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Introduction
There is a wide range of approaches to evaluation of investments under uncer-
tainty. It is generally agreed that investors prefer investments with higher returns
and lower risks. A usual measure of return is the expected value of the random
variable, which represents the unknown return of an investment. It is, however,
unclear what the right measure of risk is. Moreover, every investor may have a
different risk attitude so it is impossible to state the maximum acceptable level
of risk in general.

Stochastic dominance is a concept that allows the comparison of investment
opportunities without the precise knowledge of a particular investor’s preferences.
It accepts the fact that each investor may have a different utility function and
works with whole classes of them. It allows us to compare investments under the
only assumption that the correct utility function is in a particular class of them.
The widest class includes all non-decreasing and continuous utility functions.

We follow Levy [2006] in introducing stochastic dominance of the first, the
second, and the third order and the related theory. Levy [2006] briefly mentions
also decreasing absolute risk aversion stochastic dominance which Post et al.
[2015] amongst others further explore. Whitmore [1989] is concerned with the
infinite-order stochastic dominance. We use the results regarding stochastic dom-
inance between variables with particular distributions presented in Ali [1975],
Levy [2006], and Mikulka [2011].

To define a measure that assesses the quality of stochastic dominance ap-
proximation, we need to find an appropriate measure of distance between two
random variables. We follow Kozmı́k [2019] in using the Wasserstein distance
for it. Its properties presented in Pflug and Pichler [2014] are applied in further
computations. We assess the quality of stochastic dominance approximation also
in practical portfolio optimization problems. We use the formulations of these
problems presented in Kuosmanen [2004] and Dentcheva and Ruszczynski [2006].

This work is structured in the following way. The general theory regard-
ing stochastic dominance is explained in the first chapter. We define the first-
order, the second-order, the third-order, decreasing absolute risk aversion, and
the infinite-order stochastic dominance by imposing assumptions on the utility
functions. When available, we provide alternative definitions of the described
types of stochastic dominance using the distribution functions of the compared
random variables.

We define a measure of non-dominance in the second chapter, and we explore
its general properties. We use it to assess the quality of stochastic dominance
approximation based on the probability distribution. We derive its values exactly
for uniform, normal, and exponential distribution in the third chapter, and we
present its estimations for log-normal and gamma distribution in Chapter 4.

Chapter 5 is concerned with its application in portfolio optimization problems.
Portfolio optimization problems involving the first-order and the second-order
stochastic dominance constraints are presented. Two approaches to finding the
closest dominating portfolios are then introduced. We apply this theory to real-
life data regarding the monthly returns of twelve assets from the German stock
index DAX.
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1. Stochastic Dominance
Stochastic dominance compares investments using utility functions. Utility func-
tion assigns utility, expressed by a number, to a given wealth. We assume that it
is non-decreasing and continuous. Investments with higher expected utility are
preferred over those with lower expected utility. We generally do not know the
utility function of a particular investor exactly, and stochastic dominance allows
us to work with whole classes of them. Each type of stochastic dominance im-
poses different assumptions on the utility functions. They will be described and
compared in the following sections.

The return of an investment is usually unknown and can be described as a
random variable. We use the following notation regarding random variables. The
distribution function of a random variable X is FX(x) = P(X ≤ x), x ∈ R. The
integrated distribution function of a random variable X is F

(2)
X (x) =

∫︁ x
−∞ FX(t)dt,

x ∈ R. The twice integrated distribution function of a random variable X is
F

(3)
X (x) =

∫︁ x
−∞ F

(2)
X (t)dt, x ∈ R. Definitions and theorems in this chapter follow

Levy [2006] unless stated differently, and proofs can be found there as well.

1.1 First-Order Stochastic Dominance
A very general assumption regarding utility functions u is that u′ ≥ 0, which
ensures that the utility function is non-decreasing. We define a set of all utility
functions that satisfy this condition: U1 = {u utility function, u′ ≥ 0}. The
first-order stochastic dominance (FSD) aims to compare the expected utility of
random variables assuming the utility function is in U1.

Definition 1.1 (First-Order Stochastic Dominance). We say that a random vari-
able X dominates a random variable Y by the first-order stochastic dominance
(X ⪰(1) Y ) if

E u(X) ≥ E u(Y ) for all u ∈ U1 such that these expected values exist.

