
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Pavol Müller

Prostředí pro vytváření umělých hráčů Texas Hold’em pokru

Environment for creating automated Texas Hold’em
poker players

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Vladan Majerech, Dr.

Study Program: Computer Science

I would like to express my gratitude to all those who helped me complete this thesis,
especially to Miroslav Kolínsky for his valuable comments and corrections and to
Mgr. et Mgr. Evžen Bouřa, PhD. for the consultations and help with the formaliza-
tion and implementation of the poker algorithm. My thanks also go to Mgr. Vladan
Majerech, Dr. for his guidance and leading of this thesis. I dedicate this work to my
parents who have supported me throughout my studies.

I declare that I wrote this thesis on my own, using only the stated resources. I agree
that the thesis can be made publicly available.

Prague, April 17, 2009 Pavol Müller

1

Contents

Preface . 7
Thesis objectives . 7
This thesis is (not) . 8

1 Introduction 9
1.1 On-line gaming overview . 9

1.1.1 The costs and revenues . 10
1.2 Texas Hold ’em poker . 10

1.2.1 General rules . 11
1.2.2 The very first hand . 11
1.2.3 Hand strength . 12
1.2.4 Game variations . 13
1.2.5 Glossary . 13

2 Data mining 16
2.1 Poker sites in general . 16

2.1.1 Casino agreement rules and third party tools 17
2.1.2 Rules violation policy . 17

2.2 Related software in general . 18
2.2.1 Data analyzers and profilers 18
2.2.2 Poker calculators . 18
2.2.3 Existing poker robots . 19

2.2.3.1 How do they “work”? 19
2.2.3.2 Avoiding detection 20
2.2.3.3 What do they generally play? 20
2.2.3.4 Poker robots in the academics environment 22
2.2.3.5 Robots’ AI . 22

2.2.4 Summary . 22
2.3 Players’ skills . 23
2.4 Further factual analysis . 23

2.4.1 Representative casino set 24
2.4.2 Extracting data from a casino 25

2

2.4.2.1 Poker client decomposition 26
2.4.2.2 Graphical recognition 26
2.4.2.3 Game-play related questions 27
2.4.2.4 Conclusion . 28

3 Design 29
3.1 Architecture . 30

3.1.1 Providing additional information 30
3.1.2 Action interception . 31
3.1.3 User interface . 31

3.2 Front-end . 31
3.2.1 Conception . 32
3.2.2 Interface . 32
3.2.3 Approach . 33

3.2.3.1 Recognition . 33
3.2.3.2 Window localization 34
3.2.3.3 Input emulation 35

3.3 Recognition system . 35
3.3.1 Triggers and recognizers in general 35
3.3.2 Particular triggers and recognizers 37
3.3.3 Trigger editor . 39
3.3.4 Implementation . 42

3.3.4.1 Image access . 43
3.3.4.2 Image matching 43
3.3.4.3 Optical character recognition 43
3.3.4.4 Serialization . 44

3.4 The core . 44
3.5 Back-end . 45

3.5.1 AI . 46
3.5.2 State automaton implementation 49
3.5.3 Algorithm implementation 50

3.5.3.1 Automaton states 50
3.5.3.2 Automaton action 51

3.5.4 Poker data types and functions 51
3.5.4.1 Table data . 51
3.5.4.2 Supportive types 52
3.5.4.3 Helper functions 52
3.5.4.4 Hand queries . 52
3.5.4.5 Internal functions 52

3.5.5 Programming summary . 53
3.6 Testing . 53

3

3.6.1 Test scenario . 55
3.6.2 Tester application . 56
3.6.3 Test scenario creation . 56

3.7 Other supportive environment modules 57

4 Building a casino front-end 61
4.1 Terms of use . 61
4.2 Closer look at PokerStars . 63
4.3 PokerStars front-end architecture 64
4.4 Creating recognizers and triggers for PokerStars 65

4.4.1 Poker table recognition . 65
4.4.2 Poker lobby recognition 68
4.4.3 Window manager . 68
4.4.4 Implementation techniques 69

4.5 Client implementation . 70
4.6 Poker Academy Pro . 70
4.7 Casinos’ protection . 72

5 Building the back-end 74
5.1 Target tournament type . 75

5.1.1 Standard turbo tournament settings 75
5.2 No-limit tournament algorithm . 76

5.2.1 Overall algorithm strategy 77
5.2.2 The M-ratio concept . 78
5.2.3 Harington’s zone system 79
5.2.4 Hand sets . 79
5.2.5 Algorithm zone system . 80
5.2.6 Algorithm implementation 82

5.2.6.1 Folding, checking, raising 82
5.2.6.2 Particular zone strategies 83

5.2.7 The play . 87
5.3 Results . 88

5.3.1 ROI . 89
5.3.2 Overall profit . 91
5.3.3 Places . 91
5.3.4 The bot-stars challenge . 92

5.4 Further algorithm improvements 97
5.4.1 Fold equity . 97
5.4.2 Structured hand analysis 98
5.4.3 Independent chip model 100

4

6 Conclusion 102
6.1 Summary . 102

6.1.1 Environment for poker bot creation 102
6.1.2 Front-end . 103
6.1.3 Back-end . 103

6.2 Results . 104
6.3 Our questions . 105

Bibliography 106

A Attached DVD 107
A.1 Sice environment structure . 107

B Related data 109
B.1 Poker client observation . 109

5

Názov práce: Prostředí pro vytváření umělých hráčů Texas Hold’em pokru
Autor: Pavol Müller
Katedra: Katedra teoretické informatiky a matematické logiky
Vedúci diplomovej práce: Mgr. Vladan Majerech, Dr.
e-mail vedúceho: Vladan.Majerech@mff.cuni.cz

Abstrakt: Hold ’em poker, kartová hra s neúplnou, niekedy dokonca klamlivou informáciou, bude v
priebehu niekol’kých rokov pravdepodobne pokorená počítačovými programami. Toto môže pred-
stavovat’ vel’ké nebezpečenstvo pre celé odvetvie on-line pokeru. V niektorých variantoch Texas
hold ’em pokeru sa tak už deje. Táto práca skúma možnosti vytvorenia automatického hráča no-
limit turnajov, ako najmenej preskúmanej a najt’ažšej varianty Texas hold ’em pokeru pre počí-
tačového hráča. Budú vytvorené nástroje a metodológia, ktoré umožnia obecnú a jednoduchú ex-
trakciu dát z on-line kasín založenú na optickom rozpoznávaní. Automatické operácie v týchto
kasínach a prostredie na programovanie pokerovej inteligencie budú taktiež zahrnuté. Následne
bude implementovaný umelý pokerový hráč schopný hry v dvoch kasínach, ako ukážka robustnosti
a použitel’nosti tohto prostredia. Budú predstavené známe pokerové stratégie a myšlienky z pohl’adu
implementácie pokerového robota. Na konci bude tento umelý pokrový hráč odskúšaný na reálnych
situáciách a na základe získaných skúseností a výsledkov budú zodpovedané otázky týkajúce sa
zneužitia on-line kasín umelými pokerovými hráčmi.

Kl’účové slová: poker, bot, robot, kasíno

Title: Environment for creating automated Texas Hold’em poker players
Author: Pavol Müller
Department: Department of Theoretical Computer Science and Mathematical Logic
Supervisor: Mgr. Vladan Majerech, Dr.
Supervisor’s e-mail address: Vladan.Majerech@mff.cuni.cz

Abstract: Hold ’em poker, a card game with incomplete, sometimes even misleading information,
is probably going to be mastered by computer programs within a few years. This might be a big
issue for the on-line poker gaming industry. In some variations of the Texas hold ’em poker it is
already happening. This thesis explores a possibility of creating an automated no-limit tournament
player for the less explored and the hardest variation of Texas hold ’em poker from a computer player
point of view. Tools and methodology which allows universal and simple automated data extraction
from on-line casinos based on optical recognition are going to be created. Automated operations in
these casinos and environment for poker intelligence implementation will be included as well. An
artificial poker player capable of playing in two casinos will be implemented in this environment to
demonstrate its strength and usability. Known poker strategies and ideas are going to be introduced
from the point of view of poker robot implementation. At the end, the automated poker player will
be confronted in real situations and questions regarding misuse of automated poker players in on-line
casinos based on gained experiences and results are going to be answered.

Keywords: poker, bot, robot, casino

6

Preface
I, just as many people nowadays, was one of those who were fascinated by a phe-
nomenal card game that has been spreading over the world during the last decade.
A game that already managed to throw a shadow on chess and blackjack. A prob-
ability game that honors logic and skill, with a significant aspect of psychology
and without any explicit winning strategies. A game with simple rules and endless
possibilities where money are only at the first place. The Texas hold ’em poker.

I have became an occasional on-line poker player, like millions of others. Some
of them got to be more or less profitable and some of those profitable surely got a
pub-idea of creating a robot that would play on-line instead of them according to
their style and tactics. Of all these people there must be some of the same profession
as I am and do the same thing as I did. To start putting together some after-work
thoughts and ideas on how to build that robot. As a possible path started to reveal
itself, I figured out that I am already behind. Also, another questions arises here.
Is it possible that we are already playing against robots on-line? Is it possible that
there are machines already sucking up money out of regular players? How difficult
would it be to build that robot? What variants of poker games could this robot play?
Which casinos could be vulnerable?

I have therefore decided to put my academic task and my hobby together and
answer all of pronounced questions in this master thesis. These questions will be
answered through research and development of an environment used for creating
automated on-line poker casino analyzers and players.

Thesis objectives
To be able to answer these questions, and maybe even more, we have determined a
few objectives for this thesis.

• The primary goal of this thesis is to build an environment that allows con-
struction of automated poker players capable of playing in most of currently
available casinos.

Hand in hand with the primary objective goes the secondary objective.

• Use this environment to create an artificial intelligence that can eventually
play in one of these real casinos.

If we succeed in building that kind of environment and we will be able to use it to
create a player that could play in a real casino we may try to investigate our third
goal.

7

• Analyze the possibility of creating a profitable artificial intelligence capable
of playing hold ’em poker automatically.

By fulfilling or failing to achieve these objectives we should be able to answer every
question we have asked ourselves in the beginning.

This thesis is (not)
• It is not another guide on how to become a better poker player, however some

approaches that work for an algorithm may help the reader to realize some
mistakes and adjust his or her game play. Everything is considered from a
point of view of an automated player.

• The result of this thesis will not be a free money making tool. Even if we
are lucky enough to succeed in our implementation, we will not and cannot
publish all the results because of understandable reasons and consequences.

• Using certain results of this thesis might be illegal in some countries or against
the rules of some casinos and considered as cheating. A person violating these
rules may put himself at risk and face appropriate consequences. The aim of
this work is to answer the defined goals without breaking any low or casino
agreement rule.

• This thesis is designed only for theoretical and academics purposes. Using
this thesis or any part of it in private or with any private or commercial inten-
tion is not allowed.

8

Chapter 1

Introduction

In this chapter we are going to intimate the reader with the basic rules, terms and
overview of Texas hold ’em poker necessary for further understanding of the thesis.
If the reader is familiar with the situation of on-line poker gaming and feel comfort-
able with terms like blinds, flop, outs or pot odds and know the difference between
a ring game and a tournament then he can feel free to skip this chapter. Besides, if
an uncanny term occurs without appropriate explanation, it is possible to look it up
in the glossary post facto.

1.1 On-line gaming overview
There were two huge turnovers in hold ’em poker during the last few decades that
utterly influenced the popularity of this game. First, the advent of minicams that al-
lows TV viewers to see the hands of professional players right as they were making
their decisions. People were now able to understand some tactics and realized the
beauty and complexity of the game. The second milestone came with the expansion
of the Internet and introduction of the on-line Internet casinos. Suddenly the game
became open for mases, not only for a selected few who could afford the high stakes
in real casinos.

These days there are more than a hundred of these virtual Internet casinos. They
are operating with real money in the most widespread currencies. It is up to the
user to decide for a game that best suits his or her potential and financial situation.
The casinos offer games with stakes as low as a few dollar cents up to few hundreds
dollars per one hand. The overall price pool in dollars of some occasions can reach
seven digits. Supported by the simplicity of on-line payments, the amount of money
in this sector is still rising despite many government interventions already done
against this industry.

Getting a significant portion of this money is not as easy as one could think.

9

Although the rules of Texas hold ’em poker are very simple, the game complexity
and factors that can influence in-game decision making are hidden to many casual
players. This is very good for us and our prospective bot. On the other hand the fees
(called rakes) for the casino are very high. They vary somewhere around 10%. We
will need to get beyond this barrier with our play to became permanently profitable.
This is something that only one of ten players playing on-line is able to achieve in
the long run. Luckily, there are some ways to reduce these expenses.

1.1.1 The costs and revenues
The casinos put a lot of money to advertisement and promoting actions. Almost all
of them are offering the so-called first deposit bonus. If a player starts playing on
a poker site, they will offer him additional bonus between 100 to 150% of his first
deposit, on some sites up to $1000. This is of course conditioned with a requirement
of playing a specified number of hands or in other words paying enough on fees so
they could give the player something in return. Not bad either, but could be applied
only once per person and casino.

Another way how to get permanent rake discounts is by using one of the rake-
back sites1. Some casinos offer a permanent payment to web pages that adver-
tise their poker site. When a player registers through this advertisement and starts
spending his or her money in the casino they share a part of the fees with the web
site. The point is now clear – there are sites that share a portion of their part with
a player who registers through their poker advertisement link. This is a significant
remittance, somewhere up to 30% of the fees paid to the casino.

The last alleviation of the impact of rakes could be done through bonus programs
of each casino. One can order free items and gadgets from the poker store, the value
of the goods is derived from the amount of money the player spends in the casino.
It is possible to choose items ranging from poker books, tickets to a variety of poker
events and tournaments, clothing, electronics or even up to Porsche Cayman for
example.

1.2 Texas Hold ’em poker
This game can be characterized as a social, probability card game with incomplete
information. But unlike a roulette or a poker on a gaming machine it is not a gamble
where a player is condemned to loose in the long term. Here he or she competes
only with other players with exactly the same rules on all sides. In a lot of cases
somebody may get lucky and hit a very improbable combination that makes others

1For example the Rakeback.com at http://www.rakeback.com/ or the Rakeback lowers at
http://rakebacklovers.com/.

10

http://www.rakeback.com/
http://rakebacklovers.com/

loose a lot of money, but everything must be contemplated from the long point of
view. This is what Texas hold ’em is all about. Making the right decisions that are
profitable in the long run despite that sometimes it may hurt.

1.2.1 General rules
This poker is played with a standard deck of 52 playing cards. Thirteen cards from
deuce to ace in all four suits: clubs, diamonds, hearts and spades. There may be
from two up to ten players around a table playing clockwise. Every player gets his
own two playing cards. Five more public cards are subsequently revealed. This is
interlarded with betting and stepping aside of some players. Finally, the last man
standing takes the money or a showdown distinguish the winner according to the
best five cards picked from the two private and five public cards for each player.

1.2.2 The very first hand
Dealer position is picked by a lot at the beginning and shifts every hand one place
to the left. Before the dealer deals two hidden cards to all players two obligatory
bets are done by the two players sitting on the left of the dealer. The size of these
bets is predetermined by the game type, the player closer to the dealer puts in half
of the bet of the next player. These bets are called small blind and big blind.

After everyone takes a look at his or her cards, the first round of betting takes
place starting with the player to the left of the big blind. Players act subsequently
and everyone has one of the following choices: step aside by folding the hand, call
and toss in the actual bet (which equals to the big blind at the beginning of the
betting round) or raise the actual bet. Raising must reach or exceed the minimum
allowed amount which is the maximum of either the big blind or the last raise in this
betting round. The betting stops at the position of the big blind when everybody
folded or called the highest raise. The big blind might also check when nobody
raises. This means he decides to stay in the game without additional raising.

In case that size of a raise is higher than a player can afford to bet, he doesn’t
need to fold. He might choose to bet all his remaining chips and play for an adequate
portion of the chips to the end with all players that remains in. This kind of move is
called an all-in.

After the initial betting took place, the first three common cards are dealt face
up on the table. (This is called the flop.) Every player now has a hand consisting of
five cards with the possibility of improvement with the next two public cards that
are going to be revealed. But at first, another round of betting takes place. This time
starting at small blind position and ending at dealer position. Subsequently another
two face up cards land on the table interlaced with a round of betting after each

11

Figure 1.1: Poker table example

card. These cards are called the turn and the river. The betting is done the same way
as after the flop. An exemplary post-flop betting situation is depicted in Figure 1.1.

The concluding showdown determines the winner considering the best five cards
out of corresponding seven. In case of draw the prize splits.

1.2.3 Hand strength
Following hands are ranked from the weakest to the strongest. A corresponding
example is provided in parenthesis. We will use “T” for tens. Later we will use
“s” for suit indication. For instance a hand ATs means ace-ten suited. A card
represented as “x” means any card.

• High card (Kq)

• Pair (7r7♣)

• Two Pair (4♠4q TrT♠)

• Three of a kind (JrJ♠J♣ Also called a set.)

12

• Straight (8♣9♠T♣JrQq Five cards in a sequence, ace may be used as one in
front of a deuce.)

• Flush (2q9qQq7qAq Five cards of the same suit.)

• Full House (K♠KqK♣ 2r2q Three of a kind with another pair.)

• Four of a Kind (6r6q6♣6♠)

• Straight Flush (Ar2r3r4r5r Five cards in a sequence in the same suit. Ace
may be used as one.)

If a situation occurs where players have a hand of the same strength, the highest
lower sub-hand distinguishes the winner. For example, if both players have a full
house the one with three of a kind of higher value wins. If the players share the set
then the pair is taken into account. In case that both players have a flush or a straight
the higher card gains the prize.

1.2.4 Game variations
There are three variations and two ways of playing Texas hold ’em poker. Although
the difference in the mentioned variations is only in maximal allowed bet, the con-
sequences for the game-play and strategy are vast. To be specific, the three versions
are the fixed-limit, pot-limit and no-limit. In the fixed-limit variation, the sizes of
bets and raises are determined, meaning a player can only decide to raise, but cannot
influence the size of the raise. The pot-limit variant has a betting cap on the amount
that can be bet and this cap is equal to the size of all bets made until the actual hand.
The last and most complicated is the version without any limits where a player can
commit everything he has any time he wants.

In addition there are two approaches on how to play these variations – a ring
game (also called a cash game) and a tournament. In the first one the bets represent
real money. The objective is to accumulate money faster than loosing it. In the
second variant an entering fee is being paid and everybody gets the same amount of
virtual jettons called chips. The objective is to stay in the game as long as possible,
preferably to be the last one with chips. In tournaments with nine to ten players the
first three places are usually paid with rates of 50, 30 and 20 percent of all entering
fees. To ensure that the tournament finishes in a reasonable time, the blinds are
rising regularly.

1.2.5 Glossary
• Ante: An obligatory payment made by all players before the cards are dealt.

It is markedly smaller compared to the blinds and should boost up action

13

especially in later phases of tournaments.

• All-in: Betting all chips and playing the hand to the end only for an adequate
portion of the chips.

• Big blind: Initial obligatory bet made by the player sitting two places to the
left of the dealer. This term can also refer to a player sitting on this position.

• Bubble: Phase of a tournament when there is only one unrewarded place left.

• Button: Player in the position of a dealer.

• Covered, be: A player is covered when he might be eliminated from a tour-
nament by his opponent when going all-in, but not vice versa.

• Fifth street: The fifth card revealed to all players after the third round of
betting.

• Flop: Three cards revealed to all players after the first round of betting.

• Fourth street: The fourth card revealed to all players after the second round
of betting.

• Hand: The two cards that a player is holding or the best five cards of a player,
depending on the context.

• Implied pot odds: The same as pot odds but also takes into consideration
estimated future betting.

• Kicker: A card that determines the winner in case of the same hand rank.

• Limp: To call a bet of the size of a big blind with intention to see the flop
cheaply.

• Loose: A player or style is referred as loose when often entering the pot and
playing many hands.

• Out: A card that improves the hand to the winning hand.

• Pot: The overall amount of chips bet by all players in the current hand.

• Pot odds: The ratio of the actual pot and the amount of chips necessary to
call a bet.

• River: The same as the fifth street.

14

• Slow-play: Not betting with a strong hand with intention to let other(s) take
the lead in betting.

• Small blind: An initial obligatory bet made by the player on the left of the
dealer. This term can also refer to a player sitting on this position.

• Stack: The overall amount of chips for each player.

• Tight: A player or style is referred as tight when rarely entering the pot and
playing a few hands.

• Turn: The same as the fourth street.

15

Chapter 2

Data mining

In this chapter we will summarize all the available information related to our thesis’
objectives. We will take a survey of currently operating casinos, analyze the prac-
ticability of our ideas according to given conditions and take a look on other works
and programs concerning our targets. As a result of these investigations we will try
to formulate some definite requirements for further analysis and software design.

2.1 Poker sites in general
The term poker site or a poker room refers to a server – client based architecture. A
central server, or a group of servers, manages the poker tables and handles the re-
quests from players’ clients. These clients are executable applications, mostly based
on flash or java technology, designed for systems running MS Windows. However,
there are a few sites with mac support or at least with an announcement that the
mac version of their software is on the way. User can interact with the clients in a
standard way – using both a mouse and a keyboard to perform an action based on
the situation displayed in the client. The communication between the poker server
and a locally installed client is encrypted. There are no data that can be gathered by
observing the tcp/ip communication.

• Our application’s target platform will be MS Windows.

Poker sites use either their own software or one of already existing software cus-
tomized to their preferences. This customized software may share users among
different poker sites, creating a poker network like Merge, CryptoLogic or IPN.
The biggest sites usually use their own poker software.

Surprisingly, the difference in quality of individual poker clients is enormous.
We can find perfect bug-free applications providing all the necessary information we
need, but at the same time there are applications that crash very often or applications

16

drawing black texts on black background, for example. Playing on such sites is not
only impossible, but makes the choice of the right casino easier when considering
that this software has access to information about our credit card.

2.1.1 Casino agreement rules and third party tools
Despite the fact that casinos profit on every player as long as he plays, they made
a strict stand against the usage of certain supportive tools and software, automated
players included. This might be caused by a possible loss of active human players
if the tables were full of robots squeezing money form beginners and inexperienced
players. After all, nobody leaves an unprofitable robot playing in a casino in the
long term. Moreover, considering the casino fees, even the elite robots cannot make
money one from another.

The line between good and bad, or rather allowed and disallowed, differs among
poker sites. Generally they did not mind if a player educates himself using any
source of literature and learns some tactics and math to improve his playing style.
Even some software that does the math and computes things like outs, probability
of hitting a card etc. is mostly tolerated. However, it must not make any sugges-
tions about the action that the player should make. Interacting with the poker client
is usually allowed only to humans. This is quite a trouble for our objective, but
fortunately there are also sites that allow automatic interaction. Then again, the
automatic interaction is conditioned by human activity. An example of an allowed
tool might be a software that bets the size of the pot when a hotkey is hit by a user.
On the other hand the bad side can be represented by an automatic folder which
automatically folds all useless hands. One thing on which almost all sites agreed
is the cooperation and usage of game data that was collected by other players –
not allowed. Tools that profile player’s opponents using the information they have
accumulated are generally allowed and a player can take advantage of these data
if he wants. There is a third category of tools that might be used, but not during
an on-line play. To this category belongs most of the poker training software and
software handling shared user statistics.

2.1.2 Rules violation policy
The sites generally declare a zero toleration policy on infringement of their rules.
On many sites it is not only a declaration but rather concrete steps trying to de-
tect any misuse of their site. From among the the most common techniques we
mention a scanning of running processes, searching for installations of prohibited
software or even monitoring the web browser for accessing forbidden on-line ser-
vices, mostly the large shared databases containing poker players and their skills.
However, many of these techniques might be fooled with some effort. It is a game

17

of a cat and a mouse. Therefore another approach appeared – monitoring the user
behavior patterns. When there is somebody playing on ten tables 24 hours straight
without having a minute off, at leas for a bath break, then there is something suspi-
cious. Some casinos declare that they have up to one hundred employees every day
searching for automated players and software providing unfair privileges.

