
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta
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Proudová šifra RC4

Katedra Algebry
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2



Contents

1 Introduction 5

2 Stream ciphers 6

3 The RC4 stream cipher 10

3.1 Description of RC4 . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Special RC4 states 17

4.1 k-states, profitable states and predictive states . . . . . . . . . . 17

4.2 Closer look at profitable and persistent states . . . . . . . . . . 19

4.3 The Tabular model . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Quest for persistent states 31

5.1 Matrices induced by equivalences . . . . . . . . . . . . . . . . . 33

5.2 Applications and examples . . . . . . . . . . . . . . . . . . . . . 40

5.3 Nonexistence of small states . . . . . . . . . . . . . . . . . . . . 46

5.4 Cryptanalytical significance . . . . . . . . . . . . . . . . . . . . 51

3
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vov šifry RC4, tzv. zotrvalými stavmi. Prúdová šifra RC4 je najpouž́ıvaneǰsou

softvérovo založenou prúdovou šifrou a existencia takéhoto stavu by znamenala

významnú slabinu tejto šifry. Pre zotrvalé stavy popisujeme tzv. tabul’kový mo-

del, pomocou ktorého dokazujeme periodičnost’ týchto stavov. Ďalej študujeme

vzt’ah medzi tabul’kovým modelom a ekvivalenciami na lineárne usporiadanej

množine a dokazujeme regulárnost’ matice zadanej l’ubovol’nou z týchto ekvi-

valencíı. Dosiahnuté výsledky uplatňujeme v teórii zotrvalých stavov RC4 a

pre konkrétny pŕıpad dokazujeme neexistenciu zotrvalého k-stavu pre k rovné

2, 3, 4, ktorý by bol šifrou RC4 dosiahnutel’ný. V práci taktiež popisujeme

množstvo zotrvalých stavov, ktoré sú ale šifrou RC4 nedosiahnutel’né. V závere

je načrtnuté využitie zotrvalých stavov v kryptoanalýze šifry RC4.
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Abstract: In the present work we study a class of generalised inner states of the

cipher RC4, the so-called persistent states. The RC4 stream cipher is the most

widely used software-based stream cipher and the existence of such a state

would be a significant weakness of the cipher. We describe the Tabular model

and using the model we prove the periodicity of these states. Then we study

a new type of relationship between the tabular model and the equivalences on

linearly ordered sets and we prove the regularity of the matrix determined by

such an equivalence. Afterwards we apply the obtained result to the theory of

persistent states and we prove that there exists no reachable persistent k-state

for k equal to 2, 3, 4 in the specific case. Moreover, we present some new unre-

achable persistent states. Finally, we indicate the cryptanalytical significance

of the persistent states.
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1 Introduction

The purpose of this work is to study a generalisation of profitable states, so

called persistent states. In Section 2 we give a brief introduction into stream

ciphers. In Section 3 we describe RC4 stream cipher and previous results about

its security.

At the beginning of Section 4 we define several types of RC4 states. After-

wards we look closer at profitable and persistent states and show some basic

properties of these states. In the end, we describe the Tabular model and table

triples and using this model we prove that each persistent monotonous state

has to be periodic. At the beginning of Section 5 we study a new type of rela-

tionship between equivalences on a linearly ordered sets and table triples, and

prove several interesting theorems and propositions. Then we prove the nonex-

istence of monotonous persistent states of small orders. In the end, we focuse

on cryptanalytical significance of persistent states.
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2 Stream ciphers

Symmetric encryption algorithms (ciphers) can be generally divided into block

ciphers and stream ciphers. Block ciphers (in the basic ECB mode) encrypt

a group of characters (usually a block of bits of a plaintext message) using

a fixed encryption transformation. Probably the best known block cipher DES

(Data Encryption Standard, which is no more secure) has the block of length 64

bits, while its successor AES (Advanced encryption Standard) has the block

of length 128 bits. On the other hand, stream ciphers encrypt individual

characters using encryption transformation which varies in time (to make it

more complicated, block ciphers can be used as stream ciphers when working

in the CBC mode). Main reasons for using stream ciphers instead of block

ciphers are the following:

1. stream ciphers are generally faster than block ciphers;

2. stream ciphers can process individual characters. This can be necessary

when buffering is limited or when we need to decrypt characters as they

are received (e.g. telecommunication applications);

3. stream ciphers have less complex hardware circuitry; and

4. stream ciphers have limited or no error propagation.

A general model of the stream cipher consists of an inner state of the ci-

pher S, a next-state function f , a keystream producing function g and an out-

put function h which combines keystream and plaintext to produce ciphertext.

These functions have different inputs and design in different models of stream

ciphers. The inner state of the cipher is some kind of memory of the cipher, it

contains information that is necessary for encryption. The inner state usually

changes in time and this change may be key-dependent. In some stream ciphers

the key is used only for initial state generation and the next-state function is

key independent. The keystream producing function generates a keystream

which is later combined with a plaintext by the output function (this is where

the adjective stream in “stream cipher” comes from).

The majority of currently used stream ciphers are the so called binary

additive stream ciphers. That means they are operating on binary digits,

and the output function h is the addition in GF(2), also known as the XOR

function.

Since most of the stream ciphers used in practise tend to be proprietary

and confidential, relatively few stream cipher designs are publicly accessible.

The most widespread design of stream ciphers is based on Linear Feedback

Shift Registers (LFSR). The main reason for this is that they are well-suited

for hardware implementation and that because of their structure they can be
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readily analysed by using algebraic techniques. A5/1 and A5/2 are repre-

sentatives of this class of stream ciphers. They are used in GSM networks

for encryption of voice communication between the base station and the cell

phone (both of these ciphers were kept in secret but were reverse engineered

and afterwards broken).

Stream ciphers can be divided into synchronous and self-synchronising

stream ciphers. We will look shortly on these types.

Synchronous stream ciphers: In this type of stream ciphers, the key-

stream is generated independently of plaintext and of ciphertext. This means

that the sender and the receiver have to use the same key and operate at

the same position (the same inner state) within that key to allow proper de-

cryption. If this synchronisation is lost (e.g. by ciphertext character being

deleted or inserted during the transmission) the decryption fails. On the other

hand, if a ciphertext character is modified during the transmission (but not

deleted), it does not affect the decryption of other ciphertext characters.

Let S, f, g, h denote the same as above and let k, ci, mi denote the key,

the ciphertext character and the plaintext character where the subscript i

means the position of the character within the stream (we can consider the ci-

phertext and the plaintext as streams of characters). Si will denote the inner

state at time i. The encryption process can be described as follows:

Si+1 = f(Si, k),

zi = g(Si, k),

ci = h(zi, mi).

The initial state S0 is mostly derived out of the key. The encryption and

decryption processes are illustrated in Figure 1. Remark that this is just

a general model of a synchronous stream cipher and some synchronous ciphers

do not match this model fully (i.e. in the RC4 stream cipher functions f and

g are key-independent).

Self-synchronising (or asynchronous) stream ciphers : Here, the key-

stream is generated as a function of a key and a fixed part of previously gen-

erated ciphertext. Let k denote a key, g a keystream producing function,

h an output function, zi a keystream character, mi a plaintext character, ci

a ciphertext character and let S0 = (c−t, . . . , c−1) be an initial state (the in-

dex i means as before the position of the character within a stream or a text).

The encryption function of a self-synchronising stream ciphers can be described

as follows (see Figure 2):

Si = (ci−t, ci−t+1, . . . , ci−1),

zi = g(Si, k),
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Figure 1: General model of a synchronous stream cipher

ci = h(zi, mi).

Because the state of a self-synchronising stream cipher depends only on

a fixed number of preceding ciphertext characters, the proper decryption can

be still performed after some incorrect outputs, when a ciphertext character

is modified or even deleted during transmission. This ciphertext dependence

also makes these ciphers more resistant against attacks based on plaintext re-

dundancy. It is because each plaintext character influences the entire following

ciphertext and hence the statistical properties of the plaintext are distributed

throughout the ciphertext.
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Figure 2: General model of an asynchronous stream cipher
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3 The RC4 stream cipher

As mentioned above, the majority of published stream ciphers is based on vari-

ous combinations of linear feedback shift registers which are easy to implement

in hardware, but slow in software. So there was a need for a more software-

friendly stream cipher. In 1987 Ron Rivest designed the RC4 stream cipher for

RSA Data Security Inc. 1. The cipher was implemented in products of RSA

Data Security, but its specification was kept in secret. This has changed in

1994, when someone reversed-engineered the cipher and posted its source code

in the C programing language to the Cipherpunks mailing list. The correctness

of the description was confirmed by comparing its output to those produced

by original RSA Data Security product. Later in their response ([RSA01]) to

the IV attack ([SAR01]) based on this description, RSA Data Security Inc.

provided a de facto approval for the correctness of this RC4 specification.

Nowadays, RC4 is the most widely used software based stream cipher. The

most common use of RC4 is to protect the Internet traffic as a part of the SSL

cipher suite, where it is commonly used as the default cipher for SSL/TLS

connection. It was also implemented in products such as Microsoft Office,

Lotus Notes, Oracle Secure SQL and many other applications.

3.1 Description of RC4

In the RC4 stream cipher simplicity of the design meets the security of the

cipher, both on the high level.

RC4 is actually a class of algorithms parameterised by the size of its block.

This parameter, n, is the word size for the algorithm. We will now describe

RC4n.

Let n be an integer and N = 2n. The secret inner state of the cipher RC4n

is a permutation S ∈ SN of all N bit words and two indices i, j ∈ {0, . . . , N−1}.
The cipher is divided into two parts. In the first part, named Key Scheduling

Algorithm (KSA), permutation S is derived out of an initial key (typical size is

40-256 bits). This is the only key-dependent part of the RC4. The second part

called PRGA (Pseudo Random Generation Algorithm) uses this permutation

to produce pseudo random bits (n in each round) and it contains the next-state

function f and the keystream producing function g. The former continually

shuffles the permutation S and the latter picks a value of the permutation S

as an output (both these function are key-independent). Output bits are then

bit-wise XOR-ed with the plaintext bits to produce the ciphertext, so RC4 is

a binary additive synchronous stream cipher (e.g. output function h is binary

addition).

1’R’ in the ’RC4’ probably stays from Ron or Rivest and ’C’ stays for ’code’ or ’cipher’

10



Let K be an input key, S a permutation of the set {0, . . . , N − 1} and let

K[i] denote the i-th n-bit block of K and S[i] the value S(i). The composition

of permutation S with transposition (i, j) can be regarded as a swap operation

if we represent the permutation S as a table with one row and N columns

where the value S(i) is in the i-th column.

An integer l ∈ N will denote the least integer equal to or exceeding the bit

length of the key K divided by n. Thus l = dk/ne. Algorithm 1 and Algorithm

2 describe the KSA and the PRGA of RC4n.

Algorithm 1 The Key Scheduling Algorithm of RC4n

Input: secret key K

Output: permutation S ∈ SN

1: N ← 2n

2: l ← number of n-bit blocks of K

3: for i = 0 to N − 1 do

4: S[i] = i

5: end for

6: j ← 0

7: for i = 0 to N − 1 do

8: j ← (j + S[i] + K[i mod l]) mod N

9: Swap(S[i], S[j])

10: end for

Algorithm 2 The Pseudo Random Generation Algorithm of RC4n

Input: permutation S ∈ SN

Output: keystream

1: N ← 2n

2: i← 0

3: j ← 0

4: loop

5: i← i + 1 mod N

6: j ← (j + S[i]) mod N

7: Swap(S[i], S[j])

8: Output S[(S[i] + S[j] mod N)]

9: end loop

Obviously the Key Scheduling Algorithm is a key-dependent variant of the

keystream generation algorithm, which produces no output. We see that the

input key length could be up to n · 2n bits. Since the input key is used to

generate only a permutation of 2n values, the entropy provided by the key can

be at most log2(2
n!) bits. This is the effective key length.
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In most applications, RC4 is used with the word length 8 bits (i.e. n = 8).

That means that the inner state of the cipher consists of permutation S of 256

elements and of two indices i, j ∈ {0, . . . , 255}. So we have 256! possibilities for

S and 2562 possibilities for i and j. Together it is approximately 21700 possible

inner states. Thus it is infeasible to guess even a small part of the inner state,

or to use standard Time/Memory/Data tradeoff attacks 2, which are often

applied against other stream ciphers. Furthermore, the inner state evolves in

a nonlinear way, and thus it is difficult to use any partial information about

the state far away in time. Consequently all known attacks against stream

ciphers based on LFSR are inapplicable to RC4.

As mentioned above, the inner state of the RC4 with n = 8 can be repre-

sented with approximately 1700 bits. But on the other hand, the input key

varies from 40 bits in the US export version of RC4 up to 256 bits. That is

a huge difference. Where it comes from? The KSA part turns an input key into

the permutation S, which is the predominant source of entropy, i.e. the main

source of those 1700 bits. So logically, the KSA should be of great cryptana-

lytical interest. But behind the simplicity of the KSA algorithm and its clear

mathematical description, the KSA is not easy to analyse and has received less

attention than it should.

On the other hand, PRGA was given much more attention. Also our work

has been focused mainly on PRGA.

3.2 Related Work

In 1995, Andrew Roos posted a paper [Ro95] to the sci.crypt newsgroup de-

scribing a class of weak keys for which the initial byte of the keystream is

highly correlated with the first few key bytes. Weak keys are those satisfying

the equality K[0] + K[1] = 0 mod N . The weakness occur because there is

a high probability (approximately 1/e) that the KSA swaps a given entry of

the s-box exactly one. This attack reduces the search effort by 25.1, but if lin-

early related session keys are used (e.g. if there exists a linear relation between

session keys), the reduction in effort can increase up to 218.

A sophisticated attack of RC4 is presented in [KMP98]. Authors devel-

oped cryptanalytic algorithms for a known plaintext attack where only a small

segment of plaintext is assumed to be known. The attack is independent of

the key scheduling algorithm and the key size. The idea behind the attack

is to guess some part of the initial state of RC4, to detect incorrect guesses

by looking for contradictions in the keystream, and finally to discover the rest

of the initial state. The complexity of one of the attacks is estimated to be

less that the time of searching through the square root of all possible initial

2Time/Memory/Data Tradeoff attack is some kind of the brute force attack were a speed
up is reached by pre-computing of some values and storing them in memory.

