
MASTER THESIS

Michal Wirth

Advanced HDR image viewer

Department of Software and Computer Science Education

Supervisor of the master thesis: doc. Ing. Jaroslav Křivánek, Ph.D.

Study programme: Informatics

Study branch: Software Systems

Prague 2017

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of

this work as a school work pursuant to Section 60 subsection 1 of the Copyright

Act.

In date signature of the author

i

Title: Advanced HDR image viewer

Author: Michal Wirth

Department: Department of Software and Computer Science Education

Supervisor: doc. Ing. Jaroslav Křivánek, Ph.D., Department of Software and

Computer Science Education

Abstract: The primary purpose of this thesis is to determine criteria for a high-

dynamic range (HDR) image viewer accented by computer graphics artists and

other users who work with HDR images produced by physically-based renderers

on a daily basis. Also an overview of already existing solutions is present. Based

on both of them, a new HDR viewer is designed and implemented giving an

emphasis on its memory and performance efficiency.

For these purposes two alternative image data layouts, Array-of-Structures (AoS)

and Structure-of-Arrays (SoA), are discussed and their impact is measured on the

speed of an algorithm for changing image saturation which has been selected as

a representative part of whole tone mapping process of the viewer. It has turned

out that the latter type of layout allows the algorithm to run about 3 times faster

or more under the conditions of a defined testing environment.

The thesis has two main contributions. First it gives the above users a tool which

could help them when working with HDR images. Second it indicates that there

may be a potential of significant speed-up of implementations of tone mapping

algorithms.

Keywords: HDR, EXR, image viewer, tone mapping

ii

I would like to thank my supervisor, Jaroslav Křivánek, for all the useful com-

ments, remarks and engagement he has kindly provided me. I am also grateful

to Michal Prokš for all the help and technical support.

I dedicate this thesis to my parents and to my Hanička because of their endless

patience with me. Thank you.

iii

Contents

Introduction 3

1 Preliminaries 6

1.1 Dynamic range . 6

1.2 High-dynamic range . 7

1.3 OpenEXR format . 8

1.4 Alternative formats . 10

1.4.1 Radiance . 11

1.4.2 Portable Floatmap . 11

1.4.3 Tag Image File Format . 11

2 Related work 13

2.1 HDRView . 13

2.2 qt4Image . 14

2.3 exrdisplay . 15

2.4 HDRSee . 15

2.5 LizardQ Viewer . 16

2.6 Moonlight HDR Viewer . 17

2.7 FastPictureViewer Professional 18

2.8 IrfanView . 19

2.9 XnView . 19

2.10 Photosphere . 20

2.11 bracket . 21

2.12 Panorado . 23

3 Problem analysis 24

3.1 Data producers . 24

3.2 Target audience . 26

3.2.1 Common users . 26

3.2.2 Power users . 29

3.2.3 Render farms . 30

4 Viewer implementation 31

4.1 Custom functionality . 31

4.2 Corona Renderer means . 32

4.3 Graphical framework . 35

1

4.4 Image representation . 36

4.5 Image processing . 40

5 Evaluation 46

5.1 Results . 47

Conclusion 49

Bibliography 51

List of Abbreviations 53

2

Introduction

For centuries, painters and photographers have been trying to realistically capture

and convey real-world scenes that they see with their own eyes. This is in fact

hard to do. Human eye has an extraordinary capability to perceive wide range of

light intensities (high contrast), and their ability to adapt pushes their limits even

further [1]. On the contrary, capabilities of even today’s imaging technologies

are limited in this sense. Paints work with reflectance hence any painting or

printed photograph can hardly display full range of intensities of the original

scene. Progress in the field of digital camera sensors, made in the last two decades,

is remarkable, but still they are far from the capabilities of the human eyes in

terms of the dynamic range they can capture. Also various computer displays and

television screens suffer from the same problem, but from the opposite point of

view. This all means it highly depends on skills and experience of the artist, how

well he or she can utilize the narrow imaging possibilities to present the original,

high-dynamic range (HDR) reality. For some scenes it can be easy, for other it

can be much harder.

Let us imagine for a while how the situation would look like in an ideal world.

With a sensor having the same capabilities as the human eye, and with a cor-

responding display allowing to light up each single pixel independently of the

others, using a wide range of light intensities, it would allow us to capture any

scene and present it in an ”uncompressed” form to other people. In such world

there would be no problem for example to take a single photograph from inside

of a cathedral and see all the details of bright stained glass windows and simulta-

neously details of dark corners. Furthermore, between capturing and displaying

such photograph it would be possible to do some post-processing which would

not be affected by any contrast compression common in standard imaging.

In reality this is something where the current development in those fields tends

to go, at least partially. Generally maximum contrast of both sensors and displays

is being extended allowing to capture and display more visual information in one

shot. Such technologies are also becoming reasonably cheap so it can be expected

that they will soon spread into common use1. Furthermore, taking a photograph

is not the only way to acquire HDR images. They can be of course created

artificially, i.e. rendered directly on a computer by the means of physically-based

1For example, see http://www.lg.com/us/experience-tvs/hdr/dolby-vision

or http://clairpixel.co.kr/eng/main/hdr.html.

3

http://www.lg.com/us/experience-tvs/hdr/dolby-vision
http://clairpixel.co.kr/eng/main/hdr.html

light transport simulation. Therefore, it is important to concern oneself with the

viewing and processing of such images. This is what the thesis addresses.

Goals

A first goal of this thesis is to explore the current situation around publicly

available software primarily oriented towards viewing HDR images. The software

doesn’t have to be necessarily freeware or open source. Applications that have to

be purchased shall be also considered. The main goal is then to learn from possible

flaws of the presented HDR viewers and based on them design and develop a new

one. It shall not be just an ordinary viewer and nothing more. It shall also

introduce certain post-processing qualities in the sense of high-dynamic range

imaging (HDRI) that computer graphics (CG) artists could appreciate within

their workflow. Similarly, it would be desirable to draw up and implement some

functionality supporting distributed rendering (DR) which is an important CG

sector. A cooperation with the company Render Legion, producer of Corona

Renderer, a world-class rendering software, shall help to achieve these particular

goals.

Another goal is purely technical. Operations with HDR images often consumes

considerable amount of memory. This thesis will try to answer a question whether

it may pay off, from both memory and performance points of view, to arrange

HDR image data in a way generally known as a Structure-of-Arrays (SoA) or in

a way that is usually easier to implement, i.e. as an Array-of-Structures (AoS).

Thesis outline

The thesis itself is organized into several chapters as follows.

The first chapter provides the reader with some important definitions and

concepts that relate to the thesis. We introduce the concepts of dynamic range of

an image, high-dynamic range (HDR) images, the OpenEXR format for storing

them as well as some other alternative formats.

In the second chapter we give an overview of the state of the art in HDR

viewers that are currently publicly available. Both free and commercial software

is included.

Next there is the third chapter with problem analysis discussing why a new

HDR viewer would be beneficial, for whom it should be designed, and what

features it shall offer.

4

The fourth chapter describes the implementation process of the viewer. We

discuss what had to be implemented, what could be acquired elsewhere, what

choices had to be made. It also contains a discussion of a suitable HDR image

representation and its processing.

The fifth chapter provides a performance evaluation of different approaches

to implementing a representative algorithm for changing image saturation. The

approaches use two alternative HDR image data arrangements described in the

previous chapter. The approaches are measured using a defined methodology in

two different environments. Measured results are interpreted.

The conclusion presents an overview of goals that has been achieved in this

thesis and some directions of the viewer’s future development.

5

1. Preliminaries

This chapter introduces definitions of some basic terms and concepts that relate

to this thesis. It helps to better understand what HDR images are and how we

can store them into files. This information is essential to be able to describe the

viewer.

1.1 Dynamic range

To talk about HDR we need to first understand what dynamic range actually

is. Bloch in his monograph defines it as a ratio between a smallest change and

a largest change in brigthness within an image [2]. This is why we sometimes

talk about a contrast ratio instead of a dynamic range. For example, an image

with dynamic range 1000:1 means that the highest contrast contained within the

image is thousand times higher than the smallest one there. As Bloch explicitly

points out, size of dynamic range always depends on two factors – not only on

the maximum contrast, but also on the smallest contrast [2]. Hence for example

if a manufacturer of some camera sensor would like to increase its dynamic range,

it should be sufficient to make the sensor capable of differentiating finer changes

in intensity of incoming light.

Such a scale for measuring dynamic range is linear. The ratio refers to a

difference in light intensity [2]. By doubling the intensity, the ratio would also

double. This is not the only way to measure dynamic range. Probably a more

practical approach is to measure the range by the number of exposure values.

Exposure value (EV) is a photographic scale referring to the amount of light

coming through an aperture per unit of time and hitting the film or sensor [2].

It depends on the size of the aperture and on the shutter speed. It is well stan-

dardized. For example, value of 0 EV corresponds to a camera setting with an

exposure time of 1 second and using f/1.0 relative aperture size. The f/1.0 de-

notes an f-stop. The number is a ratio between lens focal length and used aperture

diameter. Therefore the value of 0 EV also corresponds to 2 seconds and f/1.4

because the same amount of light hits the film coming through half-area aperture

but for twice as long time. Increasing EV by 1 means half of exposure, either

using shorter time or smaller aperture diameter (larger f-stop). It is a camera

setting suitable for brighter scenes.

Now it is clear that the scale for measuring dynamic range in terms of EV is

logarithmic. Each increase by 1 means twice as much light in the scene (to get

6

the same amount of exposure). So conversion between dynamic range measured

as contrast ratio C and as E in terms of EV is clear: E = log2(C), or C = 2E

respectively. A dynamic range of 10000:1 corresponds to roughly 13.3 EV. For

example, a television screen with contrast ratio 5000:1 differs from a screen with

contrast 8000:1 by less than 1 EV.

1.2 High-dynamic range

Now we know what the dynamic range is. Generally HDR images are images that

are capable of representing/storing images whose dynamic range is high. Regular

images as we understand them today use 24 bits per pixel (ignoring an alpha

for now), that is 8 bits for each color channel. We call them ”true-color”. Such

images can represent only low-dynamic range (LDR) information because they

can in the end store only 256 brightness levels. At most this is a dynamic range of

only 8 EV. As a side note, human vision without considering the ability of an eye

to further adapt has dynamic range about 14 EV [2]. This is a huge difference.

So today’s understanding of the term HDR is that it is everything above those 8

EV.

Let us think about how can we represent HDR images. At a first glance using

more bits per color channel may help. For example, extending to 32-bit wide color

channels would allow to store HDR images having a dynamic range of up to 32

EV. But it has some drawbacks. Let us inspect them on a situation when taking

a photograph with a camera, see Figure 1.1. Generally, the response of a camera

sensor is linear to the intensity of incoming light. But the dynamic range of that

intensity measured in terms of EV is not linear, as we already know. This would

result into an unequal distribution of EV within all available pixel values. In our

case we can represent 232 different values (within a single pixel color channel)

but most of them would be occupied by the brightest EVs that we only need for

highlights, which are usually least frequent. On the other hand, shadows having

only small EV are very common in photographs but they would have to ”squeeze”

into only a small range of available values. We would lose precision there. This

is exactly the opposite of what we want. It could be solved by gamma correction

[3, 4], as it is being done for regular images where gamma corrected pixel values

are always ”baked” into image files. By this approach the values would be used

more reasonably. Furthermore, because the gamma correction curve is similar to

a response curve of human vision, the pixel values would be actually linear with

regard to perceived brightness, which is desirable.

