classification
of quadratic quasigroups.

Suppose that (Q, ∗) is a finite quasigroup of order 2n upon the vector space
Q = Fn

2 . Let E = {e1, e2, . . . en} be a base of Fn
2 . Now, the binary operation ∗

can be seen as a Boolean map ∗ : Fn
2 × Fn

2 → Fn
2 defined as

∗ : (u, v) 7→ w,

where u, v, w ∈ Fn
2 satisfy u ∗ v = w. Using Theorem 2.4 we can state

Lemma 2.33. Let (Q, ∗) be a quasigroup upon Fn
2 . For each base E of Fn

2

there exists exactly one vector of Boolean polynomials (f1, f2, . . . , fn) ∈(
F2[x1, x2, . . . , xn, y1, y2, . . . , yn]

)n, such that

{u ∗ v}E =
(
f1({u}E, {v}E), . . . , fn({u}E, {v}E)

)

for all u, v ∈ Fn
2 .
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Observation 2.34. Let (f1, f2, . . . , fn) ∈ F2[x1, x2, . . . , xn, y1, y2, . . . , yn]n be
a vector of Boolean polynomials. Then the system of equations with the vari-
ables y1, y2, . . . , yn

f1(a1, a2, . . . , an, y1, y2, . . . , yn) = b1,

f2(a1, a2, . . . , an, y1, y2, . . . , yn) = b2,
...

fn(a1, a2, . . . , an, y1, y2, . . . , yn) = bn,

and the system of equations with the variables x1, x2, . . . , xn

f1(x1, x2, . . . , xn, c1, c2, . . . , cn) = d1,

f2(x1, x2, . . . , xn, c1, c2, . . . , cn) = d2,
...

fn(x1, x2, . . . , xn, c1, c2, . . . , cn) = dn,

have for every (a1, . . . , an), (b1, . . . , bn) ∈ Fn
2 and every (c1, . . . , cn), (d1, . . . , dn) ∈

Fn
2 exactly one solution if and only if (f1, f2, . . . , fn) is a representation of

a quasigroup in some base E.

Definition 2.35. Let (Q, ∗) be a quasigroup upon Fn
2 . We call (Q, ∗) a Boolean

quasigroup of degree d if the Boolean map ∗ : Fn
2 × Fn

2 → Fn
2 is of degree d.

Definition 2.36. Let Q1 and Q2 be quasigroups upon Fn
2 . We say that Q1

and Q2 are linearly isotopic if there exist three linear permutations L1,L2 and
L3 which form an isotopy (L1,L2,L3) such that

(L1,L2,L3) : Q1 → Q2.

We say that Q1 and Q2 are linearly isomorphic if L1 = L2 = L3.

We observe that the relation of being linearly isotopic represents an equiv-
alence on the set of quasigroups. We show in the following proposition that
all quasigroups in one class of equivalence have the same degree.

Proposition 2.37. Linearly isotopic Boolean quasigroup have the same de-
gree.

Proof. The assertion follows directly from Lemma 2.25.

We shall call the Boolean quasigroup of degree 2 shortly a quadratic quasi-
group and Boolean quasigroups of degree 1 a linear quasigroup.
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Let (Fn
2 , ∗) be a quadratic quasigroup and (f1, f2, . . . , fn) be its represen-

tation in a base E. In a general case the form of the polynomial fi is as
follows:

fi(x1, x2, . . . , xn, y1, y2, . . . , yn)

=
∑

k,l∈{1,...,n}
mi

k,l xkyl +
∑

k,l∈{1,...,n}
k<l

ai
k,l xkxl +

∑

k,l∈{1,...,n}
k<l

bi
k,l ykyl

+
∑

k∈{1,...,n}
ci
kxk +

∑

k∈{1,...,n}
di

kyk + ei, (2.6)

where the coefficients mi
k,l, a

i
k,l, b

i
k,l, c

i
k, d

i
k, e

i ∈ F2. Using Corollary 2.10 and
Corollary 2.16, we can express this polynomial as

fi(x1, x2, . . . , xn, y1, y2, . . . , yn)

= pi(x1, . . . , xn) + bi

(
(x1, . . . , xn), (y1, . . . , yn)

)
+ qi(y1, . . . , yn) + di,

where pi,qi are quadratic and bi bilinear forms in their coordinate repre-
sentation in the base E, (x1, x2, . . . , xn), (y1, y2, . . . , yn) are the coordinates in
the base E and di ∈ F2. We have just showed following

Lemma 2.38. Let (Fn
2 , ∗) be a quadratic quasigroup. Then, for every base

E of Fn
2 there exist quadratic forms pi,qi, i = 1, . . . , n, bilinear forms bi, i =

1, . . . , n on the vector space Fn
2 and a vector of constants d ∈ Fn

2 such that

{u ∗ v}E =




p1(x)

p2(x)
...

pn(x)


 +




b1(x, y)

b2(x, y)
...

bn(x, y)


 +




q1(y)

q2(y)
...

qn(y)


 + dT (2.7)

is a representation of (Fn
2 , ∗) in the base E where x = (x1, . . . , xn) and y =

(y1, . . . , yn), while {u}E = x, {v}E = y.

Lemma 2.39. Let E be a base of the vector space Fn
2 and (Fn

2 , ∗) be a quadratic
quasigroup with a representation in the form (2.7). Then each of vectors
(p1, . . . ,pn) and (q1, . . . ,qn) represents a quadratic or linear permutation.

Proof. Recall that every quadratic form q and bilinear form b satisfy q(o) =

0 and b(x, o) = b(o, y) = 0. Now we can easily derive representations of
the translations Lo and Ro.

{Lo(v)}E = {o ∗ v}E

=




p1(o)

p2(o)
...

pn(o)


 +




b1(o, y)

b2(o, y)
...

bn(o, y)


 +




q1(y)

q2(y)
...

qn(y)


 + dT =




q1(y)

q2(y)
...

qn(y)


 + dT ,
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{Ro(u)}E = {u ∗ o}E

=




p1(x)

p2(x)
...

pn(x)


 +




b1(x, o)

b2(x, o)
...

bn(x, o)


 +




q1(o)

q2(o)
...

qn(o)


 + dT =




p1(x)

p2(x)
...

pn(x)


 + dT ,

where u, v ∈ Fn
2 and {u}E = x, {v}E = y. Let c ∈ Fn

2 satisfy {c}E = d. Because
Lo and Ro are permutations of Fn

2 , Lo− c and Ro− c are permutations too and
their representations are exactly (q1, . . . ,qn) and (p1, . . . ,pn), respectively. If
at least one of the quadratic forms q1, . . . ,qn, or p1, . . . ,pn is associated with
a nontrivial bilinear form, then Lo − c, or Ro − c, respectively, is a quadratic
permutation. Otherwise, it’s a linear permutation.

