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Preface

The thesis deals with reliability of measurements in the context of multiple-item
testing instruments, such as educational tests. It starts from author’s diploma thesis,
where the reliability was studied in the context of the classical test theory (that
is under the assumptions of ANOVA models). Some of the basic definitions and
properties appear here as Chapter 1. The rest of the thesis is dedicated to the
measurements composed of dichotomous items, for which the classical model is not
appropriate.

While there are numerous papers written on reliability in the context of the clas-
sical test theory (see for example Hoyt (1941), Guttman (1945), Cronbach (1951),
Novick and Lewis (1967), etc.), not so much has been written about reliability in
the case when the assumptions of ANOVA models are not fulfilled. Some works
discuss reliability in the presence of outliers and propose robust estimators of re-
liability (see Wilcox (1992) and more recently Christmann and Van Aelst (2006)).
Even though there is some work devoted to reliability of binary data (see for exam-
ple Ridout et al. (1999), Zou and Donner (2004)), it is mostly based on common
correlation models, where reliability merges with intraclass correlation coefficient.
Unfortunately, such models (for example the beta-binomial model) are not appro-
priate for multiple-item testing instruments, since they do not allow for different
item difficulties.

The present thesis provides an extension of the reliability concept. A more gen-
eral definition of reliability is proposed, of which the classical definition is shown to
be a special case. The new definition is applied to models appropriate for dichoto-
mous items. A new estimate of reliability of composite dichotomous measurements
is also introduced, an estimate which in some situations seems to have better prop-
erties than the conventional estimate based on Cronbach’s alpha.

A short overview of the thesis chapters follows:
Chapter 1 contains a summary of definitions and basic properties of the relia-

bility in context of the classical test theory. The classical definition of reliability of
measurement is discussed. The characteristic used most often to estimate reliabil-
ity (Cronbach’s alpha) and its relationship with reliability is investigated. Finally,
reliability and Cronbach’s alpha are studied in the framework of ANOVA models.

In Chapter 2, the models appropriate for measurements composed of dichoto-
mously scored items are studied. In Section 2.1, the model used for dichotomously
scored items most often (the Rasch model) is discussed. The techniques of parame-
ter estimation based on the method of maximum likelihood are described. As a new
result, it is shown that the conventional estimator of item difficulty based on the
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least squares method in the ANOVA model can be understood as an approximation
of the ML estimators based on the Rasch model. The rest of Chapter 2 is dedicated
to the modified beta-binomial model, and to its extension which we call the general
model with additive item effect .

The general definition of reliability proposed in this work was motivated by a
paper of Commenges and Jacqmin (1994), where some possibly equivalent defin-
itions of common correlation models are discussed. In Chapter 3, we revise the
work of Commenges and Jacqmin, find counterexamples to some of their results
and postulate corrected propositions.

In Chapter 4, we propose a more general definition of reliability and we show
the legitimacy of the new definition. Also, we derive the formulas for reliability in
the models discussed in the previous chapters.

Finally in Chapter 5, the new estimate of reliability of composite dichotomous
measurements is introduced and studied via simulations in the Rasch model and in
the modified Rasch model.

The core of the thesis is based on author’s publications:

[1] Rexová, P. (2003). Reliability of measurements [Spolehlivost měřeńı, in Czech].
Diploma thesis. Charles University in Prague.

[2] Rexová, P. (2004). Item analysis of educational tests. In Šafránková, J., ed-
itor, WDS’04 Proceedings of Contributed Papers: Part I - Mathematics and
Computer Sciences, pages 77–83. Matfyzpress, Prague.

[3] Martinková, P., Zvára, K., Zvárová, J., and Zvára, K. (2006). The new features
of the ExaMe evaluation system and reliability of its fixed tests. Methods of
Information in Medicine, 45:310–315.

[4] Martinková, P. (2006). Reliability in the Rasch model. In Hakl, F., editor,
Proceedings of the XI. PhD. Conference of the ICS ASCR, pages 64–71. Mat-
fyzpress, Prague.

[5] Martinková, P. and Zvára, K. (2007). Reliability in the Rasch model. Kyber-
netika. Submitted.

Chapter 1 summarizes author’s diploma thesis [1]. Some results discussed here
together with practical application were published in [3]. Section 2.1 was presented
in [2]. Parts of Chapters 2, 4 and 5 discussing the modified beta-binomial model
were published in [4]. Parts of Chapters 4 and 5 discussing the reliability in the
Rasch model are contained in [5]. Chapter 3 is being prepared for publication.
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Chapter 1

Introduction to reliability

1.1 Classical definition of reliability

When describing reliability of measurement, it is usually assumed that the measure-
ment Y is composed of two random variables: an unobservable true value T and an
error term e,

Y = T + e. (1.1)

The error term is supposed to have a zero mean E(e) = 0, a positive variance, and
to be independent of the true value T. Therefore we have

var (Y ) = var (T ) + var (e).

The reliability of such a measurement is defined by the ratio

R =
var(T )

var (Y )
= 1 − var (e)

var (Y )
(1.2)

and it compares the variance of the error term with the variance of the measured
property. The smaller is the error variance relative to the observed score variance,
the more reliable is the measurement. Thus, the measurement is considered to be
reliable when the value of reliability is close to 1.

It should be pointed out that reliability is sample-dependent: a certain educa-
tional test can have a different reliability when given to a population with a high
variability of tested knowledge and when given to a population with a low variability
of the knowledge.

The following simple lemmas give a natural interpretation of the reliability.

Lemma 1.1. Having two independent measurements Y1 = T + e1, Y2 = T + e2 of
the same property T, where var (e1) = var (e2), the reliability can be expressed as the
correlation between these two measurements, R = corr(Y1, Y2).

Proof:

corr(T + e1, T + e2) =
cov(T + e1, T + e2)√

var 2(Y1)
=

cov(T, T ) + 0

var (Y1)
=

var (T )

var (Y1)
= R.

2
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In terms of educational tests, the reliability reflects to what extent a test gives the
same result when taken repeatedly by the same person under the same conditions.

Lemma 1.2. The reliability can be expressed as the squared value of the correlation
between the observed score and the true score, corr2(Y, T ).

Proof:

corr2(Y, T ) =
cov2(T + e, T )

var (Y )var (T )
=

var 2(T )

var (Y )var (T )
=

var (T )

var (Y )
= R.

2

Thus, the reliability of an educational test measures the strength of the relationship
between the score reached by a student and his/her true knowledge.

Unfortunately, none of these representations is useful when estimating the re-
liability of educational tests because they cannot be directly estimated from the
observed data. We cannot estimate the error variance var (e), the true score T, nor
the knowledge of a student by the same test twice and independently. Therefore,
when estimating the reliability of an educational test, we must take into account
the fact that the test is a composite measurement.

1.2 Reliability of a composite measurement

Let us consider the problem of measuring the reliability of a multiple-item testing
instrument, such as an educational test. Consider a series of items Yj = Tj + ej, for
j = 1, . . . ,m, where the error terms ej are mutually independent and independent of
the true scores Tk for k = 1, . . . ,m, having the same variance var (ej) = σ2

e > 0, and
mean Eej = 0. The observed overall score of them items is given by Y = Y1+· · ·+Ym
and the unobservable overall true score is given by T = T1 + · · ·+Tm. The reliability
of such a composite measurement is defined by (1.2) and with regard to the above
mentioned assumptions it can further be expressed as

Rm =
var(T )

var (Y )
=

var (T )

var (T ) + var (
∑
ej)

=
var (T )

var (T ) +mσ2
e

. (1.3)

To study the relationship between the reliability of a composite measurement
and the reliability of an item, let us define the essential τ -equivalence of items.

Definition 1.3. Items j = 1, 2, . . . ,m are said to be essentially τ -equivalent if there
exist constants c1, c2, . . . , cm (we can require

∑
j cj = 0) and a random variable T

such that with probability equal to one it holds that

Tj = T + cj. (1.4)

Lemma 1.4. The m items are essentially τ -equivalent if and only if for the items’
true score the following holds simultaneously

var (T1) = · · · = var(Tm) = σ2
T , (1.5)

corr(Tj, Tk) = 1, j, k = 1, . . . ,m. (1.6)
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Proof: The first implication is obvious: If

Tj = T + cj j = 1, . . . ,m,

then also
var (T1) = · · · = var(Tm) = varT,

corr(Tj, Tk) =
cov(T, T )√
varT

√
varT

= 1, j, k = 1, . . . ,m.

Vice-versa, if (1.5) and (1.6) hold, then the conditions for equality in Cauchy-
Schwarz inequality must hold. Therefore for all j, k = 1, . . . ,m with probability
equal to 1, the couples Tj and Tk are related by

Tj = Tk + cjk. (1.7)

When summing (1.7) over k and setting T = 1
m

∑
k Tk, cj = 1

m

∑
k cjk we finally

obtain (1.4). Another summing over j can show that constants cj defined in this
way have zero sum. 2

In the following lemma, the Spearman-Brown formula (1.8) gives a relation-
ship between the reliability of a composite measurement Rm and the reliability of
an item R1 for measurements composed of essentially τ -equivalent items.

Lemma 1.5. For a measurement composed of essentially τ -equivalent items all the
reliabilities R1 of the items are equal and the reliability of the whole test can be
expressed as

Rm =
mR1

1 + (m− 1)R1

. (1.8)

Proof: From (1.4) follows

var

(
m∑

j=1

Tj

)
= var(mT ) = m2σ2

T .

Further, we have

var

(
m∑

j=1

Yj

)
= var(mT ) + var

(
m∑

j=1

ej

)
= m2σ2

T +mσ2
e .

Therefore

Rm =
var

(∑m

j=1 Tj

)

var
(∑m

j=1 Yj

) =
m2σ2

T

m2σ2
T +mσ2

e

=
m

σ2
T

σ2
T

+σ2
e

1 + (m− 1)
σ2

T

σ2
T

+σ2
e

=
mR1

1 + (m− 1)R1

.

2

More generally:
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Lemma 1.6. Let a measurement be composed of m1 essentially τ -equivalent items.
Let the reliability of this measurement be Rm1

. Let us assign Rm2
the reliability of a

measurement composed of m2 items, so that all the items of the two measurements
are essentially τ -equivalent. Then the relationship between the reliabilities Rm1

and
Rm2

is given by

Rm2
=

m2

m1
Rm1

1 + (m2

m1
− 1)Rm1

. (1.9)

Proof: Lemma 1.5 implies for both composite measurements i = 1, 2 that

Rmi
=

miR1

1 + (mi − 1)R1

.

Therefore we have

R1 =
1
m1
Rm1

1 + ( 1
m1

− 1)Rm1

=
1
m2
Rm2

1 + ( 1
m2

− 1)Rm2

,

which immediately implies (1.9). 2

The consequence of this lemma is the fact that the reliability of an educational
test is dependent on the number of its items. Therefore, by adding suitable items
to the test, the reliability could approach as close to 1 as we would desire. When
comparing reliabilities of two educational tests, which in principle cannot have the
same number of items, we should bear this property of reliability in mind.