We say that X dominates Y by the first-order stochastic dominance strictly
(X ≻(1) Y ) if

E u(X) ≥ E u(Y ) for all u ∈ U1 such that these expected values exist

with a strict inequality holding for at least one u0 ∈ U1.

FSD can be equivalently described using the distribution functions of the
random variables.

Theorem 1.1 (Alternative Definition of FSD). X ⪰(1) Y if and only if FX(x) ≤
FY (x) for all x ∈ R. X ≻(1) Y if and only if FX(x) ≤ FY (x) for all x ∈ R, and
there is at least one x for which the inequality is strict.

We are going to apply this theory to discrete random variables with equiprob-
able atoms in the fourth and fifth chapter. A simple equivalent rule for FSD in
such distribution exists so we present it here. Suppose X and Y are discretely
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distributed random variables with equiprobable atoms, which we also call em-
pirically distributed random variables. The following notation will be used for
discrete random variables throughout this work unless specified differently. A
random variable X attains values x1 ≤ · · · ≤ xT with probabilities 1/T , and a
random variable Y attains values y1 ≤ · · · ≤ yT with probabilities 1/T . Then
Theorem 1.2 follows from Theorem 1.1.

Theorem 1.2 (FSD for Empirical Distributions).

X ⪰(1) Y ⇐⇒ xt ≥ yt, t = 1, . . . , T.

X ≻(1) Y ⇐⇒ xt ≥ yt, t = 1, . . . , T,

and there is a t for which the inequality is strict.

1.2 Second-Order Stochastic Dominance
The second-order stochastic dominance (SSD) assumes a narrower set of utility
functions: U2 = {u utility function, u′ ≥ 0, u′′ ≤ 0}. These assumptions ensure
that the considered utility functions are increasing and concave. It is a reasonable
assumption because it corresponds to the assumption that an investor is risk-
averse.

An investor is risk-averse when the following holds for his utility function u,
his current wealth w and a random variable X, which represents an investment’s
return: E u(w + X) < u(w + E X). Let W ⊆ R. If an investor is risk-averse
at every level of wealth w ∈ W , he is globally risk-averse on W and his util-
ity function is concave on W . Second-order stochastic dominance is defined as
follows.

Definition 1.2 (Second-Order Stochastic Dominance). We say that a random
variable X dominates a random variable Y by the second-order stochastic domi-
nance (X ⪰(2) Y ) if

E u(X) ≥ E u(Y ) for all u ∈ U2 such that these expected values exist.

We say that X dominates Y by the second-order stochastic dominance strictly
(X ≻(2) Y ) if

E u(X) ≥ E u(Y ) for all u ∈ U2 such that these expected values exist

with a strict inequality holding for at least one u0 ∈ U2.

SSD can be equivalently described using cumulative distribution functions of
the random variables.

Theorem 1.3 (Alternative Definition of SSD). X ⪰(2) Y if and only if F
(2)
X (x) ≤

F
(2)
Y (x) for all x ∈ R . X ≻(2) Y if and only if F

(2)
X (x) ≤ F

(2)
Y (x) for all x ∈ R,

and there is at least one x for which the inequality is strict.

It is possible to formulate equivalent conditions for SSD for the special case
of discrete random variables with equiprobable atoms.

4



Theorem 1.4 (SSD for Empirical Distributions).

X ⪰(2) Y ⇐⇒
t∑︂

i=1
xi ≥

t∑︂
i=1

yi, t = 1, . . . , T.

X ≻(2) Y ⇐⇒
t∑︂

i=1
xi ≥

t∑︂
i=1

yi, t = 1, . . . , T,

and there is a t for which the inequality is strict.

The following relationship between the first-order and the second-order sto-
chastic dominance holds.

Theorem 1.5. Let X and Y be random variables. Then X ⪰(1) Y =⇒ X ⪰(2) Y .

It can be seen from the definition because U2 ⊂ U1. Therefore, if E u(X) ≥
E u(Y ) for all u ∈ U1, then the inequality holds also for all u ∈ U2.

1.3 Third-Order Stochastic Dominance
The third-order stochastic dominance (TSD) assumes an even narrower set of
utility functions U3 = {u utility function, u′ ≥ 0, u′′ ≤ 0, u′′′ ≥ 0}. Justifying this
restriction is slightly more complicated than the previous ones. We will show
that it corresponds to the situation when investors prefer to be exposed to the
possibility of unlikely but high returns over unlikely but high losses. This means
that they prefer positive skewness. We now provide a definition of skewness and
an explanation of the relationship between preference for positive skewness and
positive third derivative of utility function similarly to Levy [2006].