Theorem 2.40. Let (Fn
2 , ∗) be a quadratic quasigroup. Then there exist

Boolean permutations α and β of Fn
2 that are of degrees at most 2 and satisfy

α(o) = β(o) = o, a bilinear Boolean map γ on Fn
2 and a vector c ∈ Fn

2 such
that

u ∗ v = α(u) + γ(u, v) + β(v) + c

for every u, v ∈ Fn
2 . The maps α, β, γ and the vector c are uniquely determined.

Proof. Suppose the quasigroup (Fn
2 , ∗) is represented in the base E as in Lemma

2.38, i.e.,

{u ∗ v}E =




p1(x)

p2(x)
...

pn(x)


 +




b1(x, y)

b2(x, y)
...

bn(x, y)


 +




q1(y)

q2(y)
...

qn(y)


 + dT ,

whenever u, v ∈ Fn
2 , {u}E = x, and {v}E = y. It follows from Lemma 2.39

that (p1, . . . ,pn) and (q1, . . . ,qn) are representations of Boolean permuta-
tions which are linear or quadratic. Let α and β denote these permutations.
The representations of α and β imply that α(o) = β(o) = o. Lemma 2.19
yields that (b1, . . . ,bn) is a representation of a bilinear Boolean map. Let γ

denote this bilinear map. Next, define a vector c ∈ Fn
2 by {c}E = d. Suppose

that u, v ∈ Fn
2 and {u}E = x, {v}E = y. Then, using the fact that u 7→ {u}E

is an isomorphism of the vector space Fn
2 and the vector space of coordinates
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Fn
2 , we see that

{u ∗ v}E =




p1(x)

p2(x)
...

pn(x)


 +




b1(x, y)

b2(x, y)
...

bn(x, y)


 +




q1(y)

q2(y)
...

qn(y)


 + dT

= {α(u)}E + {γ(u, v)}E + {β(v)}E + {c}E

= {α(u) + γ(u, v) + β(v) + c}E

which implies u ∗ v = α(u) + γ(u, v) + β(v) + c.
Consider maps α′, β′, γ′ and a vector c′ which satisfy the claim, too. Then

α(o) + γ(o, o) + β(o) + c = o ∗ o = α′(o) + γ′(o, o) + β′(o) + c′ ⇒ c = c′,

α(u) + γ(u, o) + β(o) + c = u ∗ o = α′(u) + γ′(u, o) + β′(o) + c ⇒ α = α′,

α(o) + γ(o, v) + β(v) + c = o ∗ v = α(o) + γ′(o, v) + β′(v) + c ⇒ β = β′,

α(u) + γ(u, v) + β(v) + c = u ∗ v = α(u) + γ′(u, v) + β(v) + c ⇒ γ = γ′.

Thus the maps α, β, γ and the vector c are uniquely determined.

A linear quasigroup is just a special case of a quadratic quasigroup, there-
fore, we can state the following definition for both linear, and quadratic quasi-
groups.

Definition 2.41. Let (Q, ∗) be a linear or quadratic quasigroup. The expres-
sion of ∗ as

u ∗ v = α(u) + γ(u, v) + β(v) + c,

from Theorem 2.40, will be called a canonical decomposition. In such a case we
shall say that the quasigroup (Q, ∗) decomposes as (α, γ, β)c. We shall call α

the left component of (Q, ∗), β the right component, γ the bilinear component
and c the (translation) factor.

We can now state an interesting property of a quadratic quasigroup.

Corollary 2.42. Let (Fn
2 , ∗) be a quadratic quasigroup. Then the Boolean

map γ : Fn
2 × Fn

2 → Fn
2 defined as

γ : (u, v) 7→ (u ∗ v) + Ro(u) + Lo(v) + (o ∗ o)

is bilinear.

Definition 2.43. Let (Q, ∗) be a quadratic quasigroup and (α, γ, β)c be its
canonical decomposition. We associate the quasigroup (Q, ∗) with a type
(i, j, k), where i, j, k ∈ {0, 1} such that i = 0 iff α is linear, k = 0 iff β is
linear and j = 0 iff γ is trivial.
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We show in the following proposition that each equivalence class of linearly
isotopic quadratic quasigroups has an invariant type.

Proposition 2.44. Linearly isotopic quadratic quasigroup are of the same
type.

Proof. Let L1,L2,L3 be linear permutations of Fn
2 which forms an isotopy

between quadratic quasigroups (Q1, ∗) and (Q2, ◦) upon the vector space Fn
2 .

Each permutation Li, i = 1, 2, 3 can be expressed as L′i + ci, where L′i is linear
permutation such that L′i(o) = o, and ci ∈ Fn

2 (we used Lemma 2.26). Let
(α, γ, β)c be a canonical decomposition of (Q1, ∗). Then

L3(u ◦ v) = α(L′1(u) + c1) + γ(L′1(u) + c1,L′2(v) + c2) + β(L′2(v) + c2)

= α(L′1(u)) + α̃(L′1(u), c1) + γ(L′1(u), c2)︸ ︷︷ ︸
=α′(u)

+ γ(L′1(u),L′2(v))︸ ︷︷ ︸
=γ′(u,v)

+ β(L′2(v)) + β̃(L′2(v), c2) + γ(c1,L′2(v))︸ ︷︷ ︸
=β′(v)

+ α(c1) + γ(c1, c2) + β(c2) + c︸ ︷︷ ︸
=c′

.

It follows from Lemmas 2.32 and 2.25 that the maps u 7→ α̃(L′1(u), c1), u 7→
γ(L′1(u), c2),v 7→ α̃(L′2(v), c2), and v 7→ γ(c1,L′2(v)) are linear. Lemma 2.25
implies the map u 7→ α(L′1(u)) is of the same degree as α and v 7→ β(L′2(v))

is of the same degree as β. If the map α is quadratic then α′ is quadratic too.
In the case that the map α is linear, the map α′ is either linear, or constant.
Suppose that α′ = b for some b ∈ Fn

2 . Then, L3(u◦o) = α′(u)+γ′(u, o)+β′(o) =

b for every u ∈ Fn
2 , which is contradiction. That means the degree of α′ is

the same as the degree of α and symmetrically the degree of β′ is same as
the degree of β. It can be easily observed that α′(o) = β′(o) = o. It follows
from Lemma 2.25 that the degree of the map γ′ is the same as the degree of γ

(i.e., 2, or both γ′ and γ are trivial), and by direct verification we can see that
γ′ is a bilinear map. Now, define maps

α′′(u) = L′−1
3 (α′(u)),

γ′′(u, v) = L′−1
3 (γ′(u, v)), and

β′′(v) = L′−1
3 (β′(v)),

and the vector c′′ = L′−1
3 (c′) + L′−1

3 c3. Lemma 2.25 implies that the degree of
map α′′ is same as the degree of α′, β′′ as β′ and γ′′ as γ′. By direct verification
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we can see that γ′′ is a bilinear map and α′′(o) = β′′(o) = o. The maps satisfy
u ◦ v = α′′(u) + γ′′(u, v) + β′′(v) + c′′. Suppose Lo and Ro is the left and right
translation of (Q2, ◦). Then,

Ro(u) = u ◦ o = α′′(u) + γ′′(u, o) + β′′(o) + c′′ = α′′(u) + c′′, and

Lo(u) = o ◦ u = α′′(o) + γ′′(o, u) + β′′(u) + c′′ = β′′(u) + c′′,

thus, α′′ and β′′ are permutations and (α′′, γ′′, β′′)c′′ is canonical decomposition
of (Q2, ◦), therefore, (Q2, ◦) is of the same type as (Q1, ∗).

