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Miriam Marušiaková
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V Praze dne 20.4. 2005 Miriam Marušiaková
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Autor: Miriam Marušiaková
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Chapter 1

Introduction

In practical situations we often face a problem where a data sample can-

not be well described by one relatively simple statistical model during the

entire observational period. Various economic factors or human activities

(deforestation, urbanisation, . . .) may cause that the relationships among

the variables change over time. In this case some of the parameters of the

statistical model are subject to shifts. Time moments where a change occurs

are usually called change points.

The change point problem has attracted attention of many researchers

in recent years. This topic offers interesting theoretical problems and has

many applications in economics, meteorology, hydrometeorology, environ-

mental studies, biology and many other disciplines. Examples are US ex-post

real interest rates or UK inflation rates (Bai and Perron 2003a), monthly

water discharges in Načet́ınský Creek, rainfall departures in Sahel or to-

tal ozone amount measured in Hradec Králové (Jarušková 1997), temper-

ature series from Klementinum in Prague or Nile river discharges (Antoch

and Hušková 1998), segmentation of the DNA sequence of Bacteriophage λ

(Braun, Braun, and Müller 2000) or analysis of cancer mortality and inci-

dence data (Kim, Fay, Feuer, and Midthune 2000), among many others.

The main task is to test whether it is necessary to divide the time ordered

data into segments in such a way that the same model can be applied to

data in each segment or whether just to use one model for all data. If the

data indicate some change, the next task is to estimate the unknown change
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points and the total number of changes present. The estimators of the model

parameters and their properties are also of interest.

There is a vast amount of literature considering the change point prob-

lem. However, most of it deals with just one single change, partially because

estimating multiple change points typically requires intensive computation

which could have been a problem some years ago. The literature address-

ing the issue of multiple change points is also rich. There exist different

approaches to this subject - variety of methods and model settings were con-

sidered. It is impossible to include all of them in this short text and we will

refer only to a small part of the existing literature.

A great amount of works covers changes in means of a sequence of inde-

pendent observations. The observations are divided into segments in such a

way that their mean is constant in each segment but varies across the seg-

ments. This type of the model is often called ”location model”. The problem

of estimating abrupt change points was discussed e.g. in Antoch and Hušková

(1998), who consider procedures based on maximum of the weighted partial

sums of residuals and on moving sums of partial residuals to estimate the

number and locations of changes. Venter and Steel (1995) propose normal

and non-parametric tests based on ratios of optimal sums of squared resid-

uals associated with k and k + 1 changes, respectively. The tests produce a

value for the number of changes present if the null hypothesis of no change is

rejected. Chen and Gupta (2000) (in Chapter 2) apply a binary segmentation

procedure combined with the Schwarz’ information criterion (Schwarz 1978)

for detection of changes in normal models. The analysed situations involve

change points in means, in variances and changes in means and variances.

The advantage of this procedure is that the change points are detected and

estimated simultaneously.

Changes in regression parameters in a linear regression model are studied

e.g. in the following papers. Bai and Perron (1998) deal with F type tests

for multiple changes, namely tests of no change versus k changes where k

is fixed or arbitrary with some upper bound, and tests of k versus k + 1

changes. They consider a partial structural change model where not all

parameters are subject to shifts, with quite general assumptions on errors

and regressors. They also present a sequential test for estimation of the
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number of changes. Bai and Perron (2003a) consider practical issues related

to the empirical applications of the F type tests for multiple changes and

present an efficient dynamic algorithm to obtain global minimisers of the

sum of squared residuals. Bai (1998) deals with least absolute deviations

estimation of a regression model with multiple change points. Kim, Fay,

Feuer, and Midthune (2000) consider a segmented linear regression model

with a continuity constraint at the change points.

In this work we consider multiple linear regression models with changes

occurring at unknown time points. In Chapter 2 we introduce the model and

notation and formulate the assumptions on regressors and errors. Chapter 3

is devoted to F type tests for detection of changes in linear regression. The

approximations to the corresponding critical values are usually derived from

a limit distribution of the test statistic under the null hypothesis (Bai and

Perron 1998). In Chapter 4 we propose another possibility how to obtain

them - we use the approximations based on the application of the permutation

principle. After a short description of permutation test procedures based on F

type test statistics we prove the asymptotic equivalence of both approaches

for obtaining approximations to the critical values. Details of the proof

are given in Appendix A. We present a number of simulation results and

show that the permutation arguments provide satisfactory approximations

to the critical values when the change in parameters is not too large. In

Chapter 5 we discuss Schwarz’ and modified Schwarz’ information criteria

and sequential methods to estimate the total number of changes present. In

the last Chapter 6 we apply all the discussed methods on the temperature

series from Klementinum, Prague. For all calculations we use the software

R, see http://www.r-project.org/.
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Chapter 2

Model and assumptions

We consider the following multiple linear regression model with m changes,

i.e. m + 1 segments

yt = x′tβ + z′tδ1 + et t = 1, . . . , t1
yt = x′tβ + z′tδ2 + et t = t1 + 1, . . . , t2
...

...

yt = x′tβ + z′tδm+1 + et t = tm + 1, . . . , n

(2.1)

where tj, j = 1, . . . , m are the change points, yt is the observed dependent

variable, xt (p× 1) and zt (q× 1) are the vectors of regressors, β and δj, j =

1, . . . ,m + 1 are the corresponding regression coefficients and et is the error

at time t.

The change points tj, j = 1, . . . ,m are in practice mostly unknown. The

purpose is to estimate them together with the regression coefficients β and

δj, j = 1, . . . , m + 1, given the observations (yt,xt, zt), t = 1, . . . , n. We

do not impose any continuity constraint on the segmented regression model

and so the change points are supposed to coincide with the observational

times. The number of changes m is also treated as unknown and has to be

estimated.

The regressors may be fixed or random in repeated samples. Since these

variables are often not perfectly controlled in economics, we will assume the

random design in this work. Non-random regressors (the fixed design) are
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covered by the theory as well.

The model (2.1) is called a partial structural change model because only

the vector of regression parameters δj is subject to a change, β remains the

same in all segments. The reason why we assume such a general model is that

the vector β can be estimated from the entire sample. This is better than

to reestimate it whenever a change occurs because we increase the efficiency

of the estimator and the power of the tests as well. So if we know that some

regression coefficients do not vary, we should include this knowledge in our

model, especially when there are multiple changes. When p = 0, we obtain

a pure structural change model where all parameters are subject to shifts:

yt = z′tδj + et t = tj−1 + 1, . . . , tj (2.2)

for the j-th segment, j = 1, . . . , m + 1, with the convention t0 = 0 and

tm+1 = n.

The model (2.1) can be rewritten in the matrix form as

y = Xβ + Z̄δ + e

where

y =




y1

y2

...

yn


 , X =




x11 x12 . . . x1p

x21 x22 . . . x2p

...
. . .

...

xn1 xn2 . . . xnp


 , β =




β1

β2

...

βp


 ,

Z̄ =




Z1 0 . . . . . . 0

0 Z2 . . .
...

...
. . .

...
...

. . . 0

0 . . . . . . 0 Zm+1




, δ =




δ1

δ2

...

δm+1


 , e =




e1

e2

...

en




with

Zj =




ztj−1+1,1 ztj−1+1,2 . . . ztj−1+1,q

ztj−1+2,1 ztj−1+2,2 . . . ztj−1+2,q

...
. . .

...

ztj ,1 ztj ,2 . . . ztj ,q


 .
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Having the observations (y1, x1,z1), . . . , (yn,xn, zn) given, the goal is to esti-

mate the change points tj, j = 1, . . . , m and the regression coefficients β and

δj, assuming δj 6= δj+1, j = 1, . . . , m. We assume for this moment that the

number of changes m is known. We discuss possible methods of estimating it

in Chapter 5. We also postpone the problem of testing for structural changes

to Chapter 3.

The estimation of the regression coefficients is based on the least squares

(LS) principle. For each m-partition (t1, . . . , tm) the associated LS estimates

of the regression parameters β and δj are obtained by minimising the sum

of squared residuals (SSR)

(y −Xβ − Z̄δ)′(y −Xβ − Z̄δ) =
m+1∑
j=1

tj∑
t=tj−1+1

(yt − x′tβ − z′tδj)
2
.