1.3 Cronbach’s alpha – estimator of reliability

A widely used characteristic of reliability is called Cronbach’s alpha. It was proposed
as a generalization of Kuder-Richardson formula 20 for binary data (see Kuder and
Richardson (1937)) and it was deeply studied in Cronbach (1951). Cronbach’s alpha
is defined as

αCR =
m

m− 1

var (Y ) −∑j var (Yj)

var (Y )
=

m

m− 1

∑∑
j 6=k cov(Yj, Yk)∑∑
j,k cov(Yj, Yk)

. (1.10)

A pleasant property of Cronbach’s alpha is the fact that this characteristic is easy to
estimate from the data simply by using sample variances sjj and sample covariances
sjk instead of their population counterparts in (1.10):

α̂CR =
m

m− 1

∑∑
j 6=k sjk∑∑
j,k sjk

, (1.11)

where

sjk =
1

n− 1

n∑

t=1

(Ytj − Ȳ•j)(Ytk − Ȳ•k). (1.12)
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In this notation, the bullet stands for the sum over the replaced index and the bar
over Y stands for the average:

Ȳ•j =
1

n

n∑

i=1

Yij. (1.13)

As a consequence of the mentioned pleasant property, Cronbach’s alpha is widely
used for the estimation of reliability of composite measurement. Moreover, Cron-
bach’s alpha is often mistaken for the reliability itself. Nevertheless, the equality of
Cronbach’s alpha and reliability holds only in some special cases as stated in the
following theorem (see also Novick and Lewis (1967)):

Theorem 1.7 (Novick & Lewis). Let Y = Y1+· · ·+Ym be a composite measurement
with true scores T = T1 + · · ·+ Tm. Then Cronbach’s alpha αCR is the lower bound
of the reliability:

Rm =
var(T )

var (Y )
≥ m

m− 1

(
1 −

∑
j var (Yj)

var (Y )

)
= αCR (1.14)

with equality holding if and only if the measurements Y1, . . . , Ym are essentially
τ -equivalent.

Proof: Let us assign cov(Ti, Tj) = σij and start with the inequality

0 ≤ (
√
σii −

√
σjj)

2 = σii + σjj − 2
√
σiiσjj, (1.15)

therefore:
σii + σjj ≥ 2

√
σiiσjj.

The Cauchy-Schwarz inequality gives

√
σiiσjj ≥ |σij| ≥ σij, (1.16)

(in other words the upper bound of the correlation coefficient ρij = corr(Ti, Tj) =
σij√
σiiσjj

is one). Together we have

σii + σjj ≥ 2σij.

Summing over all i 6= j and dividing by 2(m− 1) gives

∑

j

σjj ≥
1

m− 1

∑∑

i6=j
σij.

Since ∑

i

∑

j

σij =
∑

j

σjj +
∑∑

i6=j
σij,

the last inequality can be written as

∑

i

∑

j

σij ≥
m

m− 1

∑∑

i6=j
σij. (1.17)
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Dividing both sides of the resulting inequality by var (Y ) finally gives the desired
lower bound of the reliability of the composite measurement Y

Rm =
var(T )

var (Y )
=

∑
i

∑
j σij

var (Y )
≥ m

m− 1

∑∑
i6=j cov(Yi, Yj)

var (Y )
= α, (1.18)

where the equality

cov(Yi, Yj) = cov(Ti, Tj) = σij for i 6= j

is an easy consequence of the assumptions set at the beginning of Chapter 1.

To see when (1.14) holds as an equality, we need to know when the inequalities
(1.15) and (1.16) hold as equalities. In (1.15), the equality holds for σii = σjj.
In (1.16), the equality holds if and only if corr(Ti, Tj) =

σij√
σii

√
σjj

= 1. These two

assumptions correspond with the assumptions for essential τ -equivalence, as shown
in Lemma 1.4. 2

To give a summary of Theorem 1.7: Cronbach’s alpha is equal to the reliability of the
composite measurement if and only if the measurement is composed of essentially
τ -equivalent items. In other cases Cronbach’s alpha is only a lower bound of the
reliability!

Example 1.1. For example, consider a measurement composed of m items whose
true scores are not correlated at all: corr(Ti, Tj) = 0, for i 6= j. In this case, the
Cronbach’s alpha is equal to zero, nevertheless the reliability

Rm =

∑
j var (Tj)∑

j var (Tj) +mσ2
e

can be close to 1 for σ2
e close to 0.

Example 1.2. On the other hand, suppose a measurement composed of two items
whose true scores are highly correlated: corr(T1, T2) = 1, but var (T1) = 1 and
var (T2) = 100. Then

αCR ≤ 2
10 + 10

10 + 10 + 1 + 100 + 2σ2
e

≤ 1

3

but the reliability R2 of composite measurement Y1 + Y2

R2 =
10 + 10 + 1 + 100

10 + 10 + 1 + 100 + 2σ2
e

can be close to 1 for σ2
e close to zero.

As shown above, Cronbach’s alpha says more about items’ internal consistency
(how correlated the items’ true scores are, whether they have the same variance).
From this observation, it seems clear that the use of Cronbach’s alpha for estimation
of reliability should be done with caution.
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1.4 Reliability in the ANOVA framework

Classical testing situations can be described in the framework of ANOVA (analysis
of variance) models. In this section we discuss some of the models and we define
the reliability of composite measurement for them. In more detail, the mixed effect
model of a two-way ANOVA is studied where the reliability merges with Cronbach’s
alpha and with the intraclass correlation coefficient.

1.4.1 Mixed effect two-way ANOVA model

When studying properties of a certain educational test, we are usually interested
in the fixed set of items the test is composed of. Also, we usually suppose that the
group of students taking the test is a random sample of all possible test-takers.
The testing situation can therefore be described by the mixed effect model of a
two-way ANOVA: We assume that the score Yij reached by the i-th student in
the j-th item can be expressed as

Yij = Ai + bj + eij i = 1, . . . , n, j = 1, . . . ,m, (1.19)

where the ability of i-th person Ai ∼ N(µ, σ2
A) is a random variable obeying the

normal distribution, bj is a fixed parameter describing j-th item’s difficulty (we
often require

∑
j bj = 0), and eij ∼ N(0, σ2

e) is a normally distributed error term
independent of abilities Ap for p = 1, . . . , n. Error terms eij are supposed to be
mutually independent.

The reliability (defined as the ratio of the variance of the measured property
and the variance of the observed score) of composite measurement Yi =

∑
j Yij is

Rm =
var(Ai)

var (Yi)
=

m2σ2
A

m2σ2
A +mσ2

e

=
σ2
A

σ2
A + 1

m
σ2
e

. (1.20)

This is equal to Cronbach’s alpha

αCR =
m

m− 1

∑∑
j 6=k cov(Yij, Yik)

var (Yi)
=

m

m− 1

m(m− 1)σ2
A

m2σ2
A +mσ2

e

=
σ2
A

σ2
A + 1

m
σ2
e

.

Let us now look at the sums of squares and at their distributions:

SSA =
n∑

i=1

m∑

j=1

(Ȳi• − Ȳ••)
2 ∼ (mσ2

A + σ2
e)χ

2(n− 1), (1.21)

SSe =
n∑

i=1

m∑

j=1

(Yij − Ȳ•j − Ȳi• + Ȳ••)
2 ∼ σ2

eχ
2((n− 1)(m− 1)), (1.22)

where the ”bullet” notation was explained in (1.13). The mean squares MSA and
MSe have mean values

EMSA = ESSA/(n− 1) = mσ2
A + σ2

e ,

EMSe = ESSe/((n− 1)(m− 1)) = σ2
e .

14



Therefore, the reliability (1.20) can be expressed as

Rm =
EMSA − EMSe

EMSA
= 1 − EMSe

EMSA
. (1.23)

As was already mentioned, this merges with Cronbach’s alpha. Moreover, (1.23) is
also the intraclass correlation coefficient (ICC) in this model. For further connections
between ICC and Cronbach’s alpha see Bravo and Potvin (1991).

When replacing mean values EMSA,EMSe in (1.23) by their unbiased estimators
MSA,MSe, we get an estimator for reliability

R̂m = 1 − MSe
MSA

. (1.24)

Since the mean squares MSA and MSe can be written as

MSA =
1

m

m∑

i=1

m∑

j=1

sij,

MSe =
1

m− 1

m∑

j=1

sjj −
1

m(m− 1)

m∑

i=1

m∑

j=1

sij,

the estimate (1.24) merges with the sample estimate of Cronbach’s alpha (1.11).
Further, (1.24) can be written as

R̂m = α̂CR = 1 − 1

FA
, (1.25)

where FA is a statistics used for testing hypothesis H0 : σ2
A = 0 (either in mixed

effect model (1.19) or in random effect model (1.26)). Statistics FA has under hy-
pothesis H0 the Fisher-Snedecor distribution Fn−1,(n−1)(m−1). We reject the hypoth-
esis for large values of FA. Therefore, (1.25) implies that the greater the estimate of
reliability is, the better the educational test can distinguish between the students.

Also, (1.25) implies that α̂CR = 1 in the case when Yij = ai + bj, where ai and
bj are appropriate constants. In this case only one item would be enough to get all
the information about a student!

Expression (1.25) should also warn us that the estimate α̂CR can take negative
values, although only positive values make sense for reliability.

Finally, as a corollary of (1.25) we can derive the confidence interval for Cron-
bach’s alpha and for reliability: (1.21) and (1.22) imply that the ratio

MSA
MSe

σ2
e

(mσ2
A + σ2

e)
= FA · (1 −Rm)

has Fisher-Snedecor distribution Fn−1,(n−1)(m−1). Thus

γ/2 = P(FA · (1 −Rm) ≥ Fn−1,(n−1)(m−1)(γ/2))

= P

(
Rm ≤ 1 − Fn−1,(n−1)(m−1)(γ/2)

FA

)
,

γ/2 = P(FA · (1 −Rm) ≤ Fn−1,(n−1)(m−1)(1 − γ/2))

= P

(
Rm ≥ 1 − Fn−1,(n−1)(m−1)(1 − γ/2)

FA

)
,

15



and the (1 − γ)100% confidence interval for Rm is 〈Rmin, Rmax〉 , where

Rmin = max

(
0, 1 − Fn−1,(n−1)(m−1)

(
γ

2

)

FA

)
,

Rmax = min

(
1, 1 − Fn−1,(n−1)(m−1)

(
1 − γ

2

)

FA

)
.