Proposition 2.45. Linear quasigroups are necessarily of the type (0, 0, 0).

Proof. Consider the canonical decomposition (α, γ, β)c of a linear quasigroup
(Q, ∗), i.e.,

u ∗ v = α(u) + γ(u, v) + β(v) + c.

Then (Q, ∗) is linear if and only if at least one of the maps α, β or γ is linear
and the others are constant. Because the maps α, and β cannot be constant,
they have to be linear. Each representation of the map γ is composed from
bilinear forms, which are always quadratic, therefore, γ is trivial.

Example 2.46. Let the finite quasigroup (Q, ∗) of order 23 = 8 be given by
the Cayley table 2.1.

∗ 0 1 2 3 4 5 6 7
0 1 5 4 7 3 6 2 0
1 0 2 6 3 7 4 5 1
2 2 0 3 6 4 7 1 5
3 5 1 7 4 6 3 0 2
4 6 3 0 2 5 1 7 4
5 4 7 1 5 2 0 3 6
6 7 4 5 1 0 2 6 3
7 3 6 2 0 1 5 4 7

Table 2.1: Cayley table of (Q, ∗) of order 8

Using an inverse of the bijection ϕ : F3
2 → Z8, ϕ(x1, x2, x3) = 4x1 + 2x2 +

x3 we can represent each element of Q as a binary vector from F3
2. Then
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the representation of (Q, ∗) in the canonic base is as follows

f1(x1, x2, x3, y1, y2, y3) = x2y1 + x2y2 + x2y3 + x3y1 + x3y3 + x2x3 + y1y2

+ y2y3 + x1 + y2 + y3,

f2(x1, x2, x3, y1, y2, y3) = x1y2 + x2y3 + x3y2 + x3y3 + x1x2 + x1x3 + x2x3

+ y2y3 + x1 + x2 + y1,

f3(x1, x2, x3, y1, y2, y3) = x1y1 + x1y2 + x1y3 + x3y1 + x3y2 + x1x3 + y1y3

+ y2y3 + x1 + x2 + x3 + y2 + 1.

Now, consider a canonical decomposition (α, γ, β)c of (Q, ∗). Then,



x2x3 + x1

x1x2 + x1x3 + x2x3 + x1 + x2

x1x3 + x1 + x2 + x3




is a representation of α,



y2y3 + y2 + y3

y2y3 + y1

y1y3 + y2y3 + y2




is a representation of β,



x2y1 + x2y2 + x2y3 + x3y1 + x3y3

x1y2 + x2y3 + x3y2 + x3y3

x1y1 + x1y2 + x1y3 + x3y1 + x3y2




is a representation of γ, and c = (0, 0, 1). It can be easily seen that (Q, ∗) is
a quadratic quasigroup of the type (1, 1, 1).

2.5 Quadratic Loops

In this section we describe properties of quadratic loops using the classification
from the previous section. Then, we show that each quadratic loop can be
represented by n matrices n× n and we present a necessary condition so that
the matrices could represent a quadratic loop.

Lemma 2.47. Let (Q, ∗) be a quadratic loop and let e ∈ Fn
2 be its unit. Then

there exists a quadratic loop (Q, ◦) with the unit o = (0, 0, . . . , 0) ∈ Fn
2 which

is linearly isomorphic to (Q, ∗).
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Proof. Define a binary operation ◦ by x ◦ y = L−1
(L(x) ∗ L(y)

)
, where L is

a bijection

L : Fn
2 → Fn

2 ,

L : x 7→ x + e.

Then

x ◦ o = L−1
(L(x) ∗ L(o)

)
= (x + e) ∗ e + e = x + e + e = x,

o ◦ x = L−1
(L(o) ∗ L(x)

)
= e ∗ (x + e) + e = x + e + e = x,

for every x ∈ Q so o is the unit. Since L(x ◦ y) = L(x) ∗ L(y), hence L is
an isomorphism between (Q, ∗) and (Q, ◦). Using Proposition 2.37 we can see
that (Q, ◦) is also a quadratic quasigroup.

Theorem 2.48. Let (Q, ∗) be a linear or a quadratic loop with the unit
o = (0, 0, . . . , 0) ∈ Fn

2 . Suppose that the quasigroup (Q, ∗) is canonically
decomposed as (α, γ, β)c. Then α = β = Id and c = o, i.e., for every u, v ∈ Q,
we have

u ∗ v = u + γ(u, v) + v.

Proof. We know that

u ∗ v = α(u) + γ(u, v) + β(v) + c.

The vector o is both left, and right unit, and thus, for every u ∈ Q

o = o ∗ o = α(o) + γ(o, o) + β(o) + c = c ⇒ c = o,

Id(u) = Ro(u) = u ∗ o = α(u) + γ(u, o) + β(o) = α(u) ⇒ α = Id, and

Id(u) = Lo(u) = o ∗ u = α(o) + γ(o, u) + β(u) = β(u) ⇒ β = Id .

The previous theorem also yields that if the loop (Q, ∗) is linear, then it is
of the type (0, 0, 0). If the loop (Q, ∗) is quadratic, then it is of the type (0, 1, 0).

Proposition 2.49. The only linear loop with a unit o = (0, 0, . . . , 0) is the
group (Fn

2 , +).

Proof. Directly by Theorem 2.48 and Proposition 2.45 we have

u ∗ v = u + v

for every u, v ∈ Fn
2 .
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Consider a base E of Fn
2 . The representation in the base E of the identity

is simply (f1, . . . , fn) = (x1, . . . , xn). The representation of the bilinear com-
ponent γ in the base E is (b1, . . . ,bn), where bi, i = 1, . . . , n are bilinear forms
on Fn

2 . Each bilinear form bi has a form xMiy
T where Mi is matrix in Fn×n

2 .
Then, we can express the representation of the quadratic loop Q in base E as
follows 



xM1y
T

xM2y
T

...
xMny

T


 + xT + yT . (2.8)

Now let Mi = [mi
k,l] ∈ Fn×n

2 , i = 1, . . . , n be arbitrary matrices. We shall
try to derive necessary conditions for M1,M2, . . . , Mn so that a loop with
the unit o = (0, 0, . . . , 0) ∈ Fn

2 can be represented in the form (2.8). Note that
xMiy

T = (xMiy
T )T = yMT

i xT . Using Observation 2.34, we can see that each
of equations (2.9) and (2.10)




aM1y
T

aM2y
T

...
aMny

T


 + aT + yT = bT







aM1

aM2

...
aMn


 + In




︸ ︷︷ ︸
Λ(a)

yT = bT + aT , (2.9)




cMT
1 xT

cMT
2 xT

...
cMT

n xT


 + xT + cT = dT







cMT
1

cMT
2

...
cMT

n


 + In




︸ ︷︷ ︸
Ω(c)

xT = dT + cT , (2.10)

has to have a unique solution for every a, b ∈ Fn
2 , and every c, d ∈ Fn

2 , respec-
tively. It means that the matrices Λ(a) and Ω(c) have to be regular for every
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a, c ∈ Fn
2 . Then we can easily express the solution as

yT = Λ(a)−1(bT + aT )

and
xT = Ω(c)−1(dT + cT ).

