
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Ivor Kollár

Forensic RAM dump image analyser

Department of Software Engineering

Supervisor: Mgr. Viliam Holub, Ph.D., Department of Software
Engineering, Faculty of Mathematical and Physics

Study program: Computer Science

2009

I would like to thank Martin Mareš and Pavel Kaňkovský for help with
understanding i386 architecture and Linux kernel structures.

I hereby declare that I have written this thesis without any help from others
and without the use of documents and aids other than those stated above
and that I have mentioned all used sources and that I have cited them
correctly according to established academic citation rules.

In Prague 05.08.2009 Ivor Kollár

2

Contents

1 Introduction 6

1.1 Problem overview . 6
1.2 Assumed usage . 6

1.2.1 Forensic analysis . 6
1.2.2 Penetration testing 7

1.3 Physical RAM . 7

2 Existing documents and tools 8

2.1 Image extraction . 8
2.1.1 OS independent . 8
2.1.2 Windows . 9
2.1.3 Linux . 10

2.2 Image analysis . 10
2.2.1 Windows . 10
2.2.2 Linux . 11

3 Methods for finding structures of partially known OS 12

3.1 Problem definition . 12
3.2 Architecture specific structures 12
3.3 Pattern matching . 13
3.4 ”The Longest-Nearest” algorithm 13
3.5 Generating dynamic patterns 15
3.6 Parsing source code . 16

4 Foriana 17

4.1 Architecture and OS guessing 18
4.2 Linux kernel structures . 18
4.3 Finding VPT . 18
4.4 Using VPT . 20

3

4.5 Determination process . 20
4.6 Finding processes . 20
4.7 Finding modules . 21
4.8 Finding open files . 22
4.9 Listing modules . 23
4.10 Listing processes . 23

5 Foriana - user manual 24

5.1 Installation . 24
5.2 Analysing image . 25
5.3 Results verification . 26

6 Conclusion 27

6.1 Testing images . 27
6.2 Obtained results . 27
6.3 Conclusion . 32

Literature 33

4

Title: Forensic RAM dump image analyser
Author: Ivor Kollár
Department: Department of Software Engineering, Faculty of Mathematical
and Physics
Supervisor: Mgr. Viliam Holub, Ph.D.
Supervisor’s e-mail address: holub@dsrg.mff.cuni.cz

Abstract: While different techniques are used for physical memory dumping,
most of them provide a hard-to-analyse image of raw data. The aim of the
work is to develop an automatic analyser of physical memory dumps retriev-
ing contained information in a user-friendly form. The analyser is supposed
to simplify automatic data extraction and should be used by forensic experts.
Among expected features are multiple target architecture/OS support, tar-
get architecture/OS guessing, automated password/crypto keys collecting,
process listing, and module/driver listing.
Keywords: forensic, analyse, pentest, RAM, dump, key, memory, recovery

5

Chapter 1

Introduction

1.1 Problem overview

Suppose, that there exist a method for retrieving content of whole physical
RAM of running computer. Output of this method are Mega/Gigabytes of
raw data. The most simple approach when trying to analyse this data is to
use string-like utilities, to use pattern matching. This method is relatively
reliable, but also slow with bigger images. Using pattern matching for some
tasks is quite hard, for example listing running processes of OS (operation
system). If exact version of OS is publicly known, the patterns can be made
to match this exact version, and program can use special pattern for each
version of OS. However this cannot be used, when analysing for example self
compiled Linux kernel. In this work, some alternative approaches are being
studied and implemented.

1.2 Assumed usage

Foriana is designed to perform fast analysis of the dump of physical RAM,
and extract interesting information. As most common use-cases are assumed
forensic analysis and penetration testing.

1.2.1 Forensic analysis

Forensic analysis tries to extract as much information as possible from object
of interest. In computer science, forensic analysis is usually categorized as
”in vivo”, which can be translated as analysis of running and responding

6

system and ”post mortem”, which can be translated as analysis of previously
gathered data, that does not change. Assumed usage of Foriana is somewhere
between this two categories: Retrieving RAM content is typically performed
in vivo, while analysis itself is post mortem.

Content of RAM is an important piece of information, when trying to
analyse previous activity on the machine. RAM can contain pieces of pro-
cesses, deleted files, user sessions, crypto keys... With advancing information
security awareness and wide deployment of encrypted filesystems, retrieving
decryption keys is becoming a ”key” task. RAM is often the only place,
where keys are kept.

1.2.2 Penetration testing

The goal of penetration testing is to simulate potential attacker and gain as
much control of the target system as possible. After the test, all weaknesses
exploited during test can be fixed, resulting in a more secure system.

