
 

Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Bc. Ondřej Burkert
Connectionist Model of Episodic Memory for Virtual Humans

Department of Software and Computer Science Education
Supervisor: Mgr. Cyril Brom Ph.D.

Study Program: Informatics, Theoretical Computer Science (Artificial Intelligence)



Acknowledgements

I would like to thank my master thesis leader Mgr. Cyril Brom PhD. for his insight and the 
effort  he  made  to  allow the  completion  and  success  of  software  project  Pogamut  2  and 
consequently this work. I would like to express my gratitude to my friends Pavel Češka and 
Michal Bída who gave me the essential feedback on this text.

I hereby declare, that I wrote the master thesis autonomously using exclusively the sources 
listed in the bibliography. I approve its lending. 

In Prague at 16 April 2009 Ondřej Burkert 

2



Never say, that something is not possible. 
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Abstrakt: Cílem práce je návrh a implementace prototypu epizodické paměti pro virtuálního 
člověka. Tato paměť je inspirována dostupnými znalostmi o lidském způsobu vnímání běhu 
času a  fungování  lidské paměti  pro osobní zážitky (epizody).  V práci  shrneme relevantní 
poznatky z neurobiologie a kognitivní psychologie a na tomto teoretickém základu postavíme 
model  paměti.  Vycházeli  jsme z rozhodovacího mechanizmu a modelu  epizodické  paměti 
Peškové.  Rozhodovací  mechanizmus  je  založen  na  BDI,  teorii  afordancí  a  AND-OR 
stromech.  Epizodická  paměť  propojuje  stromy  časovými  ukazateli.  Stávající  paměťový 
systém  trpěl  nedostatky  stran  časově  specifikovaných  otázek.  Proto  navrhovaný  model 
pracuje s unikátním podsystémem pro vnímání času, který umožňuje realističtější ukládání a 
vyvolávání minulých událostí. Agent vybavený tímto modelem paměti je například schopen 
odpovědět  na  otázku,  co  dělal  minulý  týden  po  odpoledních,  apod.  Prototyp  byl 
implementován na platformě Pogamut 2. Pogamut 2 je napojen na prostředí komplexního 
spojitého 3D světa hry Unreal Tournament 2004, což nám umožnilo ověřit chování modelu ve 
složitém prostředí. Následně jsme provedli sérii experimentů. Výsledky ukázaly, že navržený 
model  opravdu  rozšiřuje  agentovy  kognitivní  schopnosti  chápat  časové  koncepty,  což 
následně umožňuje správně odpovědět přes vágní časovou specifikaci dotazu. Paměť má také 
limitovanou schopnost slévat podobné episody.
Klíčová slova: virtuální lidé, epizodická paměť, vnímání času

Title: Connectionist Model of Episodic Memory for Virtual Humans
Author: Ondřej Burkert
Department: Department of Software and Computer Science Education
Supervisor: Mgr. Cyril Brom, Ph.D.
Supervisor’s e-mail address: brom@ksvi.mff.cuni.cz 
Abstract:  The  goal  of  this  work  is  to  design  and implement  a  prototype  of  the  episodic 
memory for virtual humans. The memory is inspired by up to date research on function of 
human  memory  for  personal  events  (episodes)  and  human  time  perception.  We design  a 
model of memory based on this theoretical knowledge. We took as the point of departure 
episodic  memory  system  and  decision  making  system  of  Peskova.  The  decision  making 
system is based on the BDI, theory of affordances and AND-OR trees. The former episodic 
memory suffered deficiencies in the recall for time-cued questions. Thus proposed model is 
working with a unique subsystem for the time perception which allows for more realistic 
storage and recall of past events. The agent enhanced by this model can reply to questions like 
“What did you do last week afternoons?”. The prototype is programmed in Java using the 
framework  Pogamut  2.  Pogamut  2  is  connected  to  the  complex  continuous  3D world  of 
Unreal Tournament 2004 which allows us to verify the design in the challenging environment. 
We have conducted several  experiments.  The results  show that  the model  extends  agents 
cognitive abilities with a capability to understand socially established temporal patterns. That 
allows him to answer to the questions with a vaguely specified time information. Moreover, 
the memory has a limited capability to blend similar episodes together.
Keywords: Virtual humans, episodic memory, perception of time
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1 Introduction
The field of artificial intelligence draws often the inspiration from biology, psychology and 
natural sciences. Evolutionary techniques are based on Darwin’s theory, neural networks use 
the knowledge about signal  propagation in the brain and virtual  agents become more and 
more  plausible  and believable  thanks  to  discoveries  in  the  area  of  cognitive  psychology, 
sociology or neurobiology. We will pursue the research on virtual agents, more specifically 
we are going to introduce an enhanced model of episodic memory for them.

Intelligent  virtual  agent  (IVA)  is  an  embodied  agent  which  has  a  graphical 
representation in the environment.  Nowadays,  there are many applications  featuring IVAs 
including  commercial  games  [1],  serious  games  [2],  therapeutic  tools  [3]  and  virtual 
storytelling [4]. Users of those applications expect agents to behave in an intelligent way. 
They must be believable – they should be able to act in their environment in compliance with 
user expectations. The pursuit of believability (Loyall [5]) puts high requirements on IVAs. 
There are many subtasks to settle such as the problem of path finding, emotion modeling, 
linguistic modules, decision making systems, etc. Nuxoll’s comprehensive study [6] brings 
forward a role of episodic memory for IVAs. He stated that an episodic memory system can 
increase  believability  while  boosting  learning  algorithms  and  improving  agent’s  overall 
performance.

Episodic memory was first introduced in psychology by Endel Tulving in 1972 [7]. He 
divided our memory system into three modules – procedural memory, semantic memory and 
episodic  memory.  The  procedural  memory  represents  mainly  learned  manual  or  physical 
activities. We can throw a ball without thinking consciously about the exact hand movement 
and we can improve our throwing skills by repetitive exercises. The semantic memory keeps 
facts – all pieces of information which are not connected to a particular context. For instance, 
we know that New York has a lots of inhabitants but we have not counted them or we know 
that there are eight planets  orbiting the Sun but we have never seen them in person. The 
episodic memory on the other hand stores our personal experience and memories. It helps us a 
lot  in  our everyday life.  Our decisions  are often based on information retrieved from the 
episodic memory. We are able to find our home and work, recognize our family, colleagues 
and friends, retell what happened to us and learn lessons from our failures and mistakes.

As was discussed by Nuxoll [6], the IVA enhanced with a model of episodic memory 
will be apt to: detect repetition, distinguish what is important, tell stories, explain its behavior, 
predict the outcome of the action, etc. On contrary nowadays, agents are for most part scripted 
their responses are hard-coded thus their believability is limited because they behave in the 
same way all over again. Thus it appears that a model of episodic memory would be a great 
advancement in the research and use of IVAs. Moreover, the  episodic memory could help 
solve the problem with limited resources. We cannot keep the entire history of an agent in the 
memory as a log. It would be extremely time-demanding for retrieval and space-demanding 
for storage. That leads us inevitably to the question how to design and implement such a 
model.

The design and implementation of a domain independent model which would account 
for all features of episodic memory described in [6] would be a herculean task. Hence it is not 
an intent of this work to present the ultimate all-covering model of episodic memory but to 
advance current research.

We will follow up on the work of Peskova [8]. She introduced an episodic memory 
model which worked with a decision making system (DMS) based on AND-OR trees, theory 
of affordances [9] and the BDI (Belief, Desires, Intentions) [10] which is a widely accepted 
paradigm for the design of action selection mechanisms of cognitive agents. The AND-OR 
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trees are representing desires (goals) from BDI. Each tree represents a behavior for a goal. It 
defines a set of possible ways to achieve the goal by a hierarchy of subtasks and subgoals. 
The  activation  of  desires  is  determined  by  the  plan.  Beliefs  are  the  facts  which  can  be 
retrieved from the the memory.

We will provide a comprehensive presentation of the DMS later. The most important 
part of Peskova’s model was of course the episodic memory. It enhanced an agent with (a) the 
resource lookup mechanism which allowed him fast location of resources necessary for his 
actions  and  (b)  the  storing  and  retrieval  algorithm  which  allowed  for  autobiographical 
memory.  The  episodes  were stored using time pointers  which  defined  the exact  order  of 
actions in the past. We can imagine time pointers as a string weaved into the forest of AND-
OR trees. The agent was able to reply to questions like: “What did you do between time A and 
B?”. The recall was done by a look-up of the time pointer corresponding to the time A and 
then following the string of time pointers to the time B.

The mechanism has some deficiencies. The time information is exact (1). The result of 
a query is exactly what is stored in the memory (2) – like a video recorder – neither it is error 
prone (“I think I was studying yesterday afternoon, but in fact, it was yesterday evening.”), 
nor  similar  episodes  can  be  blended  (“I  was  studying  every  afternoon  two weeks  ago,  I 
remember some details but I can’t say to which day they belong.”). The time information does 
not decay (3) (“I can recall I was working a lot, but I’m not sure whether it was three or four 
days ago.”).

The proposed model should be able to deal with those problems. The problem (1) will 
be addressed by introduction of the time perception module. This module will enhance an 
agent  with internal  time concepts which will  cluster  time into longer  periods creating  the 
notion of morning, afternoon, etc. We will tackle problems (2) and (3) with a connectionist 
network between activities and time information (time concepts, days, weeks).

This  work  is  organized  as  follows.  Chapter  2  outlines  the  introduction  into  the 
psychological background of the memory in general, the episodic memory and the perception 
of time.  Following chapter 3 discusses in depth our motivation for the research,  expected 
outcome and the summarization of related works. Then, chapter  4 presents the model  for 
episodic memory, its key components and a reasoning about crucial design decisions. Chapter 
5 describes used environment, development tools and simulation specifics. Next chapter 6 is 
dedicated to the methodology used in experiments and the questionnaire inquiry we carried 
out  to  gather  a  set  of  usual  questions  for  an  agent.  Chapter  7  submits  description  of 
experiments, their results and the consecutive discussion. The work is concluded with future 
works (chapter 8) and conclusion (chapter 9).
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2 Psychological Background
The AI of IVA’s is  closely connected with neurobiology and cognitive psychology.  Even 
though we are not aware of a psychological model of human memory that would explain all 
phenomena and give a guidance for implementation, we can use some notions, metaphors and 
empirical evidence from human related research for the design of the model.

The origin of human memory compelled researchers from late 19th century and many 
different models and theories emerged from their research. For the sake of brevity, we are 
going to review only the latest models and notions we used.

A good starting point is the classification of memory. Psychology usually distinguish 
three different types of memory regarding its persistence. Those are sensoric, short-term and 
long-term memories. The sensoric memory keeps a snapshot of our perception before it enters 
into the short-term memory for processing – for instance, if we move a torch very fast in the 
dark we can see its trace though the light is not there anymore. The short-term memory stores 
information from last few seconds to few minutes.  For example,  if  someone address us a 
question while we are not paying attention, we can use this memory to recall the question and 
then respond to  it.  The information  from the previous  chapter  can be retrieved from this 
memory as well if we assume that the reader reads continuously. The least but definitely not 
last is the long-term memory (LTM). This system represents what we usually call “memory”. 
Humans  would  not  be  able  to  operate  in  everyday  life  without  it.  It  stores  all  important 
information like names, locations, skills or any other knowledge. We will now dig deeper into 
the LTM.

Fig. 1. Larry Squire’s [11] memory taxonomy which divides memory to declarative and 
nondeclarative parts.

LTM accounts for many different phenomena which suggests the presence of modular 
system (see fig. 1). Our main interest lies in the field of declarative memory thus we will omit 
the non-declarative memory and address directly to semantic  and episodic memories.  The 
distinction  between the semantic  and the episodic  memory was first  introduced by Endel 
Tulving  in  1972  [7].  In  short,  the  semantic  memory  represents  facts  while  the  episodic 
memory  represents  personally  related  events  and  experience.  Unfortunately  they  are  not 
disjunct. The answer to the same question can be retrieved using one of those or both. For 
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instance, we can remember certain semantic information thanks to an episode which helps us 
remembering it.

The retrieval from the memory can be either intentional – we are asked to recall some 
particular record – or unintentional – we recall a record just because some thought or stimulus 
triggered  it.  When  using  the  intentional  retrieval  we  often  approach  the  problem  by 
reconstructing the demanded record using a number of different cues [12]. For instance, we 
have left our glasses somewhere. We query our memory for the location of the glasses. The 
recall starts usually with the question: “Where have I put them?” which leads to “When was 
the last time I had them on?”, etc. That brings up an episode of us preparing to go to bed, 
drinking some fresh beverage from the fridge while leaving the glasses on the shelf inside. 
The time is often one of the cues supplied to the episodic memory for the query. The role of 
time will be discussed in detail in section 2.2.

Another compelling property of human memory is its capacity. There is an evidence 
[13] that humans can successfully recall memories which are more than 60 years old with a 
remarkable precision of time information as well as abundance of details related to it. Our 
memory system is able to keep a vast amount of semantic data as well as a variety of stories 
ranging from our childhood to yesterday.  Researchers tried to measure the capacity of the 
memory but there is no evidence so far which would find its limits. Moreover, it is difficult to 
test LTM as people often create false memories [14], which could be, for instance, phantoms 
of real memories, which were altered during some memory processes. We will speak about 
processes involved in the memory creation and consolidation in the section 2.1.

 Another question is whether we can draw some real implementable inspiration from 
human memory functionality. The neuroscience still cannot answer reliably the question how 
exacly are things stored in our brain. For instance, if we want to know, what should be the 
right  answer of  our agent  to some question,  a  neuropsychologist  would likely say that  it 
depends on many different factors like agent’s internal context, gender, emotions and age. 
Thus we can only use the phenomenological evidence of what our memory is capable of and 
draw inspiration from theories and experiments.

2.1 Episodic Memory

The episodic memory is a storage of personally related events and experience. It is a vital part 
of our memory system and we use it  in  our  everyday life.  It  is  the key to  many human 
cognitive functions (adapted from Nuxoll [6]):

● Sensing:
○ Noticing Significant Input – the ability to determine what is important  in the 

situation by its relative familiarity.