Definition 1.3 (Skewness). Skewness of a distribution of a random variable X
is defined as

µ3 = E (X − E X)3.

Suppose that an investor’s wealth is w. For an investment X, and a utility
function u, the function u(w+X) can be approximated based on Taylor expansion
as follows:

u(w + X) ≈ u(w + E X) + u′(w + E X)(X − E X) + u′′(w + E X)
2 (X − E X)2

+u′′′(w + E X)
3! (X − E X)3.

By taking the expected value from both sides and denoting the variance of X
as σ2 we receive the following equation.

E u(w + X) ≈ u(w + E X) + u′′(w + E X)
2 σ2 + u′′′(w + E x)

3! µ3.

Assuming a constant σ2 and a preference for positive skewness, the overall
expected utility should increase with increasing µ3. Therefore, we need u′′′ ≥ 0.
This provides an explanation to the definition of U3 and leads to the definition
of the third-order stochastic dominance.
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Definition 1.4 (Third-Order Stochastic Dominance). We say that a random
variable X dominates a random variable Y by the third-order stochastic dominance
(X ⪰(3) Y ) if

E u(X) ≥ E u(Y ) for all u ∈ U3 such that these expected values exist.

We say that X dominates Y by the third-order stochastic dominance strictly
(X ≻(3) Y ) if

E u(X) ≥ E u(Y ) for all u ∈ U3 such that these expected values exist

with a strict inequality for at least one u0 ∈ U3.

TSD can be equivalently described also by the twice integrated cumulative
distribution functions of the random variables.

Theorem 1.6 (Alternative Definition of TSD). X ⪰(3) Y if and only if

F
(3)
X (x) ≤ F

(3)
Y (x) for all x ∈ R,

and
E X ≥ E Y.

X ≻(3) Y if and only if

F
(3)
X (x) ≤ F

(3)
Y (x) for all x ∈ R,

and
E X ≥ E Y,

and there is at least one strict inequality.

The following relationship between the second-order and the third-order sto-
chastic dominance holds.

Theorem 1.7. Let X and Y be random variables. Then X ⪰(2) Y =⇒ X ⪰(3) Y .

Similarly as in Theorem 1.5, it follows from the fact that U3 ⊂ U2. A natural
consequence of the theorem above and Theorem 1.5 is that X ⪰(1) Y =⇒ X ⪰(3)
Y .

The rules for FSD and SSD in empirically distributed variables presented in
Theorem 1.2 and Theorem 1.4 cannot be directly extended for the third-order
stochastic dominance. The reasons for it are precisely explained in Levy [2006].
Briefly described, it is caused by the fact that F

(3)
Y (x)−F

(3)
X (x) is not linear on each

interval between neighbouring xi and xi+1 or yj. Therefore, it is not sufficient to
compare the two considered distributions only at the points x1, . . . , xT , y1, . . . , yT .
Levy [2006] suggests a more complicated algorithm for verifying TSD relationship
between two empirically distributed random variables, which is based on checking
the positiveness of F

(3)
Y (x) − F

(3)
X (x) at points x1, . . . , xT , y1, . . . , yT as well as at

certain points between them.
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1.4 Decreasing Absolute Risk Aversion Stochas-
tic Dominance

Decreasing absolute risk aversion stochastic dominance (DARA SD) assumes that
risk aversion of an investor decreases as his wealth increases. Following Arrow
[1965] and Pratt [1964], risk aversion is measured by the Arrow-Pratt absolute
risk aversion function which is defined as

r(w) = −u′′(w)
u′(w) ,

where w ∈ W is the wealth of an investor.
It is related to risk premium π(X), which was defined by Pratt [1964]:

u(w + E X − π(X)) = E u(w + X).

It represents the amount of money that an investor is willing to pay to avoid
undertaking the risk of an investment whose returns are represented by X. It
was shown in Pratt [1964] that π(X) can be approximated using the absolute risk
aversion function

π(X) ≈ 1/2 · σ2 · r(w + E X),
where σ2 is the variance of X.