With physical access to target computer, few methods for direct manip-
ulation with RAM are well known (discussed later). Let’s assume, that we
master one of this methods, and have Read/Write access to RAM (physical
memory). If operating system of target is not exactly known, one may need
some semi-automatic tool, that determines target OS, version, and output
critical addresses, that can be parsed to memory modifying scripts. (To kill
screensaver, turn off firewall, spawn portshell...)

Since memory can change without warning, while analysing image, anal-
ysis has to be completed quickly.

1.3 Physical RAM

RAM (Random-access memory) is a form of computer data storage. Today,
it takes the form of integrated circuits that allow stored data to be accessed
in any order (i.e., at random). The word random thus refers to the fact that
any piece of data can be returned in a constant time. In this article under the
word RAM is understood volatile type of memory, where the information is
lost after the power is switched off. As explained in [8], time between power
loss and data loss can be long enough to capture content of memory. Term
”Physical RAM” is used, because ”RAM” is used very often in computer
science, and usually refer to linear mapped memory.

7

Chapter 2

Existing documents and tools

2.1 Image extraction

Several methods for retrieving content of RAM have been described. If possi-
ble, investigator should prefer hardware methods, because any manipulation
with the target system can lead to information loss. Hardware methods also
often allow to bypass OS security mechanisms like locked screensaver, etc.

2.1.1 OS independent

There are two main methods requiring physical access known to the public.
First one based upon DMA (Direct Memory Access), and second based upon
hardware properties of commonly used RAM modules. DMA access can be
used, because i386 architecture trust every device connected to PCI BUS.
Fireware (or IEEE 1394) is special case of such device, because device con-
nected over firewire cable is still on PCI BUS of computer. This is a design
feature.

• Method 1: Special card

”Feature” of DMA access over PCI bus can be exploited with spe-
cial devices, developed to help police investigators. Several types can
be found on market today, but usually they are sold only to mili-
tary/police agencies or officers. Cardbus, PCI and AGP connectors
was seen on market. Advantages of these devices are professional sup-
port and reliability. They can be used by technically inexperienced
people. On the other hand, they are expensive, and their availability

8

is limited. Because dumping takes some time, there can appear race
conditions in gathered memory. Also, theoretical defence against this
type of attack was described in [11], allowing target system to crash
before RAM is copied, or even fake the results.

• Method 2: Firewire

This is special case of previous method. The difference is, that firewire
cable can be easily purchased by anyone, same as portable notebook
with firewire connector. Adam Boileau (alias ”metlstorm”) wrote a
python tool for dumping physical RAM via firewire, 1394memimage
[13]. Later, he also released tool for taking control over computer run-
ning Windows operating system, winlockpwn [14]. 1394memimage is
free, and an excellent for capturing RAM of a target computer, which
can be analysed afterwards.

This is probably the easiest and the cheapest method to use. To dump
some operating systems, such as MS Windows, device header have to
be faked, but this is also a simple operation. Please note, that tar-
get system can be easily crashed by reading not mapped memory, or
specially mapped memory. 1394memimage tries to cover such situa-
tions, but is not always successful. Because this method is somewhat
slower, compared to special card, there can be more race conditions in
gathered memory.

• Method 3: ”cold boot” attack

From forensic point, this is most valuable and reliable approach, but
may be difficult to perform in real situations. RAM is quickly phys-
ically frozen, which makes information in RAM persistent for longer
period of time even without electric power. More information can be
found in Cold Boot Attacks paper [8]. Advantages of this method are
perfect RAM image (no race conditions), difficult defence and universal
approach to all investigated computers. On the other hand investiga-
tor needs sophisticated equipment. If not copied quick enough, RAM
can contains a lot of random errors.

2.1.2 Windows

To obtain memory image of running Windows OS, memdd [15] can be used, or
other specialized windows tools . To perform dump of OS memory, system

9

user privileges are required. Alternatively, system hibernation file can be
used, if available and user has used hibernation function during his work.

2.1.3 Linux

On running Linux system, the easiest way to collect memory dump is to
execute command

#dd if=/dev/mem of=outputfile

with root privileges. This is ”quick and dirty” method, because /dev/mem

will not read more than 1GB of data. In some systems, such as Redhat/Fedora
distributions, implementation of /dev/mem device is limited even more, al-
lowing access only to first 1MB of RAM. On the other hand, dd command
is present in almost every Linux distribution, and can be used when sophis-
ticated tools are not available to perform quick dump.

A more sophisticated solution would be to write special dumping mod-
ule which when loaded would create virtual character device similar to
/dev/mem, but with no limitations.

Similar to the windows platform, depending on system configuration,
swap partition can contain rests of hibernated RAM. This is the worst qual-
ity image, but may be the only available.

