
BACHELOR THESIS

Aakash Ravi

Machine learning based identification of
separating features in molecular

fragments

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. David Hoksza, Ph.D

Study programme: General Computer Science

Study branch: Algorithms and Optimization

Prague 2017

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Machine learning based identification of separating features in
molecular fragments

Author: Aakash Ravi

Department: Department of Software Engineering

Supervisor: RNDr. David Hoksza, Ph.D, Department of Software Engi-
neering

Abstract: Chosen molecular representation is one of the key parameters of vir-
tual screening campaigns where one is searching in-silico for active molecules with
respect to given macromolecular target. Most campaigns employ a molecular rep-
resentation in which a molecule is represented by the presence or absence of a
predefined set of topological fragments. Often, this information is enriched by
physiochemical features of these fragments: i.e. the representation distinguishes
fragments with identical topology, but different features. Given molecular repre-
sentation, however, most approaches always use the same static set of features
irrespective of the specific target. The goal of this thesis is, given a set of known
active and inactive molecules with respect to a target, to study the possibilities
of parameterization of a fragment-based molecular representation with feature
weights dependent on the given target. In this setting, we are given a very gen-
eral molecular representation, with targets represented by sets of known active
and inactive molecules. We subsequently propose a machine-learning approach
that would identify which of the features are relevant for the given target. This
will be done using a multi-stage pipeline that includes data preprocessing us-
ing statistical imputation and dimensionality reduction, application of subspace
clustering in the molecular feature space, and finally analysis and scoring of the
results. This information will then be fed into the molecular representation and
used in further virtual screening campaigns.

Keywords: Cheminformatics, Virtual Screening, Subspace Clustering, Clustering,
Machine Learning

ii

Acknowledgements
The work and results in this paper would not have been possible without the

tireless efforts of a few individuals and organizations. First and foremost, I would
like to thank my two advisors David Hoksza and Petr Skoda, who provided both
the inspiration and the guidance to pursue a challenging topic with disruptive
applications, even when circumstances got difficult. Secondly, I would like to
thank Charles University in Prague for providing me with the opportunity and a
scholarship to pursue the research described in this paper, as well as MetaCentrum
for providing the parallelized infrastructure to run the large-scale data processing
jobs required for this type of research. Last but not least, I would like to thank the
researchers in the Database Systems Group at Ludwig-Maximilians-Universität
München for their advice and experience in the space of subspace clustering, as
well as providing the ELKI data mining framework for the public; Arthur Zimek,
in particular, was very helpful and I am grateful for his guidance.

iii

Contents

1 Motivation: Drug Discovery and Virtual Screening 3

2 Related Work and Our Approach 5
2.1 A Dynamic Method . 6
2.2 Machine Learning and Virtual Screening 7
2.3 The Bayesian Approach . 7
2.4 Our Approach: Subspace Clustering 8

2.4.1 The Molecular Fragment Feature Space 8
2.4.2 Subspace Clustering in the Molecular Feature Space 9
2.4.3 Pure and Diverse Subspace Clusters 10

3 Cleaning and Combining Large Molecular Datasets 13
3.1 The Fragment-Feature Matrix . 13
3.2 Constant Feature Removal . 14
3.3 Imputation of the Fragment Feature Matrix 15

3.3.1 Imputation Step 1: Imputing FFMA 16
3.3.2 Imputation Step 2: Imputing FFMI using already imputed

FFM ′
A . 18

3.4 Dimensionality reduction in the molecular feature space 20
3.4.1 General dimensionality reduction 20
3.4.2 Correlation neighborhoods 21

3.5 Normalization . 24

4 The Subspace Clustering Approach 25
4.1 Introduction . 25

4.1.1 The density of a neighborhood of a point 25
4.2 Basic Clustering Algorithms . 25
4.3 Subspace clustering algorithms . 28

4.3.1 HiSC . 30
4.3.2 DiSH . 32

4.4 Filtering of the found subspace clusters 33
4.5 The Key Feature Model . 34

4.5.1 Choosing the Best Cluster with Validation 34
4.5.2 Parameter Tuning via Validation 37

5 Experimental Results 40
5.1 Implementation . 40
5.2 External Tools Used . 40
5.3 Evaluation of DiSH with Artificial Data 40

5.3.1 Methodology . 41
5.3.2 Results . 44

5.4 Evaluation of DiSH With Real Data 46
5.4.1 The Evaluation Method 46
5.4.2 Results . 46
5.4.3 Evaluation using Bayesian Centroids 47

1

5.4.4 Positive Results and the Future of Subspace Clustering in
Virtual Screening . 52

5.5 Time Complexity . 52

6 Conclusion and Future Work 53

Bibliography 55

List of Figures 58

Attachments 62

2

1. Motivation: Drug Discovery
and Virtual Screening

As the processing power of modern computers increases exponentially[2], the in-
dustries and domains that utilize these more powerful machines becomes ever
more diverse. The field of chemistry, in particular, provides many rich appli-
cations of both traditional and modern tools from mathematics and computer
science. These applications have become so manifest that a new domain known
as Chemoinformatics [3] has risen both in academia and industry.

The field of cheminformatics brings with it a novel way to observe and con-
duct research regarding natural chemical phenomenon. In traditional chemical
studies, especially quantum chemistry, molecules are observed in the context of
electrons or nuclei, or in the context of the classical molecular model using atoms
and bonds. [1] Certain branches of chemical informatics, however, bring in tools
from mathematics and computer science to employ a different representation
when describing molecules: these branches represent molecules as discrete points
in a chemical or molecular space defined by certain descriptors or features. We
can, for example, consider one set of such descriptors to be topological fragments-
intramolecular fragments that represent different subgraphs of a 2-D graph rep-
resentation of the molecule. We could then represent molecules as combinations
of such fragments and therefore one specific representation of molecules in the
chemical space could be a bit vector that indicates whether a particular topolog-
ical fragment occurs in a molecule or not. Another representation of molecules
in the chemical space could be via the values of specific physio-chemical fea-
tures exhibited by the molecule. These features can range from simple molecular
characteristics such as the number of atoms that make up the molecule to more
complex intramolecular metrics such as the amount of aromatic atoms or bonds
present. Such representations are interesting from a computational standpoint
because they abstract a lot of the hidden intricacies of the traditional quantum
chemical model. These branches of cheminformatics allow us to reason about
chemical interactions with the abstraction of the chemical space with respect to
various descriptors or features, rather than reasoning from a more fundamental
level as quantum chemistry dictates.

One of the most powerful and intriguing applications of this new view of the
structure and relationship between various molecules in the chemical space is
known as virtual screening, a shift in the methodology used in pharmaceutical
studies during the drug discovery process. In the pharmaceutical industry, the
early stages of the discovery process rely heavily on finding potential reactants to
specific macromolecular targets as leads ; these leads are then taken into further
stages of the drug discovery pipeline, eventually leading to clinical trials and a
release of a new product or drug. [4] Before the advent of modern computing,
the most sophisticated way of uncovering these leads was through a technique
known as wet-lab high-throughput screening (HTS)[4], a relatively expensive and
time-consuming method when considered in the context of our modern computing
power. HTS uses advanced software and robotics to perform controlled exper-
iments on macromolecular targets in large labs usually found only in industry.

3

Due to the state-of-the-art technology involved, developing and maintaining such
a laboratory is a costly operation; therefore a search for more cost-efficient so-
lutions became the main priority for practitioners of HTS[4]. As a result of this
search and the aforementioned computational advances, the new trend of in silico
or virtual screening established itself in the domain of drug discovery. Virtual
screening uses known information about the behavior and chemical structure of
targets and employs computer software to automate the process of searching for
potentially active molecules with respect to this target. Virtual screening has
been used in practice with numerous reported successes. [4] VS is usually used
in conjunction with HTS: practitioners first use VS to lower the initial amount
of potential candidate reactants to solely a high-likelihood subset, and then pass
this subset onto the HTS stage, where this subset is further pruned to reveal the
true active molecules. Therefore, even though at present VS is not used exclu-
sively in the drug discovery process, it greatly reduces the amount of potential
candidates so that HTS becomes much more economically viable.

Put succinctly, the VS process requires software that can learn the reactive
behavior of a macromolecular target molecule, based on the structure of the
target or the target’s prior interactions with other molecules - labeled active if
they react with the target, or inactive if they don’t react with the target. As
mentioned before, the chemical structure of molecules can either be viewed from
a more fundamental subatomic perspective or from the more combinatorial and
computational viewpoint of the chemical or molecular space. Consequently, one
new approach to designing software that can shed light on the reactive behavior
of a candidate is a method based on descriptors in the chemical space, and in
particular, the topological fragment descriptors mentioned earlier. In this paper,
we design and implement a novel machine learning pipeline that will understand
the reactive behavior of a target macromolecule-based solely on in-depth analysis,
using fragment descriptors, of prior active and inactive molecules with respect to
the target.

Figure 1.1: A visualization of the virtual screening process, wherein compounds
in a chemical database are first preprocessed and then subsequently filtered using
numerous possible techniques to determine viable candidates for HTS. (Source:
Drug Discovery and Development Magazine [25])

4

2. Related Work and Our
Approach

In this paper, we will introduce a new virtual screening technique that combines
two separate chemical descriptors that in their own right can be used in virtual
screening: topological fragment descriptors and physio-chemical feature descrip-
tors. Topological fragment descriptors, as mentioned before, will help identify
our molecules in the combinatorial chemical feature space, where each molecule
can be represented by a bit vector where each coordinate is an indicator variable
as to the presence or absence of a certain fragment of that molecule; for a vi-
sual representation of these intramolecular fragments, the reader is encouraged
to look at Figure 2.1. The reader should also note that these topological frag-
ments themselves can be considered as smaller molecules encompassed within a
larger one. Feature descriptors, on the other hand, are physio-chemical proper-
ties of the molecule - e.g. the number of atoms, the number of aromatic bonds,
etc. Various research endeavors have been conducted in the realm of topological
fragments and their physio-chemical feature descriptor values in the context of
virtual screening; these approaches can be categorized into the two broad cate-
gories of Structure Based Virtual Screening and Ligand Based Virtual
Screening.

Figure 2.1: A single molecule is represented by a bit vector constructed by con-
sidering the different constituent intramolecular fragments within the molecule.
Note that each of these topological fragments are also considered molecules them-
selves. [30]

Structure-based virtual screening methods use the structure of a given macro-
molecular target to rank and filter a chemical database for activity with respect
to that target. An example of such a structure based approach is the use of un-
desirable pharmacodynamics of the candidate molecules in the database. Phar-

5

macodynamics is the study of complementary spatial relationships between the
bonding sites of two molecules - in our case a given target and a candidate reac-
tant. The filtering is done using 3D Pharmacophores and is based on undesirable
fragments (structural alerts) present in some candidate molecules that affect the
structural integrity of the bonding site of the candidate molecule with respect to
the bonding site of the given target [1]. Our research focuses less on the 3D struc-
tural pharmacophore attributes of the topological fragments within a molecule,
and more on the physiochemical features of these fragments.

Oftentimes, however, the structure of the target is simply not available.
Ligand-based virtual screening, therefore, does not focus on the structure of a
given macromolecular target, but rather on the utilization of pre-existing experi-
mental data about prior active molecules with respect to this target to filter and
rank the chemical database. Ligand-based methods, therefore, focus less on the
target molecules themselves, and rather place more emphasis on the molecules
that have reacted to these targets in experiments conducted beforehand. Ligand-
based virtual screening can, therefore, be thought of as similarity searching of
a molecular database; similarity searches of a molecular database are based on
the intuitive hypothesis that molecules with a similar structure will have similar
reactive behavior. The notion of similarity can be measured both in 2D and 3D,
but the 2D metrics are very relevant to our research as they use the notion of a
molecular fingerprint. These molecular fingerprints are a type of description of
the molecule using the presence or absence of topological fragments (similar to
our bit vector representation of the molecule), and lead to a very intuitive search
of the database. We can, given a prior known active molecule and its fingerprint,
for example, search the database for other molecules with similar fingerprints.
Such a procedure has been shown to lead to a subset of the database with a high
concentration of active molecules.[1] Our ligand-based approach, however, differs
from existing similarity search-type algorithms, because although we use topolog-
ical fragment descriptors, we use also the physio-chemical feature descriptors of
these fragments. Once again, this combination of fragments and features proves
to be a powerful training dataset in virtual screening applications.

2.1 A Dynamic Method

Of the two types of virtual screening methods mentioned in the prior section,
our research falls under the category of Ligand Based Virtual Screening meth-
ods. Our work aims to, for any given macromolecular target and a list of prior
active molecules and inactive molecules with respect to this target, determine
dynamically the key physiochemical feature descriptors and their re-
spective value ranges that differentiate active molecules vs. inactive
molecules with respect to the target. Therefore, the user of our algorithms
can gain a fundamental understanding of the structure of an active molecule be-
cause he/she can identify the key feature descriptors that contribute to activity,
as well as their ideal value range within active molecules. The search for further
actives and by extension the ideal structure of an active molecule, therefore, be-
comes much easier due to the ability to constrain the search to molecules that
exhibit similar values in the key features. Therefore, after running our pipeline
for any particular target, we obtain a machine learning model that contains the

6

aforementioned key features and their corresponding ideal intervals. A user can
then use this model to filter their molecular database accordingly so that he/she
is left with solely active molecules with respect to the target. Such a process is
macromolecular target independent, meaning it can be applied to new targets
without change; this leads to a powerful dynamic scheme across targets.

2.2 Machine Learning and Virtual Screening

We take a moment to observe some of the constituents of our ligand based method:
the algorithm needs to understand the underlying structure of an active based
solely on prior observed data - a task that can be considered challenging even for
a human expert. Such understanding, however, is nowadays possible: along with
newfound computing power we have also developed algorithms that may utilize
this power to allow computers to analyze data, and moreover learn automatically
different trends and patterns, both salient and latent, found within the data.
These new algorithms fall under the general category of Machine Learning or
Artificial Intelligence algorithms - algorithms that allow computer software to
learn from existing data and perform a specific task on new data without being
explicitly programmed. In our context of virtual screening, this task could be
defined, for example, as using prior reaction information to classify new reactants
into categories of active or inactive. For readers already familiar with machine
learning, this problem can be formulated as a discrete classification problem and
can be solved in numerous ways - for example using the statistical technique
of logistic regression. Such classification techniques and other methods from
machine learning and statistics have been applied by researchers and in industry
with successful results.[5]

The tools we will borrow from the fields of machine learning and artificial
intelligence, however, will be different from the traditional discrete classification
algorithms that could be used to solely classify new candidate reactants into
active or inactive categories. Rather, the tools we will employ enable us to learn
the much more profound ideal structure of an active molecule. More
concretely, our virtual screening pipeline will not only be able to filter the chemical
database for actives, as do other algorithms, but will also be able to output a set
of key physicochemical features and their corresponding ideal value ranges that
are exhibited within most of the active molecules.

2.3 The Bayesian Approach

One already explored approach to the dynamic problem mentioned in the prior
paragraph is the use of the Naive Bayes classifier, pioneered by Hoksza and Skoda.
[27] Put briefly, the Bayesian approach utilizes Bayes’ rule to determine the prob-
ability that a molecule, represented by a list of physio-chemical feature vectors for
each of its fragments, belongs to the active class with respect to a macromolecular
target. This probability is computed based on prior information given about the
molecules which were active or inactive with respect to the target, and the feature
values of their constituent topological fragments. For example, for a new candi-
date molecule m, one can compute the probability that each of the fragments f

7

of m belong to an active molecule based on the fragments of prior known active
molecules; he or she can then take the mean of these probabilities to obtain the
probability that m itself is active. By ordering the molecules according to the
aforementioned activity probability, the Bayesian approach is quite successful in
sorting a database of molecules according to activity for a dynamic target, and
therefore we will use this method as one of our benchmarks when evaluating the
approach developed in this paper. More will be said about the Bayesian approach
in the sections pertaining to experimental evaluation.

2.4 Our Approach: Subspace Clustering

2.4.1 The Molecular Fragment Feature Space

As mentioned many times before, each molecule contains several topological frag-
ments, and each of these fragments can be described by a vector containing the
values of its physiochemical features. Therefore, as introduced in the Bayesian
approach, a single molecule can be represented by several vectors in the Rd space
(where d is the total amount of physiochemical features), with each vector repre-
senting one of its topological fragments.

Looking again to our ligand-based virtual screening pipeline, we are aiming to
find the key physiochemical features and their ideal value ranges that correspond
highly with activity for a specific target; we then use a new candidate molecule’s
fragments’ similarity in these key physiochemical ranges to our existing ideal
ranges to sort the molecular database according to activity. We present a formal
definition of these notions below:

Key Feature. A feature ki in the molecular physio-chemical feature space
is a known as a key feature if for some integer α, and real numbers βi and γi,
it holds that every active molecule contains at least α fragments whose value for
the key feature ki falls in the interval [βi − γi, βi + γi]. The number α is known
as the key feature threshold, and βi and γi are known as the key feature center
and key feature range respectively, for feature ki. The interval [βi − γi, βi + γi] is
known as the ideal interval or the ideal value range of key feature ki.