It is reasonable to assume that many investors are less afraid of losing some
amount of money when they are richer. Hence, they are less motivated to pay risk
premium to avoid undertaking the risk of an investment. So, the risk premium
decreases with increasing wealth and so does the absolute risk aversion function.
It is therefore reasonable to define decreasing absolute risk aversion stochastic
dominance.

Following Post et al. [2015], we define the set of utility functions satisfying
decreasing absolute risk aversion as UD = {u ∈ U3, u′ > 0, r′ ≤ 0}. The condition
u′ > 0 is necessary to ensure that r(w) is well defined. The conditions r′ ≤ 0 and
u′ > 0 imply that u′′′ ≥ 0 because u′′′(w) · u′(w) has to be positive to allow the
condition below to be fulfilled:

0 ≥ r′(w) =
(︄

−u′′(w)
u′(w)

)︄′

= −u′′′(w) · u′(w) + (u′′(w))2

(u′(w))2 .

We should note that the condition r′ ≤ 0 in fact ensures non-increasing ab-
solute risk aversion. Nevertheless, the term decreasing absolute risk aversion is
usually used. Decreasing absolute risk aversion stochastic dominance is defined
as follows.

Definition 1.5 (Decreasing Absolute Risk Aversion Stochastic Dominance). We
say that a random variable X dominates a random variable Y by decreasing ab-
solute risk aversion stochastic dominance (X ⪰(D) Y ) if

E u(X) ≥ E u(Y ) for all u ∈ UD such that these expected values exist.

The definition of UD is not as straight-forward as in the previous cases. Unfor-
tunately, describing it by imposing rules directly on the shape of utility functions
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results in a complicated condition which is described in Levy [2006]. For arbitrary
constants c1, c2, it is following:

u ∈ UD ⇐⇒ u(w) =
∫︂ w

−∞
e

−
∫︁ z

−∞ r(v)dv+c1dz + c2.

We do not know of an alternative definition of DARA SD using the distribution
functions of the random variables.

A sufficient condition for DARA SD is clear directly from the definition.
Theorem 1.8. Let X and Y be random variables. Then X ⪰(3) Y =⇒ X ⪰(D) Y .

The fact that TSD is a necessary condition for DARA SD gives an important
application to TSD, which is easier to prove than DARA SD.

Moreover, under the assumption of equal means, TSD and DARA SD coincide.
Theorem 1.9. Let X and Y be random variables satisfying E X = E Y . Then
X ⪰(3) Y ⇐⇒ X ⪰(D) Y .

We have seen a sufficient rule for DARA SD, and under the special condition
of equal means also a necessary and sufficient rule. We, however, do not know of
an applicable general necessary and sufficient rule. Therefore, we introduce also a
general necessary rule for DARA SD, which is infinite-order stochastic dominance
presented in the following section.

1.5 Infinite-Order Stochastic Dominance
The infinite-order stochastic dominance (ISD) assumes the narrowest set of utility
functions presented so far. We define U∞ = {u utility function, (−1)n−1 · u(n) ≥
0, n ∈ N} according to Whitmore [1989], who calls such utility functions com-
pletely monotonic. This class of completely monotonic functions contains impor-
tant and widely used utility functions such as log(x), xα

α
for α < 1, or 1 − e−αx

for α > 0. Yet, a precise economical justification of these conditions on utility
functions is not as clear as in the previous cases. Nevertheless, we define the
infinite-order stochastic dominance following Whitmore [1989].
Definition 1.6 (Infinite-Order Stochastic Dominance). We say that a random
variable X dominates a random variable Y by infinite-order stochastic dominance
(X ⪰(∞) Y ) if

E u(X) ≥ E u(Y ) for all u ∈ U∞ such that these expected values exist.

Unlike for DARA SD, there is a useful equivalent rule for ISD. It was proved
in Whitmore [1989].
Theorem 1.10 (Alternative Definition of ISD). X ⪰(∞) Y if and only if
E e−aX ≥ E e−aY for all a > 0.

Whitmore [1989] states that all u ∈ U∞ exhibit non-increasing risk aversion.
Therefore, U∞ ⊆ UD, and the necessary condition for DARA SD follows from it.
Theorem 1.11. Let X and Y be random variables. Then X ⪰(D) Y =⇒
X ⪰(∞) Y .