2.2 Image analysis

2.2.1 Windows

Andreas Schuster wrote ptfinder for finding processes in memory images
of Windows OS. ptfinder is based on basic pattern matching. Tool can be
found at http://computer.forensikblog.de/files/ptfinder/.

The Volatility Framework is ”completely open collection of tools, im-
plemented in Python under the GNU General Public License, for the extrac-
tion of digital artifacts from volatile memory (RAM) samples” [7]. At time
of writing this article, Linux support was not implemented, or at least not
publicly released. Framework is still under development and have the best
perspective from available project.

There is also plenty of small ”one-time” scripts and programs for windows
memory analysis, but without being general enough, and without further
support, so the are not mentioned in the text.

10

2.2.2 Linux

Mariusz Burdach wrote three simple pattern matching based tools: procenum,
pfenum and taskenum. They are all included inside idetect toolkit. Toolkit
can be found at http://forensic.seccure.net/tools/idetect.tar.gz

However, it seems that these tools are not working on 2.6 kernels, at
least the author of this article was not able use them successfully. Idetect
toolkit is probably no more maintained.

In 2009 product SecondLook from pikewerks company was introduced.
Program is commercial, not freely available, so exact capabilities remain
unknown. From screenshots it is evident, that parsing of the source code,
debugger and GUI are included.

11

Chapter 3

Methods for finding structures

of partially known OS

3.1 Problem definition

Let’s have RAM image of some not exactly known operating system. Under
”not exactly known” we understood system, where main branch is known,
for example Linux, or Windows, but exact version not. System structures
between small releases can change, but should not change completely. Such
case would be considered to be a different main branch. Let’s also assume,
that we do not necessarily have source code for exact version of operating
system, and that there can be waste amount of different small versions of
OS.

In real world, such situation can be recognized in Linux kernels: Every-
one can compile his own kernel with custom patches. Development of new
versions is relatively fast, so there are many different versions in use.

3.2 Architecture specific structures

First of all, we should focus on architecture specific structures. Structures
such as PaGe Directory (PGD) can be found using pattern matching, and
because the number of different architectures is quite limited, it is possible
to write appropriate filter for each architecture. Mastering linear-physical
address translation is a big advantage, if not necessity for later analyse of
image. It allows us to follow linear pointers inside image almost safely.

12

3.3 Pattern matching

Pattern matching can be successfully used for finding architecture specific
structures, but the use of pattern matching for later analysis is limited. We
can search for certain information, like process or module name, that should
be present in target system, but we cannot search for structures themselves,
because at the time of writing our program, we do not know, how will they
look like. Therefore we need to look for alternative method of finding system
structures, one of them is described below. To be complete, pattern matching
can be used again later, once determination process is completed, and we
have patterns of analysed structures.

3.4 ”The Longest-Nearest” algorithm

This algorithm was developed while looking for process list on Linux kernel,
but seems to be generic enough, to work in other operating systems and
architectures and with different type of structures in list.

Algorithm prerequisites:

• 1. Structures we are looking for are in double linked list. This is the
most common structure, than cannot be simplified (too much).

• 2. We know ”name” of at least 1 member of list. By ”name” we mean
any string long enough to be fulltext searched without too many false
positives.

• 3. We are able to follow the pointers found in memory/dump. On i386
architecture this means that we have mapping from linear to physical
memory.

• 4. Algorithm result is not guaranteed, to provide reasonable results,
no part of list can be completely separated from other (at least one
pointer must point to this sublist of structures)

Algorithm description:

• 1. Full-text search for name of one of list members. This search is
looped until we find what we are looking for, or reach end of dump/memory.

13

• 2. Each time name is found, make check if this is one of the structures
from list we are looking for. Check is done by following algorithm:

Look constant1 bytes forward/backwards from found strings, and test
if there is list head structure. This is very simple structure, contain-
ing only 2 pointers: One to previous member of list, second to next
member of list. Or reversed, but this is not important.

Testing if we are looking at list head is simple: Follow pointer we
are at, and test if the address pointer points to is another pointer,
that points back. The same check is done for 1 pointer under. If both
pointers satisfy this condition, we are really looking on list head, at
least at syntactically correct one. This is visualised in figure 3.1.

Figure 3.1: Testing list head

In same way we try at most constant2 list heads. For each list head

compute its length. The longest of list head found, should be list head

we are looking for. Checking of length is needed to prevent false pos-
itives. There can be (and usually are) many list heads inside struc-
ture, for example lists of children or threads in Linux task struct.

Simplified visualisation is in figure 3.2.
Another two ”inputs” to the algorithm are constant1 and constant2,

these have to be determined by hand for concrete applications. For real world
operating systems, values around 100 for constant1 and 10 for constant2
seem produce enough reliable results.