○ Detecting Repetition – the ability to notice that  something is happening again 
allowing then better outcome prediction for example.

○ Virtual Sensing – for instance, our ability to navigate in the environment is based 
on the  internal  representation  of  space,  that  allows  us  to  recall  where  a  street 
heading to etc.

● Reasoning:
○ Action Modeling – prediction of outcome of an action.

○ Environment Modeling – prediction of changes of environment.
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○ Recording Previous Success/Failures – helps to improve our future performance.

○ Managing Long Term Goals –  people  are  able  of  long term planning  which 
differs  them  from  animals.  The  episodic  memory  helps  keeping  track  of 
accomplished subgoals.

○ Sense of Identity – understanding own behavior in context of other people.

● Learning:
○ Retroactive Learning – learning from past experience.

○ Reanalysis of Obtained New Knowledge – relearning from an experience which 
outcome was altered by a recently acquired knowledge.

○ Explain Behavior – to retell past actions to allow for experience sharing.

○ “Boost” to Other Learning Mechanisms - the cognitive psychology provides a 
several techniques we can use while learning a lot of data, if we manage to learn 
them in some varied,  interesting contexts, we can expect better  retrieval  as the 
episodic memory stores them more reliably.

The  impact  of  the  full  episodic  memory  on  the  agent’s  behavior  is  enormous. 
Unfortunately, despite many theories and studies [15], there has not been established any all-
covering  theory  which  would  completely  explain  the  origin  and  functionality  of  human 
episodic memory. Nevertheless, we can exploit existing theories and use them in the design. 
We  will  shortly  review  theories  of  how  the  episodes  are  stored,  updated,  forgotten  and 
retrieved.

Psychological studies suggest that the storage of certain fact or episode is not done 
simply by coding its content into the brain. Firstly, there is a process which acts during the 
construction of traces for the episode in the memory. It alters a story while saving it. Bartlett 
(1932) [16] showed that different people recall  different details  from the same text which 
implies that they infused stored record with their  own schemata and structures. Secondly, 
there is a process which is active during the recall. It does not only reconstruct an episode 
according to the traces from its creation. It can work in the constructive fashion adding new 
information or altering existing information hence making it compliant with the current base 
of knowledge of the person. Alternation of memories can occur as well via interference. The 
interference happens when there are two memories competing for the same space, which can 
result in alternation of records as well as in the oblivion of weaker one.

There  are  two basic  theories  about  forgetting:  already  mentioned  interference  and 
extinction. The extinction theory asserts that the memory traces for the event slowly extinct 
over the time.

Forgetting brings forward another very important aspect of memory – the influence of 
contextual  information.  Many studies  [17]  showed that  people  recall  better  episodes  with 
richer contextual information. Moreover, those episodes persist longer. As was discussed in 
[18] people are able to notice and retain a remarkable quantity of details when they are in 
some  unusual  conditions  –  life-threatening  or  emotionally  extreme  situations,  etc.  Those 
contextual information as well as the apparently specific internal context helps maintaining 
the information.

Context cues are then used during the recall. We do not always query our memory for 
a certain record. It often happens that some memory occurs to us unconsciously on the pretext 
of the context we are in. For instance, if a pick-pocketer stole us our purse at a certain square 
then we enter the place again, it can trigger that episode and we will pay more attention to our 
possessions.
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One  of  the  contextual  information  as  well  as  the  recall  cue  is  the  time.  We  are 
particularly  interested  in  the  development  of  a  model  for  time-representation  and  time-
perception. We will discuss corresponding theories in the following section.

2.2 Memory for Time

We  have  stated  in  the  introduction  that  former  Peskova’s  model  has  some  deficiencies 
concerning  time.  More  specifically  agent  dates  things  exactly  or  rather  exceedingly 
accurately. He can say that something happened at 13:15, but he has no notion of ordinary 
temporal concepts like morning, afternoon or night. He does not have a human-like perception 
of  time.  Before  we submerge  into  the  proposed  model  for  modeling  time  perception  we 
should  review  known  theories  about  human  time  perception.  There  are  several  different 
theories (adapted from Friedman [19]). We will shortly review those as we are going to refer 
to them in the following text.

Distance-based Theories:
The strength theory is based on the notion that every event in our life has a strength that 
declines over the time through either decay or interference with the subsequent event. When 
we  query  our  memory  for  the  time  when  something  happened.  The  response  is  given 
according to the strength of a trace attached to the record.

The  chronological  organization  theory states  that  events  are  organized  in  the  order  of 
occurrence. We can use the metaphor of moving conveyer belt on which we put the event as a 
bag when we store it. Then the time distance of a record is guessed according to the distance 
on this belt.

Location-based Theories 

The time-tagging theory  presumes that each memory is  tagged with information about its 
emplacement in time. The time of occurrence is determined by retrieving information from 
this tag. That puts forward an interesting notion of landmark. A landmark is compliant with 
the time-tagging theory as it is an event for which we remember exactly the date and time. 
Landmarks are usually remarkable, often revised and retold events like a birth of a child, the 
end of the university studies, a wedding, etc. We use them often to anchor other stories in the 
flow of time.

The reconstruction theory does a side step from the previous theories saying that the linearity 
of time is mere illusion and the perception of time and recalls of exact times of memories are 
based  more  on  the  contextual  information  stored  along  with  the  memory  of  the  event. 
Friedman’s experiments [20] show that we use contextual information stored with the event to 
refine  our  time  estimates  using  temporal  patterns.  For  instance,  if  the  recalled  event  is 
featuring snow, we know that it happened in the winter narrowing months down to December, 
January, February and March. When we recall some story from high school studies, we know 
that we were 16 to 19 years old which helps determining the year. 

The supporting evidence for the reconstruction theory can be found in work of Larsen, 
Thompson and Hansen [21]. They developed the idea of cyclic precision providing evidence 
that people can often be very accurate in one cyclic scale (hours, days, weeks, months, years) 
while being wrong in another. For instance, people can remember exact time, day of a week 
and year for the event while being wrong on the month scale.
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Relative Time-based Theories: 
The order codes  are defining the order of different events. When combined with landmarks 
they can give another point of view on when something happened.

Conclusion.
Friedman  [18]  concluded  that  none  of  these  theories  can  consistently  account  for  all 
phenomena of human time perception thought it seems that our mind combines some of these 
theories together to get to the final time estimate for a past activity. Friedman even proposes 
the work-flow for the time estimate retrieval. 

We are not going as far as Friedman as we have still in mind a demand on simplicity 
for the time perception model for virtual agent. It is desirable that we conclude the work by 
the implementation of a working prototype. Nevertheless, there are some implications to the 
model  based on earlier-presented theories.  First  of  all,  people construct  time patterns  and 
concepts to help themselves locating events in the flow of time. Those concepts can be either 
days, parts of a day, seasons of the year, etc. Second of all, when people query the memory 
they search for different time-scales relatively separately which suggests to store different 
time-scales separately. Then the strength theory is a dead end if we want some accurate time 
estimates. On the other hand, since our agent does not have to be ecologically plausible we 
can use  the  analogy of  a  conveyer  belt  from chronological  organization  theory to  mimic 
forgetting (by discarding old bags).
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3 Motivation and Related Works
We  have  roughly  outlined  our  main  interests  in  the  introduction.  This  chapter  will  be 
dedicated  to  the  explanation  of  the  motivation  for  the  research  accompanied  with  the 
comprehensive description of the context of the work in the ongoing research. The recently 
created AMIS [22] group at the faculty of mathematics and physics of Charles University, led 
by Mgr.  Cyril  Brom Ph.D.,  is  working on the problem of  believable  virtual  agents.  That 
covers many different areas from AI, cognitive psychology, sociology and neuroscience and 
there are many possible research paths to follow in each domain.

One part of the problem is the memory in general. Nuxoll [6] argued in his dissertation 
that the episodic memory is a powerful instrument for IVAs enhancing them with many useful 
skills and abilities. There is just one problem. The definition of exact requirements on the full 
episodic memory (FEM) has not been established yet. Brom tried to address this issue in [23]. 
According to his findings the problem is twofold. Firstly, we cannot take the direct inspiration 
from  the  psychology  and  neurobiology  as  the  up  to  date  findings  do  not  provide  a 
comprehensive  and implementable  model  of  episodic  memory.  There are  a  lots  of  useful 
metaphors and evidence, nevertheless, we do not know how our episodic memory works. But 
we  can  use  relevant  findings  to  constraint  our  research  of  artificial  episodic  memory. 
Secondly, we pursue a goal of believable IVAs which should not be confounded with the goal 
of a faithful human simulation. Therefore we can think out of the box while trying to mimic 
properties of human episodic memory.

Unfortunately,  the  related  work in  the  area  of  artificial  episodic  memory is  rather 
scarce. Apart from the work of Nuxoll  and Peskova we have found only domain specific 
models like FearNot! [3] (a therapeutic application focused on helping bullied children) or 
work of Johnson (1994) [24] and Dodd (2005) [25], Ho [35].

Much more related work was presented by Peskova [8]. Actually her work is a direct 
predecessor of our research. Peskova designed and then implemented a prototype of an agent 
enhanced with the episodic memory. The agent was living in a simplified discrete 2D world 
composed of 9 interconnected rooms. He was performing planned tasks or activities which 
were triggered by interesting items. There were two main goals of the project: first was to 
show, that an agent enhanced with an episodic memory can perform better while locating the 
resources necessary for desired activity. Second goal was to enrich the agent with a capability 
to tell stories from his past. We will briefly describe the model (fig. 2).

The action selection mechanism followed widely used BDI notion (Bratman [10]). 
Agent’s  believes  were  obtained  from  the  memory  module.  Desires  were  modeled  by  a 
scheduler, which defined activation for each root desire. The agent was equipped with a set of 
available behaviors (AND-OR trees) to satisfy his desires.

The agent was ruled by a hierarchical reactive planning. Available behaviors (desires) 
were represented  by  AND-OR trees.  The  notion  of  AND-OR tree  can be explained  by a 
simple example. Let’s imagine that we want to eat. We have various options how to achieve 
the goal of eating  (the root  desire –  OR node).  We can go to  a restaurant,  we can cook 
something or just eat an apple. Each of those possibilities is represented by a  task –  AND 
node.  A task ends  successfully  if  all  of  its  subgoals  (OR nodes)  ended successfully.  For 
instance, we want to eat at the restaurant. That demands us to locate an appropriate restaurant, 
order  food,  eat  it  and  pay  before  we  leave.  Thus  an  AND-OR  tree  is  representing  a 
hierarchical decomposition of the goal providing agent with various routes how to achieve it. 
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Every  task  may  require  acquisition  of  some  resources (objects,  places)  before  it  can  be 
performed. The task which cannot be further decomposed is called atomic action.

Fig. 2. Architecture of Peskova’s agent – adopted from Brom [23]. The short term memory 
(STM) stores in perception field (PF) information about the perceived environment (ENV). 
The memory field (MF) stores results of memory queries (virtual sensing) from long-term 

episodic memory (LTEM) and long-term semantic memory (LTSM). The agent is driven by 
drives. The pre-active tasks are stored in the task field (TF).

The  competition  between  tasks  is  done  by  a  comparison  of  their  activities.  The 
activation can be either defined by the plan or by the attractiveness of an interesting item 
which triggered the action.  One task can be interrupted by another  more active task.  The 
interrupted task can be resumed when the interrupting task terminates or can fadeout if it is 
not used for some time.

The  most  intriguing  part  of  Peskova’s  work  was  the  long-term  episodic  memory 
(LTEM). The LTEM stores all trees which represent all possible actions, events. They are 
interconnected by  time pointers.  Time pointer  leads from one activity  (node of a tree)  to 
another and have the time of addition attached to it. The sequence of time pointers creates a 
string of time which is woven into the forest of desire trees. Moreover, the choice of AND-
OR trees as a representation of behaviors allows for forgetting unimportant details  of past 
activities (lower levels of the tree). The agent can then reply to simple time-cued questions 
like “What did you do between time A and B?”. The recall is effected by a location of the 
time pointer at time A and then following the string of time pointers to the time B.
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There  are  several  problems  connected  with  the  autobiographic  component  of 
Peskova’s LTEM. Firstly, time-pointers are weaved in the structure of AND-OR trees with an 
exact time information on them. As we know from the time perception theory we usually do 
not expect an agent to answer to questions like “What did you do yesterday at 13:15?“ but 
rather  to  answer a  question  which  include  a  vaguely defined  time pattern  like  afternoon. 
Secondly, the agent can forget details of an episode thanks to the hierarchical structure of his 
plans but he can never blend two similar episodes into one. For instance, agent is studying 
regularly every morning for a week as he is preparing for an exam. Few weeks later this 
should be blended into just one episode with less exact time information. Like „I remember I 
was studying every morning that week, but I can’t  recall  at what time I started each day. 
Thirdly, the time information does not decay over time. It is either there, exact as recorded, 
either  not  there  forgotten  with  the  whole  episode.  The  agent  cannot  reply  that  he  did 
something last week but is not sure which day exactly it was.

Sketching out the problem leads us ultimately to the solution which will be presented 
in the next chapter. In general our response to problems described in previous paragraph will 
be  to  enhance  the  agent  with  time  perception  which  will  consequently  allow for  desired 
phenomena of vague dating and forgetting.
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4 Model Definition
We have briefly summed up the theoretical basis and background for our model of episodic 
memory thus we can step forward to the model definition. This chapter will be dedicated to 
the description of the design of the agent and its episodic memory system accompanied with 
the discussion of important design choices.

The DMS of an agent was adapted from Peskova (see fig. 2 for model overview), 
reimplemented from Python to Java, debugged and then deployed in much more complex 
environment. The agent is driven by a hierarchical reactive planning. His behaviors – desires 
– are represented by a set of AND-OR trees and the action selection is done via competition 
between goals where the most active goal is executed. We will describe our adaptation of the 
model in the first section of this chapter. We should also note here that we have focused on 
the problem of episodic memory thus the elaboration of the DMS is limited to the extent 
necessary for our experiments.