The process after disclosing prohibited software is quite straightforward. In
minor offences the users receive a warning email that they are using disallowed
software and if they want to continue playing they should stop it or uninstall it.
In repeated or more severe delicts the user account is immediately suspended, the
funds on the account are confiscated and used as a compensation for affected player.
There are also databases among poker sites containing information about players
with serious delicti.

This is something where we definitely do not want to found ourselves during the
implementation of the goals of this thesis.

2.2 Related software in general
As mentioned already, there is a group of available programs that have something
in common with poker or even with automated poker playing. In this sub-chapter
we will make a quick overview of such applications and try to poke out the general
pros and cons.

2.2.1 Data analyzers and profilers
This group of software is designed to collect data from real game play. Most of
these tools uses the log processing approach. Logging the user actions into a text
file is supported by most of the casino clients. After playing a significant number of
hands a player may get a notion on some actions he did with these programs. For
example, he can see the overall profit when calling or raising with a specific hand
and he may adjust his play according to these observations. But we have to keep
in mind that sharing this data or using other player’s data is usually in a conflict
with casino usage rules. Such software that natively supports the sharing may be
considered as prohibited and checked by the poker application.

2.2.2 Poker calculators
This group of applications usually belongs to the partially allowed group. They can
be used “off-line” when not playing on poker sites to analyze some specific situa-
tions for the user to understand the difference between the right and wrong decision.
But can not be used during the real play to analyze actual hand and situations. The

18

supported features of this calculators differ from the most fundamental computa-
tions like pot odds, hand strength and outs analysis to integrated solutions capable
of taking into account many advanced approaches.

2.2.3 Existing poker robots
The third group of related poker software are the automated advisors or even au-
tomated players. Using this group is of course strictly forbidden. This is also the
category in which we are very interested in this thesis and that we are going to an-
alyze the most. We will just mention the biggest issues concerning these bots here,
the deeper analysis will follow in the next subchapters.

Some of these tools are based on monitoring graphical representation of a poker
table and screen recognition, some of them use specific methods to extract the re-
quired information from the client. Some of them even emulate user interaction
with the poker client using mouse and keyboard or a any other specific approach
if the appropriate client allows. Another thing that almost all of this robots have
in common is that they do not work at all. Or even it they are capable of making
some profit it is only on specific game types. It is only a question of time when
the number of robots on these specific games exceed a breaking point and the last
profitable concerned member will be the casino. Another question of time is when
the bot will be detected and banned by the hosting poker site. This applies to every
single bot which was made public or revealed.

At this point we should mention the first and probably the most widespread auto-
playing poker software used nowadays - the WinHoldEm. It is configured with
a set of yes/no formulas for every hand through a built-in dialogues with a basic
C-like operator syntax. It has been designed to play the fixed-limit tournaments
according to these formulas, although it can be more or less configured to play even
the different game variations. To start playing using the WinHoldEm, the bot must
be seated on a table by the user.

2.2.3.1 How do they “work”?

In case of the advisors, the contribution to the improvement of players is straight-
forward. Providing a real-time deep through analysis for the actual hand is an ad-
vantage that no human is capable of making. The calculated results might be a very
strong weapon for a skilled player.

The benefit of a fully automated player is clear as well: earning money without
any need of user time. Here we can see there different ideological approaches:

• A bot that works is made. The author keeps it for himself and enjoys the
money.

19

• A bot is made, does not matter whether it works or not. The author tries to sell
it to as many people as possible before it is banned on most of the supported
casinos or before there are so many users using the bot that it stops working.
According to the user experiences observed at discussion forums, this was
usually the case when the bot was not working at all from the beginning.

• A free bot is made, so people can program it to master the play. This ensures
constant development and shifts in the tactics and behavior, while potentially
allowing the bot to work for a while. The tricky part is that with expansion of
the bot it would be possible to collect endless data and user statistics, based
on which a bot mentioned in the first bullet can be built.

2.2.3.2 Avoiding detection

It might be harder to hide a publicly available bot playing but there are ways of doing
it good enough. As mentioned before, poker sites monitor the usage of prohibited
software. In case of a public robot we can be sure that the time before it gets
on the forbidden list is counted in days on the biggest poker sites. Changing the
process name might help, but the authors of those bots usually recommend using
two computers with a shared desktop. On the first one we have the poker software
and standard applications for desktop sharing installed, on the other we run the
disallowed robot or software that makes the decisions and propagates the actions
back to the first computer. This approach should work as well when using a virtual
system instead of the second computer, for example WMware.

2.2.3.3 What do they generally play?

In one sentence, the bots usually play fixed-limit cash games on the lowest stake
levels. A more interesting question should be: why do the bots play mostly these
games? The answer is: because the conditions are unchanging and it is easy to
compute and calculate probabilities when a player knows sizes of possible bets and
raises in all later rounds. The decisions are therefore significantly easier and it
is of course markedly cheaper when the bot is fooled by an experienced human
opponent. Another argument in favor of these tables is that many beginners start
on these tables for the exact same reason. While they figure out the basics, the
mathematically correct play of the robot might be enough to generate some profit.
Designing a robot for a fixed-limit ring game is also much easier. Declaring hands
for entering the pot from all positions and subsequently attaching one of the pot odds
calculator to distinguish whether to stay in the pot or get out is an easy task. This
approach should probably do the job at the lowest stake fixed-limit tables. There is
also a lot of software doing this and it is likely that it might work if there are not
many similar bots around the table.

20

That is why we are going to focus on the more challenging no-limit version of
poker in this thesis, as it seems that the question about the robots and fixed-limit
games can be answered straight away. As Crandell Addington1, a member of the
Poker Hall of Fame2 said to internationally syndicated newspaper poker columnist
Chuck Blount at the end of year 2007 commenting the possibility of using poker
robots on-line:

"A computer program cannot be written that will consistently defeat a
skilled no-limit player if the game is structured for play."

Addington said.

"No-limit is a dynamic battlefield on which players must make rapid
strategic shifts and tactical implementations. Computer programs can-
not perceive these shifts."

Although now in the year 2009 we agree with this statement, by leaving out the word
“skilled” from the citation we get a very challenging pronouncement to investigate.

• We will focus on the no-limit version of Texas hold ’em poker in this thesis.

Another thing we should clarify at this point is whether we want to focus on ring
games or rather on the tournaments, especially the most popular one-table sit and go
tournaments. Again, most of the software already available is designed to play cash
games, because of the unchanging conditions and game style that does not need to
be adjusted in any way during the game. It is much easier to pick up a different table
to play on, rather than trying to outplay our opponents if they are good enough to
outplay our bot.

• We will focus on the Texas hold ’em poker tournaments in this thesis.

After a detailed inspection we found out that some robots declared to play the no-
limit version and even the tournaments, but the design usually did not take into
account some specific requirements that are essential for these game types. They
were usually based on the earlier implementation which supports the fixed-limit
version and suffers from lack of provided information. For example, the information
on betting in previous rounds is essential for the no-limit, whereas in the fixed-limit
version it is mostly a question of offered odds based only on the current situation
which consist of the cards and the implied pot odds. In tournaments a player also
needs to consider the pay-out structure, rising blinds and changing conditions like
the number of his opponents to adjust his play accordingly.

1He is a no-limit tournament hold ’em legend and is one of the founders of the World Series of
Poker. He still holds the record, seven, for most final table appearances in this event.

2The Poker Hall of Fame is a group of poker players who have played poker well against top
competition for high stakes over a long period of time. Since it was established in 1979 only 37
players were admitted to this group. It is considered as one of the biggest honors in poker.

21

2.2.3.4 Poker robots in the academics environment

The poker robots are already being developed in the academic society. Unlike chess,
for example, here the programs need to solve problems when they are working with
incomplete, even misleading, information. There are actually some poker robot
tournaments where the programmers, or rather their robots, compete against each
other. The focus of these robots is mostly aimed at the fixed-limit version of poker
and the cash games.

At this point we should mention and introduce the most successful research
group at the field of poker robots nowadays. The Computer Poker Research Group
at The University of Alberta3. The main aim of their work is to develop a profes-
sional fixed-limit cash game hold ’em player. At professional poker level, a perfect
math background is a matter of course, while the ability to read the opponents be-
comes more important. The robots need to prepare traps and detect tricks of their
opponents’ playing style. In July 2008 their robot Polaris won the 2nd man-machine
showdown for the first time playing against some of the best heads-up fixed-limit
players in the world. Although this is a great success in our field of research, gen-
erally we are still only at the beginning. Polaris is only capable of playing the
fixed-limit cash game against a single opponent.

2.2.3.5 Robots’ AI

Implementation of a poker bot intelligence and decision making system might be
covered by a countless number of approaches. Many of the mentioned applications
offer a method for adjusting their advices and decisions. They vary from the most
simple ones, like setting an action for each hand, to the most complex approach
including interpreted poker rules definition languages or dll interfaces that could be
implemented by the user. Another category could be formed by fixed approaches
which are based on given methodology, for example neural networks, genetic al-
gorithms or calculators for specific poker related values, for making a decision. In
these cases the user can adjust the algorithm mostly by sliders and values that affect
the decision making system.

2.2.4 Summary
Combining all the approaches and information we already have, it is obvious that
making an automated poker player is definitely possible. If there are ways of ex-
tracting the necessary information from a poker table and emulate user interaction
on a poker client it should be possible to attain our goal. Especially when there

3More information can be found at http://www.cs.ualberta.ca/∼games/poker/.

22

http://www.cs.ualberta.ca/~games/poker/

already are robots capable of defeating human players. Considering all the work al-
ready done, it is not entirely safe to join an on-line low fixed-limit cash table for an
inexperienced player. Playing the no-limit tournaments still seems to be save. We
will try to confront this pronouncement in this thesis. Nobody knows how many
bots are already out and operational, but there are webs on the Internet where peo-
ple claim that they have created one.

The impossibility of revealing any statistics about bot penetration of on-line
casinos is based especially on the fact that if someone is making profit using a bot,
he must stay silent at all costs. The poker sites are trying hard to earn a bot-free
reputation in order to satisfy their customers.

We have therefore slightly adjusted our thesis’ goals to reflect this situation. We
will specialize our environment and prospective poker intelligence to deal with the
no-limit tournaments as the less explored versions of hold ’em poker from a robot
point of view.

2.3 Players’ skills
Generally, a simple rule applies. The higher the stakes, the higher the skills of all
participants. At lowest stakes there are players that do not even understand the basic
probability principles of the game, and play according to their feelings. They are
a good pray, but are often a fate for a player relying on a basic intellect of other
players. Just above the smallest tables a perceptible drop-off of flagrant decisions
is markable. With higher stakes the psychological aspect of the game-play raises.
This is probably an area where a robot cannot catch on. On the other hand, the
advantage of a robot is that it will never get angry and make an incorrect move
afterwards. Because a bot doesn’t get bored playing on the lowest stakes all day
long, this should be our target field. The influence of more profound psychological
skill is less significant on these low-stake tables.

2.4 Further factual analysis
In this subchapter we will continue the data mining process and go deeper consid-
ering particular approaches and related software tools. We will take a closer look at
individual on-line casinos and try to determine and analyze possible approaches for
building an universal environment for poker bot creation.

23

2.4.1 Representative casino set
As mentioned already, there are a few poker networks each using similar poker
software. We will pick one or two casinos from the most known poker networks
as typical representatives for further investigation. The main focus will be aimed at
the biggest poker sites of these days:

• PokerStars (http://www.pokerstars.com/)

• FullTilt (http://www.fulltiltpoker.com/)

Along with them we will take a look on the following popular and well-known sites
and a few less noted, just to cover a representative set of nowadays poker sites:

• PartyPoker (http://www.partypoker.com/)

• Titan Poker (iPoker network, http://www.titanpoker.com/)

• UltimateBet (http://www.ultimatebet.com/)

• Absolute Poker (http://www.absolutepoker.com/)

• CelebPoker (IPN network, http://www.celebpoker.com/)

• William Hill (cryptologic network, http://www.williamhillpoker.com/)

• InterPoker (cryptologic network, http://www.interpoker.com/)

• Allstar (cake network, http://www.allstar.com/poker/pokerlobby.php/)

• RedStar Poker (cake network,http://www.redstarpoker.com/)

• CD Poker (iPoker network, http://www.cdpoker.com/)

• Paradise Poker (IPN network, http://www.paradisepoker.com/)

• Euro Poker (onegame network, http://www.europoker.com/)

• RedKings (onegame network, http://www.redkings.com/)

• Carbon Poker (merge network, http://www.carbonpoker.com/)

• CityPoker (merge network, http://www.citypoker.com/)

• Pacific Poker (Pacific network, http://www.pacificpoker.com/)

• PokerHills (B2B network, http://www.pokerhills.com/)

24

http://www.pokerstars.com/
http://www.fulltiltpoker.com/
http://www.partypoker.com/
http://www.titanpoker.com/
http://www.ultimatebet.com/
http://www.absolutepoker.com/
http://www.celebpoker.com/
http://www.williamhillpoker.com/
http://www.interpoker.com/
http://www.allstar.com/poker/pokerlobby.php/
http://www.redstarpoker.com/
http://www.cdpoker.com/
 http://www.paradisepoker.com/
http://www.europoker.com/
http://www.redkings.com/
http://www.carbonpoker.com/
http://www.citypoker.com/
http://www.pacificpoker.com/
http://www.pokerhills.com/

• 24h Poker (B2B network, http://www.24hpoker.com/)

PokerStars is the biggest and the most popular poker site at the moment. It is also
the biggest poker playroom of all times. In the evening peaks there are more than
200 000 people playing all kinds of poker. This site has brought up four WSOP4

champions and many WSOP final table participants. Their software is generally
considered as the best on the market. This site is so popular that it does not need
to offer any rake-back bonuses and even their first time deposit bonus is less than
one tenth of the usual bonus on other sites. They ground on their brand and the VIP
programs offering exclusive items and gadgets. An important part of the protection
of their brand is the most successful poker bot detection. We have not seen any
prohibited tool available on the Internet that can run with PokerStars without the
need of using stealth approaches. When a new and suspicious application leaks to
the Internet they react within a few days.

FullTilt on the other hand seems to have been a very progressive recently. Al-
though the number of active players is only a third when compared to PokerStars, its
popularity is rising. This is mostly because some of their players succeeded at the
WSOP well and brought fame to the brand. Moreover, compared to PokerStars, they
are offering a rake back bonus and much higher first deposit bonus which attract a
lot of newcomers and even some semi-experienced PokerStars players.

The rest of the list is filled with some very popular and high-quality sites like
TitanPoker (as a part of the iPoker network) or PartyPoker that deserve to be men-
tioned. On the other hand there surprisingly are sites with doubtful trustworthi-
ness. The pop-ups on their web pages evoke an impression of webs dedicated to
adults and the email provided for registration become filled with endless bonuses
and “winning” offers.

2.4.2 Extracting data from a casino
Basically there are two approaches how to figure out what is going on in a casino
and at a poker table. Of course, neither of these approaches involves an interface on
a poker client allowing robot creation as on some applications designed for poker
bot competitions. In fact, both of these ways are confounded. Poker client decom-
position, dll injection, component API or system GDI hooking represent the first
choice. The second is based on screen capturing and graphical recognition, prob-
ably with some kind of OCR. We will assume that the overall idea is clear to the
reader and just confront these two approaches with respect to our needs for poker
bot creation.

If we suppose that execution of both methods is feasible for a given casino, we
get the following pros and cons:

4World Series of Poker, more information can be found at http://www.worldseriesofpoker.com/.

25

http://www.24hpoker.com/
http://www.worldseriesofpoker.com/

• Decomposition or at least monitoring of poker client actions and operating
system calls is practically always against the product usage agreement rules.

• Direct operation with client is more error proof compared to the graphical
analysis. Graphical analysis may suffer from hardware-software redraw is-
sues that sometimes occur, especially on Windows operating machines.

• It is not guaranteed that it is possible to extract all the necessary information
with each method. Although in the second case it is only a question of the
recognition module and its abilities. We are not considering the casinos where
even human player cannot read or understand the scenery.

• Graphical analysis can be designed as a general solution for a broad spectrum
of casinos, compared to the individual approach that requires a dissection for
each casino.

These two methods should be investigated individually for each casino. We will use
our representative set of casinos and analyze some key factors. From the overall
point of view and the applicability in this thesis the graphical approach seem to be
favorable. Therefore we will focus mainly on the attributes necessary for graphical
recognition and try to appraise the burdensomeness of this approach.

2.4.2.1 Poker client decomposition

One possible way how to decompose a poker client has been described at Coding
The Wheel5. The related article is focused on a poker client decomposition, con-
sidering both PokerStars and FullTilt clients. Description of the entire process in-
cluding difficulties with extraction of information is included. Extraction of the chat
log component with dealer messages and spying on the hand history log promptly
is taken into account. There are also some examples of working code for inspira-
tion together with precompiled binaries. Using these binaries is not risk-free, as
some accounts on PokerStars were already banned due to experiments beyond the
acceptable boundary.

2.4.2.2 Graphical recognition

A question crucial for this approach is whether the scene at a poker table is gen-
erated dynamically according to actual conditions, or every component of a table
has its fixed location. In advance of further investigation we need to disclose that

5Coding the Wheel: How I Built a Working Poker Bot; 2008,
http://www.codingthewheel.com/archives/how-i-built-a-working-online-poker-bot-4, see especially
sections 4, 5, 6, 7.

26

http://www.codingthewheel.com/archives/how-i-built-a-working-online-poker-bot-4

it is in our favor. This also makes a sense for a human, nobody wants to figure out
whether something is closer to something else and therefore related with it before
every action taken. It is important to be able to look at a specific place and see the
thing. There are some exceptions, but nothing fatal that could not be handled.

Among other observations we will take a look at the possibility of disabling
potentially disturbing animations during the game play. Although this does not
indicate a problem, it is necessary to keep in mind that some items might be moving
out of their desired positions. Waiting until the animation in finished is the simplest
solution.

Another requirement for graphical recognition is the ability to see the required
objects. We can not recognize something that is overlaped with anything else. The
simplest solution could be a window manager which ensures that each window, es-
pecially a poker table window, has its own respective position. This also eliminates
problems related to sudden window order change during recognition or slightly be-
fore the appropriate screen shot is taken. If we want to operate on more tables
simultaneously, we will appreciate poker windows that can be miniaturized. This is
yet another attribute to observe.

Manipulation with system and poker windows can be implemented using system
resources. A different approach could include MS Windows window handler as
a part of our graphical recognition environment. In that case we might want to
find out whether the poker server use a standard MS Windows windows or its own
window theme. Specific poker client icon might help with localization of these
poker windows on the desktop and in the taskbar.

Concerning the table data recognition we will mostly be interested in the fol-
lowing questions: Whose turn is it right now? Is the player that is going to act
permanently highlighted or does the observer need to follow the game? Are the
card sizes, positions and colors invariable? Is there an information about the total
pot? Do we see the size of the blinds, or do we need to catch announcements that
blinds are rising? How difficult will the numeric font recognition, card recognition
or maybe player name recognition be if necessary?

Table B.1 attached in appendix B.1 is covering all this information for our rep-
resentative casino set.

2.4.2.3 Game-play related questions

There are also some general game-play questions related to poker robot develop-
ment for specific servers.

Support of play money tables might help during the initial phases of implemen-
tation. We do not need to invest real money to experience the game and to gather
all the information from the game that we need.

Table filter might do the job, especially if we want to build a robot that can

27

automatically join tables and start playing. For tournament play this is an essential
feature, although this is important for the ring games as well. The table filter might
relieve us of some complications related to correct table searching and joining.

An integrated support for player notes in a casino is probably needless for a
robot, it can store and process the information itself. It might however tag a player
if it finds out interesting information about him for further human play. Neverthe-
less, considering the number of active players, it is barely possible to hit somebody
with a note that was made before, especially at the lowest stakes. More often, the
contribution of making a note is that a player is marked at all tables that are opened
and played. Starting multiple games at once is a common practice and the same
opponent may be encountered on different tables.

Another very important thing to observe on a casino, is whether it supports the so
called turbo sit & go tournaments. Further discussion about this topic will follow in
the bot strategy. However, the basic idea is that the sooner the tournament finishes,
the less of playing style is revealed and can be observed. This is helpful for a bot in
both ways. Observing tactical habits of other players is something that a computer
program is not very good at. Likewise, other players might observe patterns in the
robot’s play and take advantage of them.

Table B.2 attached in appendix B.1 is covering all this information for our rep-
resentative casino set.

2.4.2.4 Conclusion

As seen from the previous investigation, the approach of graphical recognition is
feasible. Although there are some differences among our representatives from the
casino set, the design of the recognition subsystem should cover most of the usable
casinos. This should ensure that many new and rising casinos following the actual
trend will be covered by our environment.

• We will use screen capturing and image recognition in our environment.

28

Chapter 3

Design

At this point we know enough to start designing the environment for automated on-
line poker player creation. Although we have decided for the graphical recognition
approach, we do not want to ignore different approaches. It is possible that for
certain poker clients a different form of data gathering will fit better. On the other
hand, we need to provide a robust solution for the recognition approach that can
handle most of the casinos.

The same ideology applies to the decision making system. We do not want
to force the poker algorithm designer to use our approach and related tools as the
only possible. He should be free to choose any form of realization for his ideas.
On the other hand we should provide an environment powerful enough to make
the algorithm implementation easy, fault-resistant and able to cover most of the
developer thoughts.

Figure 3.1: Environment component diagram

29

3.1 Architecture
From the requirements stated above the overall application model depicted at com-
ponent diagram at Figure 3.1 arises. The front-end is responsible for observation
and interaction with specific poker client. It knows nothing about playing poker, its
only job is to transform the information provided by the poker client to the specified
data structure describing the state of a poker table. In addition, it performs game
actions upon requests. These requests are provided for the front-end in specified
data structure as well. This is depicted in Figure 3.2.

At the opposite side of the system there is the back-end. Its objective is to
transform the representation of a poker table to a specific action that should be
executed on given table. The whole process will be mediated by the core. The
core may delegate requests to a single back-end, or use an instance of the back-
end for each poker table if more complex decisions with preserving information
are expected. When more time consuming algorithms are used in the back-end,
the core may run them concurrently in different threads to take advantage of todays
multi-core systems. Figure 3.2 shows this as well.

Figure 3.2: Table Data dataflow diagram

Every part of the overall system can be replaced with another one using a dif-
ferent approach if necessary. The only condition that must be retained is the usage
of specified data structures for the input and output. We will design these structures
later.

3.1.1 Providing additional information
Sometimes the front-end might be capable of extracting additional information re-
garding a poker table that are not in direct relation with the actual poker table state.
Likewise, the back-end might be able to take advantage of such an information and
put it into use during the action computation. This might for example be a statistic
about players around the table characterizing their likelihood for going all-in, see-
ing a flop etc. An algorithm knowing such information might take advantage of it
when deciding whether to put pressure on somebody or rather fall back.

30

In this case there must be a mechanism supported by the system design that allows
implementing additional information providers and receivers. This can be realized
by an abstract parent class for such information. The front-end can generate par-
ticular descendants with given information, the back-end will accept the abstract
parent and according to the object type it can decide to process it, store it and later
use it, or let it go. Figure 3.3 shows a dataflow of optional table data structure.

Figure 3.3: Optional Table Data dataflow diagram

3.1.2 Action interception
A request to control and eventually influence the action computed by the back-end
could become very handy especially during the algorithm debugging and tuning.
To avoid immediate execution of a requested action we create an action interceptor.
An object inserted between the core and the front-end that mediate the requested
action. Just before the action is passed to the front-end this object can observe, log
or even change the action if necessary. The intention is to allow the human operator
to approve or even change the requested actions before they are executed. This
might be realized through a graphical user interface.

3.1.3 User interface
To control the system, the user interface is a quite important component. A graphi-
cal user interface managing the whole functionality of this system seem to be a good
choice. It will be responsible for creating the core and a front-end we are willing to
use. The back-end is dependent on the game type that is monitored by the front-end.
Therefore, the creation of appropriate intelligence (back-end) should be subject to
the front-end which knows what is going on. Moreover, the user interface - let us
call it a client, must handle the settings of the system, tell the front-end whether to
automatically open new tables, which type of tables, display debug logs and overall
system condition, or even represent the action interceptor for controlling the actions
on all opened tables as stated in the previous subchapter.