14

Figure 3.2: The Longest-Nearest

3.5 Generating dynamic patterns

Using ”The Longest-Nearest” algorithm allows analysis of image at logical
level, identifying structures through relations between them. This is great for
general overview of the image content, but investigator still have to manually
inspect found structures and make patterns, which can be used for pattern-
matching. Pattern matching cannot be omitted, as finished processes (files,
modules) are no longer in any consistent data structure.

Whole process can be automated, if we allow certain level of errors in
patterns. This condition can look simple, but may turn pattern-matching
into non-trivial task, if we want to preserve high speed of search.

Automated patter generation can be done in these steps:

• Use ”The Longest-Nearest” algorithm (or any else) to determine off-
sets. Then get list of structures for which patterns should be generated.

• At the beginning pattern is represented by first structure in list.

• Proceed whole list replacing all bytes in pattern that are not same in
all structures with wildcard/regexp for any character.

• At the end, pattern that match all the structures in list is produced.

15

Error tolerance has to be added, as some bit/bytes present in all struc-
tures of list, for example state (-1 unrunnable, 0 runnable, ¿0 stopped in
2.6 kernel) will be different in ”dead” processes. And automat is not not
able to discover, which bytes are important and which not.

3.6 Parsing source code

During Foriana development, an alternative approach to problem was tried.
Linux kernel have publicly available source code. If exact version of source
code and configuration options used for kernel compilation are known, source
code can be parsed to fit structures in memory. This would allow to skip
almost whole determination process (after finding VPT), a provide much
better results. After considering this solution, I decided that Foriana can be
used for linear to physical memory translation and rest can be performed
by standard tools (compiler and debugger). Writing these tools again would
have no sense, same as writing GUI for them.

16

Chapter 4

Foriana

Nowadays, almost all tools use classic pattern-matching approach. They re-
member signatures of certain system structures, usually for each version of
system a slightly different signature. Then scan whole image looking for sig-
natures, declaring result of this operation as process(module, file descriptors,
..) list.

This is perfect method when looking for ”lost” information, like parts of
deleted files, rootkit hiding somewhere inside the memory, etc... Probably
the best choice for forensic expert.

But using this approach is relatively slow, can produce many false posi-
tives, (for example if user on computer investigated was reading about kernel
structures;) and mainly, they are extremely dependent on version of operat-
ing system.

This can (and is) working well for MS Windows, because there are few
versions of the operating system, and all are known to public. (Someone may
object, that these systems are widely used, but internal structures are not
public. In reality, vendors EULAs are ignored, and internal structures were
reverse engineered)

On the other hand, in Linux/Unix world, there are many distributions,
kernel is changing quite often, and people even compile kernel by themselves,
so simple pattern-matching approach is not working very well.

Foriana tries to solve problem in more general way, do not insist on exact
structure signatures, but finding a logical relationships, looking for lists of
element defined more freely.

This can allow us to hope, that algorithm will not fail even on newer
versions of operating systems, not known at moment of program compilation.

17

The exact process is described in next chapters.

4.1 Architecture and OS guessing

At this moment Foriana supports only i386 architecture, so program tries
to process image as being i386. This is done by looking for VPT. If VPT is
found (or is supplied by user) architecture is i386, otherwise processing fail.

In the future, guessing based probably on interrupt vectors will be intro-
duced.

Operation system type and version guessing is a black magic, and re-
sults should be inspected manually. Used method is searching for strings like
”linux-2.6.22” or ”Linux version 2.6.21.5” in first pages of memory. However
this is far from producing reliable results. From obvious reasons, guessing
will probably fail for ”future” operating systems.

4.2 Linux kernel structures

task struct is main structure for every process. This structure is quite big,
around 1 Kbyte in year 2009. Information interesting for logical analysis are
shown in figure 4.1.

On the other hand in module structure are just few interesting informa-
tion, as can bee seen on figure 4.2.

4.3 Finding VPT

Virtual page table is the root of structure used for translation from linear
to physical address.

This translation is heavily architecture dependent. In Linux, address of
VPT is exported as pg swapper dir or swapper pg dir symbol, and can be
found in ”System.map” file.

For i386 architecture, the following pseudo-algorithm is used:

• Start search at 0x00300000

• Check every 4KB aligned position

• Look for block of zeroes of length 0xc00.

18

Figure 4.1: Kernel structures 1 (task struct related)

Figure 4.2: Kernel structures 2 (module related)

• If you find such a block (4KB), skip first 0xc00 bytes (zeroes), and
then try following test:

• If first 3 pointers masked by 0x6f equals each other, than this should
be virtual page table. This heuristic based on set flags is definitely
not perfect test, even if not failing on known configurations. I believe,
that with dumps from enough different configurations, better heuristic
can be developed. But this can be done after when first dump where
Foriana fail is found.