In order to find these key features and their ideal intervals, we first employ
the following informal hypothesis:

Hypothesis For each key feature ki and its corresponding ideal interval [βi−
γi, βi+γi], every active molecule contains at least one topological fragment vector
f whose value for feature ki, denoted by fki , is in the ideal interval. Every
fragment of every inactive molecule, on the other hand, has a value for feature ki
that is outside the ideal value range.

The above hypothesis assumes that α, the key feature threshold, is 1 in our
problem setting. It also assumes that none of the fragment vectors of the in-
active molecules exhibit feature values for the key features that fall in the ideal
value ranges. The logic behind the second assumption is that since the inactive
molecules don’t exhibit the observed bonding behavior with respect to the target,
all of their fragments take on values for the key features that display no obvious
pattern, unlike some specific active fragments whose values lie within the ideal
interval. All of these assumptions indeed are quite strong, but they will greatly
simplify our problem setting.

8

2.4.2 Subspace Clustering in the Molecular Feature Space

The intuitive notions presented in the prior section can be formalized by the use
of subspace clusters.

Before elaborating on the definition of a subspace cluster, we assume that the
reader is generally aware of the notion of a cluster in the Euclidean space. There
are various different, but related, definitions of clusters; indeed, these definitions
actually aid in explaining the logic behind the many algorithms that aim to find
them within some point set P in Rd. For our purposes, we will use a density
based definition.

Definition: Cluster. Let P be a set of points in Rd. A cluster C ⊆ P in Rd

is a collection of points such that each point p in C has µ neighbors p′0 . . . p
′
µ−1 ∈ C

in a ball of radius ε, where ε is the neighborhood size and µ is the density threshold.
Definition: Subspace Cluster. Let P be a set of points in Rd, and let the

d dimensions be defined by the set D = dim1 . . . dimd. A subspace cluster C ⊆ P
is a collection of points such that for some S ⊂ D, each point x ∈ C contains
µ neighbors at distance ε in each projection of D to the one-dimensional space
defined by s, for all s ∈ S.

When considering the notion of a clustered set of points, therefore, a subspace
cluster does not take into account the amount of neighbors in an ε-ball around a
point in the whole space Rd, but rather considers only the amount of points in
some ε-ball in the dimensions s ∈ S specific to the subspace cluster. Moreover,
note that we specify clearly that S ⊂ D in our definition of the subspace cluster,
meaning that S 6= D; in this manner, we ensure that a subspace cluster should
occur only in a proper subspace of Rd.

Figure 2.2 provides an intuitive visual representation and succinct explanation
of the role of subspace clusters in the molecular feature space.

9

Figure 2.2: The difference between subspace clusters and regular clusters can
be seen in the above image. Notice that the two regular clusters C1 and C2

are clustered along all the axes, whereas the subspace cluster SC1 is clustered
only along the red and green axes, with the values of the points in the blue
axis fairly dispersed. One can imagine these 3 axes as different physiochemical
features in the molecular feature space, and the points as vectors representing the
values of the different features for each topological fragment of various molecules.
Therefore, if SC1 has a sufficiently high concentration of topological fragments
found in active molecules, we can hypothesize that the value ranges of SC1 in
the features corresponding to the red and green axes are a strong indication of
activity, whereas the feature corresponding to the blue axis has a marginal effect
on activity. In other words, the red and green axes represent key features, while
the blue axis does not.

2.4.3 Pure and Diverse Subspace Clusters

It doesn’t suffice to just find all the subspace clusters in the molecular feature
space; rather, we must find subspace clusters that are pure - that is, they contain
mostly fragments from active molecules. The key features can then be identified
based on the dimensionality of these detected subspace clusters. A typical exam-
ple of an impure cluster is one consisting of topological fragments corresponding
to 3-carbons ; 3-carbons can be found in virtually any molecule, both active and
inactive, and therefore clusters containing many instances of this fragment from
various molecules will naturally be impure.

In addition to being pure, the observed clusters should also have fragments
from various active molecules. Indeed, if we uncover a subspace cluster that
contains fragments from solely one active molecule, it may just be due to some
intramolecular feature value pattern within the molecule itself. By contrast, a
subspace cluster that contains fragments from many active molecules is diverse
enough that it could be an indicator of a latent structure in a general active
molecule.

The crux of the previous paragraph is that we are looking for subspace clusters

10

in the molecular feature space that satisfy a few necessary conditions in order for
them to be deemed significant in our studies. We present these conditions in a
concise and formal manner below, by adding a definition:

Definition. Significant Molecular Subspace Cluster. We call a sub-
space cluster C found in the molecular feature space over d dimensions a sig-
nificant cluster - or a non-degenerate cluster - if it satisfies the following three
conditions. Otherwise, we call it a insignificant cluster or also a degenerate clus-
ter.

Condition 1: Diversity Let f1 . . . fn be the fragments corresponding to the
n fragment feature vectors that C contains. Then f1 . . . fn belong to k unique
active molecules. (C is also then known as a diverse molecular subspace cluster).

Note 1: Observe that in the definition of diversity we allow our diversity
threshold k to remain a variable; this is done purposefully, as we want the user
of the system to be able to control the level of diversity of the clusters himself or
herself simply by adjusting k.

Condition 2: Purity Let A be the set of fragments that occur only in
the active molecules, I be the set of fragments that occur only in the inactive
molecules, and Cf be the set of fragments whose corresponding fragment feature

vectors are contained in the cluster C. Then it holds that
|A∩Cf |

|A∩Cf |+|I∩Cf |
≥ p. (C

is also then known as a pure molecular subspace cluster).
Note 2: Just as in the diversity threshold, observe that we parametrize the

purity threshold p.
A question the reader may certainly have is as to why we even need the con-

dition of purity to ensure we obtain significant clusters, when one could just find
subspace clusters within solely the fragments of the active molecules, and exclude
the fragments of the inactive molecules; these subspace clusters, after all, will
surely be pure. The reason is that many fragments found in the active molecules
can also be found in some of the inactive molecules - there is no molecular barrier
stopping the occurrence of a topological fragment in both an active molecule and
an inactive molecule. Therefore a subspace cluster that occurs within the active
fragments could also occur within the inactive fragments, and such a subspace
cluster does not lead to any deeper molecular insight about the ideal structure of
an active and therefore must not be considered. We, therefore, want to find the
subspace clusters within the combined active and inactive fragments, and then
prune these found subspace clusters using the purity condition above to ensure
that they truly occur only within the active fragments.

Our presentation of the virtual screening pipeline will be organized as follows:
Cleaning and combining large molecular datasets will detail the procedures for
cleaning noisy molecular data, as well as the data structures involved in repre-
senting and manipulating fragment feature vectors in the molecular feature space.
These cleaning and data manipulation steps are necessary, as the raw input to
our algorithm will be a list of prior known actives and prior known inactives of
a specific macromolecular target, their respective topological fragments, and the
feature vectors of these topological fragments. As with all large data sets, this
collection of molecular information will need a thorough preprocessing procedure
before machine learning algorithms can be applied on it.

The Subspace Clustering Approach chapter will explore in detail the various
possible subspace clustering algorithms in virtual screening, as well as the chosen

11

algorithmic method within our research.
Experimental Results will evaluate our approach on various target macro-

molecules, as well as compare the results from our subspace clustering method to
those obtained from the Bayesian method.

Finally, Conclusions and Future Work will explore the implications of our
results, as well as possible improvements and further follow-up work in future
research endeavors.

12

3. Cleaning and Combining
Large Molecular Datasets

The raw molecular data needed for our algorithms is obtained from various online
resources; the known active and inactive molecules with respect to each target
were obtained from the PubChem Database[26], while the physiochemical feature
descriptors for various fragments are obtained from the PaDEL Database.[10]
As mentioned towards the end of the prior chapter, the raw input data to our
machine learning pipeline requires preprocessing and denoising in order for it to
be in a suitable form for machine learning algorithms; this section will explore in
detail techniques that can be applied in the molecular feature space for not only
cleaning data, but also for sequestering the valuable data from the redundant or
even counterproductive data.

We first describe formally the chemical data that we are provided as inputs
to our pipeline, in list format:

1. Two subsets At and It of M. Subset At will be known as the actives or
ligands with respect to a specific target t, and the subset It will be known as the
inactives or decoys with respect to t. The set At contains a set of molecules that
have shown prior reactivity with respect to t, and similarly the set It contains a
set of molecules that have shown prior inactivity with respect to t.

2. For any molecule m in the set At and It, we are given a topological fragment
mapping. This fragment mapping maps the molecule to its constituent toplogical
fragments, which, once more, are just constituent molecules f1 . . . fn that are
contained in m.

3. For any of the topological fragments mentioned in point 3., we are given
the physiochemical feature mapping that maps the fragment to its corresponding
physiochemical feature values in the molecular feature space.

3.1 The Fragment-Feature Matrix

As a prequel to the discussion of our data cleaning and combining pipeline, we
will first present the most important data structure that will be employed in our
research in order to effectively represent the complex assortment of molecular
data presented in the prior section: the Fragment Feature Matrix.

As its name suggests, the Fragment Feature Matrix, or FFM for brevity
reasons, is a matrix. The rows of the FFM will be the physiochemical feature
vectors for the various fragments of the active or inactive molecules w.r.t. our
target molecule t. The entry FFMij, for example, will be the j-th feature value of
the i-th fragment. Therefore, the matrix can be perceived as simply a collection
of physiochemical feature vectors; this simple structure, however, proves to a
powerful way to represent complex data about the inner fragment structures of
the numerous molecules provided as input to our pipeline.

We will initially create two separate FFM structures for the fragments of
the active molecules and the inactive molecules; this is due to the fact that we
would like to perform our imputation procedure on the fragments of the active
molecules and inactive molecules separately so that any chemical structure unique

13

to only the fragments of the active molecules is maintained after the procedure.
After proper processing and imputation of the separate FFM structures, they will
be combined to form one encompassing FFM to perform our future algorithmic
procedures on. For a clearer depiction of this procedure, please see Figure 3.1.

Figure 3.1: A visual depiction of the creation of the singular FFM containing
fragment vectors of both of the active molecules and inactive molecules. We are
initially given two separate matrices that contain either active fragment feature
vectors (a1 . . . an) or analogously inactive fragment feature vectors (i1 . . . im) as
rows; the two matrices are then preprocessed and imputed separately via the
procedures introduced in the subsequent paragraphs. The resulting pre-processed
matrices have columns that represent features f ′1 . . . f

′
j ⊆ f1 . . . fk that are deemed

the most significant features during our processing of the matrices. Finally, the
two matrices are combined or concatenated to form the final FFM for both the
active and inactive fragments.

3.2 Constant Feature Removal

The first step of the data cleaning pipeline is a small but important step within
the grand theme of molecular data purification. One of the primary problems

14

that we observe in our fragment feature matrices - albeit one that easy to solve
- is the abundance of columns with the same values in every component. This
signifies that some physiochemical features in our database attain the same values
for every topological fragment. This is, for most features, never the case in the
physical world, and therefore we assume with good reason that this is due to some
error during the storage and prior processing of the data. In this situation we
don’t design any complex or clever algorithms: we simply remove the columns of
the fragment feature matrices that correspond to the features that attain constant
values across all fragments. To the best of our knowledge, no other intuitive and
yet effective scheme exists to rectify such constant-valued features, and therefore
our simple removal method seems to be the optimal way to deal with such a
degenerate scenario.

3.3 Imputation of the Fragment Feature Matrix

Assuming the removal of all the constant-valued features from the fragment fea-
ture matrices, the key data purity problem whose effects we aim to mitigate
is the fact that we occasionally encounter values for specific features that are
not numbers, whereas all of the physiochemical feature values we use are rep-
resented by numerical values. For example, certain features of some fragments,
according to the inputted molecular database, have values such as − or simply a
blank. The reason for these corrupted feature values is presumably because no
data was available on these features for particular fragments, and therefore non-
numerical characters have been inputted to signal that these values are missing.
These values obviously cannot appear in our final FFM because it would cause
various errors later on in the pipeline when our algorithms try and operate on
non-numerical values. Missing data is indeed a common occurrence in the world
of data analysis, and there have been whole papers published on how to deal with
this occurrence. In this paper, however, we will keep the discussion focused solely
on the methods we choose to deal with the lack of data in our specific use-case
in the molecular feature space, and refer the reader to other resources (e.g. [12])
for a more detailed discussion of the topic in general. We would like to focus on
one method in particular that we chose to deal with the sporadic non-numerical
feature values: data imputation.

In general, data imputation consists of inferring the value of a particular
instance of missing data based on the value of other present and ideally related
instances. Imputing missing observations based on related observation values
gives us a reasonably satisfactory estimate for the missing instance’s true value
since we use observations that are similar in our inference procedure.

As the reader will see below, the process of imputation may also leave us
with specific features that are degenerate; put roughly, these are features which
exhibit so much missing data across fragments that we simply cannot infer about
and impute them and have no choice but to label them as degenerate. Such
degenerate features are subsequently removed from the fragment feature matrices
altogether.

We will now separate our discussion of the fragment feature matrix structures
into a dichotomous discussion regarding two separate feature matrices FFMA and
FFMI - the FFM for the fragments of the active molecules and the fragments of

15

the inactive molecules, respectively.
The following imputation procedure is therefore split into two steps: we will

first impute FFMA, and using particular metadata pertaining to this imputation
procedure - such as the set of degenerate features found in FFMA - we will
subsequently impute FFMI .

3.3.1 Imputation Step 1: Imputing FFMA

Our imputation strategy in the molecular feature space for the FFM matrix
containing only the active molecules is as follows: let us assume that the missing
value is, without loss of generality, that of feature di in fragment f of active
molecule a0. In order to impute this feature, we first take the set of fragments
Fa0 . . . Fan of each active molecule a0 . . . an and then compute the median of the
feature di for each set of fragments separately. If the computation of the median
Mdaji for some active molecule aj fails (i.e. if some of the fragments in this
molecule also attain a non-numerical value for feature di), then we simply move
on to the next active molecule ak and re-attempt the computation of the median
Mdaki . Finally, we take this set of medians Mda0i . . .Mdani

that were able to
be computed, and compute a final global feature median value Mdfinali over
this set of active molecule medians for feature di. We then set the global feature
median as the value of our original missing feature instance di in fragment f of
the molecule a0. One final degenerate case we must consider is when atleast one
fragment in every active molecule has a non-numerical value for the feature di
under consideration, in which case Mda0i . . .Mdani

are all undefined and hence
the global feature median cannot be computed. In this scenario, we consider
this feature a degenerate feature and remove the column corresponding to this
feature from FFMA.