Recall that the matrices Λ(a) and Ω(c) are regular if and only if detΛ(a) = 1

and detΩ(c) = 1 in F2. We have just proved

Theorem 2.50. Let Mi = [mi
k,l] ∈ Fn×n

2 , i = 1, . . . , n be arbitrary matrices.
Then the vector of polynomials




xM1y
T

xM2y
T

...
xMnyT


 + xT + yT

represents a quadratic loop with the unit o = (0, 0, . . . , 0) if and only if
detΛ(a) = 1 and detΩ(c) = 1 for every a, c ∈ Fn

2 , where Λ(a),Ω(c) are
the matrices defined in (2.9) and (2.10).

Expanding the determinants detΛ(a) and detΩ(c) we obtain

detΛ(a) = λ∅ +
∑

i1∈{1,...,n}
λi1ai1 +

∑

i1,i2∈{1,...,n}
i1<i2

λi1,i2 ai1ai2

+
∑

i1,i2,i3∈{1,...,n}
i1<i2<i3

λi1,i2,i3 ai1ai2ai3 + · · ·+ λ1,2,...,n a1a2 . . . an, (2.11)

and

detΩ(c) = ω∅ +
∑

i1∈{1,...,n}
ωi1ci1 +

∑

i1,i2∈{1,...,n}
i1<i2

ωi1,i2 ci1ci2

+
∑

i1,i2,i3∈{1,...,n}
i1<i2<i3

ωi1,i2,i3 ci1ci2ci3 + · · ·+ ω1,2,...,n c1c2 . . . cn, (2.12)

where the elements λI , ωI depend only on {mi
k,l; i, k, l = 1, 2, . . . , n} for every

I ⊆ {1, 2, . . . , n}.
Proposition 2.51. Let Λ(a),Ω(c) be the matrices defined in (2.9) and (2.10)
and let λI , ωI be the elements defined in (2.11) and (2.12) for every I ⊆
{1, 2, . . . , n}. Then the conditions detΛ(a) = 1 and detΩ(c) = 1 are satisfied
for every chosen a, c ∈ Fn

2 if and only if

λ∅ = ω∅ = 1 and λI = ωI = 0 for every nonempty I ⊆ {1, 2, . . . , n}. (2.13)
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Proof. We consider a Boolean polynomial f = detΛ(x1, . . . , xn). Its corre-
sponding Boolean function f̄ has to satisfy f̄(a) = 1 for every a ∈ Fn

2 . We
can observe that f̄ = ḡ holds for the Boolean polynomial g = 1. Theorem
2.3 implies that f = g, i.e., the coefficients λI of polynomial f have to fulfil
the conditions (2.13). The proof regarding detΩ(c) can be led in the same
way.

Proposition 2.52. Let λ∅, ω∅ be the elements defined in (2.11) and (2.12).
Then, λ∅ = ω∅ = 1 necessarily.

Proof. The value in the cell of the matrix Λ(a) on the position (i, j) is as
follows

Λ(a)i,j =

(
n∑

k=1

mi
k,jak

)
+ δi,j.

Hence,

detΛ(a) =
∑
π∈Sn

n∏
i=1

(
n∑

k=1

mi
k,π(i)ak

)
+ δi,π(i).

Using the equation (2.11) it be easily observed that detΛ(0, 0, . . . , 0) = λ∅. So
λ∅ =

∑
π∈Sn

∏n
i=1 δi,π(i) =

∏n
i=1 δi,Id(i) = 1. An analogous proof will work for

ω∅.

Proposition 2.53. Let λ1,...,n, ω1,...,n be the elements defined in (2.11) and
(2.12). Then,

λ1,...,n = ω1,...,n =
∑

π,ρ∈Sn

n∏
i=1

mi
ρ(i),π(i).

Proof. We know that

detΛ(a) =
∑
π∈Sn

n∏
i=1

(
n∑

k=1

mi
k,π(i)ak

)
+ δi,π(i).

For fixed π ∈ Sn we can rewrite
∏n

i=1(
∑n

k=1 mi
k,π(i)ak) + δi,π(i) as

(m1
1,π(1)a1 + m1

2,π(1)a2 + · · ·+ m1
n,π(1)an + δ1,π(1))

·(m2
1,π(2)a1 + m2

2,π(2)a2 + · · ·+ m2
n,π(2)an + δ2,π(2))

...

·(mn
1,π(n)a1 + mn

2,π(n)a2 + · · ·+ mn
n,π(n)an + δn,π(n)). (2.14)

If we choose the term mi
ki,π(i)aki

in i-th row in such a way, that ki 6= kj

whenever i 6= j, i, j ∈ {1, 2, . . . , n}, and multiple these terms, we will have∏n
i=1 mi

ki,π(i)aki
= (

∏n
i=1 mi

ki,π(i))a1a2 · · · an. That’s obviously the only way



CHAPTER 2. QUADRATIC QUASIGROUPS 37

how to obtain an element which contains a1a2 · · · an. We can see that each
combination (k1, . . . , kn) corresponds to a permutation ρ ∈ Sn. It means that
every summand in the expansion of (2.14), which contains a1a2 · · · an, has to
be in the form (

∏n
i=1 mi

ρ(i),π(i))a1a2 · · · an for some permutation ρ ∈ Sn. This
fact implies

λ1,...,n =
∑

π,ρ∈Sn

n∏
i=1

mi
ρ(i),π(i).

We use the same method for Ω(c). Since MT
i (instead of Mi) is used in

each row to define the matrix Ω(c) we may simply substitute mi,j by mj,i. We
get

detΩ(c) =
∑
π∈Sn

n∏
i=1

n∑

k=1

(mi
π(i),kck + δi,π(i))

and

ω1,...,n =
∑

π,ρ∈Sn

n∏
i=1

mi
π(i),ρ(i).

Therefore, λ1,...,n = ω1,...,n.