19

4.4 Using VPT

Translation from linear to physical address is realised by function read linear().
Function was written according to Intel [6] and AMD [4] hardware specifi-
cations. As i386 hardware specification is old and because of backward com-
patibility quite complicated some rare cases are not implemented, and can
be added later.

Pseudo-algorithm:

• Inputs are PGD, pointer to linear address and size of data to read.

• Find correct PGD (Page Directory): Default (0) is kernel PGD, oth-
erwise supplied PGD (for each process)

• From information in PGD and linear address derive paging mode used.
(4MB or 4KB page size, ...)

• Process whole VPT tree structure, according to specification.

• As requested block size can be bigger then used page size, data may
be stored in multiple pages. Recursively as described in previous steps
complete whole requested linear block from pages in memory dump.

Described function permits following linear pointers inside dump, and
solves memory fragmentation.

4.5 Determination process

Before determination of processes and modules can begin, first phase (finding
VPT) have to be complete. This determination phase have to be completed
only once. After exact distances valid for analysed kernel are known, they
are saved into structure my image and can be used directly.

Pseudo-algorithm used while looking for system structures:

4.6 Finding processes

Pseudo-algorithm for finding and describing process structure (task struct)
as implemented in Foriana:

20

• 1: Find string LINUX MAGIC PROCESS in memory dump (via fulltext
search). By default, this is ”kthread”, which was present in all anal-
ysed memory images. (Sometimes this process is called ”kthreadd”,
but this is not problem for fulltext search, when terminating zero is not
used). Process ”init” was not used, event through ”init” should be
first process of all Linux systems by definition. Reason is, that string
”init” is simply too common, and creates too many false positives.

• 2: Check, if found string is inside task struct structure. String should
represent ”comm” variable. This verification is made by counting head list

structures, found maximally TS MAGIC MAX TRIES bytes before comm

string.

head list as defined in Linux kernel source code is structure, that
contains pointers to previous and next head list structures in list. If
structure contains pointer to itself, the list contain only one head list.
See figure 3.1 for visualisation.

This was the first implemented method. Produces relatively good re-
sults, but sometimes error occur. Therefore another cross-checking al-
gorithm had to be implemented into step 2.

Using two constants TS MAGIC HEADLIST FRONT NUMBER and
TS MAGIC HEADLIST FRONT SPREAD, size of SPREAD lists around
FRONT NUMBER is compared, and the longest list is considered to be
task struct list. (The list of all processes.)

• 3: Finally distance between comm variable and head list is saved into
my image structure. This value will be later used each time some func-
tion need it. Also whole my image structure is saved to cache file by
default.

4.7 Finding modules

Please note, that module structures are not included in memory image ob-
tained by ”soft” methods, like using program dd. In Linux kernel, module
structures are in part of memory called ”high memory” (or simply ”high-
mem”) that is not mapped into linear address space. To obtain memory with
module structures, ”hard” method must be used, for example firewire DMA
access, or coldboot method.

21

Initially, the same algorithm as for processes was used (as described in
previous chapter). Later, because beginning of module structure is much
more simple, algorithm was simplified, and nearest list head before mod-
ule name is chosen. In this case, method is reliable enough, and speed was
improved. Paradoxically, this method is even more reliable because is really
simple, and is more resistant to image inconsistencies.

4.8 Finding open files

Looking for open files (or file descriptors) using previously described method
is quite difficult. From task struct to list of open files for this task struct,
5 pointers have to 5 different structures have to be processed, each with un-
known offsets used. This is a lot of guessing at one time, and can be very time
consuming, or even impossible. I have tried to implement this feature into
Foriana, but it is not working until now. However, the source code for this
functionality is commented out and present in file arch/i386/functions.c

Whole situation is illustrated in figure 4.1.
Open files (resp. file descriptors of open files) for each process can be

accessed through files struct. But to access filenames themselves five
pointer dereferences (fdtable, file, path, dentry, qstr) are required.
This represent a problem, as exact offsets of structures mentioned above are
unknown. Determination process can be simplified by fixing structure offsets
up to path structure. Path structure contains only 2 pointers to structures:
vfsmount and dentry. vfsmount contains char mnt devname, name of a de-
vice the file is stored on. It is relatively safe to assume that this name starts
with string ’/dev/’. Using described optimization, determination process can
be completed in two steps, reducing complexity of guessing by one level.