12



states. However, this still poses no threat to RC4 in practical applications

where RC48 is used. This attack is sometimes referred as Knudsen’s attack

and often serves as a final part of other attacks.

Mister and Tavares ([MT99]) developed several variants of a state back-

tracking attack. With their method, e.g., the inner state of RC45 can be

obtained from a portion of the keystream using 242 steps, while the nominal

key space of RC45 is 2160. But for the commonly used RC48 all of the proposed

methods are infeasible. The authors of [MT99] also analysed properties of the

state transition graph of RC4 states in the PRGA.

Grosul and Wallach analyse RC48 in related key attack [GW00]. They

showed that for each 2048-bit input key (i.e. no repeating of the key is used in

the KSA) there exists a family of related keys. These related keys produce the

keystream, which is substantially similar in the initial hundred words before

diverging. This attack has no practical application, since RC4 is commonly

used with a 128 bits key and in the KSA this key is repeated to give the 2048

bit key which is needed to produce initial permutation.

Before mentioning publications about RC4 distinguishers, we will closely

look at the notion of the distinguisher generally.

The best known unconditionally secret cipher is the Vernam cipher, also

called the one-time-pad. In this cipher, a key (as long as a plaintext) is XOR-

ed with the plaintext. The condition for the perfect secrecy is that the key

has to be truly random and has to be as long as the plaintext. Otherwise we

loose perfect secrecy.

Roughly speaking, additive synchronous stream ciphers are trying to sim-

ulate the Vernam cipher by producing a pseudo-random keystream (derived

out of an input key), which is later XOR-ed with a plaintext. The more ran-

dom the keystream is, the better security is achieved. However, since the

keystream cannot be truly random (the amount of entropy is limited to the

entropy of the input key since the cipher itself is deterministic), at some point

in the keystream we should be able to distinguish between the stream cipher

keystream generator (stream cipher) and a truly random keystream generator.

It follows from this logic that the more of keystream that is needed to

distinguish it from a random output, the closer that keystream is to being

random, and the better the cipher is. Therefore a common academic attack

model for stream ciphers is the distinguisher attack. In this model, the goal is

to come up with a distinguisher that can distinguish between the real cipher

and a random output with as small amount of keystream as possible.

In [Go97] Golic proposed a linear model of RC4n using the linear sequen-

tial circuit approximation method. The model is successful because the per-

mutation S evolves too slowly in the PRGA. This method requires 64n/225

keystream words and has correlation coefficient 15 · 2−3n. The author esti-

mates that this statistical defect allows an attacker to distinguish RC48 from

13



a random output after approximately 240 successive output words.

Fluhrer and McGrew presented in [FM00] their observation of irregularities

in the digraph distribution and they described a method for computing digraph

probabilities in the PRGA. Using this method, they built a distinguisher for

RC48 which requires 230.6 output words. Furthermore they describe how to

recover the parameters n and i if they are unknown. Authors were the first

who mentioned the existence of special RC4 states (these states led them to

the digraph distribution irregularities) and they named these states fortuitous

states. Our work has been focused on profitable states which are a generalisa-

tion of fortuitous states.

The first half of the paper [FMS01] describes a set of weak keys in which

a certain subset of key bits completely determines a subset of the output bits.

Authors firstly define slightly modified version of KSA algorithm called KSA∗ ,

and identify a class of weak keys in which the knowledge of a small number

of key bits suffices to determine many state and output bits. Afterwards they

show that this happens also with unmodified KSA with a non-negligible prob-

ability. Authors use these weak keys to construct a new distinguisher for RC4,

and to mount related key attacks with practical complexities.

Before looking on the second part of [FMS01], we will look on the notion

of initialisation vector for a while.

One problem with binary additive stream ciphers is that the same key will

always produce the same keystream. Of course, repeatly using the same key is

just as bad as reusing a key in Vernam cipher, and it leads to the break of the

cipher. Furthermore it is not necessary to know even the cipher specification

in this case. It is enough to know that the keystream was used more than

once. To avoid this problem, the concept of initialisation vector is useful.

An initialisation vector (IV) is a random value that is used to add some

randomness to the output of the stream cipher. Since the IV has to be changed

with every instance and it has to be random and unique, it makes the keystream

different even if the same has been was used. There are many possibilities

how to use IV to add randomness. In the most stream ciphers it is somehow

combined with the input key and this combination is used as the key for

the cipher. Because the (proper) receiver has to know the key used for the

encryption for a proper decryption, it is necessary to transmit the IV to the

receiver. IV is commonly transfered as it is (without any encryption), for

example at the beginning of the ciphertext.

However, the use of IV can be a security weakness if not used properly.

In some ciphers even a partial knowledge of the key together with some ci-

phertext can result in a substantial weakening. For such ciphers the simple

concatenation of the IV to the input key, or XOR of the IV with the key can

cause serious security flaw. RC4 suffers from this problem.

The second part of [FMS01] describes a weakness in the usage of RC4 in the
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WEP (Wired Equivalent Privacy) protocol which has protected many wireless

networks based on the IEEE 801.11b (Wi-Fi) standard. The security flaw rests

in the way how the IV is used IV3. The authors described an IV weakness and

showed how to use the IV weakness to attack systems that concatenate the IV

before the key, concatenate the IV after the key, or XOR the IV and the key

in order to produce the session-key used for encryption. Their attack easily

discloses the secret key by analysing the first word of keystream generated from

a small number of session-keys. This attack can be used also as ciphertext-only

attack, while the first byte of the plaintext if often known or constant.

A practical usage of the attack presented in [FMS01] was described in

[SAR01]. Paper describes the attack, its implementation and some optimal-

izations to make the attack more efficient. Authors were able to reconstruct

an 128 bit secret key used in a network with a passive attack using their imple-

mentation and permission of the network administrator. The attack required

roughly 5, 000, 000 packets with the same key to determine the key. The con-

clusion is that the 802.11 WEP protocol is totally insecure. It is worth to

mention that this insecurity is caused by a false usage of RC4 with IV, not by

RC4 itself.

A lot of analysis of the probabilities of any given value being output by RC4

have been done. Most of these analyses have approached RC4 by looking on

a given output. Mantin and Shamir, in [MS01], have had different approach.

They have looked for polynomial-space, not polynomial-time distinguisher.

(A polynomial-time distinguisher is trying to distinguish a keystream from

a truly random output by taking a polynomially long keystream produced by

one “run” of the cipher or of a random output. A polynomial-space distin-

guisher is given a black box which is either a true random generator or the

cipher. The distinguisher can reset and rerun this black box with a random

key a polynomial number of times and each of these keystreams has a fixed

length.) Mantin and Shamir found out that the second word of RC4 keystream

has a very strong bias. It takes the value 0 with twice the expected probability,

e.g. 1/128 instead 1/256 for n = 8, while other values of the second output

and all the values of other outputs have almost uniform distributions. Another

contribution to the theory of special RC4 states can be also found in [MS01].

The aim of the paper [Mi02] is to find a conservative estimate for the

number of bytes that should be discarded from the beginning of the RC48

keystream in order to reach as high level of security as possible. Based on

his analysis, the author recommends discarding at least the first 512 bytes of

an RC4 keystream.

Authors of [SP03] focus on a special set of RC4 states called non-fortuitous

predictive states. Predictive states (for definition see Section 4) play a special

3The WEP uses 3 byte IV
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role between all RC4 states. They increase the probability to determine a part

of the inner state in a known plaintext attack and present a cryptanalytic

weakness of RC4. Authors also formally proved the conjecture given by Mantin

and Shamir in [Ma01] that, using only a known elements of the permutation

S along with the two indices i and j at some round, the RC4 PRGA cannot

produce more than a outputs in the next N rounds.

The second contribution of authors Souradyuti and Preneel can be found in

[SP04a]. They have found a new statistical bias in the distribution of first two

output bytes of RC48. The described distinguisher requires 225 output bytes.

This bias does not disappear even if the initial 256 bytes are dropped. Authors

also present a new pseudo-random generator named RC4A, which works with

two RC4 permutations.

The report [Wu05] describes a serious security flaw in Microsoft Word and

Excel. Author found out that when a document encrypted by RC4 gets mod-

ified and saved again, the initialisation vector remains the same and thus the

same RC4 keystream is applied to encrypt the different version of that docu-

ment. As mentioned above, double use of the same keystream is crucial and

a lot of information can be recovered easily from the document.

In [Ma05] author described a new statistical biases of the digraphs distri-

bution of RC4/RC4A keystream, where digraphs tend to repeat with short

gaps between them. These biases can be used to distinguish RC4 keystream of

226 bytes and RC4A keystream of 226.5 bytes. The second result presented in

this paper is the discovery of so called recyclable states. The author uses these

states and the state recovery attack from [KMP98] to mount the attack which

recovers the inner state of the RC4 and requires approximately 2290 output

bytes.

Also the trend of side-channel attacks has not skipped RC4. Efficient fault

analysis attacks on RC4 are described in [BGN05]. One of these attacks is

based on the usage profitable state discovered by Hal Finney ([Fi94]). We

describe an extension of this attack in Section 5.4.
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4 Special RC4 states

In this section we will focus on the PRGA part of the RC4 cipher. First

of all, we will generally introduce the term k-state and mention predictive

states. Then we will look at profitable states, which are the main object

of our research. Afterwards we will introduce the notion of table triple and

describe many properties of table triples. Finally, we will look at cryptanalytic

applications of special class of profitable states, the persistent states.

Let N ≥ 1 be an integer or N =∞. Let a, b ∈ Z. If N 6=∞, then we will

denote the integer x ∈ ZN such that x ≡ b mod N by b mod N . If N = ∞,

then a = b mod N means a = b. In the same manner, we define Z∞ as Z.

4.1 k-states, profitable states and predictive states

Let i ∈ ZN , j ∈ ZN and let σ be a partial permutation of ZN (a partial

mapping of ZN to ZN that maps every two different elements from the domain

into two different values). Assume that Im(σ) (the range of the mapping σ) is

a finite set. This assumption is nontrivial only if N =∞. The domain of the

mapping σ will be denoted by Dom(σ).

Definition 1. Let i, j, σ be as above and let |Dom(σ)| = k > 0. A k-state is

any triple T = (i, j , σ). We call T a state, when the value k is not emphasised.

In the rest of this paper we will always consider only partial states (k-states

with k << N), if not stated otherwise. Hence we will usually refer to a partial

state as to a state.

It is clear that the k-state from Definition 1 is indeed a partially defined

RC4n state (of PRGA) in the case N = 2n <∞.

The PRGA (Algorithm 2 in Section 3.1) describes a developement of the

inner state of RC4. In the terms of Section 2 it describes the next-state function

f and the keystream producing function g, which are both key independent.

The following definition describes how far we can get when the PRGA is applied

to a partial state and when we ignore the keystream producing function.

Definition 2. Let T0 = (i0, j0, σ0) be a state. Define a sequence T0, T1, . . .

(which can be finite or infinite) in the following way: Let Tk = (ik, jk, σk). If

ik +1 /∈ Dom(σk), then Tk is the last term of the sequence. If ik +1 ∈ Dom(σk),

define Tk+1 = (ik+1, jk+1, σk+1) in the following way:

ik+1 = ik + 1 mod N,

jk+1 = jk + σk(ik+1) mod N
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σk+1(x) =







σk(ik+1), if x = jk+1

σk(jk+1), if x = ik+1 and jk+1 ∈ Dom(σk)

not defined, if x = ik+1 and jk+1 /∈ Dom(σk)

σk(x), elsewhere

If the resulting sequence is finite and equals T0, . . . , Th, we say that the state

T0 has height h or that the state T0 is h-profitable. If the resulting sequence is

infinite, we set height of the state T0 to infinity and we say that T0 is persistent.

Let us observe what is happening in the previous definition. We do not

insist upon ik ∈ Dom(σk), but ik + 1 ∈ Dom(σk) is the condition under which

the sequence can be prolonged. Now, the image of ik + 1 determines together

with jk the value jk+1. The image of ik + 1 becomes the new image of jk+1.

Again, ik + 1, which was in Dom(σk), does not have to be in Dom(σk+1). It is

there if and only if jk+1 ∈ Dom(σk).

Remark 3. Our definition of the h-profitable k-state is equal to the definition

of the weak h-profitable k-state presented in [Ma01] for the case N = 2n <∞.

For completeness, we will also mention predictive states, although our re-

search has been focused on profitable and persistent states.

Definition 4. Let T0 = (i0, j0, σ0) be a k-state of height at least h, i.e. it

induces the sequence T0, T1, . . . , Th, and let A ⊆ {1, . . . , h}, |A| = b. If (σl(il)+

σl(jl) mod N) ∈ Dom(σl) for all l ∈ A, then T0 is said to be b-predictive.

Assume we have a b-predictive k-state T0 = (i0, j0, σ0) (N = 2n < ∞).

Then the value zl = σl(σl(il)+σl(jl) mod N) is defined for all l ∈ A. According

to Algorithm 2 zl is the output value of RC4 in the round l. Therefore all full

RC4n states (i, j, S) (|Dom(S)| = N) compatible with T0 (i.e. i = i0, j = j0

and σ0 is a restriction of S) have the same output in all rounds determined

by the set A, i.e. T0 determines these output independently of the rest of the

permutation S. That is why these states are called predictable states.

Mantin and Shamir stated in [Ma01] a conjecture that there exists no b-

predictive a-state for a < b << N . This conjecture was later proved in

[SP03].

Example 5. Figure 3 shows a 6-profitable 3-state for N ≥ 8. This state is

also 3-predictive with A = {4, 5, 6}.

We will now mention some cryptanalytic applications of predictive states

as described in [Ma01].

