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Chapter 1

Introduction

In practical situations we often face a problem where a data sample can-
not be well described by one relatively simple statistical model during the
entire observational period. Various economic factors or human activities
(deforestation, urbanisation, ...) may cause that the relationships among
the variables change over time. In this case some of the parameters of the
statistical model are subject to shifts. Time moments where a change occurs
are usually called change points.

The change point problem has attracted attention of many researchers
in recent years. This topic offers interesting theoretical problems and has
many applications in economics, meteorology, hydrometeorology, environ-
mental studies, biology and many other disciplines. Examples are US ex-post
real interest rates or UK inflation rates (Bai and Perron 2003a), monthly
water discharges in Nacetinsky Creek, rainfall departures in Sahel or to-
tal ozone amount measured in Hradec Krélové (Jaruskova 1997), temper-
ature series from Klementinum in Prague or Nile river discharges (Antoch
and Huskova 1998), segmentation of the DNA sequence of Bacteriophage A
(Braun, Braun, and Miiller 2000) or analysis of cancer mortality and inci-
dence data (Kim, Fay, Feuer, and Midthune 2000), among many others.

The main task is to test whether it is necessary to divide the time ordered
data into segments in such a way that the same model can be applied to
data in each segment or whether just to use one model for all data. If the
data indicate some change, the next task is to estimate the unknown change



points and the total number of changes present. The estimators of the model
parameters and their properties are also of interest.

There is a vast amount of literature considering the change point prob-
lem. However, most of it deals with just one single change, partially because
estimating multiple change points typically requires intensive computation
which could have been a problem some years ago. The literature address-
ing the issue of multiple change points is also rich. There exist different
approaches to this subject - variety of methods and model settings were con-
sidered. It is impossible to include all of them in this short text and we will
refer only to a small part of the existing literature.

A great amount of works covers changes in means of a sequence of inde-
pendent observations. The observations are divided into segments in such a
way that their mean is constant in each segment but varies across the seg-
ments. This type of the model is often called ”location model”. The problem
of estimating abrupt change points was discussed e.g. in Antoch and Huskova
(1998), who consider procedures based on maximum of the weighted partial
sums of residuals and on moving sums of partial residuals to estimate the
number and locations of changes. Venter and Steel (1995) propose normal
and non-parametric tests based on ratios of optimal sums of squared resid-
uals associated with k£ and k + 1 changes, respectively. The tests produce a
value for the number of changes present if the null hypothesis of no change is
rejected. Chen and Gupta (2000) (in Chapter 2) apply a binary segmentation
procedure combined with the Schwarz’ information criterion (Schwarz 1978)
for detection of changes in normal models. The analysed situations involve
change points in means, in variances and changes in means and variances.
The advantage of this procedure is that the change points are detected and
estimated simultaneously.

Changes in regression parameters in a linear regression model are studied
e.g. in the following papers. Bai and Perron (1998) deal with F type tests
for multiple changes, namely tests of no change versus k changes where k
is fixed or arbitrary with some upper bound, and tests of k& versus k£ + 1
changes. They consider a partial structural change model where not all
parameters are subject to shifts, with quite general assumptions on errors
and regressors. They also present a sequential test for estimation of the



number of changes. Bai and Perron (2003a) consider practical issues related
to the empirical applications of the F type tests for multiple changes and
present an efficient dynamic algorithm to obtain global minimisers of the
sum of squared residuals. Bai (1998) deals with least absolute deviations
estimation of a regression model with multiple change points. Kim, Fay,
Feuer, and Midthune (2000) consider a segmented linear regression model
with a continuity constraint at the change points.

In this work we consider multiple linear regression models with changes
occurring at unknown time points. In Chapter 2 we introduce the model and
notation and formulate the assumptions on regressors and errors. Chapter 3
is devoted to F type tests for detection of changes in linear regression. The
approximations to the corresponding critical values are usually derived from
a limit distribution of the test statistic under the null hypothesis (Bai and
Perron 1998). In Chapter 4 we propose another possibility how to obtain
them - we use the approximations based on the application of the permutation
principle. After a short description of permutation test procedures based on F
type test statistics we prove the asymptotic equivalence of both approaches
for obtaining approximations to the critical values. Details of the proof
are given in Appendix A. We present a number of simulation results and
show that the permutation arguments provide satisfactory approximations
to the critical values when the change in parameters is not too large. In
Chapter 5 we discuss Schwarz’ and modified Schwarz’ information criteria
and sequential methods to estimate the total number of changes present. In
the last Chapter 6 we apply all the discussed methods on the temperature
series from Klementinum, Prague. For all calculations we use the software
R, see http://wwuw.r-project.org/.



Chapter 2

Model and assumptions

We consider the following multiple linear regression model with m changes,
i.e. m + 1 segments

y=xB+2z0,+e t=1,....14

Z‘l/t:w;lg—'—z;dQ—i_et %:t1+17"'7t2 (21>

Y =xB+ 201+ L=t +1,....n

where t;, j = 1,...,m are the change points, y, is the observed dependent
variable, ; (p x 1) and 2; (¢ x 1) are the vectors of regressors, 3 and é;, j =
1,...,m + 1 are the corresponding regression coefficients and e; is the error
at time t.

The change points ¢;, j = 1,...,m are in practice mostly unknown. The
purpose is to estimate them together with the regression coefficients 3 and
0;,j =1,...,m+ 1, given the observations (y;, &, 2:), t = 1,...,n. We
do not impose any continuity constraint on the segmented regression model
and so the change points are supposed to coincide with the observational
times. The number of changes m is also treated as unknown and has to be
estimated.

The regressors may be fixed or random in repeated samples. Since these
variables are often not perfectly controlled in economics, we will assume the
random design in this work. Non-random regressors (the fixed design) are



covered by the theory as well.

The model (2.1) is called a partial structural change model because only
the vector of regression parameters d, is subject to a change, 8 remains the
same in all segments. The reason why we assume such a general model is that
the vector B can be estimated from the entire sample. This is better than
to reestimate it whenever a change occurs because we increase the efficiency
of the estimator and the power of the tests as well. So if we know that some
regression coefficients do not vary, we should include this knowledge in our
model, especially when there are multiple changes. When p = 0, we obtain
a pure structural change model where all parameters are subject to shifts:

Yt :z£5j+et t:tj_1+1,...,tj (22)

for the j-th segment, j = 1,...,m + 1, with the convention ¢, = 0 and

tm+1 = n.
The model (2.1) can be rewritten in the matrix form as

y=XB+Zé+e

where
A1 11 T2 .. Typ B
Yo To1 T22 ... Typ B2
y = ) X - ) I8 = )
Un Tn1 Tp2 .. Tpyp ﬁp
Z; 0 0
! €1
0 Z,
_ 62 €9
Z = , 0= , e =
’ ’ 0 5m+1 €n
o ... ... 0 Z,u
with
Rti 1411 Rtj+1,2 - Rti_i+lg
7. _ Rtj_142,1 Rt 1422 .- Rtj_1424
i = . .
Zt],l Zt]72 R Zt]vq
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Having the observations (y1, €1, 21), - - ., (Yn, Tn, 2,) given, the goal is to esti-
mate the change points t;, 7 = 1,...,m and the regression coefficients 3 and
d;, assuming 6; # ;41,7 = 1,...,m. We assume for this moment that the
number of changes m is known. We discuss possible methods of estimating it
in Chapter 5. We also postpone the problem of testing for structural changes
to Chapter 3.