This can look as minor improvement, but is important to realize, that
guessing without fixed point have complexity exponential with base of the
constant chosen for each step. Five levels of search are touching limits of
practical usability.

Opposite to listing of processes and modules, it is almost sure that listing
of open files will work only for 2.6 branch of Linux kernel.

22

4.9 Listing modules

In process of determination module structures, address of one of modules was
stored into cache. So take this address, and using this stored offsets between
list head and module name, listing of list head is relatively straight-
forward. Only risk is jumping into endless loop. To prevent this, check for
revisiting initial module is implemented. Even if checking for first module,
endless loop can occur (for example 1,2,3,4,5,4,5,4,5,4,5,...), so if counter
increased with each module reach some limit, loop is detected an listing
is terminated. For Linux, this limit is 65535, because there cannot be more
modules on standard Linux box. If needed, limit can be easily changed trough
header file.

4.10 Listing processes

Listing of processes is very similar to listing modules. Once offsets and one of
precesses are known, whole list head is processed and comm string printed.
The same protection against falling into infinite loop is applied.

For Linux, loop limit is 65535, because there cannot be more processes
on standard Linux box. If needed, limit can be easily changed trough header
file.

23

Chapter 5

Foriana - user manual

5.1 Installation

Installation from source code:

$ wget https://hysteria.sk/~niekt0/foriana/foriana_current.tgz

$ tar -xvjf foriana_current.tgz

$ cd foriana_xxx

$./configure

$ make

Verify, that program was build successfully.

$./src/foriana

Syntax error.

foriana 0.5.0 by niekt0@hysteria.sk

Usage: foriana [options] RAM_image

Options:

-a/--all : try to dump everything available. Generally not good idea.

...

Eventually, install Foriana on your system.

$ sudo make install

24

5.2 Analysing image

To list program options, type

$ foriana --help

If you feel lucky enough, try just

$ foriana image

Foriana will try to use all compiled in functionalities. Please note, that this
is not optimal way for every image. For example, if you do not have dump
of highmem, Foriana will spend a lot of time searching for module structure,
that is not inside. Also, memory can contain inconsistencies, which may give
you strange results. Like structure being falsely detected, and thus listing
pseudo-random strings.

Better approach is to analyse image step by step. First, try to determine
offsets in structures.

$ foriana -d image

If you have dump without highmem, you can save time by trying

$ foriana --skip-determine-modules -d image

Now, if successful, Foriana should create file named .image (where image is
name of analysed image) that contains information about analysed image.
So slow determination have to be done only once. From now, you can try to
list information.

$ foriana --list-processes image

or just

$ foriana image

Foriana automatically checks for .image in current directory, and use stored
information if available. The easiest way to store gathered results is to use
standard shell pipes, for example

$ foriana image > date-image

25

5.3 Results verification

Result verification have to be done manually, by creating pattern for struc-
ture of interest, and then using fulltext search for that pattern.

Structures addresses can be found in Foriana output after image analysis.
For example

...

process address: c18f5098, name: migration/0

process address: c18fbad8, name: ksoftirqd/0

...

Possible automation of this process is described in section 3.5.

26

Chapter 6

Conclusion

6.1 Testing images

Program was tested on 10-20 RAM images of Linux systems of various qual-
ity. Some of images were obtained by ”soft” methods, some via firewire, few
were incomplete or damaged.

6.2 Obtained results

Successful run looks similar to following example. Determination process:

$ foriana -d x60-32bit-1G-kde

Analyzing file x60-32bit-1G-kde

Dumped RAM size is 1015 MB.

Looking for cache_file: ".x60-32bit-1G-kde" ... no valid cache found (err 1).

VPT_address found at: 0x927000

linux_determine: Looking for process "kthread".

Found valid process at 0x1915bbc.

i386_lin_find_userspace_process: Looking for userspace process "init".

Found userspace process "init" at 0xc18f5a98

Found userspace PGD at 0xf7bfc000 and determined distances: mm_pgd: 36, hl_mm:

Determination process of task_struct complete.

linux_determine_module: Looking for module "yenta_socket".

linux_determine_module: Starting at address 0x30000000.

i386_lin_verify_module: Found module struct at negative offset 8

27

Found valid module at 0x3d5b888c.

Determination process of module structure complete.

Saving determined information to cache file.

Clean exit;).

Listing process:

$ foriana --list-processes x60-32bit-1G-kde-noclean

Analyzing file x60-32bit-1G-kde-noclean

Dumped RAM size is 1015 MB.

Looking for cache_file: ".x60-32bit-1G-kde-noclean" ... ok.