The class of predictive states can be used to build distinguishers for RC4

keystream. More precisely, a b-predictive k-state implies the existence of a

distinguisher for RC4 keystream which requires O(N2k−b+3) output words.
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i j S[N − 2] S[N − 1] S[0] S[1] S[2] S[3] S[i] + S[j] Output
N − 3 N − 1 1 2 * N − 1 * * * *
N − 2 0 * 2 1 N − 1 * * * *
N − 1 2 * * 1 N − 1 2 * * *

0 3 * * * N − 1 2 1 * *
1 2 * * * 2 N − 1 1 1 2
2 1 * * * N − 1 2 1 1 N − 1
3 2 * * * N − 1 1 2 3 2

Figure 3: A 3-predictive 3-state (all additions are carried out mod N)

Another way how to use predictive states to attack RC4 is to use these

states to determine a part of the inner permutation S. This can be done since

all states compatible with a b-predictive k-state produce the same output. So

an external event (an output sequence produced by an RC4 state) helps us to

determine some information about the internal state of RC4. See [Ma01] for

further details.

4.2 Closer look at profitable and persistent states

Notation: Suppose that Tl is a state. In the following text, we write Σl for

Im(σl). Sometimes we shall also write k ∈ {a, . . . , h} for the situation when

h can be equal to ∞. This should be interpreted as k ∈ {i ≥ a | a ∈ Z}.

Lemma 6. Let T0 be a state of height h. Then Σk = Σ0 holds for all k ∈
{0, . . . , h}.

Proof: If follows from Definition 2 that mappings σl and σl+1 of two following

states (these are Tl and Tl+1) have different values only for elements il+1 and

jl+1. Because these values are only swapped, there is no difference between Σl

and Σl+1.

Hence we can write just Σ instead of Σ0.

Lemma 7. Let T0 be a state of height h. Then jk ∈ Dom(σk) and σk(jk) =

σk−1(ik) holds for all k ∈ {1, . . . , h}.

Proof: Assume k ∈ {1, . . . , h}. According to Definition 2, Tk is defined only if

ik ∈ Dom(σk−1) and then σk(jk) = σk−1(ik). Hence jk ∈ Dom(σk).

Although we start with the initial state T0, we will sometimes also consider

sequences starting with a state Tr, r ∈ Z. Note that results obtained for T0

can be easily transfered to such a situation.

Definition 8. A state T0 of height h is said to be monotonous if σk(ik) is

not defined for any k ∈ {1, . . . , h}, i.e. ik /∈ Dom(σk) for all k ∈ {1, . . . , h}.
Clearly ik /∈ Dom(σk) if and only if jk /∈ Dom(σk−1).
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Definition 9. A state T ′ = (i′, j′, σ′) is said to be a restriction of a state

T = (i, j , σ), if i′ = i, j′ = j and σ′ is a restriction of σ.

Soon we will prove that in the case N = ∞ we can obtain a monotonous

persistent state from each persistent state by a restriction of one of its succes-

sors.

Definition 10. Let T0 be a persistent state. Define the value ηk(a), k ≥ 0 for

all a ∈ Σ so that ηk(a)+k is equal to the smallest k′ > k for which σk′(jk′) = a.

Set ηk(a) =∞, if there is no such k′.

We see that the value ηk(a) is defined as a distance between the state Tk

and the state Tk′ in the sequence of the states where σk′(jk′) = a and k′ is the

smallest such an integer.

Notation: If σ is a partial permutation of a set Ω, a = σ(b) ∈ Im(σ), then

σ(−a) will denote a restriction of the mapping σ to the set Dom(σ) \ {b}.

Proposition 11. Let T0 = (i0, j0, σ0) be a persistent state. Assume that

ηk(a) = ∞ holds for some a ∈ Σ and k ≥ 0. Then (ik, jk, σ
(−a)
k ) is also

a persistent state.

Proof: Assume that k0 is the smallest k for which ηk(a) =∞. Without loss of

generality we can assume that k0 = 0. So for all k ≥ 1, σk(jk) 6= a holds and

thus σk(ik+1) 6= a holds for all k ≥ 0. To prove the proposition, it is enough to

prove that the state (ik+1, jk+1, σ
(−a)
k+1 ) is the successor of the state (ik, jk, σ

(−a)
k )

for all k ≥ 0.

We know that σk(ik+1) 6= a. If jk+1 /∈ Dom(σk) or σk(jk+1) 6= a, then

σ−1
k (a) = σ−1

k+1(a), and σ
(−a)
k+1 is clearly the successor of σ

(−a)
k . Let σk(jk+1) = a.

Then σk+1(ik+1) = a, and σ
(−a)
k is not defined for jk+1, and σ

(−a)
k+1 is not defined

for ik+1. Since this is not in contradiction with Definition 2, σ
(−a)
k+1 is the

successor of σ
(−a)
k .

Definition 12. A persistent state T0 is said to be reduced, if ηk(a) is a finite

positive integer for all k ≥ 0 and for all a ∈ Σ.

We have already seen that it is possible to derive a reduced persistent state

T ′ from each persistent state T . In such a case the new range is a subset of

the old one, i.e. Σ′ ⊆ Σ.

Lemma 13. Let N =∞ and let T0 = (i0, j0, σ0) be a persistent state. Assume

that for some k ≥ 0 there exists j ≤ ik which is an element of Dom(σk), and

set a = σk(j). Then ηk(a) =∞.
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Proof: Denote by k0 the smallest k, for which σ−1
k (a) ≤ ik. Without loss of

generality we can assume that k0 = 0. For all k ≥ 0 set

Γk = {a ∈ Σ | σ−1
k (a) > ik}.

First of all, we will show that Γk+1 ⊆ Γk for all k ≥ 0. If b ∈ Γk+1 and

b /∈ {σk+1(jk+1), σk+1(ik+1)}, then σ−1
k+1(b) > ik+1 > ik and b ∈ Γk. If b =

σk+1(ik+1), then σ−1
k+1(b) = ik+1 and b /∈ Γk+1. Finally, σk+1(jk+1) is always an

element of Γk since σk+1(jk+1) = σk(ik+1) and ik+1 = ik + 1 > ik.

In the beginning of this proof we have assumed that σ−1
0 (a) ≤ i0. Hence

a /∈ Γ0. This implies that a /∈ Γk for all k ≥ 0. Consequently a 6= σk+1(jk+1)

since σk+1(jk+1) = σk(ik+1) and σk(ik+1) ∈ Γk. Finally, ηk(a) =∞.

Proposition 14. Assume that N = ∞ and T0 = (i0, j0, σ0) is a reduced

persistent state. Then σ−1
k (a) > ik holds for all a ∈ Σ and for all k ≥ 0. In

particular, T0 is monotonous.

Proof: Define again Γk as Γk = {a ∈ Σ | σ−1
k (a) > ik}. Lemma 13 and

Proposition 11 imply that Γk = Σ holds for all k ≥ 0. If ik+1 ∈ Dom(σk+1),

then for a = σk+1(ik+1) we get a /∈ Γk+1. Consequently T0 is monotonous.

Assume that T0 is a reduced monotonous persistent state (with N finite or

infinite). Lemma 7 implies that we can assume j0 ∈ Dom(σ0) without loss of

generality. We can also assume that i0 /∈ Dom(σ0), because ik /∈ Dom(σk) for

all k ≥ 1.

Lemma 15. Let T0 = (i0, j0, σ0) be a reduced monotonous persistent state

(N ∈ N or N = ∞), i0 /∈ Dom(σ0) and j0 ∈ Dom(σ0). Then ηk(σk(jk)) =

jk − ik mod N and 0 < ηk(σk(jk)) < N holds for all k ≥ 0.

Proof:

Set a = σ−1
k (jk) and d = jk − ik mod N, 0 ≤ d < N . We have jk = ik in

the case d = 0. This implies ik ∈ Dom(σk) which contradicts the monotonous

property of T0. Thus 0 < d < N .

We will prove by induction that σk′(jk′) 6= a and σk′(jk) = a holds for

all k′, k < k′ < k + d (i.e. the position of a does not change). Let us have

k < k′ < k + d. We get σk′−1(jk) = a either by induction assumption, or by

the definition of a when k′ = k + 1. Since ik′ = ik + (k′ − k) mod N and

1 ≤ k′ − k < d, we get ik′ 6= jk. Definition 2 implies that σk′ differs from σk′−1

only at positions ik′ and jk′ and the monotonous property implies that ik′ /∈
Dom(σk′). Therefore σk′(jk′) = σk′−1(ik′). This value is not equal to a, because

σk′−1(jk) = a and ik′ 6= jk. Hence σk′(jk′) 6= a and σk′(jk) = σk′−1(jk) = a.

Finally we get σk+d(jk+d) = σk+d−1(ik+d) = σk+d−1(jk) = a.
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Lemma 16. Let T0 be a reduced monotonous persistent state (N ∈ N or

N =∞). Then 0 /∈ Σ.

Proof: Assume contrariwise. Since T0 is reduced, there exists some k ≥ 0 for

which σk+1(jk+1) = σk(ik+1) = 0. So jk+1 = jk + σk(ik+1) mod N = jk +

0 mod N . Since jk ∈ Dom(σk) for all k ≥ 0 and jk+1 = jk, we get σk+1(ik+1) =

σk(jk+1) ∈ Σ (see Definition 2), a contradiction to the monotonous property

of T0.

Now we will describe the function η for all a ∈ Σ and all k ≥ 1.

Proposition 17. Let T0 = (i0, j0, σ0) be a reduced monotonous persistent state

(N ∈ N or N =∞). Then for all a ∈ Σ and all k ≥ 1

ηk+1(a) = ηk(a)− 1, if ηk(a) > 1

ηk+1(a) = ηk(σk(jk)) + a− 1 mod N, if ηk(a) = 1.

Proof: The first equation follows directly from the definition of η. To prove

the second one, assume ηk(a) = 1. We have σk+1(jk+1) = a, which is the same

as σk(ik+1) = a. According to Lemma 15 we get ηk+1(σk+1(jk+1)) = d, where

0 < d < N and d = jk+1− ik+1 mod N . Since jk+1 = jk + σk(ik+1) mod N , we

also have d = jk + σk(ik+1) − ik+1 mod N . Consequently d = (jk − ik) + a−
1 mod N = ηk(σk(jk)) + (a− 1) mod N .

Notice that only the values ηk(a), a and ηk(σk(jk)) are needed to determine

the value ηk+1(a). Thus to determine the function ηk+1 : Σ → N
+ we need to

know (in addition to ηk) the value b ∈ Σ such that b = σk(jk).

The following definition is stated here, while it is closely related to the

notion of the RC4 state, although we will use it in the next section.

Definition 18. Let N ∈ N or N =∞, let T0 = (i0, j0, σ0) be a state of height h

and let j0 ∈ Dom(σ0). Define a function ν : {0, . . . , h} → Σ by ν(k) = σk(jk).

Assume (i, j, S), S ∈ SN is a full RC4 state. In Section 4.3 we will prove

(Proposition 30) that every reduced monotonous persistent state (i0, j0, σ0) is

periodic, i.e. there exist an integer l ∈ N such that (i0, j0, σ0) = (il, jl, σl). At

the same time the transition function in the PRGA, which changes (i, j , σ)

into (i′ = i + 1 mod N, j′ = j + S(i) mod N, S ′ = S ◦ (i′, j′)), is invertible.

Since the PRGA sets i = 0 and j = 0 at the beginning, the periodicity and

the invertibility implies that the PRGA can never reach any full RC4 state

(i, j, S) which would be an extension of a reduced monotonous persistent k-

state (k << N). Thus if the PRGA ever reaches an extension of a persistent

state, this will not be monotonous. In spite of the fact that monotonous persis-

tent states are not reachable by the PRGA, they can be used for cryptanalysis

of RC4 as described in Section 5.4.
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Due to the simplicity of the case N =∞, we tend to think that the study

of persistent states for N = ∞ could serve as a good foundation for studying

persistent states generally and so this theory could have further applications

in the future. Proposition 14 states that for N = ∞ each reduced persistent

state is monotonous. Thus we will focus on monotonous states and thereby

cover all persistent states for N =∞ and all monotonous persistent states for

N <∞.

4.3 The Tabular model

In this section we will introduce the tabular model for reduced monotonous per-

sistent states and monotonous profitable states. The model seems to provide

a useful environment for description and research of these states.

Firstly we define a table triple, which is a mathematical description for

the elements of our tabular model, and give some examples. Afterwards we

will state and prove a proposition about the close relationship of reduced

monotonous persistent states and table triples. The rest of the section is

devoted to persistent table triples.

Notation: In the following sections ∆n will denote the set {1, . . . , n} for

an n ∈ N.

Definition 19. Let N ∈ N or N = ∞ and n ∈ N, n < N . Let v : ∆n →
Z \ {−1}, µ0 ∈ ∆n and t0 : ∆n → ZN . If N = ∞, assume t0(j) > 0 for all

j ∈ ∆n. The triple (v, t0, µ0)
n
N will be called a table triple.

Let i ≥ 0 and assume that the value µi ∈ ∆n and the mapping ti : ∆n → ZN

are defined. Also assume there exists only one a ∈ ∆n such that ti(a) = 1,

and that ti(k) > 0 for all k ∈ ∆n if N = ∞. Define the value µi+1 and the

mapping ti+1 in the following way:

µi+1 = a , if ti(a) = 1, and

ti+1(a) = ti(a)− 1 mod N, if ti(a) > 1 or ti(a) = 0

ti+1(a) = ti(µi) + v(a) mod N, if ti(a) = 1

Definition 20. Let N ∈ N or N = ∞ and let (v, t0, µ0)
n
N be a table triple.

Assume h is the biggest positive integer for which we are able to define µh and

th according to Definition 19. Then we say the triple (v, t0, µ0)
n
N has height

h or is h-profitable. If such an integer does not exist, we say the table triple

(v, t0, µ0)
n
N is persistent or that it has height h =∞.

Remark 21. The coincidence of above defined terms and terms in Definition 2

is intentional.
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In the rest of this section let us have N ∈ N or N =∞, and n ∈ N, n < N ,

if not stated differently.