In the paper from D. Gligoroski et al. [8], there are presented sufficient
conditions for two matrices and two vectors of linear polynomials to repre-
sent a quadratic quasigroup. In Theorem 2.50, we provide both sufficient, and
necessary conditions for a bilinear map to represent a quadratic loop. Further-
more, we showed that some of them are neither always satisfied or dependent.
The conditions are in the form of a system of equations which verification is
very fast.

2.6 Isotopes of Linear and Quadratic Loops

Corollary 1.12 implies that every quasigroup is isotopic to a loop. We shall
try and find linear and quadratic quasigroups which are isotopic to a linear or
a quadratic loop. It follows from Lemma 2.47 that we need to deal only with
quasigroups isotopic to a linear or quadratic loop with the unit o.

Let (Fn
2 , ∗) be a linear or a quadratic quasigroup. Suppose (Fn

2 , ∗) is canon-
ically decomposed as (α, γ, β)c. Then, the translations Ro, and Lo satisfy

Ro(u) = α(u) + c, and

Lo(v) = β(v) + c,

whenever u, v ∈ Fn
2 . It means that the degree of map Ro is the same as

the degree of α, and the degree of map Lo is the same as the degree of β. Let
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(
Fn

2 [R−1
o , L−1

o ], ◦) be a principal isotope of (Fn
2 , ∗). Then, for every u, v ∈ Fn

2 ,
we have

u ◦ v = u + γ
(
R−1

o (u), L−1
o (v)

)
+ v + c.

Therefore, the principal isotope is linear or quadratic if γ is trivial, or α and
β are linear. If α (or β) is quadratic, then the degree of R−1

o (or L−1
o ) is

greater than or equal to 2. Furthermore, if γ is nontrivial then the degree of
γ
(
R−1

o (u), L−1
o (v)

)
is greater than 2 in most cases.

We discuss the case where α and β are linear or γ is trivial in the following
two theorems.

Theorem 2.54. Let (Fn
2 , ∗) be a linear or a quadratic quasigroup of the type

(i, 0, j), where i, j ∈ {0, 1}. Suppose (Fn
2 , ∗) is canonically decomposed as

(α, o, β)c. Then (α, β, Id +c) is an isotopy between the group (Fn
2 , +) and

(Fn
2 , ∗).

Proof. It follows directly from the definition of the isotopy.

Theorem 2.55. Let (Fn
2 , ∗) be a quadratic quasigroup of the type (0, 1, 0).

Then there exists a quadratic loop with the unit o which is linearly isotopic to
(Fn

2 , ∗).
Proof. Suppose (Fn

2 , ∗) is canonically decomposed as (α, γ, β)c, i.e.,

u ∗ v = α(u) + γ(u, v) + β(v) + c,

where α and β are linear. We can now define linear permutations L1,L2,L3 :

Fn
2 → Fn

2 as

L1 : x 7→ α−1(x),

L2 : y 7→ β−1(y), and

L3 : z 7→ z + c.

Let (L1,L2,L3) be an isotopy between (Fn
2 , ∗) and the quasigroup (Fn

2 , ◦).
Then, for every u, v ∈ Fn

2 , we have

u ◦ v = L−1
3

(L1(u) ∗ L2(v)
)

=

=
(
α
(
α−1(u)

)
+ γ

(L1(u),L2(v)
)

+ β
(
β−1(v)

)
+ c

)
− c =

= u + γ
(L1(u),L2(v)

)
+ v.

We can easily verify that γ
(L1(u),L2(v)

)
is a bilinear map. Note that L1(o) =

L2(o) = o, and thus for every u ∈ Fn
2 is

u ◦ o = u + γ
(L1(u), o

)
+ o = u, and

o ◦ u = o + γ
(
o,L2(u)

)
+ u = u,

consequently, (Fn
2 , ◦) is a quadratic loop with the unit o.



CHAPTER 2. QUADRATIC QUASIGROUPS 39

Now, we can express all quasigroups of types (0, 0, 0), (0, 0, 1), (1, 0, 0),
(1, 0, 1), (0, 1, 0) as an isotopy of a linear or quadratic loop with the unit o.

Let (Fn
2 , ∗) be a linear or quadratic loop with the unit o, and let B1,B2, and

B3 be linear or quadratic permutations of Fn
2 . Suppose that (B1,B2,B−1

3 ) is
an isotopy between (Fn

2 , ∗) and the quasigroup (Fn
2 , ◦). We shall try to derive

conditions for B1,B2,B3, so that (Fn
2 , ◦) is a linear or quadratic quasigroup.

Linearly isotopic linear or quadratic quasigroups are of the same degree and
of the same type, therefore, we can use an isotopy in the form (B1,B2,B−1

3 ),
where Bi(o) = o, and Bi is either quadratic, or Bi = Id, i = 1, 2, 3.

Lemma 2.56. Let B1, and B2 be linear or quadratic permutations of Fn
2 such

that B1(o) = B2(o) = o. Suppose that Img B̃2 ⊆ RadB1. Then the permu-
tation B1B2 is linear if B1B̃2(u, v) = B̃1

(B2(u),B2(v)
)
, for every u, v ∈ Fn

2 .
Otherwise, B1B2 is a quadratic permutation.

Proof. By Lemma 2.28, the map B1B2 is quadratic if the map B̃1B2, defined
as B̃1B2(u, v) = B1B2(u) +B1B2(v) +B1B2(u + v), is bilinear (B1B2 is linear if
B̃1B2 is trivial). We have, for every u, v ∈ Fn

2 ,

B1B2(u + v) = B1

(B2(u) + B̃2(u, v) + B2(u)
)

= B1B2(u) + B1B̃2(u, v) + B1B2(v) + B̃1

(B2(u),B2(v)
)

+ B̃1

(B2(u) + B2(v), B̃2(u, v)
)

︸ ︷︷ ︸
=o

,

thus, B̃1B2 = B1B̃2(u, v) + B̃1

(B2(u),B2(v)
)
. B1B̃2(u, v) = B̃1

(B2(u),B2(v)
)

implies B̃1B2 = o, therefore, B1B2 is linear. Otherwise, we will show that B̃1B2

is a bilinear map. Let u, v, w ∈ Fn
2 . Then

B̃1B2(u + w, v) = B1B̃2(u + w, v) + B̃1

(B2(u + w),B2(v)
)

= B1

(B̃2(u, v) + B̃2(w, v)
)

+ B̃1

(B2(u) + B̃2(u,w) + B2(w),B2(v)
)

= B1

(B̃2(u, v)
)

+ B1

(B̃2(w, v)
)

+ B̃1

(B̃2(u, v), B̃2(w, v)
)

︸ ︷︷ ︸
=o

+ B̃1

(B2(u),B2(v)
)

+ B̃1

(B2(w),B2(v)
)

+ B̃1

(B̃2(u,w),B2(v)
)

︸ ︷︷ ︸
=o

= B̃1B2(u, v) + B̃1B2(w, v),

and symmetrically B̃1B2(u, v + w) = B̃1B2(u, v) + B̃1B2(u,w). Thus, B1B2 is
a quadratic permutation.
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Theorem 2.57. Let each of B1,B2, and B3 be either a quadratic permutation
of Fn

2 such that Bi(o) = o, or an identity on Fn
2 . Let (Fn

2 , ∗) be a linear or
a quadratic loop with the unit o, and the bilinear component γ. Suppose
that (B1,B2,B−1

3 ) is an isotopy between (Fn
2 , ∗) and quasigroup (Fn

2 , ◦). Then,
(Fn

2 , ◦) is a quadratic quasigroup if the following conditions are fulfilled

(i) Img γ ⊆ RadB3,

(ii) Img B̃1 ⊆ RadL γ ∩ RadB3,

(iii) Img B̃2 ⊆ RadR γ ∩ RadB3.