7

EV

pixel
value gamma correction

linea
r sen

sor r
espo

nse

Figure 1.1: Gamma correction curve

But there is still a problem. We have just moved the shortcomings of regular

images elsewhere. HDR images represented by this approach, i.e. using only wider

integer pixel values, still have some minimum and maximum limit like regular

images. This is a problem if such HDR image would be edited. Let us consider

an operation of darkening the image. We would probably lose information while

mapping pixel values for example from range 0-1000 (still considering a single

pixel color channel) into a narrower range 0-100. This is because we cannot

represent anything between neighbouring values – there is nothing between 24

and 25 etc. in our representation. This is something we would like to avoid in

HDRI.

A solution for these problems is obvious. If we used a floating-point number

representation [5] for pixel values instead of integers, we would not lose informa-

tion there. Furthermore, this representation of numbers has a higher precision

for lower values than for higher values and so we will not need to ”bake” in the

gamma correction either. HDR images could just store raw values which is also

convenient for editing purposes. The gamma correction necessary to match hu-

man perception could be just postponed to a displaying phase. To sum it up,

any seriously meant HDRI requires HDR images using floating-point numbers for

storing pixel values of each color channel.

1.3 OpenEXR format

OpenEXR, or just EXR for short, is currently probably the most popular format

for storing HDR images into files. It has most advanced features [6], it is well

8

documented, and its author, company Industrial Light & Magic (ILM)1, provides

a good open-source library written in C++ for it2. The library can read HDR

images stored in this format and write them back [7]. Originally the format has

been developed for the needs of the movie industry, but today it is being used

extensively also in other fields. Any reasonable HDR image viewer shall support

it. The format divides all image data in two parts: channels and attributes.

HDR images in EXR can contain an arbitrary number and combination of

image channels [6]. It purely depends on a particular software how they would

be interpreted. For this purpose each channel is uniquely identified by its name

which can be any non-empty string. No special rules apply for them but at least

R, G, and B channels should be present within every image. They are expected

to hold red, green, and blue pixel values, as their names suggest. In rendering

community such triplets of channels (quadruplets, if an alpha channel is being

considered too) are referred as render elements. In this special case with the R,

G, and B the render element is referred to as a ”beauty” element.

Each channel can have a different format, i.e. type of values it stores [6]. They

could be either 32-bit unsigned integers, or 16-bit or 32-bit floating-point numbers

(denoted familiarly as halfs and floats). The R, G, and B channels usually store

values of the latter type, as it has been explained in the previous section.

All channels of a single HDR image in EXR have virtually same dimensions

(width and height). But each of them can have different vertical and horizontal

sampling rate, although with some restrictions [6]. This could be used to store

sparse data for which storing them in every single pixel would be a pointless

overhead. HDR images using color spaces where the luminance component of

each pixel is separated from its chroma can serve as an example where the dif-

ferent sampling can pay off. It is because the chroma component is being often

undersampled in such color spaces.

As for the attributes in EXR, they can be also of arbitrary names and various

types. The same concept as for channel names is valid also for attribute names.

Again it depends on a software how it would interpret them. But there are some

attributes which every HDR image in EXR must have [6]. At minimum these are

namely:

• displayWindow, dataWindow

The EXR format defines an image as an axis-parallel rectangle in pixel

1See http://www.openexr.com/.
2Available at https://github.com/openexr or http://openexr.com/downloads.html.

9

http://www.openexr.com/
https://github.com/openexr
http://openexr.com/downloads.html

space [6]. The displayWindow attribute specifies this rectangle through

pixel coordinates of its top-left and bottom-right inner corner. The format

is designed in a way that the image does not have to necessarily contain all

the data for the whole displayWindow. Or other way round it may contain

data beyond it. For this purpose there is also the dataWindow attribute

which similarly specifies a rectangle where the image data are available.

The data are stored using the channels that have been described above.

• pixelAspectRatio

It tells with which aspect ratio is the image, specified by the displayWindow

attribute, expected to be actually viewed on a display device. The value of

this attribute is usually 1.0, meaning to display the image as it is.

• compression

The image data could be either stored in an uncompressed form, or us-

ing one of several lossless or lossy compression methods. For all available

methods and their descriptions see the official technical introduction [6].

Fortunately the provided library can transparently read and write pixel

values irrespective of the used compression method.

• lineOrder

Tells whether image scan lines are in file stored upwardly or downwardly.

The EXR format also supports tiled images. The library provides a uniform

interface to these variants.

• screenWindowWidth, screenWindowCenter

Both attributes describe a perspective projection (camera obscura setting)

that has produced the image [6]. This is something that may not be known.

In such cases default unit width and center at origin shall be used.

In EXR anybody is allowed to introduce new attributes for new purposes.

The format supports plenty of types for that: integers, floating-point numbers,

strings, both 2D and 3D vectors, rectangles, matrices, etc.

1.4 Alternative formats

The EXR format is very versatile, sophisticated, robust, and can be used in many

scenarios. This is why it is so popular today. But it is not the only one format

for storing HDR images.

10

1.4.1 Radiance

For example, there is also the Radiance format, usually abbreviated as HDR,

RGBE, or PIC. It is an older format invented by Greg Ward [8]. He has come up

with it for his software called Radiance. This software has actually introduced

physically-based rendering to the world. This was really revolutionary in its time.

The format uses a nice trick to encode floating-point pixel values in a space-saving

manner [2]. Each color channel of a pixel uses only 8 bits to store its mantissa. In

another 8 bits there is an exponent shared by all three channels. This is why it is

being referred as RGBE. This system offers an enormous dynamic range of over

76 orders of magnitude which is about 253 EV [8]. This may sound like a good

thing but it is actually a drawback. There is no real usage for such a high range

and one can say that this is a literally wasting of space (most of exponent bits

are always zeros) at the expense of accuracy which is not so high [2]. The EXR

format is much better in this sense. Because of the wasting, the format offers

Run-length Encoding (RLE) compression. It is not surprising that it is usually

very effective in this case.

1.4.2 Portable Floatmap

Another way how HDR images can be stored is the Portable Floatmap (PFM)

format. It is very simple, like other formats from the ”portable” family – Portable

Pixmap (PPM), Portable Graymap (PGM), etc. It shares the same concept. A

file containing some HDR image starts with a simple header specifying mainly di-

mensions of the image. After that follows a series of 32-bit floating-point number

triplets written in a binary mode. Each triplet forms a single pixel with values of

its red, green, and blue channel. That is all. It is very easy to write a code that

can read or write such HDR images. This is why it is popular despite the fact

that HDR images stored in this format usually occupy a lot of space.

1.4.3 Tag Image File Format

Probably anything can be stored in the Tag Image File Format (TIFF) and HDR

images are not an exception. It could be described as a wrapper or container for

images. It supports many color spaces, compression methods, and bit depths.

Internally all the data are being labeled with ”tags”. This is how applications

could know what to do with them [2]. It is a very versatile format. But this

also makes it hard for software developers to add support for it. In practice this

results into a lot of incompatibilities and there is no guarantee that an image

11

saved into TIFF in one application would be able to open in another.

Actually there are more than one way how HDR images could be stored in

TIFF files. One of them could be a similar ”dumping” approach like in PFM.

This is usually referred as FP-TIFF, TIFF32, or TIFF Float [2]. But it is not

widely used. Slightly more known are HDR images stored in the so called LogLuv

TIFF. Again, this is a format that has been designed by Ward where he has

attempted to solve the issues of the RGBE format and to establish a new industry

standard. The second goal has been never achieved. As he states [8] there

are three variants of LogLuv TIFF. They basically differ in the number of bits

dedicated to individual pixel components. The format itself is significantly based

on features of human vision. It operates in CIE-Luv color space where any

given value change shall uniformly result into the same perceptual difference [9].

The format works as follows. It separates luminance and chroma components,

logarithmically encodes the luminance and quantizes the chroma using terms like

a ”just noticable difference” [8, 2].

All the above formats for storing HDR images are probably the most widespread

ones. But they are not the only ones. More extensive format overview can be

found for example in monographs by Reinhard et al. [3], or by Bloch [2].

12

2. Related work

This chapter contains an overview of twelve computer programs that can be

considered primarily as HDR image viewers. Each of them is briefly characterized

– i.e. on which platforms it can run, what features and functionalities it can offer,

what advantages or disadvantages it has, whether it is free or must be purchased.

The purpose of the overview is to provide a rough idea of how the situation on

the ”market” of HDR viewers currently looks like.

2.1 HDRView

HDRView is one of the famous programs from the research lab of Paul Debevec

et al. It is a truly pioneering tool in the HDRI area. Although it is deprecated

by now and has been abandoned by its authors years ago, it is still working even

under the newest version of Windows. Unfortunately the project’s official website

together with all documentation and help are no longer available. But it is still

possible to retrieve the viewer as a portable executable elsewhere. This is because

its last version 1.2 has been released as a freeware for non-commercial use.

The viewer allows to open HDR images stored in RGBE or PFM. Unfortu-

nately the most important EXR format is not supported. The Program can also

write the opened HDR image back to a file but only the RGBE format can be used

for that. In addition, current view of the HDR image with possibly compensated

exposure can be saved as a regular image in the Windows Bitmap (BMP) format.

Exposure compensation can be increased or decreased by single unit increments.

The program provides only few other functions. It can perform 90 degree

clockwise rotation, flip the image vertically or horizontally or display the stored

pixel values. The view itself can be zoomed in or out at fixed steps. That is all.

Authors compensate the lack of other HDRI-related operations through a

sister tool named HDRShop1. Old version 1.0 used to be offered as a freeware

for non-commercial use. This is not available anymore and HDRShop in newer

versions has to be purchased. One way or another, it is more an HDR editor than

a viewer and therefore it isn’t covered in more detail within this review.

1See http://www.hdrshop.com/.

13

http://www.hdrshop.com/

2.2 qt4Image

Edgar Velázquez-Armendáriz, a former Ph.D. student at Cornell University, has

developed and still keeps maintaining an open-source HDR viewer named qt4image.

It is multi-platform and supports all three major operating systems, i.e. Win-

dows, OS X and Linux. Nevertheless, the author provides only a Windows binary

at the official website2.

A nice feature of this viewer is its support of all mainstream HDR formats. It

can read HDR images in the EXR, RGBE or PFM formats and also write them

back in any of them. Therefore, the viewer can be used also as a file format

converter. In addition, the current view could be always saved as a regular

image in variety of formats, namely in the TIFF, BMP, PPM, Portable Network

Graphics (PNG), or Joint Photographic Experts Group (JPEG) format.

Like in other viewers the view can be zoomed in or out at fixed steps. Another

possibility is to zoom the view to fit current window size. Unfortunately, this can

be done only as a one-shot operation and the program does not update zoom

accordingly while resizing the window. No full-screen mode is available. The

program offers quite a few functions in contrast of others. Exposure can be

increased or decreased interactively by any EV. The same thing goes for gamma

correction. All these are smooth and fast even for high-resolution HDR images,

at least on the Windows platform.