3.2 Front-end
The front-end will be specific for each casino. It will be supported only one instance
of a front-end running at a time. Theoretically, with a different approach than the

31

graphical recognition, it might be feasible to run multiple front-ends with multiple
casinos at once, but this is definitely not going to work when operating on shared
desktop with shared resources such as a keyboard and a mouse.

Although we are not going to force the user to create front-ends in our way, we
will propose and later implement an exemplary approach based on screen capturing
and emulation of actions on input devices. The following chapter is discussing ideas
exactly from this point of view.

3.2.1 Conception
We should beware of parallel resource sharing due to an obvious reason, therefore
a sequential approach to every action taken seem reasonable. Let us assume that
we keep at our disposal the instruments capable of screen recognition and user in-
put emulation in the way we need. The fundamental decomposition of a front-end
might consist of the following parts. A window manager handling the overall win-
dow placement, taking care of possible window overlapping and capable of window
closing, moving etc. For each window there will be a particular manager handling
a specific window type. This is especially the lobby manager capable of joining the
casino games and the table manager whose objective is to monitor a specific poker
table. These three parts needs to collaborate very carefully, ideally managed by the
window manager. Window manager will call the sub-managers hanging on each
monitored window to perform requested actions, ensuring that all the resources are
available and can be used by the sub-manager.

When the front-end observes and extracts a relevant information, it will be sent
as a table data structure or an additional table data structure to the core, tagged with
a unique table identification number. Later the action request identified with that
unique number can arrive asynchronously. The front-end must avoid generating the
same information based on unchanged table state until the action is executed and
the table state is changed. The action request will be passed to the sub-manager at
corresponding table to be executed.

3.2.2 Interface
The whole front-end will be encapsulated with an interface for incoming demands.
One already mentioned is the interface for accepting requested table actions. Other
standard methods that will be provided and implemented by all front-ends follows:

Attach to lobby command will create and initialize the window manager. All
windows related to associated poker client will be found, a lobby manager will be
created for the poker lobby control. On windows with poker tables a table man-
ager will be created. Other redundant windows that are not used by the front-end

32

will be closed. At this point the window manager will be responsible for all neces-
sary manipulation with poker windows and no user interaction with the poker client
software should be allowed anymore.

Start and stop methods on the front-end interface will turn the monitoring of
all associated poker windows on and off. When the monitoring is on the front-end
will generate (optional) table data structures and send them to the core for further
processing.

A mini console for setting front-end specific options will be implemented through
a set configuration interface with a string parameter. With this mini console it will
be possible to universally configure all front-ends from the client.

Method for setting an operational screen area for the front-end is legitimate for
all front-ends, not even for those using the screen recognition. This will ensure
that the front-end only uses the specific area of the screen, while the rest remains
available to the user and other usage.

Setting maximum number of tables that the front-end can start and play simul-
taneously is the last versatile parameter that is common for all front-ends.

3.2.3 Approach
In this subchapter we will try to propose an approach on how to use all the front-end
parts and managers to achieve our goal. Based on this approach we will establish
a set of requirements and supportive tools necessary for our front-end implementa-
tion.

3.2.3.1 Recognition

We know that a poker table consist of many visual parts combined together to form
a complex scenery. Decomposition of this scenery is quite simple. Usually there is a
background with chairs around an empty poker table. This is the unchanging base.
There are more important elements on this background. For example, there are
boxes with player names with fixed positions. Acquiring the information whether
a seat is occupied by a player or empty is as simple as recognizing two colors of
the appropriate pixel. The pixel color can also be used to locate the dealer button
position or to find out whether a player is still in the game with his hand.

Some elements can not be recognized using a single pixel comparison but rather
require the information about the whole image. An example of this situation can be
provided by the action buttons, which sometimes display “call”, “check” or “muck
hand” texts. It could be possible to find the right combination of pixels to do de-
termine the situation, but probably much simpler and user friendlier solution is the
image matching and image comparison.

33

When talking about the action buttons, another really useful feature would be
the possibility of pressing such buttons. At first sight this is mostly related to the
user input emulation, but deserves a note here as well. Because the graphical recog-
nition part knows the position of the elements that can be clicked, it would be very
unsuitable to duplicate this information later in the input emulation. Likewise, pro-
viding only a single pixel position for clicking a button may evoke a bot suspicion.
Therefore, it would be convenient to specify an action area, which will be used as a
parameter for the input emulation. The action area could be used as a single entity,
or the images and pixels intended for recognition could declare such area itself ac-
cording to their position and size. As a result, for example, the fold button can be
recognized as an image and then pressed using its area definition deduced from the
image parameters.

Concerning not only the poker table, but for example a poker lobby, we figure
out that sometimes the yes/no answer for an image presence is not sufficient enough.
Simply, sometimes we need to search for things. A requested game to join could
be the example. It is displayed somewhere in the client, while we do not know its
exact position, but we want to get the position if an object or rather an image is
present. A mechanism providing this kind of service should be implemented in our
recognition system.

The last and probably the most complicated thing is the optical character recog-
nition. We will mostly need to recognize numbers with additional characters like a
dot, stroke, dollar, pound or Euro, sometimes even whole words like “Sitting out”,
“Raise” or “All in”. The cards could be recognized using this method as well. Not
only their numbers but also their suits according to the shape of clubs, diamonds,
hearts or spades. It seem that a universal character recognition system will be neces-
sary. Moreover, the text positions are not constant. Texts may be centered or shifted
to side when a lot of graphics is drawn. On the poker tables there are usually multi-
ple fonts used, sometimes the font color is changing, for example when waiting for
a player to turn and the whole player box including his stack is blinking. All of this
must be taken into account and supported by our character recognition system.

3.2.3.2 Window localization

We already know what we are going to analyze and recognize on poker tables and
we have brought in some requirements for the recognition system. Taking this into
consideration, we can try to build the window management on the same approach
instead of introducing a different methodology. This might and probably will link
the program usage with specific system settings. Such system dependency can con-
front us with some problems. On the other hand, this is something we need to accept
one way or another due to the fact that some data provided by poker clients are lo-
cated in the windows’ title-bars. Moreover, making sure that no unsuitable window

34

overlapping occurs is only possible when we know the actual window theme. The
standard MS Windows 2000 theme will probably do the best job as it is supported
on the last three versions of Windows used nowadays. Of course, the approach will
be compatible with other Windows themes, but a little bit configuration might be
necessary when trying to migrate to another theme.

Let us return to the problem of window localization and positioning. Each poker
client uses its own window icon. This might give us a good clue on where to start.
These icons are used in the start menu as well. Simply searching for the poker icons
in the start menu will give us all the associated poker windows already opened. By
right clicking on respective button we get the necessary commands. This way we
can easily close or move the window to any location we decide.

With regard to the requirements in the recognition subchapter and a fact that we
have not used any additional functionality, it seems as a good choice to implement
the window management using the same approach.

3.2.3.3 Input emulation

There is a standard way of emulating mouse and keyboard events. This is all what
we need to operate a poker client. The mouse is used for pressing buttons with
requested action, keyboard is necessary only for setting a bet of requested size.
Although it can be done using a slider and a mouse only, for a robot we will prefer
the keyboard. The user32.dll offers mouse_event and keybd_event methods that will
sufficiently serve our purposes.

3.3 Recognition system
The recognition system will be used by a front-end designer to recognize specific
casino. If we were (and later will be) in the place of the front-end designer, we
would expect the recognition system to be as simple as possible. When trying to
recognize something, we do not want to spend time providing every parameter con-
cerning our table type, font used, number of seats, or even positions of visual com-
ponents which are usually specific for each number of seats around a table. A simple
query like “is player three present” or “what is the stack of player four” would be
the ideal burdensomeness for the front-end designer. The recognition system should
reflect the actual table type to answer these queries correctly.

3.3.1 Triggers and recognizers in general
Covering the needs for the recognition system we introduce the concept of recog-
nizers and triggers.

35

Triggers

Trigger is an object constructed by the front-end to recognize a specific item. For
its creation it will only need a unique id, or more precisely, a filename. This object
will be capable of answering its build in query every time when inquired by the
front-end. There will be triggers of different kinds, each kind for a specific type
of recognition. For example, a trigger answering a yes/no question whether player
three is present by confronting a specified pixel color, or a trigger returning the stack
size of player four. To make things even more simple, it will be possible to group
these triggers to lists and query them by index and in loop cycles. The trigger itself
is a very simple object, it does not know anything about character recognition or
pixel color matching. It is just a box containing an information necessary for the
recognition process. For the front-end this is the main and only entry point to the
recognition system.

Recognizers

The real drudge is a recognizer object. Although it does not know where, it knows
what and how to do and search for. As well as triggers, recognizers are of different
kinds are specialized on different types of recognition. The recognizers provide
real answers, the triggers just pass them to the front-end. A recognizer can be
created using the same way as a trigger, by a unique id, again meant as a filename.
Together with a corresponding trigger of the same type they create a recognition
apparatus. To get rid of the burden of managing recognizers from the front-end
point of view, each trigger is congenitally associated with a particular recognizer
through the recognizer id. At this point another object managing these relations can
be introduced.

Recognizer manager

The recognizer manager is an object that takes care of the trigger-recognizer asso-
ciation and relieves the front-end from other necessary duties. It also adds the third
inevitable piece to recognition process which is the actual screen image used for
recognition, provided by the front-end. To correct the original statement about the
triggers, they need another parameter besides their unique id to start working. It
is the recognizer manager. The front-end supplies the recognizer manager with ac-
tual image data, the recognizer manager obtains all recognizers needed by triggers
and the triggers have everything they need to get the answer when they are asked.
A dependency diagram of related parts of recognition system is depicted at Figure
3.4.

36

Figure 3.4: Recognition system dependency diagram

Data sharing

We hope that the purpose of separating triggers and recognizers is clear to the reader
at this point. It is because of the data sharing. If we want to, for example, determine
a position of a dealer button, we only need to know nine or ten possible locations
where the button can be drawn and how it looks like. We usually do not need to
specify the dealer button appearance for each possible location. Even more eye-
striking is the character recognition. The font used for stakes or stacks is the same
for each location. Only the position, alignment or sometimes the color may vary.
And we do not want to specify the whole font together with each of these changeable
attributes. Figure 3.5 shows an example on possible trigger and recognizer structure.

In general, triggers are objects holding the variable parameters, while the rec-
ognizers are objects holding the invariable ones. It is obvious and also intended
that many triggers will use the same recognizer, together creating unique queries
for every visual component that is going to be recognized.

Figure 3.5: Example of triggers and recognizers

3.3.2 Particular triggers and recognizers
The individual triggers and recognizers are based on the exact needs claimed earlier
and will cover all needs of the recognition system. Let us take a look at them
separately.

37

Pixel recognizer

The pixel recognizer is the most simple of all recognizers. Its job is to distinguish
whether a pixel is of given color with given tolerance for each RGB color compo-
nent. These two values (pixel color and tolerance) are the pixel recognizer data.

Pixel trigger

Again, the simplest of all triggers. It knows the position of a pixel which is to be
recognized. Also contains the filename of related pixel recognizer. Can be grouped
into a pixel trigger list and queried by index.

Image recognizer

The image recognizer is responsible for image comparison. It contains a referential
image and a color tolerance for each RGB channel.

Image trigger

The image trigger is similar to the pixel trigger. It contains a position where the
recognized image should be located, given by the upper left coordinate. It is linked
to an image recognizer through the related recognizer filename. Just as the pixel
recognizer can be grouped into an image trigger list with indexed access.

Image finder

Image finder is a special type of image trigger. Unlike the image trigger, it contains
an area for image searching instead of a single coordinate. The result is different
as well. Instead of a yes/no answer it returns a list of all upper-left coordinates of
areas where the appropriate image was located. Everything else remains the same
as in image trigger.

Font recognizer

This one is understandably the most complicated. It contains a set of all characters
that are to be recognized. The color and color tolerance of the recognized font is
necessary as well. In addition to other recognizers, it has an option to invert the
color matching process. This allows to match the background color instead of the
foreground font color. As a result, recognition of different font colors on a given
background is possible. To fulfill our specific needs for recognition, each charac-
ter has a termination flag. After matching that kind of character the recognition

38

is stopped. This is useful especially when recognizing whole words like “Discon-
nected” or “All in”. Instead of identifying every letter of these words, or the whole
word as a single character, we could only identify the first character. If it is unique
the termination flag is set.

Text trigger

Because of its association with related font recognizer, the text trigger is an entry
point to the text recognition. It contains locations where the font recognizer is to
be applied given by the coordinate of upper left point. Another important attributes
are whether to search for the text to the left or to the right, maximal distance to
search for a text and maximal tolerated space between two characters of recognized
text. Combination of the text trigger and font recognizer covers almost everything
we demanded. Almost everything, but not all what we required. At this point, the
font recognition only works with given font color or with given background color.
In some cases we might face the same font used in both ways, with solid font color
or solid background color. To avoid creating another font recognizer with the same
letter shapes but different colors, an option to override font colors is added to the text
trigger. With this feature it is possible to recognize texts with different text colors
or text backgrounds using the same text recognizer. But this is really a special case,
therefore all parameters regarding the font color are placed in the recognizer. It is
not necessary to specify the font color in every text trigger, as in most cases it is the
same for all texts using the given font.

Area definition

Area definition falls under the trigger category. It is the only trigger that has no
recognizer counterpart. It defines an area by its upper-left and bottom-right coordi-
nates. It does not provide any return values either. The area definition is only used
for user input purposes. Triggers like pixel trigger and image trigger can be also
used as an area definition.

3.3.3 Trigger editor
At this point we know what kind of information each trigger and recognizer needs.
Obtaining these information manually is certainly possible, but very uncomfortable.
We have to build a trigger editor that makes this process as simple as possible. The
fundamental principle will be a graphical WYSIWYG editor, where every trigger
or recognizer can be created with just a few clicks.

This editor allows us to open a saved picture containing a poker client window
or even take an actual screen shot from our desktop with running poker software.

39

When creating a trigger that contains specific position of the recognized window,
it is necessary to make sure the screen shot is taken from the correct position. The
editor takes a picture of desktop behind itself with the zero coordinate located in
upper-left corner. Subsequently, it is possible to lock the screen shot position and
move the editor away to see what is actually happening on the table which is being
recognized.

After a screen shot is created in the editor, we can start making triggers and rec-
ognizers. We select the recognizer/trigger mode for target recognizer/trigger type,
fill in its path and filename and we are ready. All associated values and data fields
for the selected recognizer/trigger type are displayed and can be changed directly, or
more comfortably in the editor image area by selecting requested areas and positions
using the mouse. The tool tip help is present for each data type and editor control.
When everything is set, we just click the create button and our recognizer/trigger is
ready to be used in the front-end. It is possible to load existing recognizers/triggers
to the editor later to adjust their settings.

These were general information about using the trigger editor. There is much
more functionality specific for each recognizer or a group of triggers. Let us inti-
mate the reader with it. We will only pick the most interesting parts and functions.
We do not want to bore the reader with self-explaining functions and features that
can be understood at the first sight or with the try and see approach.

Font recognizer

Compared to the pixel and image recognizers featuring only necessary data val-
ues, the font recognizer mode supports a tool used for building font recognition
characteristic. In the trigger editor it is possible to add each character that will be
recognized by actual font recognizer and provide its string representation used in
recognition output when the character is matched. It is not possible to load the font
recognizer in the standard way described before. To load a user intelligible repre-
sentation of the font characteristic, the load button in the font building tool must be
used instead.

Triggers

For all triggers an additional feature set is available. It is located on the right side of
the editor. By pressing the main load button it is possible to run the actual trigger
on the current image and see instantly whether it works correctly. Both the trigger
we want to run and its associated recognizer must be already created. It is possible
to add multiple triggers to the loaded trigger list and test them on several images
just by pressing the run button. When a fix is made on the associated recognizer it
is necessary to press the “reload recognizers” button, otherwise the old recognizer

40

is used further. As we mentioned before, it is possible to group triggers of the same
kind to a trigger list. By pressing the “save list” button all loaded triggers are used to
create the resulting trigger list. To edit this list later, it is possible to load it, change
it, and save it again.

Useful tips and use cases

These tips are intended for someone who is going to use the editor in practice for
the first time. However, the knowledge of the trigger editor usage can be extended
for an inactive user as well.

The trigger editor starts exactly in the upper left corner of the screen. If the
poker client or the front-end uses this location as the standard location for window
positioning it is possible to take an advantage of it. By marking the lock screen po-
sition in the editor after it starts we don’t have to care about placement of windows
we want to recognize.

Each recognizer and trigger has its own folder with a unique name. These fold-
ers are usually located in the parent folders named “Recognizers” and “Triggers”.
It is not necessary to provide the full path to these parent folders when operating
(creating, loading) recognizers and triggers in the editor. The editor automatically
adjust the path if necessary. This is very handy when creating recognizer-trigger
pairs, as we are not forced to modify the path every time.

It is not necessary to fill in the associated recognizer’s path when creating a
trigger. If the associated recognizer has the same name as the trigger and if it is lo-
cated in the appropriate folder as described above, the editor fills it in automatically
during trigger creation.

We can load a created trigger to the trigger list, then modify and replace the
original trigger without loosing the loaded one.

When we intend to create a trigger list, we can easily create a list of triggers
using the same trigger name by loading and replacing the old one. After all, by
pressing the save list button a list of triggers will replace the original temporary
name used only for single trigger creation and loading.

The recognizer and trigger data are stored in a file text file and eventually in
a graphical format. They copy the appropriate data structure of the given trigger
or recognizer type. More information regarding the data structure can be found in
program documentation1, chapter 3.3.4.4 provides more information about the data
types. Sometimes it might be easier to copy, paste and modify the existing files of
a trigger or recognizer than to use the editor. This is especially true in cases when
we need a similar type of trigger, using only a slightly different settings and when
it is more time consuming to wait for the casino client do display the new values

1More information about program documentation can be found in appendix A and appendix A.1.

41

which we want to recognize. Creating a dealer button might be an example of this
situation. Let us assume that we have already created a pixel trigger list recognizing
whether a player is present at the table. This was quite simple, it was only necessary
to take a picture with a full table and then use the click, create and load approach
to generate the trigger list. Now, for example, if the dealer is marked with a button
whose relative position to our pixel indicating player presence is the same, it is
easier to modify the text representation of these triggers instead of waiting a whole
round to capture all possible dealer positions using the editor.

It is important to be careful when creating a character set in the font recognizer.
The characters must adhere to the bottom line. This means we need to include some
additional space above the characters which are not as high as the highest character
of the whole set. We should preferably use the same height for all characters.

Sometimes, conflicts in the character sets may occur. This happens when one
character is a sub-part of another character. In this case the first match is used
according to the character order in the list. Matching an incorrect sub-character on
another character may result into a recognition failure.

When creating an image recognizer, the editor requires a referential pixel of
respective image. This is a simple optimization when a faster pixel recognition may
substitute the slower image recognition. If possible, we should try to choose a pixel
that is unique for the image.

3.3.4 Implementation
There are many libraries on the market that support optical character recognition
and two dimensional image matching. Most of them are paid for and provide many
additional functions and features that we will never use or that could make their use
difficult in our conditions. We do not want to use approximations during recogni-
tion, curved text matching, image rotation analysis or any other advanced feature.
We just need a simple answer whether two images match or whether an object is
letter A, B or nothing. After some time spent searching for applicable libraries it
shows up that it would be easier to implement all these functions according to our
needs. Moreover, this way we are not limited by the licences of these libraries.

Although there are many super fast, intelligent and universal algorithms for op-
tical character recognition and pattern matching, we are not interested in these very
much in our work. The simplest and most straightforward solution that can do the
job is enough for us at this point. We do not want to take every method and ap-
proach we have used into pieces. We will just pick some highlights and interesting
parts of the recognition process we have implemented.

The module Recognizers contain library implementations of all mentioned trig-
gers, recognizers and eventually the trigger lists. The module TriggerEditor imple-
ments an executable trigger editor with the functionality described before.

42

3.3.4.1 Image access

There are standard built-in types for image handling, such as the Bitmap type in
.NET2. Although this type provides the GetPixel method, which is actually every-
thing we need to implement our recognizers, it is very slow due to the access pro-
tection and locking. An easy workaround to speed thing up was necessary. This
involves the following:

• Encapsulation of the bitmap with another object providing the same GetPixel
method.

• Using the access lock and unlock only at bitmap creation and deletion instead
of locking and unlocking on every single GetPixel call.

• Allowing the unsafe code in .NET library to enable direct memory access at
requested pixel position in the bitmap with a type-cast to create the return
value.

This has significantly increased the speed of image processing.

3.3.4.2 Image matching

Two dimensional image matching was done by the simplest possible approach, pixel
by pixel comparison. An enhancement such as definition of a key pixel on the
bitmap speeds even the whole screen image matching up to an acceptable time for
every reasonable bitmap. As it turned out later, is was not necessary to use this
approach on the whole screen but only on small sub-areas.

On different computer stations the same images may look differently, meaning
we need to proceed carefully. Icons in the start menu are an example. Some color
tolerance for the image matching is therefore necessary. This problem might be
caused by different monitor profiles combined with different graphical drivers or by
the CRT vs LCD issue. We have not investigated this in detail, as there was an easy
and quick workaround to solve it.

3.3.4.3 Optical character recognition

There is quite enough character recognition necessary on a poker table. Therefore,
the chracter recognition was optimized for our environment. It should work and
be fast enough even for image matching of each character when using the pixel by
pixel comparison.

2We have chosen c# and .NET for implementation of our environment because of the require-
ments of the back-end. We will discuss them in section related to the back-end.

43

Each font recognizer builds a map of hash codes unique for every character.
This map is based on a few pixels explicitly defining each character. These pixels
are generated automatically according to all characters used in the font on recog-
nizer creation. This ensures that there is no need to operate with original image
representation of each character during font recognition. It is also not necessary to
match the whole area of recognized character with each font character.

Unfortunately, this approach bears a possible conflict between a character and
a sequence of characters that can be matched vice versa under some specific con-
ditions. Most of these conflicts are automatically solved during the font recognizer
creation, however the user must keep in mind that the correct order of characters
is necessary in case of unresolvable conflicts. In short, we should move the wider
characters up in the list when a recognition conflict occurs by accident. This was
not done automatically due to better lucidity and rare occurrence of unresolvable
conflicts. For example this might happen when using a dot without extra space on
its sides and a low line. The recognition system can not distinguish between a low
line and four or five dots next to each other. It uses a greedy approach and the first
match in the font character list.

3.3.4.4 Serialization

To store all the data needed by recognizers and triggers in a user friendly and ed-
itable text form, a module called MySerialization was created. It provides seri-
alization and deserialization of basic types such as boolean, integer, string, color,
coordinate, bitmap. MySerialization module is used by appropriate recognizer and
trigger data structures holding their internal data to serialize and deserialize recog-
nizers and triggers.

Graphical data are stored in PNG format, other data types are stored in text
format sequentially. Each data entry is stored on a new line in brackets. The values
of boolean type are TRUE and FALSE, color is stored as a sequence of three color
components, red, green and blue, delimited with a comma in range from 0 to 255
each. A coordinate is stored as x and y components, again delimited with a comma.

3.4 The core
The core is in fact a very simple meeting point for all involved parts. A lot of
core functionality has already been described before. Just for recapitulation, the
core allows the front-end to register a new poker table with a given back-end and
algorithm. A unique table id is used. Afterwards the front-end sends table data and
eventually optional table data to the core for processing. A detailed view on table
data flow is depicted in Figure 3.2, Figure 3.3 shows the optional table data flow. A

44

separate process is created for every algorithm call. The algorithms run in parallel,
taking advantage of multi-core processors in case of time consuming computations.
The core does not know anything about back-ends. It just needs to send the right
table data to the right back-end and then receive the action request and associate it
with the right table again. Now, there are two ways how to relegate the requested
table action. Send it back directly to the front-end to be immediately executed,
or if possible, send it to an object implementing the IActionInterceptor interface.
Bringing back to memory, it is usually the client that does the logging and allows
action modifications to the user. This is everything that the core must handle.