We denote the minimum of this sum by Sn(t1, . . . , tm) and the resulting LS

estimates as β̂(t1, . . . , tm) and δ̂(t1, . . . , tm). The change points are estimated

as

(t̂1, . . . , t̂m) = arg mint1,...,tm Sn(t1, . . . , tm) (2.3)

where the minimisation is taken over all m-partitions such that tj+1 − tj ≥
h ≥ q, j = 1, . . . ,m, h is the minimal possible length of a segment. We

find the estimates of β and δj as the LS estimates β̂ = β̂(t̂1, . . . , t̂m) and

δ̂ = δ̂(t̂1, . . . , t̂m) associated with the best partition (2.3).

An efficient dynamic algorithm for obtaining the estimated change points

from (2.3) is discussed in detail in Bai and Perron (2003a). We will briefly

outline the idea of this algorithm. We consider a data sample of size n and

the total number m of changes. We denote by ck
i,j the minimal SSR obtained

by the best partition of a sample starting at time i and ending at time j into

k segments. In the first step we calculate SSR of all possible segments c1
i,j

with the minimal length h. For a sample size n, the upper bound to the

number of segments is n(n − 1)/2 (all combinations of two indices (i, j),

i < j, i, j = 1, . . . , n). SSR of any (m + 1)–segment partition is calculated

as a sum of SSR in individual segments. Therefore the algorithm is of order

O(n2)1 for every number of changes m > 0.

1In comparison, the grid search algorithm is of order O(nm) for m changes.
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The procedure is based on the recursive formula

ck+1
1,j = min

kh≤l≤j−h

(
ck
1,l + c1

l+1,j

)

calculated for each possible ending time j = (k + 1)h, . . . , n− (m− k)h of a

sample partitioned into k+1 segments. We find the optimal (m+1)–segment

partition of the whole sample as

cm+1
1,n = min

mh≤j≤n−h

(
cm
1,j + c1

j+1,n

)
,

where the last segment is combined with all samples which have ending time j

and are optimally partitioned into m segments. The partition which yields

an overall minimal SSR is chosen.

We impose the following assumptions on the change points, regressors and

errors which we will need in the following chapters. We adopt the convention

t0 = 0 and tm+1 = n.

Assumption 1

tj = [nλj]
1, 0 = λ0 < λ1 < . . . < λm+1 = 1, for each j = 1, . . . ,m + 1

Assumption 2

(Xj,Zj)
′(Xj,Zj)

tj − tj−1

p→ C > 0 as tj−tj−1 →∞, for each j = 1, . . . ,m+1

where Xj are the rows of the matrix X corresponding to the j-th segment, the

letter p means convergence in probability and C is a finite positive definite

matrix.

Assumption 3 The errors are independent and identically distributed (here-

after i.i.d.) with zero mean, nonzero finite variance σ2 and some finite mo-

ment E|et|2+∆ > 0 with some ∆ > 0.

Assumption 4 The regressors xt = (xt1, . . . , xtp) and zt = (zt1, . . . , ztq) are

independent with the errors et′ for all t and all t′.

1[x] is the integer part of x

11



Assumption 1 is needed for the asymptotic theory. It allows the change

points to be asymptotically distinct.

Assumption 2 is satisfied e.g. by i.i.d. regressors having a positive definite

variance matrix. It rules out trending explanatory variables (zt = t) that

have an infinite matrix C in the limit, or vanishing explanatory variables

(zt = λt, λ < 1) with a singular matrix in the limit. Note, that the limit

matrix C in Assumption 2 is the same for all indeces j.

For simplicity we do not allow any heteroscedasticity in the model (As-

sumption 3) or any correlations between regressors and errors (Assump-

tion 4).
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Chapter 3

Test statistics for multiple

changes

We introduce tests that help us to decide if a structural change in a linear

regression occurred or not. All tests are based on F type test statistics. In

Section 3.1 we discuss a test of no change versus k changes, where k can be

arbitrary but fixed. We also describe a test against an alternative hypothesis

of unknown number of changes k with some upper bound for k. In Section 3.2

we consider a test of k versus k + 1 changes. This test is particularly useful

for determining the number of changes present. We work with the partial

structural change model (2.1) where not all regression coefficients are subject

to shifts.

3.1 A test of no change versus k changes

In the first part of this section we describe a test of no change against k

changes where k is considered to be some fixed number. First of all we assume

that the change points t1, . . . , tk such that tj = [nλj], 0 < λ1 < . . . < λk

under the alternative hypothesis are known. The F type test statistic is then

defined as

Fn(λ1, . . . λk; q) =
n− (k + 1) q − p

kq

SSR0 − SSRk

SSRk

(3.1)
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with

SSR0 =
n∑

t=1

(
yt − x′tβ̂0 − z′tδ̂0

)2

;

SSRk =
k+1∑
j=1

tj∑
t=tj−1+1

(
yt − x′tβ̂(t1, . . . , tk)− z′tδ̂j(t1, . . . , tk)

)2

.

SSR0 is the minimal SSR under the null hypothesis H0 : δ1 = δ2 = · · · =

δk+1 = δ0, SSRk is the minimal SSR under the alternative hypothesis HA :

δj 6= δj+1,∀j = 1, . . . , k with the known partition (t1, . . . , tk).

σ̂2
k =

SSRk

n− (k + 1) q − p

is a consistent estimator of the error variance σ2 under HA and H0 (see

Appendix in Bai and Perron (1998) or proof of Lemma 3 in Yao (1988) for

a location model). There are (k + 1)q + p unknown regression parameters in

the model under HA and p + q parameters under H0. A large value of the

test statistic (3.1) indicates that the null hypothesis of no change is violated.

We derive the limit distribution of the test statistic 3.1 under H0. For

ease of notation let us assume a special case with p = 0. Then the above test

statistic can be rewritten using

SSR0 − SSRk = −
(

n∑
t=1

ytzt

)′

C−1
n

(
n∑

t=1

ytzt

)

+
k+1∑
j=1




tj∑
t=tj−1+1

ytzt



′

C−1
tj−1,tj




tj∑
t=tj−1+1

ytzt


 (3.2)

σ̂2
k =

1

n− (k + 1)q

[
n∑

t=1

y2
t −

k+1∑
j=1




tj∑
t=tj−1+1

ytzt



′

× C−1
tj−1,tj




tj∑
t=tj−1+1

ytzt




]
(3.3)
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where

Cn =
n∑

t=1

ztz
′
t; Ctj−1,tj =

tj∑
t=tj−1+1

ztz
′
t, j = 1, . . . , k + 1. (3.4)

Under H0 the formulas (3.2) and (3.3) also hold when yt is replaced by

et = yt − z′tδ0. The estimator σ̂2
k converges in probability to σ2. Hence, we

can concentrate on the limit of (3.2). Applying the central limit theorem to

a vector
(∑t1

t=t0+1 etzt, . . . ,
∑tk+1

t=tk+1 etzt

)
and using Assumption 2 we arrive

to the following result.

Theorem 3.1.1 Under Assumptions 1-4 the limit distribution of the test

statistic (3.1) under the null hypothesis is

F (k; q) =

k+1∑
j=1

(1− λj + λj−1)χ
2
j(q)

kq

where χ2
j(q) stands for independent chi-square distributions with q degrees of

freedom.

More details about the proof are given in Appendix A.

Now we assume the change points t1, . . . , tk are unknown. For an asymptotic

analysis we need to impose some restrictions on the possible values of the

change points. We define a set

Λε = {(λ1, . . . λk) ; λj+1 − λj ≥ ε, ∀ j = 0, . . . k} (3.5)

for some arbitrary small ε > 0, so called the trimming parameter. ε imposes

the minimal possible length h = nε of a segment. The sup F type test

statistic is defined as

sup Fn(k; q) = sup
(λ1,...λk)∈Λε

Fn(λ1, . . . λk; q) (3.6)

for some arbitrary positive ε.
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Since computing of the sup Fn(k; q) through all (λ1, . . . , λk) in the set

Λε is rather inconvenient, Bai and Perron (2004) define an asymptotically

equivalent version which is simpler to obtain:

sup F ∗
n(k; q) = Fn(λ̂1, . . . , λ̂k; q) (3.7)

where λ̂j = t̂j/n, j = 1, . . . , k and t̂1, . . . , t̂k are the estimated change points

obtained as global minimisers of the SSR, see equation (2.3).