Opened HDR image can be tone mapped by a tone mapping operator, specifi-

cally the global variant of the photographic operator published by Reinhard et al.

[10]. Other tone mapping operators are not provided. The program can display

both the stored and the tone mapped pixel values.

Researchers and developers of rendering algorithms surely appreciate the avail-

able binary operations with HDR images, namely image sum or division, and

various image comparison operations (absolute difference, positive/negative dif-

ference, relative error, positive/negative relative error). A huge disadvantage is

the unfriendliness of the user interface. The user is forced to select HDR images

as operation operands in a file selection dialog over and over again. This can get

pretty annoying, especially when the images are located in different folders.

Another disadvantage is a generally insufficient documentation of the pro-

gram, e.g. it is unclear what some of the comparison operators listed above

exactly do from a mathematical point of view.

The viewer itself is unable to do any batch processing of HDR images. For

2See https://bitbucket.org/edgarv/hdritools.

14

https://bitbucket.org/edgarv/hdritools

this purpose the author provides different but related command-line interface

(CLI) tool named batchToneMapper. As its name suggests it allows to map

tones (including eventual exposure compensation and gamma correction steps)

in several HDR images at once. But the only available tone mapping operator is

the same as for the viewer.

2.3 exrdisplay

Author of the EXR format produces also its own library allowing to read and

write files in their format3. The library is written in C++, is multi-platform and

published as an open-source software.

An integral part of the library’s distribution is a modest HDR viewer known

as exrdisplay. It serves mainly as an example showing how the library can be

used. Hence, it does not support viewing HDR images in any other format than

EXR.

Its capabilities are also very limited. It is possible to compensate exposure of

the viewed HDR image by any positive or negative EV, to compress and clamp

its dynamic range through special high and low knee functions and finally in case

of need to defog the image, i.e. to compensate stray light which can sometimes

occur due an imperfection of the used recording device. The viewer can also show

the stored pixel values. Except for that, no other HDRI-related operations are

available. The biggest disadvantage is the viewer does not support any kind of

zooming. Viewing high-resolution HDR images is therefore very impractical.

2.4 HDRSee

The open-source program HDRSee, previously known as mhdrViewer, has been

developed by Romain Pacanowski et al. at the French Institute for Research in

Computer Science and Automation (INRIA) and at the University of Bordeaux.

It is a unique HDR viewer which should run again on the Windows, OS X, and

Linux platforms. It understands HDR images stored in the EXR and RGBE

format.

As it is mentioned on the project’s website4, the most interesting feature is the

viewer’s design. Operations are GPU-accelerated through OpenGL – especially

3See http://openexr.com/.
4See http://mhdrviewer.gforge.inria.fr/.

15

http://openexr.com/
http://mhdrviewer.gforge.inria.fr/

all provided tone mapping operators, which are implemented as fragment shaders.

Because of this they are fast and easily modifiable. Users can even implement

and add their own operators. They are written in popular OpenGL Shading Lan-

guage (GLSL) and compiled at run time as any other fragment shaders. For this

purpose the project’s website offers a useful tutorial and also a decent Application

Programming Interface (API) documentation which may come in handy.

By default, the viewer offers several tone mapping operators. First of all there

is a straightforward linear operator with a possibility to clamp dynamic range of

the viewed HDR image. It is also possible to use the common photographic

operator by Reinhard [11]. The viewer furthermore offers an operator by Drago

[12] and another by Ward [13].

Each of them has its own set of parameters that can be set approximately by

dynamic sliders or by entering an exact value on the keyboard. But the latter way

unfortunately does not work well. It is sometimes impossible to write a desired

value into the appropriate input box. In addition, not all the operators allow

to set e.g. exposure compensation or gamma correction, which is unfortunate.

They also provide different sets of information and statistics about the currently

loaded image. As a result, the whole program appears inconsistent from a global

perspective.

Another way to control the program is a CLI. Its syntax is not clear from the

provided help and almost any wrong input makes the program crash. Neverthe-

less, it is the only way to save any tone mapped HDR image as a regular image.

The PNG format is hard-coded for that.

The last feature worth mentioning is zooming. The viewer automatically

zooms the currently loaded image according to its window size. It also allows to

zoom in by clicking somewhere on the image. Sadly the quality of such zooming is

extremely poor because HDR images that can be zoomed sharply in other viewers

are blurred in HDRSee.

2.5 LizardQ Viewer

German company LizardQ GbR produces a simple freeware HDR viewer named

symptomatically LizardQ Viewer5 which is actually just a small part of their

product – professional panoramic HDR camera system. Therefore, all the viewer’s

features and capabilities follow this aspect.

5See https://www.lizardq.com/en/viewer/.

16

https://www.lizardq.com/en/viewer/

The viewer is being distributed as a standalone executable that suffers from

a surprisingly long startup, at least on the Windows platform. It should also run

under the OS X. Sadly, the only HDR format which the program understands is

an uncompressed variant of the RGBE format. RLE compressed variant is not

recognized and the program fails to open such HDR images. Files in the EXR

format cannot be opened at all.

Documentation and program help is minimal. E.g. the viewer provides a

special feature named ”projection mode”, but at first sight it is not clear what

it actually does. Through a process of trial and error one can find it changes the

way how the viewer interprets and displays the viewed image – whether it expects

that the image is stored in equirectangular (spherical) geometry or not. Similar

situation is with the only tone mapping operator that the viewer offers. There is

no information or at least a hint which of the known operators it could be.

Opened image can be viewed in a full-screen mode and zoomed in or out in a

discrete fashion. Zooming sometimes behaves a bit strangely and inconsistently,

mainly while adjusting the window size. The program also offers so called auto-

rotation feature which turns on automatic camera turn around while the view is

in the projection mode mentioned above.

Sometimes it may come in handy that the viewer allows to display only a

single selected RGB channel. Exposure compensation is standard; it can be in-

creased or decreased repetitively by half f-stop, i.e. in fact by half EV, increments.

Otherwise, no additional interesting HDRI-related operations are provided.

2.6 Moonlight HDR Viewer

This really simple HDR image viewer is being developed by Gregor Mückl as

a part of a much larger open-source project named Moonlight—3D, which is,

according to project’s website6, striving to be a modern modeling and animation

tool.

The viewer itself is written in Java and works both on the Windows and the

Linux platform as a standalone application without the need of any installation.

It should support reading HDR images in the EXR or the RGBE format, but

the latter one actually doesn’t seem to work at all – neither RLE compressed nor

uncompressed variant. Moreover, high-resolution HDR images are opened quite

slowly.

6See http://www.moonlight3d.eu/.

17

http://www.moonlight3d.eu/

Unfortunately, the program provides absolutely no functions or operations

except for viewing the HDR image with any but vague amount of exposure com-

pensation. The only other supported feature is zooming. You can zoom the view

in or out at some predefined steps but nothing more.

There is also no user manual and the viewer has no help. But this is really

not a big issue considering the lack of program capabilities.

2.7 FastPictureViewer Professional

This shareware image viewer for Windows is being actively developed by the Swiss

company Axel Rietschin Software Developments7. By default, it cannot view any

HDR images, but a special codec package from the same author can be purchased

to add such ability. A single license for a bundle of both costs 49.99 USD. After

installation of the codec package, the viewer is able to open HDR images in the

EXR and RGBE formats. Moreover, the package also integrates directly into

Windows Explorer and extends its thumbnailing capabilities to handle among

other both mentioned formats. In fact, only uncompressed variant of the latter

is well supported, although the official website claims the opposite. Still, the

integration is an interesting and useful feature.

The viewer focuses primarily on the needs of photographers, not on HDRI

and therefore it provides no HDRI-related operations except for calculating a

histogram of luminance or any RGB channel. No exposure compensation or tone

mapping operators are available. On the other hand standard viewing function-

alities are at a higher level. E.g. zooming can be done in multiple ways according

to the current window size, provided full-screen mode is capable of comfortable

single-click magnification which may come in handy. Although some filesystem

operations are currently possible, it is still not a full-fledged image organizer. A

thumbnail mode will be added within the upcoming version 2.0 of the program.

The whole viewer design is smooth but its user interface is slightly non-

standard. Nevertheless, it could be effectively controlled by a great amount of

keyboard shortcuts and mouse gestures, so this could be an advantage after all.

The official website offers a lot of tutorials and introductory videos on this topic.

7See http://www.fastpictureviewer.com/.

18

http://www.fastpictureviewer.com/

2.8 IrfanView

IrfanView, named after its author Irfan Skiljan, is a world-famous freeware image

viewer for Windows with a wide user base8. By default, it already supports a

huge number of graphics formats. A few others can be added via the official

plug-in package. Among them are EXR and RGBE. The truth is that only the

first one really works. HDR images in the RGBE format are not recognized and

the viewer fails to open them.

Unfortunately the viewer handles HDR images in a naive way. Each one is

immediately tone mapped right after its loading, which is in fact very slow in

comparison to other HDR viewers, and any further operations are done as with

any other regular image. This implies that any result made by the program can be

saved only in a regular format. Several common ones are supported; e.g. JPEG,

BMP, PNG, or Graphics Interchange Format (GIF).

As for operations, the viewer can adjust brightness, contrast, saturation, or

color balance of the opened image. It is also possible to perform gamma correc-

tion, decrease color depth, convert the image to grayscale or negative, replace

colors, swap color channels, sharpen or blur the image, and apply median filter

to it. The image can be rotated left or right or by a custom angle, flipped hor-

izontally or vertically, resized, and cropped automatically or manually. Several

artistic effects are available, for example a red-eye reduction tool. But as men-

tioned above, none of these operations are done on the original HDR data. The

viewer does not even offer such a basic feature like exposure compensation.

Almost all above operations can be made also in a batch for several images at

once. Like for other features, IrfanView provides a decent user manual for that.

The image itself can be viewed at full-screen and can be zoomed in or out or

fitted into the viewer’s window in many different ways. It is possible to view only

a single selected RGB channel of the image as well. Exact values at some pixel

can be displayed but only the tone mapped ones. The same goes for luminance

or any RGB channel histogram.

2.9 XnView

A long-term rival image viewer to IrfanView is program XnView originally de-

veloped by Pierre-Emmanuel Gougelet, nowadays maintained by his company

8See http://www.irfanview.com/.

19

http://www.irfanview.com/

XnSoft9. As an image viewer it provides roughly the same functionality and a

similar set of capabilities. Hence, it does not need such a detailed description.

One of the differences is that unlike IrfanView it is also a powerful image

organizer. Various filesystem operations are available for that. Moreover, it

is multi-platform and should run on Windows, OS X and Linux. Distribution

conditions are same, i.e. XnView is released as a freeware for non-commercial

use.

From all HDR images only those stored in EXR can be opened. But again,

an additional official plug-in has to be installed. Unfortunately this does not add

any HDRI-related operations and therefore XnView suffers from the same flaw as

IrfanView; HDR images are immediately tone mapped and eventual operations

are done as with any other regular image. Furthermore, result of the tone mapping

step seems to be unnaturally underexposed and because the viewer does not offer

any way to compensate exposure, overall experience of viewing HDR images is

feeble.