The idea of multiple threads for every table action brings another significant ad-
vantage. It is very simple to implement sequential action processing in the client
and in the front-end. The front-end may process the whole screen, sending as many
information as possible. On the other hand it will pick up the results one by one
and process them when idle and the resources are available. Compared to a single-
threaded model, when just one kind of table data is created, processed in the back-
end and returned back to the front-end which requires implementation of additional
techniques to avoid other table starvation or implementation of queues with outgo-
ing and incoming data. The same applies not only to the front-end but to the action
interceptor – the client - as well. It may or may not support processing of multi-
ple action requests at once. It can display a user dialogue and after it is answered
display another one, taking advantage of the queue of waiting threads or just sim-
ply display multiple dialogues for every action, so the user can decide the order of
processing according to the importance or whatever he wants.

Just a note to the implementation, the core is named “thread manager” after its
main purpose and is implemented in the the same name module called the Thread-
Manager.

3.5 Back-end
As said may times earlier, the most important task of the back-end is to transform
table data structure describing the actual table state to requested action for given
table. The back-end also needs to accept additional table data which provide sup-
plementary information gathered from the poker table. It may or may not take such
information into account and make the best of it. What was said about the front-end,
that we do not want to force user to any specific approach, applies to the back-end
even more. The variety of possible implementations is uncountable. Some of them
are easy to use, some of them cover wider areas and give the algorithm program-
mer more power. To make our environment fully and relatively easily usable, we
have implemented one new exemplary approach that goes together mostly with the
no-limit tournaments. While other parts of the system like the front-end and the

45

client are intended for the programmers, this back-end part must be open even to
less skilled users. This means that no advanced programming technique should be
required.

3.5.1 AI
Our idea on how to program a poker robot intelligence has been elaborated long be-
fore any factual investigation of other concurrent software. Even after the research
our approach seems to be the best and most suitable for no-limit tournament im-
plementation. This wouldn’t be true if there was a winning algorithm that could be
adjusted and be profitable by sliders in a few minutes.

We have no huge poker hand databases from the real events at our disposal,
therefore any approach based on statistical analysis and overall results in similar
situations in not feasible. We know that we want to make a rule-based system.
Rules like “have aces?”, “Go all in!” look good and are often the base of other
programs, but do not cover enough situations to make a good decision. Sometimes
actions depend more on other factors than the cards. It might be useful to calculate
other values before making a decision. The complication of these computations
must not be limited by the environment. Therefore, we want to use a full-value
programming language if necessary. Building that kind of a language with a lot
of poker built-in functions and types might seem satisfactory. On the other hand,
how many additional functions and standard algorithms that may come handy are
implemented in such a language? The best solution seems to be to use an existing
language and extend it with additional data types and functions related to Texas hold
’em poker. With a template or a sample implementation of a back-end algorithm, it
will provide an easy and at the same time a very strong tool for poker intelligence
implementation. We have chosen c# and .NET as it is a modern and very user-
friendly programming language fulfilling our needs for the hosting language for our
environment.

At this point there is still nothing new compared to other approaches. For ex-
ample the Meerkat-API, used by the Poker Academy Pro software developed by the
games group of University of Alberta for implementing robots capable of playing
in their environment uses the same approach. A class derived from the base class
Player and especially the getAction method can be implemented in java language
and compiled against the provided meerkat-api library. After copying the compiled
.jar file to the Poker Academy bots directory, it is possible to load the new bot and
see how it does against other already implemented bots. A good way of starting
poker robot implementation might be to use this api, figure out whether we are ca-
pable of creating an intelligence that can compete with their existing robots and just
after this try to emulate this interface on a real casino. The biggest drawback of this
approach is the need to recompile and restart the robot after each change. During

46

the creation and debugging of the algorithm there are many changes needed. An-
other drawback is that this software suffers by the fixed-limit ring game approach
of the authors, although it is probably the best on the market nowadays. A short
summarizing review of the Poker Academy Pro software from the point of view of
sit and go tournaments can be found at PartTime Poker3.

We will use the same approach that allows the user to create a dynamic library
with the algorithm in a standard programming language and environment. For this
purpose the .NET and especially the c# in combination with the Microsoft Visual
Studio seem to be a very good choice. It provides a user friendly runtime debugging
with code change support during application runtime. This is something that will
help the algorithm developers and allow them to do step by step observations of
their algorithm. In case that something is wrong, they can correct it real time and
continue with the same situation without the need to restart and model the exact
situation again.

At this point we are proud to present a new idea on how to program the poker
robots, especially for the no-limit tournaments. In ring games, especially in the
fixed-limit version, it is easy to compute probabilities of making the best hand,
or having the hand remain the best to the end. Adjusting bets according to these
probabilities and giving the opponents wrong odds is the key to make profit. If the
situation appears unprofitable, a player simply folds and waits for a better hand.
We do not imply that there is no bluffing in the ring games. There indeed is, at
least in the no-limit version. But it is really rare compared to the tournaments. In
tournament games it is not only about the current situation on a table. Here we
usually do not have the luxury to afford folding and waiting for a better hand. As
the blinds are rising, more and more bluffing occurs in a desperate attack on the
pot. We used the term bluff, although it might be the correct decision. It was used
just for emphasize that in tournaments we need to make actions that are considered
as extremely bad play in the ring games. Instead of focusing on the exact game
situation, here we need to see every table state as a part of a sequence beginning
with dealing a hand. We need to observe betting patterns and take advantage of these
patterns. This is something that is crucial and also hard to catch in the algorithm
programming environment.

• Instead of having a single entry point for the action computation in the algo-
rithm we will build a state automaton, where every state matches a specific
betting pattern and relevant information from the previous rounds.

This allows the algorithm programmer to keep track with what happened earlier in
previous rounds in a suitable form and granularity. It is up to him to choose number
of transitions leading out from each state to cover the information he will need later.

3See the article at http://www.parttimepoker.com/review-of-poker-academy-pro-2.

47

http://www.parttimepoker.com/review-of-poker-academy-pro-2

An example on why is this approach an ultimate method in the no-limit tournament
programming follows.

Figure 3.6: Blind steal example

Let’s imagine a single table on-line tournament with three places paid in a mid-
dle phase with blinds $200/$100. Players A and B folds, we are on the button with
Kr8r. A decent hand to try to steal the pot. This situations is depicted in Figure
3.6. Our algorithm knows that too, so it raises to $500 in hope to get the pot without
any action. Small blind folds, but the big blind calls for the remaining $300. The
fop comes A♠Q♣3r and the big blind checks. What should the bot do now?

In case of the original approach with a single entry point we have two options.
We can decide for an action based only on current table situation. This means that
we have nothing, therefore we check too. We can also try to make a decomposition
of the actual situation. The pot with $1100 in it compared to the actual blinds is
indicating that some betting already occurred. Based on our position on the button
we might deduce that we have been stealing pre-flop. Unfortunately, there are more
possible scenarios which make sense and lead to the exact situation we are facing
now. One of players A or B might have limped in, but has folded to a raise to $400
made by player C or the big blind. As we are player C, it would be very good to
know who has the betting lead to solve the current situation correctly. The point is,
that the decomposition process might be ambiguous, unsatisfactory and also very
difficult to make.

How will this situation be handled with our state automation approach? We
know we were stealing on pre-flop so after the flop we found ourselves in the
FLOP_button_steal_failed_and_called state. All other situations with different bet-
ting patterns will result in another state or our fold. What should we do now? We
know that when we are in this state we have shown a pre-flop strength. We know
that our opponent did not show any strength after the flop as he only checked. On

48

the table we see a scary ace card and the queen of which the opponent might also
be afraid of. We might take advantage of this situation and bet again to make him
think we were raising the pre-flop with an ace-something, or a connected high card
combination such as queen-king, or jack-queen.

To make this poker example complete, we will finish the betting ideas although
they are a little bit off topic at this place. We do not want to waste a significant part
of our stack for the bet. If the opponent flopped a good hand and is slow-playing it,
than he will call everything and we are probably going to be beaten. A smaller bet
might do a better job. This way we will tell him we want to be called. What is more
important for us, if we face resistance, we are not risking that much compared to the
possible revenue. A bet of $400 - $500 would be accurate. In our state automaton
this means, we want to raise to 1/3 of the pot which is rounded to $400 and in case
we get called or re-raised go to the TURN_RIVER_beaten_miracle state. Otherwise
we will collect the pot and the hand is over in our favor. In that new state we do not
want to spend any chips, unless a miracle like two other hearts or a ten with a jack
appears to give us the king high flush or the best possible straight.

In fact our opponent folded his TqJq probably thinking that only the king makes
his winning hand. With a chance of 47:4 compared to the 15:4 odds offered by the
pot it was a good play4.

3.5.2 State automaton implementation
The state automaton for poker algorithm representation will be implemented via
methods in the user algorithm class. Every method will represent one algorithm
state. Of course, any state may call other states for solving a specific sub-problem.
There are following requirements on the states:

• Every state must return an action that will be executed.

• It must be possible to locate the algorithm state which computed the resulting
action in the source code and tell it to the algorithm programmer.

• Every non-terminal action request must define state successors for the next
action computation.

The first condition can be ensured through a return value of every state in compile
time. The second can be supplied by using the exceptions as the return value for
requested state. These exceptions contains the source file and the position in the
source file where the exception was raised. This way we are able to identify the ap-
propriate state that raised the exception, moreover the exact clause in the algorithm.

4There are four kings among the remaining 47 cards, he does not know we have one. And if he
wanted to continue playing for the pot with $1500, he must put in additional $400.

49

Although these exceptions may be hidden to the algorithm programmer in an object
constructor used to create action request, we will prefer the direct exception rising
in the algorithm state due to a better syntax highlighting and lucidity. The third
condition is also easy to fulfill. Every action that requires definition of successor
states accept the references to the corresponding states as parameters. In c# this can
be done using the delegate construct.

3.5.3 Algorithm implementation
Every back-end implements one algorithm. It must implement the IAlgorithm in-
terface as a standard entry point to the back-end and its algorithm. At the end of
one computation it returns the requested action through a call-back method to the
core. What is behind this interface is completely up to the algorithm programmer.
With the state automaton approach an AlgorithmHelper module is providing all the
necessary background. It requires two basic automaton states, a preflop state, and
a backup state. The preflop state is called when a new hand is dealt and no other
action occurred with this hand. The backup state is called when something went
wrong during the automated play, but especially in cases when the algorithm was
started with a hand already in progress and the betting pattern is missing until this
point. After receiving a turn request with actual table data in the back-end it is only
necessary to delegate this request to the AlgorithmHelper through the StartAlgo-
rithm method. Everything else is done for the user when adhering the algorithm
programming rules.

3.5.3.1 Automaton states

Two obligatory states necessary for using the algorithm helper were already de-
scribed. Creation of other states is completely up to the user. It is possible to use
more source files for each specific set of states. The preflop and the backup states
are implemented the same way. A standard source file implementing a concrete
algorithm may look like as follows:

using NS_AlgorithmHelper;
using NS_HoldemPoker;
namespace NS_MyAlgorithmNamespace
{

internal partial class Algorithm
{

internal State MyState1()
{

// The state code goes here...
}

}
}

50

There are namespaces providing the basic hold ’em poker terminology and func-
tions, which we are going to talk about later. Here we provide an example of two
that will probably be used more. It is also possible to include and use other third
party libraries or .NET built-in functions and algorithms.

3.5.3.2 Automaton action

Generally, two types of actions are available. Terminal actions that finish the current
hand right away without any further decision making and actions that change the
state of the automaton for further decision making. Fold and all-in actions belong
to the first category. After making one of these moves the algorithm starts again
in the prefolp state with a new hand. Of course, only if we are still in the game.
Actions from the second category are: check-fold, call and raise. For these actions
it is necessary to define the next states of the automaton. Each of these actions
requires two states, one for repeated action in the same betting round and one for
the next betting round. If someone raises or re-raises after our move we usually
want to continue in a different state than if no significant action behind was taken
and a new card or cards were dealt. An example on these two action types follows.

If (tdata.myhand.GetCard(0).n == ECardVal.nA) // if we have an ace
throw new ActionCall(NextTurnState, RepeatedTurnState);

else
throw new ActionFold();

This is what our algorithm’s implementation is about. Creating states and distin-
guishing the appropriate actions together with defining the next states make a very
strong instrument for creating no-limit tournament algorithms.

3.5.4 Poker data types and functions
To make the automaton state implementation efficient and well-arranged, a lot of
additional poker functions and data types were implemented for the algorithm de-
signer. All of these structures and functions are located in the HoldemPoker mod-
ule. We will only take a general look at them, a complete list of these functions and
types can be found in the program documentation under appropriate module and
namespace.

3.5.4.1 Table data

The TableData structure provides all information regarding the actual table state. It
holds information about blinds, player stacks and bets, size of the pot, our cards etc.
Everything that needs to be said to recreate the situation on the table. It is passed to
the back-end through the Turn method every time the turn is called. This is probably

51

the most important and used structure in the algorithm. This structure is defined in
the NS_HoldemPoker.TableData namespace.

3.5.4.2 Supportive types

Hand, card, player state are examples of other types used by the table data struc-
ture. They allow us to easily operate with the same name terms. We can ask for a
card in our hand, ask for its value or color, compare it to another card or another
card value or color etc. These supportive types define whether a player is active or
whether was disconnected and many more. All this supportive types are located in
the NS_HoldemPoker namespace.

An important thing to know is that the cards in our hand are sorted. We can
be sure that the first card number is at least of the same value as the second card
number in our hand. This is because the order of cards is irrelevant and this makes
it easier to implement some conditions and queries with our hand.

3.5.4.3 Helper functions

This is another category of functions that spares us a lot of time during the algo-
rithm implementation. All of these functions need the actual table data passed as a
parameter to compute their output. They return very useful information regarding
for example number of players acting after us, number of callers, raisers, all-in play-
ers in front of us, computes the maximal bet or maximal possible re-raise we may
face later and answers questions whether a card of given number is on the table, or
how many suited cards are on the table. To use these functions we need to include
the NS_HoldemPoker.HoldemPokerQuery namespace in our algorithm file.

3.5.4.4 Hand queries

To find out how we stand with our actual hand and given situation on the table
we can and probably will use the “is hand query” functions. The same namespace
and the same TableData parameter is required, exactly as in the helper functions
mentioned before. With these hand queries we can ask whether we have two pairs,
a set, or just the middle pair and so on. We can also ask whether we are drawing to
a flush or to a straight as well as whether we made one already.

3.5.4.5 Internal functions

We know that it is not possible to cover every possible hand strength with these
functions. Sometimes even the very definition of the hand can be questionable.
For example, the straight draw. There is a significant difference between an open
and inside straight draw. Are we interested in a set when all the three cards are on

52

the table? Some of the functions can be implemented directly and locally by the
algorithm creator according to his or her specific needs. For this purpose, a small
set of internal helper functions was created that may help him with implementation
of his specific helper functions. He can ask for example for the next occupied
seat position from given position, or to sort an array of cards according to the card
numbers. The namespace it is necessary to use with this set of functions is the
NS_HoldemPoker.Internal.

3.5.5 Programming summary
Everything fundamental related to the algorithm programing has been revealed. The
combination of multiple files containing different algorithm states and many sup-
portive functions gives us a very transparent and effective tool for poker algorithm
creation. This can be boosted up with the Microsoft Visual Studio and the runtime
algorithm modification. The information including the filename and the exact loca-
tion where our action request occurred in the algorithm makes the debugging and
algorithm bug solving as simple as it can be compared to the strength we keep at
disposal.

3.6 Testing
Testing and especially the regression testing of a system is often shifted aside in
many products. Everyone knows that it needs to be done, but nobody actually does
it thoroughly. In our case this is something we really can not underestimate. The
algorithm will probably be adjusted, improved and tuned all the time. Small ideas
on improvement that solve a specific situation will be added during the lifetime of
the algorithm, usually inspired by specific situation and the algorithm game play
that we saw. Adding even the most fundamental improvements may sometimes
result in a creation of another small and hidden problem in the algorithm. Bigger
changes usually result into automaton state-flow modifications. These types of bugs
are usually disclosed sooner or later during algorithm play, but it would be better to
find them right after the corresponding change that caused them, to keep the track
with an overall idea of the algorithm. Some errors may occur even in the early
phases of implementation of the recognition phase. It would be proper to test the
correctness of the recognition as well and watch for of accidental “fixes” that may
spoil the recognition process.

To do so, we will implement a complex and integrated system for regression
testing. It is not possible to cover every situation that can happen in hold ’em poker.
A much better approach would be to create the test set gradually, based on real

53

situations that we observed during game play and that were interesting, or played
incorrectly by the algorithm.

• It should be possible to recreate the tested situation for the algorithm (and
eventually for the front-end as well) to see whether a fix or current version of
the algorithm acts correctly according to given situation.

At first sight this might seem as a trivial problem of just resending the actual table
data to the algorithm. Or more likely, to resend all the data beginning at dealing the
actual hand to the current situation we want to test, in order to induce the betting
pattern for the algorithm. On the other hand, this might still not be enough. There
are two general problems. The more substantial is the possibility that the algorithm
has built some kind of player profiles according to additional observations provided
by the optional table data from the front-end. These observations might be time
dependent, for example monitoring the frequency of blind steals of each player, or
database dependent, when a player profile and profitability can be used in algorithm
decision making process. Of course, the database can be changed during the time.
Therefore, even the same situation of playing one hand can theoretically result in a
different action. This problem is mostly ideological and we are definitely not going
to face such problems in the early and middle phases of the algorithm implemen-
tation. The other problem interferes with our intentions more, it is the necessity of
using random decision making in the algorithm. Simply, the algorithm cannot play
similar situations in the same way and sometimes needs to randomize its decisions.
This is the problem we are more likely going to face in the regression testing.

When we face a situation that we want to use for algorithm adjustment or for
later regression testing, we want to be able to create a sequence from the dealing of
actual hand to the current situation, in best case to the end of actual hand. More-
over, we want to preserve the same “random” decision making in the algorithm.
If we allow the algorithm to make another decision somewhere before the critical
moment, we may not reach that critical moment at all. Even more, we cannot con-
tinue the testing, because actions of other players are conditional on our move. We
simply do not have the right data available for the later betting rounds. Ensuring
this requires a random decision making management connected with the regression
testing sub-system to make the process hidden to the algorithm.

The other important decision that needs to be made is to choose the data type
for later testing. The simplest solution would be to store the table data structures
for every hand. The simplest for us, but very uncomfortable for the tester. It would
be very difficult and time consuming to realize what is going on only according
to a text representation of poker table state. It would be necessary to make a tool
that reads the data and creates a visual representation of the table state that could
be understood in very short time. This approach also avoids the front-end testing
completely. Therefore, we will prefer the exact graphical representation of the table

54

from the casino clients and simulate the adequate casino client window. The front-
end will not know, whether it is playing in a real casino or in our simulated window.
However, the client must know what is going on. To make the testing faster, it will
not register for the action intercepting through the IActionInterceptor interface. The
random number generator must work in a special mode, to make the algorithm do
exactly the same “random” decision that were made when the test case was created.

It is recommended to use the RandomNumberGenerator module to get ran-
dom numbers or random decisions. Especially in the back-end implementation we
should use the random sequence generator and its method IsPercentage that returns
true or false according to the percentage parameter and allows us to make easy ran-
dom splits in actions. Not only will we avoid the testing problems this way, we
also get an unpredictable sequence of decisions randomized automatically during a
game.

3.6.1 Test scenario
Test scenario will be represented by a series of images of a poker table capturing
crucial moments of one hand. These moments are the table states just before our
action has been taken and the same pictures that were used in the front-end table
recognition process. These images will be supplemented by a short text script de-
scribing the situation and actions that should be taken by the algorithm. To give
a standard form for these text scenarios, let us say the images will be named with
numbers from zero in order they were created and will be stored in a no-loss com-
pression format PNG. The script describing the test sequence order and expected
actions will be stored in a “test.txt” file. These images and the file with script lo-
cated in a single folder create a test scenario.

Test scenario commands

To be able to correctly replay the sequence of images in a scenario and confront the
real action taken with the expected action, a few commands that cover these cases
are necessary. The complete set of commands includes: DISPLAY, FOLD, CALL,
RAISE, ALLIN, END, these are modified by the user, followed by RANDOM and
FAIL commands used by the scenario creation mechanism. A scenario may look
like as follows:

DISPLAY 0.PNG
CALL
DISPLAY 1.PNG
RAISE 120
DISPLAY 2.PNG
FOLD
END

55

The DISPLAY command takes a parameter with image filename that should be
displayed and is followed by one of the four commands representing the action that
should be taken. The RAISE command takes a parameter with the amount of chips
to be raised. After reaching the END command the scenario is marked as correctly
passed.

When a new test scenario is created using the module TestScenarioCreator and
the standard approach, the scenario script contains a full sequence of captured im-
ages to be displayed, each followed by the FAIL command. After reaching this
command the scenario is immediately finished and marked as failed. The user must
fill in the correct betting sequences before the testing. Another possibility would be
to do it after the testing, according to a log with failed scenarios. Sometimes the test
scenario script contains the RANDOM command at the beginning followed by its
parameters. This command is used to regulate the random decision making in our
algorithm to achieve exactly the same “random” decisions that were made when the
test scenario was created.

During the implementation and testing of our algorithm we found out that the
newly created and captured scenarios should not be included in the regression test-
ing as they usually fail. We have therefore added a SKIP command which should be
used at the beginning of a script. This ensures that this scenario will not be marked
as failed in the resulting summary. Right after an appropriate fix is done, it can be
removed and an actual test case will extend the test suite.

3.6.2 Tester application
To be able to test these test scenarios in our poker playing software we will need
an application that is capable of emulating the poker situations according to the test
scenarios. This application has to work in different modes, depending on the casino
type and table structure where the test scenario was created. The objective of this
application is to traverse through the directories containing captured test scenarios
and replay them. According to the commands in attached text script it will emulate
requested table situation and wait for actions to be taken. If the action is correct
it continues to the next command until the final END command is reached and
scenario is marked as “OK”. When a wrong action is taken then it interrupts the
scenario, creates a log and continues with another testcase. After processing all
scenarios it creates a summary log with number of failed, passed and skipped test
scenarios. User can afterwards search through the log to find those that failed.

3.6.3 Test scenario creation
The module TestScenarioCreator implements everything necessary for easy test
scenario creation. The rest of the burden is on the front-end, however the client

56

needs to participate on this process as well. The front-end supplies the test creator
with all necessary data, the client tells the creator which test scenario should be
created and which not, mostly according to the user requests. Test scenario creator
accepts an id of a scenario, actual screen-shot of appropriate window and a position
of relevant data in the window. This is provided by the front-end every time when
a player move is detected and table analysis is started. When the hand is finished,
or rather a new hand is dealt on appropriate table, the front-end tells the scenario
creator to close a scenario of given id. That is all that the front-end needs to do. But
only this will discard the test scenario and prepares the creator for another one under
the same id. Which by the way means that it is possible to use the table id to create
test scenarios using the scenario creator. To create the real output it is necessary to
tell the creator we are interested in providing the appropriate scenario id. When a
test scenario with a positive create request is closed, at first it is created, saved and
just afterwards discarded. This ensures that it does not matter when we decide to
create a scenario based on the actual hand. The scenario covers everything from
the hand dealing to the end, it does not matter that we have decided to create it, for
example, before the third betting round.

If we are only interested in a situation that happened early and do not want to
test to the rest of the scenario to the end, we simply delete all redundant images and
adjust the test scenario script.

Let us return back to the problem mentioned at the beginning of this chapter,
concerning the player profiles that were created in the algorithm during the whole
game-play and how to evoke the exact state of the algorithm when the scenario
was taken. We have sidetracked it on purpose, to have an idea of how the testing
process works. We can not provide any universal solutions, or at least we doubt
about usability of such solution. However, the user and programmer of the system
has a way how to deal with it. Providing any algorithm specific data can be done
using the same approach as we have used with the random decision making. We do
not know what type and form of data the user may need to store and use with the
algorithm before each tested hand, but he may extend the test scenario creator to
accept more information in any type he needs. Extending the command set of the
test scenario scripts as well allows him to be able to load all his data to the algorithm
when it is necessary.