The limit distribution of the test sup Fn(k; q) (3.6) under H0 is specified

in Proposition 6 of Bai and Perron (1998) under quite general assumptions on

errors and regressors. It depends on the value of the trimming parameter ε: as

ε → 0, the critical values of the test statistic diverge to infinity. The authors

adopted ε = 0.05. Asymptotic critical values up to 9 changes (1 ≤ k ≤ 9)

and for maximum of 10 changing regressors (q ≤ 10) are displayed in Table I

of Bai and Perron (1998). Additional critical values for ε = 0.10, 0.15, 0.20

can be found in Bai and Perron (2003b).

So far we have tested the null hypothesis of no structural change versus the

alternative assuming a particular number of changes. In practice, however,

the number of changes is often unknown. Therefore it is more of interest

to test the hypothesis of no change versus an unknown number of changes,

given some upper bound M for the number of changes. A new test, so called

a double maximum test (Bai and Perron 1998), is defined as

D max Fn(M, q, a1, . . . aM) = max
1≤k≤M

(
ak sup

(λ1,...λk)∈Λε

Fn(λ1, . . . λk; q)

)

for some weights a1, . . . aM . If we have some prior knowledge about the

likelihood of various numbers of changes, then the weights may be given in

such a way that the more probable the number of changes is, the higher

weight is selected.

The simplest case is to set all weights to unity:

UD max Fn(M, q) = max
1≤k≤M

sup
(λ1,...λk)∈Λε

Fn(λ1, . . . λk; q). (3.8)

The asymptotically equivalent version is

UD max F ∗
n(M, q) = max

1≤k≤M
Fn(λ̂1, . . . λ̂k; q) (3.9)
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where λ̂j = t̂j/n, j = 1, . . . k and t̂j are again the estimated change points

from (2.3).

For a fixed sample the critical values of the test (3.6) decrease as k in-

creases and so the p-values also decrease with k (the null hypothesis is more

often rejected even if it is true) and hence the test has less informative power

if the number of changes is large. Therefore Bai and Perron (1998) specify

some special weights such that the p–values equal for each k. Let c(q, α, k)

be the asymptotic critical value of the test (3.6). Then the weights a1, . . . aM

are defined as a1 = 1 and ak = c(q, α, 1)/c(q, α, k) for k > 1. They depend

on the value of q and on the significance level of the test α. This version of

the test is denoted as

WD max Fn(M, q) = max
1≤k≤M

c(q, α, 1)

c(q, α, k)
sup

(λ1,...λk)∈Λε

Fn(λ1, . . . λk; q) (3.10)

and the asymptotically equivalent version is

WD max F ∗
n(M, q) = max

1≤k≤M

c(q, α, 1)

c(q, α, k)
Fn(λ̂1, . . . λ̂k; q). (3.11)

Bai and Perron (1998) obtained the asymptotic critical values of the

tests (3.8) and (3.10) for M = 5 and ε = 0.05. The critical values vary

little for M > 5. Additional critical values for ε = 0.10 (M = 5), 0.15

(M = 5), 0.20 (M = 3) and 0.25 (M = 2) are tabulated in Bai and Perron

(2003b).

3.2 A test of k versus k + 1 changes

Bai and Perron (1998) also consider a test of the null hypothesis of k changes

against the alternative that an additional change is present. The test is based

on testing of each from k + 1 segments for a presence of a change. The k

change points t̂1, . . . t̂k under the null hypothesis are obtained by a global

minimisation of SSR using the dynamic algorithm, see Chapter 2 for more

information.

For each segment containing the observations t̂j−1+1, . . . t̂j, j = 1, . . . k+1

(with the convention t̂0 = 0, t̂k+1 = n), the test of no change versus one
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change is applied. If the overall minimum of the SSR of the sample with

k +1 changes is sufficiently smaller than the SSR associated with k changes,

then the null hypothesis is rejected and a new change point is added to that

segment where SSR achieves the greatest reduction. The test is defined as

Fn(k + 1|k) =
{
Sn

(
t̂1, . . . , t̂k

)

− min
1≤j≤k+1

(
inf

t̂j−1+1+h≤τ≤t̂j−h
Sn

(
t̂1, . . . , t̂j−1, τ, t̂j, . . . , t̂k

) }
/σ̂2

k

)
(3.12)

where Sn

(
t̂1, . . . , t̂k

)
, Sn

(
t̂1, . . . , t̂j−1, τ, t̂j, . . . , t̂k

)
is the minimal SSR for a

given partition (t̂1, . . . , t̂k), (t̂1, . . . , t̂j−1, τ, t̂j, . . . , t̂k), h = nε is the minimal

possible length of a segment and σ̂2
k = Sn(t̂1, . . . , t̂k)/n is a consistent esti-

mator of the error variance σ2 under the null hypothesis.

The limiting distribution of the test statistic (3.12) under the null hy-

pothesis is specified in Proposition 7 of Bai and Perron (1998). The critical

values for ε = 0.05, 0.10, 0.15, 0.20, 0.25 and 1 ≤ q ≤ 10 can be found in Bai

and Perron (1998, 2003b).

Bai (1999) introduced an alternative procedure to test k changes versus k +

1 changes. Unlike the previous test (3.12), here the change points under

null and also alternative hypothesis are obtained simultaneously via global

minimisation of SSR. The test is based on the difference between the optimal

SSR corresponding to k changes and that corresponding to k + 1 changes.

Let t̂1, . . . t̂k be the estimated change points under the null hypothesis and

t̂∗1, . . . t̂
∗
k+1 the estimated change points under the alternative. Then the test

statistic, so called likelihood ratio test statistic, is defined as

LRn(k + 1|k) =
Sn(t̂1, . . . , t̂k)− Sn(t̂∗1, . . . , t̂

∗
k+1)

σ̂2
k+1

(3.13)

where σ̂2
k+1 = Sn(t̂∗1, . . . , t̂

∗
k+1)/n is a consistent estimator of the error vari-

ance σ2 under both hypothesises.

The limiting distribution of the test (3.13) is derived in Theorem 1 of

Bai (1999). It has a known analytical density function and hence the critical

values of the test can be easily computed from the formula in Corollary 1 of

Bai (1999).
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Both mentioned tests of k versus k +1 changes can be used for identifica-

tion of the number of change points. We will describe a sequential procedure

based on these tests in Section 5.2.

The F type test statistics mentioned above are applicable also under fairly

general assumptions on regressors and errors, see any article of Bai and Per-

ron in references. For example they can be applied to models allowing serial

correlated errors and heteroscedasticity. In that case it is recommended to

use larger trimming parameter ε to achieve tests with correct size in finite

samples. The tests can also be constructed for different distribution of the

errors and regressors across the segments. Bai and Perron (2003a) analyse

various versions of the tests depending on the assumptions. Different spec-

ifications are considered in the case of pure and partial structural change

models.
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Chapter 4

Permutation test procedures

In this chapter we deal with approximations to the critical values of the

test of no change versus k fixed changes. Bai and Perron (1998) use ap-

proximations based on the limit distribution of the test statistic (3.6) under

H0. Here we describe another possible approach based on the application of

the permutation principle. In Section 4.1 we explain the theory concerning

the permutation test procedures related to F type test statistics. We prove

that the permutational method is applicable to our situation. In Section 4.2

we conduct various simulation experiments in order to demonstrate how the

method works when applied to regression models with changes of different

size.

4.1 Principle of permutation tests

We were inspired by Hušková (2004), Hušková and Antoch (2003) and An-

toch and Hušková (2001) where the permutation test procedures were used

for the approximations of the critical values of maximum type statistics based

on partial weighted sums of residuals. The procedures were applied to loca-

tion models or regression models with at most one change. In these cases

approximations based on the limit behaviour of the considered test statistics

under H0 were not satisfactory because their convergence rate was rather

small. Therefore the asymptotic critical values were far from reality when

the sample size was not too large. The approximations based on the per-

20



mutation tests gave much better results, the obtained critical values were

smaller than the asymptotic ones and hence also changes of smaller sizes

could be detected.

In this section we apply the permutation principle to the F type test statistic

of no change against k fixed changes. For simplicity we explain the permu-

tation approach only for the statistic Fn(k; q) (3.1) where the locations of

changes under HA, i.e. λ1 < · · · < λk are assumed to be known. We consider

the pure structural change model (2.2) with all regression coefficients subject

to a change.1 We add the following assumption on the regressors.

Assumption 5 The regressors zt are known constants and the first compo-

nent is equal to 1, i.e. zt1 = 1, t = 1, . . . , n.