1.4.2 Other ANOVA models

When the test items are understood as a random sample from a bigger set of items,
the random effect two-way ANOVA model should be used:

Yij = Ai +Bj + eij i = 1, . . . , n, j = 1, . . . ,m. (1.26)

The assumptions of this model are the same as in (1.19), only the j-th item’s
difficulty is supposed to be a normally distributed random variable Bj ∼ N(0, σ2

B),
independent of Ai and eip for i = 1, . . . , n, p = 1, . . . ,m.
The reliability of composite measurement Yi =

∑
j Yij in model (1.26) can be ex-

pressed as

Rm =
var(Ai)

var (Yi)
=

m2σ2
A

m2σ2
A +mσ2

B +mσ2
e

=
σ2
A

σ2
A + 1

m
σ2
B + 1

m
σ2
e

. (1.27)

This is not equal to Cronbach’s alpha (1.10). Nevertheless, we can estimate the
reliability (1.27) using the same principles as in the previous section. We can easily
derive the mean values of the mean squares:

EMSA = ESSA/(n− 1) = mσ2
A + σ2

e ,

EMSB = ESSB/(m− 1) = nσ2
B + σ2

e ,

EMSe = ESSe/((n− 1)(m− 1)) = σ2
e .

The reliability (1.27) can therefore be expressed as

Rm =
EMSA − EMSe

EMSA + EMSB−EMSe

n

. (1.28)

The unbiased estimators of variances σ2
A, σ

2
B and σ2

e are

σ̂2
e = MSe,

σ̂2
A =

MSA −MSe
m

,

σ̂2
B =

MSB −MSe
n

,

and the reliability of the total score (1.28) can be estimated similarly to (1.25) by

R̂m =
MSA −MSe

MSA + MSB−MSe

n

. (1.29)

16



Higher order ANOVA models can be used when variation arises from more
sources (e.g. variation due to administration, etc.). The sources of variation (the
effects) might be fixed or random, as was shown with item effect in models (1.19)
and (1.26). The ANOVA model might be full (as was the case in models (1.19)
and (1.26) where all the students answered all of the items) or the model might be
nested (e.g. the case of k administrations, where each student took the test only
within one of the possible administrations).

When evaluating the reliability of measurement, we should first identify all the
sources of the variation – the effects. Then we should identify whether these effects
are fixed or random and whether the model is full or nested. Further, the true
value of the measured property we are interested in should be identified. Then, the
reliability can be expressed as a ratio of the true score variance to the total variance
of the measurement. Finally, the reliability can be estimated using mean squares
as shown within models (1.19) and (1.26): We express the reliability in terms of
mean values of mean squares (see (1.23), (1.28)). The estimate is then formed by
the mean squares themselves (see (1.24), (1.29)).

At the end of this section, let us remind ourselves of the least squares esti-
mators of parameters in the ANOVA models. Let us for example suppose the
two-way fixed effect model

Yij = µ+ αi + βj + eij i = 1, . . . , n, j = 1, . . . ,m, (1.30)

where µ, αi and βj are fixed,
∑n

i=1 αi =
∑m

j=1 βj = 0 and eij ∼ N(0, σ2
e). The

estimators are gained by minimizing the expression

n∑

i=1

m∑

j=1

(Yij − (µ+ αi + βj))
2

with respect to i and j. We get

µ̂ =

∑m

j=1

∑n

i=1 yij

mn
= ȳ••, (1.31)

α̂i =

∑m

j=1 yij

m
−
∑m

j=1

∑n

i=1 yij

mn
= ȳi• − ȳ••, (1.32)

β̂j =

∑n

i=1 yij
n

−
∑m

j=1

∑n

i=1 yij

mn
= ȳ•j − ȳ••. (1.33)

These estimators are intuitive ones: the i-th student ability αi is estimated by
his/her proportion of correct answers in the whole test and the j-th item difficulty
βj is estimated by the proportion of the correct responses to that item from the
responses of all the students (standardized, so that the mean ability and mean
difficulty are zero). We denote these estimators as conventional and we will return
to them in Section 2.1.2.
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Chapter 2

Measurements consisting of
dichotomously scored items

The theory discussed in Chapter 1 is hardly applicable if the test is composed of
dichotomously scored items. Model (1.1), supposing that the measurement Y is a
sum of the true value T and an error term e, is misleading in the case when Y
reaches only 0 or 1.

In this chapter we describe some models which could be appropriate for the
case of dichotomously scored items. As in Chapter 1, we pay the most attention to
the mixed effect models, assuming that the items are fixed and that the students
are a random sample from the population. We generally assume that the score Yij
reached by the i-th student on the j-th item is either 0 (wrong answer) or 1 (correct
answer), and that it has a distribution

Yij ∼ fij(•;Ai, bj) i = 1, . . . , n, j = 1, . . . ,m, (2.1)

where Ai’s (describing students’ ability) are independently distributed with the
same distribution function H(Ai). Moreover, we assume that Yij and Yij′ are con-
ditionally independent given Ai.

In Section 2.1 we discuss the model used most often for description of dichoto-
mous items – the Rasch model. Attention is paid mainly to methods of parameter
estimation.

In a certain stage of our research, we were not able to define the reliability
of measurement composed of items obeying the Rasch model. On the other hand,
the reliability is easily defined by the intraclass correlation coefficient (ICC) for
binary data obeying common correlation models, such as the beta-binomial model.
Nevertheless, the beta-binomial model is not appropriate for our situation since it
does not allow for different item difficulties. Therefore, as a step aside, we tried
to modify the beta-binomial model. The resulting modified beta-binomial model is
discussed in Section 2.2. Finally, Section 2.3 brings an extension of this model to
other ability distributions.
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2.1 Rasch model

The model used most often for describing dichotomously scored items (often in the
context of the Item Response Theory) is the logit-normal model, called the Rasch
model (see Rasch (1960)). In the Rasch model, the probability of correct response
yij = 1 or false response yij = 0 of person i on item j is given by1:

P(Yij = yij|Ai) =
exp[yij(Ai + bj)]

1 + exp(Ai + bj)
, (2.2)

where Ai ∼ N(µ, σ2
A) describes the level of ability of person i, and bj is an un-

known parameter describing the difficulty of item j. The conditional distributions
are assumed to be independent. Usually, we require

∑
j bj = 0.

A direct generalization of the Rasch model is the three parameter logistic model,
where item properties are described by three parameters: besides difficulty parame-
ter bj, there is a discrimination parameter cj describing discrimination power of the
item and a guessing parameter dj describing the probability of guessing that item
by a person with no knowledge. The probability of a correct response of person i
on item j is given by

P (Yij = yij;Ai, bj, cj, dj) = dj + (1 − dj)
exp[yijcj(Ai + bj)]

1 + exp[cj(Ai + bj)]
. (2.3)

In this model, a nice and clear interpretation of parameters is possible: Let us
define the item characteristic curve of item j as fj(a) = P [Yij = 1|a, bj, cj, dj]. After
estimating the parameters of an item, the item characteristic curve can be plotted
out (see Figure 2.1). By further analysis of the function fj(a) we can derive that:

• If cj > 0 then fj(a) is increasing (so that the better students are more likely
to answer the item correctly), which is a reasonable assumption for an item.

• If cj > 0, then dj = lima→−∞ fj(a), therefore dj describes the probability that
person without any knowledge answers the item correctly.

• Difficulty parameter bj can be understood as a specific value on the ability
scale: If a person has ability a = −bj, then the probability that the person

answers item j correctly is
1+dj

2
, and so this probability is exactly in the middle

between 1 and dj.

• The first derivative of function fj at point −bj is equal to cj
1−dj

4
, thus the

discrimination parameter cj is described by the slope of item characteristic
curve at point −bj, more precisely it is equal to f ′(−bj) 4

1−dj
.

The item characteristic curve describes the properties of an item very clearly:
we can easily read its difficulty, the probability that persons with no knowledge

1In publications, often a slightly reparametrized model is called the Rasch model: there is
a minus sign in front of the item effect bj in (2.2). In such a case, bj can be understood as ”item
difficulty”, while in (2.2) it is rather ”item easiness”. We use notation (2.2) for better comparison
with model (1.19).
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Figure 2.1: Item characteristic curve for an item with difficulty parameter bj = −1,
discrimination parameter cj = 2 and guessing parameter dj = 0.1

answer it correctly. From the item characteristic curve plotted in Figure 2.1 we can
easily see, for example, that the described item can very well distinguish between
the students with ability level between 0 and 2. On the other hand, this item does
not distinguish very well between students with lower ability level, nor between
students with higher ability level.

Other extensions of the Rasch model are possible, too. Among these there are
the extensions to polytomous models, such as the partial credit model, rating scale
model, binomial trials and Poisson counts model. The majority of these models can
be covered in a generalized linear model. Other possible extensions are models for
items in which response time or number of successful attempts are recorded. A well-
arranged overview of extensions of the Rasch model can be found in van der Linden
and Hambleton (1997). An advantage of models containing more parameters is a
better description of the situation. A disadvantage is that with small sample sizes
it may result in unstable estimators of item parameters.

2.1.1 Parameter estimation – ML methods

Let us for the rest of this section concentrate on the Rasch model (2.2). There
are three likelihood–based methods available for an item parameter estimation:
joint maximum likelihood (JML), marginal maximum likelihood (MML) and con-
ditional maximum likelihood (CML). All three of the algorithms based on maxi-
mum likelihood described in the next three subsections use the iterative procedures.
Therefore, the estimation procedures for item parameters can be hard to explain
to non-statisticians. Nevertheless, in Section 2.1.2 we show that the conventional
estimator (1.33) can be understood as an approximation of the estimators resulting
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from ML methods studied in the following text.

Joint maximum likelihood

The joint likelihood function for one-parameter Rasch model (2.2) is given by

p(y; ω) =
n∏

i=1

m∏

j=1

P (Yij = yij; ai, bj), (2.4)

with ω = (bT ,aT ), a = (a1, . . . , an) being the vector of abilities, b = (b1, . . . , bm)
representing the vector of difficulties of items and with P (Yij = yij; ai, bj) given by
(2.2). We should emphasize that, when studying the joint likelihood function, we in
fact work with a model in which the impact of the i-th student ai is considered to be
a fixed effect. The item parameters are estimated by maximizing (2.4) with respect
to ω given the data x. Nevertheless, when keeping the number of item parameters
and increasing the number of tested persons, the method leads to inconsistent esti-
mators. This is caused by the fact that a limited number of parameters of interest
(item difficulties b) is to be estimated in the presence of the growing number of
nuisance parameters (abilities a). A wide discussion of this problem in a general
setting was done already in Neyman and Scott (1948). Eliminating the nuisance
parameters gives a solution to this problem. The elimination can be accomplished
by the marginal or the conditional maximum likelihood method.