The rationale behind the - admittedly rather complex - imputation strategy
is that we are looking for key features within fragments of active molecules.
The values of these features should not vary very much between some specific
fragments of the active molecules - they should all fall within the ideal interval.
Therefore, if we find a missing instance of a feature value for a fragment of an
active molecule, a reasonable strategy would be to find the median for this feature
over all fragments of all active molecules, and set this median as the value of the
missing instance. By utilizing the median, we are striving to maintain any key
feature value trends present in the actives’ fragments when we impute the missing
feature value. Of course, this may lead to some data contamination as certain
unrelated fragments that don’t contain any trend amongst the key features may
start exhibiting similar values for these features, simply because they have all
been imputed with a common median taken across all fragments of the actives.
However, this is a calculated risk we take in order to detect as many veracious key
features as possible at the risk of also finding some key features that exhibit false
trends due to an exorbitant amount of imputation. As a final note, we chose to
use the median statistic - as opposed to the arithmetic mean - for the imputation
in order to avoid the case where an outlier value for a particular feature skews
our calculations. The pseudocode of the algorithm is presented below for further
clarity:

16

Algorithm 1: Imputation of the fragment feature matrix for the actives

1 function ImputeFFMA(A matrix FFMA):
Result: Fully imputed Fragment-Feature Matrix FFM ′

A (possibly with
less columns than FFMA as a result of degenerate feature
removal)

2 GlobalMedianCache = empty array with slots available for global medians
for each feature

3 DegenerateFeatureSet = empty array that will hold the set of removed
degenerate features

4 CalculateMetadata(FFMA, GlobalMedianCache, DegenerateFeatureSet)
5 for Molecule aj in the set of active molecules do
6 Faj = fragments that aj contains
7 for fragment feature vector fi ∈ Faj (a row of FFMA) do
8 foreach Non-numerical feature dj of fi do
9 SetFragmentFeature(fi, dj,

GlobalMedianCache.getFeatureValue(dj))
10 end

11 end

12 end
13 return FFMA

17

Algorithm 2: Calculation of the global median cache and the degenerate
feature set metadata
1 function CalculateMetadata(FFM matrix FFMA, GlobalMedianCache,

DegenerateFeatureSet):
Result: FFM matrix FFM ′

A with no columns corresponding to
degenerate features, a filled GlobalMedianCache array, and a
DegenerateFeatureSet array containing the removed degenerate
feature indices

2 for Every feature di do
3 featureMedianArray = []
4 foreach Active molecule m do
5 Fm = rows of FFMA that correspond to fragments that are

contained in molecule m
6 featureMedian = ComputeMedianOfFeature(Fm, di)
7 //One of the fragments of m has a non numerical value for the

feature, and therefore featureMedian also becomes NaN, and we
continue on to the next molecule

8 if featureMedian == NaN then
9 continue

10 end
11 else
12 featureMedianArray.add(featureMedian)
13 end

14 end
15 //If featureMedian was non-numerical for every active molecule, then

the featureMedianArray for di is empty; this implies that we have a
degenerate feature, and this feature will be removed from the matrix

16 if featureAverageArray is empty then
17 FFMA.remove(di)
18 DegenerateFeatureSet.add(di)

19 end
20 else
21 GlobalMedianCache.setFeatureValue(di,

featureMedianArray.median())
22 end

23 end

3.3.2 Imputation Step 2: Imputing FFMI using already
imputed FFM ′

A

Having already covered our imputation strategy for the fragment feature matrix
for the actives, the imputation strategy for the inactive molecules’ respective
fragment feature matrix will be considerably simpler. In order to identify the
key features, one needs to be able to compare and contrast the fragment feature
vectors of the active molecules with those of the inactive molecules; it follows
that this type of analysis is only possible if the fragment feature matrices of
the active molecules and inactive molecules contain the same features in the

18

columns. If this weren’t the case, then column i in the actives’ FFM could
correspond to a completely different physiochemical feature than column i in the
inactives’ FFM - making any comparisons between fragments of active molecules
and inactive molecules downright impossible. Therefore, put concisely, a feature
can be represented in the columns of the active molecules’ FFM if and only if it
is also represented in the same column of the inactive molecules’ FFM. This is
precisely the reason why we first complete our imputation of the active molecules’
FFM before moving on to the inactive molecules’ FFM. We may use the metadata
from the actives’ FFM - namely the global median cache and the degenerate
features - to impute the inactive molecules’ FFM while ensuring that we end
up with the same exact physiochemical features represented in both matrices
afterward.

Using the observations in the previous paragraph, we will see that imputing
the inactive molecules’ FFM is quite trivial. The first step is to remove any
columns corresponding to the degenerate features that were found while imput-
ing the active molecules’ FFM - since these degenerate features don’t appear
in the imputed FFM ′

A, they cannot appear in the imputed FFM ′
I either, as

observed in the prior paragraph. We then traverse through each row in the in-
active FFM, and if we find a row that contains a non-numerical value for some
feature di, we simply set this value to the corresponding feature value for fea-
ture di in the global median cache from the actives’ imputation. One might
argue that using the same global median feature values, computed solely from
the actives, to also impute the inactives may lead to an artificial similarity be-
tween the values of the active and inactive fragments, and therefore a failure
to identify some key features. While this is true, we argue that this proce-
dure is still usable in our scenario: ideally, the number of non-numerical feature
values present across all the inactive fragments is relatively low, and therefore
performing a simple imputation step that saves us a lot of time need not nec-
essarily do much harm. Indeed, consider that usually the number of inactive
molecules - and by extension inactive fragments - with respect to a target is
vastly greater than the number of active molecules. Therefore, performing a
global median operation for the inactive molecules as we did with the active
molecules in the previous stage could take a considerably larger amount of time.

19

Algorithm 3: Imputation of the fragment feature matrix for the inactives

1 function ImputeFFMI(Fragment feature matrix FFMI ,
GlobalMedianCache, DegenerateFeatureSet):
Result: Fully imputed Fragment Feature Matrix FFM ′

I (possibly with
less columns than FFMI , again due to removal of columns
corresponding to degenerate features)

2 foreach Feature d in DegenerateFeatureSet do
3 RemoveDescriptorColumn(FFMI , d)
4 end
5 for Molecule ij in the set of inactive molecules do
6 Fij = fragments that ij contains
7 for fragment feature vector fi ∈ Fij (a row of FFMI) do
8 foreach Non-numerical feature dj of fi do
9 SetFragmentFeature(fi, dj,

GlobalMedianCache.getFeatureValue(dj))
10 end

11 end

12 end
13 return FFMI

3.4 Dimensionality reduction in the molecular

feature space

3.4.1 General dimensionality reduction

It is at this point that we combine the two imputed fragment feature matrices
FFM ′

A and FFM ′
I into one combined fragment feature matrix FFMC , as men-

tioned earlier.
As with all problems involving so-called Big Data, it is of paramount impor-

tance to discern which subsets of the data are important in enabling a deeper
insight, and which subsets are redundant, or even decoys, during our analysis
procedures. Such isolation of the most important subset of the data will prevent
the multifarious troubles associated processing extremely large data sets. Indeed,
without an appropriate trimming of the input dataset, any algorithm that we
apply will naturally require a lot of computational effort; moreover, most of this
effort will be wasted on processing unimportant data. A perhaps more insidious
trouble is that many algorithms will return sub-optimal results if they are forced
to train themselves on too much noisy data, and we as the users of the algorithm
will assume that these sub-optimal results are due to the choice of the algorithm
rather than an improper distilling stage for the dataset. An archetypal exam-
ple of the subtle but harmful effects of unclean datasets is the so-called curse
of dimensionality [13], which occurs because of the distorted meaning of distance
when working in very high-dimensional Euclidean or metric spaces. The curse
may indeed pertain to our input dataset: we have approximately 1500 phys-
iochemical features for each fragment of each active or inactive molecule with
respect to the target. Without proper preprocessing, therefore, we will work in a
1500-dimensional Euclidean space. We, therefore, present our method for dealing

20

with these dimensionality-related problems in the molecular feature space.
In data mining, most techniques for dimensionality reduction rely on remov-

ing specific features that are heavily correlated with other features in the dataset,
thereby minimizing the amount of redundant information present in the data. In
the machine learning community, the generally used and widely accepted way to
deal with large dimensionality is to use a technique known as principal compo-
nent analysis [14]. Put briefly, PCA projects a set of vectors from a dimension
Rd to dimension Rk, where k < d. This is done by expressing the vectors as
linear combinations with respect to a basis formed by taking the eigenvectors
of the covariance matrix of the dataset (for a much more rigorous description
of the procedure we refer the reader to [14] or the vast amount of literature on
the topic). In our setting, however, this method may lead to undesirable conse-
quences. To understand why, consider that the vectors - fragment feature vectors
in our setting - are originally expressed in terms of the standard orthonormal
basis {e1 . . . ed}, where each dimension ei is an abstraction corresponding to a
specific feature in the chemical space. By projecting the vectors onto a different
basis that has no natural physical meaning - unlike the basis {e1 . . . ed}, which
corresponds directly to physiochemical features - we ameliorate our problem of
dealing with very high dimensional data, but lose any direct chemical meaning
of the coordinates of the fragment feature vectors. We, therefore, use a differ-
ent approach for dimensionality reduction in our setting; this approach uses an
apparatus similar to the covariance matrix - namely the correlation matrix.

3.4.2 Correlation neighborhoods

Let C ∈ Rd×d, where d is the original number of physiochemical features (before
any dimensionality reduction), denote the correlation matrix of the dataset. In
our problem setting, the correlation matrix is a decidedly better tool than the
covariance matrix to measure the level of correlation between different features.
This is due to the fact that different chemical features span different ranges in
terms of their values; indeed, our features vary in magnitude from the order of
10−3 to 103. As a consequence of such disparate value ranges, the covariance
matrix would be a very inaccurate metric to determine the level of correlation
between two features since there is no standardization of the covariance values -
unlike the correlation matrix, which is standardized across value ranges.

Using the correlation matrix C, one can view the set of features as vertices in
a graph, with edges between the features fti and ftj ⇐⇒ Ci,j >= ε, where ε
denotes a correlation threshold (For the original idea regarding this abstraction,
we refer the reader to [31], here we will present it again in full and discuss its
applications). The correlation threshold, ε, can be arbitrary - but of course, it
would make sense to set it to a number ≥ .50, which semantically indicates that
two features have an edge between them if and only if they are highly positively
correlated. Strictly speaking, a vertex should also have a loop edge (an edge going
from itself to itself) since all features are perfectly correlated with themselves; for
the purposes of our algorithm, however, we will not consider loop edges.

Let us call this newly created graph G = (V,E) the correlation graph; the
correlation graph can be considered a collection of connected components, with
some singular vertices that correspond to features that don’t exhibit high corre-

21

lation with any other features. A visual depiction of such a correlation graph is
shown in Figure 3.2

Figure 3.2: A visual representation of the correlation graph. Observe that there
are 2 correlation neighborhoods containing features which are strongly correlated
with each other - N1 and N2 - and one correlation neighborhood N3 containing
a solitary feature. The gray edges in between the neighborhoods represent the
low correlation coefficients between two feature vertices in two different neigh-
borhoods (e.g. F1 and F7), whereas the black edges in between feature vertices
in the same neighborhoods (e.g. F1 and F2) represent large correlation coeffi-
cients above our correlation threshold ε. The feature corresponding to the vertex
contained in N3 - F6 - exhibits a correlation coefficient below the threshold with
respect to all other features, except itself (we don’t consider loop edges in the
correlation graph). Therefore, the neighborhood N3 is colored red, as F6 is fairly
independent of all the other features, and will, therefore, be added to the output
feature set as it is not redundant. On the other hand, for each of the other neigh-
borhoods, we will choose a representative vertex whose corresponding feature will
be included in the output feature set.

Let us assume we already have some initial members in our final list of non-
redundant features in the form of the features corresponding to the singular ver-
tices in the correlation graph. Indeed, the features corresponding to these vertices
don’t show high correlation with any other features; we, therefore, must take
them into our final set of features, as they must contain valuable information not
captured anywhere else in the feature set.

We then proceed to take this initial set of non-redundant features and add a
subset of the remaining features from the correlation neighborhoods. This combi-
nation of completely uncorrelated features with a subset of the correlated features
minimizes the redundancy while simultaneously preserving as much information
present in the data as possible. Since we only choose a subset of the correlated
features, we minimize the redundancy; at the same time, we preserve all the un-
correlated features and hence ascertain that we are not losing any valuable insight
that is not replicated elsewhere in the feature set. Formally, we take the union
of the completely uncorrelated features with a set of several representatives from
each correlation neighborhood in the correlation graph. The algorithm, presented
below, should shine a clearer light on our procedure for mining the non-redundant
subset of features from the full set of features:

22

Algorithm 4: Finding the set of non-redundant features using neighbor-
hood representatives

1 function IdentifyNonRedundantFeatures(Correlation matrix of the dataset
C, ε): Result: Array of non-redundant features f1 . . . fn in the
dataset

2 NonRedundantFeatures = {Initial array of all the features (both
redundant and non-redundant)}

3 G(V,E) = GetCorrelationGraph(C,ε)
4 vi = max {v ∈ G, δ(v)} // Choose vertex with largest degree
5 // While there still exist some neighborhoods - i.e. we don’t only have

singular vertices
6 while δ(vi) 6= 0) do
7 N(vi) = set of neighbors of vi
8 for vj ∈ N(vi) do
9 V = V \ vj // Remove all vertices in the neighborhood of vi

NonRedundantFeatures.remove(vj.feature) // Remove the feature
corresponding to the vertex vj from the set of non-redundant
features

10 end
11 vi = max {v ∈ G, δ(v)} // Initiate the next iteration of the loop

12 end
13 return NonRedundantFeatures
14 function GetCorrelationGraph(Correlation matrix C,ε):
15 V ertices = {empty set of vertices}
16 Edges = {empty set of edges }
17 for feature fi in C do
18 CorrelatedFeatures = {set of features fj such that Cij ≥ ε AND j 6= i}
19 end
20 V ertices.add(vi) // add new vertex corresponding to this feature
21 if CorrelatedFeatures is not empty then
22 for fj in CorrelatedFeatures do
23 Edges.add((vi, vj)) // Add edge between correlated features in a

neighborhood
24 end

25 end
26 return {Vertices, Edges}

23

3.5 Normalization

We have one final step in our data purification pipeline: normalization. Statis-
ticians employ normalization to enable comparison of data that occupy different
value ranges. Such a procedure is incredibly relevant in the molecular feature
space: different physiochemical feature values may be 2 or 3 orders of magnitudes
larger or smaller relative to each other. This has hitherto not been a problem,
as we have only created the fragment feature matrix; we will, however, start to
experience serious problems when utilizing the current feature values in machine
learning algorithms without proper normalization. It would be futile to attempt
to explain to the reader why this is the case at this point in time, as a complete
explanation would require us to reveal details about the actual algorithms we will
be applying on the fragment feature matrix FFMC - a discussion which we will
save for the near future. For now, we ask the reader to accept that, as with many
other algorithmic schemes in the fields of data mining and machine learning, nor-
malization is a necessary final step in our data cleaning procedure. We outline
formally the normalization method performed on FFMC :

Algorithm 5: Normalization of the Fragment Feature Matrix

1 function NormalizeFeatures(Fragment Feature Matrix FFMC):
Result: Fully normalized Fragment Feature Matrix FFM ′

C

2 foreach Column c in FFM ′
C do

3 columnMaxValue = maximum(c)
4 columnMinValue = minimum(c)
5 // Note that columnRange can never be 0, as this would mean that

this feature is a constant valued feature, whereas we already removed
all constant valued features from our feature matrices in earlier steps

6 columnRange = columnMaxValue - columnMinValue
7 foreach Value v in c do
8 v = (v - columnMinValue) / columnRange
9 end

10 end

As the reader can easily deduce from the algorithm, we constrain the values
of FFM ′

C to the interval [0, 1] by dividing each feature value of each fragment
by the range of the feature over all fragments. This enables us to make values
from different columns comparable since the values no longer differ in orders of
magnitude, but are rather all constrained to the same interval. This will greatly
empower us when we aim to glean insight about the key features in the molecular
feature space.

24

4. The Subspace Clustering
Approach

4.1 Introduction

There exist numerous algorithms covering the problem of finding subspace clusters
that each have different advantages and disadvantages when compared with one
another. We, therefore, present a brief overview of these various algorithms and
discuss which of them would be most appropriate to use in the molecular feature
space.

4.1.1 The density of a neighborhood of a point

We already implicitly presented the idea of density earlier when defining a cluster
and a subspace cluster, by discussing this idea in the context of a specific fragment
feature vector having µ many points in some dense ε neighborhood of it in the
molecular feature space. Briefly restating what we already discussed in a more
general context, we say that the neighborhood of a point x in some Euclidean
space is dense if, for some parameters ε and µ, there exist µ many other points
in the ε-ball around x. This notion is very important when constructing and
understanding clustering algorithms, namely it is key to understand that these
sets of dense collections of points - clusters - are separated by regions of low-
density collections of points in the Euclidean space. This is a key idea utilized
by numerous cluster detection algorithms, as will be seen very soon.

4.2 Basic Clustering Algorithms

Before we move on to algorithms that detect subspace clusters, we first present
two algorithms that detect general clusters - that is, clusters defined over all
dimensions. The rationale behind this order of analysis is that the subspace clus-
tering algorithms that we will discuss later heavily utilize the fundamental ideas
that the more general clustering algorithms are built upon. Consequently, by first
analyzing general clustering algorithms, we will have a foundational understand-
ing of the tools of the trade before commencing the study of the more advanced
subspace clustering algorithms. We first present the most quintessential density-
based clustering algorithm: DBSCAN. DBSCAN accepts two parameters, ε and
µ (where µ is also referred to as minpts), and partitions the point vectors in our
dataset into 3 groups, core objects, density-reachable objects, and noise objects.
[15]

Very briefly stated, the algorithm passes through the dataset and performs ε
sized neighborhood queries for each point; if a point p has n many other points
o1 . . . on in an ε-sized neighborhood around it, where n ≥ µ, it is deemed to be
a core object and the points o1 . . . on are added to this new core object’s cluster.
Moreover, o1 . . . on are said to be density reachable from the core object p; further
neighborhood queries are subsequently executed on these density-reachable points
to augment the new cluster with further indirectly density-reachable points -

25

known as the cluster expansion phase. Points that do not have at least µ other
points in their ε neighborhood and are not density-reachable - neither directly nor
indirectly - via another core object are known as noise objects. A visualization
of some of the above notions can be seen in Figure 4.1. We see that DBSCAN
nicely captures the notion of density-based clusters as it asserts that a point p
has a dense neighborhood around it before it is added to the list of core objects
that form clusters. DBSCAN is also surprisingly efficient: the main bottleneck in
speed is encountered when performing the ε-sized range queries over the points
of the database - although even this stage can be optimized with an appropriate
spatial indexing structure.