Under the null hypothesis H0 : δ1 = δ2 = . . . = δk+1 = δ0 the errors

et = yt − z′tδ0, t = 1, . . . , n are i.i.d. random variables. Thus they are ex-

changeable and (e1, . . . , en) has the same distribution as (eR1 , . . . , eRn) where

R = (R1, . . . , Rn) is a random permutation of (1, . . . , n). Since the errors et

are unknown, we replace them by their estimators under H0, i.e. the residuals

êt = yt − z′tδ̂0. (4.1)

The main idea is to randomly permute the residuals and for every such

permutation calculate the related test statistic. More exactly, recall that

the statistic Fn(k; q) (3.1) under H0 can be written using formulas (3.2) and

(3.3) with et instead of yt. The permutation version of the statistic Fn(k; q)

has the form

Fn(k; q; R) =
SSR0(R)− SSRk(R)

kq σ̂2
k(R)

(4.2)

where SSR0(R)−SSRk(R) and σ̂2
k(R) are given by equations (3.2) and (3.3),

respectively, with yt replaced by êRt .

The residuals êt depend on the original observations yt. We will study the

conditional distribution of the statistic Fn(k; q; R) (4.2), given y1, . . . , yn, also

1The proofs concerning the application of the permutation principle related to the
statistic sup F ∗n(k; q) (3.7) with unknown change points, while considering the partial
structural change models (2.1), are beyond this work.
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called permutation distribution. Its exact form is known because the distri-

bution of random permutations R is known. However, it is computationally

demanding to compute the statistics for all n! permutations. Therefore we

independently and randomly select N permutations where N << n! is a

reasonably large number to get satisfactory approximations. For these per-

mutations we compute the statistic Fn(k; q; R) (4.2).

For the purpose of examining the limit conditional distribution of the test

Fn(k; q; R), given y1, . . . , yn, we can write

SSR0(R)− SSRk(R)

= −
(

k+1∑
j=1

Sj,n

)′

C−1
n

(
k+1∑
j=1

Sj,n

)
+

k+1∑
j=1

S′
j,nC

−1
tj−1,tj

Sj,n

σ̂2
k(R) =

1

n− (k + 1)q

[
n∑

t=1

ê2
t −

k+1∑
j=1

S′
j,nC

−1
tj−1,tj

Sj,n

]

where

Sj,n =

tj∑
t=tj−1+1

êRtzt, j = 1, . . . , k + 1; S0,n =
n∑

t=1

êRtzt =
k+1∑
j=1

Sj,n

are vectors of linear rank statistics, given y1, . . . , yn. z1, . . . , zn are known

regression vectors and an(t) = êt are the scores. Thus the study of the con-

ditional limit distribution of the statistic Fn(k; q; R) is reduced to the study

of the limit distribution of vectors of linear rank statistics. It is sufficient to

deal only with SSR0(R) − SSRk(R), because, similarly as in Section 3.1,

σ̂2
k(R) converges in probability to σ2. Under Assumptions 2, 4 and 5 we can

approximate the vectors of linear rank statistics Sj,n by vectors of weighted

sums of independent random variables (Theorem 5.1 in Hušková and Antoch

(2003))

Tj,n =

tj∑
t=tj−1+1

zt (an (bnUtc+ 1)− ān(U)) j = 1, . . . , k + 1
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where U = (U1, . . . , Un)′ is a sample from a uniform distribution on (0, 1),

R = (R1, . . . , Rn)′ are the corresponding ranks and

ān(U) =
1

n

n∑
t=1

an(bnUtc+ 1).

Using the multivariate central limit theorem we get that the vectors of linear

rank statistics (S1,n, . . . , Sk+1,n) have asymptotically a normal distribution

with zero mean and the variance matrix calculated in Appendix A. Further,

using Assumptions 1, 2 and realizing that
∑tj

t=tj−1
zt/(tj − tj−1) converges to

the first column of the limit matrix C, we obtain the following result:

Theorem 4.1.1 Let observations (y1, z
′
1), . . . , (yn,z′n) follow the model (2.2)

with no restrictions on the number of change points m. Under Assump-

tions 1-5 the conditional distribution of the test statistic Fn(k; q; R) (3.1),

given y1, . . . , yn, converges in distribution to

Fn(k; q; R)
D−→

k+1∑
j=1

(1− λj + λj−1)χ
2
j(q)

kq

where χ2
j(q) stands for independent chi-square distributions with q degrees of

freedom.

The derivation of the limit distribution in Theorem 4.1.1 is given in

Appendix A. Notice, that the conditional limit distribution of the test

Fn(k; q; R) (4.2), given y, does not depend on the original observations y

and coincides with the limit distribution of the test statistic Fn(k; q) (3.1)

under the null hypothesis. Therefore the quantiles corresponding to the em-

pirical conditional distribution of the statistic Fn(k; q; R) can be good ap-

proximations to critical values corresponding to the test based on the statistic

Fn(k; q).

The situation is more complicated when the locations of changes t1, . . . , tk
under the alternative hypothesis are unknown. Then the limit distribution

of the test can be described via Wiener processes. We do not prove it but

conduct a number of simulations which are discussed in the next section.
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4.2 Simulated critical values

We would like to test the null hypothesis of no change versus some fixed

number of changes k where the change points t1, . . . , tk, (i.e. 0 < λ1 < . . . <

λk) under HA are unknown. In the previous section we showed that we

can get reasonable approximations to critical values of the test Fn(k; q) with

known change points under HA by applying the permutation test procedures.

Here we conduct various simulation experiments and apply the permutation

arguments to the test statistic sup F ∗
n(k; q) (3.7) assuming unknown change

points under HA. We want to show that the approximations to the critical

values obtained through the permutation principle are quite stable whether

the data follow the null hypothesis or the alternatives. We compare the

empirical critical values with the asymptotic ones calculated by Bai and

Perron (1998, 2003b).

We denote the permutational version of the test statistic sup F ∗
n(k; q) by

sup F ∗
n(k; q; R). It is defined as

sup F ∗
n(k; q; R)

=
n− (k + 1)q

kq

n∑
t=1

(
êRt − z′tδ̂0

)2

−
k+1∑
j=1

t̂j∑
t=t̂j−1+1

(
êRt − z′tδ̂j

)2

k+1∑
j=1

t̂j∑
t=t̂j−1+1

(
êRt − z′tδ̂j

)2
(4.3)

with

δ̂0 = C−1
n

n∑
t=1

ztêRt ; δ̂j = δ̂j(t̂1, . . . , t̂k) = C−1
t̂j−1,t̂j

t̂j∑

t=t̂j−1+1

ztêRt

where t̂1, . . . , t̂k are obtained as global minimisers of SSR assuming the min-

imal length of a segment to be h = nε. In our simulation experiments we

used the trimming parameter ε = 0.15 which is also the default value in the

function breakpoints in the program R.

We generate data from the model (2.2) considering

• sample sizes n = 100, 160;
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• i.i.d. errors with normal or Laplace distribution with variance equal to

one;

• q = 2; zt = (zt1, zt2) where zt1 = 1, t = 1, . . . , n and regressors zt2 are

generated from a logarithmic normal distribution where logarithm of

the distribution function has mean equal to 0 and standard deviation

equal to 1;

• up to 2 change points (m = 0, 1, 2) with timing t1 = n/4, t2 = 3n/4;

• regression coefficients δ′1 = (0, 1); all considered values of δ2, δ3 can be

seen in any Table B.1 - B.6 in Appendix B.

The value of the regression coefficients in the first segment is always δ′1 =

(0, 1). In the second and third segment either the value of intercept or the

slope or both may change. We consider models with no change (δ1 = δ2 =

δ3 = δ0) or changes of sizes 0.5 and 1. Changes of greater size than 1 are

easy to detect and there is no need to test whether they have occurred or

not.

We proceed as follows. First we generate n independent errors et and

regressors zt2. For particular values of the coefficients δj, j = 1, . . . m + 1,

we calculate yt. Having yt and zt we calculate the residuals êt (4.1) from the

model under the null hypothesis. We apply the permutation principle to these

residuals: we generate a random permutation r = (r1, . . . , rn) of (1, . . . , n)

and calculate the permutation version of the statistic sup F ∗
n(k; q; R) (4.3)

for R = r. We repeat the last two steps for 10 000 random permutations

R. Finally we obtain the empirical distribution of sup F ∗
n(k; q; R) and com-

pute its corresponding empirical quantiles which we use as the approxima-

tions to critical values of the test sup F ∗
n(k; q). The empirical distribution of

sup F ∗
n(k; q; R) for k = 2, q = 2, ε = 0.15 is plotted in Figure 4.1.