Fig. 3. Episodic memory design outline. The context layer (top left) and cartesian layer (top 
right) are connected with concept nodes (center). Concept nodes are connected with AND-OR 

trees of desires (at the bottom).

The episodic memory is divided into two main modules – item memory and neural 
memory.  The item memory is  rather  simple  and will  be described  in  the  section  4.2.  Its 
purpose  is  to  enhance  an  agent  with  information  about  whereabouts  of  resources  (items, 
places, other agents) to speed up their lookup. The neural memory is much more complicated. 
In short, it is composed from three layers of “neurons” which are interconnected by weighted 
links (fig. 3). First layer consists of context nodes which describe agent’s internal or external 
state  (context)  and  cartesian  nodes which  represent  time  or  biorhythms  (their  activation 
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changes  regularly  over  time).  First  layer  is  connected  with  the  layer  of  time  concepts. 
Concept nodes are associating together particular context of agent with some period of time 
thus representing time concepts. Agent learns them automatically during the simulation. They 
provide him a vaguer notion of the time. They allows him to answer questions which contain 
for instance a part of a day (e. g. morning) as the time information.

The next layer  of nodes consists of AND-OR trees which are linked together with 
objects (items, places) and time nodes – either concept nodes, either nodes for days, weeks, 
etc.

Now  we  will  dig  deeper  into  the  model  definition.  First  we  will  introduce  our 
adaptation of Peskova’s DMS. Then we will present the item memory and we will conclude 
with the comprehensive description of time representation and the connectionist memory.

4.1 Decision making system

The decision making system (DMS) was adopted from Peskova (for more information please 
consult [8]). We will give here a brief introduction into its features and functionality.  It is 
based on the theory of affordances (Gibson [9]), the notion of believes, desires and intentions 
(BDI) and a hierarchical representation of desires by AND-OR trees.

Theory of Affordances.
An affordance is a feature of an entity (object, place) which defines for what actions we can 
use it. The theory of affordance is based on the observation of how do we locate and work 
with resources for our actions. When we observe surrounding environment, we do not treat 
items according to their physical characteristics like height, weight, volume, exact shape or 
color, but according to the set of possible actions we can do with them. For instance, if we 
want to eat something, we can look either for some particular object or for anything “eatable”. 
The eatability is then the affordance of apples, hot-dogs, lasagne’s, etc.

We can easily assign various sets of affordances to every item, place or agent which 
are present in the environment. When we apply this theory we do not only enhance an agent 
with a semantic information about his environment but it  also makes every extension and 
change to the environment or to the set of agent’s actions easier. The agent can successfully 
work in another environment if we define him a new assignment of affordances to resources. 
We can give him another item to use without the need to teach him how to use it. All we have 
to do is to provide the new item with a set of affordances.

Beliefs Desires Intentions (BDI).
BDI is a well-established and widely used paradigm for the design of cognitive agents. As the 
name suggests  it  involves  three  different  entities:  believes,  desires and  intentions.  Beliefs 
represent  the  informational  state  of  the  agent  –  his  beliefs  about  the  surrounding  world. 
Beliefs do not necessarily represent facts as they do not have to be correct. In our case beliefs 
are represented by the assignment of affordances to resources and locations of objects which 
can indeed change over time.  Desires mirror goals an agent want to achieve. Each desire is 
represented by an AND-OR tree. We model the priority of desires during a day by the day 
master plan. Intentions are desires to which the agent has committed. Therefore intentions are 
particular plans of how to achieve the goal. Those plans are not static as they are defined by 
AND-OR trees and agent can choose one of the possible paths to fulfill the goal. Moreover, 
the tree is infused with dynamically added intentions which are responsible for the retrieval of 
resources.
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4.1.1 Functionality of the DMS

First we will explain how AND-OR trees work, then we will proceed to the action selection 
and  the  work  of  short  term memory  (perceptive  field,  process  area  and  virtual  sensing), 
inventory and scheduler. We will conclude with an overview of the architecture.
AND-OR Trees.
Trees  are  used  as  the  representation  of  plans  which  lead  to  satisfied  desire.  They  are 
representing the decomposition of the goal into the hierarchy of sub-tasks. Following a plan 
means executing actions in the hierarchy defined by the tree. AND-OR trees are composed 
from AND and OR layers (fig. 4). 

Fig. 4. The general structure of AND-OR tree. The root desire – the root goal – can have 
several options (tasks) how it can be satisfied. Each task can be further decomposed into 
subgoals. The task terminates successfully if it accomplishes all subgoals, localize the 

resources (affordances) and executes atomic actions.

A  goal –  OR node  –  can  contain  several  tasks –  AND nodes  –  which  represent 
different possibilities how to fulfill it. The success of a goal means that execution of one of its 
subtasks succeeded. The goal fails when the agent had tried all available subtasks and they all 
failed.

AND  nodes  are  represented  by  tasks.  Each  task  can  contain  a  set  of  subgoals, 
affordances  and atomic  actions.  Three  conditions  must  be met  before the task terminates 
successfully. Firstly, all of its subgoals must succeed. Secondly, it must locate resources for 
all of its affordances. Thirdly, it must perform all atomic actions. For example, the task sleep 
has just the atomic action  sleep and the affordance  to_sleep_in. It will fail only if it cannot 
locate a resource with the affordance or if the atomic action fails and it will succeed in the 
other case (for more complicated example of a tree see fig. 5).

Localization of resources brings us to the Want goal. It is a special type of goal which 
is dynamically infused into the set of goals of a task due to the localization of its resources 
(affordances).  As  there  is  only  one  goal  being  pursued  every  moment,  it  looks  for  one 
affordance  at  the  time.  Want  contains  four  tasks  –  actions:  Search  Pocket,  Search 
Environment, Search Memory and Search Random. Those tasks are executed in the presented 
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order (which differs  from the action selection for general  goals).  First action looks in the 
agent’s inventory. Second turns agent around so it can notice the item in his neighborhood. 
Search Memory looks up occurrences of items with the affordance in the item memory. This 
query returns usually few places with different credibility and then agent runs to the most 
credible  place  (or  visit  places  with  credibility  higher  than  some  bias).  Search  Random 
searches  randomly the  environment.  Thus  affordances  represent  dynamically  added Want 
desires.

Fig. 5: Example of AND-OR tree for entertainment. The agent can either play computer 
games, do sports, read or play board games. For instance, if he chooses reading, he has to 

localize something to read (e.g. a book) and then he can read.
 

The Short Term Memory
The  short  term  memory  serves  as  a  storage  of  important  information  necessary  for  the 
execution  of  agent’s  actions.  It  has  three  parts:  the  perception  field which  contains  all 
resources agent is perceiving at the moment, the process area which holds the tasks agent is 
considering at the moment and the memory area which serves for the virtual perception.

The Perception Field.
The perception field is an entity responsible for keeping up to date the set of perceived items. 
It was shown by [15] that human can hold 7±2 words in the short term memory. We have 
used  this  result  to  limit  the  number  of  perceived  items  at  the  given  moment.  We  have 
implemented a mechanism which creates a perception filter that ensures agent is perceiving 
only a limited number of items at once. The probability that agent become aware of a resource 
depends on its attractiveness as well as on how much he needs it to accomplish the current 
goal. For instance, if he searches for a TV, the apple would have only its basic attractiveness 
but as soon as he starts searching for something to eat, the attractiveness of apple arises.
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Fig. 6. Example of the competition of activities of various root desires. The sleep ends and is 
followed by drinking. The activity of drinking drops as soon as agent drinks something. The 

lunch is disturbed by the drinking. Then agent chooses the most active activity – play sports – 
which is again interrupted by the more active drinking desire.

The Process Area.
The process area contains all tasks agent is considering at the given moment. Stored tasks can 
be either in pre-active state (they are about to be executed), active (in execution) or postponed 
(either  interrupted  by another  more  important  task,  either  postponed by their  subtasks  in 
execution). The activity of each task is derived from the activity of the root desire (fig. 6) of 
the tree it belongs to. New tasks are added into the process area when some new goal become 
active or when a new subtask is chosen. Tasks are removed either (1) after they failed or 
succeeded – which leads to the activation of its parental goals – either (2) they can fadeout if 
the agent is not choosing them for a long time.
The memory area.
The memory area serves for  virtual sensing.  It  contains results  of queries imposed to the 
memory during  the  search  for  resources.  Thus  it  supplies  agent  with  the  illusion  that  he 
perceives a resource which is in fact located somewhere else in the environment therefore he 
can go fetch it.

4.1.2 Action Selection Algorithm

The action selection algorithm operates over the set of desires (each represented by a 
tree) and the process area which contains tasks for consideration. Every iteration of the action 
selection should end with the execution of one atomic action (from the most active task). The 
action selection proceeds in following steps:

1. Update agent’s internal state (biological needs etc.).
2. Update activities of desires according to their activation functions.
3. Perceive – look around for interesting objects.
4. Choose the most active desire (from the root and pre-active desires).
5. If it is not already in the process area, add it there and select randomly a task by which 

it will be satisfied and add it to pre-active tasks.
6. Choose the most active pre-active task from the process area and execute it. 
7. Check if it did not lead to its success or failure.

1. If it did → rollback.
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As we are choosing new task/goal, we leave its parental task/goal postponed, hence it 
will not be considered for execution. The rollback can lead to failure or success of the whole 
tree. When a task fails, it means that parental intention – goal has to choose another task to try 
to satisfy itself, if there is not any left, the goal fails and the failure can propagate up to the 
root.  Similar  mechanism works  for  the  success  of  a  task/goal.  For  more  details  see  the 
documentation.

4.1.3 Scheduling

Agent is not executing the same plan for a day all over again. He is enhanced with a simple 
scheduler which processes agent’s  life schedule. The schedule is specifying what actions he 
would like to do, which day of week he would like to do them and the probability that he 
would  actually  schedule  them in  the  particular  day plan.  The  scheduling  proceeds  in  the 
following fashion:

1. Schedule basic activities – eating,  sleeping,  hygiene.  These goals are creating the 
frame for agent’s day. The day start is counted based on agent’s alarm clock. As we do 
not eat everyday on the same time each activity is dispersed a little around its usual 
start. In general, agent wakes up between 7 and 9 a.m., takes a breakfast. He takes a 
lunch around the noon and takes a dinner around 7 p.m. He goes to bed at midnight.

2. Schedule regular activities – the frame of a day from the step 1 provides us with 
three free intervals between the basic activities. Agent’s life schedule contains entries 
which specify the activity, part of a day, day of a week and the probability, that agent 
will do it. We schedule agent’s regular activities for a day according to those entries.

3. Fill  up  the  free  time –  last  step  serves  to  fill  the  gaps  in  planning  by  either 
entertainment, clean up, study, etc. A gap stands for at least one hour of free time. For 
example, agent will go to school after the lunch. He has only one lecture. That leaves 
him with three hours of free time before the dinner, thus he will play computer games.

There are few reasons why we plan agent’s days this way. Firstly, we want to have an 
agent that has a defined lifestyle – we can define a notion of ordinary day for him. The regular 
lifestyle should help him with the formation of time concepts. Secondly, we want to account 
for a variability as well thus the actions do not start every day at the same time. Thirdly, some 
actions  are  executed  just  occasionally  creating  significant  differences  between  days.  The 
example of the resulting day simulation is depicted on the fig. 7.

Another aspect of scheduling is the scheduling of desires for biological needs. We 
drew inspiration from introspection and decided to implement a model for biological needs. 
Hence agent has internal biologic variables for thirst, hunger, etc. The value of those variables 
determines the activation of corresponding desires. When such a desire becomes more active 
than other desires in consideration agent starts executing corresponding plan to satisfy the 
biological need. We perform the evaluation of the status of biological needs approximately 
every 20-25 minutes to prevent over-exceeding disturbance created by dynamically infused 
intentions.  Most importantly this model  helps with the creation of agent’s  context  for the 
episodic memory and it allows us to omit the planning of goals satisfying biological needs as 
they can be planned dynamically. 
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Fig. 7. The log from simulation of one day in agent’s life. It shows only executed 
atomic actions but it gives a notion about the way agent is simulated. Approximately on third 
of the actions is triggered by dynamically added intentions (drinking, shower, urination). The 

scheduler is responsible for the rest. 

4.2 Item Memory

Agent is performing a lots of various tasks and most of those demand one or more resources 
(prerequisites) before they can be performed. A resource can be in general anything and agent 
is  constantly  facing  the  localization  problem  when  obtaining  resources  for  his  actions. 
Therefore agent needs a representation of space or some memory for resources. This work is 
focused on the episodic memory thus we will model  the memory for items in scarce and 
simple fashion.

The item memory is  storing every item,  place  and agent  he  has  met.  It  stores  an 
additional information with each record about the last time he saw it, how many times he 
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found it and how many times he failed to find it on the location. Those information are then 
used in the simple formula:

credibility=2∗ found−missed ∗10seen (1),

for determining the  credibility of the record. For instance, if the agent saw the item on the 
particular place twice, then he did not find it there three times and he passed by it 10 times, 
the resulting credibility is (2*2 – 3)*10 + 10 = 20%. 

The agent  queries item memory for items of desired affordance,  sort  the result  by 
credibility in the descending order and visit obtained places.  The counters assigned to each 
item could grow beyond all  measures  thus we apply a normalization and decay on those 
records. Each midnight seen value is decrease by 10, found and missed are decreased by one. 
If the credibility decreases bellow 5% or if the last update of the record is older than a day, the 
entry is discarded.

4.3 Time Representation

People do not perceive time as a linear homogeneous continuum. They form various time 
patterns  and  concepts  to  be  able  to  date  past  memories.  The  exact  algorithm  which  is 
responsible for their creation is unknown. We will try to develop a mechanism that would 
consequently enable agent to learn time patterns. We believe that if we enhance an agent with 
a better  time perception we will  also enable him to provide more believable  responses to 
questions concerning his past.