Lemma 22. Let (v, t0, µ0)
n
N be a table triple of height h, h ∈ N. Let 0 ≤ k ≤ h

be the smallest integer such that tk is not injective, thus tk(a) = tk(b) for some

a, b ∈ ∆n, a 6= b. Then h ≤ k + tk(a)− 1 and tm (if defined) is not injective

for all m, k ≤ m ≤ h.

Proof: Assume tk(a) = tk(b), a 6= b and set l = k+tk(a)−1. If tl is not defined,

the inequality h ≤ k + tk(a)− 1 holds. If tl is defined, we get tl(a) = tl(b) = 1.

So we are not able to define a mapping tl and thus h ≤ l. The second statement

is trivial.

Lemma 23. Let (v, t0, µ0)
n
N be a table triple of height h and assume that for

some k all ti, 0 ≤ i < k ≤ h, are injective. Then for 0 ≤ i ≤ k − 1 the

mapping ti+1 : ∆n → ZN and the value µi+1 uniquely determine the mapping

ti and the value µi ∈ ∆n.

Proof: Clearly ti(a) = ti+1(a) + 1 mod N for all a ∈ ∆n, a 6= µi+1 and

ti(µi+1) = 1. Since ti+1(µi+1) = ti(µi) + v(µi+1) mod N , the values ti+1(µi+1)

and v(µi+1) uniquely determine the value ti(µi). This determines the value

µi because we have assumed the injectivity of ti, 0 < i < k. Finally, for all

b 6= µi+1 we have ti(b) = ti+1(b) + 1 mod N .

We will now explain where the adjective table in the term table triple comes

from.

Let us we have a table triple (v, t0, µ0)
n
N of height h. Start with an empty

table with 2 rows and n columns. Write values v(i), 1 ≤ i ≤ n in the first

row in such a way that v(i) is in the i-th column. In the same manner, write

values t0(i) in the second row. From now on, we will regard the first row of

this table as the header of the table and the second row as the zero row (it

contains values t0(i), so the terminology is straight). The value in the first row

and the µ0-th column is highlighted.

Assume i ≥ 0 and assume that we have already defined the ith row in the

table. If i < h, we construct the (i+1)th row of the table by writing the value

ti+1(j) in the j-th column by highlighting the value in the row µi+1 (see Figure

4).

v(1) v(2) v(3)
t0(1) = 1 t0(2) t0(3)

t0(3) + v(1) t02− 1 t0(3)− 1

Figure 4: A table given by (v, t0, µ0)
3
N with µ0 = 3, t0(1) = 1 and height h ≥ 1
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It is natural to write mappings from the set ∆n as n-tuples and we shall

adapt this convention. I.e. for v : ∆n → X, v = (x1, . . . , xn) will denote the

fact that v(i) = xi. We will sometimes write vi instead of v(i).

Example 24. Let N ≥ 7. Figure 5 shows a table determined by a table triple

(v, t0, µ0)
4
N of height h = 8 and v = (2,−3, 4, 0), t0 = (1, 2, 3, 5) and µ0 = 3.

2 −3 4 0
1 2 3 5
5 1 2 4
4 2 1 3
3 1 6 2
2 3 5 1
1 2 4 3

5 1 3 2
4 2 2 1
3 1 1 2

Figure 5: A table determined by the table triple from Example 24

Example 25. Let N ≥ 20. Figure 6 shows a table determined by a table

triple (v, t0, µ0)
7
N of height h = 20 with v = (−9, 10,−3, 5, 3, 9, 12), t0 =

(1, 2, 11, 4, 5, 7, 9) and µ0 = 3.

Proposition 26. Assume N ∈ N or N =∞. Let (v, t0, µ0)
n
N be a table triple

of height h, h ∈ N or h =∞. Assume that mappings v and ti, 0 ≤ i ≤ h are all

injective. Then there exists an n-state T = (i, j , σ) of height at least h. Vice

versa, if there exists a reduced monotonous persistent n-state, then there exists

a uniquely defined persistent table triple (v, t0, µ0)
n
N with an injective mapping

v.

Proof: Let (v, t0, µ0)
n
N be a table triple of height h, i.e. there exist uniquely

defined mappings ti : ∆n → ZN (we also assume injectivity) and values µi

for all 0 ≤ i ≤ h. Define an n-state T0 = (i0, j0, σ0) in the following way:

Set i0 as an arbitrary number from ZN and set j0 = i0 + µ0 mod N . Set

α0 = {(i0 + t0(k)) mod N | 1 ≤ k ≤ n}. Define the mapping σ0 : α0 → ZN ,

such that σ0(i0 + t0(k)) = v(k) + 1 mod N . The injectivity of mappings v

and t0 implies that |α0| = n and that σ0 is injective. So T0 = (i0, j0, σ0) is an

n-state.

Now we will show that T0 = (i0, j0, σ0) has height at least h. Assume that

0 ≤ l ≤ h − 1 and that Tl is already defined. Set il+1 = il + 1 mod N .

Because (v, t0, µ0)
n
N has height h, there exists just one k ∈ ∆n such that

tl(k) = 1 (otherwise tl+1 could not be defined). The definition of αl implies
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−9 10 −3 5 3 9 12
1 2 11 4 5 7 9
2 1 10 3 4 6 8
1 12 9 2 3 5 7
3 11 8 1 2 4 6
2 10 7 8 1 3 5
1 9 6 7 11 2 4
2 8 5 6 10 1 3
1 7 4 5 9 11 2
2 6 3 4 8 10 1
1 5 2 3 7 9 14

5 4 1 2 6 8 13
4 3 2 1 5 7 12
3 2 1 7 4 6 11
2 1 4 6 3 5 10
1 14 3 5 2 4 9
5 13 2 4 1 3 8
4 12 1 3 8 2 7
3 11 5 2 7 1 6
2 10 4 1 6 14 5
1 9 3 19 5 13 4
10 8 2 18 4 12 3

Figure 6: A table determined the table triple from Example 25

that il + 1 ∈ αl and thus il + 1 ∈ Dom(σl). So we can define the value

jl+1 = jl + σl(il + 1) mod N . Finally set αl+1 = {(il+1 + tl+1(k)) mod N | 1 ≤
k ≤ n} (we get |αl+1| = n out of the injectivity of tl+1) and σl+1 : αl+1 → ZN ,

σl+1(il+1 + tl+1(k) mod N) = v(k) + 1 mod N . The mapping v is injective,

hence σl+1 is a partial permutation of ZN . Thus the first part of the proposition

is proved.

Let T0 = (i0, j0, σ0) be a reduced monotonous persistent n-state. Since σ0

is injective, |Dom(σ0)| = |Σ| = n (Σ denotes Im(σ0)). Denote elements of Σ

as ai, i.e. Σ = {a1, . . . , an}.
Define the mapping v : ∆n → Z by v(i) = ai − 1. Lemma 16 implies that

0 /∈ Σ. Thus v(i) 6= −1 holds for all i ∈ ∆n and we have v : ∆n → Z \ {−1}.
Because σ0 is injective (it is a partial permutation), v is also injective. For all

k ≥ 0 define the mapping tk : ∆n → ZN by tk(i) = ηk(ai) for all i ∈ ∆n. Also

for all k ≥ 0 set µk = i if and only if ν(k) = ai. The requested equations

ti+1(a) = ti(a)− 1 mod N, if ti(a) > 1

ti+1(a) = v(a) + ti(µi) mod N, if ti(a) = 1

and the condition µi+1 = a for ti(a) = 1 follow from Definition 18 and Propo-

sition 17. If N = ∞, the condition ti(a) > 0 for all a ∈ ∆n follows from

Proposition 14.
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In the construction of an n-state out of a table triple we have chosen the

number i0. Because there are N possibilities how to choose this number, we

see that a profitable table triple determines a set of n-states, parametrised by

the choice of i0.

One of assumptions in Proposition 26 is the injectivity of the mapping

v : ∆n → Z \ {−1}. On the other hand, this property of the mapping v

was not assumed in Definition 19 and thus the notion of the table triple is

more general than the notion of the reduced monotonous persistent state. The

system defined by Definition 19 is mathematicly interesting in itself, so it is

worth considering such a generalisation.

From now on we will focus on persistent table triples. To start we will

describe the only reduced monotonous persistent state that seem to be known.

According to Proposition 26 this state gives rise to a persistent table triple.

This state was first described in [Fi94], thus it is called the Finney state.

Example 27. (Finney state) Let N ∈ N or N =∞ and k ∈ ZN . Define a 1-

state (i0, j0, σ0) in the following way: i0 = k, j0 = i0+1 mod N = k+1 mod N

and σ0(j0) = 1, |Σ| = 1. Then i1 = k + 1 mod N, j1 = j0 + σ0(i1) mod N =

k + 1 + 1 mod N = i1 + 1 mod N and σ1(j1) = 1. In the same way, we get

il = k + l mod N, jl = il + 1 mod N and σl(jl) = 1 for all l ≥ 0. We see that

the state (i0, j0, σ0) is persistent. According to Proposition 26 it gives rise to

the persistent table triple described by the table on Figure 7.

0
1

1

Figure 7: A persistent table triple determined by the Finney state

Let (v, t, µ)n
N be a table triple of height h. Assume there exist i and j, 0 ≤

i < j ≤ h for which ti = tj and µi = µj , and let i be the smallest integer

of this kind. Then clearly all tl, 0 ≤ l ≤ j are injective and (v, t, µ)n
N is

persistent. Assume i 6= 0. If follows from Lemma 23 that ti−1 = tj−1, which is

in contradiction with the minimality of i. Thus i = 0 and tx = tx mod j for all

x ≥ 0.

If N < ∞, then the set {(ti, µi) | ti : ∆n → ZN , µi ∈ ∆n} has a finite

cardinality. Thus for all N < ∞ each persistent table (v, t, µ)n
N is periodic.

We will now prove that all persistent table triples are periodic even in the case

N =∞.

For this purpose we will state an auxiliary definition and we will prove one

lemma.
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Notation: If a ∈ ∆n, a 6= µ0, then by (v(−a), t
(−a)
0 , µ0)

n
N we will denote a table

triple which arises from restriction of mappings t0 and v to the set ∆n \ {a}.

Definition 28. A table triple (v, t0, µ0)
n
N is said to be restriction persistent, if

one of the following conditions holds:

1. (v, t, µ)n
N is persistent,

2. for some a ∈ ∆n, a 6= µ0, (v(−a), t
(−a)
0 , µ0)

n
N is restriction persistent,

3. a = µ0, (v, t0, µ0)
n
N has height h ≥ 2, µ1 6= a and (v(−a), t

(−a)
1 , µ1)

n
N is

restriction persistent.

Lemma 29. Let N = ∞, s ≥ 1 and m ≥ 1. Then there exist numbers

f(m, s) and g(m, s) such that each table triple (v, t0, µ0)
n
N that is not restriction

persistent and satisfies s ≥ n, m ≥ max{|v(a)| | a ∈ ∆n} and f(m, s) ≤
max{t0(a) | a ∈ ∆n} has height h ≤ g(m, s).

Proof: Set f(m, 1) = 2. Clearly we can set g(m, 1) = 1. We will continue by

induction. The value f(m, s + 1) will be set so that f(m, s + 1) > g(m, s) and

f(m, s + 1) > f(m, s). Assume that the lemma holds for s.

Let (v, t0, µ0)
n
N be a table triple with n = s+1 ≥ 2 and t0(a) > max{f(m, s),

g(m, s) + 1} for some a ∈ ∆n which is not reduction persistent. The rest of

the proof is divided into two parts.

a) Assume that there exists b ∈ ∆n, b 6= a for which t0(b) > f(m, s). We

can also assume that (v, t0, µ0)
n
N has height at least 2, so (v, t1, µ1)

n
N is defined

and t1(b) ≥ f(m, s) holds. If µ0 = a then µ1 6= a because t0(a) > 2. If µ0 = a

set j = 1. Otherwise set j = 0, so µj 6= a in both cases. We will consider

the table triple (v, tj , µj)
n
N as the initial one. Because (v(−a), t

(−a)
j , µj)

n
N has

n = s and tj(b) ≥ f(m, s) we can use the induction assumption. Thus there

exists h ≤ g(m, s) such that t
(−a)
h and µ

(−a)
h are the last which can be defined.

Therefore either t
(−a)
h (x) ≤ 0 for some a 6= x ∈ ∆n or t

(−a)
h (x) = t

(−a)
h (y) for

x 6= y ∈ ∆n or t
(−a)
h (x) 6= 1 for all a 6= x ∈ ∆n. Since t0(a) > g(m, s) + 1, this

problem is not removed by the value th(a) and it is shared by the mapping th.

So the height of the table triple (v, t0, µ0)
n
N is less or equal than g(m, s).

b) Assume that t0(b) ≤ f(m, s) for all b ∈ ∆n, b 6= a. Again set j = 1 if

µ0 = a, otherwise set j = 0. Thus µj 6= a. There are finally many table triples

(v(−a), t
(−a)
j , µj)

n
N with m ≥ max{|v(a)| | b ∈ ∆n \ {a}} and t

(−a)
j (b) ≤ f(m, s)

for all b ∈ ∆n \ {a}. Since (v, t0, µ0)
n
N is not reduction persistent, none of

these table triples is persistent. Thus there exists an integer hmax such that

the height of each of these table triples is less then hmax. Consequently if

t0(a) > max{f(m, s), g(m, s) + 1, hmax}, then th(a) > 1 for all 0 ≤ h ≤ hmax,

and th(a) cannot enlarge the height of any of these table triples.
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To finish the proof it is sufficient to set f(m, s + 1) = max{f(m, s) +

1, g(m, s) + 2, hmax + 1} and g(m, s + 1) = max{g(m, s) + 1, hmax}.

Proposition 30. Each persistent table triple (v, t, µ)n
N is periodic, i.e. it gen-

erates a periodical table.

Proof: We have already observed that this proposition holds for all N < ∞,

thus it is enough to consider the case N =∞. We will prove that for any given

m and s there exist just finally many table triples (v, t0, µ0)
n
N with n ≤ s and

m ≥ max{|v(a)| | a ∈ ∆n} which are persistent. The periodicity then follows

from this finiteness property.