Recall that in order to get the exact permutation distribution of the test

statistic sup F ∗
n(k; q; R) (4.3) we should calculate its values for all n! per-

mutations R = (R1, . . . , Rn). This is of course practically impossible unless

n is very small (n ≤ 9). 10 000 << n! random permutations seem to be

a reasonably large number for our simulations. In order to see how much

the empirical quantiles change with the increasing number of permutations,
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Figure 4.1: Histogram of the statistic sup F ∗
n(k; q; R) for k = 2, q = 2 and

ε = 0.15 calculated from 100 000 permutations. The orange bars in the graph

represent values larger than the 95 % quantile. The original data sample

followed the model with m = 2 changes and regression coefficients δ′1 = (0, 1),

δ′2 = (0, 2), δ′3 = (0, 3). The errors were generated from the standard normal

distribution.
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Table 4.1: Empirical quantiles x such that P (sup F ∗
n(k; q) ≤ x/q) = 1− α

calculated for the increasing number of random permutations N .

k = 2 q = 2 ε = 0.15
N 0.10 0.05 0.025 0.01 N 0.10 0.05 0.025 0.01

10 000 9.46 11.60 13.48 15.88 60 000 9.50 11.51 13.41 15.82
20 000 9.51 11.54 13.55 16.09 70 000 9.52 11.52 13.45 15.95
30 000 9.47 11.51 13.45 15.95 80 000 9.52 11.52 13.45 15.93
40 000 9.49 11.53 13.46 15.92 90 000 9.51 11.51 13.45 15.97
50 000 9.51 11.53 13.46 15.95 100 000 9.50 11.49 13.44 15.96

Notes: α = 0.10, 0.05, 0.025, 0.01.
Sample details: n = 100, et ∼ N(0, 1), number of changes m = 2, regression
coefficients δ′1 = (0, 1), δ′2 = (0, 2), δ′3 = (0, 3).

we generated up to 100 000 permutations and applied the related test statis-

tics sup F ∗
n(k; q; R) to a data sample following a model with two changes.

The 90%, 95 %, 97.5% and 99 % empirical quantiles were calculated after

10 000, 20 000, 30 000, . . . , 100 000 permutations. The results are shown in

Table 4.1. We see the values of the empirical quantiles stabilise already

for N = 10 000, the difference between the quantiles calculated from 10 000

permutations and those calculated from 100 000 permutations is at most 0.1.

The calculation of 10 000 values of the test statistic sup F ∗
n(k; q; R) using

ε = 0.15 took over 3 hours for the sample size n = 100 and about 9 hours

for n = 160 (Pentium 4, 2.4 GHz).

In Tables B.1 - B.6 in Appendix B we present some of our simulation results.

In each single table there are empirical quantiles from various data samples

for the test of no change versus k changes. We assumed k = 1, 2, 3 changes

under the alternative hypothesis. In the first three Tables B.1 - B.3 we

considered sample size n = 100 and in Tables B.4 - B.6 size n = 160. We

obtained quite satisfactory results in most of the simulations. The 90 %, 95 %,

97.5 % and 99 % empirical quantiles calculated from samples with m = 1, 2

changes are similar to those which were computed from samples following the

null hypothesis (m = 0). The values are also close to the asymptotic critical

values of the test sup F ∗
n(k; q) (hereafter ACV) calculated by Bai and Perron
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Table 4.2: Empirical quantiles x such that P (sup F ∗
n(k; q) ≤ x/q) = 1−α

calculated for different sets of 10 000 random permutations for a given

data sample.

k = 2 q = 2 ε = 0.15
0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01

9.455 11.599 13.482 15.884 9.465 11.304 13.070 15.274
9.560 11.471 13.642 16.181 9.665 11.669 13.694 16.470
9.380 11.439 13.246 15.615 9.482 11.502 13.467 15.915
9.575 11.583 13.535 15.813 9.450 11.423 13.414 16.162
9.558 11.535 13.468 16.065 9.442 11.372 13.373 15.892

See Table 4.1 for more sample details.

(1998, 2003b). However, there are situations for which the empirical quantiles

are much higher than expected, especially for the significance levels α = 0.01

and α = 0.025. The empirical critical values corresponding to α = 0.10 are

all in a good agreement with empirical critical values for m = 0 and with

ACV, the difference is in average 0.3−0.4. The situation is a little better for

a larger sample size n = 160. The empirical critical values for n = 160 seem

to better agree with ACV, but there are still some exceptions with larger

values than ACV. 2

In order to save the computational time, the test statistics sup F ∗
n(k; q; R)

were calculated for all alternative hypotheses k = 1, 2, 3 using the same

permutated residuals. Therefore it is more likely that the critical values not

satisfactory for e.g. k = 1 will not be satisfactory for other k. The errors et

and regressors zt2 were always newly generated for each considered value of

regression coefficients δj.

When comparing the critical values obtained from the samples assuming

normal errors and those assuming Laplace errors, we cannot say generally

that the critical values are e.g. higher for Laplace errors or vice versa. The

empirical quantiles do not indicate any dependence on the distribution of the

errors.

2ACV and empirical critical values from samples with m = 0 are approximately the
same
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Table 4.3: Empirical quantiles x such that P (sup F ∗
n(k; q) ≤ x/q) = 1−α

calculated 20 times, each from newly generated samples following the

same model.

k = 2 q = 2 ε = 0.15

0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01

1 10.34 12.69 14.63 16.89 11 9.17 10.73 12.29 14.12

2 8.80 10.49 12.03 13.88 12 8.66 10.03 11.32 13.12

3 9.01 10.46 11.82 13.60 13 8.68 9.89 11.18 12.68

4 9.61 11.76 13.86 16.42 14 9.57 11.51 13.56 16.06

5 9.04 10.63 12.33 14.30 15 13.91 18.04 20.82 24.19

6 10.12 12.05 13.93 16.72 16 9.19 10.68 11.98 13.65

7 10.17 12.23 14.47 17.16 17 8.87 10.51 12.09 14.19

8 11.09 13.74 15.98 19.21 18 8.79 10.18 11.48 13.44

9 9.06 10.80 12.41 14.33 19 10.28 13.01 15.55 18.68

10 8.74 10.06 11.44 13.09 20 9.01 10.57 12.09 14.11

See Table 4.1 for more sample details.

Now let us examine the cases where the empirical critical values are too

large when compared to ACV. The empirical critical values are more likely

to exceed ACV when the data follow a model with at least one change in

the slope parameter, especially when the change is large (1 is already consid-

ered to be a large change in the slope). We would not improve the results if

we calculated the empirical distribution of the test statistic sup F ∗
n(k; q; R)

from more than 10 000 permutations, see the above discussed Table 4.1. The

dependence on the randomness of selected random permutations is also neg-

ligible: for our chosen example

m = 2, δ1 = (0, 1)′, δ2 = (0, 2)′, δ3 = (0, 3)′ (4.4)

we calculated the quantiles for different sets of 10 000 random permutations,

see Table 4.2. We can see they are approximately the same.

To see how strongly the empirical conditional distribution of the statistic

sup F ∗
n(k; q; R) depends on the observations yt, we repeated the simulations

20 times for the problematic example (4.4). The regressors and normal errors
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Table 4.4: Empirical quantiles x such that P (sup F ∗
n(k; q) ≤ x/q) =

1−α calculated 20 times, each from newly generated samples following

the same model.

k = 2 q = 2 ε = 0.15

0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01

1 8.57 9.72 10.90 12.45 11 8.47 9.72 10.84 12.63

2 8.96 10.80 12.83 15.47 12 8.56 9.72 10.93 12.47

3 8.39 9.57 10.79 12.32 13 8.51 9.76 10.84 12.36

4 8.57 9.86 10.99 12.61 14 8.39 9.63 10.79 12.33

5 8.48 9.65 10.82 12.05 15 9.22 10.65 11.97 13.92

6 9.63 11.84 14.20 17.11 16 8.45 9.66 10.92 12.53

7 8.63 10.00 11.42 13.36 17 8.36 9.52 10.72 12.49

8 8.63 9.92 11.22 12.73 18 9.01 10.59 12.11 14.32

9 8.45 9.69 10.83 12.35 19 9.07 10.86 12.41 14.48

10 8.63 9.79 10.97 12.56 20 8.47 9.68 10.92 12.39

Sample details: n = 100, et ∼ N(0, 1), number of changes m = 2, regression
coefficients δ′1 = (0, 1), δ′2 = (0, 1.5), δ′3 = (0, 2).

were newly generated each time. The obtained results are in Table 4.3. We

can conclude that in this case the empirical quantiles are not very stable and

there might be some finite-sample dependence on the observations yt.