Marginal maximum likelihood

When estimating the item parameters using the marginal maximum likelihood
(MML) method, we usually assume that the abilities A constitute a random sam-
ple from an ability distribution with density h(A; ξ), with ξ the parameters of the
ability distribution. The joint probability can be then written as

p(y; b, ξ) =
n∏

i=1

∞∫

−∞

m∏

j=1

P (Yij = yij|Ai; bj)h(Ai; ξ)dAi, (2.5)

with P (Yij = yij|Ai; bj) again given by (2.2). The above mentioned marginal likeli-
hood function is maximized with respect to b and ξ. The nuisance parameters are
eliminated by integrating over them. Often, the ability distribution is considered
to be normal with unknown parameters µA and σ2

A, which are estimated together
with b. The main problem of this method is the correct specification of the ability
distribution. If the distribution is not specified correctly, the method can lead to
biased estimators of item parameters. The MML method can be used also without
specifying a parametric form of the ability distribution. This nonparametric dis-
tribution is then estimated together with the item parameters. EM algorithm and
MCMC method can be used for the estimation.

Conditional maximum likelihood

The last approach to item parameter estimation is the conditional maximum like-
lihood (CML) method. It results from the fact that if there exist sufficient statistic
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for the nuisance parameters, the model can be separated in a conditional part de-
pendent only on the parameters of interest and a part which models the sufficient
statistic.

Lemma 2.1. Let us define the total score variables2

Si =
m∑

j=1

Yij i = 1, . . . , n,

and their realizations

si =
m∑

j=1

yij i = 1, . . . , n.

Then under the Rasch model (2.2), Si is a sufficient statistic for ai, i = 1, . . . , n.

Proof: Let us denote (x|si) any vector x = (x1, . . . , xm) for which it holds that∑m

j=1 xj = si. Let us denote ψi = exp ai, and ǫj = exp bj. Then, supposing the
model (2.2), the conditional probability P (Y = y|S = s) can be rewritten as

P (Y = y|S = s) =
P (Y = y,S = s)

P (S = s)
=

n∏
i=1

m∏
j=1

ψ
yij
i ǫ

yij
j

1+ψiǫj

n∏
i=1

∑
(x|si)

m∏
j=1

ψ
xij
i ǫ

xij
j

1+ψiǫj

=
n∏

i=1

m∏
j=1

1
1+ψiǫj

ψsi

i

m∏
j=1

ǫ
yij

j

m∏
j=1

1
1+ψiǫj

ψsi

i

∑
(x|si)

m∏
j=1

ǫ
xij

j

=
n∏

i=1

m∏
j=1

ǫ
yij

j

∑
(x|si)

m∏
j=1

ǫ
xij

j

,

for S = s and as 0 otherwise. Therefore the conditional probability P (Y = y|S = s)
does not depend on ai, i = 1, . . . , n, and thus the total score Si is a sufficient statistic
for ai, i = 1, . . . , n. 2

Since in the Rasch model (2.2) the total score Si is a sufficient statistic for
ai, i = 1, . . . , n, the likelihood function (2.4) can be rewritten as:

p(y; ω) =
n∏

i=1

f(yi|si; b)
n∏

i=1

g(si; b; ai), (2.6)

with Y i = (Yi1, . . . , Yim) the response vector of person i. Maximization of the
conditional likelihood

n∏

i=1

f(yi|si; b) (2.7)

with respect to b leads under mild conditions to consistent and asymptotically
normally distributed estimates (see Andersen (1970)).

2While in the rest of the work we denote the total score of the i-th student Yi, for better clarity
of this section we choose a different symbol here: Si.
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An interesting topic in CML estimates is their efficiency. The problem is that
when estimating the item parameters, only the conditional likelihood (2.7) is used
and the second part of the full likelihood (2.6), the marginal distribution of S, is
neglected. Nevertheless, this second part could possibly contain some information
on the item parameters. For evaluating the loss of information due to using the
CML method, the F-information can be defined. This is a generalization of Fisher
information matrix for the case when a part of the parameters is nuisance. The
properties of F-information and the loss of information in CML estimation is in
detail studied in Eggen (2000).

2.1.2 Conventional estimator – approximation of MLE

When one is asked to estimate difficulty of an item, probably the simplest thing
he/she can think of is the proportion of correct responses to that item. In this
subsection we would like to show that this conventional estimator is justified and
that it approximates the estimators mentioned above.

We will demonstrate our claim on the joint maximum likelihood method, there-
fore the impact of the student ability ai is again considered to be a fixed effect.
Let us make a slight reparametrization of the Rasch model:

P [Y = 1|ai, bj] =
eai+bj

1 + eai+bj
=

eµ+αi+βj

1 + eµ+αi+βj

def
= f(µ+ αi + βj), (2.8)

with
∑
αi =

∑
βj = 0. Let us consider the Taylor approximation

f(µ+ αi + βj)
.
= f(µ) + f ′(µ)(αi + βj) = f(µ) + f(µ)(1 − f(µ))(αi + βj). (2.9)

Let us define η = f(µ) = eµ

1+eµ and

f(µ+ αi + βj)
.
= η + η(1 − η)(αi + βj)

def
= Kij, (2.10)

then the new joint likelihood function can be written as

L =
n∏

i=1

m∏

j=1

K
yij

ij (1 −Kij)
(1−yij), (2.11)

and its logarithm can be written as

lnL =
n∑

i=1

m∑

j=1

yij lnKij + (1 − yij) ln (1 −Kij). (2.12)

Let us now maximize the logarithm of the joint likelihood function with respect to
η, αi and βj to get the maximum likelihood estimators η̂, α̂i, β̂j:

0 =
∂ lnL

∂η
=

n∑

i=1

m∑

j=1

[
yij

1 + (1 − 2η)(αi + βj)

η + η(1 − η)(αi + βj)
+ (1 − yij)

−1 − (1 − 2η)(αi + βj)

1 − η − η(1 − η)(αi + βj)

]

0 =
n∑

i=1

m∑

j=1

[
yij

η + η(1 − η)(αi + βj)
− (1 − yij)

1 − η − η(1 − η)(αi + βj)

]

0 =
n∑

i=1

m∑

j=1

yij(1 − η − η(1 − η)(αi + βj)) − (1 − yij)(η + η(1 − η)(αi + βj)).
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When using reparametrization conditions
∑
αi =

∑
βj = 0, we get the maximum

likelihood estimator
η̂ = ȳ••, (2.13)

where the ”bullet” notation was explained in (1.13). Similarly for ability parameters
αi we get

0 =
∂ lnL

∂αi
=

m∑

j=1

[
yijη(1 − η)

η + η(1 − η)(αi + βj)
− (1 − yij)η(1 − η)

1 − η − η(1 − η)(αi + βj)

]

0 =
m∑

j=1

yij(1 − η − η(1 − η)(αi + βj)) − (1 − yij)(η + η(1 − η)(αi + βj)),

0 = yi• −mη −mη(1 − η)αi,

therefore we have

α̂i =
ȳi• − ȳ••

ȳ••(1 − ȳ••)
. (2.14)

Similarly for item-difficulty parameters

0 =
∂ lnL

∂βj
=

n∑

i=1

[
yijη(1 − η)

η + η(1 − η)(αi + βj)
− (1 − yij)η(1 − η)

1 − η − η(1 − η)(αi + βj)

]
,

0 =
n∑

i=1

yij(1 − η − η(1 − η)(αi + βj)) − (1 − yij)(η + η(1 − η)(αi + βj)),

0 = y•j − nη + nη(1 − η)βj.

Therefore, the maximum likelihood estimator for item difficulty is

β̂j =
ȳ•j − ȳ••

ȳ••(1 − ȳ••)
. (2.15)

Estimators (2.14) and (2.15) are multiples of the conventional estimators (1.32)
and (1.33) derived for model of analysis of variance in Section 1.4. In this sense,
the conventional estimators can be understood as justified approximations of the
estimators based on the Rasch model.

2.2 Beta-binomial model and its modification

An often used model in reliability studies of binary data (see for example Rid-
out et al. (1999), Zou and Donner (2004)) is the beta-binomial model. In this
model, we assume that the probability of success πi varies over subjects i = 1, . . . , n
according to a beta distribution with parameters a and b, and conditional to this
probability, the total score Yi of the i-th person is binomially distributed. The choice
of beta distribution for πi is logical since it is a flexible distribution and leads to
mathematically tractable results. The beta probability density function is

f(π; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
πa−1(1 − π)b−1, 0 ≤ π ≤ 1,
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where a > 0 and b > 0. The beta distribution has mean and variance equal to

E(π) = µ, var (π) = µ(1 − µ)θ/(1 + θ) = µ(1 − µ)ρ,

where µ = a
a+b

is the marginal probability of success for any individual, θ = 1
a+b

and ρ is the intraclass correlation coefficient ρ = corr(Yij, Yik), j 6= k common for
any subject and any pair of responses (this model is therefore sometimes called the
common correlation model).

Marginally, averaging with respect to the beta distribution for πi, the total score
Yi has the beta-binomial distribution with

P(Yi = yi) =

(
n

yi

)∏yi−1
j=0 (µ+ jθ)

∏n−yi−1
j=0 (1 − µ+ jθ)

∏n−1
j=0 (1 + jθ)

, (2.16)

and with the first two moments equal to

E(Yi) = nµ = n
a

a+ b
,

var (Yi) = nµ(1 − µ)

[
1 + (n− 1)

θ

1 + θ

]
.

An unpleasant property of this model for our situation is the fact that it does
not allow for different difficulties of items. Hand in hand with this goes the common
correlation structure.

When trying to extend the beta-binomial model to cover different difficulties
of items and yet to preserve the model structure, we can think of the following
modified beta-binomial model: We again assume that the probability of success
πi varies over subjects i = 1, . . . , n according to a beta distribution with parameters
a and b. We quantify the impact of the difficulty of the j-th item by a small number
bj, assuming that

∑m

j=1 bj = 0. When parameters a, b of the beta distribution are
large enough, there is a slight danger that the sums πi + bj fall out of the interval
(0, 1). Therefore, when neglecting the probability that the sums πi + bj fall out of
the interval (0, 1), Yi1, . . . , Yim are for a given πi independent random variables with
Bernoulli distribution with probability of success (πi + bj). To be more exact, let us
suppose

πi ∼ B(a, b) a > 0, b > 0,

bj fixed, such that
m∑

j=1

bj = 0, (2.17)

P(Yij = 1|πi) = max(min(πi + bj, 1), 0) i = 1, . . . , n j = 1, . . . ,m.

Then we say that the total scores Yi =
∑m

j=1 Yij obey the modified beta-binomial
model. Let us now look at the first two conditional and unconditional moments of
Yij in the modified beta-binomial model.
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Lemma 2.2. Let us suppose that Yi, i = 1, . . . n obey the modified beta-binomial
model (2.17) and let us neglect the small probability that πi + bj fall out of the
interval (0, 1). Then for conditional mean and variance, it holds that

E(Yij|πi) = πi + bj,

var (Yij|πi) = (πi + bj)(1 − (πi + bj)),

and for unconditional mean and variance, it holds that

E(Yij) = µ+ bj,

var (Yij) = µ(1 − µ) + bj(1 − 2µ− bj).