Firstly,  we would like to account for a problem of exactness of the previous time-
pointer based model of episodic memory. The agent needs a way how to perceive and then 
describe the time more vaguely. We propose a model that represents time concepts as nodes 
of a neural network. The concept nodes start as anonymous nodes connected with nodes for 
agent internal state – context nodes – and nodes for the biorhythms or time flow – cartesian 
nodes. Weights of interconnecting links are set to random values and the value is then altered 
via  Hebbian  learning  mechanism.  Consequently,  after  few  “days”  of  simulation,  time 
concepts should emerge.

Secondly, we would like to solve the problem that the previous model was not error 
prone. It reflected exactly what was stored and what was stored was exactly what happened. 
We would like to account for that on different levels – time scales. For instance, temporal 
concepts from preceding paragraph will blur time information on the scale of minutes and 
hours. We propose a similar mechanism for days which would then make agent remember 
older information with a lower precision.

The section is organized as follows. We will represent the memory for time concept 
consolidation with all its components and features, then we will continue with a section about 
the connectionist memory.

4.3.1 Neural Network for Parts of a Day

The time perception model constitutes of a neural network with two layers (fig. 8). First layer 
consists of context nodes (CX) and cartesian nodes (CA). Second layer is formed by concept  
nodes (CP). Hence the network is a tuple (CA, CX, CP, MCX, CP, MCA, CP, f) where MCX, CP  and 
MCA, CP are matrices of weights between  CX,  CP and  CA,  CP respectively.  f is the sigmoid 
function which puts the activation to the interval (0.0, 1.0). CA and CX nodes serve as an 
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input for CP nodes. CX mirror agent’s internal state as well as its external context. CA are 
activated along with the flow of time.

Fig. 8. Learned neural network for parts of a day. There are in the top left (yellow circles) – 
context nodes, in the top right (green circles) – cartesian nodes and on the bottom (red circles) 

– concept nodes.

4.3.2 Context Nodes

Context nodes represent one side of input into  concept  nodes.  They mirror  the context  in 
which the agent is at the given moment. There are about 20 of them in the current model (see 
Appendix  B  for  complete  list).  Their  activation  range  is  between  zero  and  one.  The 
mechanism which is counting the magnitude of activation depends on the type of a context 
node. There are three basic types: biological, external and internal. Biological context nodes 
represent  state  of  agent’s  biological  needs  – e.  g.  hunger,  weariness,  thirstiness.  External 
context nodes stand for the state of environment – light outside, snow on the ground, sunset, 
sunrise etc. Internal nodes reflect what is he sensing or doing or what he was doing recently.

Biological Needs.
Agent contains a very simple model of biological needs which takes care of the simulation of 
natural  drives like the urge to go to the bathroom from time to time, take a shower, drink 
something or take a rest. 

The model keeps up to the date variables determining how thirsty, hungry, dirty, tired 
agent is. The update is called every round of the logic and rises those values. The activity of 
the corresponding context node is counted simply from the bias for the biological variable and 
its value. The activation ranges between 0.0 and 1.0. When a biological need become urgent – 
high value – it can be satisfied by the corresponding action. This action is dynamically added 
to agent’s  plan with activation proportional to the activity of the context node.  The agent 
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considers addition of dynamic actions approximately every twenty to thirty minutes. When 
the  action  succeeds  the  biological  variable  is  restarted  which  renders  the  corresponding 
context node inactive – e.g. hunger is deactivated by successfully accomplished eating.

Moreover,  as  our  weariness,  hunger  etc.  don’t  grow linearly  and sports  and  other 
activities can rise them faster, we have introduced a way how to change the speed of growth 
of the biological variables during the simulation.

Biological context nodes and the whole concept of biological needs improves agent’s 
believability and helps to make his daily plan more real. 

External Context.
External context nodes represent the state of environment that is not influenced by the agent. 
In the case of our prototype those are supplying him with information about night and day and 
sunrise and sunset. Of course in some more elaborated scenario those can represent anything 
relevant  like  a  snow  on  the  ground,  outside  temperature  or  some  abstraction  of  the 
surrounding environment.

Internal context.
Internal  context  nodes  express  agent’s  internal  state.  That  is  a  very  vast  domain.  Our 
prototype is working with contexts like excitement or work (meaning an activity we have to 
do). The activation of internal context nodes is triggered by a certain atomic action and the 
magnitude of activation is hard-coded. We can connect at this point the emotional model.

4.3.3 Cartesian Nodes

The cartesian nodes represent parts of the day-time continuum. We can look at them as on the 
time nodes which fire depending on how far is the current time from their peak time. The 
cartesian node is defined by a triple  (peak,  height,  width).  The activation of each node is 
defined by a Gaussian curve with the peak aligned with the position of the node on the time 
axis (peak of the node). For instance, noon has its peak at 12 o’clock and its width is about 
one hour, the height is 1.0. We can view the layer as watches with a 24-hour watch face where 
nodes are situate,d for instance, at the place of hours (or at every 5 minutes) (see fig. 9). The 
activation travels around those nodes like the big hand on watches. The activation of node is 
counted based on its Gaussian function:

activation jt=height  j ⋅e
 t− peak  j 2

width j (4.1)

counts the activation of the cartesian node  j in the time  t. The activation is highest 
when the “hand” points into the peak of the node.
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Fig. 9. Activation (the Gaussian curves) of the cartesian nodes (black dots on the perimeter).

Afterwards  we  can  think  about  introducing  a  hierarchy  of  those  biorhythms  by 
extending them with nodes for longer periods of time like few hours together, days of a week 
etc. This extension could then create differently grained concept nodes which could represent 
entities like “Monday morning” or “ordinary day afternoons”. We have kept in mind our main 
objective thus postponing this course of research.

4.3.4 Concept Nodes

Each concept node is representing some period of time and the context agent is in during that 
period. Therefore it is aggregating together a few context nodes and a few cartesian nodes.

Concept  nodes are connected with all  nodes from previous layers.  Those links are 
weighted and they are represented by two matrices, one for context-concept links, another for 
cartesian-concept  links.  Weights  are  randomly  initialized  from the  interval  (0,  0.2).  The 
activity of all concept nodes is calculated by following steps:

1. RCX=V CX⋅M CX , CP , where RCX is a vector with partial result for context nodes, MCX, CP 

context-concept weight matrix, VCX active context nodes.

2. RCA=V CA⋅M CA ,CP , where RCA is the vector with partial result for cartesian nodes, MCA, CP 

cartesian-concept weight matrix, VCA the vector of active cartesian nodes.
3. R=RCXRCA , where R contains activations for concept nodes in the given step.

The most active node is then linked to the action which is performed at the moment 
and to the item/place in use but more about that later. Now we will focus on the learning 
mechanism of the network. We use the Hebb’s learning rule (adopted from Dayan, Abbott 
[26]):

w
w
t

=u (4.2)

where τw is a time constant at which the weights are updated (in our case every step of 
the logic),  ν is  a  vector  of  weights  and  u is  a  vector  of changes.  The rule  says  that  the 
simultaneous pre- and post-synaptic firing increases synaptic strength. Hence we strengthen 
links between co-activated nodes.
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We have modified the learning rule. The weight of a link in the next step is:

v t1= f  f −1v tc  (4.3)

where f is a sigmoid function. Thus the stored weight is actually the direct activation 
of the link (when multiplied with the incoming activity).  The link is  strengthened by the 
addition to the value from which is counted the activation for the next step.

As Abbott points out, solely strengthening would never lead to the stable state of the 
network. One way to stabilize Hebb’s rule is to introduce some form of weight normalization 
which is following the notion that a post-synaptic neuron cannot support more then a limited 
sum of synaptic weights. Then the increase of one weight leads to a decrease of another. We 
have chosen the subtractive normalization with non-negative weights of links. In compliance 
with Dayan, Abbott [26] the formula is following:

w
w
t

= u−n⋅un
N u

(4.4)

where n is a vector with all components equal to one and Nu is a matrix of ones. The 
normalization is applied on both types of inputs to the concept nodes ensuring that there is a 
limited weight count from either context nodes either cartesian nodes side.

We will present results obtained from learning in the chapter 6, now we will conclude 
this chapter with a specification of the connectionist memory.

4.4 Connectionist Memory

The connectionist memory is the key module of our episodic memory system because it is 
there where the episodes are stored. It stores various entities which are linked together by 
weighted links. The model is designed for easy extensions thus we can interconnect virtually 
anything with other nodes. At present, we are linking together time concepts, days, AND-OR 
trees and items. We can link with those as well emotions, abstractions of agent’s internal state 
or any other representation of contextual information we want to store along with the episode.

There are several questions which must be answered before we can implement such a 
system:

1. How exactly do we link entities?

2. How do we select the right set of entities to link together?

3. In what structure should we store links?

4. How can we count or estimate the interestingness of an episode or its part?

5. How can we mimic forgetting?

6. Can we really blend episodes?

We will try to give answers to those questions in the following text.

Linking.
First observation we made was that we cannot work with the links in the episodic memory as 
with the links of the time network. The weights of the time network are updated every step of 
the logic. If we do the same with memory links there will be very strong links for long lasting 
activities which would eliminate any short yet  interesting event. Thus we have discretized 
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actions and add or strengthen links only when there is a change in the situation. Links are 
strengthen in compliance with Hebb’s learning (equation 4.2).

That leads us to the question 2. We need to choose right entities to define the episode. 
Fortunately we can use some features of the DMS. When agent executes an atomic action it 
means  that  he  has  chosen  a  path  through the  tree  of  the  most  active  goal  and  found all 
resources necessary for the execution. All those information are stored directly in the tree. 
Hence we know what particular item he is using, what is the root goal etc. Therefore we 
collect all intentions (goals) and tasks from the bottom of the tree to its root and add other 
entities we want to link with the action like days, items and the most active concept node at 
the moment.  All items in the  resulting set are interconnected by links – each item with all 
other items (fig. 10).

Fig. 10. The visualization of the part of the connections between the nodes. Yellow lines are 
links between items, tasks, atomic actions, goals, and concept nodes. Green lines represent 

connections with a day node (the node for “three days ago” at the moment).

The set of active nodes evolves even within the same episode. For instance, the most 
active concept  node changes, agent starts  execution of another  subgoal etc.  If  we link all 
nodes  together  again  whenever  something  changes  the  weights  will  depend on  undesired 
factors like the number of children of the node. Hence every time we want to add a new link, 
we check first if the same link was added the same day and do not add it if so. We also forbid 
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multiple  strengthening  during  a  day  as  it  could  give  an  unwanted  attention  to  repetitive 
actions. Hence the strengthening of the particular link occurs at most once a day.

The algorithm for link-strengthening is:

1. Collect all active linkable entities – the day, the most active concept node, items in 
use, actions and intentions from the tree which are on the path from the atomic action 
in execution to the root.

2. For each possible link between entities in the set:

3. Verify if the link does not exist.

4. Strengthen the link between the nodes in the set.

Storage.
We have some options for the storage of links to consider. The first apparent idea would be 
the matrix. There are many nodes but the resulting matrix of edges is very sparse. Hence the 
matrix is not appropriate fit for our requirements. We have chosen a straight-forward solution 
which stores links to other nodes directly in the node. There are practical reasons for this 
decision.  It  enables  us  to  search  swiftly  through  the  structure  and  we  can  easily  define 
additional rules for different types of nodes and we can perform various queries.

Days.
Another issue to address is the problem of storing many days. Up to now, we have a structure 
which can keep information about yesterday. When we start extending it with nodes for days 
we have account  for the fact  that  days  are different thus it  might  be necessary to extend 
further the structure. There are three approaches we can consider.

Single Structure.
The easiest solution would be to store links for time concepts in the same structure no matter 
the day. When we add/strengthen a link we just check whether the same link was not stored 
the very same day. The link can be indeed strengthen every day thus we have to solve the 
problem  with  weights  that  are  rising  beyond  any  measures.  We  use  the  subtractive 
normalization from equation 4.4 to normalize the total amount of weights from one node to a 
certain bias.

The structure does not demand much of resources. There is an upper limit  for the 
number of links between the concept nodes, events and resources and there is a set of links for 
each day. But we expect the structure to lose its capability of answering questions about past 
events. If we query it with a part of a day and a remoter day, it will only return the usual 
activity of that part of a day using a day cue as a clue to decide between multiple activities 
which belong to the same part of a day.  We will test this hypothesis  in the chapter 7. If 
verified it renders this structure useless. But since the structure can retain the image of the 
ordinary day, we can keep it for future use. 

Multiple Structures.
We have reasoned that one structure for all  days  is not enough hence we have developed 
another model featuring multiple structures – for each day one separate structure which holds 
links between CPs, events and resources. That way we store all information about the day and 
then,  using a conveyer  belt  metaphor  from the  chronological  organization theory for time 
(chapter 2.2), we put it  all as a bag into the past and create a new clean structure for the 
following day. 
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This approach solves one problem and rises another – the forgetting. We cannot keep 
all the information at once in the memory.  Moreover, we do not have to as people do not 
remember every detail  from the past either.  Thus we have introduced a simple forgetting 
mechanism which is based on the multiplication of weights by a coefficient λ < 1.0 until the 
weight reaches certain bias and the link is discarded. If we combine this approach with a 
slower decay of links for days we can get a memory which remembers relatively accurately 
last  two weeks (depends on the value of  λ) and then it  remembers only important  events 
which happened on single days.

Combined Algorithm.
We have denoted at  the end of the description of the single structure that  we can use its 
properties later. We are working on the prototype of the model for episodic memory thus the 
issue of used space is not our main concern but it will be in the long-term perspective. We 
propose to combine the two algorithms and exploit  their amenities while eliminating their 
downsides. The combined algorithm stores both structures which provides us with at least two 
possible ways for lowering episodic memory space demands. First, every time we want to add 
a link to a day structure, we can check first if it is not present in the ordinary day (single 
structure) and then add only a link from the day to the event. Hence we are keeping in the day 
structure only interesting events and the single structure stores regular events. Second, we can 
forget details faster while relying on the ability to reconstruct at least some story based on the 
ordinary day. We are going to provide detailed comparison of the first two algorithms in the 
chapter 7.