To see if we get more reasonable approximations to critical values when

the sample size is large, we simulated the critical values for the example (4.4)

using n = 300. The calculation took about 28.5 hours. However, the critical

values do not agree with ACV, they are again higher than we expected them

to be. Their values are 9.399, 11.371, 13.849, 16.669 corresponding to 90 %,

95 %, 97.5 % and 99 % quantiles, respectively. The changes in the slope are

perhaps too large.

For comparison we studied in detail another example where the gener-

ated data followed a model with 2 smaller changes of size 0.5. Similarly as

above, we made our simulation experiments 20 times, see Table 4.4. Here the

empirical quantiles are all satisfactory, only three cases out of twenty had a

little larger values.
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Applying the permutation principle we get satisfactory approximations to

critical values of the test sup F ∗
n(k; q) when the changes in regression param-

eters are small. In this case the conditional distribution of sup F ∗
n(k; q; R)

does not seem to be much influenced by the observations yt even when sample

size n is about 100.
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Chapter 5

Estimating the number of

changes

In this chapter we describe the possible methods to estimate the number

of changes present in a segmented linear regression model. In Section 5.1

we consider information criteria such as Schwarz’ criterion and modified

Schwarz’ criterion. In Section 5.2 we discuss an alternative method for deter-

mining the number of change points that is based on the sequential testing

using the tests from Section 3.2.

5.1 Informational approach

We can always improve SSR of our model by allowing more and more change

points, ending with every point as a change point. Such a solution is not

satisfactory. Therefore we need to impose some penalty for the increased

dimension of the model.

Suppose M < n is a known upper bound for the number of change points.

We are sure that the true number of changes m never exceeds M . For

estimation of the number of parameters in the model (and thus also the

number of change points) we will consider an information criterion. The

information criteria are based on the log-likelihood function of the model

penalised by a term that prevents favouring models with excessive parameters

or too many change points.
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Yao (1988) suggests to use Bayesian information criterion (Schwarz 1978),

also called Schwarz’ criterion, to estimate the number of changes for a special

case of the model (2.1) with one regression parameter δj in the j-th segment:

yt = δj + et t = tj−1 + 1, . . . tj (5.1)

for j = 1, . . . m + 1. Moreover, normality of the errors is assumed. There are

together 2m + 2 unknown parameters in this model: regression coefficients

δ1, . . . δm+1, the scale parameter σ2 and the change points t1, . . . tm. The

estimated number of changes m̂ minimises the criterion

n + n log 2π + n log σ̂2
k︸ ︷︷ ︸

−2 log-likelihood function

+ (2k + 2) log n︸ ︷︷ ︸
penalty term

subject to k ≤ M . In the above equation n is the sample size and σ̂2
k =

Sn(t̂1, . . . t̂k)/n is the maximum likelihood estimator of σ2 if k changes are

present, see Chapter 2 for the expression of Sn(t̂1, . . . t̂k). The two leading

terms n + n log 2π are often ignored because it makes no difference when we

compare two models from the same sample. The Schwarz’ criterion can be

equivalently written as

BIC(k) = n log σ̂2
k + p∗ log n (5.2)

for k ≤ M , where p∗ is the total number of fitted parameters. For normal

sequence of means we have p∗ = 2k + 2 parameters and for the regression

model (2.1) p∗ = (k + 1)q + p + k + 1.

Yao (1988) further showed in his work that m̂ is a consistent estimator of

m in the normality case, i.e. the probability that we correctly estimate the

number of changes tends to one with the increasing length of the sample.

While Yao (1988) used the Schwarz’ criterion for selection of the number of

changes, Braun, Braun, and Müller (2000) and Liu, Wu, and Zidek (1997)

proposed modified Schwarz’ criterion with a different penalty term. Braun,

Braun, and Müller (2000) study a location model (5.1) as well but do not as-

sume normality of the errors. They allow for heteroscedasticity of the errors:

the variance may differ across the segments but remains the same within

each segment. The number of change points m is estimated via minimising

B(k) = n log ν̂2
k + kCn (5.3)
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subject to k ≤ M , where Cn is a penalty term of a form nδ with 0 < δ < 1

and ν̂2
k is the minimised average quasi-deviance for a given number of the

change points k. They suggest using δ = 0.23 which showed reasonably good

results in their simulation studies.

In an independent study Liu, Wu, and Zidek (1997) deal with segmented

linear regression models

yt = z′tδj + et if ztd ∈ (tj−1, tj], j = 1, . . . m + 1, t = 1, . . . , n

for the partitioning variable ztd, d ≤ q. For estimation of the number of

change points m they minimise the criterion

LWZ(k) = n log
Sn

(
t̂1, . . . t̂k

)

n− p∗
+ p∗ c0 (log n)2+d0 (5.4)

subject to k ≤ M , where c0 and d0 are some constants, p∗ is the total

number of fitted parameters and Sn

(
t̂1, . . . t̂k

)
is the optimal SSR with k

changes present. They discuss a choice of the constants c0 and d0 under var-

ious conditions for small and moderate sample sizes. For example a heavier

penalty is needed when the error distribution is not normal but heavy-tailed.

As described in the article, there exists no best selection of the constants,

the choice depends on the model itself and on the sample size. The val-

ues d0 = 0.1 and c0 = 0.299 seemed to work satisfactorily in most of their

simulation experiments.

There are different information criteria considered in the above papers which

forces us to ask a question which criterion is better in which situation. We

can use Schwarz’ criterion (5.2) for a normal sequence of random variables

with shifts in mean, see model (5.1), or for a segmented linear regression (2.1)

with normally distributed errors. In the case of nonnormal error distribution,

especially when the distribution has heavy tails, it is better if we apply the

modified Schwarz’ criterion such as (5.4) which has a higher penalty term.

5.2 Sequential methods

Bai and Perron (1998) suggest to apply the tests of k changes versus k + 1

changes (discussed in Section 3.2) for the selection of the number of changes
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in a regression model (2.1). We will now summarise the procedure of testing.

We begin with the test of no change versus a single change. If we reject

the hypothesis then we proceed to test the null hypothesis of a single change

versus two changes and so on, until we can no more reject the null hypothesis

of k changes versus k + 1 changes. The estimated number of changes equals

the number of rejections. We can also start the process with testing the null

hypothesis of some small number of changes k0 versus k0 + 1 changes, if we

think that at least k0 changes are necessary.

We can apply the tests LRn(k + 1|k) from (3.13) or the tests Fn(k +

1|k) from (3.12). In the latter case we estimate the (k + 1)th change point

conditional on the first k changes estimated in previous steps. A sequential

procedure based on these conditional tests is proposed in the following papers:

theoretical aspects in Bai and Perron (1998), some applications in Bai and

Perron (2003a) and simulation experiments in Bai and Perron (2004). The

procedure is consistent under some fairly general assumptions on regressors

and errors, see Proposition 8 in Bai and Perron (1998). The sequential

method based on the likelihood ratio type tests LRn(k+1|k) is also consistent,

for exact formulation of such statement see Theorem 2 in Bai (1999).

Bai (1999) compared the performance of these two sequential methods

in finite samples via Monte Carlo simulations. He considered three types

of models: simple linear regression, autoregression and linear trend, each

with two changes and all coefficients allowing to change. He reported the

percentage of rejections for testing the hypothesis of k changes versus k +

1 changes for k = 0, 1, 2 and the distribution of the estimated number of

changes. In the reported simulations the test LRn(k + 1|k) showed to have

reasonable size and power properties. The results associated with this test

were better than those related to the conditional test Fn(k + 1|k), but the

conditional procedure also worked quite satisfactorily.