Furthermore, let (i, j, k) be the type of (Fn
2 , ◦). Then,

(i) i = 1 if and only if B3B1 is quadratic,

(ii) k = 1 if and only if B3B2 is quadratic,

(iii) j = 1 if and only if B3γ 6= B̃3.

Proof. Using the fact that Img γ ⊆ RadB3, we have for every u, v ∈ Fn
2 ,

u ◦ v = B3

(B1(u) ∗ B2(v)
)

= B3

(
B1(u) + γ

(B1(u),B2(v)
)

+ B2(v)
)

= B3B1(u)︸ ︷︷ ︸
=α(u)

+B3γ
(B1(u),B2(v)

)
︸ ︷︷ ︸

=γ′1(u,v)

+ B̃3

(B1(u),B2(v)
)

︸ ︷︷ ︸
=γ′2(u,v)

+B3B2(v)︸ ︷︷ ︸
=β(v)

+ B̃3

(
B1(u), γ

(B1(u),B2(v)
))

︸ ︷︷ ︸
=o

+ B̃3

(
γ
(B1(u),B2(v)

)
,B2(v)

)

︸ ︷︷ ︸
=o

.

Lemma 2.56 implies that α and β are linear or quadratic permutations of
Fn

2 (we used the second and the third condition). Now, we will show that γ′1
and γ′2 are bilinear maps. We have, for every u, v, w ∈ Fn

2 ,

γ′1(u, v + w) = B3γ
(B1(u),B2(v + w)

)

= B3γ
(B1(u),B2(v) + B̃2(v, w) + B2(w)

)

= B3

(
γ
(B1(u),B2(v)

)
+ γ

(B1(u),B2(w)
)

+ γ
(B1(u), B̃2(v, w)

)
︸ ︷︷ ︸

=o

)

= B3γ
(B1(u),B2(v)

)
+ B3γ

(B1(u),B2(w)
)

+ B̃3

(
γ
(B1(u),B2(v)

)
, γ

(B1(u),B2(w)
))

︸ ︷︷ ︸
=o

= γ′1(u, v) + γ′1(u,w),
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and

γ′1(u + w, v) = B3γ
(B1(u + w),B2(v)

)

= B3γ
(B1(u) + B̃1(u,w) + B1(w),B2(v)

)

= B3

(
γ
(B1(u),B2(v)

)
+ γ

(B1(w),B2(v)
)

+ γ
(B̃1(u,w),B2(v)

)
︸ ︷︷ ︸

=o

)

= B3γ
(B1(u),B2(v)

)
+ B3γ

(B1(w),B2(v)
)

+ B̃3

(
γ
(B1(u),B2(v)

)
, γ

(B1(w),B2(v)
))

︸ ︷︷ ︸
=o

= γ′1(u, v) + γ′1(w, v),

thus, γ′1 is a bilinear map. Next, for every u, v, w ∈ Fn
2 , γ′2 fulfils

γ′2(u + w, v) = B̃3

(B1(u + w),B2(v)
)

= B̃3

(B1(u) + B̃1(u,w) + B1(w),B2(v)
)

= B̃3

(B1(u),B2(v)
)

+ B̃3

(B1(w),B2(v)
)

+ B̃3

(B̃1(u,w),B2(v)
)

︸ ︷︷ ︸
=o

= γ′2(u, v) + γ′2(w, v),

and symmetrically γ′2(u, v+w) = γ′2(u, v)+γ′2(v, w). Thus, γ′2 is a bilinear map.
It is clear that the map γ′ = γ′1 +γ′2 is bilinear, too. Therefore, the quasigroup
(Fn

2 , ◦) canonically decomposes as (α, γ′, β)o. The rest is clear.

Corollary 2.58. Let B be a quadratic permutation of Fn
2 such that B(o) = o.

Let (Fn
2 , +) be a group. Suppose that (Id, Id,B−1) is an isotopy between (Fn

2 , +)

and the quasigroup (Fn
2 , ◦). Then (Fn

2 , ◦) is a quadratic quasigroup of type
(1, 1, 1).

The condition presented in Theorem 2.57 are sufficient but not necessary.
In the following theorem we show that if we consider an isotopy (B1,B2, Id),
the conditions are both necessary, and sufficient.

Theorem 2.59. Let B1 and B2 be quadratic permutations of Fn
2 such that

B1(o) = B2(o) = o. Let (Fn
2 , ∗) be a quadratic loop with the unit o, and

the bilinear component γ. Suppose that (B1,B2, Id) is an isotopy between
(Fn

2 , ∗) and the quasigroup (Fn
2 , ◦). Then, (Fn

2 , ◦) is a quadratic quasigroup if
and only if Img B̃1 ⊆ RadL γ and Img B̃2 ⊆ RadR γ. The type of the quasigroup
is (1, 1, 1).

Proof. The backward implication, as well as the type of (Fn
2 , ◦) follows directly

from Theorem 2.57 (recall that Rad Id = Fn
2 ).

Now, consider that there exist u1, u2 ∈ Fn
2 such that B̃1(u1, u2) /∈ RadL γ,

i.e., there exits nonzero u3 ∈ Fn
2 such that γ

(B̃1(u1, u2), u3

) 6= o. Suppose that
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(Fn
2 , ◦) is a quadratic quasigroup. Then, it follows form Corollary 2.42 that

the map
ζ : (u, v) 7→ u ◦ v + o ◦ v + o ◦ v + o ◦ o

is bilinear. We can see that ζ(u, v) = γ
(B1(u),B2(v)

)
, where u, v ∈ Fn

2 . We
have,

ζ(u1 + u2, u3) = γ
(B1(u1 + u2),B2(u3)

)

= γ
(B1(u1),B2(u3)

)
+ γ

(B1(u2),B2(u3)
)

+ γ
(B̃1(u1, u2),B2(u3)

)
︸ ︷︷ ︸

6=o

6= ζ(u1, u3) + ζ(u2, u3),

therefore, ζ is not bilinear. The existence of u1, u2 ∈ Fn
2 such that B̃2(u1, u2) /∈

RadR γ, results in the same result. Thus, the degree of (Fn
2 , ◦) is greater than

2.