3.7 Other supportive environment modules
We have covered the whole environment for creating automated poker players in
on-line casinos from the front-end and the recognition process, the core of the sys-
tem, to the way how to implement the back-end and a poker algorithm, and how
to test most of the functionality, especially the poker algorithm. At this point the

57

reader should be able to understand the project ideology, or even more, make his
own environment based on the ideas and investigations we have provided without
any fundamental difficulties. Probably the most interesting variant is to use our en-
vironment focusing on the front-end or back-end creation according to his needs.
However, there are still a few things to mention if somebody wants to use our envi-
ronment and take advantages of all the features it offers.

Peripherals emulation
The functionality related to input and output peripheral emulation and observation
is implemented in the UserIOEmulator module. It implements methods for screen
and partial screen capturing. The results can be used for screen recognition and
activity monitoring. In this module we have also implemented an emulation of a
keyboard and a mouse. This includes simple to use methods, emulating the mouse
clicks, mouse drags or keyboard typing.

Logging
During the whole system runtime it is necessary to inform the user about what is
going on, eventually what failed and what succeeded. This is the main concern of
the Messenger module. It implements methods that can be used in any part of the
system to display messages, warnings and errors. However, the module itself is not
capable of displaying any message, therefore another object that can display or save
the messages must register itself to the messenger. This object must implement
the IMessengerListener interface. Usually a client provides a text box with these
messages for the user and it is the right candidate for the messenger listener.

Front-end implementation
We have mentioned most of the functionality necessary for the front-end creation,
but in a general way. The programmer might be a little bit confused when trying
to modify or implement other front-ends or front-end parts even though he has the
idea and knows how to execute it, the exact implementation and approach were
not mentioned in sufficient detail. To make the front-end programming as simple
as possible we have created an additional module with encapsulated functionality at
one place. It is not necessary to use it, it is possible to work directly with the already
described components and system functions. But its purpose is to lighten up and
speed up the implementation process and allow the programmer to focus only on
specific relevant parts.

The name of this module is FrontEndHelper. It encapsulates all the front-end
related functionality to one place and adds even more. It is not necessary to take

58

care of paths to every trigger and recognition manager, nor is there need to take care
of trigger action area and subsequent call of peripheral emulator with given value.
For example, clicking every time at the same place of a button in a poker client is
not wise as well. All this is managed by the FrontEndHelper. The actual front-end
programing using this helper module looks like helper get this and helper do that.
The front-end designer does not need to know anything about peripheral emulation
nor trigger manager to create a full-valued poker client front-end.

To create a front-end helper object we need a path to related trigger and recog-
nizer parent folder that is required as a parameter. From this point we can ask for
every type of trigger we want to use, just using its name. The helper does the rest.
A smart thing it to create multiple helpers, one for each managed window. This way
we can separate triggers and recognizers used in different window types. Moreover,
this allows the triggers to work correctly and independently on the actual window
position. The only thing we need to tell the helper is the position of related window
on the screen. Afterwards we just need to call the UpdateScreenShot method every
time we want to update the related screen data.

When using the helper object we have to keep in mind the synchronization. Not
only the output resource synchronization but even the screen capturing synchro-
nization. If there is one global window manager managing for example the window
positions, the concrete window managers can not perform any task until the new
window positions are set to respective window front-end helpers. The same ap-
plies in opposite way, do not touch anything from outside, until the internal window
management finishes. Of course, parallel screen processing of windows on different
locations is possible.

In contrast, the opposite approach would be to only let a central authority, the
window manager, manage the screen capturing. The central authority can assure
that each window is using the right screen shot and right window position. This
could be ensured by a single method that takes a new screen shot and position.
The drawbacks are that the front-end must operate directly with the screen data
representation and configure the respective helpers with it. This is still not that bad
compared to the fact that a window can not update its screen shot without asking the
window manager to do so. This was the way how we have initially implemented the
front-ends, but we have changed the helper object to the first approach. The code
is cleaner, but the correct update of window positions is not guaranteed globally,
instead it is let on the front-end programmer.

Client
The client is a user modifiable gui application. It will provide the basic functionality
to run the whole system. Most of the information concerning the client were already
mentioned in the front-end and testing chapters. It is possible to choose a front-

59

end we want to use in the “FrontEnd” menu and configure it through the front-end
settings or the front-end mini console. Front-end settings can be turned on in the
“Window->Settings” menu. The client will allow us to run the system with test
creation support that can be turned on in the “Test->Create test scenarios” menu. In
the Test menu it is also possible to run the system in the test mode using the tester
application with appropriate poker client interface. The “Action” menu allows us
to attach to the poker client, start and stop the play or turn on or off the automatic
play.

Summary
At this point we have finished the ideas and approaches concerning the environment
for creating automated on-line poker players. What was said is already implemented
and waiting to be used in a real situation. In chapters 4 and 5 we are going to em-
ploy every part of our environment to create a functional demonstrative Selfacting
Internet Casino Entity. (SICE) We will build a front-end for a real casino to prove
the capability and strength of our system based on monitoring and graphical recog-
nition of the screen. Afterwards, when it will be possible to plug in the front-end
and gather a real table data from real situations on poker tables, we may start the
back-end implementation. Here we are really inquisitive how our approach to al-
gorithm implementation holds up. Of course we are going to implement the basics
strategies for the no-limit tournaments. After all, when the whole system will be up
and running, we will try to answer our target questions and give a summary.

60

Chapter 4

Building a casino front-end

In this chapter we will try to find a suitable casino and build a front-end for it using
our environment for front-end creation.

4.1 Terms of use
We are going to search our representative set of casinos for a suitable casino for this
thesis. We must take into account their usage policy and find a way how not to break
the agreement rules while implementing our automated player. Nevertheless, this
does not mean that it will not be possible to build a poker robot working on these
sites using our environment. If we succeed in this thesis with any casino that allows
to operate an automated player, somebody else can do the same in other casinos and
disobey the conditions of use. However the anti cheating methods used by poker
rooms differ and other additional techniques to stay hidden when operating a robot
might be required. Let us begin with the biggest and best known poker sites like
PokerStars, FullTilt, TitanPoker and PartyPoker and see whether any of these can
be used for our purpose from the usage agreement point of view.

PokerStars
PokerStars is known for the best detection of robots and any suspicious software
of all poker sites. Most of the competitors’ unfair software claims difficulties when
operating on PokerStars and they require techniques to operate their software from
a different machine using desktop sharing for example. The terms and conditions of
use, however, are surprisingly very mild and suitable for our needs. It is allowed to
use other software to operate their poker client which is very important for us. The
user, however, must personally initiate the action without any additional artificial

61

advices. This is claimed in the third party tools and services1, and in the license
agreement2.

FullTilt
FullTilt poker does restrict all kinds of player assistance programs that gives the
user an unfair advantage3 over others. This includes only software and databases
containing more information than the user obtained or observed by himself. The
robot play is handled explicitly4. All interaction with the poker client must be exe-
cuted personally and that their user interface must be used. This is pretty much the
same condition as in the PokerStars. FullTilt is therefore suitable for this thesis in
the same way as the PokerStars is.

TitanPoker
TitanPoker is “the king” in strictness of using their software. It does not allow to
“interfere in any way with the Poker Room (downloadable software) or the Website
(their web site)”.5 Although the context is the robots and similar devices, the clause
itself in its pure meaning restrict even human operators. One way or another any
automated interaction with the poker client is not allowed on TitanPoker and we
have to pass by.

PartyPoker
PartyPoker does restrict the use of software programs that are designed to enable
any artificial intelligence. They do not have any particular sentence in the terms
and conditions of use regarding the automated operator of their client. From this
point of view this poker room is suitable for our purpose unless any “artificial in-
telligence”6 is implemented and used to our advantage. Likewise it is questionable
whether a series of rules and a random number generator can be considered as ar-
tificial intelligence. Is is not prohibited to automatically compute some auxiliary
values. Is this artificial intelligence? As the author of the algorithm rules we are
able to act according to these rules even without any software tool. The problem

1Available on-line at http://www.pokerstars.com/poker/room/prohibited/.
2Provided with the PokerStars software, see the clause 5.5.
3For the exact definition of an unfair advantage see the clause 8 in their site terms provided with

the FullTilt software.
4See the clause 9 in their site terms.
5See the clause 4.1 in their site terms provided with the TitanPoker software.
6There are multiple definitions of this term. For more references see the Wikipedia. Artifcial

intelligence - wikipedia, the free encyclopedia, 2009. [Online; accessed 16-April-2009].

62

http://www.pokerstars.com/poker/room/prohibited/

we might walk into when using this poker room is completely different. They will
take measures to detect automated players by screen scraping of the user computer7.
This is something we do not want to undergo due to our privacy, nor due to possi-
ble problems during the SICE development, even when not breaking any agreement
rule. By the way, we do not see a point in this approach, the robot application can
be hidden in the background without any graphical representation on the screen.

We have found two major poker rooms that fit our needs sufficiently. We were
not expecting to find any commercial poker site that allows automated players.
However, being able to observe the course of events and being able to control the
poker actions from an external application is favorable enough. Let’s pick up one
casino for this task, PokerStars is offering itself as the biggest and most widespread
poker room of all.

4.2 Closer look at PokerStars
The “winner” of our quick juristic survey of the usage conditions in a few poker
rooms is the PokerStars with FullTilt right behind. We have preferred PokerStars
to FullTilt due to their bullet-proof anti bot policy, at least presented to the public
and claimed by concurrent robot developers. We are interested in whether even a
complete emulation of a human behavior, as we are going to implement, can be
detected. Let us take a look on what we can afford to do in PokerStars, as we know
that building a full operational robot is not allowed anywhere. The information
is taken from the third party tools and services available on their web page. The
following tools and services are explicitly allowed:

• Tools, services or charts that simply tell us odds, starting hand recommenda-
tions, etc.

• Tools and services that profile our opponents we are playing with.

• Macros and Hotkey programs that don’t have any bearing on gameplay logic.

Especially the first and the third point are very favorable for us. We can gather,
compute and display any information regarding the table state. It is even allowed to
compute and display some back-end specific data used for our algorithm decisions.
The third point says that we can use our program to perform an action on a table.
Emphasizing that it is us who can perform the action, not the algorithm or the system
itself. The prohibited services and actions are:

• Colluding – sharing card data with other players.

7See the clause 7 in their site terms provided with the PartyPoker software.

63

• Working with central database of player profiles or hands.

• Program that plays without human interaction.

• Practice data-mining – observing games as a non-player to build databases of
hand histories.

• Any software that offers direct game play advice on the appropriate action to
take, and which is also programmable or configurable beyond a very basic
level.

Only the third and especially the last point affects us. The third point says what
we already know, that we need to make the action personally. The fifth point is
questionable in our conditions. We want to build that tool as a demonstration that it
is possible to do so. We do not want to use it or rely on actions it wants to perform.
The same logic as we have used with the artificial intelligence in PartyPoker applies
here similarly. Is it an advice to see “go all-in with those kings” if we programmed
it and if we know exactly what the “advice” will be?

As we are not making a thesis on philosophy or law and we do not want to
argue about this let us assume the following scenario of use. The table is observed
by our front-end and all the necessary information is extracted. Subsequently the
information is sent to the back-end to compute the resulting action. The client
catches this action and gives us a choice of performing a move by emulating the
same poker client interface. We can call this interface “hotkeys” for folding, calling
and raising. After we have decided for an action and performed it, the client shows
us the action computed in the back-end for comparison. As long as we are able to
predict the requested action everything should work fine. If these actions do not
match, then we or the back-end made a mistake, we can correct it, forget current
hand and continue with a next hand.

The final step would be to interconnect the action from the back-end with the
front-end directly. This is something we are not going to do due to the agreement
rules, but doing so is a trivial thing and the system can be considered as a self-acting
entity capable of playing hold ’em poker on PokerStars which can be considered as
fulfilling one of the goals of this thesis.

4.3 PokerStars front-end architecture
We will use the same architecture as described in section 3.2. A WindowManager
will be used to handle the overall window placement and desktop organization. We
will create two concrete managers for specific windows, one for the main lobby
window and other for a poker table window. The LobbyManager will be responsi-
ble for handling the operations with main lobby such as registering to appropriate

64

tournaments. The TableManager will be capable of creating the table data repre-
sentation based on actual table image. In our PokerStars front-end we will have
one WindowManager and one LobbyManager. The number of TableManagers will
depend on how many tables we are playing simultaneously. Each manager type will
require its specific recognizers, triggers and configuration data. We will create a
“data” directory in the project with well-arranged structure holding all related and
necessary data.

4.4 Creating recognizers and triggers for PokerStars
We will create a separate recognition set for each manager used in our PokerStars
front-end.

4.4.1 Poker table recognition
At first, we have to make a few observations of a typical PokerStars table which
is depicted in figure 4.1. Although we know that we want to build a front-end
that recognizes the lowest no-limit tournament turbo tables, later or even during the
testing phase we might want to use the front-end on other tables as well. Therefore
it would be the best to create the most universal selection of triggers and recognizers
that can be reused on different tables.

PokerStars tables look pretty much the same, it does not matter whether we look
at a cash table or a tournament table. The only difference is in an unimportant piece
of graphics in the middle of the table. The important difference for us is the number
of available seats and their positions. There are tables for ten, nine, six or two
players, probably there are some more which we have never noticed. The six and
two player tables are derived from the nine player table with some seats excluded.
The tournaments with the smallest fees take place on the ten player table version,
tournaments with higher stakes are held at the nine player version of a table.

The picture above is the ten seat version of a table with players 3 and 5 already
out of the game. Let us create all the necessary recognition data for this table type,
the same process can be used to create the recognition for the nine player table
version. To make our references to the picture simpler we have named the players
in our own way. This will also be our referential order of players with the first player
in the upper right and the last one in the upper left.

65

Figure 4.1: PokerStars table

The presence of a player at a given seat, dealer button position, or whether a
player is still holding his cards can be determined using a pixel trigger with specific
pixel recognizer. For example, a corner of the box around each player name, a red
pixel in the ’D’ of a dealer button or a specific pixel on the mini cards laying on the
table upside down can do the right job. In each of these cases we create ten pixel
triggers sharing one pixel recognizer with specific pixel color. This is everything
that is needed. After all, the most time-consuming thing will be to wait a whole
round to get all the dealer button positions into the trigger editor. At the end, when
we have captured all positions and placed them in order in the trigger editor we can
create a pixel trigger list for the front-end.

To figure out whether it is time to act we can watch the fold button. Every time
it appears we have to recognize the whole table and create the table data structure.
Sometimes a “muck hand” button may appear at the same position, therefore the
pixel recognition is not sufficient in this case. An image trigger and image recog-
nizer of the fold button is the right choice. We also have to declare the areas of other
buttons and the raise text box to be able to press them, or to select the raise amount
and replace it with our value.

The rest that remains to be done is the font recognition of stacks, bets, pot and
cards. The same font is used with player stacks and the pot, therefore we could
spare one font recognizer for pot recognition. Any tournament in a later phase or a
cash game will be suitable for creating the font recognizer as many different stacks

66

with different numbers are present. We will also need to pick up players that are
sitting out, disconnected or all-in to be able to correctly recognize their state. Of
course, we have to include the punctuation, dollar and the word ’POT’ if we want
to recognize the pot with this recognizer as well. The rest of the job is on the text
triggers to correctly adjust the font recognition parameters as position and search
distances, plus override the colors in case of the pot recognition.

We should make a remark on user customizable triggers, which were not men-
tioned yet. It is possible to create a customizable trigger for special occasions when
the trigger values are not known during the trigger creation. By inheriting a class
from the original trigger we may modify its internal values and customize it during
runtime.

The pot recognition was the case when the customizable triggers came handy.
The pot font uses the same color as the box around the yellow pot background. The
size of the background rectangle is adjusted to the size of the pot text length. This
could confuse the pot recognition as the box may be considered as a character that
is not known to the font recognizer. We had two options. To add the horizontal line
to the font with empty output character or to make an adjustable text trigger and set
the actual parameters respecting the size and position of the pot text during runtime.
To find the pot brims we have used two image finders, one for the left and the other
for the right edge of the box.

For the bet recognition we have made a separate font recognizer. The only thing
we had to take care of was the correct creation of appropriate triggers. The position
of the bets may vary according to number of chip piles. This position is sometimes
shifted to the left and sometimes to the right, depending on the seat position and the
direction in which the chip piles grow.

To recognize the cards we have created two fonts, one for the card number
recognition and the other for card suit recognition. In fact we do not recognize the
card color but the shape of clubs, diamonds, hearts and spades, each as a single font
character. Although it is possible to do it through the pixel color recognition, this
way is more elegant and does not require a separate trigger for each color. After-
wards we have created text triggers for every possible card location around the table
and on the table. This might seem a little bit unfit compared to a trigger grouping ap-
proach, which means instead of creating a recognition for every single card, create
a recognition for a hand and use only single position for hand recognition. On one
side we may spare some triggers differing only in the position, on the other hand we
need to provide relative shifts between a card and its marks. The overhead from cre-
ating a custom hand recognizer is not big, but the payback is not significant either.
Maybe if more visual elements such as the dealer button, presence check location
etc. could be grouped together to create a complete position recognition trigger. In
any case, the trigger editor is simply doing a great job in the mass production of

67

appropriate triggers.
There are three or four ways how to recognize the blinds and antes. The easiest

is to parse them from the window title bar. This makes the front-end dependent
on the font we use in the system, however what is more fundamental is the fact,
that the blinds may not fit into the title bar when the table windows are diminished.
Another approach can be the notification observation that the blinds are increasing,
or a time measuring knowing the blinds structure and time interval of increase.
The drawbacks are obvious, we may miss the notification if the table capturing
frequency is low or suspended for a while. Synchronizing a time with a tournaments
will not work as the tournaments can be suspended for a while due to some other
reasons. The last approach is to compute the blinds and antes from the stage. We
have decided for this approach because it is reusable in other front-ends although a
lot of specific situations had to be handled. These situations are, for example, that
we do not see the scene right after the blinds are posted, but rather when it is our
turn with a lot of action already done. The blinds might be so high that a player
might go all-in and not even reach the blind size. Antes are paid even by players
that already folded hands etc.

The last requirement for a table recognition is the need to be able to detect a
finished tournament. In PokerStars this is done through a message box dialogue
saying that the tournament has finished. We have to detect them and press the
appropriate button. This is an easy job for an image trigger. A thing to remember
is that other messages can be displayed as well, for example the message about
transfer to another table when playing multi-table tournaments.

4.4.2 Poker lobby recognition
There is far less work with the recognition of the lobby when compared to table
recognition. The only job of the lobby manager is to automatically register for a
tournament when requested. It needs to be able to locate the right tournament in the
tab structure, find it in the list of tournaments, pay the tournament fee and register
to it. Once again, it is no deal for image triggers and button pressing in the right
order.

4.4.3 Window manager
The window manager has to ensure that every observed window has its unique po-
sition on the screen. It is also responsible for picking up all poker-room related
windows and incorporate them to the overall scenery. This applies to the system
startup in case there are already some tables present and also applies during the
system operation when new tables are opened and finished tables are closed. The

68

window manager is also responsible to create the lobby manager and the table man-
agers on appropriate windows.

The localization of the related windows on the screen is done through the Win-
dows taskbar icons. Using an image finder it is easy to locate the corresponding
poker room buttons. Once the Windows taskbar was located it is not necessary to
search through the whole screen again. The search area can be reduced to a small
square or even a line at the right position. The window control is done by the taskbar
menu commands available through the right click on the respective button. We are
able to move, close or restore a window. This approach is dependent on current
Windows scheme which is not a very proper solution, but can be easily adjusted
on both sides. Using the right Windows scheme or using the right recognizers and
menu position of requested actions.

The window manager has to regularly wake up all the table managers and let
them check whether it is necessary to make a move and perform the table analysis.
The same is done with the lobby manager if a new tournament should be started.

4.4.4 Implementation techniques
The whole manager implementation is hidden behind the IFrontEnd interface. Ev-
ery front-end request is delegated to the window manager for synchronized process-
ing. We will make a few remarks on the front-end structure. Every manager uses
its specific data. These data are loaded to auxiliary objects called DataHolders and
TriggerHolders. These objects can be created using the appropriate path to config-
uration data or with an appropriate front-end helper object. They load and create
all the necessary data that can be later used directly from the managers without any
additional on-place loading and error handling. This also ensures that a variable
with the same name can be used in all managers to access only relevant data and
triggers of each manager, which is very transparent.

The PokerStars front-end operates only with one game type at once. We have
not implemented a game type recognition of a poker table. The front-end assumes
that every table it faces is of a given type. Of course, this type can be changed
through the front-end mini console. This only affects the automated joining to the
tournaments and initial process of attaching to the lobby. Only the tournaments of
actual type are joined automatically and played. Indeed the game-play on already
opened and monitored tables is not affected by the game type change. It is possible
to start a small tournament for ten people, then change the game type and start an-
other type of tournament for nine people only. Both will be monitored and correctly
recognized.

69

4.5 Client implementation
There is nothing special concerning the client implementation. It is a simple GUI
program and everything what it does was already mentioned. The source code of
the client is intended for the user modification too. He may add more front-ends to
the supported list of front-ends or implement any specific interface for controlling
other system parts in case that the front-end mini console approach is not sufficient
or suitable enough.

During the client implementation we have also created a test back-end, named
testAlgorithm, to be able to run the system for the first time and see whether the
front-end gathers all required data correctly. The test algorithm creates only a ran-
dom action request which should be changed by the user in the client. This action is
subsequently executed by the front-end on the appropriate table. For the first time
we are able to play poker on PokerStars using an external application providing
all the necessary data and a user interface for resulting action. With the help of
TestScenarioCreator we were able to start building our set of test scenarios that will
become handy during the algorithm implementation and testing.

4.6 Poker Academy Pro
In advance we will need to admit that implementation of the back-end and the no-
limit tournament algorithm using the “guess what the algorithm do” approach was
very uncomfortable. In some corner cases it was difficult to predict the exact action
of the algorithm, especially when a complex and complicated computations started
to appear in the algorithm. Without knowing the answer on whether we are able
to see the requested action before we approve it this was not a good idea how to
continue. Therefore we have decided to leave the PokerStars front-end for a while
and try another solution of this situation.

Its name is Poker Academy Pro, a software designed for poker training, using
artificial poker players. We have already mentioned it during the data mining pro-
cess of concurrent applications. Using the Poker Academy Pro as our referential
casino brings these consequences:

• We can use their graphical representation of the casino, not only their Meerkat
API, to simulate the whole process from recognition to action making.

• Poker Academy Pro can simulate sufficiently enough a no-limit tournament
with a little bit configuration.

• Speed up the game play. We do not need to directly intervene to the play and
we do not need to wait for other slow human players either.

70

• We can compare our algorithm skill to their already implemented robots ca-
pable of no-limit tournament play.

• Poker Academy Pro is not free and costs $85. The demo version works only
for 6 hours of net playing time.

Everything looks good except for the last point. We will have to be really fast and
probably use the demo version on multiple computers to create a solid test-case base
and do some algorithm skill measurements. This way we will be able to present the
whole system playing automatically.

Despite the fifteen years of development done at University of Alberta their main
focus is still aimed only at a theoretically perfect fixed-limit cash games. Although
they have implemented no-limit tournament players using many different and very
advanced approaches and methods, the quality of such players is a little bit contro-
versial. A lot of work can be seen on their tactics, bluffing and trap preparing. Some
of the robots understand the need of blind stealing and can adjust their game-play
more or less during the whole game. We doubt that we will be able to cover that
much area of strategies in our player. On the other hand, these robots do not reflect
the situation in real casinos precisely. They tend to make more calls and raises when
compared to the real tables. Although these calls and raises are often in conformity
with the math, the people in real casinos are more cautious. For a human, or at least
for somebody who is trying to implement a poker intelligence, it is very easy to
find some threshold values of necessary pressure and aggression to deal with these
bots. The pattern of the game play is pretty much the same all the time but in spite
of that, it is very instructive for a newcomer. One could say that these bots play
no-limit tournaments as a cash game with increasing aggression according to rising
blinds. This is of course only an initial impression after a few games we played, to
eliminate the luck factor as much as possible and see where their bots really stand
we should play more games.

By the way Poker Academy Pro it is worth attention and for a starting player it
could be a really good choice where to learn the very basics of the game. Although
the money motivated game is always the best teacher.