This gives an important application to ISD as it can be used to approximate
DARA SD.
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2. Measure of Non-Dominance
We explained in the previous chapter that FSD ⇒ SSD ⇒ TSD ⇒ DARA SD
⇒ ISD. The opposite implications generally do not hold. We are interested
in quantifying how incorrect would it be to approximate the stricter types of
stochastic dominance by the weaker ones.

We develop a way to assess how accurate the approximation is. Suppose
X ⪰(n) Y does not hold1. Our goal is to measure how inaccurate would it be to
assume that X dominates Y by nSD (X ⪰(n) Y ) even though X non-dominates
Y by nSD (X ̸⪰(n) Y ). We measure how much must X change in order for it to
dominate Y with respect to nSD, or, in other words, how far X is from X ⪰(n) Y .
For dist(X, Y ) being a distance of the random variables X and Y, we define a
measure of nth non-dominance (n-ND) as follows.

Definition 2.1 (Non-Dominance). Let X and Y be random variables. The mea-
sure of nth non-dominance of X and Y, n-ND(X, Y ), is computed by solving the
following program:

n-ND(X, Y ) = min
X̂

dist(X, X̂) (2.1)

subject to X̂ ⪰(n) Y.

We can see that if X ⪰(n) Y , then X̂ = X and n-ND(X, Y ) = 0.
When we apply the measure of non-dominance to assess the quality of ap-

proximations by higher order stochastic dominance, it is natural to assume that
X ⪰(n+1) Y . It is, however, not necessary for the definition.

2.1 Convexity of the Feasible Set
It is advantageous in solving optimization problems to have a convex feasible set.
Let as define the set

An(Y ) = {X : X ⪰(n) Y }.

Dentcheva and Ruszczynski [2004] show by a simple example, that A1(Y )
is not convex. Suppose that X1, X2, Y are independent identically distributed
random variables with the following distribution: P (Y = 0) = P (Y = 1) = 1/2.
Define X as a convex combination of X1 and X2 as follows:

X = X1 + X2

2 .

Then P (X = 0) = 1/4, P (X = 1/2) = 1/2 and P (X = 1) = 1/4. X1 ⪰(1) Y ,
X2 ⪰(1) Y , but X ̸⪰(1) Y because FX(x) > FY (x) for x ∈ [1/2, 1). Fortunately,
we will see later that for some particular distributions of X and Y , the feasible
set of (2.1) is convex even for 1-ND.

We will show that An(Y ) is convex for n ≥ 2. Suppose X1 ⪰(n) Y , X2 ⪰(n) Y ,
and define X = λX1 + (1 − λ)X2, λ ∈ (0, 1). We want to show that X ⪰(n)

1For the sake of simpler notation we mean DARA SD by n = 4 in this context.
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Y which means that E u(X) ≥ E u(Y ) for all u ∈ Un, n ≥ 2. The fact that
u ∈ Un, n ≥ 2, implies that u′′ ≤ 0, which implies that u is concave. Therefore
u(λX1 + (1 − λ)X2) ≥ λu(X1) + (1 − λ)u(X2). It follows that

E u(X) = E u(λX1 + (1 − λ)X2) ≥ E (λu(X1) + (1 − λ)u(X2))
= λE u(X1) + (1 − λ)E u(X2) ≥ λE u(Y ) + (1 − λ)E u(Y ) = E u(Y )

for all u ∈ Un. The inequality on the first line follows from concavity of u. The
inequality on the second line follows from the fact that X1 ⪰(n) Y and X2 ⪰(n) Y .
Therefore X ⪰(n) Y , and An is convex for n ≥ 2.

2.2 Measure of Distance
Following Kozmı́k [2019], we use the Wasserstein distance as the measure of
distance of two random variables. We provide its definition from Pflug and Pichler
[2014]. To measure the distance of random variables, we measure the distance of
the probability measures induced by them.

Definition 2.2 (Wasserstein Distance). Let there be two probability spaces (Ω1,
F1, P1) and (Ω2, F2, P2). The Wasserstein distance of order r ≥ 1 of probability
measures P1 and P2 is defined as

dr(P1, P2) =
(︃

inf
π

∫︂ ∫︂
Ω1×Ω2

d(ω1, ω2)rπ(dω1, dω2)
)︃ 1

r

,

where the infimum is among all probability measures π on Ω1 × Ω2 such that

π(A × Ω2) = P1(A) and π(Ω1 × B) = P2(B) for all A ∈ F1 and B ∈ F2,

and d(ω1, ω2) is inherited distance between elements of Ω1 and Ω2.