Bai and Perron (2004) made an extensive simulation study of the adequacy

of the sequential procedure1 and information criteria2 used for selection of

the number of changes. They also studied the size and power of the F type

tests for multiple changes. They presented a variety of models, also allowing

1the procedure based on the conditional tests Fn(k + 1|k) (3.12) was applied
2the Schwarz’ criterion (5.2) and the modified Schwarz’ criterion (5.4) were used
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for serial correlation or different distribution of the errors and regressors

across the segments. They analysed cases with no change, one change and

two changes and showed how well the procedure and the information criteria

select the number of changes. The information criteria worked reasonably

well in the absence of serial correlation but did not work very well in the

presence of serial correlated errors and heterogeneity. The sequential methods

seemed to work better in these cases, but a higher trimming parameter ε was

needed.

In some situations the sequential procedure fails. The problem may occur

e.g. when we have two changes present and the values of the coefficients after

the second change return to their original values. In this case it is easy to

identify two changes, but it can be more difficult to identify only one of them.

Thus the hypothesis of no change versus 1 change is difficult to reject. In

such cases Bai and Perron (2004) suggest to look at the tests UD max (3.8)

or WD max (3.10) first which have higher power. If these tests indicate the

presence of at least one change, then we can estimate the number of changes

using the sequential procedure Fn(k0+1|k0) starting from a particular k0 > 0

and ignoring the test Fn(1|0) which has a low power.
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Chapter 6

Applications

In this chapter we apply the F type test statistics and the discussed methods

for determining the number of changes present to a real data set. We consider

the average annual temperature series from year 1775 to 1992 measured in

Klementinum, Prague (for the data see Figure 6.1). The Klementinum data

were often analysed in the literature and different methods were used, see

e.g. Antoch and Hušková (1998), Jarušková (1997).

We will test whether the average annual temperatures changed over the

passed 218 years, select an appropriate number of changes and finally esti-

mate the parameters of the model. For the calculation we use the software R

(version 2.0.1) and its package strucchange. For more information on the

package see Zeileis, Leisch, Hornik, and Kleiber (2002) and for some applica-

tions using this package see Zeileis and Kleiber (2004) and Zeileis, Kleiber,

Krämer, and Hornik (2003).

We know the neighboring temperature data may be correlated, but for

this application we will assume they are independent. We consider the simple

model (5.1)

yt = δj + et t = tj−1 + 1, . . . tj

where j denotes the segment index, j = 1, . . . m + 1. Here yt represents the

temperature observations for t = 1775, . . . , 1992, δj is a temperature mean in

the j-th period and m is the unknown number of changes in the temperature

mean. It is questionable if this is a good model for the temperature series.

From Figure 6.1 we can deduce that a linear segmented model would be
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Figure 6.1: Annual temperature series measured in Klementinum, Prague,

1775-1992.

probably a better model, especially the data after 1900 could be well approx-

imated by a linear function. But in this case zt are trending regressors and

the Assumption 2 in Chapter 2 is not satisfied. Some extensions to trending

regressors are considered in Bai (1999). In order to have a simple application

we remain by the previous model.

The first issue to be considered is to test for presence of structural changes.

We consider a trimming parameter ε = 0.151, hence each segment has at least

33 observations. At most 5 changes are allowed with n = 218 and ε = 0.15.

First we apply the F type test sup Fn(1) (3.6) of no change versus one

change. The values of statistics Fn(1) are plotted in Figure 6.2. The supre-

mum sup Fn(1) is reached for the year 1942 and has the value 20.4 which

highly exceeds the critical value 8.6 at the significance level α = 0.05. The

tests of no change versus k changes for k = 2, . . . , 5 reject the null hypoth-

esis at the considered level α = 0.05 as well. The results are presented in

1We obtain the same final results with smaller trimming parameters ε as well, such as
ε = 0.05.
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Figure 6.2: F type statistics Fn(1) for Klementinum data. The red line

indicates the boundary at the 5 % significance level.

Table 6.1.

We consider the double maximum tests UD max (3.9) and WD max (3.11)

where the number of changes k under the alternative hypothesis is not speci-

fied, but an upper bound M = 5 for k is given. The tests are highly significant

and indicate the presence of at least one change.

For selection of the appropriate number of changes we use the Bayesian

information criterion BIC (5.2) and the criterion LWZ (5.4) which has a

heavier penalty term. Both information criteria select two change points.

The same conclusion emerges from the sequential procedures using the

tests Fn(k + 1|k) (3.12) and LRn(k + 1|k) (3.13). In Table 6.2 we present

the dates of the estimated change points for all optimal segmentations up to

the maximal number of changes. The change points were computed using

the function breakpoints in R. It is evident that the change points from

Table 6.2 estimated via global minimisation of SSR (simultaneously) coin-

cide with the change points estimated sequentially (the (k + 1)-th change

point is added conditional on the previous k change points) for up to three
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Table 6.1: Empirical results for Klementinum data.

Specifications

zt = {1} q = 1 n = 218 ε = 0.15 M = 5

Tests1

sup F ∗
n(1) sup F ∗

n(2) sup F ∗
n(3) sup F ∗

n(4) sup F ∗
n(5)

20.41∗ 25.02∗ 19.87∗ 15.11∗ 10.56∗

Fn(2|1) Fn(3|2) LRn(1|0) LRn(2|1) LRn(3|2)

24.45∗ 7.80 20.60∗ 27.54∗ 8.09

UD max WD max

25.02∗ 21.73∗

Number of changes selected2

Sequential 2

LWZ 2

BIC 2

Parameter estimates with two changes3

δ̂1 δ̂2 δ̂3 t̂1 t̂2
9.79 9.10 9.99 1836 1942

(0.014) (0.006) (0.009) (1821,1858) (1936,1952)

1 We used a 5% significance level for all tests. The star * above the values of the
test statistics indicates their significance at this level.

2 Sequential methods based on the conditional tests Fn(k+1|k) or tests LRn(k+1|k),
both give the same results

3 In parentheses are the standard errors for the estimates δ̂j , j = 1, 2, 3 and the 95 %
confidence intervals for the change points t̂1 and t̂2 calculated using the function
confint in R. For theoretical details on confidence intervals see Bai and Perron
(2003a).

changes. So the likelihood ratio type test LRn(k + 1|k) and the conditional

test Fn(k + 1|k) have the same values in their nominators for k = 0, 1, 2.

The only difference is in their denominators: in the conditional test we insert

SSR estimated under the null hypothesis with k changes whereas in the like-

lihood ratio type test we insert SSR under the alternative hypothesis with

an additional change. This implies a little higher value of the test statistic

LRn(k + 1|k) than Fn(k + 1|k).
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Table 6.2: Estimated change points

m = 1 1942

m = 2 1836 1942

m = 3 1836 1902 1942

m = 4 1836 1871 1909 1942

m = 5 1828 1860 1892 1924 1956

Notes: We considered the minimal length of a seg-
ment h = d0.15 ne. At most five changes are possi-
ble for n = 218 observations and ε = 0.15.
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Figure 6.3: The fitted model with two changes (t1 = 1836, t2 = 1942) is

represented by blue colour and the fitted model with no change by red colour.

The fitted models with two changes and no change are shown in Fig-

ure 6.3. The second change around the year 1942 is disputable. We can

observe a linear trend in the temperature series since 1900. Moreover, there

was one extremely high and one extremely low temperature measured in the

years near the second estimated change. These two years can be considered

as outliers. The LS approach used for the estimation of the change points
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is not robust to outliers. Therefore, the more appropriate approach could be

e.g. the least absolute deviations method (Bai 1998).

Last, we find the approximations to critical values of the tests sup F ∗
n(k),

k = 1, 2, 3 based on the permutation principle, see Table 6.3. We can see

that the empirical critical values agree very well with the asymptotic ones

calculated by Bai and Perron (2003b). The permutation test procedures

provided a very good approximation to the critical values in this special

case.

Table 6.3: Comparison of empirical and asymptotic critical val-

ues for the test of no change versus k changes for the Kle-

mentinum data

Empirical CV Asymptotic CV

k 0.10 0.05 0.025 0.01 0.10 0.05 0.025 0.01

1 7.01 8.48 10.03 12.23 7.04 8.58 10.18 12.29

2 6.16 7.13 8.03 9.14 6.28 7.22 8.14 9.36

3 5.21 5.93 6.62 7.66 5.21 5.96 6.72 7.60

Notes: Critical values of the test statistics sup F ∗n(k) correspond to ε =
0.15, q = 1 and k = 1, 2, 3. The empirical critical values were calculated
using 10 000 random permutations.