To prove that the mentioned set of table triples is finite it suffices to show

that if (v, t0, µ0)
n
N is persistent, then for all a ∈ ∆n

t0(a) ≤ max{f(m, s), g(m, s) + 1}.

Assume the opposite and let (v, t0, µ0)
n
N be a persistent triple with an a ∈ ∆n

such that t0(a) > max{f(m, s), g(m, s)+1}. Then µ1 6= a and (v(−a), t
(−a)
1 , µ1)

n
N

is not reduction persistent (if it is, we will get the contradiction with the injec-

tivity of the mapping tt0(a)−1 and hence the contradiction with the persistence

of (v, t0, µ0)
n
N). Also

t1(a) ≥ max{f(m, s), g(m, s) + 1}

so we can use Lemma 29. Hence h, the height of (v(−a), t
(−a)
1 , µ1)

n
N , is less than

or equal to g(m, s). Since th(a) = t0(a)− h ≥ 2 this value cannot increase the

height of this state, and hence (v, t0, µ0)
n
N is not persistent.

Notation: Let (v, t, µ)n
N be a persistent table triple. Then P will denote

the period of this table triple, i.e. P is the smallest positive integer for which

t0 = tP and µ0 = µP .

Example 31. A table triple determined by the Finney state (Example 27)

has period equal to 1.

As already said in this section, the notion of table triple is more general

that the notion of the reduced monotonous n-state, because we do not assume

the injectivity of the mapping v. We will now show some examples of persistent

table triples with a non-injective mapping v.

Example 32. Let N ≥ 5. Figure 8 shows a persistent table triple (v, t0, µ0)
3
N

with v = (−2, 2, 2), t0 = (1, 2, 4), µ0 = 3. This table triple has a period equal

to 4.

Example 33. . Let N ≥ 7. Figure 9 shows a persistent table triple (v, t0, µ0)
4
N

with v = (−3, 0, 3, 3), t0 = (1, 2, 3, 6), µ0 = 4. This table triple has a period

equal to 6.
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-2 2 2
1 2 4

2 1 3
1 4 2
2 3 1
1 2 4

Figure 8: A persistent table with non-injective mapping v (Example 32).

-3 0 3 3
1 2 3 6

3 1 2 5
2 3 1 4
1 2 6 3
3 1 5 2
2 3 4 1
1 2 3 6

Figure 9: A persistent table with non-injective mapping v (Example 33)
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5 Quest for persistent states

We will start this section with a description of some further properties of

persistent table triples, which will help us to prove the main results of this

work. In this section we will denote the set {1, . . . , n} by ∆n, as we have done

in Section 4.3.

Lemma 34. Let (v, t0, µ0)
n
N be a persistent table triple. Then for all i ∈ ∆n

there exists j ≥ 1, such that µj = i.

Proof: Let i ∈ ∆n and k = t0(i). Then tk−1(i) = 1 and thus µk = i.

Definition 35. Let (v, t, µ)n
N be a persistent table triple with period P . Define

the mapping µ : ∆P → ∆n as µ(i) = µi.

Definition 36. Let (v, t, µ)n
N be a persistent table triple with period P . For

all i ∈ ∆n, define mi as the number of all integers j ∈ ∆P for which µ(j) = i.

Thus

mi = |µ−1(i)|.

Lemma 37. Let (v, t, µ)n
N be a persistent table triple with period P . Then

P =

n∑

i=1

mi.

Proof: {1, . . . , P} = µ−1(1)∪µ−1(2)∪ . . .∪µ−1(n) and µ−1(i)∩µ−1(j) = ∅ for

all i 6= j.

Lemma 38. Let (v, t0, µ0)
n
N be a persistent table triple with period P . Then

for all k ∈ ∆P

tk(µ(k)) = t0(µ0) +

k∑

j=1

v(µ(j)).

Proof: For k = 0 the statement is trivial. Assume that the lemma holds for

k ≥ 0, so tk(µ(k)) = s +
∑k

j=1 v(µ(j)). Definition 19 directly implies that

tk+1(µ(k + 1)) = tk(µ(k)) + v(µ(k + 1)). This proves the lemma.

Lemma 38 also holds for k = P , therefore tP (µ(P )) = t0(µ0)+
∑P

j=1 v(µ(j)).

On the other hand the periodicity of the table triple (v, t0, µ0)
n
N gives us

tP (µ(P )) = t0(µ(0)) = t0(µ0). We have proven
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Corollary 39. Let (v, t, µ)n
N be a persistent table triple with period P . Then

P∑

j=1

v(µ(j)) = 0.

Directly from Corollary 39 and Lemma 37 we obtain

Corollary 40. Let (v, t, µ)n
N be a persistent table triple with period P . Then

n∑

i=1

mi · v(i) = 0. (1)

Proposition 41. Let (v, t, µ)n
N be a persistent table triple with period P . Then

for all i ∈ ∆n

P =
∑

j∈µ−1(i)

tj(i).

Proof: Let i ∈ ∆n and j ∈ µ−1(i). Set k = tj(i). We will consider two cases.

Firstly assume that j + k − 1 ≤ P . Then for all l, j + 1 ≤ l ≤ j + k − 1 we

have tl(i) = tl−1(i)− 1 = k − (l − j) since tl−1(i) 6= 1. Consequently µ(l) 6= i

for all j + 1 ≤ l ≤ j + k− 1. Thus tj+k−1(i) = 1 and µ(j + k) = i. We see that

the value k determines the length of the decreasing sequence in the column i,

which begins with the value tj(i) (in the j-th row) and ends with the value 1

(in the row (j + k − 1)).

Consider the second case, j + k− 1 > P . The periodicity of the table gives

us the identity of mappings ti and ti mod P . So we can use the first case if

we consider the mapping tl mod P instead of tl. In the same manner we obtain

that tj(i) is the length of the decreasing sequence in the column i which ranges

from the row j to the row P and then continues from the row 1 to the row

j + k − 1 mod P .

There are mi such decreasing sequences in the column i and rows 1, . . . , P

and all their lengths are equal to values tj(i) for j ∈ µ−1(i). Thus the propo-

sition is proved.

Using the previous proposition and Lemma 38 we directly obtain

Corollary 42. Let (v, t0, µ0)
n
N be a persistent table triple with period P . Then

for all i ∈ ∆n

P = t0(µ0)mi +
∑

k∈µ−1(i)

k∑

l=1

v(µ(l)). (2)

The mapping v has Im(v) = ∆n = {1, . . . , n} as its image set. Hence we

can reorder the double sum in equation (2) and gather all summands v(l) with

the same l ∈ ∆n. In this way we get numbers λi,j.

32



Definition 43. Let (v, t, µ)n
N be a persistent table triple with period P . For

all i, j ∈ ∆n define an integer λi,j ∈ N as the number of pairs (k, l) such that

µ(l) = j and l ≤ k ∈ µ−1(i). I.e.

λi,j = |{(k, l) ∈ µ−1(i)× µ−1(j) | l ≤ k}|.

Lemma 44. Let (v, t, µ)n
N be a persistent table triple with period P . Then for

all i ∈ ∆n

P = t0(µ0)mi +

n∑

j=1

λi,j v(j). (3)

Proof: We will prove the lemma using Corollary 42. Let µ−1(i) be equal to

the set {a1, a2, . . . , ami
} where ai < ai+1. Assume that the value v(j) appears

in the sum
∑ak

l=1 v(µ(l)) from equation (2) for some k, 1 ≤ k ≤ mi. Because

this sum starts always with l = 1, the value v(j) will appear in each of the

following sum
∑ar

l=1 v(µ(l)) for all k ≤ r ≤ mi. Thus v(j) is contained in the

sum
∑ak

l=1 v(µ(l)) so many times, how many u < ak there are with the property

µ(u) = j.

5.1 Matrices induced by equivalences

In the beginning of this section we will show a relationship between table triples

and equivalences on an ordered set. Then we will define a matrix Λ induced

by an equivalence and prove that this matrix is regular for any equivalence.

Definition 45. Let ∼ be an equivalence on a linearly ordered set A = {a1, . . . , aP}
with n equivalence classes, n ≥ 1. Denote these classes by C1, . . . , Cn and de-

note the linear ordering by ≤. Set mi = |Ci|. For each i, j ∈ ∆n define a value

λi,j

λ′

i,j = |{(ak, al) ∈ Ci × Cj | ak ≥ al}|.

Assume that T0 = (v, t0, µ0)
n
N is a persistent table triple with period P (we

assume N ∈ N or N = ∞). The mapping µ : ∆P → ∆n from Definition 35

defines a relation ∼ on the set ∆P such that i ∼ j if µ(i) = µ(j). Clearly ∼ is

an equivalence on ∆P and Lemma 34 implies that ∼ has n equivalence classes.

Set Ci = µ−1(i), 1 ≤ i ≤ n. Since we have the less or equal ordering on the

set ∆P , we can define values λ′
i,j for all i, j ∈ ∆n. Definition 43 implies that

for a persistent table triple T0 and the equivalence ∼ determined by this table

triple we obtain λi,j = λ′
i,j. Thus we can write λi,j also for equivalences.

Lemma 46. Let ∼ be an equivalence on a linearly ordered set {a1, . . . , aP}
with n equivalence classes, n ≥ 2. Then for all i, j ∈ ∆n, i 6= j

λi,j + λj,i = mimj . (4)
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Proof: This follows directly from Definition 45.

Lemma 47. Let ∼ be an equivalence on a linearly ordered set {a1, . . . , aP}
with n equivalence classes, n ≥ 2. Then for all i ∈ ∆n

λi,i =
mi(mi + 1)

2
. (5)

Proof: This follows directly from Definition 45.

Definition 48. Let ∼ be an equivalence on a linearly ordered set {a1, . . . , aP}
with n equivalence classes, n ≥ 1. Define a matrix Λn ∈ (R)(n+1)×(n+1) by

Λn =












0 m1 m2 . . . . . . mn

m1 λ1,1 λ1,2 . . . . . . λ1,n

m2 λ2,1 λ2,2 . . . . . . λ2,n

...
...

...
. . .

...
...

...
...

. . .
...

mn λn,1 λn,2 . . . . . . λn,n












Theorem 49. Let ∼ be an equivalence on a linearly ordered set {a1, . . . , aP}
with n equivalence classes, n ≥ 1. Then the matrix Λn is regular.

Proof:

We will prove the theorem by induction in n.

For n = 1 we have Λ1 =

(
0 m1

m1 λ1,1

)

, and Λ1 is regular since det Λ1 =

−m2
1 < 0 .

Let n ≥ 2. Denote the first row of the matrix Λn by v0, so v0 =

(0, m1, . . . , mn) and denote the row (i + 1) (for 0 ≤ i < n ) by vi, so

vi = (mi, λi,1, . . . , λi,n).

Lemma 50. Assume that there exist c0, . . . , cn−1 ∈ R, not all equal to 0, such

that

c0 · v0 + c1 · v1 + . . . + cn−1 · vn−1 = vn. (6)

Then

0 =

n−1∑

i=1

c2
i mi +

n−1∑

i=1

cimi.

Proof:

Vector equation (6) is indeed n + 1 equations in R. We will now look on

these equations in R one after another.
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1) Equation (6) for the first coordinate:

c1m1 + c2m2 + . . . + cn−1mn−1 = mn. (7)

2) Equation (6) for the second coordinate:

c0m1 + c1λ1,1 + c2λ2,1 + . . . + cn−1λn−1,1 = λn,1.

Using equations (5) and (4) we obtain

c0m1 + c1
1

2
m1(m1 + 1) + c2(m1m2 − λ1,2) + . . .

. . . + cn−1(m1mn−1 − λ1,n−1) = m1mn − λ1,n.

Using equation (7) for the right-hand side we get

c0m1 +
1

2
c1m

2
1 +

1

2
c1m1 +

n−1∑

i=2

(cim1mi − ciλ1,i) =

= m1 · (
n−1∑

i=1

cimi)− λ1,n

and so

λ1,n = −c0m1 +
1

2
c1m

2
1 −

1

2
c1m1 +

n−1∑

i=2

ciλ1,i. (8)

3) Equation (6) for the third coordinate:

c0m2 + c1λ1,2 + c2λ2,2 + . . . + cn−1λn−1,2 = λn,2.

Using equations (5) and (4) we obtain

c0m2 + c1λ1,2 +
1

2
c2m

2
2 +

1

2
c2m2 +

n−1∑

i=3

(cim2mi − ciλ2,i) =

= m2 · (
n−1∑

i=1

cimi)− λ2,n

and so

λ2,n = −c0m2 − c1λ1,2 +
1

2
c2m

2
2 −

1

2
c2m2 + c1m1m2 +

n−1∑

i=3

ciλ2,i. (9)

4) Equation (6) for the fourth coordinate:
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c0m3 + c1λ1,3 + c2λ2,3 + . . . + cn−1λn−1,3 = λn,3.

Using equations (5) and (4) we obtain

c0m3 + c1λ1,3 + c2λ2,3 +
1

2
c3m

2
3 +

1

2
c3m3 +

n−1∑

i=4

(cim3mi − ciλ3,i) =

= m3 · (
n−1∑

i=1

cimi)− λ3,n

and so

λ3,n = −c0m3 − c1λ1,3 − c2λ2,3 +
1

2
c3m

2
3 −

1

2
c3m3+

+c1m1m3 + c2m2m3 +

n−1∑

i=4

ciλ4,i. (10)

So generally for 0 < i < n− 1:

i+1) Equation (6) for the coordinate (i + 1):

c0mi + c1λ1,i + c2λ2,i + . . . + cn−1λn−1,i = λn,i,

c0mi +

i−1∑

j=1

cjλj,i +
1

2
cim

2
1 +

1

2
c1m1 +

n−1∑

j=i+1

(cjmimj − cjλi,j) =

= mi · (
n−1∑

j=1

cjmj)− λi,n,

c0mi +

i−1∑

j=1

cjλj,i +
1

2
cim

2
1 +

1

2
c1m1−

n−1∑

j=i+1

cjλi,j = mi · (
i−1∑

j=1

cjmj) + cim
2
i − λi,n

and so

λi,n = −c0mi −
i−1∑

j=1

cjλj,i +
1

2
cim

2
i −

1

2
cimi +

i−1∑

j=1

cjmimj +

n−1∑

j=i+1

cjλi,j. (11)

Finally the equation for the last coordinate, i.e. for the last column of the

matrix:

c0mn + c1λ1,n + c2λ2,n + . . . + cn−1λn−1,n = λn,n.