Wasserstein distance of order r = 1 or r = 2 is used the most. We will use
the Wasserstein distance of order 2 throughout this work.

Following Pflug and Pichler [2014] we present the following theorem which
simplifies the computation of the Wasserstein distance of two measures on the
real line.

Theorem 2.1. The Wasserstein distance of order r ≥ 1 of measures P1 and P2
on the real line is

dr(P1, P2)r =
∫︂ 1

0
| F −1

P1 (α) − F −1
P2 (α) |r dα,

where F −1
P (α) is the inverse distribution function, which is defined as F −1

P (α) =
inf{y : FP (y) ≥ α}.

To simplify the computation of the measure of non-dominance, we use
dr(P1, P2)r instead of dr(P1, P2) when solving the program (2.1). Because raising
a non-negative number to power r ≥ 1 is a strictly increasing function, it does
not change the optimal solution of the program (2.1). We can extract the rth root
of the solution to receive the actual Wasserstein distance.
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2.3 Simplification for Empirical Distributions
We will now focus on computing the measure of non-dominance in empirical dis-
tributions (discrete distributions with equiprobable atoms), which will be crucial
in the fourth and fifth chapter. Pflug and Pichler [2014] describe how the defi-
nition of the Wasserstein distance can be adjusted for random variables with a
discrete distribution.

Theorem 2.2 (Wasserstein Distance for Discretely Distributed Variables). Let
there be two discrete random variables. X attains values x1, . . . , xT with prob-
abilities p1, . . . , pT , and Y attains values y1, . . . , yT with probabilities q1, . . . , qT .
Then their Wasserstein distance of order r ≥ 1 can be computed by solving the
following program.

dr(X, Y )r = min
ξts

T∑︂
t=1

T∑︂
s=1

ξts | xt − ys |r (2.2)

subject to
T∑︂

s=1
ξts = pt, t = 1, . . . , T,

T∑︂
t=1

ξts = qs, s = 1, . . . , T,

ξts ≥ 0, s = 1, . . . , T, t = 1, . . . , T.

The computation of the Wasserstein distance of two discrete random variables
(2.2) can be significantly simplified for the case of two discrete random variables
with equiprobable atoms. Firstly, we can substitute all pt and qt in the above
program by 1/T . Moreover, we will show in Theorem 2.3 that if the equiprobable
atoms are ordered (x1 ≤ · · · ≤ xT and y1 ≤ · · · ≤ yT ), then for r > 1 the optimal
solution of the program (2.2) is ξ∗

tt = 1/T for all t and ξ∗
st = 0 for all s ̸= t. There

can be more optimal solutions for r = 1 but ξ∗
tt = 1/T for all t and ξ∗

st = 0 for all
s ̸= t is always among them.

We state and prove the following theorem only for the Wasserstein distance of
integer order, which is sufficient for the usual use of Wasserstein distance of order
1 and 2. Considering only positive integer orders simplifies the computations in
the proof of Lemma 2.4 in the third case.

Theorem 2.3 (Wasserstein Distance for Empirically Distributed Variables). Let
there be two discrete random variables. X attains values x1 ≤ · · · ≤ xT with
probabilities 1/T and Y attains values y1 ≤ · · · ≤ yT with probabilities 1/T .
Then their Wasserstein distance of integer order r ≥ 1 is

dr(X, Y )r = 1
T

T∑︂
t=1

| xt − yt |r .

To prove this theorem, we will use the following lemma, which will be proved
first.

Lemma 2.4. Let xa ≤ xb, ya ≤ yb be real numbers. Then for integer r ≥ 1

| xa − ya |r + | xb − yb |r≤| xa − yb |r + | xb − ya |r . (2.3)
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Proof. We assume without loss of generality that xa ≤ ya. There are then three
possible orderings of these four numbers:

1. xa ≤ ya ≤ yb ≤ xb,

2. xa ≤ ya ≤ xb ≤ yb,

3. xa ≤ xb ≤ ya ≤ yb.

We will now work with each of these orderings separately. It enables us to
eliminate the absolute values from equation (2.3) because we know when the
differences are positive and when they are negative.

1. (ya − xa)r + (xb − yb)r ≤ (yb − xa)r + (xb − ya)r because both the first and
the second summands are lower on the left-hand side.