We summarize the results of this section in Table 2.2. In each row we
present the type of the class of linearly isotopic quadratic quasigroups which
can be obtained from a loop using an isotopy if we fulfil the conditions. B
and Bi denote a quadratic permutation. γ denotes the bilinear component
of a quadratic loop (with the unit o). If all quasigroups (or all classes of
quasigroups) can be yielded in this way, we note it in the last column. We also
do not include cases that can be yielded by a simpler construction or which
have too complex conditions.

These results provide a way how to generate the quadratic quasigroup of
desired type using quadratic permutations from a known quadratic loop.
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Isotopy Loop Conditions Type Note
1. (Id, Id, Id) γ = 0 (0, 0, 0) All quasigroups
2. (Id, Id, Id) γ 6= 0 (0, 1, 0) All quasigroups
3. (B, Id, Id) γ = 0 (1, 0, 0) All quasigroups
4. (Id,B, Id) γ = 0 (0, 0, 1) All quasigroups
5. (B1,B2, Id) γ = 0 (1, 0, 1) All quasigroups
6. (Id, Id,B−1) γ = 0 (1, 1, 1)

7. (Id, Id,B−1) γ 6= 0
Img γ ⊆ RadB,

Bγ 6= B̃ (1, 1, 1)

8. (B, Id, Id) γ 6= 0 Img B̃ ⊆ RadL γ (1, 1, 0) Necessary cond.
9. (Id,B, Id) γ 6= 0 Img B̃ ⊆ RadR γ (0, 1, 1) Necessary cond.

10. (B1,B2, Id) γ 6= 0
Img B̃1 ⊆ RadL γ,

Img B̃2 ⊆ RadR γ
(1, 1, 1) Necessary cond.

Table 2.2: The isotopes of linear or quadratic loops



Chapter 3

Construction of Quadratic
Permutations

In the previous chapter we have shown that it is possible to generate quadratic
quasigroups from linear or quadratic loops using isotopies composed from linear
or quadratic permutations. Linear permutations can be easily constructed from
a regular matrix and a vector, by Lemma 2.22. We will introduce two different
ways how to construct quadratic permutations.

3.1 Nondeterministic

Let α be a quadratic permutation of Fn
2 , and let E be a base of Fn

2 . Then,
by Lemma 2.24, α can be represented as (q1, . . . ,qn) + c in the base E where
q1, . . . ,qn are quadratic forms and c ∈ Fn

2 . We shall try and derive conditions
for arbitrary quadratic form, so that it can be used as a part of representation
of a quadratic permutation. We will use the theory from [2].

Definition 3.1. Let V be a vector space over the field F2. Suppose q is
a quadratic form and b is its associated bilinear form.

The set

Kerq = {u ∈ V ;q(u) = 0 ∧ b(u,w) = b(w, u) = 0,∀w ∈ Fn
2}

is called a kernel of the quadratic form q. We can observe that Kerq is
a subspace of Fn

2 .
A quadratic form q is said to be regular if Kerq is the zero subspace.

It follows directly from the definition that the quadratic form q is regular if
the associated bilinear form b is non-degenerate.

Two elements u, w ∈ V are called orthogonal if b(u,w) = 0. Two subspaces
U,W ≤ V are called orthogonal if b(u,w) = 0 for all u ∈ U and all w ∈ W .

44
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The subspace U is said to be anisotropic if q(u) = 1 for all u ∈ U , u 6= o.
We call the subspace U a hyperbolic plane if U = 〈e, f〉 where q(e) =

q(f) = 0 and b(e, f) = 1.
Two quadratic forms q1 on V1 and q2 on V2 are equivalent if there exists

an invertible linear map L : V → V ′ such that q2

(L(u)
)

= q1(u) for all u ∈ V .

Theorem 3.2. Let q be a regular quadratic form on V (over F2).

(i) An anisotropic space has dimension at most 2.

(ii) There exists an anisotropic space W and hyperbolic planes U1, . . . , Ur

such that
V = W ⊕ U1 ⊕ · · · ⊕ Ur

and the summands are pairwise orthogonal.

(iii) Let q′ be a regular quadratic form on V ′ (over F2) and let

V ′ = W ′ ⊕ U ′
1 ⊕ · · · ⊕ U ′

s

be a decomposition as in (ii) according to q′. Then q and q′ are equiva-
lent if and only if r = s and dim W = dim W ′.

Proof. The proof can be found in [2].

The previous theorem yields that all quadratic forms over F2 are determined
up to equivalence by two invariants, the number r of hyperbolic planes, and
the dimension of the anisotropic part.

Definition 3.3. Let q be a quadratic form on the vector space V (over F2).
Suppose that

V = W ⊕ U1 ⊕ · · · ⊕ Ur

as in Theorem 3.2. The number r of hyperbolic planes is called Witt index.
We say that the form is of type +1, 0, or −1 according to dim W = 0, 1, or 2,
respectively.

Definition 3.4. Let q be a quadratic form on the vector space V over F2. We
set

Nullq = {u ∈ V ;q(u) = 0}.

Lemma 3.5. For ε = ±1, let q be a regular quadratic form of type ε on
a vector space V of even dimension 2k over F2. Then |Nullq| = 2k−1(2k + ε).

Proof. The proof can be found in [2].
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Lemma 3.6. Let q be a regular quadratic form on the vector space V of odd
dimension 2k + 1 over F2. Then |Nullq| = 22k.

Proof. Consider a decomposition of V , by Theorem 3.2, as follows

V = W ⊕ U1 ⊕ · · · ⊕ Ur.

dim V = 2k + 1 implies dim W = 1, and r = k. We set U = U1 ⊕ · · · ⊕ Uk.
Then dim U = 2k. Put s = |{u ∈ U ;q(u) = 0}|. Every v ∈ V can be
uniquely expressed as v = w + u, where w ∈ W and u ∈ U . Then q(w + u) =

q(w) + q(u) + b(w, u) = q(w) + q(u), therefore, q(w + u) = 0 if and only if
q(w) = q(u). We obtain

|Nullq| = s +
(|U | − s

)
= |U | = 22k.

We generalize the Lemma 3.5 for all quadratic forms.

Theorem 3.7. Let q be a nontrivial quadratic form on the vector space V of
dimension n over F2. Put d = dim Kerq. Then |Nullq| = 2n−1 if and only if
n− d is odd.

Proof. Let V ′ be a subspace of V such that V = Kerq ⊕ V ′. Put s = |{v′ ∈
V ′;q(v′) = 0}|. Every v ∈ V can be uniquely expressed as v = v′ + u, where
v′ ∈ V ′ and u ∈ Kerq. Then q(v′ + u) = q(v′) + q(u) + b(v′, u) = q(v′),
therefore, q(v′ + u) = 0 if and only if q(v′) = 0. We obtain

|Nullq| = 2ds.