Using equations (7) and (11) we obtain
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c0 ·
n−1∑

j=1

cjmj + c1(−c0m1
1

2
c1m

2
1 −

1

2
c1m1 +

n−1∑

i=2

ciλ1,i) + . . .

. . .+ ci(−c0mi−
i−1∑

j=1

cjλj,i +
1

2
cim

2
i −

1

2
cimi +

i−1∑

j=1

cjmimj +

n−1∑

j=i+1

cjλi,j)+ . . . =

=
1

2
mn(mn + 1) =

1

2
(

n−1∑

i=1

cimi)(

n−1∑

i=1

cimi + 1),

n−1∑

i=1

ci · (−c0mi −
i−1∑

j=1

cjλj,i +
1

2
cim

2
i −

1

2
cimi +

i−1∑

j=1

cjmimj +

n−1∑

j=i+1

cjλi,j)+

+c0 ·
n−1∑

j=1

cjmj =
1

2
(

n−1∑

i=1

cimi +

n−1∑

i=1

c2
i m

2
i +

n−1∑

i=1

n−1∑

j=i+1

2cicjmimj),

c0

n−1∑

j=1

cjmj −
n−1∑

i=1

c0cimi −
n−1∑

i=1

i−1∑

j=1

cicjλj,i +
1

2

n−1∑

i=1

c2
i m

2
i −

1

2

n−1∑

i=1

c2
i mi+

+

n−1∑

i=1

i−1∑

j=1

cicjmimj +

n−1∑

i=1

n−1∑

j=i+1

cicjλi,j =

=
1

2

n−1∑

i=1

cimi +
1

2

n−1∑

i=1

c2
i m

2
i +

n−1∑

i=1

n−1∑

j=i+1

cicjmimj ,

n−1∑

i=1

n−1∑

j=i+1

cicjλi,j −
n−1∑

i=1

i−1∑

j=1

cicjλj,i

︸ ︷︷ ︸

=0

+

n−1∑

i=1

n−1∑

j=i+1

cicjmimj −
n−1∑

i=1

i−1∑

j=1

cicjmimj

︸ ︷︷ ︸

=0

=

=
1

2
(

n−1∑

i=1

c2
i mi +

n−1∑

i=1

cimi).

Note that we have used the following equalities:

n−1∑

i=1

n−1∑

j=i+1

cicjλi,j =

n−1∑

i=1

∑

i<j

cicjλi,j =

n−1∑

i=1

n−1∑

j<i

cicjλj,i =

n−1∑

i=1

i−1∑

j=1

cicjλj,i.
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Thus we have shown that if equation (6) holds then

0 =

n−1∑

i=1

c2
i mi +

n−1∑

i=1

cimi. (12)

We will now continue with the proof of the theorem. Let n ≥ 2 and let ∼
be an equivalence on a linearly ordered set A = {a1, . . . , aP} with equivalence

classes C1, . . . , Cn. Assume that the theorem holds for n − 1 and that the

matrix Λn determined by ∼ is singular. Thus rows of the matrix Λn are

linearly dependent and there exist a0, . . . , an ∈ R, not all equal to 0, such that

a0 · v0 + a1 · v1 + . . . + an−1 · vn−1 + an · vn = 0. (13)

Assume ai = 0 for some i ∈ ∆n. Set B = A \ Ci and denote by ∼B

the restriction of ∼ to the set B. Then the matrix Λn without the (i + 1)-th

row and the (i + 1)-th column is a matrix determined by the equivalence ∼B.

Since then equation (13) contradicts the induction assumption, we can assume

ai 6= 0 for all i ∈ ∆n.

Divide equation (13) by an. We obtain

−
a0

an

· v0 −
a1

an

· v1 − . . .−
an−1

an

· vn−1 = vn.

Set ci = − ai

an
. We have obtained the equation

c0 · v0 + c1 · v1 + . . . + cn−1 · vn−1 = vn

and Lemma 50 implies

0 =

n−1∑

i=1

c2
i mi +

n−1∑

i=1

cimi.

Using equation (7) and the fact that mi = |Ci| > 0 for all i ∈ ∆n we get

0 =

n−1∑

i=1

c2
i mi +

n−1∑

i=1

cimi =

n−1∑

i=1

c2
i mi

︸︷︷︸

>0

+ mn
︸︷︷︸

>0

> 0.

Assuming the singularity of Λn yields a contradiction, thus Λn is regular.
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Proposition 51. Let ∼ be an equivalence on a linearly ordered set A =

{a1, . . . , aP} with n equivalence classes C1, . . . , Cn, n ≥ 2 and let Λn be a ma-

trix determined by this equation. Then for all 2 ≤ k ≤ n each principal minor

Mk ∈ (Z)k×k of Λn is regular.

Proof: Let 2 ≤ k ≤ n. Set B = A\(Ck∪Ck+1∪. . .∪Cn) and set ∼B a reduction

of ∼ to the set B. Then clearly Mk is a matrix determined by the equivalence

∼B. Thus we can use the Theorem 49.

At the end of this section we will explicitly state solutions of a system of

linear equations determined by a matrix Λn and the right-hand side vector

(0,
∑n

i=1 mi, . . . ,
∑n

i=1 mi)
T ∈ R

n+1 for n = 2 and n = 3.

Consider the following system of linear equations (x0, x1, x2 are the un-

known variables)





0 m1 m2

m1
1
2
m1(m1 + 1) λ1,2

m2 m1m2 − λ1,2
1
2
m2(m2 + 1)



 ·





x0

x1

x2



 =





0

m1 + m2

m1 + m2





We will solve the system using the Cramer formula. Denote by wi the i-th

column of the matrix Λ2, i = 1, 2, 3, and set wR = (0, m1 +m2, m1 +m2)
T . Set

also A1 = (wR,w2,w3), A2 = (w1,wR,w3) and A3 = (w1,w2,wR) (these

are (3× 3) rational matrices). Then

x0 =
det A1

det Λ2
=

m1
2m2 + 2 m1 m2 − 2 m1 λ1,2 −m1 m2

2 + 2 m2 λ1,2

m1 m2
,

x1 =
det A2

det Λ2
=

m2(m1 −m2)(m1 + m2)

−1
2
m1m2(m1 + m2)

= −2
m1 −m2

m1
=

2m2

m1
− 2,

x2 =
det A3

det Λ2

=
m1(m2 −m1)(m2 + m1)

−1
2
m1m2(m2 + m1)

= −2
m2 −m1

m2

=
2m1

m2

− 2.

Further consider the following system (x0, x1, x2, x3 are the unknown vari-

ables and P = m1 + m2 + m3)







0 m1 m2 m3

m1
1
2
m1(m1 + 1) λ1,2 m1m3 − λ3,1

m2 m1m2 − λ1,2
1
2
m2(m2 + 1) λ2,3

m3 λ3,1 m2m3 − λ2,3
1
2
m3(m3 + 1)






·







x0

x1

x2

x3







=







0

P

P

P







Using the Cramer formula, we obtain:

x0 = P
B

A2 + m1m2m3P
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x1 = −2P
(m3 −m2)A + m2m3(2m1 −m2 −m3)

A2 + m1m2m3P

x2 = −2P
(m1 −m3)A + m1m3(2m2 −m1 −m3)

A2 + m1m2m3P

x3 = −2P
(m2 −m1)A + m1m2(2m3 −m1 −m2)

A2 + m1m2m3P

where

A = 2λ1,2m3 + 2λ2,3m1 + 2λ3,1m2 − 3m1m2m3,

B = −(1 + m1m2 + m2m3 + m1m3)A+

+2λ1,2m3(1− 3m1m2 −m1 + m2 + 2λ1,2 + 2λ2,3 + 2λ3,1)+

+2λ2,3m1(1− 3m2m3 −m2 + m3 + 2λ1,2 + 2λ2,3 + 2λ3,1)+

+2λ3,1m2(1− 3m1m3 −m3 + m1 + 2λ1,2 + 2λ2,3 + 2λ3,1).

As we will see in the next section, unique solutions (x0, . . . , xn)T (n = 2 or

n = 3) of previous systems of linear equations actually equal to a value t0(µ0)

and to values of the mapping v from the table triple (v, t0, µ0)
n
N , i.e. x0 = t0(µ0)

and xi = v(i) for all i = 1, . . . , n.

5.2 Applications and examples

In this section we will apply results from the previous section to the theory

of table triples and persistent states. We will also show some more examples

of persistent table triples and prove that no reduced monotonous persistent 2-

state exists. In the end, we will make a review of relations between persistent

states, table triples and equivalences on an linearly ordered set.

Proposition 52. Let (v, t, µ)n
N be a persistent table triple with period P . Then










0 m1 m2 . . . mn

m1 λ1,1 λ1,2 . . . λ1,n

m2 λ2,1 λ2,2 . . . λ2,n

...
...

...
. . .

...

mn λn,1 λn,2 . . . λn,n










·










t0(µ0)

v(1)

v(2)
...

v(n)










=










0

P

P
...

P










Proof: The proposition follows directly from Corollary 40 and Lemma 44.

Without any results about equivalences we can prove the following lemma.

Lemma 53. The mapping µ of a persistent table triple (v, t0, µ0)
n
N determines

the mapping t0 and the value µ0.
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Proof: Let ∼ be the equivalence determined by µ, and set n as the number

of equivalence classes of ∼. Let us imagine an empty table with n columns

and P +1 rows (indexed from zero) and an empty header. Denote equivalence

classes of ∼ by C1, . . . , Cn. For each j ∈ Ci mark the position in the j-th row

and the i-th column. In the zero row mark the position i such that P ∈ Ci.

Set the value 1 above each marked position (if this appears in the table).

Besides the header it is now easy to fill all other positions in the table, since

we know that in every column all sequences between the marked positions are

strictly decreasing by one, whenever the table is determined by a persistent

table triple.

The zero row of the constructed table defines the mapping t0, and µ0 = i

such that P ∈ Ci.

Theorem 54. The mapping µ of a persistent table triple completely determines

the table triple.

Proof: We have already shown that given a mapping µ of a persistent table

triple T0 = (v, t0, µ0)
n
N we can uniquely determine the equivalence ∼ on the set

∆P and consequently the matrix Λn. Proposition 52 and Theorem 49 imply

that the values v(i), i = 1, . . . n can be uniquely determined from the matrix

Λn and Lemma 53 impliest that µ uniquely determines the mapping t0 and the

value µ0.

Proposition 55. Let N ∈ N or n =∞. Then no reduced monotonous persis-

tent 2-state (i, j , σ) exists.

Proof: Proposition 26 implies that each such a state would uniquely determine

a persistent table triple with an injective mapping v. Assume we have such

a table triple, e.g. (v, t0, µ0)
n
N . Then Proposition 52 implies





0 m1 m2

m1
1
2
m1(m1 + 1) λ1,2

m2 m1m2 − λ1,2
1
2
m2(m2 + 1)



 ·





t0(µ0)

v(1)

v(2)



 =





0

m1 + m2

m1 + m2





At the end of previous section we have shown, that the unique solution of

this system gives us

v(1) =
2m2

m1

− 2, v(2) =
2m1

m2

− 2,

Since v : ∆n → Z\{−1}, we see that m1 has to divide 2m2 and also m2 has

to divide 2m1. So we get m1x = 2m2 and m1y = 2m1 for some x, y ∈ N. Thus

m1xy = 4m1 and xy = 4. Either x = y = 2 or {x, y} = {1, 4}. If x = 1, y = 4
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then 2m2 = m1 and v(1) = 2m2

m1
− 2 = −1, if x = 4, y = 1 then v(2) = −1.

Both these results are in contradiction with v(∆n) ⊆ Z \ {−1}. So x = y = 2.

Thus it is v(1) = v(2) and this is in contradiction with the injectivity of v.

Conjecture 56. Assume N = ∞. No persistent n-state (i, j , σ) exists for

any n > 1.

Remark 57. If this conjecture does not hold, i.e. if there exists some persistent

n-state (i0, j0, σ0), it could be easily transferred to the situation N ∈ N, N ≥
max{ηk(a) | a ∈ Σ, 0 ≤ k ≤ P}.

Later on (Section 5.3) we will prove this conjecture for cases n = 3 and

n = 4.

Example 58. Let N ≥ 6. Figure 10 shows a persistent table triple (v, t0, µ0)
4
N

with v = (−2, 1, 1, 1), t0 = (1, 2, 3, 5), µ0 = 4. This table triple has period

equal to 9.

-2 1 1 1
1 2 3 5

3 1 2 4
2 4 1 3
1 3 5 2
3 2 4 1
2 1 3 4

1 5 2 3
3 4 1 2
2 3 4 1
1 2 3 5

Figure 10: A persistent table with non-injective mapping v (Example 58).

Example 59. Let N ≥ 7. Figure 11 shows a persistent table triple (v, t0, µ0)
4
N

with v = (−2,−2, 4, 4), t0 = (1, 2, 3, 6), µ0 = 4. This table triple has period

equal to 6.

Example 60. Let N ≥ 7. Figure 12 shows a persistent table triple (v, t0, µ0)
5
N

with v = (−3, 3, 0, 3, 0), t0 = (1, 2, 3, 5, 6), µ0 = 5. This table triple has period

equal to 6.

Let n ∈ N. In Proposition 26 we have shown that each reduced monotonous

persistent n-state (i, j , σ) uniquely determines a persistent table triple (v, t, µ)n
N .

Furthermore, each persistent table triple with period P uniquely determines
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-2 -2 4 4
1 2 3 6

4 1 2 5
3 2 1 4
2 1 6 3
1 4 5 2
2 3 4 1
1 2 3 6

Figure 11: A persistent table with non-injective mapping v (Example 59).