2.10 Photosphere

Photosphere, created by Gregory Ward’s Anyhere Software, is not only an HDR

viewer but also an image browsing and cataloging tool10. It runs exclusively on

the OS X platform and is provided for free. The program understands a variety

of HDR formats, namely it can read and write HDR images in the EXR, RGBE,

LogLuv TIFF or the JPEG-HDR format. Images in the Float TIFF format can

be read too, but not written.

The program provides two ways to organize images. First it is the classic

concept, i.e. using ordinary filesystem operations like renaming or moving. Here

any performed image operations has to be manually saved to affect original files.

The second way is to create special ”catalogs” that are able to reference images

across multiple directories. Single image can be involved even in several catalogs

at once. This is possible because any changes made to some particular image

do not actually alter the image itself but are stored within the catalog and are

automatically and transparently applied while viewing the image. This aspect

may not be obvious at first sight. Also, because Photosphere is unfortunately

missing a user manual or help of any kind.

9See http://www.xnview.com/.
10See http://www.anyhere.com/.

20

http://www.xnview.com/
http://www.anyhere.com/

Images could be browsed either in a thumbnail view or in a single image

view. Each of them has its own window. Thumbnails for the first one are being

generated on demand and cached with respect to a defined maximum of total

cache size. The latter one allows switching among multiple images previously

selected in the thumbnail window or display them automatically one by one as a

slide show, perhaps even in a full-screen mode. The latter window also offers a

special synchronized mode when the switching keeps various settings like current

scroll position, zoom level etc. Ways of zooming are standard; the program allows

to zoom in or out at fixed levels or fit the viewed image into the window.

Regarding HDRI-related operations, Photosphere offers several of them. It

can do 90 or 180 degree rotations and flip images vertically or horizontally. These

could be actually done even with multiple images at once. The program can also

crop images, perform red-eye reduction, calculate luminance sum, calculate his-

togram of luminance or any RGB channel, display images in false colors accord-

ing to their local luminance. Several overlapping HDR images can be stitched

together into a single panorama. On the contrary, multiple regular images just

with different amounts of exposure, i.e. the outcome of a technique generally

referred as ”bracketing”, can be fused together and so create a new HDR image

(image aligning, ghost and lens flare removal phases can be included).

The program also offers plenty of options to compensate exposure. It can

increase or decrease EV by about 1/3 unit increments, turn on automatic exposure

based on average luminance of some selected rectangle area or the same thing for

a whole luminance histogram. Resulting HDR image can be saved at any time

as a regular image in the JPEG or TIFF format.

As for user experience, the program uses several outdated graphical user in-

terface (GUI) elements and hence it doesn’t fit flawlessly into today’s appearance

of the OS X platform. It is also relatively unstable and seems to crash randomly

while performing miscellaneous activities.

2.11 bracket

An alternative to Photosphere is the freeware program bracket created by Ahmet

Oğuz Akyüz11. Unlike Photosphere, bracket should also run on Windows and

Linux. Supported HDR formats are similar; bracket can read and write HDR

images in the EXR, RGBE or the LogLuv TIFF format.

11See http://www.ceng.metu.edu.tr/~akyuz/bracket/bracket.html.

21

http://www.ceng.metu.edu.tr/~akyuz/bracket/bracket.html

General concepts of both programs are similar too. Bracket is also a strong

image management tool but images are being organized only using filesystem

operations. No cataloging capabilities, like in Photosphere are offered. Its GUI

is also a bit atypical and one can consider it outdated because it lacks a modern

native look, but that is not much of a problem.

Like Photosphere, it can increase or decrease exposure of the viewed HDR

image in a discrete fashion, make a 90 degree rotation, flip the image horizontally

or vertically, crop the image or calculate a luminance histogram or any RGB

channel histogram. In addition, it can display some other image information

and statistics, e.g. the image’s dynamic range. It can also show the stored

pixel values or their transformation into the CIE-xyY color space, i.e. where the

Y part measures the relative luminance. The image can be resized via several

commonly used methods. The program can also perform gamma correction with

any exponent and map tones by both operators of Reinhard et al. [10, 11].

Unfortunately it is not specified whether only the global or even the local variant

is being used for that. Resulting image can be saved like in Photosphere as a

regular image in the JPEG or TIFF format.

As for batch processing, the program is able to perform the rotating, flipping,

resizing and cropping operation mentioned above repetitively for a whole group

of selected HDR images. The program is also capable to merge several bracketed

regular images into a single new HDR image. During the process it is able to

reduce noise and align the input images, but more detail configuration is missing.

The currently viewed image can be zoomed in, out, or to fit well into the

viewing window. It can be also displayed at full-screen.

Bracket attempts to speed image browsing up and therefore it caches all gen-

erated thumbnails. Their size is globally adjustable in the program’s preferences.

This has a positive impact while browsing folders that contain a greater number

of high-resolution HDR images. On the contrary loading, resizing or perhaps tone

mapping of such images is unfortunately still rather slow.

User experience also suffers because of another aspect. Some image operations

warn the user that the original image file will be modified, but some operations

does not. Such inconsistent behavior is confusing and can eventually result into

a loss of data. Positive thing about bracket is that it provides a user manual

explaining at least some its functionalities.

22

2.12 Panorado

Panorado, a Windows-only image viewer by Karl Maloszek’s Simple Software,

is among other also able to both view and organize HDR images. The official

website claims that both EXR and RGBE formats should be supported12, but

actually not all HDR images in RGBE can be opened. It is because the program

does not handle the RLE compressed ones. In any case, loading high-resolution

HDR images is relatively slow, including generating thumbnails for them. This

is especially problematic because thumbnails are not being cached by the viewer

and hence browsing folders containing even a few such images is really tedious.

Offered HDRI-related features are modest. Furthermore, any changes made

to the viewed image cannot be saved, neither back as an HDR image nor just as a

regular image. The program is only able increase or decrease the image exposure

or contrast in discrete steps, calculate its luminance histogram or show the stored

pixel values including their EV equivalents. The image view can be zoomed in or

out at fixed steps or automatically according to the current window size. Also,

a full-screen mode is available but that is pretty much all. For example, no tone

mapping operators are provided.

The program features a built-in user manual which gives a good explanation

of almost all of the program’s functionalities, i.e. not only of the HDRI-related

ones. This is indeed helpful.

Panorado is a shareware application and its single license currently costs 21.00

EUR. Because of this and all of the disadvantages mentioned above it can be said

that the program has a worse price–performance ratio, at least while working

exclusively with HDR images.

12See http://www.panorado.com/.

23

http://www.panorado.com/

3. Problem analysis

As can be seen in the previous section, qualities of presented HDR viewers vary

and generally they provide only basic functionalities. This may be enough for

HDR image browsing but it definitely cannot satisfy advanced users like CG

artists. Such users won’t be probably so much thrilled about a capability of some

viewer to rotate or crop images. More useful for them would be rich possibilities

of affecting tone mapping process or a possibility to alter an image with some

advanced effect that benefits from the nature of HDR data itself. This area is

marginalized by all the described viewers and hence there is a large space for

improvement.

To design a viewer that will exploit and fit into the mentioned gap on the

market, let us first find out who actually works with HDR images, how important

these images are for them, what their needs are, and on the contrary what they

do not need to do at all or not so often. Knowing at least some answers to these

questions will help us identify key features that the viewer shall ideally have and

establish a road map for its development. The road map is important because

it is already clear that the space for inventions in this area is enormous and not

all features that will come to mind would be realizable right away. Some may be

harder to implement and users won’t actually need them so desperately.

3.1 Data producers

Who actually produces HDR images? Basically images can be either captured

by a camera, or synthesized by a computer. These two groups have actually only

little in common. One of the common things is the data format. Both captured

and synthesized HDR images can be stored e.g. as EXR files. Any HDR viewer

capable of opening this popular format can be used to view both kinds of images.

But their purpose is usually different and so are the operations that are being

made with them.

Photographers often use the bracketing technique and fuse several photographs

with different exposure time into a single HDR image. This image is usually not

their final product. They mostly perform some tone mapping step (and one can

say that there is an infinite number of tone mapping operators out there, either

global or local ones) which reduces large overall contrast of the HDR image into

a narrow range of a regular image [2]. It depends on the operator how it will be

done. Often the result have a bit unrealistic artistic look. But that is something

24

the photographers usually want.

One way or another, it can be said that needs of photographers are already

covered by the current state of available software. Even applications like Pho-

tosphere or bracket, presented in the viewers overview, support bracketing and

hence can merge several photographs into one HDR image. They also offer some

tone mapping possibilities. In addition, there are plenty of specialized appli-

cations for this purpose. Like Aurora HDR, easyHDR, or Photomatix Pro –

although they are not HDR viewers in the common sense (they are more of HDR

manipulating applications), they are all great1 and worth mentioning in here. To

sum it up, photographers will probably not appreciate creation of another HDR

viewer because all the tools they need may already exists.

Now what about synthesized HDR images, especially photorealistic ones?

Such images are mostly results coming out from a specialized rendering soft-

ware, like Corona Renderer, V-Ray, Arnold, etc., which perform complex light

transport simulations within some given 3D scene. The scene has to be modeled

before by a CG artist using a modeling environment like Autodesk 3ds Max, Cin-

ema 4D, SketchUp Pro, Blender, or some of many others. So far it sounds nice

but it is necessary to realize that it is not that simple.

Unbiased rendering is a by design time-consuming process. This is because it

is statistically correct and it intentionally introduces no systematic error – ”bias”

– into the process. If it is given enough time, the noise will vanish and all will

eventually automatically converge to an expected result. This is something the

artists like and want – to let the machines do the work without need to tweak

everything here and there. But there is a price that has to be paid for that. It is

the computation time. This is why various tricks exists to speed things up. One of

them could be for example distributed rendering (DR) which splits the job among

multiple rendering nodes running in parallel. In practice such dedicated systems

are known as ”render farms”. Another trick could be a premature interruption

of the rendering process and afterward reduction of any not yet vanished noise

using some filters known from world of image processing.

Not only because of those reasons the rendering is not usually a final step for

CG artist and some post-processing is required. This is where comes the hitch.

None of the HDR viewers presented in the overview offers any seriously meant

post-processing options. But actually it would be so much more convenient to let

a renderer do its job and perform all desired post-processing in real-time while

1See the overview at http://captainkimo.com/hdr-software-review-comparison/.

25

http://captainkimo.com/hdr-software-review-comparison/

viewing the result immediately after the rendering or any time later. This is the

motivation behind the goals outlined within the Introduction section.

3.2 Target audience

For meaningful specification, what shall be such HDR viewer capable of doing

and how shall it behave and look like, it is probably always the best to ask the

intended users. This is why some external specialists has been invited to join a

discussion about it. First of all it was the thesis supervisor, Jaroslav Křivánek.

Next it was Ludv́ık Koutný, a skilled professional CG artist and hence a potential

user of the discussed viewer. He is also very versed in user interface (UI) design.

Other experts were from Corona Renderer developer team – Ondřej Karĺık and

Michal Prokš. They both have extensive knowledge of the needs of users of

realistic renderers, which was very helpful. Together we have sketched a suitable

proposal how the final viewer should probably look and behave. The first step in

the design was an identification of the potential user groups. The software should

aim at three kinds of users: common users, power users and render farms. This

can be summed up as follows.