One conclusion can be made one way or another. These robots are capable
of a solid no-limit tournament play and theoretically with a combination with the
recognition environment could be dangerous to the on-line poker industry, or rather
to inexperienced on-line players. Maybe knowing that the opponent is a bot makes
a huge difference between being able to defeat it or to be defeated. It seems that it
is definitely possible to make even the no-limit tournament automated players.

The question remains whether we need a huge team and many years of research
or whether it is possible to create a no-limit tournament bot with much less effort.

• In this thesis we will focus on making a competitive no-limit tournament bot

71

using our environment that will be able to keep up with the robots from Poker
Academy Pro to figure out how difficult it is and if it is possible.

• As a success we will consider to break the even with the rakes excluded. This
means not to be in a loss when we do not count the rakes for a casino. We
just want to confront the bot skills on both sides.

Front-end
We are not going to describe the creation of the Poker Academy front-end step by
step. The same approach as with the PokerStars has been used. Moreover, the
PokerStars front-end source code was copied and adjusted in a few details. The
largest amount of work has been done in the trigger editor. It was necessary to
recreate the positions, images and texts for the respective recognizers and triggers.
A few triggers and recognizers were removed completely, a few were added. For
example, the pot handling was changed as in the Poker Academy they use multiple
pots as players goes all-in. Although the Poker Academy Pro graphical interface
was not included in our representative set of casinos, the recognition system proved
that it is strong enough to cover a casino we have never seen before and in a few
hours we were able to recognize everything that we needed.

Unfortunately, their graphical interface does not print the bet sizes at all, only
the poker chips are displayed and some action is printed next to each player. This
is very confusing and very uncomfortable even for a human player. Moreover, they
use the “raise of” notation instead of the standard “raise to” notation. These two
facts together create an atypical situation. It therefore takes a while to adapt to it
and understand what is going on. For our recognition system this meant to deduce
the missing and standard information from the pieces provided. This took even
more time than the overall graphical recognition, but we have succeeded in the end.
Our new front-end is up and running.

We have also adjusted the client to allow auto play and to allow a better user
interaction with the requested actions.

4.7 Casinos’ protection
Based on our investigation and experiences with the design and implementation of
our environment we can summarize some methods and hints that could be used
by casinos to make the bot implementation more difficult. Our recognition sub-
system was designed to work with current mechanisms used by on-line casinos. It
is therefore questionable whether there will be any advantage for the casino to go
against this trend and whether there are methods that completely eliminate robots

72

based on optical recognition. We think that this is a question of balance between
what the recognition system can recognize and how many people are still willing to
play in given casino.

Our recognition system is based on the fact that every casino uses a static com-
position of the scene. If a casino can break this presumption we would have sig-
nificant difficulties to operate in this environment with our software. This can be
done easily by modifying the positions of visual elements. However, this could be
very unpleasant for human players. Another way of breaking this rule would be
to use transparency, putting multiple objects one over another in overlapping posi-
tions and preserving the component positions. This scene would still be readable
for a human, the bot, on the other hand, might experience significant difficulties. To
minimize interventions in the relevant components it is possible to preserve unique
locations of each component and use the background or other unimportant objects
to interfere with them.

Another idea on how to break the recognition process is to use smoothing and
antialiasing with these items. This could only be applied when using big versions
of tables and might become unreadable on smaller tables8.

The casinos have, however, adopted more powerful and we believe better meth-
ods to protect against the bots. One crucial presumption they can apply is that only
profitable players can be operating a bot. This significantly decreases the number of
potential invaders. When somebody is playing for a long time, the casino contacts
him with a special dialogue, requesting a fundamental action that a bot cannot make
to be performed. However, some threshold values of continuous play that will not
be suspicious can be found for each casino.

8For more information see appendix A and attached casino table examples.

73

Chapter 5

Building the back-end

The last thing that remains to be done and the last question that stays open. The
back-end and more importantly the algorithm inside. The question whether it is
possible to create a decent automated no-limit tournament player with affordable
resources. Anybody who is really serious in creating a poker robot that will be
earning money for him will not have any problem with using other forbidden meth-
ods. He will probably choose the most suitable version of poker, the fixed-limit
cash games, as these are much easier to compute or train on a huge hand database
with adequate actions. I would not be surprised if the guys from the Poker Academy
Pro software were using their bots at home playing on-line, but even if, they would
probably use their much better fixed-limit cash game bots, not the no-limit ones in
the tournaments. Let us take a look whether we are capable of creating an intel-
ligence strong enough to compete with humans or the best robots available in the
no-limit tournaments and answer the question whether we may face a robot in a real
casino even on no-limit and tournaments.

We will implement the back-end and its algorithm in the exact way as it was
mentioned, using the AlgorithmHelper module and state automaton approach to-
gether with the HoldemPoker module and its supportive functions.

We will also use a combination of both, PokerStars and Poker Academy Pro
software for our algorithm development. In the early phases with no significant
intelligence implemented the PokerStars and some small real money or play money
tables fits better. In the middle and later phases when the algorithm will be capable
of making whole range of decision and will be able to play independently we will
use the demo version of the Poker Academy Pro.

74

5.1 Target tournament type
We will try to develop our algorithm for general-purpose, but the specific settings
and adjustments will be pointed at a single table sit and go no-limit tournament for
nine to ten players in the turbo variant with the lowest or very low stakes. The
lower the fees the worse players are around in general. The turbo tournaments
were chosen because of reducing possible observations of betting patterns that can
be made by human players, but not by a robot, at least not in this version of our
algorithm. However, this could be a way of improvement in the later phases. For
a real robot usage even the higher tables should be considered. There are lower
entry fees to the casino compared to the total prize pool, on the other hand, we may
expect better decision making of other players. Unfortunately, we will not be able
to test it on a sufficient number of games with a fair usage of the casino to make any
statistics on this.

This could be a very interesting, however illegitimate, investigation. Having the
same algorithm and let it play on different tournaments, on different time of a day
or night, and on different days. Or even in different casinos. As a result it could be
possible to point out the casinos having the worst or the best on-line players or to
choose a right and wrong time for playing. Although this might be related to the
algorithm strategy and worth only for players with similar game-play style.

In our case we will use the Poker Academy Pro as we pronounced. We will need
to adjust some settings to emulate a tournament that most resembles the PokerStars
tournament. We will use “UB – Low Buy-in” template for the basics. Afterwards it
is necessary to copy the blind structure and set ten players and a single table mode.
The most important step is to change the blind rising method from “exponential”,
when the blinds are rising after a specific number of hands, to time dependent. We
can use one minute for blind rising and adjust the bot reaction speed accordingly
in the tournament to represent a turbo tournament in a standard casino. In Poker
Academy Pro there is a preset opponent structure for a no-limit tournament called
“No Limit Standard”, we will use this for the beginning. We have kept the tour-
nament fees at $5 entry fee plus $0.5 rake for the casino. Now we can enjoy an
emulated no-limit turbo tournament for free for a while without any limitations.

5.1.1 Standard turbo tournament settings
In the algorithm implementation we will assume some tournament settings. We do
not hard-code these settings into our algorithm, we are mentioning them for better
reader imagination when we are going to talk about specific values and tournament
phases. For a standard tournament we will choose the settings used in the PokerStars
tournaments, there are no huge differences in other casinos. The ratio of all related
values is very similar and creates a tournament with alike structure.

75

The usual payout structure of these tournament for nine to ten people is 50%,
30%, 20% of the overall prize pool for the first three players. The additional fees
for the casino are paid extra and vary somewhere between 10 to 15 percent. On
PokerStars the lowest turbo tournaments are $3 + $0.40 for ten people with the
prize pool of $30, or the $6 + $0.50 with nine people and prize pool of $54.

Every player gets $1500 in chips at the beginning. These chips have no real
value, the only important thing is the place when a player runs out of these chips or
owns all the chips at a table. The blind structure is depicted in the Table 5.1, with
increase to next level every 5 minutes.

Small blind Big blind Ante
10 20 0
15 30 0
25 50 0
50 100 0
75 150 0
100 200 0
100 200 25
200 400 25
300 600 50
400 800 50
600 1200 75
800 1600 75

Table 5.1: Blinds structure

5.2 No-limit tournament algorithm
The approach to the tournament algorithm is significantly different when compared
to a ring game. This applies especially in the turbo variant. We simply do not have
enough time to wait for a great hand, we need to take advantage of other factors
and situations. There is not enough time to read our opponents well enough but we
don’t have to worry about making our play style transparent. This is in favor of an
algorithm.

The no-limit tournament algorithm we are going to implement will cover the
fundamental actions and strategies. Most of these strategies are covered by Harring-
ton on Hold’em - Volume I[1]. We are going to add the functionality and algorithm
skills according to the benefits that they can provide in the long run. After a series

76

of improvements and added skills we can test the results on a real tournament and
eventually make additional improvements and fixes. During this development we
will create a solid base of test scenarios to make the development and testing as ef-
ficient as possible. At the end of this development process we will hopefully attain
a reasonable playing intelligence and prove that it is possible to build an automated
on-line no-limit tournament player using our environment and state automaton ap-
proach.

Before we start with our algorithm implementation, we shall just make a few
notes about observing a table. At real tables it is essential to observe other players’
ticks, hand moves, or the way they play with their chips. In on-line tournaments,
this is simplified to only observing betting patterns. We will discuss possible ob-
servations that can be done to improve our algorithm game-play later. Another rule
that applies to on-line tournaments is to bluff much less compared to real events. A
lot of people playing on-line many tables at once and are watching TV besides at the
same time, which makes it hard for us to create an image of a conservative player.
This is especially true at the beginning of a tournament. However, as the number of
players at the table shrinks, these observations start to be made more easily.

5.2.1 Overall algorithm strategy
Our algorithm will be capable of playing the whole range of strategies from ex-
tremely tight to very aggressive. This will depend on the phase of a tournament and
will be changing during the whole game. In general, the aggressive style requires
more skill and a better play. This is mainly caused by the fact that aggressive players
get to situations where they face harder decisions and have to read their opponents
well. We will follow the next rule:

• Make that kind of decisions which make the subsequent decision making as
easy as possible.

This rule should be also adhered by humans. A player should avoid situations in
which he has no clue about what cards his opponent could have. Therefore, a player
should adjust his early decisions to simplify his later decisions as much as possible.
Our algorithm will sometimes sacrifice potential profit in the current betting round
to avoid harder decision making in the future. We take this approach because harder
decision making in the later rounds of betting usually implies a potentially higher
loss of chips. This means we are sometimes going to bet more or less than the
“correct” amount in order to clarify the positions of both us and the opponents.

As an example we describe the following situation. Someone opens the pot with
a raise. We have pocket queens. A re-raise would be appropriate. What actions
could we face later? Another re-raise, an all-in move or a fold are the good ones.

77

Here we just have to decide whether we believe that the opponent has pocket kings
or aces and see how much it costs to call compared to the pot. If the opponent
folds we collect the pot without any further action. It is however more likely that
we will face a call. This puts us in a difficult position on the flop. The chances of
flop containing an ace or a king that could beat us are somewhere between 37 to 48
percent, depending on how many of them the opponent holds in his hand. Moreover,
we should be afraid of a jack or a ten, which might help our opponent make a set
if he was raising with the appropriate pocket pair. In most of the situations we
will face a though decision what to do. The question is, isn’t it better, easier and
even more profitable in the long run for an algorithm to go all-in on pre-flop instead
of raising? We will stay away from most of the problems and tough decisions.
The theoretical loss caused by slightly imperfect play may be acceptable and still
cheaper than committing our entire stack to somebody who hit his card even with
weaker pre-flop hand later.

5.2.2 The M-ratio concept
Simply, the M is a number that defines how long we are going to stay in a tourna-
ment without any action. That means how much time we could afford to wait for
a hand with which we decide to play and try to win the pot. It is obvious that with
shrinking M the need to make a move increases because of the possibility of being
blinded-away from the tournament. However, some types of play might become
less attractive because our maneuvering options are becoming limited. We need to
adapt our game style according to the M-ratio. In conclusion, the lower the M is,
the more aggressive - and of course risky - our play should be.

Another angle of view on the M might be how likely we will get a better hand
in situation still with a reasonable amount of chips to play. Many times it is better
to undergo a higher risk with more chips than play a monster hand with just a few
chips left. While in the first case we may be eliminated more likely, we will get a
solid stack for further play if we win the hand. On the other hand, if we double-up
with our super strong hand but only with a few chips in front of us, we will face
putting ourselves at risk once again in a while, but often before another monster
hand shows up.

Harington in his vol II intimated Magriel’s M-ratio concept on some examples
together with his so called Q concept as the weak force[2]. Further he extended
the concept for short tables and takes into account the shrinking number of player
mostly for a single table tournament. It is called the M effective1. For our purpose
we will adopt this concept and use the M effective referenced as the “M” from this
moment. The definition of M is:

1This is being discussed in Harrington’s Volume II from page 277.

78

M =
player stack

small blind+big blind+total antes ×
actual players num
total players num

Based on M, which projects the overall tournament situation and progress to a
single value we are able to build a robust strategy for every tournament phase.

5.2.3 Harington’s zone system
According to the M concept Harrington has developed and written an overall no-
limit tournament strategy that respects the need of play-style adjustment during
the whole tournament. The lower the M is, the more aggressive style is required.
Harrington distinguishes a few zones, each representing an interval of his original
definition of the M-ratio. The tightest strategy is described for the green zone, with
M more than 20. It then continues through the yellow zone with M between 10
and 20 followed by the orange with M still above 5. The last is the red zone with
the most aggressive strategy for M less than 5, or eventually the dead zone for M
less than 1 when there is no strategy required, the only hope is to be lucky. He
described his strategies for each zone in consideration of a multi-table tournament.
This could be a very good base for our algorithm’s implementation. The overall idea
and the skeleton is great, the particular zones and actions must, however, be changed
and adjusted for the algorithmic approach considering the adjusted M definition for
single table tournaments.

5.2.4 Hand sets
To be able to cover all the possible hands that might be dealt we need to separate
them to hand sets with similar pre-flop strength. In the algorithm we do not want to
evaluate every hand or a card that might be suitable for some kind of action sepa-
rately. We will decide for a pre-flop action mostly according to the hand set where
our actual hand belongs to. A good base for hand raking and hand division into
groups was described by David Sklansky[3]. He used eight hand groups numbered
from one to eight with similar pre-flop strength, or rather more important with sim-
ilar pre-flop strategy that should be used with each of these groups under given
circumstances. We are going to adopt Sklansky’s hand sets and adjust them to our
needs a little bit. Our sets are declared in the Table 5.2 ordered from the best hands
to the worst. The remaining combinations are not included in our hand sets, they
will be referenced as the rest.

79

Hand set Hands contained
ABest AA, KK, QQ, JJ
APlus AK, AQ, AJs

A AJ, KQs, TT, 99, QJs, KJs, ATs
BPlus JTs, KQ, 88, QTs, KTs

B AT, T9s, 98s, J9s, 77, 66, 55, KJ, QJ, JT, Axs
C T8s, 97s, 87s 76s 65s, 86s, 54s, J8s, 75s
D KT, Q9s, QT, 44, J9, T9, 33, 98, 22, Kxs, Q8s, Ax, K9
E 64s, 53s, 43s, T7s, 87, Q9, 76, 42s, 32s, 96s, 85s, J7s, 65, 54, 74s, T8

Table 5.2: Hand sets

It might be useful to also define multiple pre-flop hand sets in one algorithm.
This could come handy in some specific situations, for example the heads-up. A
hand set with small or middle suited connectors looses its value with shrinking
number of opponents. Hands in this group are very weak but might become mon-
sters if they hit a flush or a straight. Such hands are good when it is possible to
see a flop with many opponents cheaply, hoping for a monster hit. Against a single
opponent they are usually beaten by a higher card.

In our case this is the C hand set. It mostly contains the drawing hands better
against multiple opponents. But the D hand set is definitely better against one or
at most two opponents despite being ranked as worse. Instead of creating multiple
hand sets we will explicitly exclude the C group in the algorithm in some cases,
when the D hand fits, but C does not. Compared to the Sklansky’s groups we have
modified especially his Group 6, which is our C hand set and as we have created
the drawing group. This was done due to the algorithmic approach. It simplifies the
number of decisions that the algorithm must cover. When seeing a flop with a C
hand it knows it should focus on the straight or flush draws. If it hits a top pair it is
usually not good enough because of a weak kicker.

5.2.5 Algorithm zone system
Our algorithm will generally adapt five ranges varying on exact situation. These
ranges will represent the mentioned Harington’s zone system. With combination
of the hand sets we have created it will be relatively easy to describe our strategy
based on the M-ratio for every possible card combination we can get. For a given
M range we will define pre-flop actions for each hand set. With the amount of hand
sets we have created we still get a reasonable number of basic states and strategies
we need to handle in our algorithm. In addition, by this approach we could be pretty

80

sure that we have taken a stand in our algorithm to every situation that can arise in
a no-limit hold ’em poker.

Sometimes, the M-ratio alone is not sufficient enough to make a competent de-
cision. There is another element that can have significant impacts on our decision
making, namely the position. Obviously, there are many positions where a different
approach is necessary. The positions we are talking about are:

• big blind position

• small blind position

• dealer position

• early position

• middle position

• late position

These positions are defined considering a full tournament table with nine to ten
players. However, only on a few of these positions a significantly changed strategy
is inevitable. A special handling of play is definitely required by the small and the
big blind positions. These are the positions that are very likely to face attacks from
other players, therefore some increased resistance is necessary. This could be based
on the M-ratio concept as well, we need to fight for the chips more and more with
the M being lower and lower when somebody tries to steal blinds from us. Handling
the button and the late positions is the opposite sides of a coin. Here we need to
try to steal the blinds with more hands that we normally use for a raise in earlier
positions.

We will merge all the other positions except of the blind positions under one
category and try to handle them in unified approach. The changes in game style
depending on whether we are on an early or a late position is not that much signif-
icant, although still crucial for a good play. We can easily handle these differences
in position by using additional queries on our position, number of players that al-
ready joined the pot and a potential number of players that could move into after
our move. According to these additional queries we can adjust our strategy if neces-
sary, but we avoid implementing very common strategies for all possible positions
around a table. Moreover, the algorithm designer can decide to create multiple states
with different strategies for early, middle or late positions if he needs. The idea of
covering up all possible situations that may arise preserves one way or another.

The final note regarding the global algorithm approach that needs to be made
refers to the final stages of a tournament. As the money is within grasp, another set

81

of factors may influence our tactics. In a situation when there is the last player with-
out any money to be knocked out, another arsenal of weapons is suddenly available
and waiting to be launched. If there is, for example, a short stacked player and we
are in the position of a big stack, then we can easily steal chips from the rest of
the players. Nobody wants to compete and put himself at risk of being eliminated
without a single penny when there is already a predestined victim to be eliminated
from the tournament. This applies even to very strong hands and works vice versa
as well. Sometimes it might be right to even fold pocket aces and wait until the short
stack is wiped out. It might be useful to handle the final stages of a tournament in
a completely different set of states and approaches, especially the bubble and the
heads-up, but still under the M-ratio concept.

5.2.6 Algorithm implementation
We will divide the algorithm to multiple source files, each handling one of the spe-
cific situations described before. These are the blind positions, heads-up and other
cases. In the basic pre-flop state we distinguish between these situations and the ad-
equate state, or rather a state procedure, is called. Actions are computed according
to the M-ratio concept in all of these situations. We will discuss the M based zone
system generally and will mention the differences for every situation in respective
zones. Our explanation style is the opposite of real algorithm implementation.

5.2.6.1 Folding, checking, raising

These are the things we can not avoid in algorithm implementation. Just a few com-
ments on how these actions should be interpreted when are played by the algorithm.

Fold: The potential profit with actual hand is not worth the size of a call we need
to make.

Check-fold: Our hand is not strong enough for putting in additional chips, but if
nobody makes a bet we can go on for free.

Call: When we believe that our hand is good enough and worth staying in, or
when we have a very strong hand and plan to raise or re-raise later without making
any attention now.

Raise: This action was the most important reason for creating this subsection and
deserves to be described in more detail. A raise could mean that we want to win
the pot as it is without any fight. The other option is we might want to get rid of

82

the drawing hands or be paid by the drawing hands, or we may try to put in more
money to build a big pot with our strong hand.

In real poker, usually the second case with drawing hands is important. It is
about balancing on the edge between giving others bad pot odds, but not to scare
them away from calling us. The difference between the right odds to call and the
odds we have offered and get called is the profit, or loss of course, if we play badly.
In small tournaments, which we are interested in, this does not work very well.
When we want to make a move, we usually want one or at most two callers with
some solid hands that we are going to beat. On these small tables, however, making
the right bet does not discourage others from calling us which could result in a
situation where our pocket kings stand against five callers. This is exactly what we
do not want to happen.

To achieve this effect in a low buy-in tournament we usually need to over-bet the
right raise amount. However, it is really difficult to figure out the correct amount.
Sometimes it needs to be just a little bit more than usual, sometimes half of or stack.
For the algorithm it is almost impossible to guess the right amount because it de-
pends on the constitution of the table and the players around. A lot of observations
and player reads would be required.

Luckily, there seems to be another way how to handle this situation inspired by
the Sklansky’s all-in or fold pre-flop theory[4]. As the name prompts, making an
all-in move instead of a raise is the key. Not only we honor our rule of making
further decisions as easy as possible for one hundred percent, but the vision of a
potential double-up is so irresistible for some players on these tables, that hands
like AQ to A9, tens, sometimes even nines, or KQ call an all-in move even when
the blinds are still small. Many times we might get a reward, which is exactly what
we wanted. To make a pot of this size with a raise we would need a lot of drawers to
join the pot. However, the joined strength of all those hands, even really bad hands,
usually beats our hand. If there is nobody to call the all-in move, we just grab the
pot as it is and wait for the next opportunity.

All-in: Our hand is strong enough compared to the odds offered by the pot and
the chance of taking the pot without any resistance, or our hand is ultimate and we
want to be called.

5.2.6.2 Particular zone strategies

Our zone system does not precisely match the Harrington’s one. We have taken into
account the hand sets which are crucial for the algorithm implementation.

The green zone Our green zone strategy is used when having M of more than
12. Here we have enough time to wait for a good hand. On turbo tournaments, this

83

is a zone where we usually stay for a while after the tournament starts. Basically,
there two ways how to get out of this zone. The first is by increasing blinds - this
is the usual case. It doesn’t matter how good the player is, on a turbo tournament
the blinds are rising so fast that even a professional player cannot keep his stack up
with the blinds. The second way is less pleasant - loosing a significant part of the
stack in a conflict, usually when an all-in move is lost. Once we drop from this zone
there is usually no point of return. Therefore, we want to put our money only in the
best possible hands. The other approach would be to try to take a cheap look at the
flop with a hand that could potentially win a lot of chips.

As we mentioned before, in small tournaments it is a very good strategy to go
directly all-in without any raising in case we have a super strong hand. Unless we
bet enough we could get called by a lot of drawing hands. Betting a significant
amount of our stack when the blinds are still small just tells others that we have a
monster hand. Nobody except of another monster hand is going to play with us,
except for players who would not hesitate to call any bet. However, with the all-in
move the situation is different. At the beginning of a tournament, there are often
players lacking deeper knowledge of the game who base their game-play on luck
and gambling. They know nothing about their long run efficiency and base their
play on a feeling that this time their hand is going to catch the nuts. Let us put a big
emphasis on the “at the beginning of the tournament” part. These people won’t last
long and if we get a good hand, we should try to double up despite the fact that we
might not get called. It is worth the “risk”.

In addition, by this approach we are building a reputation of a super tight player,
from which we could make the best of later. We could also be treated as an “all-
in player” if we get lucky and pick up a few great hands in a short time. This,
however, still works in our favor. We might even get called by better players with
weaker hands who consider us weak and try to get rid of us as an easy target. Later,
when we start to be more aggressive, we could probably afford to do so - even with
bad reputation - from the position of a big stack.

The strategy for the algorithm and the green zone is therefore relatively easy. If
we get a premium hand form the ABest set,; no more decision making is required
and we go all-in. The queens and jacks are a delicate problem. At higher tables they
must be played more cautiously, at the lowest tables they may still be considered
a premium hand and treated the same way. Although the long run profit will be
far behind the one of kings’, it should still be a positive number at the small stake
tournaments. Playing the queens and jacks in any other way might be very hard to
code and the revenue could only be slightly better.