Estimating Interestingness of an Action.
Current problem of the model is that links in the multi structure model are weighted but they 
weight all the same as they are strengthened only once a day. The mechanism that evaluates 
interestingness of an action is missing.

We can think of a few solutions to this problem. One of the elegant solutions would be 
to use the output of some model of agent’s internal state which could include emotions, for 
instance, and would produce an excitation coefficient. The weight can be then multiplied by 
the coefficient. Another way how to do it would be to annotate actions and intentions with an 
interestingness property. But that would be hard-coded ergo more demanding for the designer. 
Then there can be an external mechanism which would count the interestingness according to 
the output of the memory. Or we can try to deduce the interestingness from the differences in 
the context of the new episode.

For the present we have implemented a mechanism for the interestingness of actions 
on  the  day  scale.  We  presume  that  if  an  action  does  not  happen  every  day,  it  is  more 
interesting than other actions. Thus when we connect a node with a day we check first if there 
are same links for previous days. The strength of the new link is determined by the algorithm:

newWeight = 1.0;
for (int i = 1; i < 5; i++) {

if (linkExists(link, days.get(i)) {
newWeight *= i / 5;
found = true;

}
}
if (!found) {

newWeight *= 2.5;
}

where days.get(i) means the day for i days ago. Thus the new weight of a link is lower 
if the activity repeats every day and higher if it is rare.
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Multi-days.
We are left with one question unanswered. Question 6.: “Can we blend episodes?” We should 
first define what is meant by blending. Two episodes blend into one if they loose the time 
information on some scales. For example, if an agent works on Monday afternoon and then 
works on Tuesday afternoon, he can remember that he worked in the afternoon on both days 
creating a new episode for the two-day time scale. The link from this new episode will be 
stronger than any of the two links to the separate days. Consequently one-day traces will be 
forgotten faster than the two-day one leaving agent with a memory of himself working on 
some day from the two, maybe on both. The notion of two-days can be easily extended to 
three-days, weeks, etc. The advantage from the implementation point of view is that we do 
not need to define new mechanisms for multi-days and use the current one for days. Multi-
days require a bit more elaborated algorithm for querying though.

There  are  other  possible  improvements  and enhancements  to  the episodic  memory 
module that we can think off. We will list them here for the future reference: 

● We can assign a coefficient to various types of links (depending, for instance, on the 
types of nodes they are linking together). The coefficient will be then used during a 
learning/link-strengthening resulting in a way how to manage the lifespan of different 
types of links. For instance, links with concept nodes can deteriorate faster then links 
with days. 

● Tweak the parameters. There are many parameters that could be tweaked – the link-
decay ration, the limit of weights for a node in the single structure, decay of days, the 
shape of the function for decay etc.

4.5 Conclusion

We have designed a connectionist model for episodic memory. The model achieves presented 
objectives:

1. It enhances agent with the notion of social and biological time concepts like afternoon 
and evening enabling him to answer questions which contain such cues and reply to 
questions using these patterns.

2. It does not store the information in the exact manner thanks to the time concepts.

3. It can blend similar episodes.

Nevertheless,  the  design  hides  a  trade-off.  The  memory  system  is  more  space 
demanding that would be a simple log of agent’s actions but the demand is closely linked with 
the settings of links’ decay. The forgetting mechanism prunes records and we can get lower 
requirements after several days.
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5 Methods
The following chapter is dedicated to the description of the environment for the agent, used 
integrated  development  environment  and some specifics  of  the  simulation.  The  preceding 
prototype  of Peskova showed that  the DMS works properly in the discrete  simplified 2D 
world where agent can reach for items instantly, perceive them when he enters the room and 
move without  dealing with path-finding problems.  To take another step forward we have 
decided to implement the prototype in a complex continuous 3D environment which would be 
closer  to  the  usual  environments  for  IVAs.  The  successful  implementation  in  such  an 
environment will show that the DMS and memory work in a real-time applications as well as 
in the real worlds which are compliant with laws of physics. Hence we have searched for a 
platform that would allow for fast prototyping of the virtual human in some world-like 3D 
environment.

We  have  chosen  the  platform  Pogamut  2  [27].  Pogamut  2  is  the  only  freeware 
integrated development environment for virtual agents in the complex environment on the 
market, see Burkert et al. [28] for detailed discussion. Moreover, it provides developer with 
some effective tools which can facilitate the development.

5.1 Unreal Tournament 2004

As we are using Pogamut 2 for the development of the prototype implementation, we have to 
use Unreal Tournament 2004 (UT2004 [29]) as the environment for the agent. UT2004 is a 
first-person shooter 3D game. It provides us with a complex environment with a continuous 
time flow. The agent is making decisions in steps on some frequency of course but he has a 
limited time to decide what to do next (to do one iteration of the decision making system).

Fig. 1: Eating agent in the UT2004. 
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The game is supplied with an editor which permits easy modification of existing maps 
(locations) and creation of one’s own. Thus we can save time using the abundant on-line 
source of maps created by the community of players, picking up the most convenient one and 
modify it.

5.2 Pogamut 2

Pogamut 2 is  the IDE for development  of IVAs. It  has three main  components  (fig.  11): 
Gamebots2004,  Client  (abstraction  of  agent),  and  IDE.  The Gamebots2004  are  managing 
export of information from UT2004 and reception and execution of commands. The Client is 
handling the connection to the server, parsing messages  and providing libraries  of atomic 
actions and basic sensors. Netbeans™ [30] plug-in supplies us with the IDE. Not only it is an 
IDE for Java but it contains as well some extensions for IVAs development like the server 
controller, log viewers or introspection. For more extensive description see [31].

Fig. 11. Overview of the architecture of the Pogamut 2. UT2004 and Gamebots2004 can run 
on a separate machine (server). The information about the environment as well as commands 
sent to the environment are processed by a parser which translates them to/from Java objects. 

The agent is managed by the IDE.

The only significant thing that is lacking in Pogamut 2 is a better support for non-
violent scenarios and storytelling. So far it is not easy to add new items and use different 
graphical models for agents. Those issues will be solved in the new version along with a 
connection to other environments. Furthermore it is not as important as we are working on the 
prototype hence Pogamut 2 is sufficient for us.

5.3 Lifestyle

Our main goal is to implement and test a model of episodic memory for human-like scenarios, 
which implies that we cannot test the model on some labyrinth-style experiment but rather on 
an agent who is “living” in the ordinary world. Thus we need to define a  lifestyle or rather 
several lifestyles for a comparison and then examine how is the model behaving.
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The lifestyle has to be compliant with following constraints:

● Relatively monotonous life with regularities.

● No sleeping during the day.

● Three reasonably distributed meals per day (exact start times depend on the time agent 
wakes up)

● Breakfast starts between 7 a.m. and 9 a.m.

● Lunch starts between 12 a.m. and 2 p.m.

● Dinner starts between 6 p.m. and 8 p.m.

● School/work activities should be scheduled in the morning. Sports, culture and other 
entertainment should be scheduled in the afternoon and in the evening.

● About 8 hours long sleep.

● Hygiene twice a day in the morning and in the evening.

Our main objective there was to give the agent some patterns he can recognize and use 
for  the  formation  of  concept  nodes.  The  agent  without  any  day  frame  would  live  only 
according to his biological needs taking a nap when tired, eating when hungry and killing the 
time by random activities in the meantime.

5.4 Simulation – Scenario Description

The simulation was conducted on a laptop. We modified the map DM-Crash – one of the 
original maps supplied in the UT2004 distribution (fig. 12). We used three different lifestyles 
which varied in the timetables of activities (see tab. 1 for illustration), the alarm clock and 
types of activities. The complete list of items, their affordances as well as plans can be found 
in the documentation.

hours Mo Tu We Th Fr Sa Su
7 Breakfast Breakfast Breakfast Breakfast Breakfast Breakfast Breakfast
9 Work Work Work
11 Work Work Work
13 Lunch Lunch Lunch Lunch Lunch Lunch Lunch
15 Work Work Work Work Work Work Work
17 Work Work Work Work Work Work Work
19 Dinner Dinner Dinner Dinner Dinner Dinner Dinner
21 Theater(0,7) Movie(0,2) Theater(0,3) Movie(0,8)
23 Theater(0,7) Movie(0,2) Theater(0,3) Movie(0,8)

Tab. 1. An example of a week plan of an agent. The number in brackets represents the 
probability that he will perform the task.
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Another aspect of simulation is the frequency at which agent is making decisions and 
the speed/time of simulation. Firstly, we are limited on the side of the environment. UT2004 
or more specifically Gamebots2004 are providing us with information updates every 250 ms 
thus it is useless to use a frequency higher than 5 Hz (5 decisions per second). Secondly, we 
have to give an agent enough time to move between places and items as it is not an instant 
action any more. Thirdly, we have to consider a plausible conversion between the game time 
and the real time. As suggest [32] human beings are making decisions approximately every 
3s. Taking into an account the 5 Hz limit it leaves us with a simulation time for a day equal to 
96 minutes. That would mean that a simulation of a month (a usual length of an experiment) 
would take two days. As there were plenty variables to tweak and many different research 
paths and options to try out we have decided to increase the time per decision up to 15 and 30 
seconds.  Nevertheless,  the  program is  able  to  run  with  all  different  settings  of  time  per 
decision.

Fig. 12. Disposition of places in the map used for simulation.

Last but not least to mention is the lifespan of agent and biological constraints. The 
lifespan of agent is in weeks. We have successfully run the simulation for 70 agent’s days but 
the usual length of an experiment is usually 20 agent’s days. The agent is not exactly plausible 
from the biological point of view. He gets tired, he feels thirst and hunger, but he will never 
die because of it. It will only cause very high activation of corresponding context nodes.
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6 Methodology for Model Evaluation
We have designed and implemented the model described in chapter 4. Consequently we want 
to validate the model using a set of experiments which test its capabilities. This chapter is 
dedicated to the description of the mechanism which allows for timezone traveling and better 
concept node quality verification, the questionnaire which helped with creation of the set of 
questions agents are usually asked and the outline of the querying mechanism for the episodic 
memory.

6.1 Greenwich Mean Time (GMT) – Timezone Shifts

We were constantly facing the problem of verification of the quality of time concepts during 
the development cycle.  The issue was in the metrics or method which can determine that 
concept nodes are learned properly. Thus we propose the timezone experiment. The agent is 
traveling between timezones. He uses the time network to synchronize his internal clocks with 
the real time. The premise was that if concept nodes actually represent some time period, 
agent should be able to adapt to the new timezone.

The learning of timezone shifts proceeds in the following schema. The agent starts 
simulation in the initial timezone (GMT 0). He lives according to a certain lifestyle. First, the 
time concepts are learned via time network. Then the time concepts are used to synchronize 
internal clocks with the real time. When the agent moves to another timezone while living to 
the same lifestyle his internal clocks should resynchronize with the new real time.

Hence the agent has its own internal clock which indicates him the time he thinks it is 
at every moment or more specifically the timezone he thinks he is in. Using the analogy of the 
ball-bearing, agent’s internal (thought) time is the internal ring (fig. 13) while the real time is 
the  external  ring.  Those  rings  are  turning  around together  making  one  round a  day.  The 
relative positions of the two can change – mainly by the change of the time zone (fig. 13 – 
middle). Now how do the internal ring discovers that the external has shifted? It does not, but 
it is slowly synchronized with the real time until they are aligned again (fig. 13 – left).

Fig. 13. Illustration of the synchronization of inner circle (thought time) with outer circle
(real time) which follows the change to the timezone +9 GMT.
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Synchronization.
First the internal time has to go through the learning phase. In this phase agent is “looking 
always at his watches” and is ignoring the internal time. Learning algorithm is using back-
propagation of the activity from concept nodes. The algorithm is following:

1. Determine the most active concept node.

2. Infuse activation 1.0 to it in the direction of cartesian nodes and collect the resulting 
vector of activations for cartesian nodes.

3. Align the vector with the GMT wheel using the real GMT shift and the real time.

4. Add corresponding values to the internal time nodes.

5. Normalize activations of internal time nodes to the given limit.

Hence every step of the logic, there are few concept nodes activated. The activation is 
back-propagated from the best concept node to cartesian nodes via weighted links. Received 
activity is then added to the activity of corresponding node in the internal time ring (fig. 14). 
We use the real time while determining the correspondence. The activations of internal time 
nodes are normalized after the addition. If the internal time nodes constantly correspond with 
the real time – the back-propagated activity increments on the corresponding internal time 
node for GMT 0 – the initial time zone.

Fig. 14. GMT wheel. The strongest internal-time node represents the magnitude of the time 
shift. The activation is depicted by a column over the node.

For example, it is 4 a.m. and agent is sleeping. He is in the initial timezone. The most 
active concept node is connected to three cartesian nodes (for instance 3 a.m., 4 a.m. and 5 
a.m.). The two rings are synchronized at the moment. That means that the zero on the internal 
ring (means 0 GMT – no change) is aligned with 4 a.m. so we add the activations to internal 
time nodes -1, 0 and 1 respectively. When the learning period is over the most active node 
should be zero – 0 GMT.

Another example, the agent moves to a new timezone +6 GMT. It is 11 a.m. and the 
most active concept node is connected to 10 a.m. 11 a.m. and 13 a.m. The internal ring has the 
highest activation on 0 GMT. But as we are in the relearning phase we omit that and align the 
vector of activation of cartesian nodes according to the real time and real GMT. Thus the node 
for 11 a.m. is aligned with the internal time node for +6 GMT (real GMT – thought GMT). In 
the end we add the activation to nodes +5, +6 and +8 respectively.
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Fig. 15. Example of learning the changes of time zones. The activity on the internal time ring 
(A) at the start, (B) at the end of learning period, (C) during the switch to +9 GMT, (D) in the 

new time zone, (E) another switch to -3 GMT, (F) the end of the learning.

Time Zone Change.
The agent can start using the internal time since the synchronization between external and 
internal ring is firm. He uses the thought time to determine the most active concept node for 
the  memory purposes.  When the  timezone  change occurs,  agent  has  to  look more  at  his 
“watches” again which means he is using the real time to learn the new timezone. The real 
time is used to determine the activation of concept nodes for use in the time zone learning. 
The criterion for successfully learned time-shift is that the internal clock is synchronized with 
the real time for at least one day.