42



Conclusion

In this work we studied linear regression models with regression parameters

that might change at unknown time points. Our task was to test if some

changes in the parameters occurred, to estimate the appropriate number

of changes present as well as their locations together with the regression

coefficients of the model.

For detection of changes we used F type test statistics based on the differ-

ence of sums of squared residuals under the null and alternative hypothesises.

We considered tests of no change against k changes where k was either fixed

or arbitrary with some upper bound and tests of k changes against k + 1

changes.

We proposed an alternative approach to calculate the approximations to

the critical values of the test of no change versus k changes with k fixed,

namely the approach based on the application of the permutation principle.

Usually the approximations based on the limit behaviour of the test statistic

under the null hypothesis are used. We proved the asymptotic equivalence

of both methods for obtaining the approximations to the critical values. We

conducted extended simulation experiments for a number of data samples

following models with changes of different size. We showed that the ob-

tained empirical critical values were satisfactory when the data indicated

small changes in the parameters.

For estimation of the number of changes we used Schwarz’ and modified

Schwarz’ information criteria. We also described a sequential method based

on the application of the tests of k changes against k + 1 changes.

All discussed methods were applied to the average annual temperature

series from Klementinum, Prague, measured during the period 1775 and 1992.

The software R and its package strucchange were used.
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Appendix A

Proofs

Proof of Theorem 3.1.1. The nominator (3.2) of the test statistic (3.1) under

H0 can be written in the matrix form as

SSR0 − SSRk =
(
Y ′

1,n,Y ′
2,n, . . . , Y ′

k+1,n

)
Dn




Y1,n

...

Yk+1,n


 (A.1)

where

Yj,n =

tj∑
t=tj−1+1

etzt

and

dii = C−1
ti−1,ti

−C−1
n , dij = −C−1

n i 6= j, i, j = 1, . . . , k + 1 (A.2)

are the elements of matrix Dn, matrices Cti−1,ti ,Cn are defined in (3.4).

The errors et are i.i.d. and hence in the limit the vectors Yj,n have normal

distribution with zero mean and variance matrix

Var
(
Y ′

1,n,Y ′
2,n, . . . , Y ′

k+1,n

)
= σ2




Ct0,t1 0 · · · · · · 0

0 Ct1,t2 0 · · · ...
...

. . .
...

...
. . . 0

0 · · · · · · 0 Ctk,tk+1




.
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Using Assumption 2 and then Assumption 1, we get

Var
(
Y ′

1,n,Y ′
2,n, . . . , Y ′

k+1,n

)
Dn

= σ2




(1− λ1)Iq 0 · · · 0

0 (1− λ2 + λ1)Iq
...

...
...

...
. . . 0

0 · · · λkIq




(A.3)

where Iq is an identity matrix q×q. Since Var
(
Y ′

1,n, Y
′

2,n, . . . , Y ′
k+1,n

)
is a reg-

ular matrix and
(
Y ′

1,n,Y ′
2,n, . . . , Y ′

k+1,n

)
have asymptotically normal distribu-

tion, in the limit we can express the quadratic form (A.1) as (Imhof 1961)

k+1∑
j=1

σ2(1− λj + λj−1)χ
2
j(q).

Here σ2(1 − λj−1 + λj) are distinct nonzero characteristic roots of the ma-

trix Var
(
Y ′

1,n,Y ′
2,n, . . . , Y

′
k+1,n

)
Dn with multiplicity q and χ2

j(q) are inde-

pendent chi-square variables with q degrees of freedom. Hence the statistic

Fn(k; q) (3.1) has asymptotically the distribution

k+1∑
j=1

(1− λj + λj−1)χ
2
j(q)

kq
.

qed

Proof of Theorem 4.1.1. Similarly as in the proof of Theorem 3.1.1 the nom-

inator of the test statistic Fn(k; q; R) (4.2) can be written in the matrix form

as

SSR0(R)− SSRk(R) =
(
S′

1,n,S′
2,n, . . . , S′

k+1,n

)
Dn




S1,n

...

Sk+1,n


 (A.4)
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where vectors Sj,n are defined in (3.4) and the matrix Dn in (A.2). We

calculate mean1 and variance of Sj, j = 1, . . . , k + 1 (Anděl 2002)

ESj =

tj∑
t=tj−1+1

ztEêRt =

tj∑
t=tj−1+1

zt
1

n

n∑
t=1

êt = 0

Var Sj =

tj∑
t=tj−1+1

ztz
′
tVar êRt +

tj∑
t=tj−1+1

tj∑
s=tj−1+1

t 6=s

ztz
′
sCov (êRt , êRs)

=
1

n

n∑
t=1

ê2
t




tj∑
t=tj−1+1

ztz
′
t −

1

n− 1

tj∑
t=tj−1+1

tj∑
s=tj−1+1

t 6=s

ztz
′
s




=
1

n(n− 1)

n∑
t=1

ê2
t


n

tj∑
t=tj−1+1

ztz
′
t −




tj∑
t=tj−1+1

zt







tj∑
t=tj−1+1

zt



′


=
1

n

n∑
t=1

ê2
t


Ctj−1,tj −

1

n

tj∑
t=tj−1+1

zt

tj∑
s=tj−1+1

z′s




Cov (Sj,Sv) = Cov




tj∑
t=tj−1+1

êRtzt,

tv∑
s=tv−1+1

êRtz
′
s




=

tj∑
t=tj−1+1

tv∑
s=tv−1+1

ztz
′
sCov (êRt , êRs)

= − 1

n− 1

tj∑
t=tj−1+1

tv∑
s=tv−1+1

ztz
′
s

1

n

n∑
t=1

ê2
t

≈ − 1

n

tj∑
t=tj−1+1

zt

tv∑
s=tv−1+1

z′s
1

n

n∑
t=1

ê2
t

1Note that
n∑

t=1
êt = 0 because of Assumption 5
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We have

Var
(
S′

1,n,S′
2,n, . . . , S′

k+1,n

)
=

1

n

n∑
t=1

ê2
t







Ct0,t1 · · · 0

0 Ct1,t2

...
...

. . . 0

0 · · · 0 Ctk,tk+1




− 1

n




∑t1
t=t0+1 zt

...

...∑tk+1

t=tk+1 zt




(
t1∑

t=t0+1

z′t, · · · ,

tk+1∑
t=tk+1

z′t

)



Next we calculate Var
(
S′

1,n, S
′
2,n, . . . , S

′
k+1,n

)
Dn. Using Assumption 2 and

realizing that the vectors

tj∑
t=tj−1+1

zt/(tj − tj−1) and
n∑

t=1

zt/n

converge to the first column of the matrix C with elements ckl, k, l = 1, . . . , q

and that

C−1




1

c12

...

c1q


 =




1

0
...

0


 ,

we obtain the same matrix (A.3) as in the proof of Theorem 3.1.1. Since(
S′

1,n,S′
2,n, . . . , S′

k+1,n

)
have asymptotically normal distribution and their

variance matrix is regular, the end of the proof is the same as the end of

the previous one. Thus we get that the statistic (4.2) has same limit distri-

bution as the statistic (3.1). qed
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Appendix B

Tables of simulated critical

values

In the following pages we present our simulation results. In Tables B.1-B.6

there are 90 %, 95 %, 97.5 % and 99 % empirical quantiles corresponding to

the empirical distribution of the test sup F ∗
n(k; q; R) computed using 10 000

random permutations. These quantiles may serve as the approximations to

the critical values of the test sup F ∗
n(k; q) (3.7) of no change versus k changes.

At the top of the header of each table we specify the values of the param-

eters k, q, ε on which the limit distribution of the test sup F ∗
n(k; q) depends.

Some specifications related to the sample generations are listed below. Only

the sample size n varies, other parameters remain the same in all tables. In

the columns there are (ordered from left): the number of actual changes m in

the generated data sample, the values of the regression coefficients δ1, δ2, δ3

and the empirical quantiles for the situations with normal and Laplace errors.

To the end of each table we added the asymptotic critical values (Bai and

Perron 1998, Bai and Perron 2003b) of the test sup F ∗
n(k; q) corresponding

to the parameters k, q, ε specified in the header of the table.

The obtained results are explained in Section 4.2 beginning at the page 27.
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Hušková, M. (2004): “Permutation Principle and Bootstrap in Change

Point Analysis,” in Asymptotic Methods in Stochastics, vol. 44 of Fields

Institute Communications, pp. 273–291.
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