Very good hands to play with in the green are included in the APlus set. These
are, however, hands that need to improve. If they hit the flop, they usually create
a top pair with the best or almost the best kicker and the same applies to a flush or

84

a straight. These hands might be used for opening the pot or for calling somebody
who put in a significant raise or went all-in. However, if more betting occurred,
for example there was a huge raise and somebody went all-in, it is highly probable
that at least one of them has a pocket pair. In this case these hands are not good
enough. When facing one of the premium hands we are a huge underdog, against
a pair we have a little less than 50%. Actually, there are not many hands left that
re-raised a huge raise and could be beaten by one of the APlus hands. Maybe the
ace-jack or ace-queen having the flush advantage or a slightly better hand, but that
is all. Sharing the same hand with one of our opponents is not good either. If we
win we need to split the prize.

There are no more hands that are worth going all-in on pre-flop in the green
zone. However, hands like tens, nines, ace-jack, ace-ten suited or suited connectors
to queen are worth a standard play, which is a raise and then see what comes on
the flop. We do not need to afraid to call a smaller raise with these hands, even if
multiple people called that raise. In this case we are not going to re-raise of course,
the primary goal to chase away the limpers was already done for us.

Another idea on how to make some chips in the green zone is to try to see the
flop with a pocket pair. Of course, try to see it as cheaply as possible and let the hand
go if we do not hit a set. If the flop goes well, we have a very good position that is
hard to read, for almost any type of action. However, this play works only with very
small blinds and should be abandoned when the potential of winning significant
amount of money is outbalanced by the call size and the probability of hitting a set
on the flop or later without additional costs.

The middle suited connectors can be played the same way as the pocket pairs.
But in this case it is a little bit harder to pass judgment on where our hand stands.
We have to consider the possibility of higher straights or flushes and be able to play
accordingly, which is a harder task compared to the “set hunting”, especially for the
algorithm. With these hands it is more likely to fall into a trap if we hit a good hand,
but not the best one around a table. It is questionable whether we should try to play
these hands in the green zone and whether the possible benefits are worth the risk
we need to undergo. The algorithm is much more confident in situations where it is
obvious where the hand stands.

The blinds in the green zone are usually so small that it is nonsense to try any
pot stealing from the late positions. The revenue is simply too small compared to
possible risks. However, calling the big blind from the small blind position with
any ranked hand in our sets is usually worth. It costs only one half of the big blind
to see the flop. Unless the big-blind raises of course.

If we get on the flop from the big-blind position for free, or from any other
position when hunting for a hand, we should be cautious rather than aggressive.
Even the top pair is not enough to risk our chips, especially when we were raising

85

with an A hand or a drawing hand. Two pairs might be the minimum for any betting
or calling a bet. We might get outplayed by a worse hand in many cases, but again,
there is enough time to wait for a better situation with a better hand. In case when
there is only one opponent left and the flop is favorable we might try a bluff and
raise with any hand. If we are acting from later positions he might think that we hit
the small cards. If we are acting from the position of a limper or a raiser the big
cards on flop might look scary.

The yellow zone With M still above 8, but no more in the green zone we need
to shift our strategy to a more aggressive style a little bit, when compared to the
previous zone. More and more hands become useful for some action as the time for
hitting a great hand is becoming more limited. On the other hand, some drawing
strategies that worked fine in the green zone might reach the breaking point and
should be abandoned. We should be more aggressive especially in the late positions
with the BPlus hands when nobody raised before. By taking bets from limpers and
the blinds from time to time we will slow down the transition to the next zone. The
limpers will usually fold, but we might get called by one of the players acting after
us if he gets a good hand. But still, even with the BPlus hands we have a lot of outs
in the situation.

If our hand is not good enough for an all-in move we may consider the blind
steal with the B hands if the situation on the table allows it. This means no raisers
or limpers are present and we are in a late, preferably the dealer position.

The orange zone Once again, for M above 4 there is a shift in the play to even
more aggressive style. At this point many hands that were folded in the previous
zones are becoming playable. Usually we can not afford to just call something and
see what comes on the flop, because we are putting at risk a significant part of our
stack. All-in moves should be now considered in many cases. Here, in the later
positions, even the small pairs become applicable again. But this time, however,
for an-all in move. With some chips left we still have some respect and a chance
to pick up the pot right away. If this is not the case, then we will most often run
into two over cards where we are a slight favorite or into another pair. We should
definitely try to steal the blinds from the late positions with the B hands, from the
dealer position even with the D hands.

The red zone With M less than 4 there is no maneuvering space left at all. There
are only two actions possible, fold and all-in. All hands with a glimpse of thinking
about an action in previous zones become premium hands in the red zone. The basic
information we need for making a decision is whether anybody already entered the
pot. If not and there are not many players left to act than an all-in move should

86

be done with the B and D hands. When the M drops even more we should include
the C hands and at the edge with the dead zone the E hands as well. With the red
premium hands we should not hesitate to set on a caller or raiser. Doing so against
multiple re-raise in front of us should be reconsidered and proceeded with only with
hands that have a real chance to make it, which are the C hands and the BPlus and
better.

There is no need to handle the dead zone in a special way. Any ranked hand
is good enough for the last call. Maybe on the bubble when it is possible that
somebody else might die earlier. This is when there is a player in the same bad
shape as we are or when there is a player all-in and is called by another player. This
is the right place to fold almost everything, maybe the A and better hands should
be played if there is a chance to get back to the game and play for a better position
than the first paid.

5.2.7 The play
We are able to see the whole system up and running independently for the first time.
Although it might seem that we have implemented only a fraction of the algorithm
that can not work without the real poker math, the opposite is true. We have a
solid strategy that can catch up during the whole tournament and adjust the game
play accordingly. Of course, we can not expect that this strategy is good enough to
permanently make profit in a real casino, but we can say that we have successfully
merged with people around a table as an average player.

At this point, another phase of algorithm development should be started. An
iterative process of playing, testing and adjusting. As we discover the cases with
wrong or unsatisfactory play, we can adjust the algorithm decision methods, the
hand sets or the M intervals. Later, we will probably need to add more strategies
for specific tournament phases, especially for the bubble, the heads up, playing as
a chip leader etc. We have to take into consideration more and more factors to be
able to take advantage of these situations. These factors are forcing others from the
position of a chip leader, or from the position of higher stack on the bubble, or play
tighter on the bubble when there is somebody going to be eliminated. Many more
methods can be found in poker books. It is up to the reader, or the implementer of
an algorithm, to judge the appropriate benefits and drawbacks to the algorithm and
the burdensomeness of corresponding implementation.

We have spent a while with this iterative tuning and debugging of our algorithm
to be able to play during the whole tournament without any fatal mistakes. This will
allow us to measure the algorithm efficiency against the Poker Academy bots. We
have also tried to play according to this strategy in a real casino to see whether it
has a potential to work.

There is a difference in whether we are testing our strategy in the Poker Academy

87

Pro or in a real casino with real people. The robots in the Poker Academy are trying
to play mathematically correct poker. The Sklansky’s all-in theory does not work
here as good as in a real casino with humans. The value ascribed to our hand by
their robots is often higher when we go all-in instead of a significant raise and we
pick up some pots that we would not pick up for free in the same situation in a real
casino. On the other hand, we are often correctly called in the Academy if the pot
odds are good enough for the opponent. In the casinos some people are afraid more
and give us free chips by their wrong play in these situations. Another huge dif-
ference between the Academy and a real casino are the observations. It seems that
the bots do not take into account what the other players are doing. An occasional
all-in move of another player has the same strength for them as a third all-in in a
row. This is something that is noticed very well on the real tables and the humans
become angry and start calling with weaker hands to protect their blinds and stacks.

Another very interesting observation that can be made is the overall strength of
the algorithm against robots in the Academy and against humans in the real tour-
naments. It seems that playing according to our algorithm is more efficient in a
real casino than in the Poker Academy. However, to be able to make a trustworthy
conclusion about this, we would need to play more tournaments on both sides. This
is not possible due to the limited demo version of the Poker Academy Pro we are
using and the inability to let the algorithm play automatically in a real casino. Our
claim is therefore only based on personal feeling gained by the results of a few trials.
This is not that much surprising, considering that we have designed the algorithm
to compete against humans knowing their fragility and eminency.

In this phase of our no-limit tournament algorithm implementation we have de-
cided to stop our development. The reason was that the algorithm started to be better
than we have expected it to be. We have not yet implemented and included the bub-
ble play, tournament prize structure, low M vs high M confrontations[2] and other
essential concepts including detailed probability analysis for particular situations2.

5.3 Results
We were able to play 4281 hands in 72 tournaments in the demo version of Poker
Academy Pro. We were using the same tournament setting as described in chapter
5.1. Let us remind this was a ten player turbo tournament with entry fee of $5.5
with $0.5 for the casino and a $50prize pool. The winner takes $25, the second $15
and the third $10. The complete list of these tournaments with every action and
every hand is included in the addendum3. The number of games we were able to
play is still not high enough to make any clear evidence and to completely eliminate

2For details see the devoted section 5.4.
3More information about game log can be found in addendum A.

88

the luck factor, however some consequences and results for our thesis’ objectives
can be made. We have faced 56 artificial opponents from the Poker Academy Pro
during these tournaments, but nearly half of them were playing with us less than
three or four tournaments. Therefore, we have decided to present the results only
for the opponents with more than 1000 hands played.

One very important result that we have achieved is that during these hours of
testing our system stayed up and running all the time. We have not experienced any
crashing or freezing. Likewise, we have not noticed any redraw based issue that we
were worried about at the beginning, when we were designing the data extraction
and recognition system. This proves that it is possible to build a Self-acting Internet
Casino Entity based on screen recognition and emulation of peripherals.

5.3.1 ROI
A poker player tournament profit is measured in return of investment in percents.
(ROI) This is a ratio between the overall profit and all tournament fees and rakes
paid. In the table 5.3 we have listed the overall results of every player with more
than 1000 hands played. The most important value for making any conclusions is
the ROI. The player names match the bots’ names from the Poker Academy. We
were playing under the nickname “Sice”.

Player Profit Rake Paid Hands Played Games Played Average ROI
Al lnne -$42,50 $12,50 1582 25 -30,9
Amanda -$43,00 $13,00 1496 26 -30,1
Angus $3,50 $11,50 1631 23 2,8
Daniel Xn -$51,00 $11,00 1158 22 -42,1
Evil Lynn $2,00 $13,00 1858 26 1,4
Guru $29,00 $11,00 1723 22 24,0
Gus Xensen -$4,00 $9,00 1014 18 -4,0
Harmony -$15,50 $10,50 1447 21 -13,4
Jack Pott $12,50 $12,50 1585 25 9,1
Max Bette -$61,50 $11,50 1621 23 -48,6
Mazama -$26,00 $11,00 1559 22 -21,5
Odin $48,50 $11,50 1890 23 38,3
Olea $1,00 $9,00 1347 18 1,0
Oliver Chips -$23,00 $8,00 1091 16 -26,1
Phil Tilte -$45,00 $10,00 1335 20 -40,9
Pondera -$17,50 $12,50 2027 25 -12,7
Ray Zure $4,50 $10,50 1394 21 3,9
Sergio $13,50 $11,50 1761 23 10,7
Sice $89,00 $36,00 4281 72 22,5
Strongbad -$65,00 $10,00 1189 20 -59,1
Zeno -$4,50 $14,50 2316 29 -2,8

Table 5.3: Bot results and statistics

89

The bigger dispersion of ROI of other player is caused by a lower number of
games they have played. Our ROI in our case has much better predicative value
than the ROI of other players because it is based on three times more cases. Among
the real players it is hard to find a person with ROI of more than 25% considering the
player has played a representative number of games. The nature of Texas hold ’em
poker creates some limits which are given by the quality of the opponents. A human
player with a high ROI probably starts playing on higher-stake tables at some point
in time. His ROI will drop down as he faces better opponents, but his income per
hour will probably increase. In our simulation this aspect was not considered. If the
results reflect bot qualities then Odin, Guru and Sice would probably start playing
on higher-stake tables and it would be appropriate to measure the profit per hour,
which is a more important indicator for somebody operating a poker bot.

Now it is time to answer another question of this thesis and make a conclusion on
whether it is possible to build an intelligence capable of playing no-limit Texas hold
’em tournaments. Judging by the results we have achieved with the Poker Academy
we could say it is. The reality is however a little bit different, our opponents were
only other bots and we know nothing about their ability to perform against real
people. How plausibly can the Poker Academy emulate an atmosphere of a real
poker tournament is a matter of question too. At this point we can only confirm that
we do not need a large development team working on the project for several years
to create a robot which can compete with the best known no-limit tournament bots
available. Another question is whether the Poker Academy team published the best
bots they had or whether they kept the best no-limit tournament bots for the real
casinos. Although, according to their results in fixed-limit ring games this is very
unlikely.

We have also tried to play according to our strategy and see how it stands in
real casinos. Regrettably, in the final phases of the algorithm development this was
almost impossible due to many random decisions and spreading different strategies
in our algorithm. We simply can not predict the actions good enough. There were
no exact data created, but the play we were trying was rather successful than loss-
making. At least on the very low-stake tournaments with different payout structure
that we have determined to solve. When playing our desired tournament type we
were not taking advantage of many situations around the bubble phases or in cases
where we were the chip leader. We have not yet implemented these strategies in our
algorithm. It is highly probable that we would be able to break even with a little bit
more algorithm development even on our desired tournament type. We were usually
trying our strategies during player attendance peaks in the casinos, which is also a
time when there are many unexperienced players at the tables and winning is a little
bit easier. On the other hand, these periods are the most suitable for money-making
using robots. We can consider our results as a success in achieving the goals of this

90

thesis.

5.3.2 Overall profit
After seeing the graph of our money progress during all 72 tournaments, we were
not very delighted. We knew the most important value, which is the difference
between initial and final account balance from the previous chapter. However, the
influence of a short-time luck factor is significant. In Figure 5.1 our bankroll size
after each tournament is depicted.

Sice

0

10

20

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Figure 5.1: Overall profit

We have therefore decided to make additional measurements to confirm credi-
bility of these results. We are going to challenge the best bots like Guru, Jack Pott,
Odin and Sergio in a “bot-stars” competition right after we are finished with these
results.

5.3.3 Places
We have achieved a very good structure of positions where our bot was eliminated.
The Table 5.4 is depicting number of eliminations for each place in the tournaments.

91

Place Times finished
1 13
2 6
3 7
4 7
5 7
6 6
7 7
8 5
9 7

10 7

Table 5.4: Places

Our algorithm is designed to win. This is the only place it is interested in. It does
not care that being second or third is sometimes better than drop out fourth or fifth
in the run for the first place. We are going to discuss some methods how to improve
this in the chapter 5.4. Another thing that should be noticed is the perfect balance
of the places where we have been eliminated. This means that with help of Mr.
Sklansky and Mr. Harrington we were able to create a perfectly balanced strategy.
The shifts in aggression based on the M-ratio and the hand sets are accurate and
respecting every phase of a tournament.

It also shows that we are not afraid of loosing our chips and when we get a
good hand we are aggressive with it. Otherwise, our drop-out positions would be
concentrated in the middle. Being very tight from the beginning can reduce the
probability of our elimination in the early phases of a tournament. On the other
hand, it also means that in the middle of the tournament we would have lack of
chips and would need to gamble with almost every hand to survive or be blinded
away. The opposite strategy would be to play more loose from the beginning. The
distribution of the final places in this case would be the exact opposite. We would
be wiped out very often at the beginnings of the tournaments, but if we get through
our chip stack would be big enough to make it to the finals. In this case it does not
matter whether we will be playing more loose. We could afford to do that from the
position of a big stack or a chip leader.

This also adds a trustworthiness to our measured ROI values from the previous
sub-chapter. It flattens the differences between our more lucky seasons at the begin-
ning an at the end of these measurements and the bad luck we had in the middle.

5.3.4 The bot-stars challenge
To support our previous measurements we have decided to run some more tests. We
have used the same game settings as before. Only the opponents have changed. We
have selected ten bots that made the best ROI during our experiences with Poker
Academy and have played a non-trivial number of tournaments. Luckily, our bot

92

made it to this ten. This time there will be no players who give their chips away
easily around the table, everyone who wants some extra chips must take them from
the best. The finalist are the profitable bots from our previous measurements which
are Angus, Guru, Jack Pott, Odin, Ray Zure, Sergio plus some other bots we have
noticed during the testing which had a very good ROI. These are Chuck Reese,
Kale and Xengrenau. The whole game-play history can be found in addendum4.
We have to annul the tourney 14 with four players still in the game (Angus, Odin,
Sergio, Sice) due to a Poker Academy crash. This tournament was removed from
the game log and all entry fees were refunded. We were interested in the same
values as before, this time we have created stats for everyone from out bot-stars
team. Table 5.3 shows the overall game statistics.

Player Profit Rake Paid Hands Played Games Played Average ROI
Angus -$10,00 $15,00 1963 30 -6,1
Chuck Reese -$45,00 $15,00 2097 30 -27,3
Guru $45,00 $15,00 2278 30 27,3
Jack Pott -$50,00 $15,00 1962 30 -30,3
Kale $40,00 $15,00 2111 30 24,2
Odin -$75,00 $15,00 1632 30 -45,5
Ray Zure -$45,00 $15,00 2240 30 -27,3
Sergio -$30,00 $15,00 1745 30 -18,2
Sice $45,00 $15,00 1838 30 27,3
Xengrenau -$25,00 $15,00 1809 30 -15,2

Table 5.5: Bot-stars results and statistics

This time the ROI dispersions are much tighter than before. One thing is, how-
ever, an outstanding surprise. It is the huge failure of the biggest favorite, Odin.
A sovereign winner of the first competition and an absolute looser in the bot-stars
competition. We have investigated the game log to figure out what happened. It
shows up that Odin is not as a good player as it seemed. It is capable of calling
against the odds, raising with nothing, going on a lot of draws and slow-playing
good hands. The question therefore is: How could Odin make so good results in
the first case? We have started an investigation there. It turned out that the main
difference were the opponents. Odin does the same, plays any suited combination,
calls everything with both cards above ten and plays with connected cards. The
opponents often let him draw for free and later, if he hits something, they give him
a significant portion of their chips assuming he has nothing. It seems that Odin was
designed to profit on the worst players and to teach users of the Poker Academy
how important is to bet with good hands. The same applies to his wrong slow-plays
that worked good against the worst bots. In the finals it has no problem to outplay

4More information about bot-stars game-log can be found in addendum A

93

other stupid bots with his wrong raises. When a bot does not understand very well
the need to steal and protect the blinds at a tournaments it is not a deal to outplay
him. The bubble play is something that Odin is not very familiar with as well. This
is, however, an important lesson for a poker bot designer.

• A given poker bot strategy is as good as the contra strategies of his opponents
are bad.

In real casinos, the range of player strategies is much wider when compared to
bots in simulated environment. It shows that it is important to focus the poker bot
strategy development on the target opponent type. What might work perfectly with
some opponents does not necessarily work with other type of opponents. However,
a good balanced strategy should work everywhere. Both, Guru and Sice did well
with both type of opponents. The results we have achieved are far beyond every-
thing we have expected. This could be definitely considered as an accomplishment
of our goal that we have set out for the Poker Academy Pro and our bot. We stayed
up and running all the time and even among the best bots we were able to reach the
top results.

However, the real winner of this competition is the casino. We have expected
and predicted this earlier. The profit of the casino is three times bigger than the
profit of the best bots. This is also the reason why most of the bots are in a loss. If
there were no rakes for the casino Angus and Xegrenau would have achieved better
results, at least closer to the edge.

Let us take a look on overall player profits during the whole competition. This
time we have created a graph for each player. The results are depicted in graphs in
Figure 5.2.

94

Angus

-50

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Chuck Reese

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Guru

-10

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Jack Pott

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Kale

-10

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Odin

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Ray Zure

-60

-50

-40

-30

-20

-10

0

10

20

30

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Sergio

-30

-20

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Sice

-30

-20

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Xegrenau

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0 5 10 15 20 25 30

Tournaments Played

T
o

ta
l P

ro
fi

t
($

)

Figure 5.2: Bot-stars overall profit

As we see, in most of the cases the behavior of the curves has a clear slope. From
this point, the 30 measurements that we were able to do in the demo version of Poker
Academy Pro seem sufficient, but it is at the edge. For Sergio and Xengrenau these
limits are fatal, we can not able to deduce any conclusions and more measurements
should be performed.

We have also created a table with numbers of positions where each player was
eliminated. These values are depicted in Table 5.6. We will add some comments on
these results that may be helpful for the bot tuning process.

Place Agnus Chuck R. Guru Jack Pott Kale Odin Ray Zure Sergio Sice Xengren.
1 4 0 3 3 5 1 1 5 5 3
2 3 4 3 2 4 3 5 0 3 3
3 1 6 9 1 2 2 2 1 4 2
4 2 2 0 4 2 5 6 3 2 4
5 3 4 3 4 4 3 3 2 1 3
6 5 5 3 3 2 4 3 1 4 0
7 2 6 1 2 4 1 2 4 4 4
8 6 2 2 3 1 4 4 3 1 4
9 4 1 2 3 2 1 3 6 5 3

10 0 0 4 5 4 6 1 5 1 4

Table 5.6: Bot-stars places

This time there were no donors at all. Every bot we have faced made it to the
finals more than once or twice. The competition was really though. We can learn
something from the results in this table.

Chuck Ray is a very tight player. Here we can see a situation which we have
described earlier. It is trying to stay in the tournament for higher costs than he
should. It has too little drop outs from the beginning of the tournaments. But he
had lack of chips later and was eliminated very often in the middle stages and as the
only bot he never won.

Sergio seems to be the exact opposite. It does not mind to undertake any risk
from the beginning to win the tournament. However, the risk he is taking is probably
too high and therefore he failed to be profitable overall.

Guru is probably the best player of all, or at least he has the biggest potential.
On the other hand, he completely failed on the bubble. It was trying to survive it
to the final three at any costs. Guru succeeded, but the prize it paid was very high.
Afterwards it was very often eliminated at the third place. Guru should adapt one of
the methods which take into account tournament prize structure and act accordingly.
Sometimes it is better to risk and finish fourth rather than failing to win later.

Sice has once again a well balanced overall drop out structure. However, this
time we had to face better opponents which means it was harder to win that many
times as before.

96

5.4 Further algorithm improvements
Despite the fact that there is still a lot of space for further improvement of the algo-
rithm in the area of states and basic strategies, there are some advanced strategies
whose implementation could significantly improve the algorithm game play. Up
to this point, we have designed the strategy only according to already publicized
guides on how to play given hands in specific situations. These guidelines of course
respect the statistical probability for each hand, but can not take into account the
specific conditions on the table. Here we would like to introduce some advanced
approaches that are based on probability analysis of given situations. Originally, we
thought that creating a poker AI is impossible without implementing a lot of more-
sophisticated methods and that the algorithm would contain a big number of com-
binatorial computations. We did not suspect that a balanced combination of Sklan-
sky’s all-in theory, Harrington’s zone system and our state automaton approach to
solve the post-flop situations could be so powerful on its own. By implementing
these techniques we would probably improve our poker AI’s strength dramatically.
We have only picked up a few ideas that can significantly improve our play mostly
in the middle and late stages, as we know this is the Achilles’ heel of our algorithm
at this point.

5.4.1 Fold equity
Fold equity[5] is a crucial concept to understand in order to be able to win no-limit
tournaments. In the later tournament phases, especially on the bubble, when the
blinds cut a significant portion of players’ stacks every time, the role of the cards
is not so important anymore. Simply said, if there is a decent chance to take the
pot containing blinds uncontested, we should try to do it. However, we have to
compare the potential profit with the risk of loosing a significant portion of the
stack, as this can happen in many situations. Fold equity is the difference in gain
between a fold and a raise when trying to pick up the pot. It can be either positive
or negative and characterizes expected gain of the “stealing” move. However, to
compute the fold equity we need to employ opponent reading skills to be able to
estimate the likelihood of them folding to our bet. If we could do so, then we just
need to subtract the chances that everyone folds times the pot from the chances that
we get called times our raise. The result is the fold equity of the raise move. Note
that the higher the raise is, the better chances that everyone folds we get, but the
bigger portion of our stack is being risked on the other side.