Finally, the covariances and correlations between Yij and Yit, for j 6= t are equal to

cov(Yij, Yit) = var (πi) = ρµ(1 − µ),

corr(Yij, Yit) = ρ
1√
CjCt

,

where

ρ =
varπi

µ(1 − µ)
=

1

1 + a+ b

is the correlation between Yij and Yit, j 6= t, in the beta-binomial model, and

Cj = 1 + bj
1 − 2µ− bj
µ(1 − µ)

.

Proof: For conditional mean and variance, it holds that

E(Yij|πi) = E(Y 2
ij |πi) = P(Yij = 1|πi) = πi + bj,

var (Yij|πi) = E(Y 2
ij |πi) − (E(Yij|πi))2 = (πi + bj)(1 − (πi + bj)).

Therefore the unconditional mean is

E(Yij) = EE(Yij|πi) = µ+ bj,

where we assigned µ = a/(a + b) for the mean value of the beta distribution. For
the unconditional variance, it holds that

var (Yij) = var (E(Yij|πi)) + E(var (Yij|πi))
= var (πi + bj) + E((πi + bj)(1 − (πi + bj)))

= Eπ2
i − (Eπi)

2 + E(πi + bj − π2
i − πibj − πibj − b2j)

= −µ2 + µ+ bj − 2bjµ− b2j

= µ(1 − µ) + bj(1 − 2µ− bj).

The covariance of variables Yij, Yit for j 6= t equals

cov(Yij, Yit) = cov(E(Yij|πi),E(Yit|πi))
= cov(πi + bj, πi + bt) = var (πi)
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Finally, the correlation between Yij and Yit for j 6= t is

corr(Yij, Yit) =
cov(Yij, Yit)√
varYijvarYit

=
varπi√

µ(1 − µ) + bj(1 − 2µ− bj)
√
µ(1 − µ) + bt(1 − 2µ− bt)

=
varπi

µ(1 − µ)
√

1 +
bj(1−2µ−bj)
µ(1−µ)

√
1 + bt(1−2µ−bt)

µ(1−µ)

= ρ
1√
CjCt

.

2

For constant difficulties of items bj = 0 we get the common correlation structure,
corr(Yij, Yit) = ρ. For unequal difficulties of items it is natural to assume a = b
(to assume symmetric distribution of knowledge), therefore µ = 1/2. In this case
Cj = 1 − 4b2j , thus the impact of bj < 1 is small. Let us now study the first two
moments of the total score Yi =

∑m

j=1 Yij.

Lemma 2.3. Let us suppose that Yi, i = 1, . . . n obey model (2.17) and let us neglect
the small probability that πi+ bj fall out of the interval (0, 1). Then for the first two
conditional moments of the total score Yi =

∑m

j=1 Yij, it holds that

E(Yi|πi) = mπi,

var (Yi|πi) = mπi(1 − πi) −mκb,

where κb = 1
m

∑m

j=1 b
2
j , and the first two unconditional moments of the total score

can be expressed as

E(Yi) = mµ,

var (Yi) = mµ(1 − µ)(1 + (m− 1)ρ) −mκb.

Proof: In the modified beta-binomial model, we have

E(Yi|πi) = m
1

m

m∑

j=1

(πi + bj) = mπi,

var (Yi|πi) = var

(
m∑

j=1

Yij|πi
)

=
m∑

j=1

(πi + bj)(1 − (πi + bj))

=
m∑

j=1

(
πi + bj − (πi + bj)

2
)

= mπi −mπ2
i −

m∑

j=1

b2j

= mπi(1 − πi) −mκb,
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where κb = 1
m

∑m

j=1 b
2
j . Therefore, it holds that

E(Yi) = EE(Yi|πi) = mE(πi) = m
a

a+ b
= mµ,

var (Yi) = var (mπi) + E(mπi(1 − πi) −mκb)

= m2var (πi) +mE(πi) −mE(π2
i ) −mκb +mEπ2

i −mEπ2
i

= (m2 −m)varπi +mµ+mµ−mµ2 −mκb

= (m2 −m)ρµ(1 − µ) +mµ(1 − µ) −mκb

= mµ(1 − µ)(1 + (m− 1)ρ) −mκb.

2

The formulas derived in Lemmas 2.2 and 2.3 will be needed for deriving the formula
of reliability in the modified beta binomial model (see Chapter 4).

2.3 General model with additive item effect

When going through the proofs of Lemma 2.2 and of Lemma 2.3, we can notice that
the same formulas for conditional and unconditional means and variances would be
applicable even if the distribution of πi was not the beta-binomial distribution, but
any other distribution on (0, 1). To be more specific, let

P(πi ≤ x) = F (x), F being a distribution function on (0, 1),

Eπi = µ ∈ (0, 1), varπi = σ2
π,

bj fixed, such that
m∑

j=1

bj = 0,

P(Yij = 1|πi) = max(min(πi + bj, 1), 0) i = 1, . . . , n j = 1, . . . ,m. (2.18)

Then we say that the total score Yi =
∑m

j=1 Yij obeys the general model with
additive item effect.

Lemma 2.4. The formulas for conditional and unconditional means and variances
derived in Lemmas 2.2 and 2.3 also hold for the general additive model (2.18). In
particular (formulas needed in Chapter 4): When neglecting the small probability
that πi + bj fall out of the interval (0, 1), then it holds that

E(Yij|πi) = πi + bj,

var (Yij) = µ(1 − µ) + bj(1 − 2µ− bj),

E(Yi|πi) = mπi,

var (Yi) = mµ(1 − µ)(1 + (m− 1)ρ) −mκb,

where κb = 1
m

∑m

j=1 b
2
j and ρ = σ2

π/µ(1 − µ) is the correlation between Yij and Yit,
j 6= t, in the model (2.18), where bj = 0 for all j = 1, . . . ,m.
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Proof: The proof is identical with the proof of Lemmas 2.2 and 2.3. 2

Example (Modified Rasch model)
As in the model (2.2), we suppose that the ability of the i-th student isAi ∼ N(µA, σ

2
A)

and that the difficulty of the j-th item can be described by parameters bj. In the
modified Rasch model, we suppose that the overall probability that the i-th student
answers correctly to an item is

πi = logitAi =
expAi

1 + expAi

and that the effect of an item is additive, that is

P(Yij = 1|Ai) = max(min(πi + bj, 1), 0) i = 1, . . . , n j = 1, . . . ,m. (2.19)

In other words, when neglecting the small probability that πi+bj falls out of the in-
terval (0, 1), the probability that the i-th student answers correctly the j-th question
is

P(Yij = 1|Ai) =
expAi

1 + expAi
+ bj.

This model can be understood as an approximation of the Rasch model (2.2).

29



Chapter 3

Common intraclass correlation

As follows from Lemma 1.1, even in the classical situation the reliability is closely
associated with the correlation between two measurements of the same property. In
papers devoted to binary data (see for example Ridout et al. (1999), Zou and Donner
(2004)), mostly the reliability is understood to merge with the intraclass correlation.
This is true for the class of models called common correlation models, where the
correlation is common for all pairs of intraclass measurements: corr(Yij, Yij′) = ρ,
for all i and for all j 6= j′.

In Commenges and Jacqmin (1994), some of possibly equivalent definitions of the
common correlation model are discussed. Since the general definition of reliability
proposed in Chapter 4 of this thesis is inspired by the coefficient τ, proposed in paper
of Commenges and Jacqmin, we devote this chapter to revision of the mentioned
paper.

Commenges and Jacqmin study the random effect model

Yij ∼ fij(•;Ai) i = 1, . . . , n, j = 1, . . . ,m (3.1)

with finite variance, varYij <∞, independently distributed effects Ai with the same
distribution function H(Ai) and with Yij, Yij′ conditionally independent given Ai.
Our model (2.1) is a special case of (3.1): we assume Yij = 0 or 1 and we suppose
that the model contains a fixed item effect bj, common for all subjects i = 1, . . . , n.

In the mentioned paper, two possible ways of defining the intraclass correlation
coefficient are discussed. One is based on the correlation between two variables of
the same group, corr(Yij, Yij′), the other is based on a decomposition of the variance:

For j 6= j′, let ρijj′ = corr(Yij, Yij′). If ρijj′ does not depend on j and j′, we define
the intraclass correlation coefficient for class i by ρi. In more restricted models, all
the ρi are equal to a common intraclass coefficient ρ.

Consider now the model (3.1). The variance of Yij can be decomposed as a
function of its conditional moments:

var (Yij) = E [var (Yij|Ai)] + var [E(Yij|Ai)] .

The first term of this decomposition is essentially the intragroup variance, that is,
the part of the variance that is not due to variability of Ai. The second term is
an intergroup variance, the part of the variance var (Yij) that is due to variability
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of Ai. Commenges and Jacqmin further define

τij =
var [E(Yij|Ai)]

var (Yij)
. (3.2)

This coefficient is the relative part of the variance due to the effect of the variability
of Ai on the conditional expectation of Yij, i.e., the heterogeneity of means between
groups. Commenges and Jacqmin state that it may be the basis of a definition of
an intraclass correlation. We add that, moreover, it may be the basis of a definition
of reliability.

In their paper, Commenges and Jacqmin further study the relationship of the
following propositions:

P1 ρijj′ = ρi for all j 6= j′.

P2 τij = τi for all j.

P3 The model belongs to a class specified (with probability equal to one) by

E(Yij|Ai) = kij [λi(Ai) + ηij] , (3.3)

var (Yij|Ai) = k2
ij

[
σ2
i (Ai) + ψij(Ai)

]
, (3.4)

where kij and ηij are deterministic quantities, E [ψij(Ai)] = 0, and
ψij(Ai) > −σ2

i (Ai).

P4 ρi = τi.

Commenges and Jacqmin denote a model satisfying P1–P4 a GICRE (general in-
traclass correlation random effect) model. In their paper, it is claimed that the
propositions P1–P3 are equivalent under the model (3.1). The following counterex-
amples should deny this claim.

Example 3.1 (Counterexample to P2 ⇒ P1, P3).
Let Ai ∼ N(0, 1), eij ∼ N(0, 1), i = 1, . . . , n, j = 1, 2, 3 be mutually independent.
Let

Yij = cjA
2j−1
i + eij,

where constants cj are defined by

cj = 1/

√
var (A2j−1

i ),

so that var (cjA
2j−1
i ) = 1. For the Gaussian distribution we have

EA2k
i =

(2k − 1)!

2k−1(k − 1)!
,

EA2k−1
i = 0.

Therefore, cj is more explicitly equal to

cj =

√
22k−2(2k − 2)!

(4k − 3)!
,
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giving

c1 = 1, c2 =
1√
15
, c3 =

1

3
√

105
.