-3 3 0 3 0
1 2 3 5 6

3 1 2 4 5
2 6 1 3 4
1 5 6 2 3
3 4 5 1 2
2 3 4 6 1
1 2 3 5 6

Figure 12: A persistent table with non-injective mapping v (Example 60).

an equivalence ∼ on ∆P with n equivalence classes. Let ϕ denote the mapping

from the set of all persistent table triples (v, t, µ)n
N (denote this set Tn) to the

set En = {(P,∼) | P ∈ N, ∼ an equivalence on ∆P with n equivalence

classes},
ϕ : Tn → En.

It is easy to see that the mapping ϕ is injective (later on we will describe an

inverse mapping ϕ−1 : ϕ(Tn)→ Tn, i.e. we will show how to construct a table

triple out of any (P,∼) ∈ ϕ(Tn)).

In Section 5.1 we have shown that each couple (P,∼) ∈ En uniquely deter-

mines a matrix Λn ∈ (R)(n+1)×(n+1). We will denote this mapping by χ,

χ : En → (R)(n+1)×(n+1).

Later on (Example 61) we will show that χ is not necessarily injective. However

it might be injective on the set ϕ(Tn). Set Mn = χ(En).

Theorem 49 states that the matrix Λn is regular for each (P,∼) ∈ En. Thus

the matrix Λn uniquely determines a vector (s, v(1), . . . , v(n)) ∈ R
n+1. So we

obtain a mapping ω from the set Mn to R
n+1,

ω :Mn → R
n+1.

Assume (v, t0, µ0)
n
N is a persistent table triple with period P . Denote the

unique solution of the system of linear equations determined by the matrix
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tables
with n
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&
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'

&

$

%

R
n+1

headers

-ϕ

inj.
ϕ(Tn)

-χ

χ(En)

-

ω(χ(En))

ω

inj.

$

%

mapping determined by Proposition 52�
?

Figure 13: A graphical illustration of mappings ϕ, χ and ω

Λ = χ(ϕ((v, t0, µ0)
n
N)) by (r, w1, w2, . . . , wn), i.e.

(r, w1, w2, . . . , wn)
T = ω(χ(ϕ((v, t0, µ0)

n
N))).

Then Proposition 52 implies

(r, w1, w2, . . . , wn) = (t0(µ0), v(1), v(2), . . . , v(n)).

Example 61. Let n = 2 and let ∼1 be an equivalence on ∆5 with equivalence

classes C1 = {1, 3, 5}, C2 = {2, 4} and let ∼2 be another equivalence on ∆5

with equivalence classes D1 = {2, 3, 4}, D2 = {1, 5}. Each of these equivalences

determines the matrix

Λ2 =





0 3 2

3 3 6

2 3 3



 .

Example 62. Let n = 4 and ∼ be an equivalence on the set ∆15. Let

C1 = {1, 5, 10, 14}, C2 = {3, 7, 11, 13}, C3 = {2, 4, 8, 12}, C4 = {6, 9, 15}
be a decomposition of the set ∆15 to equivalence classes of ∼. Then

Λ4 =









0 4 4 4 3

4 10 7 9 4

4 9 10 10 5

4 7 6 10 3

3 7 6 9 6









.
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Using (0, 15, 15, 15)T as the right-hand side vector we obtain a solution

(s, v(1), v(2), v(3), v(4))T = (−
475

82
,
60

41
,−

25

82
,
265

82
,−

35

41
)T .

Clearly ∼ /∈ ϕ(T4) since v : S → Z \ {−1} does not hold.

Experimental results has shown that for a randomly chosen equivalence ∼,

it is quite rare to obtain an integral solution. We will see (Example 64) that

this condition is not sufficient for persistence. But firstly we will show how

to uniquely determine a table triple out of any (P,∼) ∈ ϕ(Tn) (part of this

process was already described in the proof of Theorem 54).

Let (P,∼) ∈ ϕ(Tn). Set n as the number of equivalence classes of ∼. So we

can already draw an empty table with n columns and P +1 rows (indexed from

zero) and an empty header. Denote equivalence classes of ∼ by C1, . . . , Cn. For

each j ∈ Ci mark the position in the j-th row and the i-th column. In the zero

row mark the position i if P ∈ Ai. Set the value 1 above each marked position

(if this appears in the table). Since in each table determined by a persistent

table triple values in each column form decreasing sequences between marked

positions, it is easy to fill the rest of the table besides the header of the table.

The header can be uniquely determined out of the equations in Definition 19.

The header of the constructed table defines the mapping v, first row defines the

mapping t0 and µ0 = i if P ∈ Ai. So we have obtained a table triple (v, t0, µ0)
n
N

which uniquely determines given equivalence and the value P . Example 63

illustrates this process.

Example 63. Let ∼ be an equivalence on a set ∆4 with equivalence classes

C1 = {1, 3}, C2 = {2}, C3 = {4}. Figure 14 shows the construction of a table

out of this equivalence.

· · · · · · -2 2 2
· · • 1 2 4 1 2 4

• · · 2 1 3 2 1 3
∼ −→ · • · −→ 1 4 2 −→ 1 4 2

• · · 2 3 1 2 3 1
· · • 1 2 4 1 2 4

Figure 14: Construction of a table from an equivalence

Example 64. Let ∼ be an equivalence on a set ∆10 with equivalence classes

C1 = {2, 6}, C2 = {3}, C3 = {1, 5, 8, 10}, C4 = {4, 7, 9}. This equivalence
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determines the matrix

Λ =









0 2 1 4 3

2 3 1 3 1

1 1 1 1 0

4 5 3 10 6

3 5 3 6 6









Using (0, 10, 10, 10, 10)T as the right hand side vector we obtain the solution

v = (s, v(1), v(2), v(3), v(4))T = (0, 2, 8, 0,−4)T .

Figure 15 shows a table constructed by the technique described above. Since

the obtained vector v is not compatible with this table, equivalence ∼ does

not determine any persistent table triple (although this vector has integer

coordinates and v(i) 6= −1 for all 1 ≤ i ≤ 4). I.e.

∼ /∈ ϕ(Tn)

.

· · · ·
1 2 4 3
4 1 3 2
3 9 2 1
2 8 1 3

1 7 3 2
5 6 2 1
4 5 1 2

3 4 2 1
2 3 1 4

1 2 4 3

Figure 15: A table determined by equivalence ∼ from Example 64

5.3 Nonexistence of small states

In this section we will always assume N =∞, if not stated otherwise.

The following lemma states that in the tabular model there cannot be two

subsequent ones in the same column for any persistent state except the Finney

state.

Lemma 65. Let T0 = (v, t0, µ0)
n
N be a persistent table triple with n ≥ 2 and

period P . Then for all l ∈ ∆P we have tl(µl) > 1.

46



Proof: Let us assume the opposite and let l be the smallest integer for which

tl(µl) = 1 and µl = a ∈ ∆n. Since µl = a if and only if tl−1(a) = 1 we also

have tl−1(µl) = 1. Consequently tl−1(b) > 1 for all b ∈ ∆n, b 6= a.

Definition 19 implies that tl(a) = tl−1(a) + va = 1. Since tl−1(µl−1) ≥ 2 we

get va < 0. Now, µl+1 = a (tl(a) = 1) and tl+1(a) = tl(µl) + va = tl(a) + va =

1 + va < 1 is a contradiction.

Proposition 66. Let T0 = (v, t0, µ0)
n
N be a persistent table triple with n ≥ 2

and period P . Then for all l ∈ ∆P there exists a ∈ ∆n for which tl(a) = 2.

Proof: Assume 2 /∈ Im(tl) for some l ∈ ∆P . Thus for b ∈ ∆n either tl(b) = 1 or

tl(b) > 2. Lemma 65 implies that µl 6= 1, and so tl(µl) > 2. Denote by a the

element of ∆n for which tl(a) = 1. We have tl+1(b) ≥ 2 for all b 6= a and since

T0 is persistent one gets tl+1(a) = tl(µl) + va = 1. At the same time µl+1 = a

since tl(a) = 1. This contradicts Lemma 65.

Lemma 67. Let T0 = (v, t0, µ0)
n
N be a persistent table triple with period P .

Set δ = max{ti(a) | 0 ≤ i ≤ P, a ∈ ∆n}. If tl(a) = δ, where 0 ≤ l ≤ P , then

µl = a.

Proof: The existence of δ follows directly from the periodicity of the table

triple. Assume tl(a) = δ and a 6= µl. Then tl−1(a) = δ + 1 which contradicts

the choice of δ.

Proposition 68. There exists no persistent table triple (v, t0, µ0)
3
∞ with an

injective mapping v.

Proof: Let us assume that T0 = (v, t0, µ0)
3
∞ is a persistent table triple. Propo-

sition 30 implies that T0 is periodic (with period P ). Set δ = max{ti(a) | 0 ≤
i ≤ P, a ∈ ∆n}. Firstly we will prove the proposition for δ = 3 and δ = 4 and

then for all δ ≥ 5.

a) Assume δ = 3. Order the columns so that t0 = (1, 2, 3). Then µ0 = 3,

by Lemma 67. Then t1 = (3 + v1, 1, 2) and µ1 = 1. Since t1 has to be injective

(Lemma 22) and δ = 3 we get v1 = 0. Thus t2 = (2, 3 + v2, 1) and we obtain

that v2 = 0 = v1. The mapping t2 is not injective and T0 is not persistent.

b) Assume δ = 4. Lemma 67 and Proposition 66 implies that t0 = (1, 2, 4)

and that µ0 = 3. Then µ1 = 1 and t1 = (v1 + 4, 1, 3). Proposition 66 implies

v1 + 4 = 2 and so v1 = −2. Then µ2 = 2 and t2 = (1, 2 + v2, 2) thus we have

v2 ∈ {1, 2}. Since t3 = (v2, 1+v2, 1) necessarily v2 = 2. Then t4 = (1, 2, 2+v3).

Since δ = 4 and v2 = 2 we have v3 = 1 (if we set v2 = 2 we obtain the table

triple from Example 32). Consequently t5 = (1, 1, 2) and Lemma 22 implies

T0 is not persistent.

c) Assume δ ≥ 5. Order the columns so that t0 = (1, 2, δ) and µ0 = 3.

Then µ1 = 1 and t1 = (δ + v1, 1, δ − 1). Since δ ≥ 5 Proposition 66 implies
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δ + v1 = 2 and so v1 = −(δ − 1) ≤ −3. Then µ2 = 2, t2 = (1, 2 + v2, δ − 2)

and since δ − 2 ≥ 3 we have 2 + v2 = 2 so v2 = 0. Finally µ3 = 1 and

t3(1) = t2(µ2) + v1 = 2 − (δ − 2) = 4 − δ ≤ −1. Hence T0 is not persistent

(Definition 19 implies ti(a) ≥ 1 for all i and all a).

Corollary 69. Assume N = ∞. Then there exists no reduced persistent 3-

state (i, j , σ).

Proposition 70. There exists no persistent table triple (v, t0, µ0)
4
∞ with an

injective mapping v.

Proof: Assume the opposite and let T0 = (v, t0, µ0)
4
∞ be a persistent table

triple. Set δ = max{ti(a) | 0 ≤ i ≤ P, a ∈ ∆n}. We will consider sequentially

cases δ = 4, δ = 5, δ = 6 and δ ≥ 7.

I) δ = 4 : Assume T0 = (v, t0, µ0)
4
∞ is a persistent table triple with t0 =

(1, 2, 3, 4). Then µ0 = 4, by Lemma 67. We have µ1 = 1 and t1 = (4 +

v1, 1, 2, 3), and the maximality of δ implies v1 = 0. Then µ2 = 2 and t2 =

(3, 4 + v2, 1, 2), so necessarily v2 = 0. This is in contradiction with the injec-

tivity of t2.

II) δ = 5 : We will distinguish two different situations.

II.1) Let t0 = (1, 2, 3, 5). Then t1 = (5 + v1, 1, 2, 4), µ1 = 1 and therefore

v1 = 0 or v1 = −2.

II.1.1) Assume v1 = 0. Then t2 = (4, 5+v2, 1, 3), µ2 = 2 and Proposition 66

implies v2 = −3. So t3 = (3, 1, 2 + v3, 2) and µ3 = 3. We see that either v3 = 2

or v3 = 3. In the former case we obtain t4(2) = t3(µ3) + v2 = 4− 3 = 1, which

contradicts µ4 = 2, by Lemma 65. In the latter case t4(2) = t4(1) = 2, again

a contradiction.

II.1.2) Assume v1 = −2. Then t2 = (2, 3 + v2, 1, 3) and so either v2 = 1 or

v2 = 2.

II.1.2.1) Assume v2 = 1. We get t3 = (1, 3, 4 + v3, 2), µ3 = 3 and so v3 = 0

since v2 = 1. Then t4 = (2, 2, 3, 1) and so t4 in not injective.

II.1.2.2) Consider the latter case, v2 = 2. Then t3 = (1, 4, 5 + v3, 2) and

µ3 = 3. Obviously either v3 = 0 or v3 = −2. Since already v1 = −2 we have

v3 = 0. Then t4 = (3, 3, 4, 1) and T0 is not persistent.

II.2) Let t0 = (1, 2, 4, 5). Then t1 = (5 + v1, 1, 3, 4), µ1 = 1 and Propo-

sition 66 implies v1 = −3. So µ2 = 2, t2 = (1, 2 + v2, 2, 3) and hence either

v2 = 2 or v2 = 3. If v2 = 2 then t2(2) = 4 and t3 = (1, 3, 1, 2). If v2 = 3

then t2(2) = 5 and t3 = (2, 3, 1, 2). So there exists no T0 = (v, t0, µ0)
4
∞ with an

injective mapping v and δ = 5.
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III) δ = 6 : There are three possibilities for the mapping t0. We will consider

them sequentially.