The estimation of the regression coefficients is based on the least squares
(LS) principle. For each m-partition (¢, ...,t,,) the associated LS estimates
of the regression parameters 3 and §; are obtained by minimising the sum
of squared residuals (SSR)

m+l 1
(y—XB-28)(y-XB-28)=) > (n—zB-20)".
j=1 t=t; 1+1
We denote the minimum of this sum by S,(t1,...,%,) and the resulting LS
estimates as B(t1, . . ., ty) and 8(¢1, . . ., tm). The change points are estimated
as
(t, ... ty,) = arg ming, ¢, Sn(te, ... tm) (2.3)

where the minimisation is taken over all m-partitions such that ¢;;, —t; >
h >gq, 7 =1,...,m, h is the minimal possible length of a segment. We
find the estimates of 3 and d; as the LS estimates B8 = B(fl, ... ty) and
8 = 8(1,. .., ty) associated with the best partition (2.3).

An efficient dynamic algorithm for obtaining the estimated change points
from (2.3) is discussed in detail in Bai and Perron (2003a). We will briefly
outline the idea of this algorithm. We consider a data sample of size n and
the total number m of changes. We denote by C‘Z ; the minimal SSR obtained
by the best partition of a sample starting at time ¢ and ending at time j into
k segments. In the first step we calculate SSR of all possible segments c}yj
with the minimal length h. For a sample size n, the upper bound to the
number of segments is n(n — 1)/2 (all combinations of two indices (3, j),
i<j, 4,j=1,...,n). SSR of any (m + 1)-segment partition is calculated
as a sum of SSR in individual segments. Therefore the algorithm is of order
O(n?)! for every number of changes m > 0.

n comparison, the grid search algorithm is of order O(n™) for m changes.

10



The procedure is based on the recursive formula

k41 . k 1
013 = khgllgjl_h (Cl,l + Cl+1,j)
calculated for each possible ending time j = (k+ 1)h,...,n — (m — k)h of a
sample partitioned into k+ 1 segments. We find the optimal (m+ 1)-segment

partition of the whole sample as

m+1 : ( m 1
C = min Ch o+ C
Ln mh<j<n—h L J 1,n)7

where the last segment is combined with all samples which have ending time j
and are optimally partitioned into m segments. The partition which yields
an overall minimal SSR is chosen.

We impose the following assumptions on the change points, regressors and
errors which we will need in the following chapters. We adopt the convention
to=0and t,.1 =n.

Assumption 1
ti=[nNY 0=X<M<...<Xpp1=1, foreach j=1,....m+1

Assumption 2

(X, Z;) (X, Z;)
tj — tj—l

LC>0 as tji—tj_1 — o0, foreach j=1,..., m+1

where X are the rows of the matriz X corresponding to the j-th segment, the
letter p means convergence in probability and C' is a finite positive definite
matrizx.

Assumption 3 The errors are independent and identically distributed (here-
after i.i.d.) with zero mean, nonzero finite variance o and some finite mo-
ment Eleg|>t2 > 0 with some A > 0.

Assumption 4 The regressors &y = (T, ..., Typ) and z¢ = (241, - . ., 24q) aT€
independent with the errors ey for all t and all t'.

Hz] is the integer part of z

11



Assumption 1 is needed for the asymptotic theory. It allows the change
points to be asymptotically distinct.

Assumption 2 is satisfied e.g. by i.i.d. regressors having a positive definite
variance matrix. It rules out trending explanatory variables (z; = t) that
have an infinite matrix C' in the limit, or vanishing explanatory variables
(zz = A, A < 1) with a singular matrix in the limit. Note, that the limit
matrix C in Assumption 2 is the same for all indeces j.

For simplicity we do not allow any heteroscedasticity in the model (As-
sumption 3) or any correlations between regressors and errors (Assump-
tion 4).

12



Chapter 3

Test statistics for multiple
changes

We introduce tests that help us to decide if a structural change in a linear
regression occurred or not. All tests are based on F type test statistics. In
Section 3.1 we discuss a test of no change versus k changes, where k can be
arbitrary but fixed. We also describe a test against an alternative hypothesis
of unknown number of changes k with some upper bound for k. In Section 3.2
we consider a test of k versus k 4 1 changes. This test is particularly useful
for determining the number of changes present. We work with the partial
structural change model (2.1) where not all regression coefficients are subject
to shifts.

3.1 A test of no change versus k£ changes

In the first part of this section we describe a test of no change against k
changes where k is considered to be some fixed number. First of all we assume
that the change points tq,...,t; such that t; = [nA;], 0 < A\ < ... < N4
under the alternative hypothesis are known. The F type test statistic is then
defined as

- n—(k+1)qg—p SSRy — SSR;

13



with

SRy = > (i — @i - z230)2 :
t=1

k+1 tj

SSRk Z Z ( —Qi‘tﬁ t1,...,t k)—Z;Sj(tl,...,tk)>2.

j=1t=t;_1+1
SSRy is the minimal SSR under the null hypothesis Hy : 6, = 63 = -+ =
011 = 09, SS Ry, is the minimal SSR under the alternative hypothesis H 4 :
0; #6,41,Yj =1,..., k with the known partition (¢, ...,%).

g g
k n—(k+1)g—p

is a consistent estimator of the error variance ¢ under H, and Hy (see
Appendix in Bai and Perron (1998) or proof of Lemma 3 in Yao (1988) for
a location model). There are (k4 1)g + p unknown regression parameters in
the model under H4 and p + ¢ parameters under Hy. A large value of the
test statistic (3.1) indicates that the null hypothesis of no change is violated.

We derive the limit distribution of the test statistic 3.1 under Hy. For
ease of notation let us assume a special case with p = 0. Then the above test
statistic can be rewritten using

SSRy— SSR, = — (Z ytzt> C! (Z ytzt)
t=1 t=1

/
k+1 t tj
1
+ E E wz | Cp” g YtZt (3.2)
7=1 t=tj,1+1 t=tj,1+1
/
n k+1 i
o = 2= | 2 we
S — 1 tZt
n k+ =1 j=1 \t=t; 141

tj
X Ct:htj Z YiZi ] (3.3)

t=t;_1+1

14



where

n 2
Cn = Z thg; Ctj—lﬂfj = Z thllf, ] = 17 ey k + 1. (34)
t=1

t=t;_1+1

Under Hy the formulas (3.2) and (3.3) also hold when y; is replaced by
e; = y; — z,80. The estimator &7 converges in probability to o?. Hence, we
can concentrate on the limit of (3.2). Applying the central limit theorem to
a vector (Z?:toﬂ €1Z¢y s i’jgiﬂ etzt) and using Assumption 2 we arrive
to the following result.

Theorem 3.1.1 Under Assumptions 1-4 the limit distribution of the test
statistic (3.1) under the null hypothesis is

ST =X+ Ao)x(@)

—1

F(k;q) ="

kq

where X?(q) stands for independent chi-square distributions with q degrees of
freedom.

More details about the proof are given in Appendix A.

Now we assume the change points ty, ..., t, are unknown. For an asymptotic
analysis we need to impose some restrictions on the possible values of the
change points. We define a set

Ac={(, - M) A — Ay 26, Vi=0,.. k} (3.5)

for some arbitrary small € > 0, so called the trimming parameter. € imposes
the minimal possible length A = ne of a segment. The sup F' type test
statistic is defined as

sup F,(k;q) = sup  Fo(A, ... Ak q) (3.6)
(A1, Ak)EAL

for some arbitrary positive €.

15



Since computing of the sup F,,(k;q) through all (Ay,...,Ax) in the set
A. is rather inconvenient, Bai and Perron (2004) define an asymptotically
equivalent version which is simpler to obtain:

sup F; (k; q) = Fu(Ar, -, Ak @) (3.7)

where j\j = fj/n, j=1,...,kand t,..., ¢ are the estimated change points
obtained as global minimisers of the SSR, see equation (2.3).