Now, a question of how to make estimations of our opponent’s play arises. We
need to incorporate some observation techniques. In our environment, this requires
additional implementation in the used front-ends as well. We need to decide which
facts we are interested in for our algorithm development and use the additional table

97

data construct to provide these information to the back-end. In this concrete case
we are concerned in the likeliness of a player calling or raising a raise. This value
can be easily computed iteratively by trying to raise our opponent and seeing how
many times we get an active response. However, to make this value reliable a few
iterations are required and it is questionable whether we can afford to make them.
We should try to estimate these values during the tournament so we can rely on them
from the first moment. This can be done by observing how likely a player is to play
post-flop, how big the pot is compared to the blinds when the player is involved,
etc. This way we can gain a solid notion of each player’s game style, information
on whether he is loose or rather tight and whether he is likely to fold or to act.

Another way of making these estimations more accurate is to use an external
player database during the play, for example the SharkScope5. If we are facing a
profitable player we can be pretty sure he understands what is going on and does the
corresponding contra action. On the other hand, we can be facing a weak player.
There are generally two types of weak players. The first ones play very tight and
are bluffed easily, the second ones play very loose and make a lot of wrong calls.
Luckily for us, we do not need to distinguish between these two categories that
much, because the same tactics can be used to deal with both player types. We
should bluff the tight player with every at least a little bit reasonable hand. If we
get called, we are an underdog almost every time. Therefore, we should prefer the
drawing hands that can win from time to time to the hands that are very unlikely
to win the pot. The same, however, works on a loose player. We know that he is
capable of calling with worse than average hands and this fits to our strategy too.
If he folds we get the pot for free and if we get called his hand usually won’t be
much better, as he is a loose player. This approach is, however, against most of the
casino agreement rules, but could be a strong weapon for somebody operating an
automated player for profit.

5.4.2 Structured hand analysis
An expansion of the fold equity idea can be made to cover the middle stages of a
tournament. The structured hand analysis[2] can be used when there are no players
in the red zone, but the blinds are relatively high. As the reader might have noticed,
we have not included the card factor in the previous idea very much, especially the
cards that the opponent might have for a contra action.

This does not matter from the algorithm point of view as the raise would be
often an all-in move. In this phases of a tournament there is usually not enough
space left for trying a bet and subsequently folding it if we are re-raised. The pot
odds are often simply too good to fold. Even if there was space for such maneuvers,

5More information can be found at http://www.sharkscope.com/.

98

http://www.sharkscope.com/

we can still apply an all-in steal. It is easier to implement and the algorithm cannot
be outplayed, like the bots in Poker Academy, with a right re-raise. It also increases
the chances that we will not face active resistance to the maximum.

This approach is based on situation analysis from the other player’s point of
view. Once again, we can not leave out players’ play style estimations. We will
use the same method as described earlier in this chapter. According to these esti-
mations, we are able to create a list of hands that each player will use for a contra
action. The supplement is a list of hands that the opponent folds. We will make a
slightly inaccurate assumption that only one person could call us. This assumption
will allow us to avoid getting lost in all possible combinations of calling players in
the following explanation. Moreover, if we go all-in and get called, there are not
many hands that the third player could afford to call a double all-in with. We have
estimated a list of hands that will call our all-in move for each player, based on his
play style.

The aims of the second phase are to calculate probabilities of us winning or loos-
ing the pot when we get called and calculate probability of taking the pot without
any resistance. Based on the hand lists from the first phase we can compute prob-
abilities of loosing or winning against each opponent with our hand. Furthermore,
we compute overall probabilities of getting called by each player6 and of winning
the pot uncontested.

In the third phase we compute an overall expectation of the all-in move. The dif-
ference in stack sizes between our opponent and us tells us how much we can win7

or loose in case we get called. Knowing the probabilities from the second phase,
which are how likely we get called and win/loose afterwards, we can compute the
expected gain against each player8. A sum through these gains for each player to
act plus the income if we win the pot uncontested9 is the expectation of the all-in
move. After comparing the expectation of the all-in move to the “expectation of the
fold move” we see the decision we should make.

We have mentioned the structured hand analysis because the computer, as op-
posed to a human, is able too use it during the play. On the other hand, the human
can probably estimate the action hand list more precisely. This assumption is also
the weakest point for the algorithm. We can simplify these assumptions by creating
one global hand list sorted according to pre-flop hand strengths. Afterwards, for
each player we can try to find a projection from his observed style to a position in
this sorted list. Another approach would be to put ourselves in the position of our
opponent and ask what actions we would take for each hand from the list. In this

6This is a ratio between the number of ways how to deal all hands on our opponent’s hand list
and the number of all ways how to deal two cards.

7In case that we win we have to include the actual pot to our favor.
8This gain is usually negative.
9This is the value that should compensate the negative gains we get against our opponents.

99

case we can also adjust the M to reflect the corresponding player’s style. This means
we increase our stack for tight players and decrease the stack for loose players.

Let us note that this model also works the other way around, when we are trying
to decide whether to call an all-in or not.

5.4.3 Independent chip model
Once again a careful reader might have noticed that in both previous methods we
were talking about a profitable move in terms of increasing our chip stack. This is
true for the ring games, but the term profitable should have a different meaning in
the tournament play. In a ring game, the profit equals to the increase of chip stack.
In a tournament, the profit depends on the payout structure. The independent chip
model[6] takes this into consideration and extends the structured hand analysis even
more. This model is an ultimate weapon for the algorithm and allows us to make
correct decisions from middle phases to the heads-up.

There are many examples and notes available in the literature, we will therefore
introduce the concept only briefly. The model is based on two simple assumptions.

• A player’s chances of winning the tournament equal his share of the total
chips[4].

• Every player on the table has the same poker skills.

Even though the second assumption is not correct, the calculations and results of this
model are still good enough and applicable. The independent chip model computes
a real value of each chip of each player according to the tournament prize structure.
This is based on the first assumption that allows us to compute probabilities for
each player finishing on each remaining position in the tournament. Knowing the
tournament prize structure, we can count the real value of each stack. This value
is called the icm equity. When we face a decision, it does not matter whether we
go-all in or call an all-in, we can use the structured hand analysis the same way,
but instead of computing an average expected profit we will use this chip model to
compute the real value of our resulting stack. After comparing the icm equities we
see which situation gives us a higher value of our stack in the resulting situation.

This was short explanation of the model, that should give the reader a notion
what it is about. Note that a profitable play in terms of size of our chip stack does
not imply a better icm equity. Simply, we might be risking to drop out from the
tournament with no or lower prize. Even if the chances of dropping out are small
and in long run we win extra chips in such situations, the overall amount of money
we win in tournaments might decrease. This of course applies in the opposite way
as well. We might make a move which we know according to the structural hand
analysis is incorrect, but we are increasing our icm equity. This might happen due to

100

a possible elimination of other player and the resulting increased chance of finishing
on a better place in the tournament.

101

Chapter 6

Conclusion

We were not able to fulfill the goals we have stated at the beginning of this thesis
to full extent. We had to slightly modify and adapt our goals to new conditions and
possibilities as we encountered new facts and restrictions related to the casino usage
policy and work already done in this area.

With regard to these adjustments and restrictions, we have succeeded in every
objective designated in this thesis. Moreover, we were able to surpass the aims
that we have determined for certain areas. From this position we are able to an-
swer the target questions and summarize the crucial knowledge gained during the
implementation and investigation process related to this master thesis.

6.1 Summary
In the early phases of our investigation we have found out that there already are
poker robots available. Some of them are being developed in the academics, some
of them are also intended for playing games at on-line casinos. Most of these robots
are designed to play fixed-limit cash games as these are easier to compute. Further
discussion of this topic can be found in chapter 2.2.3.3. At this point we knew
that creation of at least a basic poker bot is definitely possible. We have therefore
decided to specialize our investigation and opening questions to the no-limit sit and
go tournaments and fulfill our robot related goals for them as the less explored hold
’em poker variation.

6.1.1 Environment for poker bot creation
The environment for automated poker bot creation we have developed and imple-
mented in .NET and c# consist of two primary parts – a front-end and a back-end.
The first one is responsible for gathering data and interacting with casino software,

102

the other provides the game logic and decision making. The environment is imple-
mented as a set of modules and supportive tools that are used by a designer to create
a library which handles given tasks. We wanted to provide the designer with the full
strength of a programming language and avoid restricting him with any limitations
of our environment as happened in many cases of the existing software. We have
also created a GUI which makes it possible to manage the entire system.

6.1.2 Front-end
The whole process of gathering data from a casino is based on screen observation
and optical recognition. This is the most universal solution that should work with
majority of on-line casinos. We have built a WYSIWIG editor that allows the front-
end designer to easily select the strategic visual components of a casino and related
poker tables. These data are afterwards available through our modules with a lot of
additional functionality. Subsequently the front-end just inquires the necessary data,
sends them to the back-end for further processing and later executes the requested
action. To execute actions in the environment of a casino we use peripherals emu-
lation.

We have tested the functionality of our environment for front-end creation by
creating an implementation of two front-ends, for the PokerStars and for the Poker
Academy Pro.

For the PokerStars casino we have also implemented window management and
automatic tournament registration. By using the PokerStars front-end we are poten-
tially able to play on multiple tables at once and keep a constant number of running
tournaments without any human interaction.

6.1.3 Back-end
A lot of work, including development of a method of programming algorithms for
no-limit tournaments, has been done on the back-end. We have created a methodol-
ogy and a supportive set of modules that allow a very effective no-limit tournament
strategy implementation. The whole idea is based on the fact that for no-limit games
it is much more important to keep a track of what happened in the previous betting
rounds, compared to fixed-limit games. We have invented a state automaton ap-
proach where every user defined state represents a betting pattern from the previous
betting rounds, thus allowing the user to make more competent decisions than with
use of any other software based on simple rules for every hand.

We have tested the functionality of our environment for poker algorithm cre-
ation by implementing an exemplary no-limit tournament strategy. This strategy
was based on a combination of Harrington’s zone system and the M-ratio concept

103

described in Harrington on Hold’em - Volume II[2], Sklansky’s hand sets with simi-
lar pre-flop strategies described in Hold’em Poker For Advanced Players[3] and our
state automaton approach. This combination of approaches allows our algorithm to
play all phases of a tournament on very high level.

6.2 Results
To answer our questions, we have tested our robot on Poker Academy Pro, which
is a casino emulator for starting poker players developed by the games group of
University of Alberta. This group is a leader in poker bot development nowadays,
in July 2008 their robot has beaten some of the best fixed-limit cash players for the
first time. Their robot is however only capable of playing against a single opponent.

We have used the combination of our respective front-end and back-end to
demonstrate the possibility of automated play in this emulated casino without any
human interaction. Our system based on image recognition was able to run for
hours without any difficulties, starting a new tournament automatically right after
the previous one finished. We were able to confront the skills of our bot with the
skills of probably the best bots currently available.

Our results were very impressive. Not only was our robot able to make profit
with the default bot structure which is trying to simulate a standard no-limit tour-
nament in a real casino, it also tried to play against the nine best robots from the
previous measurements. The results here were very encouraging. Our robot has
finished as one of the three profitable bots out of the ten. We have showed that our
simple idea with states combined with already known strategies can keep up with
much more sophisticated approaches used in Poker Academy Pro.

Comments regarding our algorithm implementation are included as well. How-
ever, some parts of provided code were modified or removed to weaken the overall
strength of the algorithm.

We have also noted that a bot strategy which works with one kind of players
does not necessarily have to work with different strategies and players. A poker
bot designer should therefore keep in mind the target opponents of his or her robot.
Sometimes, even an imperfect play can deliver better results with given players than
a strategy generally considered as superior one.

According to the measurements and the results, we have discussed possible
weak and strong points of some bots. This might be helpful for tuning and im-
proving the skills of one’s owns bot.

At the end we have discussed some advanced and generally known techniques
and strategies regarding the no-limit tournaments from the point of view of a bot
designer. Implementation of these techniques in our algorithm may and probably
will increase its strength significantly, far beyond the level we have imagined to be

104

possible to achieve when we started our research.

6.3 Our questions
It did not take a lot of time to figure out that creating an on-line poker robot is not
only possible, but such robots have already been created. We have shown that poker
robots are not predestined to play only at fixed-limit cash-game tables. A proof
that no-limit tournaments are vulnerable as well has been created, although more
knowledge and a more sophisticated approach was necessary.

We were not able to test our software directly on a real casino due to the casino’s
usage policy. However, based on a personal comparison of robot and player skills in
the Poker Academy and a sample of real casinos, we can proclaim that it is possible
to create a profitable bot playing no-limit sit and go tournaments as well.

Concerning the vulnerability of casinos, it is possible to operate a bot on every
casino where a human is willing to play. By using our recognition system it is a
question of one or at most two days to create a front-end that can be used to play on
any casino with all the necessary visual elements that are needed for a tournament
poker play. On the other hand, the casinos try to fight against the bots in many
different ways. They cannot however do very much until the bot leaks to the public
and is used more frequently.

We have shown that it is possible to create an operational and probably profitable
bot without a huge team and many years of development. This answers the question
whether there already are bots winning money from regular users, although it is
impossible to estimate their number due to the necessity of keeping them secret.

The last constituting a problem is the poker bots’ inability to lead a meaningful
conversation in the chat. On the other hand, writing comments related to the actual
game from time to time is not a problem for a robot. This could make the robot an
unobtrusive member of the table, slowly but surely making money every night on
any poker table in any on-line casino.

105

Bibliography

[1] Dan Harrington, Bill Robertie: Harrington on Hold’em - Volume I: Strategic
Play; Two Plus Two, 2004

[2] Dan Harrington, Bill Robertie: Harrington on Hold’em - Volume II: The
Endgame; Two Plus Two, 2005

[3] David Sklansky, Mason Malmuth: Hold’em Poker For Advanced Players; Two
Plus Two, 2001

[4] David Sklansky: Tournament Poker for Advanced Players; Two Plus Two, 2002

[5] Lee Nelson, Tysen Streib and Kim Lee: Kill Everyone; Huntington Press, 2008

[6] Phil Shaw: Secrets of Sit ’n’ Gos: Winning Strategies for Single-table Poker
Tournaments; D&B Publishing, 2008

106

Appendix A

Attached DVD

Digital materials related to this thesis are included on the attached DVD. Please, do
not make the DVD publicly available. The disc has the following structure:

• data/ Data and logs related to the thesis.

– casinos/ Examples of casino’s tables.

– gameplay/ Logs with hand histories from automatically played tourna-
ments.

• sice/ Environment for creating automated Texas Hold’em poker players.

– release/ Release version of the environment.

– source/ Source codes of the environment.

• thesis/ Text of this thesis in PDF format.

• video/ Exemplary videos in AVI format demonstrating Sice play, Trigger
Editor usage and regression testing.

A.1 Sice environment structure
The sice folder contains the following directories and files:

• bin/ Precompiled components of the environment. This includes SICE Ac-
tivator, Regression Tester, SICE Trigger Editor.

• data/ All data used by the environment including Recognizers and Triggers
for provided casinos.

107

• doc/ Program documentation of the environment.

• source/ Environment for creating automated Texas Hold’em poker players
(and source-code of the environment in case of the source version) for MS
Visual Studio 2008 and MS Visual Studio 2005.

• test/ Test scenarios for provided casinos.

• README.txt/ Information about software usage and limitations, software
configuration and supplied software modules.

108

Appendix B

Related data

B.1 Poker client observation
Table B.1 and Table B.2 show and overall information regarding visual and game-
play components in particular casinos.

109

Poker
Server

Disable
animation

Resizable
window

Server
specific

table icon

Highlighted
player to

act

Const.
card pos,

color

Total pot Blinds Support for
notes

Numeric
fonts

recognition

Card
recognition

Player
name

recognition

The same
position for

texts

PokerStars
Yes Yes Yes No (blink) Yes Yes

Yes (title
bar)

Yes
Yes (text

color
changing)

Yes
(antial., 4

color)
Yes Yes

FullTilt
Yes Yes Yes Yes Yes Yes

Yes (title
bar)

Yes (opens
in new

window)
Yes

Yes
(antial., 4

color)
Yes Yes

Party
Poker

Yes Yes
No (whole

window
scheme)

Yes
No (win. c.
– new pos
& transp.)

Yes (antial.
or current

pot)
Yes Yes Yes

Yes
(antial., 4

color)
Yes Yes

Ultimate
Bet

Yes Yes Yes Yes Yes
No (current
pot only)

Yes (title
bar)

Yes (opens
in new

window)
Yes

Yes
(antial., 4

color)

Yes
(overleaped
with notes)

Yes

Absolute
Poker

No Yes Yes Yes
No (win.
cards –

new pos)
Yes No

Yes (opens
in new

window)

No (human
cannot
read)

Yes
(antial., 4

color)
No Yes

Celeb
Poker

No
No

(supports
minimode)

Yes Yes
No (win. c.
– new pos
& transp.)

Yes
Yes (in
popup
menu)

Yes (opens
in new

window)
Yes

Yes
(antial., 4

color)

No
(scrolling)

Yes

William
Hill

Yes
No

(support
small size

Yes Yes
No (win. c.
– new pos
& transp.)

Yes No Yes
Yes

(antial.)

Yes
(antial., 4

color)

Yes
(antial.)

Yes

Inter Poker
Yes

No
(support

small size
Yes Yes

No (win. c.
– new pos
& transp.)

Yes No Yes
Yes

(antial.)

Yes
(antial., 4

color)

Yes
(antial.)

Yes

Allstar
No Yes Yes No (blink)

No (win. c.
– new pos
& transp.)

No (current
pot only)

Yes (title
bar)

Yes Yes
No (antial.,

shadow
overleap)

Yes Yes

RedStar
Poker

No Yes Yes No (blink)
No (win. c.
– new pos
& transp.)

No (current
pot only)

Yes (title
bar)

Yes Yes
Yes

(antial., 4
color)

Yes Yes

Titan
Poker

Yes (not all
animation
disabled)

No
(support

small size
Yes No (blink)

No (win. c.
– new pos
& transp.)

No (Yes in
large

window)

Yes (title
bar)

Yes (opens
in new

window)
Yes

Yes
(antial., 4

color)
Yes Yes

CD Poker

Yes (not all
animation
disabled)

No
(support

small size
Yes No (blink)

No (win. c.
– new pos
& transp.)

Yes
Yes (title

bar)

Yes (opens
in new

window)
Yes

Yes
(antial., 4

color)
Yes Yes

Paradise
Poker

No
No

(supports
minimode)

Yes Yes
No (win. c.
– new pos
& transp.)

Yes
Yes (in
popup
menu)

Yes (opens
in new

window)
Yes

Yes
(antial., 4

color)

No
(scrolling)

Yes

Euro Poker
No

No
(supports
minimode)

Yes Yes Yes Yes
No (no

announce
ment)

Yes (opens
in new

window)
Yes

Yes
(antial., 4

color)
Yes Yes

RedKings
No

No
(supports
minimode)

Yes Yes Yes Yes
No (no

announce
ment)

Yes (opens
in new

window)
Yes

Yes
(antial., 4

color)
Yes Yes

Carbon
Poker

Yes Yes Yes Yes
No (win. c.
– new pos
& transp.)

No (current
pot only)

Yes
Yes (opens

in new
window)

No (human
cannot
read)

antialiased,
4 color

No (antial.) Yes

PokerCity
Yes Yes Yes Yes

No (win. c.
– new pos
& transp.)

No (current
pot only)

Yes
Yes (opens

in new
window)

No
Yes

(antial., 4
color)

No (antial.) Yes

Pacific
Poker

PokerHills
Yes Yes Yes

No (hidden
for a while)

No (win.
cards –

new pos)
Yes

Partial (title
bar +

announce

Yes
(unknown

type of
Yes

Yes
(antial., 4

color)
Yes Yes

24h Poker
Yes Yes Yes

No (hidden
for a while)

No (win.
cards –

new pos)
Yes

Partial (title
bar +

announce

Yes
(unknown

type of
No

Yes
(antial., 4

color)
No (antial.) Yes

Poker.com

Table B.1: Graphical elements in poker clients

110

Poker
Server

Playmoney
tables

Table Filter Supports
notes

Turbo sit &
go

Notes

PokerStars
Yes Yes Yes Yes

FullTilt
Yes Yes

Yes (opens
in new

window)
Yes

Party
Poker

Yes Yes Yes Yes

Ultimate
Bet

Yes Yes
Yes (opens

in new
window)

Yes
(+ultra)

Absolute
Poker

Yes Partial
Yes (opens

in new
window)

Yes
(+ultra)

Celeb
Poker

No Partial
Yes (opens

in new
window)

Yes
(+speed)

Email
spammer

William
Hill

No Yes Yes Yes

Inter Poker
No Yes Yes Yes

Allstar
Yes No Yes Yes

RedStar
Poker

Yes No Yes Yes
Email

spammer

Titan
Poker

Yes Yes
Yes (opens

in new
window)

Yes

CD Poker
Yes Yes

Yes (opens
in new

window)
Yes

Paradise
Poker

No Partial
Yes (opens

in new
window)

Yes
(+speed)

Euro Poker
Yes Partial

Yes (opens
in new

window)
Yes

RedKings
Yes Partial

Yes (opens
in new

window)
Yes

Carbon
Poker

Yes Yes
Yes (opens

in new
window)

Yes
Unstable, not

working
properly

PokerCity
Yes Yes

Yes (opens
in new

window)
Yes

Unstable, not
working
properly

Pacific
Poker

Unable to
connect

PokerHills
Yes Yes

Yes
(unknown

type of

Yes
(+super
speed)

24h Poker
Yes Yes

Yes
(unknown

type of
Yes

Poker.com

Unstable, not
working at all

Table B.2: Gameplay components in poker clients

111

	Preface
	Thesis objectives
	This thesis is (not)
	Introduction
	On-line gaming overview
	The costs and revenues

	Texas Hold 'em poker
	General rules
	The very first hand
	Hand strength
	Game variations
	Glossary

	Data mining
	Poker sites in general
	Casino agreement rules and third party tools
	Rules violation policy

	Related software in general
	Data analyzers and profilers
	Poker calculators
	Existing poker robots
	How do they “work”?
	Avoiding detection
	What do they generally play?
	Poker robots in the academics environment
	Robots' AI

	Summary

	Players' skills
	Further factual analysis
	Representative casino set
	Extracting data from a casino
	Poker client decomposition
	Graphical recognition
	Game-play related questions
	Conclusion

	Design
	Architecture
	Providing additional information
	Action interception
	User interface

	Front-end
	Conception
	Interface
	Approach
	Recognition
	Window localization
	Input emulation

	Recognition system
	Triggers and recognizers in general
	Particular triggers and recognizers
	Trigger editor
	Implementation
	Image access
	Image matching
	Optical character recognition
	Serialization

	The core
	Back-end
	AI
	State automaton implementation
	Algorithm implementation
	Automaton states
	Automaton action

	Poker data types and functions
	Table data
	Supportive types
	Helper functions
	Hand queries
	Internal functions

	Programming summary

	Testing
	Test scenario
	Tester application
	Test scenario creation

	Other supportive environment modules

	Building a casino front-end
	Terms of use
	Closer look at PokerStars
	PokerStars front-end architecture
	Creating recognizers and triggers for PokerStars
	Poker table recognition
	Poker lobby recognition
	Window manager
	Implementation techniques

	Client implementation
	Poker Academy Pro
	Casinos' protection

	Building the back-end
	Target tournament type
	Standard turbo tournament settings

	No-limit tournament algorithm
	Overall algorithm strategy
	The M-ratio concept
	Harington's zone system
	Hand sets
	Algorithm zone system
	Algorithm implementation
	Folding, checking, raising
	Particular zone strategies

	The play

	Results
	ROI
	Overall profit
	Places
	The bot-stars challenge

	Further algorithm improvements
	Fold equity
	Structured hand analysis
	Independent chip model

	Conclusion
	Summary
	Environment for poker bot creation
	Front-end
	Back-end

	Results
	Our questions

	Bibliography
	Attached DVD
	Sice environment structure

	Related data
	Poker client observation