3.2.1 Common users

Basically from the discussion has emerged that CG artists would like to view

HDR images produced by renderers and be able to apply some post-processing

on them later at any time. They need to do it because just rendered images

are not finished yet. For all fields of industry, where the rendering takes part in

(architectural visualization, automotive, product presentation and commercials,

movies, game development, ...), it is often required and necessary to further alter

the images to give them more attractive look.

It cannot be expected that CG artists have generally some extensive technical

knowledge. The more interactive, comfortable, and easy-to-use the viewer’s UI

would be, the better it would be for them. The interactivity is essential because

then the artists can immediately see and feel all the changes as they make them.

As for the comfort, it can be said that being comfortable equals to be known or

expected, or at least predictable. This is also based on the discussion. Generally if

users know something or have seen a similar concept elsewhere, they will consider

it as comfortable and easy to use, which is our goal.

The UI of Corona Renderer itself can be considered as an example of a good

UI design, and according to a recent research made by Render Legion its users

26

Figure 3.1: Autodesk 3ds Max with VFB of Corona Renderer

are mostly satisfied with it. Hence, it would be good to look for inspiration there.

Furthermore, the Corona’s Virtual Framebuffer (VFB), shown in Figure 3.1, ac-

tually provides similar features as those desired from the standalone viewer, so it

would be more than appropriate. (The VFB is a renderer window showing the

current state of the rendered image. It allows to perform certain post-processing

operations while the image is still being rendered.)

First of all the viewer itself shall have a dark theme. This is kind of today’s

standard in majority of CG applications. It allows their users to concentrate more

on the content than on the application itself. Furthermore, Koutný approves that

most of the viewer’s controls shall be placed on the right side of the application’s

main window, and shall be aggregated into collapsable sections. According to him

it would be reasonable to organize the controls into a single-column layout, thus

having only one adjustable control per row. It is because to Koutný this kind of

design seems well-arranged, is easy to use and understand, and feels natural to

users of the 3ds Max.

As for useful features, according to Karĺık, users of physically-based renderers,

such as Corona Renderer, mostly need to reduce noise in their renderings. And

they may need to do it completely outside of the rendering process. This is

because common users usually have only a limited amount of memory on their

systems and with the renderer and especially with the host application (3ds Max,

Cinema 4D, etc.) turned on, the memory may be already occupied by the parsed

27

scene and other data. Although such users can render the scene, they cannot

denoise it using one of Corona’s denoising algorithms because these also demand

a serious amount of memory during their work. The new viewer is an excellent

opportunity to solve this problem.

(a) only bloom (b) only glare

(c) both effects (d) original

Figure 3.2: Bloom and glare effects

Corona Renderer in its latest version 1.5 has come up with a new post-

processing features like a possibility to add bloom and glare effects into renderings

(see Figure 3.2), or mix light coming from several light sources placed within a

scene. Especially the latter one has been very well received by a rendering com-

munity2 and for this reason it is important to have them in the viewer too. Also

the tone mapping possibilities are very nice there.

Among obvious viewer features shall be an ability to save all made changes

into a file. Either again as an HDR image (offering at least the EXR format for

that), or as a regular image (allowing to use common formats like PNG, JPEG,

BMP). Without such possibility other features would be pointless.

2See the comments at https://corona-renderer.com/forum/index.php/topic,13399.

msg86485.html#msg86485.

28

https://corona-renderer.com/forum/index.php/topic,13399.msg86485.html#msg86485
https://corona-renderer.com/forum/index.php/topic,13399.msg86485.html#msg86485

3.2.2 Power users

On the half way between common users and render farms are power users. These

are people who have more advanced technical skills and who would like to use the

viewer’s capabilities, originally intended for common users, also through a CLI

which is much more suitable for scripting.

What was not so clear from the discussion was a syntax of the intended CLI.

The syntax is a part of user experience, and therefore, it needs to be carefully

designed, similarly to the GUI. It is a question whether it is better to use longer

and more descriptive names for parameters, or use rather shorter and easier to

write (albeit possibly harder to remember) ones. Whether the syntax shall be

adopted from some 3rd party well-known software like ffmpeg3, ImageMagick’s

convert4 etc., or rather design a new syntax that may better suit the viewer’s

needs.

In the end an agreement has been made and a syntax preferring long names

of parameters compatible with names used within configuration files of Corona

Renderer has been selected. Power users of Corona Renderer are accustomed

to these names and it allows them to copy and paste appropriate parts of the

configuration files directly into a command-line as parameters for the viewer.

Furthermore, the names are rather more descriptive which is a good thing for

writing scripts. It makes them more readable. On the other hand it is not

expected that users of the viewer would use its CLI on a daily basis and hence

more typing while writing commands for the viewer might not matter. Also a

maximum length of a command for a command-line is not being seriously limited

these days in any widely used operating system. So this shall not be a problem

either.

There is a one particular feature that power users might need. They may

want to compare two HDR images by calculating their difference. Common users

probably do not have a need for such a feature but according to Křivánek, for

researchers and developers of rendering algorithms it is an essential feature. Be-

cause of that, the viewer’s CLI shall provide a possibility to calculate at least a

positive/negative difference of two HDR images in a same way how it is being

done in qt4image application presented within the overview. The other difference

methods may come later.

3See https://ffmpeg.org/ffmpeg.html.
4See https://www.imagemagick.org/script/command-line-processing.php.

29

https://ffmpeg.org/ffmpeg.html
https://www.imagemagick.org/script/command-line-processing.php

3.2.3 Render farms

According to Karĺık, render farms have some special needs. They need to stitch

partial results coming from rendering nodes into one single output HDR image.

Furthermore, this has to be fully doable through a CLI because render farms may

need to script such tasks.

The partial results may be basically of two forms: either they could be only

image sub-regions of the larger output image (often narrow horizontal belts taking

full width of the output), or they may be full-resolution images but rendered only

with a fraction of target number of samples per pixel (number of passes).

One way or another, render farms need a CLI tool to stitch these partial

images together. The stitching is basically just a calculation of weighted sum of

the images separately for each pixel. Renderers usually store a special weight

channel into the images for these purposes. For example in Corona Renderer it

is always named CORONA FB WEIGHTS. The tool shall use it automatically.

They may also need to reduce noise in the stitched image. Denoising image

sub-regions before stitching them together may not often produce a seamless

results. This is because noise reduction algorithms usually operate with masks

and they need to access pixels from whole neighborhood which is not possible

when only the sub-regions are being denoised. Hence, the denoising has to be

performed at last – after the stitching. And it would be beneficial for users of

render farms if the farms would be able to easily do this.

30

4. Viewer implementation

The viewer itself is written in C++ which is a traditional compiled programming

language suiting well to CG purposes. One of the adjectives that could charac-

terize it could be ”scattered”. Definitely much more than for example Java. Of

course there is the Standard Template Library (STL) but it is not almighty. A

lot of functionality must be seeked elsewhere. Projects written in C++ may also

suffer from a complicated deployment. These are some of the problems that this

chapter discusses.

The chapter also describes choices that had to be made, for example consid-

ering the used GUI framework. It also contains a discussion over a suitable HDR

image representation and its processing.

4.1 Custom functionality

As one can guess from the beginning of this chapter, it has been necessary to

implement a lot of custom functionality to bring the viewer to life. The following

list enumerates some of it:

• class representing a single HDR image that works as a sophisticated con-

tainer capable of holding numerous kinds of data and metadata which the

image may contain (see the section 4.4 for further details)

• general input/output (IO) backend exploiting the official library for the

EXR format [7], and supporting most of the format’s features, both for

loading and saving of HDR images represented through the special class

above

• HDR image processing ”pipeline” (see the section 4.5 for further details)

• algorithm for computing a positive/negative difference that has been im-

plemented in the exact same way as in the qt4image application described

within the overview of HDR viewers

• algorithm for accumulating/stitching partial results produced within render

farms’ workflow (see the section 3.2.3 for further details) which handles

weights per pixel or per image, and can operate with HDR images having

miscellaneous virtual positions to each other

31

• algorithm using image-based arithmetics to mix light coming from several

light sources placed within a scene that has been rendered to a single HDR

image (see the section 4.5 for further details)

• a lot of various operating and integration code plugging external function-

ality into the viewer’s context (again see for example the section 4.5 for

further details)

• custom well-extensible framework for parsing, validating and processing

command-line arguments and sub-arguments (both either as standalone

flags, or value-based options)

• smart thread-safe container for storing all viewer’s properties of various

types that uses previously bound lambda functions to notify other parts of

the viewer about any property changes

• basically the whole viewer’s GUI – custom controls, control panels, draw

panel, art providers, dialogs and frames, etc.

• utilities for iterations over containers, inter-thread procedure calls, layout-

ing GUI elements, some type traits, mathematical operators, and other

helpers

4.2 Corona Renderer means

Actually it has been planned that a future development and maintenance of the

viewer will be overtaken by developers from Render Legion. Hence it is desirable

to adapt the whole project to their coding style and to all means that they are

accustomed to use.

Code base of Corona Renderer itself, and all its related tools, is well organized

and structured. It basically parts into two main components – into a library

and a core. Both are written in C++ and exploit all modern features of this

language. For example, lambda functions [14] are being used extensively in a

way that helps to separate functionality into more independent pieces and hence

make them more reusable. Without doubts this is always a good thing. The

code base is also aware of rvalue references [14] and move semantics [14] which

may reduce amount of necessary memory operations. For better code readability

it conveniently uses range-based loops [14] and type inference through the auto

keyword. It massively uses both compile time and run time assertions that help

32

with debugging. Premake1 is used as a build system, which is an easy-to-use

scriptable system for generation of project files for Microsoft Visual Studio and

others. The viewer is expected to comply to all these conventions (and more) to

be coherent with Corona Renderer.

The library provides lots of general and useful features. Some of them are

already offered by the STL but the developers from Render Legion have decided

to implement their own implementations. It is mainly because of binary com-

patibility reasons. But there are also other reasons like a possibility of better

optimizations for CG purposes, or having richer assertions, etc.

The problem with binary compatibility is that Render Legion provide only a

public API for their library. Its implementation is not available to others. Any

3rd party developer who wants to use the library does not compile it on his or her

own but must link it with a provided precompiled Dynamic-link Library (DLL).

This is where the compatibility problems can occur. For example if the exported

interface from the DLL would involve some means from the STL, it can happen

that the STL version used by the user of the DLL would be different from the

version that has been used to compile the DLL. This could lead into an undefined

behaviour after linking. It is even worse because one cannot even hope for binary

compatibility when using same compiler and STL versions. Just different settings

of the same compiler in the same version can break things too2. Render Legion

solves this situation nicely by exporting only own means from their DLLs and

by wrapping all potentially dangerous implementation details using a Pointer

to Implementation (Pimpl) technique [14]. Otherwise the task to adhere binary

compatibility would be very uneasy or even impossible.

By the way, while working on the viewer it has turned out that not having

access to the actual implementation of some library can be sometimes a problem

because its documentation might not always be so detailed as one may need. But

through a process of trial and error it can be possible to discover at least some

missing details.