The limit distribution of the test sup F,,(k;q) (3.6) under Hy is specified
in Proposition 6 of Bai and Perron (1998) under quite general assumptions on
errors and regressors. It depends on the value of the trimming parameter ¢: as
e — 0, the critical values of the test statistic diverge to infinity. The authors
adopted € = 0.05. Asymptotic critical values up to 9 changes (1 < k < 9)
and for maximum of 10 changing regressors (¢ < 10) are displayed in Table I
of Bai and Perron (1998). Additional critical values for ¢ = 0.10,0.15,0.20
can be found in Bai and Perron (2003b).

So far we have tested the null hypothesis of no structural change versus the
alternative assuming a particular number of changes. In practice, however,
the number of changes is often unknown. Therefore it is more of interest
to test the hypothesis of no change versus an unknown number of changes,
given some upper bound M for the number of changes. A new test, so called
a double maximum test (Bai and Perron 1998), is defined as

Dmax F,(M,q,ay,...ay) = max, (ak (/\17?1;561\6 Fo(A, o A q))
for some weights aq,...ay. If we have some prior knowledge about the
likelihood of various numbers of changes, then the weights may be given in
such a way that the more probable the number of changes is, the higher
weight is selected.

The simplest case is to set all weights to unity:

UD max F, (M, q) max - sup F.( M\, Ak q). (3.8)

ISkSM (3 LA €A.

The asymptotically equivalent version is

UDmax F;(M,q) = pax, Fo(A1, . Agsq) (3.9)

16



where j\j = fj/n, J=1,...k and fj are again the estimated change points
from (2.3).

For a fixed sample the critical values of the test (3.6) decrease as k in-
creases and so the p-values also decrease with &k (the null hypothesis is more
often rejected even if it is true) and hence the test has less informative power
if the number of changes is large. Therefore Bai and Perron (1998) specify
some special weights such that the p—values equal for each k. Let ¢(q, o, k)
be the asymptotic critical value of the test (3.6). Then the weights ay, . ..a
are defined as a; = 1 and a; = ¢(q,a,1)/¢(q, a, k) for k > 1. They depend
on the value of ¢ and on the significance level of the test o. This version of
the test is denoted as

c(q,a, 1)
WD max F, (M, ) = a4 FoO, o e 3.10
max Fa(M ) = B g ank) o, b, - Asg) - (310)

and the asymptotically equivalent version is

1
WDmax F;(M,q) = max cgo 1)

B ey G A @)

Bai and Perron (1998) obtained the asymptotic critical values of the
tests (3.8) and (3.10) for M = 5 and € = 0.05. The critical values vary
little for M > 5. Additional critical values for ¢ = 0.10 (M = 5), 0.15
(M =5),0.20 (M = 3) and 0.25 (M = 2) are tabulated in Bai and Perron
(2003Db).

3.2 A test of k£ versus k + 1 changes

Bai and Perron (1998) also consider a test of the null hypothesis of k£ changes
against the alternative that an additional change is present. The test is based
on testing of each from k 4 1 segments for a presence of a change. The k
change points #1,...%, under the null hypothesis are obtained by a global
minimisation of SSR using the dynamic algorithm, see Chapter 2 for more
information.

For each segment containing the observations fj_1+1, . .fj, 7=1,...k+1
(with the convention fy = 0, {41 = n), the test of no change versus one

17



change is applied. If the overall minimum of the SSR of the sample with
k + 1 changes is sufficiently smaller than the SSR associated with k& changes,
then the null hypothesis is rejected and a new change point is added to that
segment where SSR achieves the greatest reduction. The test is defined as

E(k+1)k) = {Sa (b, ..., tx)

. . . - - - 9
~ min (£j1+1+12£T<£jh Sn (bt oty k) }/ak) (3.12)
where S, (fl, e ,fk), Sh (fl, o ,fj,l, T, t}-, . ,fk) is the minimal SSR for a
given partition (f1,...,%), (f1,... i1, T, fj, ...,tx), h = ne is the minimal
possible length of a segment and 67 = S, (1,...,%;)/n is a consistent esti-
mator of the error variance o2 under the null hypothesis.

The limiting distribution of the test statistic (3.12) under the null hy-
pothesis is specified in Proposition 7 of Bai and Perron (1998). The critical
values for € = 0.05,0.10,0.15,0.20,0.25 and 1 < ¢ < 10 can be found in Bai
and Perron (1998, 2003b).

Bai (1999) introduced an alternative procedure to test k changes versus k +
1 changes. Unlike the previous test (3.12), here the change points under
null and also alternative hypothesis are obtained simultaneously via global
minimisation of SSR. The test is based on the difference between the optimal
SSR corresponding to k changes and that corresponding to k + 1 changes.
Let t1,...1; be the estimated change points under the null hypothesis and
ty,...4;, the estimated change points under the alternative. Then the test
statistic, so called likelihood ratio test statistic, is defined as

Sn(tAh ... 7£k) - STL(-ET’ e 7£Z+1)

)
Oft1

LRu(k + 1]k) = (3.13)

where 62, = S,(f],...,£;,,)/n is a consistent estimator of the error vari-
ance o2 under both hypothesises.

The limiting distribution of the test (3.13) is derived in Theorem 1 of
Bai (1999). It has a known analytical density function and hence the critical

values of the test can be easily computed from the formula in Corollary 1 of
Bai (1999).

18



Both mentioned tests of k versus k+ 1 changes can be used for identifica-
tion of the number of change points. We will describe a sequential procedure
based on these tests in Section 5.2.

The F type test statistics mentioned above are applicable also under fairly
general assumptions on regressors and errors, see any article of Bai and Per-
ron in references. For example they can be applied to models allowing serial
correlated errors and heteroscedasticity. In that case it is recommended to
use larger trimming parameter € to achieve tests with correct size in finite
samples. The tests can also be constructed for different distribution of the
errors and regressors across the segments. Bai and Perron (2003a) analyse
various versions of the tests depending on the assumptions. Different spec-
ifications are considered in the case of pure and partial structural change
models.

19



Chapter 4

Permutation test procedures

In this chapter we deal with approximations to the critical values of the
test of no change versus k fixed changes. Bai and Perron (1998) use ap-
proximations based on the limit distribution of the test statistic (3.6) under
H,. Here we describe another possible approach based on the application of
the permutation principle. In Section 4.1 we explain the theory concerning
the permutation test procedures related to F type test statistics. We prove
that the permutational method is applicable to our situation. In Section 4.2
we conduct various simulation experiments in order to demonstrate how the
method works when applied to regression models with changes of different

size.

4.1 Principle of permutation tests

We were inspired by Huskové (2004), Huskova and Antoch (2003) and An-
toch and Huskova (2001) where the permutation test procedures were used
for the approximations of the critical values of maximum type statistics based
on partial weighted sums of residuals. The procedures were applied to loca-
tion models or regression models with at most one change. In these cases
approximations based on the limit behaviour of the considered test statistics
under H, were not satisfactory because their convergence rate was rather
small. Therefore the asymptotic critical values were far from reality when
the sample size was not too large. The approximations based on the per-

20



mutation tests gave much better results, the obtained critical values were
smaller than the asymptotic ones and hence also changes of smaller sizes
could be detected.

In this section we apply the permutation principle to the F' type test statistic
of no change against k fixed changes. For simplicity we explain the permu-
tation approach only for the statistic F,,(k;q) (3.1) where the locations of
changes under H 4, i.e. \; < --- < A\, are assumed to be known. We consider
the pure structural change model (2.2) with all regression coefficients subject
to a change.! We add the following assumption on the regressors.

Assumption 5 The regressors z; are known constants and the first compo-
nent 1s equal to 1, 1.e. zpy =1, t=1,...,n.