In the end, such a model has another interesting advantage. It makes the agent more 
believable as he is not sure about the time first two days in the new time zone. If asked for 
time estimates, he can reply using the time compliant with the former timezone. Moreover, it 
is fully automatic.

6.2 Questionnaire

The episodic memory can enhance agent on many different levels. It can provide him virtual 
sensors,  repetition  detection,  improved  reasoning  and  learning.  Moreover,  it  has  the 
autobiographical component which allows agent to answer questions concerning his past. The 
requirements on the autobiographical memory has not been established yet [23]. We do not 
know which questions are typically asked by users of IVA applications. Thus we have carried 
out a questionnaire to determine the set of these questions to constraint requirements on the 
memory.
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The questionnaire was carried out in two rounds. First, we asked 7 participants to write 
down a set of questions which they would ask a NPC (a non-player  character)  in a role-
playing  game  (RPG).  Then  we  have  sorted  out  questions  which  were  not  related  to  the 
episodic  memory and time.  The resulting set  of questions was then extended by a set  of 
similar  questions  with  altered  specification  of  time  (e.g.  “What  did  you  do  yesterday 
afternoon?” →  “What did you do on Friday at 13:15?”).

1. How many customers did you have yesterday?
2. What did you do on Friday morning?
3. When was the last time your well was dry?
4. Could you describe me in detail the orc raid on the village?
5. How were the orcs who attacked the village armed?

6. What did you do 23. February?
7. Do you have problems with a criminality here?

8. Where are you going every Sunday after eight?
9. When exactly did you wake up last Friday?
10. Have you met someone interesting in the pub yesterday?
11. How long did it take you to lunch yesterday?
12. Do you know where can I buy some healing potions?

13. They brought you new goods yesterday. How long did it take the merchant to unload 
the third crate?
14. When exactly do guards change in front of the castle gate?

15. Have you ever been robbed?
16. Have you seen three warriors passing by last week?
17. What did you do yesterday from 12:35 to 13:15?

Tab. 2. List of questions used in questionnaire. Questions in bold were obtained from the first 
round, the questions in italics are artificial, other questions aim on semantic information.

We  have  merged  questions  together  mixing  questions  from  the  first  round  with 
artificial  questions  (tab.  2).  The  questionnaire  was  given  to  30  participants  (27  men,  3 
women). Half of them had played a lot RPG games in the past, half of them played them a 
little or not at all.  They were asked to rate questions on the scale from 1 to 5 where one 
indicated weird question while five indicated valid question one would ask an agent. 

The questionnaire specification given to the participants was following.
The purpose of this questionnaire is to create a set of questions for a non-player character  
(NPC) of the world of RPG game. Let’s imagine that the game works with a vast world  
which include several towns. The player can move freely around the world. Our NPC is  
living in one of the towns. He observes his surroundings hence it is possible to give him  
questions concerning his knowledge about the world, his personal data and most importantly  
about his personal experience.
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Let’s imagine that you are in the following situation: you have just finished a quest  
and you arrived to the town you have never been to before. You are trying to acquire a new 
quest. You walk around the town and chat with NPCs asking them questions. You meet our  
NPC in a general merchandise store. He is the merchant.

The setting concerned the acquisition of a quest which can explain high values (fig. 
16, tab. 3) for questions related with criminality, orcs, guards and healing potions (4, 5, 7, 12, 
14, 15). But we have also found, that most of the artificially added questions with the accurate 
time information were rejected (6, 9, 13, 17) as well as closely personal questions (2, 8, 11) as 
they were not important to the interrogator. On the other hand, personal questions with some 
relation to possible quest or the overall situation were rated high (10, 15, 16). Moreover, agent 
can of course use his episodic memory to obtain semantic information for questions 12, 14, 15 
or to give a vaguer description of the raid on the village (4, 5).

Fig. 16. Distribution of rates for each question.

Tab. 3. Average response and the standard deviation for each question. 
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Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Average 3,0 2,4 2,8 4,1 4,1 1,9 4,1 2,6 1,6 4,1 1,7 4,7 1,5 3,7 3,8 3,8 2,1
STD 1 0,95 1,16 1,01 1,06 1,04 0,96 1,25 0,88 0,98 1,07 0,59 0,81 0,82 0,82 1,01 0,92



We can assess, that  people would use rather socially established time patterns like 
parts of a day, “last week” than exact time cues (exact date or time) in their questions. They 
would not ask for detailed depiction of personal concerns of the agent but rather ask about 
potentially interesting events in his past. It should be noted that the results can be affected 
both  by the  composition  of  the  questionnaire  (the  quest  scenario,  rather  strange  artificial 
questions) and the structure of participants  (most  of them were undergraduate  students of 
computer science).

6.3 Query Module

Once we know what questions to expect we can board the issue of how to query the episodic 
memory  for  answers.  We  will  start  by  summarizing  types  of  queries  from  which  will 
consequently emerge issues we have to address.

Usual time-query pattern is (1) “When did you do/use A?” or (2) „What did you do at 
time B?”. A can be replaced by any intention, action, atomic action or item agent used during 
the simulation. How do we retrieve time-related information from the network for A? We use 
A as the input point for the influx of activity. Then we observe where in the network drains 
off the highest amount of it. The amount is recorded along with the node. The result of the 
query is a list of weighted nodes. The list can be searched for concept nodes, day nodes, etc. 
The credibility  of the result  can be estimated  from the weight.  There are  more  problems 
hidden behind the propagation of activity through the network and we will address these later.

The  second  case  is  more  complicated.  B can  be  further  decomposed  into  any 
combination  of  exact  time,  part  of  a  day  and/or  day.  The  queries  with  a  single  time 
information (hour, part of a day, day) return usual activity at the given time. On the other 
hand combined queries for time and day or part of a day and day should return the activity at 
the specified time period. That reveal few issues to address:
1.The mapping from time to concept nodes.
2.The propagation of the activity via network.
3.Combination of results from different types of sources (e. g. different time scales).

We can use properties of the time network to solve issue (1). If the query contains 
exact hour or part of a day we infuse activity to the cartesian nodes corresponding to the 
provided hour or part of a day. Part of a day can be translated to a set of hours using some 
common definition of the part of a day (morning is from 7-10 a.m.). Then we collect the most 
active concept nodes – preferably few of them – and use them as inputs for the query to the 
connectionist memory. The given day (days) should be processed separately as it represents 
different time scale.

There  are  few  options  available  for  the  issue  (2).  One  of  the  possibilities  is  to 
propagate the activity from node to node with the limited total activity in the network. Then 
we  are  searching  for  an  equilibrium  and  result  is  defined  by  the  set  of  nodes  in  the 
equilibrium. More transparent and simpler solution is to propagate the activity from inputs 
only to adjacent nodes in the network. When the set of inputs contains several nodes (for 
instance, a set of concept nodes for part of a day) we sum up the activation from all sources 
for each node of the connectionist memory.

The last issue to board is how to combine activations from different types of sources 
(3) – for instance, different time scales like days and hours. There we used normalization of 
the vectors of weights from different sources and added them together creating ultimate result.
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Hence the result of a query is represented by a weighted list of nodes of the network 
for connectionist memory. We have not implemented any linguistic module to create ordinary 
sentences from this output.
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7 Experiments
Successful implementation of the proposed model provided us with the opportunity to test 
various hypotheses, see the model at work and evaluate its performance. We have conducted 
several experiments but before we represent our findings we outline the description of the 
setup.

The agent was simulated on a single machine – a personal laptop with AMD Turion64 
X2 1.6 GHz CPU and 2GB RAM. The frequency of agent’s logic was 14Hz – UT2004 was 
accelerated three times to allow for higher frequency. One step of logic represented 15 or 30 
seconds in real life. The usual lifespan of an agent varied from experiment to experiment from 
two to four weeks. The agent did not have any real needs which if unsatisfied would lead to 
his death. He was following hard-coded master plans which were responsible for the basis of 
everyday plans. He was equipped with a simple model for biological needs which enriched 
the static plans with dynamically added desires. The agent had a fixed set of context nodes. 
There were two available sets of cartesian nodes – first with one node per hour, second with 
one node per half an hour. The initial number of concept nodes was 40.

The  memory  system  contains  many  parameters  which  implies  multiple  paths  for 
exploration. We have focused on the basic evaluation of the model. We have investigated the 
impact of different settings for cartesian and context nodes on the quality of learned concept 
nodes,  the  ability  of  agent  to  learn  different  timezones,  the  space  requirements  of  the 
connectionist memory over time, the accuracy of recalls and the episode blending.

The chapter is organized in the following order. First section will be dedicated to the 
experiment  concerning  comparison  of  different  lifestyles  and  the  ability  to  learn  new 
timezone. Then we will study the accuracy of recalls and its correspondence with empirical 
evidence from psychological studies. After that we will investigate the impact of different 
settings  of cartesian and context nodes  on the quality of concept nodes and the consecutive 
storage of episodes. Next experiment will examine the relation between agent’s concept nodes 
and socio-biological temporal patterns. Afterwards we will under scrutiny the space demands 
of connectionist memory. The last experiment will explore the blending capabilities.

7.1 Timezone and Lifestyle Changes

Motivation.
We have stated (in section 6.1) that timezone changes can help us with the evaluation of the 
quality  of  concept  nodes.  We  hypothesize  that  agent  forms  concept  nodes  properly 
disregarding the particular lifestyle. Consequently the quality of resulting concept nodes can 
be verified via agent’s ability to adapt to different timezones. Thus we propose an experiment 
which features timezone shifts and three different lifestyles and we examine if the agent is 
able to learn the initial timezone and adapt when it shifts. The experiment also provide an 
opportunity to test the independence of the model on the particular lifestyle.

Settings.
The experiment  proceeds  according to the following scenario.  The agent  first  learns  time 
concepts – the time network – which takes him 8 days. Then he learns the initial timezone – 2 
days.  Then  the  timezone  changes  to  +9  GMT and  agent  has  seven  days  to  live  in  that 

43



timezone. Finally the timezone changes to -3 GMT and agent has to adapt to that. We observe 
the magnitude and the position of the peak on the GMT wheel during the simulation.

We have prepared three different lifestyles to probe the independence of the model on 
particular lifestyle. Those were:

● A travel salesman is a man who wakes up every day at 7 a.m., goes to work, takes 
lunch at noon, works again, then go home where he usually watch TV after dinner. He 
occasionally goes to see a movie or a play but normally he lives quite normal and 
regular life.

● A student  unlike the majority of students  is attending lectures and studying fairly 
often. He is waking up at 8:30 a.m.. He practices swimming and ultimate frisbee in his 
free time and he goes occasionally to see a movie or a play.

● A millionaire is savoring his life freed from craving for money. He is waking up at 10 
a.m. He is using his free time for variety of activities from sports, computer games and 
reading to some cultural events.

We should mention here the definition of the criterion which defines when agent has 
successfully learned a timezone. If agent stays in a state where real time equals thought time 
for one day, he learned the time-shift successfully.

We have run the experiment three times for each lifestyle. The agent lived for 21 days. 
The history of executed events for runs for the same lifestyle differed a little because of the 
influence of biological needs as well as the randomization of starts of activities (see section 
4.1.3 – scheduling).

Results.
Illustration of resulting time networks is displayed on figures 17, 18, 19. Each figure provides 
a view of the time network with context nodes plotted in the top left, cartesian nodes in the 
top  right  and  concept  nodes  at  the  bottom.  Lines  which  are  connecting  them  represent 
weighted lines between the neurons. Yellow lines connect contexts with concepts, green lines 
connect cartesians with concepts. The width of the line and deepness of the color depict the 
weight of the particular line. 

All  three  different  agents  (governed by different  lifestyles)  were  able  to  learn  the 
initial time zone as well as the following shifts (fig. 20).
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Fig. 17. A travel salesman network after 21 days of simulation.

Fig. 18. The student’s time network after 21 days of simulation.
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Fig. 19. The millionaire’s time network after 21 days of simulation.

The  visualization  of  weighted  links  to  concept  nodes  does  not  reveal  much. 
Nevertheless, we can deduce information like when is the agent sleeping or when he feels 
very hungry from it.

Student Worker Millionaire
+9 GMT 37,7 41,75 37,75
-3 GMT 37,2 36,7 37,2

Tab. 4. The average times (in hours) of learning phase for the two changes of timezones for 
the three lifestyles.

We have not observed any discrepancies in the way agents learned time shifts (fig. 
20).  We found that  they learned time concepts  disregarding the differences  between their 
lifestyles. Another thing to note is the time it took agents to learn a time shift. It took them 
usually  day  and half  to  adapt  to  the  new timezone  (tab.  4).  Nonetheless,  this  number  is 
arbitrary as it is parameter-dependent and can be further modified to match with an evidence 
obtained from psychology. We are not aware of any relevant research concerned about usual 
times for adaptation to a new timezone thus we cannot adjust the parameter correspondingly 
at the moment.
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.Fig. 20. Results of timezone learning for different lifestyles – travel salesmen in the left 
column, student in the middle and millionaire in the right column are all learning 0 GMT first, 
then +9 GMT and finally -3 GMT. The numbers in the left bottom corners show the label of 

most active internal time node (for instance, GMT 0 for top left figure) and its activation (11.2 
for the same figure).

Discussion.
We have observed that the timezone learning mechanism does not have a memory. It takes 
agent approximately the same time to do the transition forward and backward. In fact, if the 
agent lives in the new timezone for a very short time (less than two days), it can adapt back to 
the  former  timezone  faster  because  the  activity  from the  former  timezone  resides  in  the 
internal time structure for a while.
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We can also explain the activations on the adjacent internal time nodes. The concept 
nodes are usually connected to few neighboring cartesian nodes. Thus the activation from the 
most active concept node is often propagated to the node in the middle as well as to his 
neighbors. Eventually the highest activity emerges in the middle.