Anyway, to get the idea what the library actually provides here is a list of

some of the offered means:

• custom array-like containers including useful utilities for their addressing

and iterating over them

• own smart pointer implementations for dynamic memory management [14]

1See https://premake.github.io/.
2See the comment at http://stackoverflow.com/a/5736352/857952 for that.

33

https://premake.github.io/
http://stackoverflow.com/a/5736352/857952

• universal class for string representation supporting various encodings

• better stream implementation

• support for parallel computations including means for securing thread-

safety

• support for vectorization using SSE 4.1 instructions at several places (see

the image representation section for further details)

• implementation of miscellaneous mathematical functions and operators

• custom simple representation of images and bitmaps

• means for working with colors and color spaces

• classes for representation of geometric primitives

• various useful type traits [14] and enumeration traits

• special handy classes for returning expected, optional, and variable results

• asserting macros

• some platform-specific helpers querying the operating system

• custom GUI elements and utilities (see the section 4.3 for further details)

• and much more

As for the core, it keeps all the rendering and post-processing related func-

tionality. These are much more specific than the functionality provided by the

library and everything there is significantly more interdependent. For this reason,

developers from Render Legion had to make some code adjustments to make core

functionality also suitable for the viewer.

Among other things, the core offers two noise reducing algorithms that the

viewer shall expose to the users of Corona Renderer. The first one is an algorithm

removing only ”fireflies” within HDR images. It is fast but it can only remove

outlier pixels. The second is a fully-fledged special denoising algorithm based

on non-local means filtering. It works well but it unfortunately consumes a lot

of time and system memory. Both algorithms require some auxiliary data to be

contained within HDR images. This is not a problem for images rendered by

Corona Renderer itself because these data can be automatically dumped using

Corona’s VFB by a single click. The first algorithm only needs an additional

34

render element (i.e. a pack of several channels, usually consisting of a red, green

and blue channel) containing sum of squared light contribution values in each its

pixel. The full algorithm needs it too but in addition it needs also three more

special feature elements with their squared variants.

The core also offers functions for computing bloom and glare effects as de-

scribed in the analysis section. Their computations for high-resolution images

might be also time demanding. To overcome this the viewer has been imple-

mented in a way that such long running operations are being launched asyn-

chronously in separate threads (this actually also applies for the denoising). It

allows the viewer to be as interactive for users as possible.

Another core functionality of which the viewer takes advantage is tone map-

ping. The core already implements the global variant of the photographic opera-

tor published by Reinhard et al. [10]. It also offers a special filmic operator giving

a better control over highlights and shadows. Apart from these two operators the

core also provides other algorithms for tweaking the tone mapping process. For

example, it is possible to adjust an overall image exposure, saturation, contrast,

or add a color tint.

The viewer exploits the above functionality in a way that it can open an HDR

image, display it, process it using (not only) the described means, and save it

back to some file. For more information see the image processing section where

the whole ”pipeline” process is described.

4.3 Graphical framework

The viewer is primarily a GUI application and hence it has been necessary to

choose some suitable GUI framework for it. In the end wxWidgets library has

been selected because of the cooperation with Render Legion. This is a framework

they use for GUI of Corona Renderer, even though it is not ideal.

They need a reasonable mature multi-platform framework for C++ with a

licensing that would suit them, and this is something what wxWidgets3 fulfills.

That is why they have chosen it. Unfortunately it has also some dark sides. Its

development somewhat stagnates. Some of its parts, for example like wxAUI (an

advanced user interface library), seems to be abandoned for a long time. It lacks

modern eye-candy features like animations. It is designed to provide a native look

and feel on any platform it supports. This may sound good but it has its own

3See http://www.wxwidgets.org/.

35

http://www.wxwidgets.org/

drawbacks, especially for CG purposes. Its theming capabilities are extremely

limited and turning application’s UI into dark colors is really painful. To sum it

up, in practice using wxWidgets results often into ”better do it yourself” solutions

and one can always expect that something will not work as expected with this

framework.

Nevertheless it is still probably the best solution for current Render Legion

needs, at least according to Karĺık, because there is no good enough and suitable

alternative to wxWidgets. Of course there is Qt framework4. Unlike wxWidgets

it is very modern and complex, it has active and rapid development, and it

offers an excellent documentation. But its license for commercial purposes is

rather expensive. It costs about 300 USD per month per developer (depending

on term length). Developers from Render Legion would probably prefer Qt over

wxWidgets but it is more business decision than technical.

Other alternatives that fulfill most of the conditions mentioned above and

that can be considered are often specifically oriented. For example JUCE5 is

much cheaper than Qt. It costs only about 50 USD per month per developer,

but it is not as complete as Qt and it is oriented more on audio processing than

on CG. Another possible framework is Crazy Eddie’s GUI6. It is free and highly

customizable. But it focuses on the development of UI for computer games. An

interesting project is Chromium Embedded Framework7 which allows to create

really rich application UI very easily and quickly. This is because it seamlessly

incorporates a web browser into the application and its UI is expected to be

written in HyperText Markup Language (HTML) and JavaScript. These are both

fast to write languages. But using it for CG purposes is questionable because it

may introduce an unwanted overhead. Anyway, currently Render Legion tend to

wxWidgets and that is why the viewer makes use of the same GUI framework.

4.4 Image representation

A way of storing HDR images in memory can be considered as a ”cornerstone”

of the viewer. For a single image (ignoring its alpha channel for now) it could be

something as simple as a continuous buffer keeping interleaved red, green, and

blue pixel values in order from the image’s top-left corner to its bottom-right. This

4See https://www.qt.io/.
5See https://www.juce.com/.
6See http://cegui.org.uk/.
7See https://bitbucket.org/chromiumembedded/cef.

36

https://www.qt.io/
https://www.juce.com/
http://cegui.org.uk/
https://bitbucket.org/chromiumembedded/cef

approach to data arrangement is easy-to-use. Hence it is very common and it is

widely adopted in software development. As it was denoted in the introduction

section, this kind of arrangement is known as Array-of-Structures (AoS). Pixels

are in the role of ”structures” in here.

The opposite arrangement is the Structure-of-Arrays (SoA). This is when all

the red pixel values are separated into their own buffer and the same goes for

the green and the blue values. Then the ”structure” here would be a triplet of

buffers. Generally this kind of arrangement may not be so comfortable for soft-

ware developers because they usually want/need to work with all values related

to a single pixel at once, but it might bring some significant speed-up. This

is because it gives a better ground for ”vectorization” of a code, i.e. for using

Single-instruction/Multiple-data (SIMD) operations. These are special processor

instructions capable of manipulating several values of same type, either inte-

gers or floating-point numbers, in a parallel fashion. There is a whole bunch

of such instructions and usually not all of them are supported by every proces-

sor. Agner Fog provides very nice instruction tables for that purpose [15]. In

this thesis we would consider only two the most important instruction families

of today: Streaming SIMD Extensions (SSE) and Advanced Vector Extensions

(AVX). The former ones are 128 bits wide and hence can process for example

four 32-bit floating-point numbers at once. To be precise we would use SSE 4.1

variant. The latter ones are wider. They process 256 bits, i.e. twice as much as

SSE.

In principle, the advantages of using SoA over AoS are obvious. With the SoA

arrangement, we can basically use as wide instructions as our processor supports.

It is because it can be expected that all algorithms above SoA data are designed

with this in mind. It is why we use the SoA arrangement in the first place.

Hence when a new wider instruction family becomes available, porting a code

manipulating SoA data would not be probably a big problem. We would just use

the new instructions instead of old ones and take care of proper memory alignment

[16], if that would be necessary. For example, it seems that a new instruction set

denoted as AVX-512 will probably come one day. At least Intel has announced

it for high-end processors in summer 2013 8. This will allow to process sixteen

32-bit floating-point numbers at once with the SoA. That is remarkable.

On the contrary with the AoS we often cannot use wider instruction sets so

easily. Usually algorithms used with this arrangement are either not aware of vec-

8See https://software.intel.com/en-us/blogs/2013/avx-512-instructions for that.

37

https://software.intel.com/en-us/blogs/2013/avx-512-instructions

torization at all, or they are vectorized only on a level of single structures (pixels

in our case). Width of usable instructions is limited in such cases. A reasonable

pixel representation of an HDR image takes 96 bits (three 32-bit floating-point

numbers for red, green, and blue pixel components). At best, manipulation with

single pixels could be accelerated through 128 bits wide SSE. And even then we

would waste a serious amount of memory because the 4th component of every

such pixel would be simply extra. It could be used for an eventual alpha value

but that is not always present. A fact is that in practice the 4th component is

usually unused.

On the other hand, the SoA may not provide such speed gain over the AoS

as one could expect. It highly depends on the algorithm that manipulates the

data. SIMD operations are strong in nontrivial mathematical computations. For

example, it may surely pay off to compute a logarithm of four numbers at once.

But with simple arithmetics there could be not so much acceleration. It is be-

cause the processor probably will not be the bottleneck there. It would be the

memory subsystem. If we are reaching its speed limits, it will not matter how

wide instructions we would use for that. It could not be done faster. So in such

cases bothering with SoA may not provide significantly better results than the

AoS. On the other hand, it will not be slower either.

There is an interesting case study made by Intel. It compares the AoS and

SoA data layouts for a compute-intensive loop run using various instruction sets

on high-end Intel Xeon family processors [17]. The author of the study clearly

says in the conclusion that because of software complexity and diversity for any

findings there will probably exist counter-examples. Because of this he makes

rather suggestions. He suggests that ”it is almost always better to vectorize than

not to vectorize on Intel SIMD capable hardware”, and that if we are vectorizing

then ”it is almost always better (faster) to vectorize with the SoA data layout

than with the AoS data layout, simply because chances of the compiler doing

something wonderful are much better”. He suggests to prefer SoA over AoS

when we are in doubt because ”there are probably not so many examples where

a code using AoS would run significantly faster than its SoA variant” [17].

Because all of the above reasons it has been decided that it would be probably

better to arrange HDR image data using the SoA approach. Even so if this

decision would make the implementation of the viewer slightly more difficult, or

conversions between the AoS and SoA arrangements would be required. These

conversions are expected to be fast enough because it is nothing more than an

in-memory copying. Furthermore, the SoA arrangement is closer to the concept

38

of the EXR format that understands channels as independent of each other. See

the section with preliminaries for that. This is another reason why choosing the

SoA is probably a right way to go.

Actually, the EXR format can be considered as the most advanced format

among those that are commonly used, at least when it comes to extensibility

capabilities. Hence it is good to look for inspiration there for a design of a

representation of a single HDR image. That way we shall be able to cover most

of the EXR capabilities. It is expected that other common formats can be easily

”mapped” to this representation. In addition, such uniform environment should

simplify the viewer’s implementation.

The viewer implements the representation sketched above within a class named

ChannelImage. Like the EXR format it offers the capability of storing channels

and attributes. It offers several ways how they both can be accessed, searched,

and iterated. By default instances of the class contain no channels or attributes.

They have to be inserted first. It is also possible to remove them any time later.