Under the null hypothesis Hy : 81 = d2 = ... = 8,11 = &y the errors
et =y — 2,00, t = 1,...,n are i.i.d. random variables. Thus they are ex-
changeable and (e, ..., e,) has the same distribution as (eg,, ..., eg, ) where
R = (Ry,...,R,) is a random permutation of (1,...,n). Since the errors ¢
are unknown, we replace them by their estimators under Hy, i.e. the residuals

ét = Y — Z;(sAD. (41)

The main idea is to randomly permute the residuals and for every such
permutation calculate the related test statistic. More exactly, recall that
the statistic F,(k; ¢) (3.1) under Hy can be written using formulas (3.2) and
(3.3) with e; instead of y;. The permutation version of the statistic F),(k;q)
has the form

_ SSRy(R) — SSRi(R)
- kq o3 (R)
where SSRy(R)—SSRi(R) and 67(R) are given by equations (3.2) and (3.3),
respectively, with y; replaced by ég,.

Fo(kiq; R) (4.2)

The residuals é; depend on the original observations y;. We will study the
conditional distribution of the statistic F,(k; ¢; R) (4.2), given yy, . . ., Yn, also

The proofs concerning the application of the permutation principle related to the
statistic sup F;*(k;¢) (3.7) with unknown change points, while considering the partial
structural change models (2.1), are beyond this work.
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called permutation distribution. Its exact form is known because the distri-
bution of random permutations R is known. However, it is computationally
demanding to compute the statistics for all n! permutations. Therefore we
independently and randomly select N permutations where N << n! is a
reasonably large number to get satisfactory approximations. For these per-
mutations we compute the statistic F,,(k;q; R) (4.2).

For the purpose of examining the limit conditional distribution of the test
F.(k;q; R), given vy, . .., y,, we can write

SSRy(R) — SSR(R)

k+1 ! k+1 k+1
(Es) e (Es.) s,
j=1

k+1
1
~9 A2 / 1
0. (R) = S:.Cr.
«(R) n—(k+1)q ; Z tio1.t n]
where
tj k+1
Sj,n: Z éthh jzl,,/{?+1, SO,n ZeRtZt—ZSJn

t=tj_1+1

are vectors of linear rank statistics, given y1,...,y,. 21,...,2, are known

regression vectors and a,(t) = é; are the scores. Thus the study of the con-
ditional limit distribution of the statistic F,,(k;q; R) is reduced to the study
of the limit distribution of vectors of linear rank statistics. It is sufficient to
deal only with SSRy(R) — SSRk(R), because, similarly as in Section 3.1,
6%(R) converges in probability to 0. Under Assumptions 2, 4 and 5 we can
approximate the vectors of linear rank statistics S;, by vectors of weighted
sums of independent random variables (Theorem 5.1 in Huskovéd and Antoch
(2003))

tj

Tin= Y z(an([nU]+1)=a,(U) j=1,... . k+1

t=tj,1+1
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where U = (Uy,...,U,) is a sample from a uniform distribution on (0, 1),
R = (Ry,...,R,) are the corresponding ranks and

an(U) = % S  an([nl) +1).

Using the multivariate central limit theorem we get that the vectors of linear
rank statistics (S1,,...,Sk+1.,) have asymptotically a normal distribution
with zero mean and the variance matrix calculated in Appendix A. Further,
using Assumptions 1, 2 and realizing that > ;" by 2t /(t; —t;—1) converges to
the first column of the limit matrix C', we obtain the following result:

Theorem 4.1.1 Let observations (y1, 21), .. ., (Yn, 25,) follow the model (2.2)
with no restrictions on the number of change points m. Under Assump-
tions 1-5 the conditional distribution of the test statistic F,(k;q; R) (3.1),
JIen Yy, ..., Yn, converges in distribution to

k+1
_1(1 — N+ A-10)x5(g)

kq

Fu(k;q; R) =2

where X?(q) stands for independent chi-square distributions with q degrees of
freedom.

The derivation of the limit distribution in Theorem 4.1.1 is given in
Appendix A. Notice, that the conditional limit distribution of the test
F,(k;q; R) (4.2), given y, does not depend on the original observations y
and coincides with the limit distribution of the test statistic F,(k;q) (3.1)
under the null hypothesis. Therefore the quantiles corresponding to the em-
pirical conditional distribution of the statistic F,,(k;q; R) can be good ap-
proximations to critical values corresponding to the test based on the statistic
Fu(k; q).

The situation is more complicated when the locations of changes ¢4, ...,
under the alternative hypothesis are unknown. Then the limit distribution
of the test can be described via Wiener processes. We do not prove it but
conduct a number of simulations which are discussed in the next section.
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4.2 Simulated critical values

We would like to test the null hypothesis of no change versus some fixed
number of changes k where the change points ¢1,...,t;, (le. 0 < A\ < ... <
Ar) under H, are unknown. In the previous section we showed that we
can get reasonable approximations to critical values of the test F,,(k;¢) with
known change points under H4 by applying the permutation test procedures.
Here we conduct various simulation experiments and apply the permutation
arguments to the test statistic sup F¥(k;¢) (3.7) assuming unknown change
points under H,. We want to show that the approximations to the critical
values obtained through the permutation principle are quite stable whether
the data follow the null hypothesis or the alternatives. We compare the
empirical critical values with the asymptotic ones calculated by Bai and
Perron (1998, 2003b).

We denote the permutational version of the test statistic sup F¥(k;q) by
sup F¥(k; q; R). Tt is defined as

sup F,; (k; ¢; R)

n_o,o N2kl R N2

S (en—2b) -3 % (en —20)
n—(k+1)q t=1 7=1 t=f;_1+1 (4.3)
N kq k1 4 .

S % (en- a8

Jj=1 t=tAj71+1

with

n t;
§ 1 5. S &r AN | 5
b0 =C,' Y ziép,; 0; = 0;(t1,... . te) = C " & > ziép,
t=1

t:ij_l—‘rl

where t1, ..., are obtained as global minimisers of SSR assuming the min-
imal length of a segment to be h = ne. In our simulation experiments we
used the trimming parameter ¢ = 0.15 which is also the default value in the
function breakpoints in the program R.

We generate data from the model (2.2) considering

e sample sizes n = 100, 160;
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e i.i.d. errors with normal or Laplace distribution with variance equal to
one;

o g =2; z = (211,212) where z3 = 1, t = 1,...,n and regressors z;, are
generated from a logarithmic normal distribution where logarithm of
the distribution function has mean equal to 0 and standard deviation
equal to 1;

e up to 2 change points (m = 0, 1,2) with timing ¢; = n/4, to = 3n/4;

e regression coefficients 8] = (0, 1); all considered values of 92, d3 can be
seen in any Table B.1 - B.6 in Appendix B.

The value of the regression coefficients in the first segment is always 8] =
(0,1). In the second and third segment either the value of intercept or the
slope or both may change. We consider models with no change (§; = §, =
d3 = dp) or changes of sizes 0.5 and 1. Changes of greater size than 1 are
easy to detect and there is no need to test whether they have occurred or
not.

We proceed as follows. First we generate n independent errors e; and
regressors 2. For particular values of the coefficients d;, j = 1,...m + 1,
we calculate y;. Having y, and z; we calculate the residuals é; (4.1) from the
model under the null hypothesis. We apply the permutation principle to these
residuals: we generate a random permutation r = (rq,...,7,) of (1,...,n)
and calculate the permutation version of the statistic sup F(k;¢; R) (4.3)
for R = r. We repeat the last two steps for 10000 random permutations
R. Finally we obtain the empirical distribution of sup F)*(k; ¢; R) and com-
pute its corresponding empirical quantiles which we use as the approxima-
tions to critical values of the test sup F¥(k;q). The empirical distribution of
sup F¥(k;q; R) for k = 2,q = 2,e = 0.15 is plotted in Figure 4.1.