Figure 4.1: The above image gives a visual representation of an ε-sized range
query done with two different center points: A and F , with ε = 2. One can
quickly see that one ε-sized ball, labelled C1, is quite dense, while the other is
quite sparse. If we assume that µ is set to 3, then C1 would be considered a
cluster while the other ball would be discarded as noise. We can quickly see the
effect that ε and µ have on the notions of density and by extension what balls
constitute an actual cluster in the d-dimensional Euclidean space.

DBSCAN, however, exhibits some problems when attempting to find clusters
of different densities, for which no single value of ε or µ would be adequate. In or-
der to cope with such scenarios, improvements to DBSCAN have been presented
that remove the need to specify a strict ε. The OPTICS algorithm, for exam-
ple, accepts a parameter ε′ known as the generating distance, as well a minpts
parameter µ. OPTICS is more flexible than DBSCAN because it requires only a
generating distance parameter ε′, rather than a strict distance parameter ε. This
allows us to set ε′ as the maximum radius that we expect to encounter for some
cluster in our dataset if we were to hypothetically run DBSCAN. [16]

More concretely, OPTICS can be viewed as an extension of DBSCAN in the
sense that, similar to DBSCAN, it makes ε sized range queries iteratively through
the dataset. OPTICS differs from DBSCAN, however, due to its utilization of
a key data structure known as the reachability distance plot. The reachability

26

distance plot is essentially a linear ordering of the points in the database; this
ordering starts with some origin point o0, and then iteratively adds points o1 . . . on
to the ordering based on the minimum reachability distance of a new point oi
from any existing point oj, j < i, in the reachability plot during a particular
iteration. The reachability distance (for which a formal definition can be found
in [16]) is very informally the minimum ε′′ ≤ ε′ such that oi is directly density-
reachable from some oj already present in the reachability plot. Therefore, during
a particular iteration, the algorithm adds a new point oi to the ordering if and
only if out of all the candidate points, oi minimizes the reachability distance
from some existing point oj. The algorithm then proceeds by generating further
candidate points to add to the reachability plot in the next iteration via an ε′-
sized range query on the newly added point oi. The profound consequence of
such a procedure is that one may visually represent the clusters in the dataset by
looking for low reachability distance valleys in the reachability plot - Figure 4.2
offers a clear visualization of how this can be done.

Since OPTICS adds points to the reachability plot based on the minimum
reachability distance ε′′ ≤ ε′, we are able to detect both wide and narrow clusters
corresponding to different values of ε′′. Given the reachability plot returned by
OPTICS, it is, of course, imperative that we extract the actual clusters from
the data structure. This is done by correlating clusters with the regions of low
reachability distance, or valleys, of the reachability plot, and marking all the
points in a specific valley as a single cluster. Several such algorithms exist to
extract clusters from the reachability plot, and for an in-depth discussion on
these methods we refer the reader to [16]. A final observation regarding OPTICS
is that the notion of a reachability distance can be modified to fit any metric
distance function: this idea will be incredibly useful when we analyze extensions
of OPTICS to subspace clustering.

27

Figure 4.2: A visual depiction of the reachability plot utilized by OPTICS eluci-
dates the different clustering distributions within the dataset. As shown by the
image, the valleys in the reachability plot - or the regions of low or decreasing
reachability distance - correspond to the different clusters in the dataset. On the
other hand, the regions of increasing or high reachability distance correspond to
the low density zones that are encountered in between clusters.

Although OPTICS provides a fairly robust solution to the crippling problem
of finding an appropriate value for ε in DBSCAN, neither DBSCAN nor OPTICS
specify a way to directly detect subspace clusters, which is what we require in
the molecular feature space.1 DBSCAN and OPTICS, however, provide an im-
portant foundation for which more advanced subspace clustering algorithms are
built. DBSCAN captures precisely the definition of density mentioned earlier,
and OPTICS introduces the notion of a minimum reachability distance between
two points; both ideas will remain very important as we move on to our analysis
of subspace cluster detection algorithms.

4.3 Subspace clustering algorithms

We now move on to a short discussion of subspace clustering algorithms, and
identify two algorithms whose properties indicate that they may be appropriate
for application in the molecular feature space. We will focus our discussion only
on these two algorithms, but leave the reader with an abundance of algorithms
for subspace cluster detection to review at his or her leisure [17][18][19][20][21].

Important Note: Both of the following algorithms that we will present are
only suitable for finding axis-parallel subspace clusters.[20] One might postulate,
therefore, that these algorithms will return incomplete results as they fail to

1We say directly, since one can always create an indirect scheme for detecting subspace
clusters using DBSCAN or OPTICS via projecting the vectors into several permutations of
subspaces, and running DBSCAN or OPTICS on these projected vectors to obtain subspace
clusters. But these procedures are not particularly clever, nor are they computationally efficient.

28

detect certain subspace clusters that are not completely axis-parallel. While this
may lead to erroneous results in other fields, we claim that the detection of solely
axis-parallel subspace clusters suffices in our application in the molecular feature
space. Indeed, we require only clusters of fragment feature vectors with similar
values across certain key features to be detected; axis-parallel clusters dutifully
capture this notion by ensuring that on some dimensions (corresponding to the
key features), the values of the vectors contained in the cluster fall within the ideal
interval. We illustrate the prior statement regarding the nature of axis-parallel
clusters in Figure 4.3.

Figure 4.3: The figure above shows two potential subspace clusters projected
into the R2 Euclidean space; one - let us call it SAP - is axis-parallel, while the
other - SNAP - is not. All the vectors contained in SAP have x-axis coordinates
that fall within some ideal interval but y-axis coordinates that are fairly randomly
distributed, leading to a subspace cluster that is axis-parallel to the y-axis. SNAP ,
on the other hand, contains vectors whose coordinates fall within some larger
interval in both the x-axis and the y-axis, but are more dispersed than the vectors
in the first cluster in both axes. If we imagine the two axes as representing
different physiochemical features, then we could veraciously claim that there is
a clear trend within SAP with respect to the feature corresponding to the x-
axis. On the other hand, such a claim can not be made for SNAP for neither
the x nor the y axis since it is not axis-parallel in either axis. Therefore, SNAP
doesn’t exhibit rigid trends in any particular dimension, and is of minimal use in
our applications. We conclude, therefore, that for our purposes in the molecular
feature space, searching for axis-parallel subspace clusters suffices.

We will, therefore, focus on the analysis of axis-parallel subspace clustering
algorithms in the molecular feature space. There do exist, however, algorithms
for finding subspace clusters in a more general setting; as a starting point, we
refer the reader to [18].

29

4.3.1 HiSC

HiSC - which stands for Hierarchical Subspace Clustering - is quite a robust al-
gorithm that determines subspace clusters using a number of properties that are
quite relevant in the molecular feature space. The main key principle of HiSC
that not only differentiates it from its many predecessor algorithms in the space of
subspace clustering, but also makes it very usable in the molecular feature space
is its ability to determine a hierarchy of subspace clusters.[19] This ability is im-
portant because of the somewhat contrived but nevertheless illustrative example
that is presented in the following visual in Figure 4.4. The visual illustrates the
case where there are two axis-parallel lines that form subspace clusters in the 1-D
space. These two axis-parallel lines, however, are in fact just subsets of a higher
dimensional subspace cluster - the axis parallel hyperplane in 2-D.

Figure 4.4: Hierarchies of subspace clusters. We have two axis-parallel lines
that form subspace clusters in the 1-D space of the ambient 3-D space - one
clustered along the x-axis and parallel to the y-axis, and one clustered along
the y-axis and parallel to the x-axis. These two axis parallel subspace clusters,
however, are in fact just subsets of a higher dimensional cluster - the axis parallel
hyperplane, or a 2-D subspace cluster. [33]

HiSC can accurately detect such nested hierarchies of subspace clusters, mak-
ing it quite useful - especially in our application domain. Indeed, in the molecular
feature space defined over the set D of physiochemical features, we could have
two separate subspace clusters C1 and C2 of fragments that are defined in the
subspaces S1, S2 ⊂ D, respectively. However C1 and C2 could also be subsets of
an encompassing subspace cluster C in the subspace T ⊂ D, where S1 ∪ S2 ⊆ T .
In this case, many interesting analyses could be done. For example, recalling
the purity and diversity conditions mentioned in prior sections, it could very
well happen that C itself may not be a significant cluster because it is not pure
enough, but we may proceed down the hierarchy and find that C1 and C2 ac-
tually satisfy the purity conditions. Therefore, this could lead to an interesting
situation where C1 and C2 could be significant (assuming they both also satisfy
Condition 1 - Diversity) even though their parent cluster in the hierarchy, C, is
not. As a further step, by observing the point in the hierarchical ladder when
adding more subspaces causes purity to diminish below a certain threshold, we

30

can gain enormous insight into a maximal set of key features that correspond
to pure clusters. In conclusion, it is highly valuable for both present and future
research to find and store the entire subspace clustering hierarchy - which is why
we deem HiSC as a standout candidate for use in the molecular feature space.

We now proceed to a short analysis of the HiSC algorithm itself - HiSC is
in fact very similar to the OPTICS algorithm we saw earlier. Indeed, HiSC
analogously walks through the dataset and creates a reachability plot based on
the minimum reachability distance between already reached vectors and not yet
reached vectors. The key differentiator between the two algorithms is that HiSC
redefines the reachability distance function to suit subspace clustering.
We mentioned earlier that the distance function employed in OPTICS could be
arbitrarily chosen, with the caveat that it obeys the standard properties of a
metric distance function. HiSC indeed chooses a valid distance function obeying
the metric properties, while simultaneously capturing the notion of a subspace
cluster in the Euclidean space. We start our analysis of this new distance function
with the following definition:

Subspace preference vector. In order for HiSC to detect the hierarchies of
subspace clusters, it assigns to each point p what is called a subspace preference
vector wp, which is a bit vector of size d. To determine the vector, we first
perform a k-nearest neighbor search on p, where k is an input parameter, obtaining
points o1 . . . ok. We then take the average variance of the distance from p of the
neighborhood of points o1 . . . ok in a local neighborhood of p in the attribute Ai
and denote this value as V arAi

(p) using the following formula, where πAi
(p) is

the projection of point p to the subspace Ai:

V arAi
(p) =

∑
oi∈o1...ok(πAi

(oi)− πAi
(p))2

|o1 . . . ok|
(4.1)

HiSC then defines the subspace preference vector wp for p as follows, for some
threshold α, also given as an input parameter:

wpi =

{
1 V arAi

(p) ≤ α

0 V arAi
(p) > α

, i = 1 . . . d (4.2)

We intuitively set the coordinate of the preference vector corresponding to
a specific attribute Ai to 0 if there is a high degree of average variance in the
distance of the k-nearest neighbors to the point p in that attribute, and set the
coordinate to 1 otherwise. The basic reachability distance function, or subspace
distance function, between two points p and q is then defined as the number of
zero values in the logical and wp ∧ wq of the two subspace preference vectors
of the points p and q (this is actually a slight simplification: for the full details
regarding the subspace distance, we refer the reader to the original paper [19]).
This customized distance function intuitively captures the difference in subspace
dimensionality between the two points - the more attributes Ai that both p and
q exhibit low variance in, the lower the reachability distance.

At the end of this procedure, we can, similarly to OPTICS, create the reach-
ability plot using the modified reachability distance and extract the subspace
clusters and their corresponding subspaces from the reachability plot - giving us
our much sought after key features.

31

4.3.2 DiSH

We now turn to the final subspace clustering algorithm that we will be discussing,
and the one that we will be actively using: DiSH. [20] DiSH builds on HiSC by
fixing a few severe flaws. One of the key pitfalls of HiSC is that it assumes
that if a point p belongs to a subspace cluster C in some projection of the full
ambient space to a specific subspace, then the points of C must be visible in
the neighborhood of p in the entire ambient feature space. This pitfall can be
easily seen by examining one of the initial phases of HiSC, namely the phase in
which it constructs the preference vectors: we compute the k-nearest neighbors
over the whole feature space, but then subsequently compute the average variance
of the k-nearest neighbors on only an attribute (or feature) basis. If the points
of a subspace cluster C that p belongs to are not visible from the k-nearest
neighbors search in the entire feature space, then the per-attribute variance will
be misleading and p’s subspace preference vector will be computed incorrectly
and will beget inaccurate results.

DiSH remedies such scenarios by performing attribute wise neighborhood
queries instead of feature space wide neighborhood queries - which is the main
reason why it is much more attractive in our usage in the molecular feature
space. This difference between DiSH and HiSC can be seen in the redefinition of
the subspace preference vector of a point.

DiSH redefines the preference vector of a point p in the following way: for
each attribute Ai, it performs an ε sized neighborhood query around the point p
in the attribute Ai, where ε is an input parameter. If the number of points in this
single-dimensional neighborhood around p is greater than or equal to µ, another
input parameter, we add this attribute to a list of candidate attributes that could
be a part of the dimensions of a subspace cluster containing p.

After determining all the initial candidate attributes for a point p by a series
of neighborhood queries, the candidates need to be consolidated in an optimal
way so as to obtain the attributes that most likely constitute the dimensions of
a subspace cluster that point p belongs to. To understand the manner in which
these optimal subspace attributes are chosen, we refer the reader to [20], where
two schemes are proposed: one using frequent itemset mining (another popular
algorithm in the field of data mining) and the other using a simpler and more
computationally efficient heuristic. For our purposes in this paper, it suffices
to assume that we are given the optimal set of attributes of a subspace cluster
containing a point p and denote this set Sp. The subsequent construction of the
subspace preference vector wp is then quite simple: for a point p and the set of
attributes Sp, we define the subspace preference vector of p, wp, as:

wpi =

{
1 Ai ∈ Sp
0 Ai /∈ Sp

, i = 1 . . . d (4.3)

The subspace distance of two points p and q is then defined, similarly to HiSC,
as the number of 0s in the vector wq ∧ wp (this is again a slight simplification:
for the full details regarding the subspace distance, we refer the reader to the
original paper [20]). Therefore, the only thing that changed from HiSC’s defini-
tion of a subspace distance between two points p and q is the way the original
subspace preference vectors wp and wq are computed. The familiar walk through

32

the dataset can then be computed, exactly as it was with OPTICS and HiSC,
using our new distance function, and we may subsequently obtain a reachability
plot just as before. The clusters can then, once again, be retrieved from this
reachability plot.

It’s worthwhile to pause for a moment and consider the beauty of the distance
function abstraction. By simply modifying how we formed the preference vectors
- and by extension the formulation of the distance function - we completely change
the type of clusters obtained as we perform our walk through the dataset. We
have thus far seen three different distance functions (one for OPTICS, one for
HiSC, and yet another one for DiSH), that all aim to capture different logical
notions with respect to the type of cluster we are trying to identify. This is a
very useful abstraction for any further research work that aims to be done in this
area: one simply needs to define a valid metric distance function that captures
the properties of the clusters he or she wants to identify, and then simply compute
a walk through the dataset using this distance function.

In the molecular feature space, we aim to capture significant clusters with
specific properties - namely diversity and purity. A point of further research,
therefore, could be the design of metric distance functions with properties that
optimize for the retrieval of significant clusters. In this paper, however, we will
focus on utilizing the clustering algorithms that have already been engineered for
more general cases without modification.

4.4 Filtering of the found subspace clusters

From the subspace clustering algorithms presented previously, we get significant
subspace clusters as well as noisy subspace clusters (clusters that do not satisfy
our previously defined Significant Cluster conditions). It is, therefore, imper-
ative to devise a scheme that sequesters the significant clusters from the noisy
ones, based on our definition of significance. We will now showcase, for each con-
dition of significance, an algorithm that filters those clusters which do not satisfy
the respective condition; after all the subsequent filtering algorithms have been
applied, therefore, we will be left with solely significant clusters.

Filtering Stage 1: Diversity The algorithm for filtering out clusters that
are not diverse (i.e. clusters that contain fragments from only a few active
molecules), is fairly straightforward. We simply define a threshold α and then
iterate through the list of clusters; for each cluster ci, we compute the number of
active molecules which contain any fragments that are contained in that cluster
and denote this number as βi. If βi < α for some i, we remove cluster ci; oth-
erwise, we conclude that ci is diverse enough to pass to the next filtering stage.
The threshold α will be set as a percentage of the number of active molecules -
and therefore 0 ≤ α ≤ numActiveMolecules.