Every channel keeps values of some selected type. Usually the values are 32-bit

floating-point numbers, but basically the type could be anything. Channels are

always properly aligned in memory with regard to the SSE. Such alignment may

help to keep vectorized code effective on some hardware [16]. All channels within

a single ChannelImage instance shall always share same dimensions, otherwise

the instance will not be valid. The dimensions are defined by the ”dataWindow”

attribute. See the OpenEXR section for that. Any attribute in ChannelImage

holds a single value of some type. Again, it could be just about anything. Tech-

nically all of the above uses C++ templates and dynamic type conversions [14].

The class offers two more important features. The first of them is a func-

tionality for retrieving and adjusting whole render elements. These are provided

as bitmaps consisting of a red, green, blue, and possibly alpha channel. The

channels are arranged in the AoS manner there. The render element bitmaps are

being constructed from appropriate channels on demand. This is expected to be

fast enough as stated above.

The second feature is that the class defines interfaces for loading and saving

its instances. For now, these two interfaces are implemented for the EXR for-

mat. Several common types of EXR attributes are supported. EXR channels

containing 16-bit floating-point values are always transparently converted to 32

bits. This is because there are no SIMD operations available for them.

See the generated Doxygen documentation attached to viewer sources for fur-

ther details about the ChannelImage class and its API.

39

4.5 Image processing

Based on the requirements for the viewer presented in the analysis section, this

section describes a process that has, from a technical point of view, led to their

fulfilling. The key term here is a ”pipeline”. This is something that is responsible

for all necessary processing of a viewed image. It includes steps needed for load-

ing the image from a file (extraction from the EXR format), making all image

transformations according to user requests which has been previously translated

into the pipeline settings (for example computing bloom and glare effects, per-

forming denoising, tone mapping, etc.), making all inevitable operations needed

for actual displaying of the image (clamping pixel values to low-dynamic range,

or applying a gamma correction), or alternatively saving the image back to some

file (packing to some selected output file format).

Software development is a process of continuous designing, code rewriting,

and functionality broadening. Probably every well managed project starts with

just a prototype of final functionality. As the development time progresses, new

features are being added in a ”snowball effect”. Time to time we hit a wall with

it. It could be either because of some new requirements that have not been known

yet at the time of original design, or it could be just because of something has

been unconsidered. In such cases it could be necessary to redesign and rewrite

some code, sometimes from scratch. Despite of how hopeless it may look it is

a process that converges toward the project goals. With little exaggeration, it

can be said that it is just a matter of time. It depends on skills and experience

of a developer how well he or she can anticipate eventual problems and design

suitable code.

Development of the viewer was not different in this. Several versions of the

pipeline had been implemented until all things settled down. Its first version was

just a linear sequence of routines with a simple interface which were performed one

by one. Each of them was taking care of one particular operation of the pipeline

process described at the beginning of this section. It suited well the command-line

version of the viewer, but it completely lacked interactiveness which is something

we want from the GUI version. Such design was too simple for that. To solve

this it has been necessary to rethink the whole design and wrap all the pipeline

operations into separate objects. That way they can be easily identified and some

other functionality can be bound to them. This is something that the viewer’s UI

can exploit. For example, when the user clicks an appropriate button, an object

implementing the denoising feature may recompute its cache and hence in the

end update the noise reduced variant of the viewed image.

40

Figure 4.1: Pipeline workflow

The diagram 4.1 gives an overview of the pipeline as it has been implemented.

It currently consists of 9 operator objects having clear interface to communicate

with each other. Each of them can be understood as an on-demand black box

with a strictly defined arity. Anytime it is requested for a ”region”, it recursively

asks its operands and does its job based on the results retrieved from them. The

region here is a special optional bitmap keeping pixel values from a portion of some

selected render element. Hence such bitmaps are being used by the operators to

transfer image data. The key feature of regions is that they can be asked for their

availability. This is a way how an operator can let any dependent operator know

that the image data it requests are unavailable. This may be because of either

a temporary, or permanent reason. For example, an operator that internally

operates with some sort of a cache may signalize that any requested region is

temporarily unavailable until the operator’s cache becomes ready (which may

take some time because of the nature of the process behind). Such cases are

indicated by a dashed connection line within the diagram.

41

In the code the pipeline is implemented by the Grid class. As can be seen in

the diagram, it namely composes the following operators:

• Loader

This is an operator responsible for asynchronous loading and accumulation

of HDR images from requested EXR input files. It serves as a data feeder

for the whole pipeline. It informs about its state and progress through a

set of callbacks.

• Denoiser

On demand, it can run any of the special noise reduction algorithms pro-

vided by Render Legion as a part of their core code base. See the analysis

section for that. The operator performs its task asynchrounosly and caches

its result. It is because the denoising is a very time consuming process. As

noted before, it also usually requires a serious amount of memory. Again,

it uses callbacks to inform about its progress.

• Adder

It just composes all requested regions from its two other operands. This is

being done using only a simple addition.

• LerpAdder

Same as the Adder but for the addition it uses a linear interpolation. In

the end it serves as a blender of an original image with its noise-reduced

variant produced by the Denoiser operator.

• LightMixer

Implements a light mixing algorithm which mixes light coming from several

different light sources placed within a scene, and which is rendered into

separate render elements. The final mixture is controlled by a set of inten-

sity and color multipliers. The operator provides a special virtual render

element for presenting the mixture.

• BloomGlare

This is an operator that is used to compute both the bloom and glare effect

provided by Render Legion within their core. It could take a non-negligible

amount of time for high-resolution HDR images and hence the computation

is again asynchronous, cached, and can be monitored by a set of callbacks.

• ColorMapper

An operator which is responsible for all the tone mapping features that

42

Render Legion offers in their core. See the analysis section for them. It

never applies gamma correction as described within the preliminaries sec-

tion. Such thing is extracted into the separate Gamma operator.

• Gamma

Performs the gamma correction. This is being done just before displaying

any region to the user. It is separated from the ColorMaper because it is

purely a matter of displaying image data on a screen. The gamma correction

while saving an image has to be handled separately because it is format-

dependent. See the Saver operator for that.

• Saver

This is an operator responsible for asynchronous saving a pipeline processed

HDR image to some specified output file. It supports either the EXR for-

mat, or various regular formats like BMP, PNG, JPEG, etc. for which it

automatically performs the gamma correction. It can be used to save only

a single render element selected within the viewer, or to save all render ele-

ments at once. If the target file format does not support multiple elements

within a single file, more files will be created (one for each render element).

It also informs about its state and progress through a set of callbacks.

As can be seen from the above overview, technical means required by the

individual operators differ. Some need to perform asynchronous tasks, others

do not. Some need to access the pipeline settings. Some would like to inform

about their current status. Basically operators may need various things that can

turn to be so called ”orthogonal”, i.e. they can be mixed in ways which prevent

designing any kind of a reasonable ”is-a” inheritance hierarchy [18]. In C++

these situations can be nicely solved through a mixin-based design [19]. This is

what the viewer uses in its implementation.

See the diagram 4.2 that illustrates the whole operator inheritance model.

Firstly, there is the IOperator class which is a lowest base class of all the

above mentioned operators. It defines an interface which must be implemented

by any pipeline operator, and which implements some basic functionality for

them. Then there are the individual mixins, i.e. classes where each of them in-

troduces some unique common functionality. These are C++ templates that

can be mixed together just through their template parameters. Every such

mixture, with the IOperator class at the lowest level, can be used as a base

class of some operator and hence enriching it of the mixed functionality. For

example, the LightMixer operator is derived from a DependentOperator<1,

43

SettingsOperator<IOperator>> mixture, as can be deduced from the diagram

(order of individual mixins within a mixture does not matter).

Figure 4.2: Operator inheritance model

The diagram also shows an excerpt from mixins’ and operators’ API. Their

full versions can be found within the generated Doxygen documentation attached

to viewer sources.

The above presented design of the pipeline implementation has turned out to

be very flexible and dynamic. Because of the clear operator interface and usage of

the mixin concept it is very easy to alter the pipeline workflow – either introduce

a new operator there, or just reconnect it in a different way. The mixin technique

suits well to the presented situation. It avoids code duplication and makes the

code implementation effective. All in all, it seems that the presented code design

is probably well maintainable to the future.

44

5. Evaluation

One of the goals of this thesis is to assess whether the concerns about possible

ways of image data arrangements, introduced within the Section 4.4 describing

image representation, are well-founded and are not pointless. Whether it may

pay-off from a memory usage and an overall performance point of view to bother

with a massive usage of SIMD operations and prefer the Structure-of-Arrays

(SoA) data layout for that over the Array-of-Structures (AoS) layout which is

usually more comfortable for a developer.

We have already inspected the memory question in Section 4.4. We would

waste memory in cases when a vectorized algorithm is operating on structures of

values whose overall size is not a multiple of 128 or 256 bits. And that is also in

our case where we like to represent pixels by three 32-bit floating-point numbers.

Hence using the SoA approach is more suitable from this perspective.

To answer the performance question we have to measure. We already have

a suspicion that the SoA layout may be faster but such a thing has to be always

proven for a concrete algorithm, as noted by the author of the case study [17].

Unfortunately this is often hard to do because every such algorithm has to be

actually implemented twice for that and in practice applications often contain

many such algorithms. The viewer is not an exception. To overcome this only

a reasonable and representative (if possible) subset of the algorithms may be

tested. This could give a hint how to behave when designing the others.

For purpose of this thesis, an algorithm for changing overall saturation of an

HDR image has been selected for testing. This algorithm is part of the core

of Corona Renderer and is accelerated by SSE instructions there. It uses the

AoS principle. This choice has been made based on a consultation with Michal

Prokš who is one of main software developers at Render Legion. The saturation

algorithm can probably represent all algorithms hidden behind the viewer’s tone

mapping process. See the section with Corona Renderer means for that. If the

saturation algorithm could gain some speed-up, it may be probably assumed that

it would similarly also work for the others.

For the testing purposes, a version of the algorithm utilizing the SoA princi-

ple has been implemented. An excellent C++ library1 made by Agner Fog has

been used for that. It is a collection of classes wrapping SIMD instructions at

various widths. Hence it is possible to write a code designed for example for AVX

1See http://www.agner.org/optimize/#vectorclass.

45

http://www.agner.org/optimize/#vectorclass

instructions with it. Such thing is not currently offered by the Corona Renderer

means.

Both versions of the saturation algorithm were tested using the same method-

ology. Tests were based on measuring an average wall-clock time and processor

time (that is a time spent by performing processor tasks) needed to change over-

all saturation of a pregenerated random HDR image with a resolution of 4K

(4096×2160 pixels). The averages were calculated from 2500 samples made in

a sequence. The sequence was divided into 50 separated chunks. Both the code

used to measure the averages and the measured averages can be found in the

attachments. This text presents only overall results of the tests. The measuring

code had been compiled in Microsoft Visual Studio 2015 with all optimizations

turned on, and was ran in the following two testing environments:

1. Laptop Dell Vostro 3560

CPU Intel Core i7-3612QM (2.10 GHz),

8 GB RAM (2× 4GB DDR3 1600 MHz),

Microsoft Windows 10 Pro 64-bit

2. Desktop computer

CPU Intel Core i7-6700 (3.40 GHz),

32 GB RAM (4× 8GB DDR4 2667 MHz)

Microsoft Windows 10 Pro 64-bit

5.1 Results

The table 5.1 shows the measured average times in milliseconds for both environ-

ments. There are also calculated speed-ups related to the AoS variant using SSE

instructions, i.e. to the variant that is currently used by Corona Renderer. The

speed-ups are based wall-clock times because this is the time which users usually

care about.