Recall that in order to get the exact permutation distribution of the test
statistic sup F'(k;¢; R) (4.3) we should calculate its values for all n! per-
mutations R = (Ry,..., R,). This is of course practically impossible unless
n is very small (n < 9). 10000 << n! random permutations seem to be
a reasonably large number for our simulations. In order to see how much
the empirical quantiles change with the increasing number of permutations,
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Figure 4.1: Histogram of the statistic sup Ff(k;q; R) for k = 2, ¢ = 2 and
¢ = 0.15 calculated from 100 000 permutations. The orange bars in the graph
represent values larger than the 95% quantile. The original data sample
followed the model with m = 2 changes and regression coefficients 8] = (0, 1),
0, = (0,2), 65 = (0,3). The errors were generated from the standard normal
distribution.
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Table 4.1: Empirical quantiles x such that P(sup F¥(k;q) < x/q)=1—«
calculated for the increasing number of random permutations N.

k=2 ¢=2 =015

N 010 005 0.025 0.0l N 010 005 0025 0.01
10000 9.46 11.60 13.48 15.88 60000 9.50 11.51 13.41 15.82
20000 9.51 11.54 13.55 16.09 70000 9.52 11.52 13.45 15.95
30000 9.47 11.51 13.45 15.95 80000 9.52 11.52 13.45 15.93
40000 9.49 11.53 13.46 15.92 90000 9.51 11.51 13.45 15.97
50000 9.51 11.53 13.46 15.95 100000 9.50 11.49 13.44 15.96

Notes: a = 0.10, 0.05, 0.025, 0.01.
Sample details: n = 100, e; ~ N(0,1), number of changes m = 2, regression
coefficients 87 = (0,1), 85 = (0,2), 85 = (0, 3).

we generated up to 100 000 permutations and applied the related test statis-
tics sup F*(k; ¢; R) to a data sample following a model with two changes.
The 90 %, 95%, 97.5% and 99 % empirical quantiles were calculated after
10000, 20 000, 30000, ...,100000 permutations. The results are shown in
Table 4.1. We see the values of the empirical quantiles stabilise already
for N = 10000, the difference between the quantiles calculated from 10000
permutations and those calculated from 100 000 permutations is at most 0.1.

The calculation of 10000 values of the test statistic sup F}'(k; ¢; R) using
e = 0.15 took over 3 hours for the sample size n = 100 and about 9 hours
for n = 160 (Pentium 4, 2.4 GHz).

In Tables B.1 - B.6 in Appendix B we present some of our simulation results.
In each single table there are empirical quantiles from various data samples
for the test of no change versus k£ changes. We assumed k = 1, 2,3 changes
under the alternative hypothesis. In the first three Tables B.1 - B.3 we
considered sample size n = 100 and in Tables B.4 - B.6 size n = 160. We
obtained quite satisfactory results in most of the simulations. The 90 %, 95 %,
97.5% and 99 % empirical quantiles calculated from samples with m = 1,2
changes are similar to those which were computed from samples following the
null hypothesis (m = 0). The values are also close to the asymptotic critical
values of the test sup Ff(k; ¢) (hereafter ACV) calculated by Bai and Perron

27



Table 4.2: Empirical quantiles x such that P(sup Ff(k;q) < x/q) = 1—«
calculated for different sets of 10000 random permutations for a given
data sample.

0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01
9.455 11.599 13.482 15.884 9.465 11.304 13.070 15.274
9.560 11.471 13.642 16.181 9.665 11.669 13.694 16.470
9.380 11.439 13.246 15.615 9.482 11.502 13.467 15.915
9.575 11.583 13.535 15.813 9.450 11.423 13.414 16.162
9.558 11.535 13.468 16.065 9.442 11.372 13.373 15.892

See Table 4.1 for more sample details.

(1998, 2003b). However, there are situations for which the empirical quantiles
are much higher than expected, especially for the significance levels o = 0.01
and a = 0.025. The empirical critical values corresponding to o = 0.10 are
all in a good agreement with empirical critical values for m = 0 and with
ACV, the difference is in average 0.3 —0.4. The situation is a little better for
a larger sample size n = 160. The empirical critical values for n = 160 seem
to better agree with ACV, but there are still some exceptions with larger
values than ACV. 2

In order to save the computational time, the test statistics sup F*(k; ¢; R)
were calculated for all alternative hypotheses & = 1,2,3 using the same
permutated residuals. Therefore it is more likely that the critical values not
satisfactory for e.g. k = 1 will not be satisfactory for other k. The errors e,
and regressors z;, were always newly generated for each considered value of
regression coefficients 4.

When comparing the critical values obtained from the samples assuming
normal errors and those assuming Laplace errors, we cannot say generally
that the critical values are e.g. higher for Laplace errors or vice versa. The
empirical quantiles do not indicate any dependence on the distribution of the
errors.

2ACV and empirical critical values from samples with m = 0 are approximately the
same
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Table 4.3: Empirical quantiles  such that P(sup F)i(k;q) < z/q) = 1—«
calculated 20 times, each from newly generated samples following the
same model.

k=2 g¢=2 =015

0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01
10.34 12.69 14.63 16.89 11 9.17 10.73 1229 14.12
8.80 10.49 12.03 1388 12 8.66 10.03 11.32 13.12
9.01 10.46 11.82 13.60 13 868 9.89 11.18 12.68
961 11.76 13.86 16.42 14 957 11.51 13.56 16.06
9.04 10.63 12.33 1430 15 1391 18.04 20.82 24.19
10.12 12.05 1393 16.72 16 9.19 10.68 11.98 13.65
10.17 12.23 1447 17.16 17 887 1051 12.09 14.19
11.09 13.74 1598 19.21 18 879 10.18 11.48 13.44
9.06 10.80 12.41 14.33 19 1028 13.01 1555 18.68
10 874 10.06 11.44 13.09 20 9.01 1057 12.09 14.11

O© 00 3 O T = W N =

See Table 4.1 for more sample details.

Now let us examine the cases where the empirical critical values are too
large when compared to ACV. The empirical critical values are more likely
to exceed ACV when the data follow a model with at least one change in
the slope parameter, especially when the change is large (1 is already consid-
ered to be a large change in the slope). We would not improve the results if
we calculated the empirical distribution of the test statistic sup F*(k; ¢; R)
from more than 10 000 permutations, see the above discussed Table 4.1. The
dependence on the randomness of selected random permutations is also neg-
ligible: for our chosen example

m=2 & =(0,1), & =(0,2), & =(0,3) (4.4)

we calculated the quantiles for different sets of 10000 random permutations,
see Table 4.2. We can see they are approximately the same.

To see how strongly the empirical conditional distribution of the statistic
sup F¥(k; g; R) depends on the observations y;, we repeated the simulations
20 times for the problematic example (4.4). The regressors and normal errors
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Table 4.4: Empirical quantiles = such that P(sup Ff(k;q) < z/q) =
1 —«a calculated 20 times, each from newly generated samples following
the same model.

k=292 qg=2 e =0.15
0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01

1 857 9.72 1090 12.45 11 847 9.72 10.84 12.63
2 896 10.80 12.83 15.47 12 856 9.72 10.93 1247
3 839 957 10.79 12.32 13 851 9.76 10.84 12.36
4 857 9.86 1099 12.61 14 839 9.63 10.79 12.33
5 848 9.65 10.82 12.05 15 9.22 10.65 11.97 13.92
6 9.63 11.84 14.20 17.11 16 8.45 9.66 10.92 12.53
7 8.63 10.00 11.42 13.36 17 836 9.52 10.72 1249
8§ 863 992 11.22 12.73 18 9.01 10.59 12.11 14.32
9 845 9.69 10.83 12.35 19 9.07 10.86 1241 14.48
10 8.63 9.79 10.97 12.56 20 847 9.68 10.92 12.39

Sample details: n = 100, e; ~ N(0,1), number of changes m = 2, regression
coefficients 8] = (0,1), 85 = (0, 1.5), 65 = (0, 2).

were newly generated each time. The obtained results are in Table 4.3. We
can conclude that in this case the empirical quantiles are not very stable and
there might be some finite-sample dependence on the observations ;.