The restriction of q to V ′, denoted by q|V ′ , is regular and we can use Lemmas
3.5 and 3.6.

Consider n− d = 2k. Then
∣∣ Nullq|V ′

∣∣ = 2k−1(2k + ε), where ε is the type
of q|V ′ which satisfy ε 6= 0. Then

|Nullq| = 2d2k−1(2k + ε) = 2d+2k−1 + ε2d+k+1 = 2n−1 + ε2d+k+1 6= 2n−1.

Now, consider n− d = 2k + 1. Then
∣∣ Nullq|V ′

∣∣ = 22k and

|Nullq| = 2d22k = 2d+2k = 2n−1.

Theorem 3.8. Let q and q′ be quadratic forms on the vector space V of
dimension n over F2. Suppose the numbers (n−dim Kerq) and (n−dim Kerq′)
are odd. Then q and q′ are equivalent if and only if dim Kerq = dim Kerq′.
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Proof. The left-to-right implication is clear.
Now, consider dim Kerq = dim Kerq′. Suppose the subspaces U,U ′ ≤ V

such that V = Kerq⊕ U and V = Kerq′ ⊕ U ′. Then dim U = dim U ′ is odd.
Thus, by Theorem 3.2, there exists an invertible linear map L1 : U → U ′ such
that q′

(L1(u)
)

= q(u) for all u ∈ U . Let L2 be a arbitrary invertible linear
map L2 : Kerq → Kerq′ (i.e., an isomorphism between Kerq and Kerq′).
Since every v ∈ V can be uniquely decomposed as v = w + u = w′ + u′, where
w ∈ Kerq, w′ ∈ Kerq′, u ∈ U , and u′ ∈ U ′, hence the map L : V → V , defined
as L(w + u) = L2(w) +L1(u), is linear and invertible and q′

(L(v)
)

= q(v) for
all v ∈ V .

Proposition 3.9. Let q1, . . . ,qn be quadratic forms on Fn
2 . Then (q1, . . . ,qn)

represents a quadratic permutation if and only if for every subset {i1, . . . , ik} ⊆
{1, . . . , n} is

∣∣∣
{

v ∈ Fn
2 ;

(
qi1(v), . . . ,qik(v)

)
= u

}∣∣∣ = 2n−k, for every u ∈ Fk
2.

Proof. The right-to-left implication follows from choosing the set {1, . . . , n}.
Suppose that (q1, . . . ,qn) represents a quadratic permutation of Fn

2 . Let
{i1, . . . , ik} ⊆ {1, . . . , n} and let (u1, . . . , uk) ∈ Fk

2. Then the number of vectors
(v1, v2, . . . , vn) ∈ Fn

2 such that vij = uj, for j = 1, . . . , k, is 2n−k. The second
implication follows from the fact that (q1, . . . ,qn) is surjective.

Therefore, by the previous lemma, every quadratic form q, as a part of
representation of a quadratic permutation of Fn

2 , has to satisfy |Nullq| = 2n−1.
Theorems 3.7 and 3.8 imply that every such a quadratic form is determined
up to equivalence by the odd number i ∈ {1, . . . , n}, i = n− dim Kerq.

Thus, we need to find just dn
2
e non-equivalent quadratic forms to obtain all

suitable quadratic forms for a construction of a quadratic permutation of Fn
2 .

Now, we can construct a quadratic permutation from these quadratic forms
by stepwise verification of the conditions from Proposition 3.9. Unfortunately,
this nondeterministic algorithm is effective just for small n.

3.2 Deterministic

There is also a deterministic way how to construct a quadratic permutation.
We will introduce the Matsumoto-Imai scheme [13].

Let p(x) ∈ F2[x] be an irreducible polynomial of degree n. Then F2[x]/p(x)

is a field with invertible operations addition “+” and multiplication “·” between
polynomials modulo p(x) [12]. Since every element of F2[x]/p(x) have a form
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an−1x
n−1 + · · · a1x + a0, where ai ∈ F2, i = 1, . . . , n, hence we can define

a bijection

Φ : F2[x]/p(x) → Fn
2 ,

Φ : an−1x
n−1 + · · · a1x + a0 7→ (a0, a1, . . . , an−1).

It can be easily observed that Φ
(
f(x) + g(x)

)
= Φ

(
f(x)

)
+ Φ

(
g(x)

)
for every

f, g ∈ F2[x]/p(x).

Theorem 3.10. Let E = F2[x]/p(x) be a field, where p(x) is an irreducible
polynomial with degree n, and let λ ∈ N be an integer with gcd(2n−1, 2λ+1) =

1. Let’s define a map F : E→ E by

F : g 7→ g2λ+1, for every g ∈ E.

Then the map α : u 7→ Φ
(
F

(
Φ−1(u)

))
, u ∈ Fn

2 is a quadratic permutation
of Fn

2 .

Proof. Since gcd(2n − 1, 2λ + 1) = 1, hence there exists k < 2n − 1 such that
k(2λ + 1) = 1 mod 2n − 1. Suppose that g ∈ E. Then F (gk) = gk(2λ+1) = g.
Thus, the map F is a permutation of E and α is a permutation of Fn

2 , too.
Suppose that

∑n−1
i=0 aix

i = g ∈ E. Then

F (g) = g2λ+1 = g2λ

g =

(
n−1∑
i=0

aix
i

)2λ (
n−1∑
i=0

aix
i

)

=

(
n−1∑
i=0

aix
i2λ

)(
n−1∑
i=0

aix
i

)
.

We have, for every g, h ∈ E, ∑n−1
i=0 aix

i = g,
∑n−1

i=0 bix
i = h,

F̃ (g, h) = F (g + h) + F (g) + F (h)

=

(
n−1∑
i=0

aix
i2λ

)(
n−1∑
i=0

bix
i

)
+

(
n−1∑
i=0

bix
i2λ

)(
n−1∑
i=0

aix
i

)
.
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Furthermore, we have, for e ∈ E, ∑n−1
i=0 cix

i = e,

F̃ (g + e, h) =

(
n−1∑
i=0

(ai + ci)x
i2λ

)(
n−1∑
i=0

bix
i

)

+

(
n−1∑
i=0

bix
i2λ

) (
n−1∑
i=0

(ai + ci)x
i

)

=

(
n−1∑
i=0

aix
i2λ

)(
n−1∑
i=0

bix
i

)
+

(
n−1∑
i=0

cix
i2λ

)(
n−1∑
i=0

bix
i

)

+

(
n−1∑
i=0

bix
i2λ

) (
n−1∑
i=0

aix
i

)
+

(
n−1∑
i=0

bix
i2λ

)(
n−1∑
i=0

cix
i

)

= F̃ (g, h) + F̃ (e, h),

and symmetrically F̃ (g, h + e) = F̃ (g, h) + F̃ (g, e). Thus, by Lemma 2.28, α

is a quadratic permutation.
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