Filtering Stage 2: Purity The algorithm for filtering clusters based on
purity is similar to the algorithm for filtering clusters based on diversity. We
accept a threshold parameter α ∈ [0, 1], and then iterate through the set of

all found clusters and remove any clusters that don’t satisfy
|A∩Cf |

|A∩Cf |+|I∩Cf |
≥ α,

where A is the set of all fragments found only in active molecules, I is the set
of all fragments found in at least one inactive molecule, and Cf is the set of all

33

fragments within the cluster.
The filtering is made slightly more complex, however, by the fact that there

could exist substantially more inactive molecules than active molecules in the
dataset. Subsequently, there would also exist many more inactive fragment vec-
tors than active fragment vectors in our feature space, since every molecule con-
tains several fragments. This is indeed the case in most real life datasets and
therefore requires a slight adaptation of our prior condition for removing a clus-
ter. For example, if we set the threshold α too high and there exist many more
inactive fragments than active fragments, then we may have the case where a
cluster is actually significant but gets filtered out simply because there are many

more inactive fragments in the dataset and therefore the ratio
|A∩Cf |

|A∩Cf |+|I∩Cf |
is nat-

urally lower. We, therefore, protect our algorithm from such effects by redefining
α as α′:

α′ =

{
α |I| − |A| ≤ 10

α
(1+log10 (|I|−|A|)

|I| − |A| > 10
(4.4)

The formula above can be understood as follows: if the number of inactive
fragments is less than the number of active fragments or greater than the num-
ber of active fragments by less than 10, then we simply keep the current purity
threshold. Since there are more active fragments than inactive fragments in the
dataset, or the amount of inactive fragments is only marginally greater, we don’t
need any adjustment to the purity threshold. On the other hand, if the number of
inactive fragments is greater than the number of active fragments by 10 or more,
we set the value of the purity threshold correspondingly lower - via the logarithm
function - to account for the disparity in the amounts of the two types of frag-
ments. To see how this adjustment is done, one can observe that the denominator
1 + log10 (|I| − |A|) in the latter case will get correspondingly larger as the differ-
ence between the number of inactive fragments and active fragments increases,
leading to a smaller and smaller value for the purity threshold α. This step will
be done completely automatically without the user’s knowledge, as we do not
expect the user to know the distribution of the active and inactive fragments in
his/her data set and set α accordingly. Accounting for some innate, admittedly
rather esoteric, properties of the dataset is, therefore, a task delegated to our
system and abstracted from the user.

In conclusion, we have designed two schemes that filter the significant clusters
from the degenerate clusters quite effectively, while also keeping in mind the
potential problems that may arise due to the intrinsic properties of the dataset
with respect to the number of active and inactive fragments.

4.5 The Key Feature Model

4.5.1 Choosing the Best Cluster with Validation

In our problem setting, we aim to create a machine learning model learned
based on an input training set of active and inactive molecules with respect to
some macromolecular target.

We wish to create, for a specific target molecule, a model that captures its key
features and their values. Such a model should aid us in scoring a new candidate

34

molecule based on its activity or inactivity with respect to the aforementioned
target. Such a scoring mechanism is important because, in virtual screening,
one is given a list of candidate molecules, or leads, and is tasked to rank the
candidates so that the active molecules, in general, are ranked higher than the
inactive molecules. A pharmaceutical researcher would then extract only the
top ranked candidates, ideally mostly active molecules, for further testing. A
scoring function for new candidates is, therefore, imperative for us to obtain such
a ranking, and therefore in this section we present an algorithm for scoring new
candidate molecules for a specific target.

We first consider each obtained cluster in a specific collection of subspace
clusters returned by DiSH as a key feature model. These key feature models
represent the varying combinations of key feature value ranges which could lead
to activity with respect to the current target. To gauge a new molecule’s ac-
tive nature, therefore, it suffices to measure its similarity to existing key feature
models, or clusters.

Concretely, we may first represent a subspace cluster over l dimensions in a d
dimensional ambient space as an l-dimensional centroid. This l-dimensional cen-
troid is calculated as the arithmetic mean of the vectors contained in the cluster
projected to the cluster’s subspace. This centroid vector, therefore, represents
the key features corresponding to the l dimensions in which it is defined, as well
as the specific key feature values corresponding to its individual coordinates. An
ideal value range for each key feature can, therefore, be established by considering
some small interval around the corresponding coordinate of the centroid.

To determine the accuracy of a specific cluster, we utilize a validation set - a
subset of the input training set: we will take 10% of our input active and
inactive molecules as our validation set. Using this validation set and a single
cluster, we first rank the validation set of molecules according to activity
using the algorithm below. Note that the input candidate set C, in this case, is
simply the validation set of molecules, Cluster is a single subspace cluster found
by DiSH, and scoringMethod is a parametrizable input variable used within the

35

algorithm:

Algorithm 6: Candidate Molecule Ranking Algorithm

1 function RankCandidatesBasedOnActivity(Candidate Set C = [c1, . . . , cm],
Cluster, scoringMethod):
Result: Ranked Candidate Set C ′ (Where C ′ is some permutation of C)

2 sortedActivityList = []
3 foreach Candidate ck do
4 candidateDistanceArray = []
5 // The ranking will be based on the distance of each fragment of ck
6 // from the cluster centroid
7 foreach Fragment frjk of candidate ck do
8 // Compute the projected subspace Euclidean distance
9 fragmentCentroidDistance =

computeSubspaceDist(frjk,Cluster.centroid))
10 candidateDistanceArray.append(fragmentCentroidDistance)

11 end
12 // A parametrizable scoring option dictates how the individual scores

for the candidates are computed
13 if scoringMethod == mean then
14 candidateScore = mean(candidateDistanceArray)
15 end
16 else
17 candidateScore = min(candidateDistanceArray)
18 end
19 // We keep track of all the scores of candidates with respect to the

input cluster
20 sortedActivityList.append((candidateMoleculeName:ck,score:

candidateScore))
21 end
22 // We sort the scores to obtain a ranking of candidates according to

activity
23 sortBasedOnScore(sortedActivityList)
24 return sortedActivityList

Now that we have a ranking of the candidate validation molecules, we may
then score this ranking using the AUC score (Area Under the ROC
Curve) - a standard metric for scoring binary classification algorithms - for
a ranking of molecules in a chemical database. For more information regarding
the AUC score and its applications in virtual screening, we refer the reader to
[32]. For our purposes, it suffices to understand that the AUC score AUC is a
number in the interval [0, 1], where a score closer to 1 indicates that a model,
very accurately, places active candidates at the top and the inactive candidates
at the bottom of the ranking; a score closer to 0, on the other hand, indicates the
opposite and reveals the inaccuracy of a model.

Subsequently, we perform one more filtering of the subspace clusters, in ad-
dition to the filtering of clusters using the purity and diversity conditions. This
filtering stage will be done using the validation set, the ranking algorithm shown
above, and the AUC score mentioned in the prior paragraph to leave us only with

36

the best key feature model from a given set of input clusters.
The full scheme for determining the optimal model is given below - note that

we use the method for determining the AUC score of a ranked list of molecules,
as described in [32], as a black box in the form of the function
getAUCScore(candidateRanking):

1 function obtainBestClusterModel(Candidate Validation Set
C = [c1, . . . , cm], SetOfClusters):
Result: Best Cluster Model Cl ∈ SetOfClusters

2 bestAUC = 0
3 bestClusterModel = NULL
4 foreach Cluster Cli ∈ SetOfClusters do
5 for scoringMethod in [mean,min] do
6 candidateRanking = RankCandidatesBasedOnActivity(C, Cli,

scoringMethod)
7 currentAUC = getAUCScore(candidateRanking)
8 if currentAUC > bestAUC then
9 bestClusterModel = Cli

10 end

11 end

12 end
13 return bestClusterModel

4.5.2 Parameter Tuning via Validation

As is typical in various machine learning and artificial intelligence methods, it
is of paramount importance to choose the appropriate parameter values for our
pipeline - i.e. parameters for DiSH - that return the most accurate model for our
particular problem of finding the key features in the molecular feature space.

Upon experimenting with various methods and heuristics to determine optimal
values for the various parameters based solely on the properties of the input
training dataset, we were unable to find any method that was robust across
targets and datasets. We, therefore, chose a brute force search method, wherein
we traverse the parameter space and choose the parameter combination that
returns the best model; this method is also known as Grid searching in the
domain of machine learning. [24]

The best parameter combination is determined by yet another validation set.
This validation set is different from the one introduced in the previously. Namely,
given a full set of input active and inactive molecules, we split the input into 3
sets - 80% of the input will be used as input to DiSH to find subspace clusters,
10% will be used as the first validation set to find the best cluster amongst a set
of clusters returned by DiSH as presented in the algorithm shown above, and the
last 10% will be used as the second validation set, as will be presented in this
section, to determine the best cluster across parameter combinations.

To reify the discussion in the prior paragraph, we present the full training
and optimal model choosing algorithm below, adding an outer loop for grid
searching the parameter space. Note that PipelineInput is the initial input to our
pipeline that was elaborated on in the chapter regarding cleaning and combining

37

large molecular datasets:

Algorithm 7: Obtaining the Key Feature Model

1 function GetKeyFeatureModel(PipelineInput):
Result: Get the best key feature model as determined by DiSH and our

candidate ranking algorithms
2 // Split the input training actives and inactives into a training set and two

validation sets, as mentioned in the above paragraph
3 trainingMolecules, V alidationMoleculesOne, V alidationMoleculesTwo

= splitDataset(PipelineInput)
4 // Create the fully preprocessed molecular feature matrix FFM ′

C using
the training molecules and the data purification algorithms mentioned in
prior sections

5 FFM ′
C = cleanDataAndGetFFM(trainingMolecules)

6 // Keep track of all the best cluster models obtained from various
parameter combinations, so we may choose the best one afterwards

7 bestClusterModels = []
8 foreach µRatio in [.2, .6, .9] do
9 foreach epsilon in [5e-9,.5e-7,5e-6] do

10 foreach scoringMethod in [mean,min] do
11 foreach purityThreshold in [.3,.5,.7] do
12 // µ is taken as a ratio multiplied by the number of training

fragments
13 µ = µRatio * length(FFM ′

C)
14 ClusterModel = DiSH(FFM ′

C , µ, ε)
15 // We keep the diversity threshold fixed, as we found

empirically that this worked best
16 diversityThreshold = .5 * length(FFM ′

C)
17 // Filter the model based on purity and diversity to obtain

only the significant clusters
18 SignificantClusterModel = filterModel(ClusterModel,

diversityThreshold, purityThreshold)
19 // Perform the second filtering stage based on the first

validation set to obtain the optimal cluster from the set of
clusters

20 bestCluster =
obtainBestClusterModel(V alidationMoleculesOne,
SignificantClusterModel)

21 // Add this cluster to the list of best cluster models
obtained for various parameter combinations

22 bestClusterModels.add(bestCluster)

23 end

24 end

25 end

26 end
27 // Now we use the second validation set to determine the best model

across various parameter combinations
28 return obtainBestClusterModel(V alidationMoleculesTwo,

bestClusterModels)

38

The choice of looping values for µRatio, ε, and purityThreshold are meant
to cover a range of possible values that could lead to optimal cluster detection.
Setting µRatio and purityThreshold is quite straightforward: since they are both
constrained to the interval [0, 1], it suffices to solely choose a range of values within
that interval. The choices for ε were slightly more challenging, but we chose a
robust range of values that would handle a variety of cases, based on the advice
of the creators of DiSH. [20]

The algorithm keeps track of all the obtained AUC scores for various runs of
DiSH, and then returns the model that achieved the highest AUC score at the
end. Any subsequent candidate testing molecules will then be ranked using
this model, as we deem it the best suited to make future predictions.

Although this approach for choosing the best parameter combination and con-
sequently the best model might seem slightly unconventional, we argue that con-
ceptually it is no different than learning the parameter combination that returns
the best model using the intrinsic properties of the input dataset. Indeed, instead
of learning the parameter combination implicitly using some clever scheme that
utilizes the distribution of the feature values of the input training molecules, we
rather learn these parameters explicitly by our brute force grid search approach
and a validation set. The only valid argument against this approach is from the
practical side: searching 51 different combinations of parameters versus just 1 is
definitely more computationally demanding. But as we will see in the subsequent
Experimental Results section, this computational inefficiency is not as bad as
it first seems.

39

5. Experimental Results

5.1 Implementation

5.2 External Tools Used

Before embarking on a description of our experimental results, we would first like
to briefly mention some external tools that were used in our research, without
which the large-scale experiments conducted on enormous chemical datasets could
not have been completed.

We would first like to thank MetaCentrum for providing distributed comput-
ing infrastructure on which we ran our parallelized experiments.[29] We would
also like to thank the researchers developing and maintaining the ELKI data
mining framework, at the time of writing researchers from Heidelberg University
and the University of Southern Denmark, for providing us an implementation of
the DiSH algorithm.[28] Both parties played a vital role in our experiments: the
former party provided the raw computing power required for big data analysis,
while the latter party provided the developed and tested software system which
forms the core of our machine learning pipeline.

5.3 Evaluation of DiSH with Artificial Data

Due to the nature of our machine learning procedure as a multi-stage approach, it
is imperative that we test each phase of the pipeline separately - otherwise known
as unit testing in the domain of software engineering - and then subsequently test
the modules together in ensemble as one integrated system - also known as inte-
gration or functionality testing. Although such an approach proves efficacious in
debugging and improving the quality of software in nearly all development envi-
ronments, the realm of machine learning provides an especially interesting case
study of performing unit and integration tests. This is due to the fact that the
accuracy and durability of any stage si in a machine learning pipeline depends
heavily on the accuracy and robustness of all the previous stages s0 . . . si−1. In-
deed, if we find that our models return low AUC scores on new testing candidate
molecules, it is often difficult to say exactly in which phase of the pipeline the
algorithm goes awry since the output of every stage is dependent on the outputs
of previous stages. Unit testing, therefore, provides an efficient way of isolating
the source of errors in many situations. More than any other stage in the pipeline,
the stage that requires the most testing is the stage involving the utilization of
the DiSH algorithm in the molecular feature space. We will present a
short discussion of a testing scheme to ensure that DiSH is a reasonable choice to
use in the molecular feature space, before moving on to our experimental results
description.

40

5.3.1 Methodology

Subspace clustering provides the cornerstone for any insight we wish to obtain
about the key features with respect to a target molecule. It is, therefore, necessary
to verify that when applied to the molecular feature space, DiSH behaves with
reasonable accuracy in detecting any underlying fragment vector clusters. Before
testing DiSH with real molecular data, therefore, we first unit test its capabilities
by generating artificial data, feeding this data as input to DiSH, and observing
the results. The advantage of using artificial data is that we, the creators of the
data, have prior knowledge regarding the underlying distribution of vectors in the
artificial dataset. Moreover, we have some expectations about the real molecular
data that allows us to model our artificial data after the real data. Consequently,
it becomes substantially easier to evaluate the effectiveness of DiSH because we
can verify whether it detected the specific trends - in our case clusters - that we
ourselves implanted within the artificial dataset, and then extrapolate that these
trends will be detected also in the real data.

To reify this abstract discussion, we will now present details regarding the
aforementioned artificial data. In our application, the artificial data will closely
resemble real data; indeed, our artificial database will simply be, once more, a
database of d-dimensional vectors labeled by affiliation to an active or inactive
molecule; these vectors correspond to the fragment feature vectors. The key differ-
ence between our artificially generated database and our real molecular database
is in the distribution of the vectors: during our generation of these data points,
we ensure that the vectors form n clusters, where n is any natural number. On
the other hand, in real data, we are not given any guarantees that clusters actu-
ally exist - drawing a clear distinction between our artificial data and real data.
We generate these n clusters according to several parameters: ValueRange, In-
terClusterDistance, Density, NumClusterPoints, NumClusteredDimensions, and
TotalNumberDimensions.

We will briefly describe the parameters one by one:
ValueRange Determines the range of values that the cluster centroids can

take; if the V alueRange is a number V R, then we generate cluster centroids with
coordinates in the interval [0, V R].

InterClusterDistance Determines the degree of separability of the generated
clusters: if the InterClusterDistance is given by a number ICD, then the cluster
generation engine ensures that any two centroid coordinates differ by at least ICD
in any one dimension.

Density Determines the overall spread of the points in the cluster; one can
also imagine this parameter as a modified version of the radius of a cluster.
Omitting certain details, a higher input value for density will lead to clusters that
are more dispersed, whereas a lower input value for density will lead to clusters
that are more compact. The reader should already note here that the combination
of InterClusterDistance and Density will play a large part in determining the
overall shape of our clustering distribution.

NumClusterPoints Quite self-explanatory - simply denotes the number of
unique points in each generated cluster. The sole interesting connotation of this
parameter is that each artificial cluster will have the same number of points.
Although this may not be realistic, this keeps the cluster generation slightly
simpler.