To see if we get more reasonable approximations to critical values when
the sample size is large, we simulated the critical values for the example (4.4)
using n = 300. The calculation took about 28.5 hours. However, the critical
values do not agree with ACV, they are again higher than we expected them
to be. Their values are 9.399, 11.371, 13.849, 16.669 corresponding to 90 %,
95 %, 97.5% and 99 % quantiles, respectively. The changes in the slope are
perhaps too large.

For comparison we studied in detail another example where the gener-
ated data followed a model with 2 smaller changes of size 0.5. Similarly as
above, we made our simulation experiments 20 times, see Table 4.4. Here the
empirical quantiles are all satisfactory, only three cases out of twenty had a
little larger values.
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Applying the permutation principle we get satisfactory approximations to
critical values of the test sup F¥(k; ¢) when the changes in regression param-
eters are small. In this case the conditional distribution of sup F(k;¢; R)
does not seem to be much influenced by the observations 3; even when sample

size n is about 100.
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Chapter 5

Estimating the number of
changes

In this chapter we describe the possible methods to estimate the number
of changes present in a segmented linear regression model. In Section 5.1
we consider information criteria such as Schwarz’ criterion and modified
Schwarz’ criterion. In Section 5.2 we discuss an alternative method for deter-
mining the number of change points that is based on the sequential testing
using the tests from Section 3.2.

5.1 Informational approach

We can always improve SSR of our model by allowing more and more change
points, ending with every point as a change point. Such a solution is not
satisfactory. Therefore we need to impose some penalty for the increased
dimension of the model.

Suppose M < n is a known upper bound for the number of change points.
We are sure that the true number of changes m never exceeds M. For
estimation of the number of parameters in the model (and thus also the
number of change points) we will consider an information criterion. The
information criteria are based on the log-likelihood function of the model
penalised by a term that prevents favouring models with excessive parameters
or too many change points.
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Yao (1988) suggests to use Bayesian information criterion (Schwarz 1978),
also called Schwarz’ criterion, to estimate the number of changes for a special
case of the model (2.1) with one regression parameter ; in the j-th segment:

yt:5j+€t t:tj_1+1,...tj (51)

for j =1,...m+ 1. Moreover, normality of the errors is assumed. There are
together 2m + 2 unknown parameters in this model: regression coefficients
81, ...0m41, the scale parameter o? and the change points ti,...t,,. The
estimated number of changes m minimises the criterion

n +nlog 2 + nlog 67 4 (2k 4 2) logn

—2 log-likelihood function penalty term

subject to k < M. In the above equation n is the sample size and 67 =
Sy(t1,...1;)/n is the maximum likelihood estimator of ¢ if k changes are
present, see Chapter 2 for the expression of S, (1,...%;). The two leading
terms n + nlog 27 are often ignored because it makes no difference when we
compare two models from the same sample. The Schwarz’ criterion can be
equivalently written as

BIC(k) = nlog i + p*logn (5.2)

for k < M, where p* is the total number of fitted parameters. For normal
sequence of means we have p* = 2k + 2 parameters and for the regression
model (2.1) p* =(k+1)g+p+k+1.

Yao (1988) further showed in his work that m is a consistent estimator of
m in the normality case, i.e. the probability that we correctly estimate the
number of changes tends to one with the increasing length of the sample.

While Yao (1988) used the Schwarz’ criterion for selection of the number of
changes, Braun, Braun, and Miiller (2000) and Liu, Wu, and Zidek (1997)
proposed modified Schwarz’ criterion with a different penalty term. Braun,
Braun, and Miiller (2000) study a location model (5.1) as well but do not as-
sume normality of the errors. They allow for heteroscedasticity of the errors:
the variance may differ across the segments but remains the same within
each segment. The number of change points m is estimated via minimising

B(k) = nlog i} + kC,, (5.3)
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subject to k < M, where C,, is a penalty term of a form n® with 0 < 6 < 1
and 27 is the minimised average quasi-deviance for a given number of the
change points k. They suggest using 0 = 0.23 which showed reasonably good
results in their simulation studies.

In an independent study Liu, Wu, and Zidek (1997) deal with segmented
linear regression models

yt:zzéj_'_et if thE(tjfl,tj], jzl,m—Fl, t:1,...,n

for the partitioning variable z;4, d < ¢. For estimation of the number of
change points m they minimise the criterion

Su (ir,. . 1y)

LW Z(k) = nlog — +p“co(log n)*t (5.4)

subject to k < M, where ¢y and dy are some constants, p* is the total
number of fitted parameters and S, (51, . .fk) is the optimal SSR with k
changes present. They discuss a choice of the constants ¢y and dy under var-
ious conditions for small and moderate sample sizes. For example a heavier
penalty is needed when the error distribution is not normal but heavy-tailed.
As described in the article, there exists no best selection of the constants,
the choice depends on the model itself and on the sample size. The val-
ues dy = 0.1 and ¢y = 0.299 seemed to work satisfactorily in most of their
simulation experiments.

There are different information criteria considered in the above papers which
forces us to ask a question which criterion is better in which situation. We
can use Schwarz’ criterion (5.2) for a normal sequence of random variables
with shifts in mean, see model (5.1), or for a segmented linear regression (2.1)
with normally distributed errors. In the case of nonnormal error distribution,
especially when the distribution has heavy tails, it is better if we apply the
modified Schwarz’ criterion such as (5.4) which has a higher penalty term.

5.2 Sequential methods

Bai and Perron (1998) suggest to apply the tests of k changes versus k + 1
changes (discussed in Section 3.2) for the selection of the number of changes
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in a regression model (2.1). We will now summarise the procedure of testing.
We begin with the test of no change versus a single change. If we reject
the hypothesis then we proceed to test the null hypothesis of a single change
versus two changes and so on, until we can no more reject the null hypothesis
of k changes versus k + 1 changes. The estimated number of changes equals
the number of rejections. We can also start the process with testing the null
hypothesis of some small number of changes kg versus kg + 1 changes, if we
think that at least ky changes are necessary.

We can apply the tests LR, (k + 1|k) from (3.13) or the tests F,(k +
1|k) from (3.12). In the latter case we estimate the (k + 1)th change point
conditional on the first & changes estimated in previous steps. A sequential
procedure based on these conditional tests is proposed in the following papers:
theoretical aspects in Bai and Perron (1998), some applications in Bai and
Perron (2003a) and simulation experiments in Bai and Perron (2004). The
procedure is consistent under some fairly general assumptions on regressors
and errors, see Proposition 8 in Bai and Perron (1998). The sequential
method based on the likelihood ratio type tests LR, (k+1|k) is also consistent,
for exact formulation of such statement see Theorem 2 in Bai (1999).

Bai (1999) compared the performance of these two sequential methods
in finite samples via Monte Carlo simulations. He considered three types
of models: simple linear regression, autoregression and linear trend, each
with two changes and all coefficients allowing to change. He reported the
percentage of rejections for testing the hypothesis of k changes versus k +
1 changes for £k = 0,1,2 and the distribution of the estimated number of
changes. In the reported simulations the test LR, (k + 1|k) showed to have
reasonable size and power properties. The results associated with this test
were better than those related to the conditional test F,(k + 1|k), but the
conditional procedure also worked quite satisfactorily.