7.2 Accuracy of the Connectionist Memory

Motivation.
The accuracy of the memory is one of the most important characteristics of the model thus we 
have carried out an experiment to measure the accuracy of the memory. We have measured 
the accuracy for two different modes of storing the episodes – the single structure for all days 
vs. a separate structure for each day (see 4.4). The hypothesis is following: the single structure 
is relatively accurate at the beginning of the simulation but become inaccurate over time due 
to the high interference of various events for various days. Thus it is outperformed by the 
multi-structure which does not suffer the interference problems.

 The  experiment  concerned  the  recall  of  times  and events  for  yesterday.  We were 
asking the memory questions: (1) “What did you do yesterday at X o’clock?”, (2) “What did 
you do yesterday Y”, where Y is a part of a day, and (3) “At what time did you do activity Z 
yesterday?”. In the cases 1 and 2, the answers were confronted with the data stored in the day 
log (which represented the perfect memory) in the following fashion:

1. The query (answer to the question) returns an event.

2. The event is localized in the day log.

3. The time of event obtained from the day log is compared with X or Y respectively.

4. If there is an overlap of intervals the difference is 0. Otherwise it returns the minimal 
distance of intervals.

The procedure for the question 3 was different.

1. Fetch all root goals which has a record in the day log.

2. For each root goal query the memory for time concepts corresponding to the goal and 
the day (yesterday).

3. Determine  the part  of  a  day which corresponds to  the best  concept  node (highest 
credibility/weight of the result).

4. Determine if  the event overlap with the part  of a day (same with the step 4 from 
previous algorithm).

Obtained differences  for hours/parts  of a day/actions  were plotted into a box-plot-
whiskers graph every midnight. Thus the graphs show the progression of the accuracy over 
the lifespan of the agent.

Settings.
We have tested the accuracy for the two different modes of storing memory links – single 
structure which holds all links between concept nodes, events and resources in one structure 
for all days and multi structure which keeps this representation separately for each day. The 
key parameter for single structure is the weight limit for a node, which is used during the 
normalization. We have set this parameter arbitrarily to 10. 
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The simulation was run three times for the single structure scenario and three times for 
the multi structure scenario. We used the modified student lifestyle. The student was studying 
every morning of the week. In the afternoon he did four consecutive times ultimate frisbee 
and three times swimming. In the evening he went to the cinema or to the theater on a rotation 
basis. The rest of the activities was defined either by the frame of the day (sleep, nourishment) 
or by the dynamically invoked desires from biological needs.

Results. 
The results are depicted in the graphs bellow – fig. 21, 22, 23. For first few days they can be a 
bit uncertain as the underlying time network undergoes its learning phase. Then the results for 
multi structure become steady whilst the interference starts affecting the accuracy of single 
structure – commence after six days. Then the difference between the accuracies steps out and 
we can observe the difference between multi structure and single structure.

Fig. 21. Memory accuracy benchmark for hours (left), day parts (right) – multi structure, 
student lifestyle.

Fig 22. Memory accuracy benchmark for hours (left), day parts (right) – single structure, 
student lifestyle.

Discussion.
The error of the multi structure was almost zero for the parts of a day and very low for hours. 
On the other hand, the single structure average errors increased after five days and stayed 
superior to the results for multi structure. The results suggest that the single structure is not 
sufficient as a faithful representation for different days and is outperformed by the multi-
structure (fig 21, 22).

Another interesting aspect is the comparison with psychological data. We use the data 
from experiment of Larsen, Thompson, Hansen [21]. They asked people to date events by 
choosing a group of hours from the 24 hours of the day. The most people had chosen groups 

49



of 3-7 hours (93%) and the correct time estimates were found twice as often as predicted by a 
chance. The accuracy was over 75%. Along with the described experiment we have recorded 
another graph which represented differences for the dating of actions – responses to question: 
“When  did  you  do  activity  X?”.  The  results  (fig.  23)  shows remarkable  accuracy  of  the 
memory for dating yesterday events.

Fig. 23. Memory accuracy benchmark for actions – multi structure, student lifestyle.

We assess that the single memory accuracy deteriorates over the time along with the 
rising impact of the interference. There is a place for further investigation of the settings of 
the node weight limit for normalization and the capacity of the single structure. The multi 
structure behaves outstandingly on the task of dating yesterday events and giving answers to 
time queries for yesterday.

7.3 Impact of Cartesian Nodes on the Formation of Time Concepts

Motivation.
The  formation  of  time  concepts  is  strongly  dependent  on  the  activation  of  context  and 
cartesian  nodes  therefore  we  have  conducted  two  experiments  inspecting  the  impact  of 
different settings on the quality of time concepts. The initial motivation for the time concepts 
is that they should represent few cartesian nodes (hours, half an hours) and few context nodes 
(hunger, work) which are activated during the same period of time. It seems that it would be 
better if the cartesian nodes were from the same vicinity because the most active concept node 
is consequently linked with the event  in execution.  If  the most  active concept node links 
together distant cartesian nodes, it can lead to confused recalls (for instance recall of sleeping 
in the afternoon). But what has the impact on the clustering behavior of concept nodes? We 
presume the following hypothesis.  If the cartesian nodes overlap the concept nodes group 
cartesian nodes from the same vicinity.

Hence we have defined a metrics to measure how much is a concept node dispersed 
over the time – cartesian nodes. The following formula:

 i=
∑
j=0

j=∣J∣

 j ⋅wij 

∑
j=0

j=∣J∣

w ij
(7.1)
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counts  the  center  of  gravity for  a  concept  node  i.  Index  j iterates  over  the  set  of 
cartesian nodes – J.  wij is a weight between concept node  i and cartesian node  j. α(j) is the 
peak hour of the cartesian node. The weighted dispersion for the set of concept nodes is then 
counted:

dispersion=
∑
i=0

i=∣I∣

∑
j=0

j=∣J∣

∣ j −i∣⋅w ij

cp nodes count
 (7.2)

The initial weights can shift the average to the middle thus we count only weights over 
0.3 (initial random weights are up to 0.25).

Fig. 24. Non-overlapping (left) and overlapping (right) Gaussian curves of activations of 
cartesian nodes.

Settings.
We have tried two different settings of the overlap of activities of adjacent cartesian nodes. 
First, the overlap of the nodes is was close to zero (<0.05) and second, when node’s activity 
reached  its  peak  (1.0)  the  neighbors  had  activation  0.36  (fig.  24).  The  weight  limit  for 
normalization  for  cartesian  input  into  the  concept  nodes  was  set  to  2,5  (resulting  in  2-4 
connections  per  node).  The experiment  was  run for  two different  lifestyles  – worker  and 
student. Both were stationary, which means they scheduled the same actions for every day.

Fig. 25: The average dispersion over four runs (two for each lifestyle) for overlapping and 
non-overlapping cartesian nodes.
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Results. 
The experiment was run twice for each lifestyle and each setup of cartesian nodes. Fig. 25 
shows  that  the  dispersion  is  lower  for  overlapping  cartesian  nodes  which  supports  our 
hypothesis.  Low values for non-overlapping cartesians at the beginning are caused by the 
initial learning phase.

Discussion.
We have stated the presumption that compact time concepts are better as they are not linked 
with  two  unrelated  time  periods  and  consequently  with  two  unrelated  events.  We  have 
gathered the data about the accuracy of the memory along the experiment. We used the multi 
structure algorithm for days and plotted differences as was described in the previous section. 
The  data  clearly  shows  that  non-overlapping  cartesian  nodes  lead  to  malfunction  of  the 
memory for hours (fig. 26). The difference for day parts is not distinct (fig. 27) but we can 
observe a slight impairment for non-overlapping cartesians. We searched for the reason for 
the  malfunction  for  hours  and we found concept  nodes  which  were  connected  to  distant 
cartesian nodes (fig. 28) which resulted in recalls of eating in the middle of a night as well as 
sleeping in the afternoons.

Fig. 26. Memory accuracy for hours – overlapping (left) and non-overlapping CA nodes 
(right).
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Fig. 27. Memory accuracy for parts of a day – overlapping (left) and non-overlapping CA 
nodes (right).

Fig. 28. The example of dispersed concept nodes – 16, 25, 26, 29 – of the time network for 
non-overlapping CA. The concept nodes are connected (red lines) both to CA nodes in the 

night and in the afternoon which results in recall of sleeping (blue lines) for afternoon hours.

Hence, we can assess that overlapping cartesian nodes form better time concepts than 
non-overlapping cartesians.
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7.4 Impact of Context Nodes on the Formation of Time Concepts

Motivation.
The formation of concept nodes is further influenced by the activation of context nodes. It can 
be either decreasing, increasing or monotonous. A context node can be active as short as 20 
minutes and as long as few hours. The activation can range from 0.0 to 1.0. Thus there is an 
exponential  explosion of  parameters  and it  is  vital  to explore  the impact  of activation  of 
context nodes on the time concept formation.

Settings.
We have run several  exploratory experiments  with various settings.  We used overlapping 
cartesian nodes with student’s lifestyle. The experiments were following:

1. No context activation. The activation of context nodes was suppressed to zero. The 
formation of concept nodes relied only on the activation of cartesian nodes.

2. Little cartesian activation. The time network went through the usual learning phase 
(8 days) and then we have set the activation of cartesian nodes to 5% and measured 
the accuracy of memory recalls.

3. Doubled  activation  of  context  nodes. The  activation  of  every  context  node  was 
doubled while keeping the activation of cartesian nodes on the same level.

Results.
We have  run  each  experiment  twice  and  then  examined  the  resulting  time  network  and 
memory accuracy. The results were following:

1. No context  activation. The  concept  nodes  were  clustered  suitably  (fig.  29).  The 
accuracy of memory recall was comparable with the accuracy of standard settings.

2. Little cartesian activation. The accuracy of recalls  was unimpaired despite of the 
lower magnitude of cartesian input.

3. Doubled activation of context nodes (fig. 30). The recall was moderately impaired 
for hours and unimpaired for day parts.
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Fig. 29. The time network for experiment with context nodes turned off.

Fig. 30. The time network for experiment with doubled activation of context nodes.

Discussion.
The results of experiments suggest that it might be possible to learn concept nodes only on the 
basis of cartesian nodes. But that will have two consequences. First, the time nodes would be 
very similar  and will  not  reflect  the lifestyle  – many concept  nodes for the morning  etc. 
Second, we will loose another source of information for the reconstruction process of recall. 
The contextual links can provide us with fast answers to questions like “When are you usually 
hungry, working, sleeping...?”. The lesson learned from the experiment is that activations of 
context nodes should be rather inferior to the activation of cartesian nodes and it is worth to 
keep them in the model.
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7.5 Labeling of Time Concepts

Motivation.
The goal of the sixth experiment was to determine whether the resulting time concepts have 
any relation with socially agreed time patterns. Larson et al.[21] showed that people create for 
themselves about six temporal concepts for parts of a day. Thus we have tried to label concept 
nodes by six following labels:  morning,  noon, afternoon, evening,  late  evening and night. 
Each of these (apart from night) represented three or four consecutive hours (tab. 5) which is 
in compliance with the study of Larson et al. [21].

Label Hours
Morning 7, 8, 9, 10
Noon 11, 12, 13
Afternoon 14, 15, 16
Evening 17, 18, 19, 20
Late evening 21, 22, 23, 0
Night 1, 2, 3, 4, 5, 6

Tab. 5. List of hours for corresponding time-concept labels.

The assignment can be either automatic or handmade. We have exploited the property 
of links between cartesian nodes and concept nodes. We inject an activity to hours of a part of 
a day to determine the average activity for each part of a day for each concept node. The most 
active part of a day then labels the concept node. The algorithm is following:

Double maximum = 0, sumForPartOfADay; 
for (PartOfADay dayPart : PartOfADay.values()) {

sumForPartOfADay = 0;
for (Hour hour : dayPart.hours()) {

sumForPartOfADay += getActivityForHour();
}
if (sumForPartOfADay > maximum) {

maximum = sumForPartOfADay;
conceptNode.automaticName = dayPart.getName();

}
}

Results.
The labeling of concept nodes was used in all performed experiments. More specifically, it 
was  used  to  determine  corresponding  concept  nodes  when  querying  the  memory  with 
questions which contained part of a day. We list here an illustrative example of the result of 
labeling (fig. 30) for one learned time network (fig. 31).
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Fig. 30. Corresponding labels of time concepts for millionaire lifestyle. The notation is: 
anonymous name of the node – assigned name of part of a day – credibility of the assignment.

Fig. 31. The time network for millionaire lifestyle which corresponds to the label assignment 
from fig. 30.
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Discussion.
The result of this experiment is disputable. On one hand, we can conclude that we are able to 
assign reasonable labels to obtained time concepts. Thanks to the algorithm we get them along 
with a level of credibility and it seems that set of nodes with same label represents the part of 
a day faithfully. But there is one aspect we should not neglect. People do not create the same 
parts of a day. What is morning for someone can still be night for someone else. Humans’ 
time concepts are culturally and personally dependent. Thus we cannot claim that the concept 
nodes with a given label really represent the part of a day. What we can say is that there exists 
a mapping from concept nodes to ordinary sociologically and biologically defined parts of a 
day which can be further used for querying purposes.

7.6 Evaluation of the Memory Requirements

Motivation.
One of the fundamental characteristics of the memory is its space demand. Thus it is vital to 
provide a comparison of the proposed model with another options of episode storing. We will 
review requirements  of  our  model  and  compare  it  with  the  abstraction  of  logging-based 
model.

Settings.
We have  tested  the  demand  for  memory  on  the  agent  who ran  according  to  the  student 
lifestyle. The cartesian nodes were overlapping. The lifespan of the agent was 30 days. We 
have run the simulation twice for each mode of storage (single structure, multiple structures). 
We have  stored  everything  in  the  memory –  every  task,  every  desire,  every  item,  every 
concept node involved in the episode. Thus we have stored, for instance, Want desires which 
are  responsible  for  the  localization  of  resources,  etc.  The  forgetting  coefficient  for  links 
between concept nodes, actions and items was set to 0.9. The decrease of day budget was set 
to 0.85. The bias when a link was discarded was set to 0.3.