41

NumClusteredDimensions and TotalNumberDimensions Since we are
generating subspace clusters, we are required to specify how many dimensions are
clustered, and how many are left unclustered. As a proxy for those two param-
eters, we take as input the number of clustered dimensions and the total num-
ber of dimensions, subsequently calculating the number of unclustered dimen-
sions as follows: NumUnclusteredDimensions = TotalNumberDimensions -
NumClusteredDimensions. In this manner, we obtain exact values pertaining
to the dimensionality of the generated subspace clusters. The reader should note
that for the purpose of simplicity, we keep these parameters constant across
artificially generated datasets.

Although the above discussion of the parameters inputted to the cluster gen-
eration module may seem slightly confusing to the reader, we stress that it is
simply a formal way to depict and describe what we intuitively imagine about
clusters (and via the dimensionality parameters, subspace clusters). Indeed, we
imagine clusters as collections of points in a close proximity of some centroids in
the Euclidean space, and moreover, we imagine any two clusters to be differen-
tiated by the distance between their centroids. The first idea is captured by the
Density parameter, and the second by the InterClusterDistance parameter. For
several combinations of values of the parameters above, we generate a clustering
dataset with five clusters; the principle, therefore, is that we generate different
datasets with different characteristics via varying combinations of parameters,
and subsequently observe how DiSH performs in response to the dynamic input.

The concrete consequence of these parameter combinations in the subdomain
of subspace clustering is that we may generate several clustering datasets, and
then run DiSH on each of these datasets one by one. After running DiSH multiple
times, we may then calculate multiple scores based on DiSH’s performance in
detecting the various clusters present in the datasets. This score is not to
be confused with the AUC Score mentioned in the previous section:
this score is one that we will devise for the sole purpose of measuring DISH’s
performance on our generated testing data.

The scoring of DiSH for some general artificially generated dataset D con-
taining clusters C1 . . . Cn will be done as follows. Assume that for this particular
dataset D, DiSH manages to detect clusters T1 . . . Tm, where m need not equal n.
Our goal is to generate a number which will unambiguously capture the level of ac-
curacy in which DiSH managed to find the embedded artificial clusters C1 . . . Cn.

We create this unambiguous score with a technique known as matching ; as
its name suggests, the technique revolves around trying to match each detected
cluster Ti with some generated cluster Cj. We refine the idea slightly with some
more formalisms below.

Definition. Cubic Intersection Two arbitrary subspace clusters C1 and C2

form a cubic intersection if and only if:
Condition 1 They are defined in the same dimensions.
Condition 2 Let Condition 1 hold; then for any arbitrary dimension i for

which C1 and C2 are both defined, let MaxC1i denote the maximum value of
coordinate pi for some point p ∈ C1, and let MinC1i denote the minimum value
of coordinate qi for some point q ∈ C1 . If we let MaxC2i and MinC2i be the
analogues for C2, then we must have that either MinC1i ≤MinC2i ≤MaxC1i or
MinC1i ≤MaxC2i ≤MaxC1i .

42

Returning back to our evaluation of DiSH, we start by first taking each cluster
Ti detected by DiSH, and filter the set of generated clusters C1 . . . Cn to include
only clusters which form a cubic intersection with Ti. Then from this filtered
list of clusters, we pick the cluster Cj whose centroid is closest to the centroid
of Ti, based on the Euclidean distance defined in the subspace of Ti with Cj,
and then match Ti with Cj. We then remove both Ti and Cj from consideration,
and continue looking for further matches. Note that a cluster Ti need not have
a match; for example, if no cluster Cj satisfies the conditions to form a cubic
intersection with Ti, then Ti will necessarily have no match. Therefore, quite
intuitively, the accuracy of the detected clusters T1 . . . Tm outputted by DiSH can
be measured by the amount of matches we manage to create with the generated
clusters.

We follow this intuition and enhance it with a formal score: we define the
score sD for dataset D as:

sD =
NumberOfMatches

|C1 . . . Cn|
(5.1)

It is trivial to see that 0 ≤ sD ≤ 1; and moreover, it is intuitively clear that
the closer sD is to 1, the better DiSH has performed on the dataset D. For
example, if sD is 0, it implies that the detected clusters returned by DiSH could
not be matched with any of the generated clusters, and subsequently, we can
infer that DiSH did not perform very well for the dataset D. As in any situation
involving complex data analysis, it is imperative that we circumvent any problems
caused by a particularly abnormal dataset. We would, therefore, like to apply this
scoring procedure for various artificially generated clustering datasets D1 . . . Dk,
created as mentioned before by various parameter combinations, and then analyze
the scores of the datasets in toto. Such a holistic procedure over many datasets
prevents us from being misled by any particularly high or low score for some
dataset Dj. Therefore, an integrated analysis will give us a realistic indication of
DiSH’s overall performance over many types of clustering data.

In order to obtain various datasets and their corresponding matching scores,
we generate clustering datasets by varying just 4 Parameters, while keeping the
rest of the parameters constant. We will then subsequently run DiSH on these
varied datasets and obtain a multitude of scores for various types of clustering
datum.

Varying of the 2 Input Parameters to Artificial Cluster Generation:
InterClusterDistance and Density. We vary the Inter-Cluster Distance and
Density parameters because of the relative magnitude of the ramifications that
varying these parameters have on the distribution of the clusters. For example,
changing the Density parameter from small to large will have huge effects on how
compact our generated clusters are, and by extension change DiSH’s behavior
when trying to detect these clusters. A similar inference can be made about
changes to the InterClusterDistance parameter. Changes to other parameters,
meanwhile, don’t intuitively portend any huge changes to DiSH’s behavior: for
example, changing the V alueRange parameter won’t imply a large change to
DiSH’ performance since our datum is normalized according to the range anyway.

Varying of the 2 Input Parameters to DiSH itself : ε and µ (also called
NumPoints, following the convention of clustering terminology). We would also

43

like to observe how the score changes when DiSH is faced with the same input
dataset, but different input parameter combinations of ε and µ. This will enable
us to understand how sensitive DiSH is to changes in the input parameters with
a lot more clarity and therefore prepare us for choosing appropriate parameters
when we move on to analyses with real molecular datasets.

In conclusion, we generate our various diversified clustering datasets by chang-
ing the InterClusterDistance and Density parameters, while keeping the rest
of the parameters constant. We then run DiSH on these datasets using various
combinations of values for ε and µ, thereby obtaining a set of scores for a wide
variety of possible scenarios.

5.3.2 Results

Now that we have understood the peculiarities of our testing platform, we proceed
on to a more concrete discussion regarding the results of evaluating DiSH using
our artificial data as input. A full, in-depth discussion of the experimental results
is available at the end of this paper in the Attachments section; in this section
we provide a succinct summary of these results.

We commence by presenting the following histogram showing an overview of
the performance of DiSH:

Figure 5.1: A histogram showcasing the distribution of scores accross clusterings
generated via different combinations of parameters. In total there were 256 differ-
ent combinations of parameters utilized in the parameter space grid search. Each
bucket in the histogram corresponds to a particular range of scores - e.g. the
bin 0 represents scores between 0 and 0.2, the bin 0.2 represents scores
between 0.2 and 0.4, and so on until we reach bin 1, which represents only
perfect scores of 1.

The statistical metadata corresponding to the distribution of the scores are

44

as follows: Mean Score: .5, Variance of the Scores: .19, Maximum Score:
1.00, and Minimum Score: 0.00. One can quickly comment that the contour of
the bar chart forms some type of inverse normal distribution; indeed, this imme-
diately gives us an indication that DiSH performs very well for some datasets, but
simultaneously very poorly for others. We can moreover glean, through our sta-
tistical metadata, that DiSH generally counterbalances all the perfect scores of 1
with the worst scores of 0; moreover, there are relatively few clusterings achieving
scores somewhere in between the two extremes. This information, along with heat
maps in the Attachments section, are highly valuable - they indicate that DiSH
is highly susceptible to the implicit input parameters of the dataset: so much
so, that a change in even one of our 4 chosen parameters InterClusterDistance,
Density, ε, and µ seems to be able to take DiSH’s resulting score from 0 to 1,
or vice versa. We have neglected to analyze one possibly important piece of sta-
tistical metadata - the variance. A variance of .19 implies a standard deviation
of about 0.44: these values are also quite telling and consistent with our bar
chart. We can see that the standard deviation is nearly half the range, which
means that many of the scores exhibit not even a modicum of conformity with
the mean. Indeed, this once again indicates a distribution resembling the inverse
normal distribution and sends us strong signals that the value of input parameters
is playing a large part in DiSH’s performance. Empirically, DiSH seems to be a
bipolar algorithm, switching between amazing and dismal performance, when ap-
plied to artificial datasets resembling those found in the molecular feature space.
The outcome of our quantitative analysis may seem rather unsurprising to the
reader - of course, the input parameters will change the behavior of DiSH and
the resulting score. What is more surprising is the fact that the change seems to
be so stark - we don’t obtain just a small variance in the score but rather scores
that are magnitudes better or worse due to a change in input parameters.

Having observed the varying performance of DiSH based on the choice of pa-
rameters, we strove to determine particular combinations of parameter values
that seem to produce very high scores or very low scores, so that we may better
prepare ourselves for understanding the variance in DiSH’s performance if it ap-
pears with real molecular data. This analysis was done, again, using heat maps
of different testing runs of DiSH using our artificial data generated by different
parameter combinations, and is presented in the Attachments section at the end
of this paper; here, we simply present the results of our analysis on a parameter
by parameter basis below:

InterClusterDistance: The highest scores occur when the ICD is close to
half of the V alueRange of the dataset - therefore not too big nor too small with
respect to the V alueRange interval.

Density: The highest scores occur when the Density parameter is small
compared to the overall value range - ideally less than 5% of V alueRange.

Epsilon: ε exhibits no general trends with respect to the score: both high
and low values of epsilon exhibit high scores - therefore it’s effect is simply too
dependent on other parameters to make a general conclusion.

µ (or NumPoints): Lower values of µ, with respect to the number of points
per cluster in our generated dataset, result in higher scores - ideally µ is no greater
than 30% of NumClusterPoints.

Final Conclusions About DiSH. We have done an in-depth analysis of

45

DiSH’s performance using many artificially generated clustering distributions in-
spired by the various implicit parameters in high dimensional subspace clustering
problems. Using a combination of histograms and heat maps, we have found
that even small variations in some of the implicit parameters can result in large
changes of the matching score, meaning that in a lot of cases we either achieve
very accurate scores or very inaccurate scores. We have also proceeded one step
further, and understood in which value ranges of certain highly important im-
plicit parameters DiSH performs optimally. Concluding that an intermediate
value for InterClusterDistance, a low value for Density, - both with respect
to the V alueRange - and a low value for µ with respect to NumClusterPoints
attain optimal scores, we now understand DiSH well enough to test our pipeline
on real molecular data.

5.4 Evaluation of DiSH With Real Data

5.4.1 The Evaluation Method

We evaluate DiSH on several classes of targets. Each class contains targets,
whose respective actives and inactives will be used as input to our pipeline, that
achieved an AUC score in a particular range when identical data were fed as in-
puts to other benchmark virtual screening algorithms. These algorithms include
Atom Pairs (AP), ECFP2, FCFP2, MACCS, and Topological Torsion (TT) fin-
gerprints. In this manner, we can evaluate DiSH’s performance against several
other benchmark algorithms in the realm of virtual screening.

Concretely, in our evaluation dataset, we have 4 different classes - .80-.85,
.85-.90, .90-.95, and .98-.10. Each class contains targets that exhibited AUC
Scores in the range corresponding to the class name in prior experiments with
the aforementioned other virtual screening algorithms.

We showcase the results of this testing using the visualization method of a
heat map. The rows of the heat map represent the different targets of each class,
and the columns represent the different training/test splits of the input actives
and inactives. In our evaluation datasets, we use 10 training/test splits of the
active and inactive molecules Split1 . . . Split10. If we subsequently have 5 target
macromolecules t1 . . . t5, then the cell entry Heatmap1,5 in the heat map will cor-
respond to the AUC score of the model obtained from the function
ChooseBestModel(FFM ′

C1
, Split5.testMols) - the ChooseBestModel function

was presented in the prior section - where FFMC1 corresponds to the fully prepro-
cessed Fragment Feature Matrix of the training molecules, Split5.trainingMols,
with respect to the target t1.

Moreover, the scores across various splits can then be averaged, leading to a
final aggregate score for the target; this minimizes the chance that any outlier
AUC scores obtained from particularly good or bad splits skew our view of the
pipeline, and gives us a more holistic review of our performance.

5.4.2 Results

We present the heat map of results below, in Figure 5.2

46

Figure 5.2: A heat map showcasing the experimental results of DiSH with real
macromolecular targets.

We can immediately observe that, in general, higher scores are obtained as
we go from the .80-.85 class to the .98-1.0 class - which is to be expected, as
the classes .90-.95 and .98-1.0 have exhibited higher scores with other bench-
mark algorithms in previous experiments as well. Overall, DiSH seems to perform
slightly worse than other benchmark algorithms when tested with the above tar-
gets: this can be seen when comparing the average scores, depicted in the final
column, with the name of the class that the target belongs to.

Although the results of applying DiSH and our pipeline in the domain of vir-
tual screening were seemingly unimpressive when compared to other benchmark
algorithms, there are still some interesting analyses left to be done as to deter-
mine the cause of this discrepancy and suggest some positive future steps that
can be enacted to rectify the difference in score.

5.4.3 Evaluation using Bayesian Centroids

In order to uncover the source of the systematic difference in score between our
pipeline and other benchmark algorithms with respect to our testing targets,

47

we investigate each step of the pipeline separately and try and find errors in
individual steps that affect the overall results; once again, the technique of unit
testing will be used to reveal possible pitfalls in our approach.

Concretely, there are three separate steps in our pipeline that could lead to
the discrepancy in the score: the preprocessing step, the cluster finding step, and
the candidate scoring and ranking step; each step, therefore, needs to be tested
to ensure that it is doing its job properly.

1. The Preprocessing Step The testing of the preprocessing step is made
quite simple by utilizing the results of another research endeavor - namely the
utilization of the Bayesian Method in virtual screening, mentioned in the earlier
chapter Related Work And Our Approach. The researchers who conducted exper-
iments using the Bayesian method used the same preprocessed data as we did in
our research, to quite successful results, as shown in their publication. [27] This is
conclusive proof that our preprocessing methods cannot be the cause of the lower
scores, due to the fact that another method used the same preprocessed data as
us to achieve quite successful results. This implies that the insight needed for
virtual screening is very much there in the preprocessed data, but the subsequent
cluster finding and candidate scoring steps are not able to find it as easily as we’d
hoped.

2. The Cluster Finding Step As the reader will recall from earlier on in
this chapter, we already tested the cluster finding step by evaluating DiSH with
artificial data. Recalling the results of those tests, the reader may remember that
DiSH was highly susceptible to the input parameters both implicitly present in the
dataset, such as the InterClusterDistance and Density, and explicitly chosen by
us, such as ε and µ. Indeed, it was so susceptible that a change in one parameter
seemed to cause DiSH to go from finding all of the clusters we implanted to
finding none. Furthermore, we found through empirical observation that certain
value ranges of the implicit and explicit input parameters were conducive to
DiSH finding more or fewer clusters. Therefore, the lower AUC scores with the
real molecular data could be due to the values of certain implicit parameters
- such as too high of an InterClusterDistance between clusters, or too high a
Density within clusters; these values would subsequently lead to DiSH not finding
the molecular fragment clusters properly and consequently lead to a lower AUC
Score. The question arises as to using other subspace clustering algorithms to
circumvent DiSH’s pitfalls. We hypothesized that DiSH, due to its theoretical
properties discussed earlier, was the most appropriate algorithm in the molecular
feature space, and were limited due to time constraints in testing other algorithms.
A brief discussion of the usage of other algorithms is available in the next chapter
Conclusion and Future Work.

3. The Candidate Scoring and Ranking Step Assuming that we obtain
proper molecular fragment clusters that correspond to real modes of activity, it
is necessary to test whether we are able to properly utilize these clusters to score
and rank new candidate molecules. After all, if this is done in an improper man-
ner, our AUC score would be low no matter how accurate the previous stages of
the pipeline are. In order to test this step of the pipeline, we utilize once again
the results of the Bayesian method. For each feature, the Bayesian method splits
up the value range into several intervals or buckets ; for each of these intervals, the
Bayesian method calculates a conditional probability: the probability that a cer-

48

tain fragment vector is active conditioned on the fact that the vector has a value
for that respective feature in that respective bucket.[27] One may then choose the
interval for each feature that has the highest probability, and consider this the
feature ideal interval for that particular feature. Choosing 3 of the intervals in
separate features with the highest such probability, one can create a key feature
interval model with the Bayesian method; moreover, by taking the midpoints of
these intervals, we can create a subspace cluster centroid corresponding to the
top 3 key features, as determined by the Bayesian method.