Bai and Perron (2004) made an extensive simulation study of the adequacy
of the sequential procedure! and information criteria? used for selection of
the number of changes. They also studied the size and power of the F type
tests for multiple changes. They presented a variety of models, also allowing

the procedure based on the conditional tests F,(k + 1|k) (3.12) was applied
2the Schwarz’ criterion (5.2) and the modified Schwarz’ criterion (5.4) were used

35



for serial correlation or different distribution of the errors and regressors
across the segments. They analysed cases with no change, one change and
two changes and showed how well the procedure and the information criteria
select the number of changes. The information criteria worked reasonably
well in the absence of serial correlation but did not work very well in the
presence of serial correlated errors and heterogeneity. The sequential methods
seemed to work better in these cases, but a higher trimming parameter £ was
needed.

In some situations the sequential procedure fails. The problem may occur
e.g. when we have two changes present and the values of the coefficients after
the second change return to their original values. In this case it is easy to
identify two changes, but it can be more difficult to identify only one of them.
Thus the hypothesis of no change versus 1 change is difficult to reject. In
such cases Bai and Perron (2004) suggest to look at the tests UD max (3.8)
or WD max (3.10) first which have higher power. If these tests indicate the
presence of at least one change, then we can estimate the number of changes
using the sequential procedure F,,(ko+1]ko) starting from a particular ko > 0
and ignoring the test F,,(1|0) which has a low power.
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Chapter 6

Applications

In this chapter we apply the F type test statistics and the discussed methods
for determining the number of changes present to a real data set. We consider
the average annual temperature series from year 1775 to 1992 measured in
Klementinum, Prague (for the data see Figure 6.1). The Klementinum data
were often analysed in the literature and different methods were used, see
e.g. Antoch and Huskova (1998), Jaruskova (1997).

We will test whether the average annual temperatures changed over the
passed 218 years, select an appropriate number of changes and finally esti-
mate the parameters of the model. For the calculation we use the software R
(version 2.0.1) and its package strucchange. For more information on the
package see Zeileis, Leisch, Hornik, and Kleiber (2002) and for some applica-
tions using this package see Zeileis and Kleiber (2004) and Zeileis, Kleiber,
Krédmer, and Hornik (2003).

We know the neighboring temperature data may be correlated, but for
this application we will assume they are independent. We consider the simple
model (5.1)

Yy =0 + e t=ti1+1,...¢

where j denotes the segment index, 7 = 1,...m + 1. Here y; represents the
temperature observations for ¢ = 1775, ...,1992, 4, is a temperature mean in
the j-th period and m is the unknown number of changes in the temperature
mean. It is questionable if this is a good model for the temperature series.
From Figure 6.1 we can deduce that a linear segmented model would be
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Figure 6.1: Annual temperature series measured in Klementinum, Prague,
1775-1992.

probably a better model, especially the data after 1900 could be well approx-
imated by a linear function. But in this case z; are trending regressors and
the Assumption 2 in Chapter 2 is not satisfied. Some extensions to trending
regressors are considered in Bai (1999). In order to have a simple application
we remain by the previous model.

The first issue to be considered is to test for presence of structural changes.
We consider a trimming parameter ¢ = 0.15', hence each segment has at least
33 observations. At most 5 changes are allowed with n = 218 and € = 0.15.

First we apply the F type test sup F,(1) (3.6) of no change versus one
change. The values of statistics F,(1) are plotted in Figure 6.2. The supre-
mum sup F,, (1) is reached for the year 1942 and has the value 20.4 which
highly exceeds the critical value 8.6 at the significance level a« = 0.05. The
tests of no change versus k changes for £k = 2,...,5 reject the null hypoth-
esis at the considered level a = 0.05 as well. The results are presented in

'We obtain the same final results with smaller trimming parameters ¢ as well, such as
e = 0.05.
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Figure 6.2: F type statistics F,(1) for Klementinum data. The red line
indicates the boundary at the 5% significance level.

Table 6.1.

We consider the double maximum tests U D max (3.9) and W D max (3.11)
where the number of changes £ under the alternative hypothesis is not speci-
fied, but an upper bound M = 5 for k is given. The tests are highly significant
and indicate the presence of at least one change.

For selection of the appropriate number of changes we use the Bayesian
information criterion BIC (5.2) and the criterion LWZ (5.4) which has a
heavier penalty term. Both information criteria select two change points.

The same conclusion emerges from the sequential procedures using the
tests F,(k + 1]k) (3.12) and LR,(k + 1]k) (3.13). In Table 6.2 we present
the dates of the estimated change points for all optimal segmentations up to
the maximal number of changes. The change points were computed using
the function breakpoints in R. It is evident that the change points from
Table 6.2 estimated via global minimisation of SSR (simultaneously) coin-
cide with the change points estimated sequentially (the (k + 1)-th change
point is added conditional on the previous k change points) for up to three
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Table 6.1: Empirical results for Klementinum data.

Specifications
2z = {1} g=1 n =218 e=0.15 M=5
Tests?

s Fr(1)  swpFr(2)  swFi(3)  swpFi(4)  supF(5)
20.41* 25.02* 19.87* 15.11% 10.56*
F.(21) F,.(3|2) LR,(1|0) LR,(2|1) LR,(3|2)
24.45* 7.80 20.60* 27.54% 8.09

UD max W D max
25.02* 21.73*

Number of changes selected?
Sequential 2
LWZ 2
BIC 2
Parameter estimates with two changes®
o 0 03 i ty
9.79 9.10 9.99 1836 1942
(0.014) (0.006) (0.009) (1821,1858) (1936,1952)

*

We used a 5% significance level for all tests. The star * above the values of the

test statistics indicates their significance at this level.
2 Sequential methods based on the conditional tests F,,(k+1|k) or tests LR, (k+1|k),
both give the same results
In parentheses are the standard errors for the estimates 5j, j=1,2,3 and the 95%
confidence intervals for the change points t; and %5 calculated using the function
confint in R. For theoretical details on confidence intervals see Bai and Perron
(2003a).

changes. So the likelihood ratio type test LR, (k + 1|k) and the conditional
test F,(k + 1]k) have the same values in their nominators for k& = 0,1, 2.
The only difference is in their denominators: in the conditional test we insert
SSR estimated under the null hypothesis with & changes whereas in the like-
lihood ratio type test we insert SSSR under the alternative hypothesis with
an additional change. This implies a little higher value of the test statistic
LR, (k+ 1|k) than F,(k + 1|k).
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Table 6.2: Estimated change points

m =1 1942
m = 2 1836 1942
m =3 1836 1902 1942
m =4 1836 1871 1909 1942

m =5 1828 1860 1892 1924 1956

Notes: We considered the minimal length of a seg-
ment h = [0.15n]. At most five changes are possi-
ble for n = 218 observations and € = 0.15.
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I I I I
1800 1850 1900 1950 2000

Time

Figure 6.3: The fitted model with two changes (t; = 1836, ty = 1942) is
represented by blue colour and the fitted model with no change by red colour.

The fitted models with two changes and no change are shown in Fig-
ure 6.3. The second change around the year 1942 is disputable. We can
observe a linear trend in the temperature series since 1900. Moreover, there
was one extremely high and one extremely low temperature measured in the
years near the second estimated change. These two years can be considered
as outliers. The LS approach used for the estimation of the change points
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is not robust to outliers. Therefore, the more appropriate approach could be
e.g. the least absolute deviations method (Bai 1998).

Last, we find the approximations to critical values of the tests sup F'(k),
k = 1,2,3 based on the permutation principle, see Table 6.3. We can see
that the empirical critical values agree very well with the asymptotic ones
calculated by Bai and Perron (2003b). The permutation test procedures
provided a very good approximation to the critical values in this special
case.