Therefore we have

ρi12 =
cov(c1Ai, c2A

3
i )

2
=

3

4
√

15
6= 5

2
√

105
=

cov(c1Ai, c3A
5
i )

2
= ρi13,

but

τij =
var [E(Yij|Ai)]

var (Yij)
=

var (cjA
2j−1
i )

var (cjA
2j−1
i + eij)

=
1

2
= τi.

The model does not belong to a class specified (with probability equal to one) by
(3.3)–(3.4): For example, the conditional mean value

E(Yij|Ai) = cjA
2j−1
i 6= kij [λi(Ai) + ηij] .

Example 3.2 (Counterexample to P1 ⇒ P2, P3).
Let Ai ∼ N(0, 1), eij ∼ N(0, 1), i = 1, . . . , n, j = 1, . . . ,m be mutually independent.
Let

Yij = A2j−1
i + djA

2j−1
i eij,

where constants dj will be specified later on. Then for all i, j it holds that

E(Yij|Ai) = A2j−1
i ,

var (Yij|Ai) = d2
jA

2(2j−1)
i .

Therefore,

var [E(Yij|Ai)] = EA
2(2j−1)
i ,

E[var (Yij|Ai)] = d2
jEA

2(2j−1)
i ,

which cannot be written as in (3.3)–(3.4). Neither P2 holds in the case of dj 6= dj′
for some j 6= j′, since

τij =
var [E(Yij|Ai)]

var [E(Yij|Ai)] + E[var (Yij|Ai)]
=

1

1 + d2
j

.

For j 6= j′ we have

ϕijj′ = corr[E(Yij|Ai),E(Yij′|Ai)] =
cov(A2j−1

i , A2j′−1
i )√

var (A2j−1
i )var (A2j′−1

i )

=
EA

2(j+j′−1)
i√

EA
2(2j−1)
i EA

2(2j′−1)
i

=
(2j + 2j′ − 3)!

(j + j′ − 2)!

√
(2j − 2)!

(4j − 3)!

√
(2j′ − 2)!

(4j′ − 3)!
,

and the correlation between Yij and Yij′ can be written as (see Lemma 3.1)

ρijj′ = ϕijj′
√
τij

√
τij′ = ϕijj′

√
1

1 + dj

√
1

1 + dj′
.

32



By the appropriate choice of constants dj in our example, we can achieve the equality
of ρijj′ for all j 6= j′. To be more concrete, let us suppose m = 3. Then

ϕi12 = ϕi21 =

√
3

5
, ϕi13 = ϕi31 =

√
5

21
, ϕi23 = ϕi32 =

√
7

3
.

When

d1 =

√
2

7
, d2 =

4√
5
, d3 =

√
2

3
,

we get

τi1 =
7

9
, τi2 =

5

21
, τi3 =

3

5
,

but we get common correlation ρijj′ = ρi = 1/3.

As we have shown in Examples 3.1 and 3.2, propositions P1–P3 cannot be consid-
ered generally equivalent. Let us now look closer at the relationship between ρijj′
and τij.

Lemma 3.1. Suppose Yij obeys model (3.1). Then for all j 6= j′

ρijj′ =
√
τij

√
τij′ corr[E(Yij|Ai),E(Yij′|Ai)] ≤

√
τij

√
τij′ . (3.5)

The equality in (3.5) holds for all j 6= j′ if for all j 6= j′

corr[E(Yij|Ai),E(Yij′|Ai)] = 1, (3.6)

that is, in the case when for all i, j the condition (3.3) with positive kij is true,
which means that with probability equal to one, for some kij > 0, some ηij and some
function λi(Ai), the conditional mean can be expressed as

E(Yij|Ai) = kij [λi(Ai) + ηij] .

Proof. Suppose j 6= j′. We start with a well known formula

cov(Yij, Yij′) = cov[E(Yij|Ai),E(Yij′ |Ai)] + E[cov(Yij, Yij′ |Ai)]. (3.7)

The assumption of conditional independence implies

cov(Yij, Yij′ |Ai) = 0. (3.8)

Therefore, the correlation coefficient is

ρijj′ =
cov[E(Yij|Ai),E(Yij′|Ai)]√

var (Yij)var (Yij′)
.

From (3.2) we have

var (Yij) =
1

√
τij

var [E(Yij|Ai)],

var (Yij′) =
1

√
τij′

var [E(Yij′ |Ai)],
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which together implies (3.5).
The correlation (3.6) is equal to one if for all j = 1, . . . ,m, the conditional means
E(Yij|Ai) are with probability equal to one a linear function of one of them, for
example if they are all a linear function of E(Yi1|Ai) = λi(Ai).

Lemma 3.1 can be extended to the following theorem revising the Theorem of
Commenges and Jacqmin:

Theorem 3.2 (Commenges and Jacqmin revised). Suppose that Yij for i = 1, . . . n,
j = 1, . . .m, m ≥ 3 obey the model (3.1). Moreover, with probability equal to one
let for all i, j hold the assumption (3.3):

E(Yij|Ai) = kij [λi(Ai) + ηij] ,

where kij > 0 and ηij are deterministic quantities. Then the following propositions
are equivalent:

P1 ρijj′ = ρi for all j 6= j′.

P2 τij = τi for all j.

P3’ The model belongs to a class specified (with probability equal to one) by (3.4):

var (Yij|Ai) = k2
ij

[
σ2
i (Ai) + ψij(Ai)

]
,

where E [ψij(Ai)] = 0, and ψij(Ai) > −σ2
i (Ai).

In addition, these propositions imply that

P4 ρi = τi.

If moreover it holds

P5 λi = λ and σ2
i = σ2,

then also τi = ρi = ρ.

Proof: Equivalence P1 ⇔ P2 is an easy consequence of (3.5):
Under (3.3) we have

corr[E(Yij|Ai),E(Yij′|Ai)] = 1,

therefore
ρijj′ =

√
τij

√
τij′ .

Now P2 implies
ρijj′ =

√
τi
√
τi = τi.

Vice-versa, if P2 is not true, then there exist j 6= j′, such that τij 6= τij′ . Having
m ≥ 3, there exist k 6= j, j′, and

ρijk =
√
τij

√
τik 6=

√
τij′

√
τij′ = ρij′k.

Proof of P3’ ⇒ P1, P2:
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Let us suppose j 6= j′. Using (3.7), (3.8) and assumptions (3.3) and P3’ (that is
(3.4)), we can write

cov(Yij, Yij′) = cov[E(Yij|Ai),E(Yij′|Ai)]
= E{kij[λi(Ai)] − kij[E(λi(Ai))]} · {kij′ [λi(Ai)] − kij′ [E(λi(Ai))]}
= kijkij′var [λi(Ai)].

Using
var (Yij) = E[var (Yij|Ai)] + var [E(Yij|Ai)] (3.9)

we have

var (Yij) = E{k2
ij[σ

2
i (Ai) + ψij(Ai)]} + var{kij[λi(Ai) + ηij]}

= k2
ij{E[σ2

i (Ai)] + var [λi(Ai)]},
var (Yij′) = k2

ij′{E[σ2
i (Ai)] + var [λi(Ai)]}.

Using sign(kij) = sign(kij′) we obtain

ρijj′ = corr(Yij, Yij′) =
cov(Yij, Yij′)√

var (Yij)var (Yij′)

=
kijkij′var [λi(Ai)]√

(kijkij′)2(E [σ2
i (Ai)] + var [λi(Ai)])

= ρi (3.10)

and finally also

τij =
var [E(Yij|Ai)]

var (Yij)
=

var [λi(Ai)]

E [σ2
i (Ai)] + var [λi(Ai)]

= τi = ρi. (3.11)

Proof of P2 ⇒ P3’:
P2 together with (3.3) gives

τij =
var [λi(Ai)]

var [λi(Ai)] +
E [var (Yij |Ai)]

k2
ij

which implies
E [var (Yij|Ai)] = k2

ijfi(Ai),

where fi is some function. Therefore

var (Yij|Ai) = k2
ij[σ

2
i (Ai) + ψij(Ai)],

where E [ψij(Ai)] = 0, and ψij(Ai) > −σ2
i (Ai).

Proof of P5:
If moreover λi = λ and σ2

i = σ2, then neither var [λ(Ai)] nor E [σ2(Ai)] do depend
on i (recall that Ai have the same distributions). Thus (3.11) is equal to ρ. 2

Remark 3.1. Notice that implication P1 ⇒ P2 does not necessarily hold under
(3.3) for m = 2, therefore the assumption m ≥ 3 is needed.
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Remark 3.2. In the original Theorem of Commenges and Jacqmin, authors do not
require the assumption of kij > 0 for each i, j. We think, the assumption of the
same sign of kij’s is needed to obtain the independence of j in (3.10). Nevertheless,
the mentioned assumption is a reasonable one for our purposes, since it implies that
all the items ”grade in the same direction”.

Remark 3.3. Moreover, we could for example set the constraint
∑m

k=1 k
2
ij = 1 or the

constraint
∑m

k=1 k
2
ij = m and multiply λi, σ

2
i , ηij and ψij by appropriate constants.

Remark 3.4. Assumption (3.3) is reasonable in our situation: if for some j 6= j′,
corr[E(Yij|Ai),E(Yij′|Ai)] 6= 1, then the j-th and the j′-th item of the educational
test do not estimate exactly the same property. In some sense, the assumption (3.3)
is equivalent to the assumption (1.6) of essential τ -equivalence in the classical model.

We close this section by looking at the models discussed in previous sections in
terms of Theorem 3.2.

Example 3.3 (Beta-binomial model).
In the beta-binomial model (2.16) we have

E(Yij|πi) = πi,

var (Yij|πi) = πi(1 − πi),

therefore, the model satisfies (3.3) and (3.4) with kij = 1, λi(πi) = πi, ηij = 0,
σ2
i (πi) = πi(1 − πi) and ψij(πi) = 0. This agrees with the fact that

ρijj′ = corr(Yij, Yij′) = ρ

and

τij =
var [E(Yij|πi)]

var (Yij)
=

var (πi)

var (Yij)
=
µ(1 − µ)ρ

µ(1 − µ)
= ρ.

Example 3.4 (Model with additive item effect).
Model (2.18) satisfies (3.3) since

E(Yij|πi) = πi + bj.

Hence, by Theorem 3.2, the propositions P1–P3’ are equivalent. The model does
not satisfy P3’, since the conditional variance

var (Yij|πi) = (πi + bj)(1 − (πi + bj))

cannot be written as in (3.4). This agrees with the fact that by Lemma 2.4 and by
Lemma 2.2

ρijj′ = ρ
1√
CjCj′

6= ρi

and

τij =
var [E(Yij|πi)]

var (Yij)
=

σ2
π

µ(1 − µ) + bj(1 − 2µ− bj)
6= τi

Remark: The probability that πi + bj fall out of interval (0, 1) is neglected in this
example.
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To see when does the Rasch model satisfy (3.3) and P1–P3’, we need the following
lemma:

Lemma 3.3. Suppose that for some function λ(x), for all x it holds that

ex

βj + ex
=

1

αj
(λ(x) + ηj), j = 1, . . . ,m, (3.12)

where m > 1, αj > 0, βj > 0. Then

α1 = · · · = αm,

β1 = · · · = βm,

η1 = · · · = ηm.