III.1) Let t0 = (1, 2, 3, 6). Then t1 = (6 + v1, 1, 2, 5), µ1 = 1 and so

v1 ∈ {−3,−2, 0}.
III.1.1) Assume v1 = −3. So t1 = (3, 1, 2, 5) and µ1 = 1. Then t2 =

(2, 3 + v2, 1, 4), µ2 = 2 and thus v2 ∈ {0, 2, 3}.
III.1.1.1) Assume v2 = 0. Then t2 = (2, 3, 1, 4), µ2 = 2 and t3 = (1, 2, 3 +

v3, 3), µ3 = 3. So v3 ∈ {1, 2, 3}. If v3 = 1 then t4(1) = 1 and because

µ4 = 1 Lemma 65 implies T0 is not persistent. If v3 = 2 then t4 = (2, 1, 4, 2)

and Lemma 22 implies that T0 is not persistent. Hence v3 = 3 and t4 =

(3, 1, 5, 2), µ4 = 1. Then t5 = (2, 3, 4, 1), µ5 = 2 and t6 = (1, 2, 3, 3+v4), µ6 =

4. So either v4 = 1 or v4 = 2. In the former case (v4 = 1) t7(1) = t6(µ6)+v1 =

4 − 3 = 1 and since µ7 = 1 this is in contradiction with Lemma 65. Assume

v4 = 2. Then t7 = (2, 1, 2, 4) and T0 is not persistent. Notice, that if we set

v4 = 3 we obtain the persistent table triple described in Example 33.

III.1.1.2) Assume v2 = 2. Then t2 = (2, 5, 1, 4), µ2 = 2 and t3 = (1, 4, 5 +

v3, 3), µ3 = 3. Proposition 66 implies 5 + v3 = 2 and hence v3 = −3 = v1

hence v is not injective.

III.1.1.3) Assume v2 = 3. Then t2 = (2, 6, 1, 4), µ2 = 2 and t3 = (1, 5, 6 +

v3, 3), µ3 = 3. Proposition 66 implies 6 + v3 = 2 and hence v3 = −4. Then

t4(1) = t3(µ3) + v1 = 2 − 3 = −1 which is in a contradiction with tl(a) ≥ 1,

which we assumed in the case N =∞.

III.1.2) Assume v1 = −2. Then t1 = (4, 1, 2, 5), µ1 = 1 and t2 = (3, 4 +

v2, 1, 4). Proposition 66 implies 4 + v2 = 2 and hence v2 = −2 = v1, so v is

not injective.

III.1.3) Assume v1 = 0. Then t1 = (6, 1, 2, 5), µ1 = 1 and t2 = (5, 6 +

v2, 1, 4), µ2 = 2. Proposition 66 implies 6 + v2 = 2 and hence v2 = −4. We

have t3 = (4, 1, 2 + v3, 3) and necessarily v3 = 0 = v1.

III.2) Let t0 = (1, 2, 4, 6). Hence t1 = (6 + v1, 1, 3, 5), µ1 = 1 and so

v1+6 = 2, v1 = −4. Then t2 = (1, 2+v2, 2, 4), µ2 = 2 and hence v2 ∈ {1, 3, 4}.
If v2 = 1 then t3(1) = t2(µ2)+v1 = 3−4 = −1 and T0 is not persistent. If v2 = 3

then t3(1) = t2(µ2)+v1 = 5−4 = 1 and because µ3 = 1 this is in contradiction

with Lemma 65. Finally assume v2 = 4. Then t3 = (2, 5, 1, 3), µ3 = 1 and

t4 = (1, 4, 2 + v3, 2), µ4 = 3. Therefore v3 ∈ {1, 3, 4}, but since v2 = 4 either

v3 = 1 or v3 = 3. If v3 = 1 then t5(1) = t4(µ4) + v1 = 3− 4 = −1. If v3 = 3

then t5(1) = t4(µ4) + v1 = 5 − 4 = 1 and Lemma 65 implies that T0 in not

persistent.

III.3) Let t0 = (1, 2, 5, 6). Hence t1 = (6 + v1, 1, 4, 5), µ1 = 1 and Propo-

sition 66 implies v1 = −4. Then t2 = (1, 2 + v2, 3, 4), µ2 = 2 and so v2 = 0.

Then t3(1) = t2(µ2) + v1 = 2 − 4 = −2 and T0 is not persistent. We have

proved that there exists no T0 = (v, t0, µ0)
4
∞ with an injective mapping v and

δ = 6.
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IV) δ ≥ 7 :

IV.1) Assume t0 = (1, 2, 3, δ), µ0 = 4. Then t1 = (δ + v1, 1, 2, δ − 1) and

µ1 = 1. We will now consider all possibilities for the value δ + v1.

IV.1.1) Assume δ + v1 = 3, so v1 = −(δ − 3) ≤ −4. Therefore t2 =

(2, 3 + v2, 1, δ − 2), µ2 = 2 and v2 6= −1, v2 6= −2. Then t3 = (1, 2 + v2, 3 +

v2 + v3, δ − 3), µ3 = 3 and Proposition 66 implies that either 2 + v2 = 2 or

3 + v2 + v3 = 2. In the latter case we get t4(1) = t3(µ3) + v1 = 2 + v1 ≤ −2

and T0 is not persistent. Thus it is v2 = 0 and t3 = (1, 2, 3 + v3, δ − 3).

Therefore t4 = (3 + v1 + v3, 1, 2 + v3, δ − 4). We have t4(1) = 3 + v1 + v3 =

3 − (δ − 3) + v3 = 6− δ + v3 ≤ v3 − 1. If v3 ≤ 2 then t4(1) ≤ v3 − 1 ≤ 1

and since µ4 = 1 this contradicts Lemma 65. So it is v3 > 2 and hence

2 + v3 ≥ 5. So necessarily 3 + v1 + v3 = 2 and so v3 = −1− v1 = δ− 4. Hence

t4 = (2, 1, δ − 2, δ − 4), µ4 = 1 and t5 = (1, 2, δ − 1, δ − 5), µ5 = 2. Then

t6(1) = t5(µ5) + v1 = 2− (δ − 3) < 0.

IV.1.2) Assume δ + v1 = 4. Then t2 = (3, 4 + v2, 1, δ − 2), µ2 = 2 and

since δ − 2 ≥ 5 Proposition 66 implies v2 = −2. Consequently t3 = (2, 1, 2 +

v3, δ−3), µ3 = 3 and t4 = (1, v3, v3 +1, δ−4), µ4 = 2. Since δ ≥ 7 necessarily

v3 = 2. Therefore t5(1) = t4(µ4) + v1 = 2− (δ − 4) = 6− δ < 0 and T0 is not

persistent.

IV.1.3) Assume δ + v1 ≥ 5 so v1 ≥ −(δ − 5). Then t1 = (δ + v1, 1, 2, δ −
1), µ1 = 1 and t2 = (δ + v1 − 1, δ + v1 + v2, 1, δ − 2), µ2 = 2. Since δ ≥ 7

Proposition 66 implies δ +v1 +v2 = 2 and then 2 = δ +v1 +v2 ≥ 5+v2 implies

v2 ≤ −3. We have t3 = (δ + v1 − 2, 1, 2 + v3, δ − 3) and since δ + v1 − 2 ≥ 3 it

is necessarily v3 = 0. Finally t4(2) = t3(µ3) + v2 = 2 + v2 ≤ −1 and this is in

contradiction with the persistent property of T0.

IV.2) Assume t0 = (1, 2, 4, δ), µ0 = 4. Then t1 = (δ + v1, 1, 3, δ − 1)

and µ1 = 1. Proposition 66 implies δ + v1 = 2 and hence v1 = −(δ − 2) and

t2 = (1, 2+v2, 2, δ−2), µ2 = 2. Then t3 = (2+v1+v2, 1+v2, 1, δ−3), µ3 = 1 and

either 2+v1+v2 = 2 or 1+v2 = 2. In the latter case we obtain v2 = 1 and hence

2+v1+v2 = 3+v1 = 3−(δ−2) = 5−δ < 0. Therefore necessarily 2+v1+v2 = 2

and so v2 = δ−2. Then t4 = (1, δ−2, 2+v3, δ−4), µ4 = 3 and Proposition 66

implies 2 + v3 = 2. We obtain t5(1) = t4(µ4) + v1 = 2− (δ − 2) = 4− δ < 0.

IV.2) Assume t0 = (1, 2, a, δ), µ0 = 4 for some 5 ≤ a < δ. Then t1 =

(δ + v1, 1, a − 1, δ − 1), µ1 = 1 and Proposition 66 implies δ + v1 = 2 so it is

v1 = −(δ − 2). Consequently t2 = (1, 2 + v2, a− 2, δ − 2), µ2 = 2 and because

a ≥ 5 it is 2 + v2 = 2. Finally t3(1) = t2(µ2) + v1 = 2 + v1 = 4− δ < 0.

Corollary 71. Assume N = ∞. Then no reduced persistent 4-state (i, j , σ)

exists.
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5.4 Cryptanalytical significance

In this section we will focus on cryptanalytical applications of persistent states.

Firstly we will mention an attack based on the Finney state, then indicate

a generalised attack based on any persistent state and finally we will show

an example of such an attack.

In 1994, Hal Finney described the so called Finney state in [Fi94] (see

Example 27), which is the only known persistent state. We will now describe

another interesting property of this state (following [Ma01]).

Assume we have a 2-state (i0, j0, σ0) (3 ≤ N < ∞), where i0 = 0, j0 = 1

and σ0(1) = 1, σ0(2) = a. Clearly, (i0, j0, σ0) is an extension of the Finney

state (which is an 1-state). Then i1 = 1, j1 = 2 and σ1(2) = 1, σ1(1) = a.

For all 1 < k < N we have σk(1) = a, because ik 6= 1 6= jk for all these k.

Consequently iN = 0, jN = 1 and σN (1) = 1, σN(0) = a.

Let an n-state (i0, j0, σ0) be an extension of the Finney state with n =

N, i0 = 0, j0 = 1, σ0(1) = 1. From the above it follows

∀0 ≤ i < N ∀k ≥ 0 if σk(i) 6= 1 then σk+N (i− 1 mod N) = σk(i). (14)

Since σ0 is a permutation of the set {0, . . . , N − 1}, there exists a value l 6= 1

such that σ0(l) = N − 1. Assume σ0(0) = a 6= N − 1 and σ0(2) = b 6= N − 1.

Denote an output word of the PRGA in round i as zi. We get σl−1(il−1) =

σl−1(l − 1) = N − 1 in the round N − 1 and the output of the PRGA equals

zl−1 = σl−1(σl−1(il−1) + σl−1(jl−1) mod N) = σl−1(0) = a.

It follows from Equation 14, that (recall that σ0(1) = 1) σl−1+N−1(l−2) = N−1

and

zl−1+N−1 = σl−1+N−1(il−1+N−1 + jl−1+N−1 mod N) = σl−1+N−1(0) = b

. Generally for all 1 ≤ k ≤ N − 1 we get

σl−1+k(N−1)(l − 1− k mod N) = N − 1,

zl−1+k(N−1) = σl−1+k(N−1)(0) = σ0(k) (15)

Thus we can determine the initial permutation σ0 just by observing the

output sequence.

The PRGA of RC4 sets i0 = j0 = 0 so the Finney state can never occur

in the PRGA, i.e. this state can never appear in real RC4 streams (authors of

[BGN05] described a fault analysis4 of RC4 using the Finney state).

4Fault analysis attacks are attacks based on deliberately introducing faults into crypto-
graphic processors in order to determine the secret keys or the inner state of a cipher.
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Let T0 = (i0, j0, σ0) be a persistent n-state with period P . Assume we have

a full inner state of RC4 (i, j, S) (i, j ∈ ZN , S ∈ SN) where i = i0, j = j0, and

σ0 is a restriction of S. Since T0 is persistent, all following RC4 states given by

PRGA are independent of the value S(a) for all a ∈ {0, . . . , N −1} \Dom(σ0).

As in the case of the Finney state (which has period equal to one), the state

T0 behaves identically on all a, a /∈ Dom(σ0) each P steps, i.e. it changes the

permutation S in a predictable way. Consequently this predictable changes

can be used to obtain a part of the inner state of RC4. Therefore, discovery

of a persistent state would be an important step in the cryptanalysis of RC4.

Example 72 shows how the persistent state from Example 32 can be used

to determine the secret inner permutation of RC4.

Example 72. Let us have N = 256 (in the rest of this example all additions

are carried out mod N). Assume we have RC4 in the state (i0, j0, S0) (subscript

0 does not mean this is an initial state with i0 = 0 = j0), where

i0 = l, j0 = l + 4, S0(l + 1) = 1, S0(l + 2) = 3, S0(l + 4) = 3

S0 is obviously not a permutation, but assume we have such an RC4 state (e.g.

this state can be reached by a fault injection). In Example 32 we have seen that

a table triple given by this 3-state is persistent and Proposition 26 implies that

this state is persistent. For simplicity assume 0 ≤ l < N − 10. Let us have

S0 : (l + 5, l + 6, l + 7, l + 8, l + 9, l + 10) 7−→ (a, b, c, d, e, f).

Denote the inner permutation of RC4 in the round k by Sk. Analysis of this

state indicates that

S7 : (l + 2, l + 3, l + 4, l + 5, l + 6, +7) 7−→ (b, a, d, c, f, e).

Generally, each element of S0({0, . . . , N − 1} \ {1, 2, 4}) is shifted to the right

alternately by 2 or by 4 positions. Let zi denotes an output of RC4 in the round

i. Then

z2 = S2(b + 3), z3 = S3(a− 1), z4 = S4(d + 3),

z5 = S5(c− 1), z6 = S6(f + 3), z7 = S7(e− 1).

Let us have a = 1 (this is just for illustration, other cases can be handled

similarly). Then z3 = S3(a−1) = S3(0). Since we have assumed 0 ≤ l < N−10

it is z3 = S0(0).

After N rounds of PRGA, it is again i = l and values of SN are shifted

to the right (by 2 or by 4 positions) compared with S0. Since S0(l + 5) = a

and N is even, the value a is each N steps shifted to the right by 2 positions.

Consequently it is

z3+N−2 = S3+N−2(a− 1) = S3+N−2(0) = S0(2).
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So after approximately N · N/2 round we obtain S0(k) for all even 0 ≤ k <

N, k /∈ {2, 4}. In a similar manner we can obtain the second half of the

permutation S0 (use an even b instead of odd a = 1).
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