Table 6.3: Comparison of empirical and asymptotic critical val-
ues for the test of no change versus k& changes for the Kle-
mentinum data

Empirical CV Asymptotic CV
0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01
7.01 8.48 10.03 12.23 7.04 8.58 10.18 12.29
6.16 7.13 803 9.14 6.28 7.22 814 9.36
521 593 6.62 7.66 521 596 6.72 7.60

w N

Notes: Critical values of the test statistics sup F(k) correspond to € =
0.15, g =1 and k = 1,2, 3. The empirical critical values were calculated
using 10000 random permutations.
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Conclusion

In this work we studied linear regression models with regression parameters
that might change at unknown time points. Our task was to test if some
changes in the parameters occurred, to estimate the appropriate number
of changes present as well as their locations together with the regression
coefficients of the model.

For detection of changes we used F type test statistics based on the differ-
ence of sums of squared residuals under the null and alternative hypothesises.
We considered tests of no change against k& changes where k was either fixed
or arbitrary with some upper bound and tests of k£ changes against k + 1
changes.

We proposed an alternative approach to calculate the approximations to
the critical values of the test of no change versus k changes with £ fixed,
namely the approach based on the application of the permutation principle.
Usually the approximations based on the limit behaviour of the test statistic
under the null hypothesis are used. We proved the asymptotic equivalence
of both methods for obtaining the approximations to the critical values. We
conducted extended simulation experiments for a number of data samples
following models with changes of different size. We showed that the ob-
tained empirical critical values were satisfactory when the data indicated
small changes in the parameters.

For estimation of the number of changes we used Schwarz’ and modified
Schwarz’ information criteria. We also described a sequential method based
on the application of the tests of k changes against k£ + 1 changes.

All discussed methods were applied to the average annual temperature
series from Klementinum, Prague, measured during the period 1775 and 1992.
The software R and its package strucchange were used.
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Appendix A

Proofs

Proof of Theorem 3.1.1. The nominator (3.2) of the test statistic (3.1) under
Hy can be written in the matrix form as

Y.
SSRy — SSRy, = (Yll,n7Y2/,m"-7Yl-c/+1,n) D, : (A.1)
Y;erl,n
where .
Y}‘,n = Z €t2t
t=t;j_1+1
and

n

dy=C; ', —C.' dij= —C;' i#j, i,j=1,...,k+1 (A.2)

are the elements of matrix D,,, matrices C,_, ., C, are defined in (3.4).
The errors e; are i.i.d. and hence in the limit the vectors Y}, have normal
distribution with zero mean and variance matrix

Citi 0 oo oo 0
0 Ciiw, O :
Var (Y{}m Yin7 . 7Yl-c/+1,n) = g2 : -
0
0 0 Ci iy
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Using Assumption 2 and then Assumption 1, we get

Var (Yl’m, Y. Y,;HW)DH
(1= )1, 0 o0
0 (1 =X+ M), :
= o? : (A.3)
: . 0
0 eI,

where I, is an identity matrix ¢ x ¢. Since Var (Y7, Yy, ..., Y/ ) isareg-
ular matrix and (Y{,,,Y3,,,..., Y/ +1,n) have asymptotically normal distribu-

tion, in the limit we can express the quadratic form (A.1) as (Imhof 1961)

k+1

D (1= A+ N)x ().
j=1

Here 0%(1 — \;_; + A;) are distinct nonzero characteristic roots of the ma-
trix Var (Y7,,Yy,,..., Y/ ) D, with multiplicity ¢ and x3(¢) are inde-
pendent chi-square variables with ¢ degrees of freedom. Hence the statistic

F,(k;q) (3.1) has asymptotically the distribution

k+1

(1= X+ X)X (9)

Jj=1

kq

qged

Proof of Theorem 4.1.1. Similarly as in the proof of Theorem 3.1.1 the nom-
inator of the test statistic F},(k; ¢; R) (4.2) can be written in the matrix form
as

Sl,n
St Spiin) D | (A.4)

Sk-‘,—l,n

SSRy(R) — SSR(R) = (S,

1,n
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where vectors S, are defined in (3.4) and the matrix D,, in (A.2). We
calculate mean® and variance of S;, j =1,...,k + 1 (Andél 2002)

tj 2 1
ESj = E ZtEéRt = E Zta E ét =0
tzt]’,1+1 t=tj,1+1 t=1
t 2 tj
!/ ~ / ~ ~
Var §; = E ziz,Varég, + E g z:2.Cov (ég,, €R,)
t=tj,1+1 t=tj,1+1 S=tj71+1
t#s
n ts ts ts
1 ~2 - / 1 - - /
P IR L e B DEND DL
t=1 t:tj_1+1 t:tj_1+1 S:tj_l-i-l
t#s
/
1 n 2 tj t
= — E é? n E thg — E Zi E Zt
n(n —1)
t=1 t:tj_l-i-l t:tj_l-i-l t:tj_l-i-l

n tj tj
_ ! E el cC . g z E z!
- n pa t tj—1,t; n t s

t=t;j_1+1 s=tj_1+1

tj ty
Cov (S;,S,) = Cov E CR, 2t E R, 2.
t:tj,1+1 s=ty—_1+1

by to
/ A~ A~
= E E zz.Cov (ég,, €R,)

t:tj_l-i-l s=ty_1+1
tj

1 Lo 1<
= _n_l Z Z ztzéﬁ;ég

t=tj_1+1s=ty_1+1

Q
-
g
K\
g
N\
| =
LS

n
Note that > é; = 0 because of Assumption 5
=1
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We have

Cto,t1
n
1 0 C
! / / o § : ~2 t1,t2
VaI' (LS’17,',L7 S2,TL7 ey Sk+1,n) — ﬁ €t .
t=1 :
0 0 Ctkytk+1

St #
t=to+1 ~1t
. tkt1

. 31
_% (Zz;...’Zz;)

t=to+1 t=tp+1
th
et 2t
Next we calculate Var (57,85, -, ,’€+17n) D,,. Using Assumption 2 and
realizing that the vectors
tj n
> zf(tj—tia)  and Y z/n
t=tj_1+1 t=1
converge to the first column of the matrix C' with elements ¢, k, [ =1,...,¢q
and that
1 1
Cc-! C12 _
Ciq 0

we obtain the same matrix (A.3) as in the proof of Theorem 3.1.1. Since
(81 8%+ -+ Ski1,) have asymptotically normal distribution and their
variance matrix is regular, the end of the proof is the same as the end of
the previous one. Thus we get that the statistic (4.2) has same limit distri-
bution as the statistic (3.1). qed
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Appendix B

Tables of simulated critical
values

In the following pages we present our simulation results. In Tables B.1-B.6
there are 90 %, 95 %, 97.5% and 99 % empirical quantiles corresponding to
the empirical distribution of the test sup F(k;¢; R) computed using 10000
random permutations. These quantiles may serve as the approximations to
the critical values of the test sup F¥(k; ¢) (3.7) of no change versus k changes.

At the top of the header of each table we specify the values of the param-
eters k, q,e on which the limit distribution of the test sup F*(k; q) depends.
Some specifications related to the sample generations are listed below. Only
the sample size n varies, other parameters remain the same in all tables. In
the columns there are (ordered from left): the number of actual changes m in
the generated data sample, the values of the regression coefficients 81, d2, 03
and the empirical quantiles for the situations with normal and Laplace errors.
To the end of each table we added the asymptotic critical values (Bai and
Perron 1998, Bai and Perron 2003b) of the test sup Ff(k; ¢) corresponding
to the parameters k, ¢, € specified in the header of the table.

The obtained results are explained in Section 4.2 beginning at the page 27.
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