Proof: Expression (3.12) implies

λ(x) =
αje

x

βj + ex
− ηj.

Suppose now any 1 ≤ j 6= t ≤ m. Since (3.12) holds for all x, necessarily for all x

αje
x

βj + ex
− ηj =

αte
x

βt + ex
− ηt.

The latter expression can be written as a polynomial in ex. To hold for all x

A0 + A1e
x + A2e

2x = 0,

A0, A1 and A2 must be equal to zero. Therefore

A0 = ηtβjβt − ηjβjβt = 0 ⇒ ηj = ηt = η,

A2 = αj − αt + η − η = 0 ⇒ αj = αt = α,

A1 = βtα− βjα− η(βj + βt) + η(βj + βt) = 0 ⇒ βj = βt = β.

2

Example 3.5 (Rasch model).
In the case of the constant item difficulties b1 = · · · = bm = b, the Rasch model

satisfies (3.3) and P1–P3’ of Theorem 3.2 since

E(Yij|Ai) =
exp(Ai + b)

1 + exp(Ai + b)
= λ(Ai)

var (Yij|Ai) =
exp(Ai + b)

(1 + exp(Ai + b))2
= σ2(Ai).

In the case, when the item difficulties are not all the same, that is when bj 6= b′j for
some j 6= j′, the Rasch model does not satisfy (3.3): To satisfy (3.3), for all Ai it
would be needed to hold

E(Yij|Ai) =
exp(Ai + bj)

1 + exp(Ai + bj)
=

eAi

e−bj + eAi
= kij[λi(Ai) + ηij]. (3.13)

Nevertheless, by Lemma 3.3, (3.13) does not hold for unequal βj = e−bj , hence the
Rasch model with unequal difficulties does not satisfy (3.3).

In the next Chapter we will show that it does not satisfy either P1 or P2, never-
theless that τij are equal at least ”approximately”.
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Chapter 4

Reliability of composite
dichotomous measurements

Since no error term is assumed in models discussed in Chapter 2, the classical
definition of reliability (1.2) is not applicable for these models. In this chapter, we
propose a new, more general definition of reliability and we show the connection
with the classical definition (1.2). Further we derive a formula for reliability in the
model with general intraclass correlation (3.3)–(3.4), in the model with additive
item effect (2.18), and in the Rasch model (2.2). In each model, we discuss the
validity of the Spearman-Brown formula (1.8).

4.1 General definition of reliability

In Chapter 1, we defined the reliability by the ratio (1.2) comparing the variance of
the measured property and the observed score variance. This definition is sensible
for the assumed model (1.1), where the observed score is supposed to be a sum of
the measured property and of an (independent) error term, and where the observed
score variance is a sum of the variance of the measured property and of an error
variance.

Nevertheless, the setting of model (1.1) is very restrictive. Therefore, to be more
general, we may want to suppose only that measurement Y is somehow dependent
on the true value of the measured property T :

Y ∼ f(•;T ).

Such a general setting is supposed in Chapters 2 and 3 (see models (2.1) and (3.1)).
When defining reliability in these modes, we can take an inspiration from coefficient
τij defined by (3.2) in Commenges and Jacqmin (1994). We propose to define the
reliability more generally than in (1.2) by the ratio

R =
var [E(Y |T )]

var (Y )
. (4.1)

Similarly to the classical definition, there is the total observed variance in the
denominator, and there is the part of the var (Y ) due to variability of the measured
property T in the numerator.
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For the classical model (1.1), where

E(Y |T ) = T,

the new definition merges with the classical definition of reliability (1.2).
In the following sections, we derive formulas of reliability for models discussed

in Chapter 2 and 3.

4.2 Reliability in the general intraclass correla-

tion model

Suppose the model with general intraclass correlation, that is the model satisfying
(3.3) and (3.4):

E(Yij|Ai) = kij [λi(Ai) + ηij] ,

var (Yij|Ai) = k2
ij

[
σ2
i (Ai) + ψij(Ai)

]
,

where kij > 0 and ηij are given constants, E [ψij(Ai)] = 0, and ψij(Ai) > −σ2
i (Ai).

Let us moreover set the constraint of
∑m

j=1 k
2
ij = m, discussed in Remark 3.3.

Then, the reliability of (every) single item can be written as

R1 = τij =
var [E(Yij|Ai)]

var [E(Yij|Ai)] + E[var (Yij|Ai)]
=

k2
ijvar [λi(Ai)]

k2
ijvar [λi(Ai)] + k2

ijE[σ2
i (Ai)]

=
var [λi(Ai)]

var [λi(Ai)] + E[σ2
i (Ai)]

= τi = ρi = corr(Yij, Yij′),

and by Theorem 3.2 it merges with the correlation between two independent mea-
surements of the same property Yij, Yij′ , j 6= j′.

The reliability of the composite measurement can be expressed as

Rm =
var [E(Yi|Ai)]

var [E(Yi|Ai)] + E[var (Yi|Ai)]

=
var

[∑m

j=1 E(Yij|Ai)
]

var
[∑m

j=1 E(Yij|Ai)
]

+
∑m

j=1 E[var (Yij|Ai)]

=
var

{∑m

j=1 kij[λi(Ai) + ηij]
}

var
{∑m

j=1 kij[λi(Ai) + ηij]
}

+
∑m

j=1 k
2
ijE[σ2

i (Ai) + ψij(Ai)]

=

(∑m

j=1 kij

)2

var [λi(Ai)]
(∑m

j=1 kij

)2

var [λi(Ai)] +mE[σ2
i (Ai)]

=

(
Pm

j=1
kij)

2

m
R1

1 +

(
(
Pm

j=1
kij)

2

m
− 1

)
R1

. (4.2)
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Expression (4.2) is almost equivalent to the Spearman-Brown formula. It merges
with Spearman-Brown formula if kij = 1 for all j. We can conclude that the as-
sumptions (1.5)–(1.6) of τ -equivalence for model (1.1) correspond with assumption
that with probability equal to one, the conditional mean and variance of Yij can be
written as

E(Yij|Ai) = λi(Ai) + ηij, (4.3)

var (Yij|Ai) = σ2
i (Ai) + ψij(Ai), (4.4)

where ηij are given constants, E [ψij(Ai)] = 0, and ψij(Ai) > −σ2
i (Ai).

Notice that if we were interested in the question for which combination of kij
j = 1, . . . ,m does for given λi and σ2

i the expression (4.2) reach its maximum, the
solution of this simple problem of constrained optimization would be kij equal for
all j.

4.3 Reliability in model with additive item effect

Using Lemma 2.4 we can easily derive formula for the reliability of the j-th item
R1j

and for the reliability of the total score Rm in model (2.18):

R1j
= τij =

varE(Yij|πi)
var (Yij)

=
σ2
π

µ(1 − µ) + bj(1 − 2µ− bj)
. (4.5)

Notice that the reliability R1 in the model with no additive effect (that is when
bj = 0 for all j = 1, . . . ,m) equals to the correlation between Yij and Yij′ which is

ρ = σ2
π

µ(1−µ)
.

The reliability Rm of the total score Yi =
∑m

j=1 Yij can be expressed as

Rm =
varE(Yi|πi)

var (Yi)
=

m2σ2
π

mµ(1 − µ)(1 + (m− 1)ρ) − κb

=
mρ

1 + (m− 1)ρ− κb

µ(1−µ)

, (4.6)

where κb = 1
m

∑m

j=1 b
2
j describes the variability of items’ difficulty. When bj = 0 for

all j, then (4.6) merges with the Spearman-Brown formula (1.8). Nevertheless, this
is already the consequence of Section 4.2, since in such a case, the assumptions (4.3)
and (4.4) are fulfilled.

We should recall that we neglect the small probability that πi + bj fall out of
the interval (0, 1), and that we suppose bj being ”small numbers” and πi being ”not
too close to 0 or 1.” Therefore also κb

µ(1−µ)
is small and we do not face the situation

when the denominator is zero or even negative.
Formula (4.6) implies that we attain greater reliability when the variability

of items’ difficulty is bigger. Nevertheless, as mentioned above, this difference is
supposed to be small.
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4.4 Reliability in the Rasch model

As follows from Example 3.5, in the case of equal item difficulties, the Rasch
model (2.2) satisfies assumptions (4.3) and (4.4). As a consequence of Section 4.2, in
such a case, the reliabilityRm of the composite measurement Yi obeys the Spearman-
Brown formula

Rm =
mR1

1 + (m− 1)R1

,

where the reliability of (every) single item is

R1 =
var [E(Yij|Ai)]

var (Yij
=

var [λ(Ai)]

var [λ(Ai)] + E[σ2(Ai)]
=

var
(

eAi+b

1+eAi+b

)

var
(

eAi+b

1+eAi+b

)
+ E

(
eAi+b

(1+eAi+b)2

)

=
E
(

eAi+b

1+eAi+b

)2

−
(
E eAi+b

1+eAi+b

)2

E
(

eAi+b

1+eAi+b

)2

−
(
E eAi+b

1+eAi+b

)2

+ E
(

eAi+b

(1+eAi+b)2

) =
C −D2

C −D2 +B
. (4.7)

Unfortunately, integrals C, D and B in (4.7) cannot be evaluated explicitly, never-
theless their value can be approximated numerically.

In the case, when the item difficulties are not all equal, the reliabilities of items
do differ, too:

R1j
=

Cjj −D2
j

Cjj −D2
j +Bj

, (4.8)

where

Bj = E
eA+bj

(1 + eA+bj)2
=

∫ ∞

−∞

eA+bj

(1 + eA+bj)2

1√
2πσ2

A

e
− A2

2σ2
A dA,

Dj = E
eA+bj

1 + eA+bj
=

∫ ∞

−∞

eA+bj

1 + eA+bj

1√
2πσ2

A

e
− A2

2σ2
A dA

and

Cjt = E
eA+bj

1 + eA+bj

eA+bt

1 + eA+bt
=

∫ ∞

−∞

eA+bj

1 + eA+bj

eA+bt

1 + eA+bt

1√
2πσ2

A

e
− A2

2σ2
A dA.

In the case of unequal item difficulties, the reliability Rm of the composite measure-
ment Yi can be expressed using the integrals mentioned above

Rm =

∑m

j=1

∑m

t=1(Cjt −DjDt)∑m

j=1

∑m

t=1(Cjt −DjDt) +
∑m

j=1Bj

. (4.9)

Table 4.1 shows the values of the reliability for some numbers of items m and
some variabilities of student abilities σA, when the equidistantly distributed item
difficulties between −0.1 and 0.1 of length m are chosen.