Listing processes:

(linear addresses of kernel, usually substitute 0xC0000000 to get position in dump

process address: c18f5098, name: migration/0

process address: c18fbad8, name: ksoftirqd/0

process address: c18fb5d8, name: migration/1

process address: c18fb0d8, name: ksoftirqd/1

process address: c1910b18, name: events/0

process address: c1910618, name: events/1

process address: c1910118, name: khelper

process address: c1915a98, name: kthread

process address: dfc1fa98, name: kblockd/0

process address: dfc1f598, name: kblockd/1

process address: dfc1f098, name: kacpid

process address: c19b00d8, name: ata/0

process address: c19b4b18, name: ata/1

process address: c19b4618, name: ata_aux

process address: c19b4118, name: ksuspend_usbd

process address: c19b5098, name: khubd

process address: c19b75d8, name: kseriod

process address: c19bf118, name: khpsbpkt

process address: c19b5598, name: knodemgrd_0

process address: c19b5a98, name: pdflush

process address: c19b05d8, name: pdflush

process address: c19b0ad8, name: kswapd0

process address: c1966098, name: aio/0

process address: c1966598, name: aio/1

process address: c1966a98, name: jfsIO

process address: c1965118, name: jfsCommit

28

process address: c1965618, name: jfsCommit

process address: c194db18, name: jfsSync

process address: c194a0d8, name: xfslogd/0

process address: c194a5d8, name: xfslogd/1

process address: c194aad8, name: xfsdatad/0

process address: c1927098, name: xfsdatad/1

process address: c19bead8, name: ocfs2_wq

process address: c194f598, name: user_dlm

process address: dffc3a98, name: scsi_tgtd/0

process address: dffc6118, name: scsi_tgtd/1

process address: dffce618, name: scsi_eh_2

process address: dffcca98, name: scsi_eh_3

process address: dffce118, name: scsi_eh_4

process address: dffc3598, name: scsi_eh_5

process address: dfee3b18, name: exec-osm/0

process address: dffc05d8, name: exec-osm/1

process address: dffbdb18, name: block-osm/0

process address: dffc00d8, name: block-osm/1

process address: dfed2098, name: scsi_eh_6

process address: dfee0ad8, name: usb-storage

process address: dfee3618, name: kcryptd/0

process address: dff97098, name: kcryptd/1

process address: dffceb18, name: ksnapd

process address: dffc0ad8, name: kmirrord

process address: dffbd118, name: kirqd

process address: dff93ad8, name: aufsd

process address: dffc6b18, name: aufsd

process address: dffaeb18, name: aufsd

process address: f7d7e618, name: aufsd

process address: c1927598, name: loop1

process address: c19b7ad8, name: loop2

process address: c1954b18, name: loop3

process address: f7d16598, name: loop4

process address: dffae118, name: loop5

process address: dffb6118, name: loop6

process address: c1965b18, name: loop7

process address: c19c8118, name: loop8

process address: dffb1a98, name: loop9

29

process address: c19be5d8, name: loop10

process address: c19b70d8, name: loop11

process address: c194fa98, name: loop12

process address: c1915098, name: loop13

process address: dffcc598, name: loop14

process address: f7db0b18, name: loop15

process address: c1926118, name: loop16

process address: dffaf5d8, name: loop17

process address: c1959598, name: loop18

process address: c19be0d8, name: loop19

process address: f7d855d8, name: loop20

process address: c1959a98, name: loop21

process address: dffa75d8, name: loop22

process address: dffb9ad8, name: loop23

process address: f7d7e118, name: loop24

process address: dffa8a98, name: loop25

process address: c19bfb18, name: loop26

process address: f7d81098, name: loop27

process address: c19c8b18, name: loop28

process address: dffbca98, name: loop29

process address: dffa7ad8, name: loop30

process address: dfee00d8, name: loop31

process address: f72bcb18, name: loop32

process address: dffcaad8, name: loop33

process address: dffaf0d8, name: loop34

process address: dfed2a98, name: udevd

process address: f69470d8, name: pccardd

process address: f6b2e0d8, name: iwl3945/0

process address: f698ea98, name: iwl3945/1

process address: f69e4618, name: iwl3945

process address: f694fb18, name: kmmcd

process address: f697f118, name: kpsmoused

process address: f6b380d8, name: mount.ntfs-3g

process address: f6b81ad8, name: rc.M

process address: dffca0d8, name: syslogd

process address: f7d685d8, name: klogd

process address: f6b29598, name: acpid

process address: dffb1098, name: dbus-daemon

30

process address: f6bcb118, name: hald

process address: f6b35098, name: hald-runner

process address: f6947ad8, name: hald-addon-keyb

process address: f7d7d0d8, name: hald-addon-acpi

process address: f7d16a98, name: hald-addon-keyb

process address: f6cb8098, name: hald-addon-keyb