Results.
We have counted every line from every node – either concept nodes, actions, items, days. The 
average sum of nodes contained in the memory is depicted in the fig. 32. The figure shows the 
evolution of the demands over the lifespan of the agent.

Fig. 32. Average number of links for a memory over 30 days of simulation.
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Discussion.
The experiment shows that the demand for memory does not grow beyond control. It depends 
a lot on the settings of forgetting functions and mechanisms. Implemented mechanisms lead 
to the oblivion of detailed time information after less then two weeks and day information 
after  about  three  weeks.  Thus  the  memory  demands  stabilize  after  two  weeks.  But  the 
psychological  evidence suggests  that  people can retain  a lot  more than last  two weeks.  It 
suggests also that they retain mostly important or emotionally significant memories which 
adverts to the problem of the rating mechanism for the interestingness of events.

The number of links for multiple structures is immense. We will make a comparison 
with a log, which is logging every action agent takes, its time, its parents (to reconstruct the 
episode). Hence either every line of the log contains a lots of redundant information – like the 
name of the intention, action – either the log operates over some more complicated structure 
and notes every change in the situation by adding a note somewhere. That is exactly what we 
are doing in the multiple structure mechanism. Every time there is a change in the situation 
we add a link. Moreover, the link is lightweight. It is a triple (node, weight, day) where node 
is a pointer to concept node, action or resource, day is a pointer to the particular day and 
weight is a real number. Hence the link can be as small as 10B.

The most important difference between the proposed model and the log-based memory 
is the forgetting mechanism.  It can be quite difficult  to model  forgetting in the log-based 
model  in other way than by deleting oldest  records.  On the other hand, the connectionist 
model  can  profit  from  weighted  links  and  model  human-like  forgetting  mechanism  via 
extinction as well as the interference. Moreover, if  we use some mechanism to define the 
importance of an event, the interesting events will eventually persist longer in the memory.

Another advantage of the proposed model over the log is the recall mechanism. Our 
memory is indexed in multiple dimensions. We can use practically any cue in the query from 
time over actions to resources keeping down the complexity of the query.  The number of 
operations  of a query always  depends only on the number  of input  points  (cues) and the 
number of neighbors of each node.

Moreover,  the  total  number  of  links  can  be  further  decreased  by  (a)  discarding 
immediately links for search tasks and by (b) using the general day structure for retention of 
frequent events and activities thus not being forced to store them for separate days.

7.7 Episode Blending

Motivation.
We have outlined three core problems of previous memory model of episodic memory. One 
of them was the episode blending. The episode blending means, that two similar episodes are 
merged into one while loosing some details (like the exact time of execution). The model 
accounts for that by introduction of multi-days – e. g. weeks or “two-days”. Then if the same 
activity is executed in the afternoon, for instance, five times a week agent should recall that he 
was doing the activity that week afternoons. He should also remember that he was doing it the 
five separate  days,  but  this  information  would  deteriorate  faster  as  the  link  to  week was 
strengthened five times. Eventually the only trace left would be for afternoons of the week.

Settings.
We proposed an experiment which tests this hypothesis. The agent had a modified student 
plan which contained one activity for afternoon on four consecutive days and another on the 
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remaining three days and two alternate activities for evenings. The simulation then run for 
three weeks. Every midnight the agent executed a query which retrieved actions for the part of 
a day (afternoon and evening) for last seven days plus for the last week. Then we examined 
the results and compared them with the log of agent’s activities.

Results.
The experiment was run five times and the results were examined. We will present here one 
illustrative example of the work of the recall for weeks followed by the explanation of the 
result.  We will  explain the results  of the query for the second week (fig.  33). The listing 
shows seven most active nodes of the connectionist network for the input from evening and 
corresponding day or week. There are several interesting aspects to note:

1. The agent is alternating going to the theater with going to the cinema during the week. 
He starts with a theater thus he goes to the theater four times and to the cinema three 
times. That results in the “last week” answer which prefers theater over cinema.

2. The agent played computer games three times that week evenings. The answer for the 
week contains playing computer games while none of the days considered it worth 
noting. The reason for this behavior is that the activity did not overlap enough with the 
evenings of single days, nonetheless, the activity summed up over the week to emerge 
in the week result.

3. Results for days contain four times eating. The dinner occurs around 18 o’clock. If it 
took him long time to satisfy the goal for eating, the agent remembers it more than 
going to the theater or the cinema. The problem of the evening activities is that they 
usually start in the evening and overlap to the late evening which renders them weaker 
– they are connected to fewer concept nodes which are defining evening. That is one 
of the deficiencies of the socially defined hard-wired definitions of parts of a day.

4. The eating happened every day. It was noted in most of the days, but it has only one 
record in the week answer.  That  is  because the agent  chose few different  ways  to 
fulfill the desire to eat. Thus the root desire links were strengthened every day and 
IEat occurs in the week result, but the rest of the details is lost during the recall.

5. The activities for swimming and studying were not scheduled for the evening but they 
simply overlapped to the evening.
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Fig. 33. Example of result of query for evenings (17-20 o’clock) for last week and 
corresponding days. The explanation is given in the text.

Discussion.
The  experiments  showed  that  agent  can  recall  the  most  frequent  activities  over  the  less 
frequent when asked for the last week. The traces to the week are much stronger than traces 
for each day which in long term should result in the oblivion of the traces for days whilst 
keeping the trace for the week → episode blending. It also accents the necessity to define the 
interestingness of events which would diminish recalls of desires like IEat, IDrink, IToilet.

We can assess that agent is able to give reasonable answers to questions which contain 
week  as  a  cue  and  that  the  memory  is  able  to  blend  some  episodes  in  the  long-term 
perspective.

7.8 Findings Summary

Before we proceed to the future works and conclusion we would like to sum up findings of 
performed experiments. We have showed that agent is able to adapt to new timezones using 
his time network to synchronize the internal time with the real time. The ability to learn time 
shifts is not impaired by the difference between lifestyle.
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The  accuracy  of  the  recall  of  episodic  memory  has  fulfill  our  expectations.  The 
accuracy of single structure becomes impaired in the long-term perspective as the interference 
affects the storage. On the other hand multi structure mode of storing shows solid results.

Then we tried to determine the suitable settings of cartesian and context nodes which 
would form better concept nodes – e.g. with better accuracy of recalls. We found that the 
activation of cartesian nodes should be overlapping because the resulting concept nodes are 
then connected to cartesian nodes in closer vicinity. 

The activation of context  nodes has also an influence on the formation of concept 
nodes. We tried experiments which explored extreme settings – either high activation or none. 
The results  suggest  that  context  nodes are  important  for higher  diversification  of  concept 
nodes as well as their correspondence to the particular lifestyle but high activation produces 
undesirable modifications to the learning process.

Afterwards we tried to label concept nodes with human understandable names. We 
used  a  simple  algorithm  which  exploited  features  of  the  time  network.  The  assignment 
produced  reasonable  names  for  concept  nodes.  Nevertheless,  it  is  disputable  if  such  an 
assignment can reflect the internal time patterns as for instance people communicate using the 
sociologically agreed time patterns whilst having their own and making this transition on the 
fly.

Consequently we have put under scrutiny space requirements of the episodic memory. 
We  have  argued  that  the  memory  can  be  more  efficient  than  the  log  in  the  long-term 
perspective and it allows for easy and fast execution of variety of different queries.

The last experiment engaged the problem of episode blending. We have showed that 
agent can faithfully reply to questions which contain a week as a cue and that the forgetting 
can result in the episode blending. For instance, the agent will remember that he was eating in 
the evenings of one week, but he will  forget the details  – like which day he went to the 
restaurant and which day he cooked something at home.

In the end we can assess that we have successfully implemented the prototype of an 
agent who lives in a complex environment and who features autobiographic episodic memory 
extended by the time perception. It is obvious that the current design and implementation can 
be further improved in many ways (as will be discussed in the next chapter). Nevertheless, we 
believe  that  the  project  has  high potential  and shows an interesting  course for  the  future 
research. The accuracy of the memory is compelling and if properly subsidized by a more 
complex forgetting with a mechanism for the interestingness of an event it can be even more 
faithful, efficient and less space demanding.
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8 Future Works
We have ventured into the vast and mostly undiscovered area of modeling episodic memory 
for a virtual agents using a connectionist model. Presented results of the prototype are very 
promising but as it is only a prototype it leaves multiple research paths unexplored. We will 
try  to  summarize  a  variety  of  possible  improvements,  experiments  and  scenarios  in  the 
following text.

Starting from the very bottom of the implemented agent we can enrich agent’s world 
with  a  deal  of  items,  places,  other  agents  and  human  players  creating  more  realistic 
background for  the  simulation.  Along with  this  extension  goes  enlargement  of  the set  of 
desires  as  well  as  the  depth  and  width  of  corresponding  AND-OR  trees.  All  those 
improvements  should  be  easily  achieved  in  the  new version  of  Pogamut  2  which  should 
provide a better support for storytelling.

Following time-perception model can be enhanced by the hierarchy of cartesian nodes 
starting from minutes from which will evolve automatically created nodes for hours or even 
parts of a day. Hence they will not be sharp as the hours or half-an-hours we use in the model.

The second part of the input of concept nodes is the context nodes layer. We believe 
that context nodes can be created automatically if we have some mechanism which monitors 
agents state and the state of environment and then some algorithm which translates output of 
the monitor into context node activations. The biological needs model is an example of how it 
should work.

As we climb up along the flow of activation through the model, we arrive at concept 
nodes. We have made some preliminary tests to determine if the time network which has 
learned one lifestyle  can adjust to another lifestyle.  For instance, if it  can account for the 
difference between weekend and week days (Huttenlocher et al. [33]). Tests showed that the 
network is quite rigid and does not adjust much. We presume that this problem can be solved 
by adding a new set of concept nodes for each new lifestyle. It would require a mechanism 
which would determine a critical level of difference between two lifestyles and, if there were 
more learned, the one the most suitable for the lifestyle in use.

Last but not the least are connections between trees, concept nodes, days, etc. Many 
episodic memory theories propose that the persistence of a record – e.g. the time it lasts, the 
level of details stored along – depends a lot on the emotional state of the individual during the 
event. It would be tempting to use our model along with an emotional model. 

The  retention  of  important  episodes  can  be  further  enhanced  by  introduction  of 
mechanisms  which would strengthen its  traces  whenever  the  episode is  retold,  revised or 
invoked during a night via dreams.

We can put under scrutiny the content of the memory. There is an abundance of links 
which interconnect resources and actions which are not used at the moment. For instance, if 
the agent performs an action which requires a nail and the hammer, it would create a semantic 
link between the two. If we want to determine if the agent did something at least once, it 
suffice that it is present in the memory even though there is not a single link to it anymore.

Other improvements can be done with the testing framework. The agent can be adapted 
to  the  Pogamut  GRID  [34]  which  enables  use  of  multiple  machines  to  run  various 
experiments.  Then  the  parameters  of  the  model  can  be  optimized  using,  for  instance, 
evolutionary techniques.
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9 Conclusion
We have designed a module for episodic memory for virtual humans. We have successfully 
implemented a prototype in the complex continuous environment of Unreal Tournament 2004 
using  the  platform Pogamut  2.  We  have  performed  a  series  of  tests  and  experiments  to 
evaluate its performance and properties.

The  former  model  of  episodic  memory  sustained  following  problems:  excessive 
accuracy of responses, no error proneness and the inability to perform episode blending. The 
proposed  model  untangled  these  challenges  by  introduction  of  unique  system  for  time 
perception and the connectionist model for episode storage. 

The time perception is achieved through automatically formed time concepts. Time 
concepts are inspired by the psychological research on the human time perception and the 
related  time  estimates  for  past  events.  Time  concepts  are  clustering  time  together  with 
contextual  information.  The  quality  of  obtained  patterns  was  verified  by  a  series  of 
experiments.  We have  proposed  a  mechanism which  enables  agent  to  adapt  to  timezone 
changes and used it for the time concept verification. We have showed that it is possible to 
assign socially valid labels (widely agreed time patterns) to learned concepts. Moreover, we 
have explored the role of key variables which have impact on their formation. 

Time  concepts  are  a  basis  for  dating  events  in  the  connectionist  memory.  The 
connectionist  memory stores episodes using a number of links which interconnect  events, 
resources and time information which were active at the same time. The links are then used 
for the episode retrieval.  Consequently,  the agent can answer vaguely specified time-cued 
questions and he can use socially agreed temporal patterns in his answers.

We have carried out several experiments concerning the evaluation of the resulting 
episodic memory. We have showed that it is able to retrieve correct data from the past with a 
decent accuracy. The key elements for the space demand of the memory are the settings of 
forgetting and the definition of importance of an event for agent. Nevertheless, we still cannot 
account for the phenomenal human memory which can date more than 20 years old memories 
with remarkable precision. We believe that our mode can help in the pursuit of believability 
of intelligent virtual agents.
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Appendix A – Attachments
1. The image of connectionistic memory structure – the higher resolution with a 

complete view of the episodic memory structure for one day.

2. CD with:

● Documentation:

○ Installation guide.

○ Programming documentation.

○ Javadoc – the automatically generated documentation of the code

● Episodic bot – the source code and configuration files (lifestyles, behaviors).

● Pogamut 2 – installation file

● Questionnaire – the questionnaire (in Czech and in English) accompanied with the 
evaluation of filled out questionnaires.

● The master thesis in the PDF format.

● Videos:

○ The progress of the timezone learning.

○ The evolution of the time network during the learning phase.

○ The demonstration of an agent who is living in the environment.

● README.TXT – step by step instructions for installation.
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Appendix B – List of Context Nodes
The complete list of context nodes used during the simulation (see section 4.3.2 for more 
details).

● External context:

○ Light outside

○ Sunrise

○ Sunset

● Biological needs:

○ Tired

○ Dirty

○ Thirsty

○ Need a toilet

○ Hungry

● Internal context:

○ During the activity:

■ Working

■ Eating (breakfast, lunch, dinner)

■ Entertaining

■ Sleeping

○ After the activity:

■ After work

■ After food

■ After sport

■ After waking up

○ Other:

■ Stressed

■ Excited

■ After endorphins
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