The values were calculated using function integrate in software R, using multi-
ple of ±25 of the variability σA as the limits of integration. The maximum absolute

41



Table 4.1: Reliability in the Rasch model for different number of items

Number Variability of abilities σA

of items 0.01 0.1 0.2 0.5 0.9 2.5 10
m=3 0.00008 0.00741 0.02881 0.15047 0.34335 0.73121 0.94152
m=11 0.00028 0.02667 0.09814 0.39386 0.65731 0.90890 0.98335
m=20 0.00050 0.04747 0.16519 0.54160 0.77717 0.94775 0.99077
m=50 0.00125 0.11078 0.33098 0.74709 0.89711 0.97843 0.99629
m=100 0.00249 0.19947 0.49735 0.85524 0.94577 0.98910 0.99814

error reached in integrations for m = 3, m = 11, and m = 20 was less than 0.000025,
for m = 50 and m = 100 it was less than 0.00013.

Let us now look ”how far” the numerical values of Table 4.1 are from the values
achieved by Spearman-Brown formula (1.9). Let us set for example m1 = 11 and
take the values of the second line of Table 4.1 as Rm1

. Then, the Spearman-Brown
formula would give us the following values of reliabilities for m = 3, 20, 50, and
100 :

Table 4.2: Spearman-Brown formula used for m1 = 11.

Number Variability of abilities σA

of items 0.01 0.1 0.2 0.5 0.9 2.5 10
SB R3 0.00008 0.00742 0.02882 0.15054 0.34345 0.73125 0.94153
m=11 0.00028 0.02667 0.09814 0.39386 0.65731 0.90890 0.98335

SB R20 0.00050 0.04746 0.16518 0.54159 0.77716 0.94775 0.99077
SB R50 0.00125 0.11077 0.33095 0.74707 0.89710 0.97843 0.99629
SB R100 0.00249 0.19944 0.49731 0.85522 0.94576 0.98910 0.99814

The numerical values in tables 4.1 and 4.2 are very similar and it is a matter of
question, to what extent the differences are due to integration error. In the following,
we will try to show that the Spearman-Brown formula holds in the Rasch model
with unequal difficulties at least approximately.

Let us assume
∑

j bj = 0, and apply the Taylor approximation:

Bj = E
eA+bj

(1 + eA+bj)2
≈ E

eA

(1 + eA)2
+ bjE

eA(1 − eA)

(1 + eA)3
= B + bjE

eA(1 − eA)

(1 + eA)3
,

Dj = E
eA+bj

1 + eA+bj
≈ E

eA

1 + eA
+ bjE

eA

(1 + eA)2
= D + bjE

eA

(1 + eA)2
,

Cjt = E
eA+bj

1 + eA+bj

eA+bt

1 + eA+bt
≈ E

e2A

(1 + eA)2
+ (bj + bt)E

2e2A

1 + eA
=

= C + (bj + bt)E
2e2A

1 + eA
. (4.10)

Therefore the reliability of the composite measurement is approximately

Rm =
m2(C −D2)

m2(C −D2) +mB
.
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When assuming moreover that bj’s are close enough to zero, we have

R1 ≈
C −D2

C −D2 +B
,

which gives an approximate validity of the Spearman-Brown formula.

As for conclusion of this chapter, we have shown that the reliability of composite
dichotomous measurement can be defined even if the item reliabilities (and the
intraclass correlations) are not the same for all items (all pairs of items). In such a
case, of course, we can hardly talk about validity of the Spearman-Brown formula.
Nevertheless, if the item difficulties differ only slightly, the Spearman-Brown formula
is valid at least approximately.

43



Chapter 5

Estimation of reliability of
composite dichotomous
measurements

5.1 Cronbach’s alpha and logistic alpha

As we have already mentioned in Section 1.3, Cronbach’s alpha was in fact designed
as a generalization of so called Kuder-Richardson formula 20 for dichotomous scor-
ing, proposed already in Kuder and Richardson (1937):

α̂ =
m

m− 1

s2 −
∑m

j=1 pj(1 − pj)

s2
, (5.1)

where pj is a relative frequency of correct answers to the j-th item and

s2 =
1

n

n∑

i=1

(Yi − Ȳ )2

is a sample estimate of variance of total scores. One can easily see that (5.1) can be
obtained when computing the sample estimate of Cronbach’s alpha (1.10) in case
of dichotomous scoring, where Ê

∑
i Yij/n = pj and v̂ar

∑
i Yij/n = pj(1 − pj).

Nevertheless, with dichotomous items, the assumptions of analysis of variance
are violated. The scores cannot be assumed to have normal distribution and, more-
over, the variance is dependent on the mean value. Therefore it is a matter of
question to what extent is this estimate appropriate at all. To answer this question,
we should investigate the properties of Cronbach’s alpha in the models described in
Chapter 2.

To modify Cronbach’s alpha for the case of binary outcomes, the following idea
(see Zvára (2002)) can cross our mind: while the F -statistic in (1.25) is best suited
for normally distributed variables, we should replace it by an analogous statistic
appropriate for dichotomous data.

Testing the hypothesis H0 : var (T ) = 0 is equal to testing the submodel B where
the score Yij depends only on the test item (and does not depend on the student’s
ability) against the model A+B where the score Yij depends on the student and
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on the test item. In the fixed-effect model of logistic regression, the appropriate
statistic is the difference of deviances in the submodel and in the model

X2 = D(B) −D(A+B), (5.2)

where deviance D is defined as a function of the difference of the log-likelihood for
the model and for the saturated model (for details see for example Agresti (2002),
pp.139). Statistics (5.2) has under the null hypothesis asymptotically (for n fixed
and m approaching infinity) the χ2(n − 1) distribution. Therefore, the proposed
estimate is

α̂log = 1 − n− 1

X2
. (5.3)

In the next section, we demonstrate the properties of Cronbach’s alpha and of
the logistic alpha (5.3) in the Rasch model and in the modified Rasch model.

5.2 Simulations

First, we supposed that the data come from the Rasch model. We studied the case
of n = 20 students and m = 11 items, which corresponds to common situation in
high-school classes. Besides, the number of n = 30 and of n = 50 students, and
the number of m = 20 and m = 50 items was studied. The item difficulties were
always taken equidistant between −0.1 and 0.1. In each case, the number of the
55 values of σA were chosen so that the resulting 55 reliabilities would cover the
interval 〈0, 1〉 .

For each of the five combinations of number of students and number of items
(figures 5.1 – 5.5) and for each of 55 values of σA (55 points in the figure), the true
reliability was computed via formula (4.9). Further, the following procedure was
repeated 500-times for each point:

1. The set of n student abilities Ai was generated from the N(0, σA) distribution

2. For each of n abilities Ai, the m scores on the test items were generated from
the Rasch model (2.2)

3. The sample estimate of the Cronbach’s alpha (1.25) and the logistic alpha
(5.3) was computed from the data

For each of 500 sample estimates of Cronbach’s alpha and logistic alpha, their
average value and sample variance were computed, and finally, the bias and mean
squared error (MSE) were displayed.

Already the first Figure 5.1 gives an impression that the new estimate gives better
results (smaller bias and mean squared error), except for the case of the true reli-
ability value close to 1. When looking at Figures 5.2 and 5.3, we can see that the
properties of the new estimate are even better. We can conclude that the new esti-
mate can estimate the reliability of the composite dichotomous measurement better
than the classical estimate based on Cronbach’s alpha, especially in the situation,
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Figure 5.1: Bias and MSE for classical (empty circles) and logistic (solid circles)
estimator of reliability. Number of students 20, number of items 11.
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Figure 5.2: Bias and MSE for classical (empty circles) and logistic (solid circles)
estimator of reliability. Number of students 20, number of items 20.
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Figure 5.3: Bias and MSE for classical (empty circles) and logistic (solid circles)
estimator of reliability. Number of students 20, number of items 50.
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Figure 5.4: Bias and MSE for classical (empty circles) and logistic (solid circles)
estimator of reliability. Number of students 30, number of items 11.
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Figure 5.5: Bias and MSE for classical (empty circles) and logistic (solid circles)
estimator of reliability. Number of students 50, number of items 11.

when the number of items is high, and when the true reliability is not too close to
one. On the other hand, in the case of high number of students relatively to the
number of items (Figures 5.4 and 5.5), the results of the new estimate are a bit
worse for the true reliability close to one.

Similar results are obtained, when the data are supposed to come from the modified
Rasch model (2.19). In Figure 5.6, the case of 20 students and 11 items is displayed.
The trend is similar to Figure 5.1: The new estimate gives better results for true
reliabilities not too close to 1. Higher bias (for both Cronbach and logistic alpha)
for the true reliabilities close to zero is connected with the fact that in this case,
the probability πi + bj often exceeds the interval (0, 1).
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Figure 5.6: Simulation from the modified Rasch model: Bias and MSE for classical
(empty circles) and logistic (solid circles) estimator of reliability. Number of students
20, number of items 11.
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Conclusion

This work was concerned with the reliability of composite dichotomous measure-
ments. Since the classical concept of reliability is not appropriate for the dichoto-
mous data, a more general definition of reliability was proposed, of which the clas-
sical definition was shown to be a special case.

The proposed definition was motivated by coefficient τij introduced in Com-
menges and Jacqmin (1994), where it is claimed to be in some sense equivalent to
the intraclass correlation coefficient ρijj′ , which is known to merge with reliability
for common correlation models. In Chapter 3 we revised the paper of Commenges
and Jacqmin and we have shown that stronger assumptions are needed for the
claimed equivalence to hold.

Since the discussed coefficient τ is of similar nature as the reliability (that is it
compares the variability due to the measured property with the total variability of
the measurement), we proposed its use as a more general definition of reliability.
Further, we derived formulas of reliability in different models appropriate for di-
chotomous data. Even in the case when the reliabilities of items are not all equal,
the reliability of the composite measurement can still be defined. We have shown
that when the item difficulties differ only slightly, the relationship between the reli-
ability of a single item and the reliability of the composite measurement obeys ”at
least approximately” the Spearman-Brown formula.

In the last chapter, a new estimate of reliability was proposed, which could be
more appropriate in the case of binary data than the classical estimate based on
Cronbach’s alpha. Via simulations in the Rasch model, we have shown that the new
estimate tends to give better results (smaller bias and mean squared error) than
the classical estimate. Nevertheless, the new estimate gives inferior results when the
true value of reliability is close to one or when the number of students is too high
(when compared to the number of items). Further work should contain the study of
the theoretical properties of the classical and the new estimate in the Rasch model.
This could also lead to improvement of the proposed estimate for the mentioned
critical situations.
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