process address: f7d12618, name: hald-addon-keyb

process address: dffbd618, name: hald-addon-stor

process address: dffb90d8, name: crond

process address: f7d85ad8, name: gpm

process address: f7d79098, name: bash

process address: f69c50d8, name: startx

process address: f6b92b18, name: xinit

process address: dfed2598, name: X

process address: f694f118, name: xinitrc

process address: dff97a98, name: startkde

process address: f6aa00d8, name: start_kdeinit

process address: c1926618, name: kdeinit

process address: f72bc618, name: dcopserver

process address: f69c5ad8, name: klauncher

process address: f7db0118, name: kded

process address: f694f618, name: gam_server

process address: f72bc118, name: kwrapper

process address: f69a80d8, name: ksmserver

process address: c19bd598, name: kdesktop

process address: f697f618, name: kicker

process address: dff97598, name: kio_file

process address: f6ab4118, name: kxkb

process address: dffb95d8, name: artsd

process address: f7d7eb18, name: kaccess

process address: dfee3118, name: krandrtray

process address: f69a85d8, name: kmix

process address: f69b1618, name: startcompiz.sh

process address: dffb1598, name: fusion-icon

process address: f697fb18, name: knotify

process address: dffa8098, name: compiz

process address: dffb6618, name: dbus-launch

process address: f6b3c118, name: dbus-daemon

31

process address: f6b3cb18, name: kde-window-deco

process address: f69c55d8, name: konsole

process address: f6cb8a98, name: sh

process address: c084a4a8, name: swapper

process address: c18f5a98, name: init

Listing processes done.

Listed 145 processes (hopefully).

Clean exit;).

During testing, all not damaged images were analysed correctly.
Damaged/incomplete images, produced various results: Program execu-

tion stopped after determination process failed, program stopped after run-
time inconsistency detected, listing empty members of list, and with mali-
ciously damaged file even potentially infinite loop was reached. (Actually,
Foriana sanitizes such cases, and loop is terminated after 65 000 repeats,
because there cannot be more processes/modules on current Linux system)

In real world, determination process takes from few seconds, up to tens
of seconds for 3GB images. Exact time depends on position of structures
we are looking for inside memory dump, that can be theoretically random.
Once determination process is complete, listing and reading linear addresses
is done in fragments of seconds.

6.3 Conclusion

Analyzing memory dump at logical level proved to be functional complement
to classic pattern-matching methods. Some of the ideas were implemented
in program Foriana. Program produces fast and reliable results, but amount
of gathered information and supported architectures are limited. Some new
ideas were developed, described and are waiting for implementation in future
work.

32

Bibliography

[1] Burdach Mariusz Digital forensics of the physical memory, Warsaw,
1995.

[2] Andreas Schuster Searching for processes and threads in Microsoft Win-

dows memory dumps, Digital Investigation 3S (2006) pp 10–16. ISSN
1742-2876, DOI: 10.1016/j.diin.2006.06.010.

[3] Jorge Mario Urrea An Analysis of Linux RAM Forensics, Naval Post-
graduate School Monterey, (2006).

[4] AMD64 Architecture Programmer’s Manual Volume 2:System Program-

ming, Advanced Micro Devices Inc., (2007).

[5] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume

3B: System Programming Guide, Part 2, Intel Corporation, (2008).

[6] TLBs, Paging-Structure Caches, and Their Invalidation, Intel Corpo-
ration, (2007).

[7] Aaron Walters, Nick L. Petroni Volatools: Integrating Volatile Memory

into the Digital Investigation Process, Komoku, (2007).

[8] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appel-
baum, Edward W. Felten Lest We Remember: Cold Boot Attacks on

Encryption Keys, Princeton University, (2008).

[9] Gabriela Limon Garcia Forensic physical memory analysis: an overview

of tools and techniques, Helsinki University of Technology, (2007).

[10] David R. Piegdon Hacking in physically addressable memory, RWTH
Aachen University, (2007).

33

[11] Joanna Rutkowska Beyond The CPU: Defeating Hardware Based RAM

Acquisition Tools, COSEINC, 2007.

[12] Adam Boileau Hit By A Bus: Physical Access Attacks with Firewire ,
”Ruxcon 2k6”, 2006.

[13] Adam Boileau 1394memimage, http://storm.net.nz/static/

files/pythonraw1394-1.0.tar.gz, 2006.

[14] Adam Boileau winlockpwn, http://storm.net.nz/static/files/

winlockpwn, 2008.

[15] ManTech International MemDD, http://sourceforge.net/project/
showfiles.php?group_id=228865, 2008.

[16] Wikipedia Various articles , http://www.wikipedia.org, 2009.

34