Since we have a cluster centroid, we may subsequently test the Bayesian
method in the same manner as we did for DiSH: we pass the Bayesian cen-
troid as input to our candidate ranking and scoring algorithm,
RankCandidatesBasedOnActivity(Split.testMols, BayesianCentroid,min).
We may then use this ranking to obtain our AUC score, just as we did for DiSH.1

The results of this analysis, for just one training/test split, are shown below, in
Figure 5.3.

Figure 5.3: A heat map showcasing the experimental results of evaluating the
Bayesian centroid with one split.

Surprisingly, the Bayesian centroid model generally performs worse than the
cluster model of DiSH when evaluated with our scoring method, even though the
Bayesian algorithm itself achieved very high AUC scores in other evaluations by
other researchers using a different scoring method.2 This is a very significant

1We set the scoring method to min here just for illustrative purposes; when testing the
Bayesian centroid, we found practically no difference between using min or mean as the scoring
method.

2We state this with the caveat that the other scoring method uses all the dimensions, and
not just 3 as we have done here. We, however, performed informal scoring of the Bayesian

49

indication that the candidate scoring and ranking step may be one of the key
reasons behind our pipeline’s relatively lower AUC scores.

To further test this hypothesis, we even evaluated the similarity between
DiSH’s optimal cluster centroid and the Bayesian centroid; this similarity can
be evaluated by simply calculating the Euclidean distance between the two cen-
troids, after projecting the centroids onto their common dimensions - i.e. the
dimensions that they are both defined in. We first present the number of com-
mon dimensions between the DiSH centroid and Bayesian centroid when trained
over various targets and splits in Figure 5.4.

Figure 5.4: A heat map showcasing the common dimensionality between the DiSH
centroid and the Bayesian centroid.

Recalling that the Bayesian centroid is only defined over 3 dimensions, we
notice that, for the majority of targets and splits, the number of common dimen-
sions is indeed 3 - or the maximum possible. Therefore from a pure dimensionality
standpoint, the DiSH centroid and the Bayesian centroid seem to exhibit quite a

centroids with even more dimensions, and found that scores still do not improve beyond the
showcased results in the heat map in Figure 5.3.

50

bit of similarity. Now we present the results of the Euclidean distance calculations
between the two centroids in Figure 5.5.

Figure 5.5: A heat map showcasing the Euclidean distance between the DiSH
centroid and the Bayesian centroid over their common dimensions. We didn’t
color all the entries in the heat map due to the fact that it is hard to compare
Euclidean distance metrics defined over different numbers of dimensions; we did,
however, color a special subset of scores green if they satisfy the condition that
the score is below .20 and the number of common dimensions is the maximum 3.

The above heat map isn’t colored as it was previously since it is too difficult to
compare Euclidean distance metrics defined over different numbers of dimensions.
A special subset of the entries, however, those that contain a score that is below
.20 and the number of common dimensions corresponding to that respective entry
is the maximum 3, were colored green. The green color is an indication that these
entries indicate a very visible similarity between the Bayesian centroid and the
DiSH centroid. Indeed, keeping in mind that the ranges for all the features are
normalized to the interval [0, 1], a Euclidean distance defined over 3 dimensions
that are below .20 is remarkably low. Even more striking is that quite a few entries
exhibit this property and are colored green, indicating to us that the Bayesian

51

centroid and the DiSH centroid are quite closely related in several cases.

5.4.4 Positive Results and the Future of Subspace Clus-
tering in Virtual Screening

All in all, this line of logic leads to the same question: if the Bayesian centroids
also perform poorly when combined with our scoring method, and these centroids
are in several cases almost the same as the DiSH centroids, is there something
fundamentally wrong with the way we rank and score molecules? There is no way
to know for sure, unless we can engineer a ranking method that performs better;
we can, however, definitely hypothesize that this step is the most likely reason as
to why our pipeline performs worse than other benchmark algorithms. This leaves
a tantalizing question for future researchers: what method can we construct to
use the DiSH centroids to rank the molecular database so that the AUC score
is improved? Whatever the answer is, the DiSH centroids’ similarities to the
Bayesian centroids indicate that there is indeed a future ahead for DiSH and
subspace clustering in the space of virtual screening - as long as we understand
how to use them properly.

5.5 Time Complexity

As with any computational procedure, it is necessary to analyze the time com-
plexity, both theoretically and practically, of our algorithmic pipeline. According
to the analysis done by the authors of the algorithm, DiSH scales slightly su-
perlinearly with respect to the number of vectors in the dataset as well as with
respect to the dimensionality of the aforementioned vectors.[20] Additionally, our
data preprocessing procedures have a time complexity of O(m2n), where m is the
total number of constituent fragments of the active and inactive molecules, and n
is the dimensionality of the dataset - or the number of physiochemical features.
Finally, the procedure for ranking the validation set of molecules and choosing
the best cluster model has time complexity O(n(m + nlogn)) - where m is the
total number of fragments of the validation set of molecules, and n is the total
number of molecules in the input training set.

From a practical standpoint, one run of the algorithmic pipeline - including
the grid testing of the parameter space for the best model - with a set of real
active and inactive molecules as input data takes on average 16 hours on an x86
64-bit computer with 8 GB of RAM.

52

6. Conclusion and Future Work

Having concluded with the experimental results section, we reflect on the results
of our novel machine learning approach in the field of virtual screening, and
envision some future work that can be done to further advance the state of the
art.

As we concluded towards the end of our Experimental Results section previ-
ously, although the AUC Scores of the pipeline are not too impressive, it need not
mean that subspace clustering is not applicable in the molecular feature space.
Indeed, the close proximity of the cluster centroids discovered by DiSH and the
Bayesian centroids returned by the Naive Bayes method in the key subspaces
indicates that the underlying model is captured, but is not able to be found -
possibly due to the improper candidate scoring method. A possible point
of future research could subsequently be in re-engineering the method in which
we score a candidate molecule, based on further research on the DiSH cluster
centroids and the fragment feature vectors of the candidate.

Looking past possible short-term improvements to subspace clustering in vir-
tual screening, several long-term, more ambitious, research endeavors could also
be undertaken to improve the accuracy of this machine learning technique in
cheminformatics. A logical next step is to test the other modern subspace clus-
tering algorithms mentioned in the Subspace Clustering Approach chapter; indeed,
the centroid of the DiSH key feature model, although sharing many similarities
with the Bayesian key feature model in 3 dimensions, also contains several other
noisy features, or dimensions, that could be the cause of the lower AUC Scores.
We did not test other subspace clustering algorithms in our research solely due
to time constraints, but the pipeline detailed in this paper can be expanded to
be utilized with any subspace clustering algorithm and is not exclusive to DiSH.
The ELKI data mining framework itself - mentioned in the beginning of the Ex-
perimental Results chapter - has implementations of several subspace clustering
algorithms that can be used as the basis for further research in the area.

An even more creative approach is also possible: the reader may recall from
the prior Subspace Clustering Approach chapter the clustering distance function
abstraction used in the construction of the reachability plot in certain clustering
algorithms, such as DiSH. As we mentioned earlier, this distance function is an
incredibly powerful abstraction that is the foundation for the construction of the
reachability plot; as a result, it can have a profound effect on the type of clusters
we identify.

The thought arises, then, as to the possibility of customizing this distance
function for virtual screening purposes. Concretely, taking the example of DiSH’s
subspace distance between two fragment vectors p and q, one need not only con-
sider the number of 0s in the logical and of the subspace preference vectors
wq∧wp as the subspace distance, but rather may also consider the intrinsic prop-
erties of the fragment vectors - such as whether they belong to active or inactive
molecules. To reify this discussion, assume that there also exists a third point
r. We have that both q and r are candidate points to be added to the existing
reachability plot containing p, SubspaceDist(p, q) ≤ SubspaceDist(p, r) (where
SubspaceDist(P1, P2) is the subspace distance used in the DiSH algorithm), and

53

both p and r are fragments that are contained in several active molecules whilst
q is contained solely in inactive molecules. The traditional DiSH algorithm, ev-
erything else held constant, would prefer to add q rather than r to the existing
reachability plot due to its closer proximity to p; a DiSH algorithm optimized for
virtual screening would, however, add r rather than q due to its active nature. A
more activity-centric reachability plot would subsequently lead to the detection
of more relevant activity-centric clusters, a better key feature model, a more ac-
curate candidate ranking, and finally higher AUC scores. Such re-engineering is
just one example of several simple changes that could be made to existing sub-
space clustering algorithms to make them more relevant in the molecular feature
space.

The usage of machine learning and subspace clustering in a remarkable array
of problems in various fields will only increase in the future as more research
time is dedicated these topics and the computational power of modern computers
continues to follow Moore’s law. Virtual screening and the identification of key
features and their ideal intervals will continue to be prominent research topics
in the domain of cheminformatics. In this paper, we’ve built the foundation for
subspace clustering to be amongst the key methods used to solve these com-
plex and multifarious problems, and we envision a bright future ahead for it in
cheminformatics.

54

Bibliography

[1] Edited by Alexandre Varnek and Alex Tropsha. Chemoinformatics Ap-
proaches to Virtual Screening. Royal Society of Chemistry, 2008. ISBN 978-
1-84755-887-9.

[2] Gordon Moore. Gordon Moore’s Law. Intel Online Website. 2016.

[3] Jun Xu and Arnold Hagler. Chemoinformatics and Drug Discovery. Discovery
Partners International, Inc., 2002. ISSN 1420-3049.

[4] Tiejun Cheng, Qingliang Li, Zhigang Zhou, Yanli Wang, and Stephen H.
Bryant. Structure-Based Virtual Screening for Drug Discovery: a Problem-
Centric Review. AAPS J. 2012 Mar; 14(1): 133–141. DOI: 10.1208/s12248-
012-9322-0.

[5] Alfonso T. Garćıa-Sosa, Mare Oja, Csaba Hetény, and Uko Maran DrugLogit:
Logistic Discrimination between Drugs and Nondrugs Including Disease-
Specificity by Assigning Probabilities Based on Molecular Properties. J. Chem.
Inf. Model., 2012, 52 (8), pp 2165–2180, American Chemical Society. DOI:
10.1021/ci200587h.

[6] David Hoksza, Daniel Svozil, and Martin Svicho. Activity Driven Exploration
of Chemical Space with Morphing. IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), 2015. ISBN 978-1-4673-6799-8.

[7] Wermuth CG et al. Glossary of terms used in medicinal chemistry (IUPAC
Recommendations 1998). Pure and Applied Chemistry, 1998. 70. 5. 1129–1143.
10.1351/pac199870051129.

[8] Kier LB. Molecular Orbital Calculation of Preferred Conformations of Acetyl-
choline, Muscarine, and Muscarone.Mol Pharmacol 1967;3(5):487-494.

[9] Everything Explained. Pharmacophore.
http://everything.explained.today/Pharmacophore. 2016.

[10] Yap CW. PaDEL-Descriptor: An open source software to calculate molec-
ular descriptors and fingerprints. J Comput Chem. 2011 May;32(7):1466-74.
doi: 10.1002/jcc.21707. Epub 2010 Dec 17.

[11] Aakash Ravi Molecular Feature Engineering- Online Open Source Code on
GitHub. https://github.com/aakashrav/MolecularFeatureEngineering. 2016.

[12] Marina Soley-Bori. Dealing with missing data: Key assumptions and methods
for applied analysis. Boston University School of Public Health, Department
of Health Policy and Management, 2013.

[13] Richard Ernest Bellman; Rand Corporation. Dynamic programming. Prince-
ton University Press, 1957. ISBN 978-0-691-07951-6., Republished: Richard
Ernest Bellman. Dynamic Programming. Courier Dover Publications, 2003.
ISBN 978-0-486-42809-3.

55

[14] Karl Pearson. On Lines and Planes of Closest Fit to Systems
of Points in Space. Philosophical Magazine 2 (11): 559–572.
doi:10.1080/14786440109462720.

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96). AAAI Press. pp. 226–231. ISBN 1-
57735-004-9. CiteSeerX: 10.1.1.71.1980

[16] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander. OP-
TICS: Ordering Points To Identify the Clustering Structure. ACM SIGMOD
International Conference on Management of Data. ACM Press. pp. 49–60.

[17] Elke Achtert, Christian Bohm, and Peer Kröger. DeLiClu: Boosting Ro-
bustness, Completeness, Usability, and Efficiency of Hierarchical Clustering
by a Closest Pair Ranking. Proc. 10th Pacific-Asian Conf. on Advances in
Knowledge Discovery and Data Mining (PAKDD’06), Singapore, 2006.

[18] Elke Achtert, Christian Böhm, Peer Kröger, Arthur Zimek. Mining Hierar-
chies of Correlation Clusters. Proc. 18th Int. Conf. on Scientific and Statistical
Database Management (SSDBM’06), Vienna, Austria, 2006.

[19] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Ina Müller-
Gorman, Arthur Zimek. Finding Hierarchies of Subspace Clusters. Proc. 10th
Europ. Conf. on Principles and Practice of Knowledge Discovery in Databases
(PKDD), Berlin, Germany, 2006.

[20] Elke Achtert, Christian Bohm, Hans-Peter Kriegel, Peer Kröger, Ina Müller-
Gorman, Arthur Zimek. Detection and Visualization of Subspace Cluster Hier-
archies. Proc. 12th Int. Conf. on Database Systems for Advanced Applications
(DASFAA ’07), Bangkok, Thailand, 2007.

[21] Karin Kailing, Hans-Peter Kriegel, Peer Kröger. Density-Connected Subspace
Clustering for High-Dimensional Data. Proc. 4th SIAM Int. Conf. on Data
Mining, pp. 246-257, Lake Buena Vista, FL, 2004.

[22] Rokach, Lior, and Oded Maimon. ”Clustering methods.” Data mining and
knowledge discovery handbook. Springer US, 2005. 321-352.

[23] Trupti M. Kodinariya and Dr. Prashant R. Makwana. Review On Deter-
mining Number of Cluster in K-Means Clustering. International Journal of
Advance Research in Computer Science and Management Studies Volume 1,
Issue 6, November 2013.

[24] Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press, 2015.

[25] Ivan Solt, Anna Tomin, Krisztian Niesz, ChemAxon Ltd. New Approaches
to Virtual Screening. Drug Discovery and Development Magazine, December
2013.

56

[26] Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He
S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. PubChem Substance
and Compound databases. Nucleic Acids Res. 2016 Jan 4; 44(D1):D1202-13.
Epub 2015 Sep 22 [PubMed PMID: 26400175] doi: 10.1093/nar/gkv951

[27] David Hoksza, Petr Škoda. Using Bayesian Modeling on Molecular Frag-
ments Features for Virtual Screening. IEEE International Conference on Com-
putational Intelligence in Bioinformatics and Computational Biology (CIBCB
2016), Chiang Mai, Thailand, IEEE, 2016.

[28] ELKI: Environment for Developing KDD-Applications Supported by Index-
Structures; Online Open Source Code. https://elki-project.github.io.

[29] MetaCentrum. MetaCentrum - Virtual Organization, Online Web Page.
https://metavo.metacentrum.cz/en/. 2016.

[30] Daniel Szisz. Online Image. Chemical Hashed Fingerprint, Chemaxon.
http://www.chemaxon.com/jchem/doc/user. 2014.

[31] Ondrej Micka. Covariance Neighborhoods. 2016.

[32] Alexey Grigorev. ROC Analysis — MLWiki. http://mlwiki.org/index.php.
2016.

[33] Database Systems Group, LMU Munich. HiSC (Hierarchical Subspace Clus-
tering).