Laptop Dell Vostro 3560 Desktop computer

Wall-clock

time

Processor

time

Rough

speed-up

Wall-clock

time

Processor

time

Rough

speed-up

AoS with SSE 88.192 ms 88.162 ms — 58.689 ms 58.656 ms —

SoA with SSE 28.579 ms 28.556 ms 3.09× 18.219 ms 18.194 ms 3.22×
SoA with AVX 18.859 ms 18.856 ms 4.68× 11.219 ms 11.188 ms 5.23×

Table 5.1: Measured average times

46

To summarize the table 5.1, one can say that using the SoA approach also

pays off from the performance point of view. Three times speed-up over the AoS

variant using the same instruction set is a nice positive result. Although the AVX

instructions are twice as wide the speed-up is not doubled in this case. One of

the reasons may be that we are probably hitting the maximum throughput of the

memory subsystem in the tested environments. But it could be caused also by

other reasons. A more detailed analysis would be necessary to decide what is the

main cause of this. Fog provides a nice overview of some potential bottlenecks at

page 100 of his manual [20]. This could be a starting point for this.

47

Conclusion

This chapter offers an overview of the goals that have been achieved in this thesis

and some directions of the viewer’s future development.

Achieved goals

The main goal of this thesis was to design and implement a viewer of HDR

images that would offer some advanced ways of manipulating this kind of images.

Because of this a great emphasis has been given to discovering true needs of

professionals who use HDR images on a daily basis. A part of this was also

a reconnaissance of already existing solutions. The viewer has been carefully

designed based on the discovered findings. This has been an important step

because it made the main goal well-defined and its purpose was clear.

Using a standard procedure, the implemented viewer can be associated on

Windows to the EXR format and therefore serve there as an easy one-click solu-

tion for viewing these images. Professional CG artists will surely appreciate its

features, particularly the ability to reduce noise that is present in all HDR im-

ages produced by physically-based renderers, and the use the arithmetics-based

tool for mixing lights coming from different light sources in the scene. On the

other hand, more technically skilled users may take advantage mainly of its CLI.

It could be used either by render farms to accumulate/stitch rendered images

directly into a final product, or for some batch processing purposes. A great

importance has been given to a compatibility with Corona Renderer, hence es-

pecially users of this renderer will find the viewer’s features useful. But it is well

usable for others too.

The final goal was to make the viewer memory and performance efficient.

That was a motivation behind the effort to make the viewer’s design friendly

to the usage of modern SIMD operations. In certain conditions they can make

algorithms perform significantly faster. The thesis has discussed, implemented,

and then also evaluated that one of the conditions, but not the only one, is

a suitable data arrangement. It has confirmed that there is a big potential to run

at least the tone mapping process faster.

48

Future work

As it was stated above, developing a software is a never ending story. There are

still things that may be improved. Fortunately the work made as a part of this

thesis does not end here. It is planned that Render Legion company will continue

with it.

The implemented viewer could be extended in several ways. For example, it

could support some other formats of HDR images – the possibility to view images

in the RGBE format would be nice. It could be made multi-platform. Basically

there are no big obstacles that would prevent such thing. The viewer could be

also enhanced with further post-processing capabilities like Look-up tables (LUT)

or curves (both in their own way define a color mapping function). Another nice-

to-have feature could be a better integration into Windows Explorer for which

it could provide thumbnails of files containing HDR images. The viewer would

also deserve implementation of some UI ”gadgets” like a drag and drop of files

into the viewer’s window, or copying the currently viewed image into a clipboard.

Less common methods of computing a difference of two HDR images could be

implemented.

As for the viewer’s CLI, its first version has been already sent to some selected

render farms for testing purposes. At the moment communication is underway to

obtain their feedback. It is possible that some modifications and feature requests

would arise from it.

49

Bibliography

[1] Roger N. Clark. Notes on the Resolution and Other Details of the Hu-

man Eye. http://clarkvision.com/imagedetail/eye-resolution.html,

2016. [Online; accessed January 4, 2017].

[2] Christian Bloch. The HDRI Handbook 2.0: High Dynamic Range Imaging

for Photographers and CG Artists. Rocky Nook, 1st edition, 2012.

[3] Erik Reinhard, Greg Ward, Paul Debevec, Sumanta Pattanaik, Wolfgang

Heidrich, and Karol Myszkowski. High Dynamic Range Imaging: Acquisi-

tion, Display, and Image-Based Lighting. Morgan Kaufmann/Elsevier, 2nd

edition, 2010.

[4] Charles A. Poynton. Rehabilitation of gamma. In Bernice E. Rogowitz and

Thrasyvoulos N. Pappas, editors, Human Vision and Electronic Imaging III.

SPIE-Intl Soc Optical Eng, jul 1998.

[5] IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical

and Electronics Engineers, New York, 1985. Note: Standard 754–1985.

[6] Florian Kainz, Rod Bogart, Piotr Stanczyk, and Peter Hillman.

Technical Introduction to OpenEXR. http://www.openexr.com/

TechnicalIntroduction.pdf, 2013. [Online; accessed January 4, 2017].

[7] Florian Kainz. Reading and Writing OpenEXR Image Files with the IlmImf

Library. http://www.openexr.com/ReadingAndWritingImageFiles.pdf,

2013. [Online; accessed January 4, 2017].

[8] Greg Ward. High Dynamic Range Image Encodings. http://www.anyhere.

com/gward/hdrenc/Encodings.pdf. [Online; accessed January 4, 2017].

[9] Greg Ward. CIE Luv Color. http://www.anyhere.com/gward/pixformat/

cieluvf1.html. [Online; accessed January 4, 2017].

[10] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photo-

graphic tone reproduction for digital images. ACM Transactions on Graph-

ics, 21(3), jul 2002.

[11] Erik Reinhard and Kate Devlin. Dynamic Range Reduction Inspired by Pho-

toreceptor Physiology. IEEE Transactions on Visualization and Computer

Graphics, 11(01):13–24, jan 2005.

50

http://clarkvision.com/imagedetail/eye-resolution.html
http://www.openexr.com/TechnicalIntroduction.pdf
http://www.openexr.com/TechnicalIntroduction.pdf
http://www.openexr.com/ReadingAndWritingImageFiles.pdf
http://www.anyhere.com/gward/hdrenc/Encodings.pdf
http://www.anyhere.com/gward/hdrenc/Encodings.pdf
http://www.anyhere.com/gward/pixformat/cieluvf1.html
http://www.anyhere.com/gward/pixformat/cieluvf1.html

[12] F. Drago, K. Myszkowski, T. Annen, and N. Chiba. Adaptive Logarithmic

Mapping For Displaying High Contrast Scenes. Computer Graphics Forum,

22(3):419–426, sep 2003.

[13] Greg Ward. Graphics Gems IV. chapter A Contrast-based Scalefactor for

Luminance Display, pages 415–421. Academic Press Professional, Inc., San

Diego, CA, USA, 1994.

[14] C++ reference. http://en.cppreference.com/. [Online; accessed January

4, 2017].

[15] Agner Fog. Instruction tables: Lists of instruction latencies, throughputs and

micro-operation breakdowns for Intel, AMD and VIA CPUs. http://www.

agner.org/optimize/instruction_tables.pdf, 2016. [Online; accessed

January 4, 2017].

[16] Agner Fog. VCL: C++ vector class library. http://www.agner.org/

optimize/vectorclass.pdf, 2016. [Online; accessed January 4, 2017].

[17] Paul Besl. A case study comparing AoS (Arrays of Structures) and SoA

(Structures of Arrays) data layouts for a compute-intensive loop run on

Intel Xeon processors and Intel Xeon Phi product family coprocessors.

https://software.intel.com/sites/default/files/article/392271/

aos-to-soa-optimizations-using-iterative-closest-point-mini-app.

pdf, 2013. [Online; accessed January 4, 2017].

[18] When to use inheritance. https://msdn.microsoft.com/en-us/library/

27db6csx%28v=vs.90%29.aspx. [Online; accessed January 4, 2017].

[19] Yannis Smaragdakis and Don S. Batory. Mixin-Based Programming in C++.

In Proceedings of the Second International Symposium on Generative and

Component-Based Software Engineering-Revised Papers, GCSE ’00, pages

163–177, London, UK, UK, 2001. Springer-Verlag.

[20] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs: An op-

timization guide for assembly programmers and compiler makers. http:

//www.agner.org/optimize/microarchitecture.pdf, 2016. [Online; ac-

cessed January 4, 2017].

51

http://en.cppreference.com/
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/vectorclass.pdf
http://www.agner.org/optimize/vectorclass.pdf
https://software.intel.com/sites/default/files/article/392271/aos-to-soa-optimizations-using-iterative-closest-point-mini-app.pdf
https://software.intel.com/sites/default/files/article/392271/aos-to-soa-optimizations-using-iterative-closest-point-mini-app.pdf
https://software.intel.com/sites/default/files/article/392271/aos-to-soa-optimizations-using-iterative-closest-point-mini-app.pdf
https://msdn.microsoft.com/en-us/library/27db6csx%28v=vs.90%29.aspx
https://msdn.microsoft.com/en-us/library/27db6csx%28v=vs.90%29.aspx
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

List of Abbreviations

AoS Array-of-Structures

API Application Programming Interface

BMP Windows Bitmap

CG Computer Graphics

CIE International Commission on Illumination

CLI Command-line Interface

DLL Dynamic-link Library

DR Distributed Rendering

EV Exposure Value

EXR OpenEXR

GIF Graphics Interchange Format

GLSL OpenGL Shading Language

GPU Graphics Processing Unit

GUI Graphical User Interface

HDR High-dynamic Range

HDRI High-dynamic Range Imaging

HTML HyperText Markup Language

ILM Industrial Light & Magic

INRIA French Institute for Research in Computer Science and Automation

IO Input/Output

JPEG Joint Photographic Experts Group

LDR Low-dynamic Range

LUT Look-up Table

PFM Portable Floatmap

PGM Portable Graymap

PNG Portable Network Graphics

PPM Portable Pixmap

RGBE Radiance

RLE Run-length Encoding

SIMD Single-instruction/Multiple-data

SoA Structure-of-Arrays

STL Standard Template Library

TIFF Tag Image File Format

UI User Interface

VFB Virtual Framebuffer

52

	Introduction
	Preliminaries
	Dynamic range
	High-dynamic range
	OpenEXR format
	Alternative formats
	Radiance
	Portable Floatmap
	Tag Image File Format

	Related work
	HDRView
	qt4Image
	exrdisplay
	HDRSee
	LizardQ Viewer
	Moonlight HDR Viewer
	FastPictureViewer Professional
	IrfanView
	XnView
	Photosphere
	bracket
	Panorado

	Problem analysis
	Data producers
	Target audience
	Common users
	Power users
	Render farms

	Viewer implementation
	Custom functionality
	Corona Renderer means
	Graphical framework
	Image representation
	Image processing

	Evaluation
	Results

	Conclusion
	Bibliography
	List of Abbreviations