57

List of Figures

1.1 A visualization of the virtual screening process, wherein compounds
in a chemical database are first preprocessed and then subsequently
filtered using numerous possible techniques to determine viable
candidates for HTS. (Source: Drug Discovery and Development
Magazine [25]) . 4

2.1 A single molecule is represented by a bit vector constructed by con-
sidering the different constituent intramolecular fragments within
the molecule. Note that each of these topological fragments are
also considered molecules themselves. [30] 5

2.2 The difference between subspace clusters and regular clusters can
be seen in the above image. Notice that the two regular clusters
C1 and C2 are clustered along all the axes, whereas the subspace
cluster SC1 is clustered only along the red and green axes, with
the values of the points in the blue axis fairly dispersed. One
can imagine these 3 axes as different physiochemical features in
the molecular feature space, and the points as vectors representing
the values of the different features for each topological fragment of
various molecules. Therefore, if SC1 has a sufficiently high con-
centration of topological fragments found in active molecules, we
can hypothesize that the value ranges of SC1 in the features cor-
responding to the red and green axes are a strong indication of
activity, whereas the feature corresponding to the blue axis has a
marginal effect on activity. In other words, the red and green axes
represent key features, while the blue axis does not. 10

3.1 A visual depiction of the creation of the singular FFM contain-
ing fragment vectors of both of the active molecules and inac-
tive molecules. We are initially given two separate matrices that
contain either active fragment feature vectors (a1 . . . an) or anal-
ogously inactive fragment feature vectors (i1 . . . im) as rows; the
two matrices are then preprocessed and imputed separately via the
procedures introduced in the subsequent paragraphs. The result-
ing pre-processed matrices have columns that represent features
f ′1 . . . f

′
j ⊆ f1 . . . fk that are deemed the most significant features

during our processing of the matrices. Finally, the two matrices
are combined or concatenated to form the final FFM for both the
active and inactive fragments. 14

58

3.2 A visual representation of the correlation graph. Observe that
there are 2 correlation neighborhoods containing features which are
strongly correlated with each other - N1 and N2 - and one correla-
tion neighborhood N3 containing a solitary feature. The gray edges
in between the neighborhoods represent the low correlation coeffi-
cients between two feature vertices in two different neighborhoods
(e.g. F1 and F7), whereas the black edges in between feature ver-
tices in the same neighborhoods (e.g. F1 and F2) represent large
correlation coefficients above our correlation threshold ε. The fea-
ture corresponding to the vertex contained in N3 - F6 - exhibits a
correlation coefficient below the threshold with respect to all other
features, except itself (we don’t consider loop edges in the correla-
tion graph). Therefore, the neighborhood N3 is colored red, as F6
is fairly independent of all the other features, and will, therefore,
be added to the output feature set as it is not redundant. On the
other hand, for each of the other neighborhoods, we will choose a
representative vertex whose corresponding feature will be included
in the output feature set. 22

4.1 The above image gives a visual representation of an ε-sized range
query done with two different center points: A and F , with ε = 2.
One can quickly see that one ε-sized ball, labelled C1, is quite
dense, while the other is quite sparse. If we assume that µ is set
to 3, then C1 would be considered a cluster while the other ball
would be discarded as noise. We can quickly see the effect that ε
and µ have on the notions of density and by extension what balls
constitute an actual cluster in the d-dimensional Euclidean space. 26

4.2 A visual depiction of the reachability plot utilized by OPTICS
elucidates the different clustering distributions within the dataset.
As shown by the image, the valleys in the reachability plot - or
the regions of low or decreasing reachability distance - correspond
to the different clusters in the dataset. On the other hand, the
regions of increasing or high reachability distance correspond to
the low density zones that are encountered in between clusters. . 28

59

4.3 The figure above shows two potential subspace clusters projected
into the R2 Euclidean space; one - let us call it SAP - is axis-parallel,
while the other - SNAP - is not. All the vectors contained in SAP
have x-axis coordinates that fall within some ideal interval but y-
axis coordinates that are fairly randomly distributed, leading to a
subspace cluster that is axis-parallel to the y-axis. SNAP , on the
other hand, contains vectors whose coordinates fall within some
larger interval in both the x-axis and the y-axis, but are more
dispersed than the vectors in the first cluster in both axes. If
we imagine the two axes as representing different physiochemical
features, then we could veraciously claim that there is a clear trend
within SAP with respect to the feature corresponding to the x-axis.
On the other hand, such a claim can not be made for SNAP for
neither the x nor the y axis since it is not axis-parallel in either
axis. Therefore, SNAP doesn’t exhibit rigid trends in any particular
dimension, and is of minimal use in our applications. We conclude,
therefore, that for our purposes in the molecular feature space,
searching for axis-parallel subspace clusters suffices. 29

4.4 Hierarchies of subspace clusters. We have two axis-parallel
lines that form subspace clusters in the 1-D space of the ambient
3-D space - one clustered along the x-axis and parallel to the y-axis,
and one clustered along the y-axis and parallel to the x-axis. These
two axis parallel subspace clusters, however, are in fact just subsets
of a higher dimensional cluster - the axis parallel hyperplane, or a
2-D subspace cluster. [33] . 30

5.1 A histogram showcasing the distribution of scores accross cluster-
ings generated via different combinations of parameters. In total
there were 256 different combinations of parameters utilized in the
parameter space grid search. Each bucket in the histogram corre-
sponds to a particular range of scores - e.g. the bin 0 represents
scores between 0 and 0.2, the bin 0.2 represents scores
between 0.2 and 0.4, and so on until we reach bin 1, which
represents only perfect scores of 1. 44

5.2 A heat map showcasing the experimental results of DiSH with real
macromolecular targets. 47

5.3 A heat map showcasing the experimental results of evaluating the
Bayesian centroid with one split. 49

5.4 A heat map showcasing the common dimensionality between the
DiSH centroid and the Bayesian centroid. 50

5.5 A heat map showcasing the Euclidean distance between the DiSH
centroid and the Bayesian centroid over their common dimensions.
We didn’t color all the entries in the heat map due to the fact
that it is hard to compare Euclidean distance metrics defined over
different numbers of dimensions; we did, however, color a special
subset of scores green if they satisfy the condition that the score is
below .20 and the number of common dimensions is the maximum
3. 51

60

6.1 A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters
InterClusterDistance and Density fixed, and varying the other pa-
rameters. 62

6.2 A simple visualization of why, intuitively, we expect that InterClusterDistance ≥
2 ∗Density. 63

6.3 A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters
Density and NumPoints - or µ - fixed, and varying the other pa-
rameters. 64

6.4 A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters
InterClusterDistance and Epsilon fixed, and varying the other pa-
rameters. 65

6.5 A heat map showcasing DiSH’s average score on artificial data
observed when keeping different value combinations of parameters
InterClusterDistance and µ fixed, and varying the other parameters. 65

6.6 A heat map showcasing DiSH’s average score on artificial data
observed when keeping different value combinations of parameters
Density and Epsilon fixed, and varying the other parameters. . . 66

6.7 A heat map showcasing DiSH’s average score on artificial data
observed when keeping different value combinations of parameters
NumPoints and Epsilon fixed, and varying the other parameters. 67

61

Attachments

Heatmap Analysis
In order to better visualize DiSH’s performance in our artificial datasets, we

use various heat map visualizations, as shown below:

Figure 6.1: A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters InterClusterDis-
tance and Density fixed, and varying the other parameters.

The heat map above is an intuitive way to understand how DiSH reacts to
different parameter combinations; in the example above, we see different val-
ues for the InterClusterDistance parameter along the x-axis and different val-
ues for the Density parameter along the y-axis. The specific coloring on the
grid at point (x, y) represents the average score of datasets generated with
InterClusterDistance fixed at x, Density fixed at y, while other parameters are
varied.1

Quick Note. Observe that the InterClusterDistance parameter is always
set to be at least twice as big as the Density parameter. This is done purposefully,
as it is reasonable to expect that any datasets that have verifiable clusters satisfy
the property that the InterClusterDistance between every 2 cluster centroids is
greater than 2 ∗Density.

1This averaging of the scores is the reason why the scale does not go from the [0, 1] interval,
but rather a more constrained interval.

62

Figure 6.2: A simple visualization of why, intuitively, we expect that
InterClusterDistance ≥ 2 ∗Density.

Similarly, other parameters’ value ranges used in the generation of the clus-
tering datasets are set with some intuitive reasoning in mind, and we won’t bore
the reader with details regarding all the arguments as to why these ranges were
chosen over others.

In order to expedite the reader’s progress, we present below an abridged ver-
sion of a full-blown analysis of the various heat maps. Afterward, we briefly dis-
cuss the ramifications of our analysis not only when choosing appropriate input
parameters for DiSH when analyzing real molecular data, but also when debug-
ging the aforementioned analysis to see why it is not performing as we expect it
to.

Most Important Trends: Heatmap 1
InterClusterDistance and Density. (Figure 6.1)
It seems that, in general, the accuracy of DiSH increases as the ICD param-

eter attains lower values. Moreover, when combined simultaneously with higher
values forDensity, we achieve the highest scores. Indeed, this trend seems slightly
counterintuitive: we expect that as we set higher values for ICD and lower values
for Density, we would achieve better scores as the clusters have a larger space
between them in the feature space and are therefore easier to detect.

63

Figure 6.3: A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters Density and
NumPoints - or µ - fixed, and varying the other parameters.

Most Important Trends: Heatmap 2
Density and NumPoints. (Figure 6.3)
Unlike Heatmap 1, the trends visible in Heatmap 2 are largely more intuitive:

we see that the score depends inversely on both the Density and NumPoints
parameters. It is easy to see why this is the case: as NumPoints, an input
parameter to DiSH itself, decreases, the criterion for expanding a cluster becomes
less strict. Combined simultaneously with a low value for Density - which enables
the points in the cluster to be packed more compactly and therefore more easily
detected by a range query - we achieve a perfect combination of parameters that
enables high rates of detection by DiSH.

64

Figure 6.4: A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters InterClusterDis-
tance and Epsilon fixed, and varying the other parameters.

Most Important Trends: Heatmap 3
InterClusterDistance and Epsilon. (Figure 6.4)
The trends in this heat map are slightly more enigmatic compared to the

previous heat maps. It seems that the only visible trend is that a higher value
for InterClusterDistance produces less accurate results. This trend is, however,
contradictory with the findings from our analysis of Heatmap 1, where a lower
value for the InterClusterDistance parameter resulted in more accurate scores.

Figure 6.5: A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters InterClusterDis-
tance and µ fixed, and varying the other parameters.

Most Important Trends: Heatmap 4
ICD and NumPoints. (Figure 6.5)

65

The analysis of Heatmap 4 is intriguing: as the InterClusterDistance pa-
rameter is set lower, we achieve higher accuracies. This is in direct contradiction
to Heatmap 3, where a higher InterClusterDistance enabled better results, but
consistent with Heatmap 1, where the opposite occurred. We will resolve this
discrepancy in our empirical analysis in the consolidated heat map analysis a
few paragraphs below. The NumPoints parameter, on the other hand, is quite
consistent with what we saw in Heatmap 2 - the lower the value for NumPoints,
the higher the scores we achieve.

Figure 6.6: A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters Density and Ep-
silon fixed, and varying the other parameters.

Most Important Trends: Heatmap 5
Density and Epsilon. (Figure 6.6)
Heatmap 5 is quite consistent with Heatmap 2 in the sense that a lower value

for Density seems to be conducive to higher scores. Moreover, unlike Heatmap
3, we observe a discernable trend for Epsilon: lower values for Epsilon seem to
result in higher scores, in general.

66

Figure 6.7: A heat map showcasing DiSH’s average score on artificial data ob-
served when keeping different value combinations of parameters NumPoints and
Epsilon fixed, and varying the other parameters.

Most Important Trends: Heatmap 6
ε and NumPoints (or µ). (6.7)
Unfortunately, Heatmap 6 doesn’t bring with it any notable advances to our

understanding of the heat maps. Indeed, Heatmap 6 displays absolutely no trend
from the perspective of ε; in the case of NumPoints, Heatmap 6 seems to directly
contradict the observations made in Heatmap 4 that a lower value of NumPoints
leads to more accurate cluster detection. We, therefore, can’t glean any substan-
tial information from observing Heatmap 6 in isolation; we need to consolidate
our analyses of different heat maps together in order to arrive at meaningful
conclusions.

Consolidated Heatmap Analysis
We have gained a respectable amount of insight from observing each heat map

in isolation, but the analysis is not complete: indeed, different heat maps seem to
connote contradictory information or, in the case of some, no information at all.
In order to reach justifiable conclusions on a macro level, we need to perform the
vital step of consolidating the conclusions from the individual heat maps. To this
end, it makes sense to proceed parameter by parameter, describing which ranges
of parameter values are the most conducive to a fruitful run of DiSH based on
the different heat maps:

Consolidated Analysis of InterClusterDistance Exhibited in Heatmaps
1,3, and 4

Although our individual analyses of the heat maps resulted in contradictory
observations as to how the value of ICD affects the results of DiSH, we may re-
solve the conflicts by observing the magnitude of the scores achieved by DiSH for
different values for InterClusterDistance across the heat maps. We will show-
case the meaning of the prior statement by example. Although Heatmaps 1 and 4
both seem to indicate that a lower InterClusterDistance results in more accurate
results, we can make a few reasonable observations. Heatmap 4, although in gen-
eral returning higher accuracies for low values for InterClusterDistance, seems

67

to perform optimally for intermediate-sized values of InterClusterDistance: in-
deed, we achieve darker shades of red - indicating higher scores - at points where
the InterClusterDistance value is not located in either extremes. This sentiment
seems to be echoed in Heatmap 3, where, with the sole exception of one patch of
very dark red, the higher scores seem to occur when InterClusterDistance takes
on values that are not too big nor too small. Heatmap 1, unfortunately, doesn’t
exhibit any such trends; however, the average scores achieved by lower values
of InterClusterDistance in Heatmap 1 are in fact lower in magnitude than the
scores attained by intermediate values in Heatmaps 3 and 4 (approximately .6 vs.
.64 and .8, respectively). We should, therefore, value trends apparent in Heatmap
1 less than we do with trends in Heatmaps 3 and 4.

Conclusion: The highest scores occur when the InterClusterDistance
is not too big nor too small with respect to the overall value range.

Consolidated Analysis of Density Exhibited in Heatmaps 1,2, and 5
Similarly as with the InterClusterDistance parameter, the heat maps for the

Density parameters seem to convey contradictory beliefs: Heatmap 1 indicates
that higher values of Density result in higher scores, while the inverse is true for
heat maps 2 and 5. However, observing the scores of the various heat maps, as we
did with the InterClusterDistance, a clear winner emerges from the dichotomous
trends; the scores exhibited in Heatmap 1 for high values of Density are around
.6, whereas the scores exhibited in heat maps 2 and 5 for lower values of Density
are .9 and .7, approximately.

Conclusion: The highest scores occur when the Density parameter
is small compared to the overall value range.

Consolidated Analysis of ε Exhibited in Heatmaps 3,5, and 6
Even when considering in toto heat maps 3,5, and 6, it is hard to argue about

a reasonable value for ε, simply because no apparent trends were visible in heat
maps 6 and 3. We, therefore, don’t have enough evidence to make conjectures
about values of ε that are conducive to high scores, even when considering the
partial trends visible in heat map 5.

Conclusion: ε exhibits no general trends; its effect is simply too
dependent on other parameters.

Consolidated Analysis of NumPoints Exhibited in Heatmaps 2,4, and 6
Last but not least, our individual analysis of the heat maps produced a con-

tradiction about the NumPoints parameter and therefore we need to extract
a collated insight about the effects of different value ranges of NumPoints. In
heat maps 2 and 4, we achieve quite intuitively higher scores for lower values
of NumPoints, whereas the opposite occurs in Heatmap 6. When once again
using the magnitude of the scores as a tie breaker, we see that both heat maps 2
and 6 achieve extremely accurate scores - more than .9 - for low and high values
of NumPoints, respectively. Heatmap 4, on the other hand, achieves a slightly
less but still very respectable accuracy of around .7 for lower values of µ. We,
therefore, have two witnesses versus one, and consequently conclude that lower
values of µ, or NumPoints, do indeed result in higher scores.

Conclusion: Lower values of NumPoints, with respect to the average
number of points per cluster in our distribution, result in higher scores.

68

	Motivation: Drug Discovery and Virtual Screening
	Related Work and Our Approach
	A Dynamic Method
	Machine Learning and Virtual Screening
	The Bayesian Approach
	Our Approach: Subspace Clustering
	The Molecular Fragment Feature Space
	Subspace Clustering in the Molecular Feature Space
	Pure and Diverse Subspace Clusters

	Cleaning and Combining Large Molecular Datasets
	The Fragment-Feature Matrix
	Constant Feature Removal
	Imputation of the Fragment Feature Matrix
	Imputation Step 1: Imputing FFMA
	Imputation Step 2: Imputing FFMI using already imputed FFMA'

	Dimensionality reduction in the molecular feature space
	General dimensionality reduction
	Correlation neighborhoods

	Normalization

	The Subspace Clustering Approach
	Introduction
	The density of a neighborhood of a point

	Basic Clustering Algorithms
	Subspace clustering algorithms
	HiSC
	DiSH

	Filtering of the found subspace clusters
	The Key Feature Model
	Choosing the Best Cluster with Validation
	Parameter Tuning via Validation

	Experimental Results
	Implementation
	External Tools Used
	Evaluation of DiSH with Artificial Data
	Methodology
	Results

	Evaluation of DiSH With Real Data
	The Evaluation Method
	Results
	Evaluation using Bayesian Centroids
	Positive Results and the Future of Subspace Clustering in Virtual Screening

	Time Complexity

	Conclusion and Future Work
	Bibliography
	List of Figures
	Attachments