2. yb − xa ≥ 0 and yb − xb + ya − xa ≥ 0 but −xb + ya ≤ 0, so (yb − xa)r ≥
(yb − xb + ya − xa)r. It holds for two non-negative numbers (ya − xa)r and
(yb − xb)r that (ya − xa + yb − xb)r ≥ (ya − xa)r + (yb − xb)r. Putting
these results together, we receive that (yb − xa)r ≥ (yb − xb + ya − xa)r ≥
(ya − xa)r + (yb − xb)r. Adding the non-negative number (yb − xa)r to the
left-hand side of this inequality does not invalidate it, and we receive that
(yb − xa)r + (xb − ya)r ≥ (ya − xa)r + (xb − yb)r.

3. We will use the following notation to prove this case: a = xb−xa, b = ya−xb,
c = yb − ya. Then a, b, c ≥ 0. It follows from the binomial theorem2 that
(yb−xa)r+(ya−xb)r = (a+b+c)r+br = ∑︁r

k=0

(︂
r
k

)︂
(a+b)k ·cr−k+br. Similarly,

(ya − xa)r + (yb − xb)r = (a + b)r + (b + c)r = (a + b)r +∑︁r
k=0

(︂
r
k

)︂
bk · cr−k.

We compute as follows:

(a + b + c)r + br =
r∑︂

k=0

(︄
r

k

)︄
(a + b)k · cr−k + br

=
r−1∑︂
k=0

(︄
r

k

)︄
(a + b)k · cr−k + (a + b)r + br

≥
r−1∑︂
k=0

(︄
r

k

)︄
bk · cr−k + (a + b)r + br

=
r∑︂

k=0

(︄
r

k

)︄
bk · cr−k + (a + b)r = (a + b)r + (b + c)r,

where the inequality holds because a is non-negative. This proves that
(ya − xb)r + (yb − xa)r ≥ (ya − xa)r + (yb − xb)r.

We now return to the proof of the original theorem.
2The binomial theorem holds only for non-negative integer r, which is why this lemma is

not stated and proved for any real r ≥ 1. A generalization of the binomial theorem exists, but
since the Wasserstein distance of integer order 1 or 2 is used the most, we do not consider it in
this context.
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Proof. We first add an assumption that ξts ∈ {0, 1/T} to the problem (2.2). Then
there is exactly one ξts = 1/T > 0 for each t and for each s. There cannot be
more positive ξts for given t and s because the equalities ∑︁T

t=1 ξts = 1/T and∑︁T
t=s ξts = 1/T would be violated because the sums would be higher than 1/T .

Similarly, there has to be at least one positive ξts because the sums would be 0
otherwise. If ξts = 1/T , then | xt − ys |r is added to the objective function 1/T
times and it is the only time xt and ys are included in the objective function. The
distance of xt and ys was assigned the weight 1/T while the distance of xt and
yr, r ̸= s, was assigned the weight 0. This allows us to formulate the problem in
a different way: each ys is assigned to one xt, and their distance is added to the
objective function.

Let k be a permutation k : {1, . . . , T} −→ {1, . . . , T} which represents which
ys is assigned to which xt. The objective function of problem (2.2) can be rewrit-
ten in the following way. Our goal is then to minimize it over all existing permu-
tations k:

1
T

T∑︂
t=1

| xt − yk(t) |r . (2.4)

We show that k being identity, k(t) = t, is an optimal solution. There may be
more optimal solutions but this is always one of them. We prove it by showing
that by changing any k to an identity, the function (2.4) does not increase.

Suppose k1 is not an identity. Then there are at least two numbers a, b ∈
{1, . . . , T} such that a < b and k1(a) > k1(b). We call such situation an inversion.
It follows from the lemma above that | xa −yk1(a) |r + | xb −yk1(b) |r≥| xa −yk1(b) |r
+ | xb − yk1(a) |r. We therefore define k2 in a following way: k2(a) = k1(b),
k2(b) = k1(a) and k2(t) = k1(t) for all other t ∈ {1, . . . , T}. The value of (2.4)
using k2 is lower than or equal to its value using k1.

k2 has strictly less inversions than k1. If there are still inversions in k2, we
construct k3 from k2 in the same way as we constructed k2 from k1. We proceed
in the same way until we arrive at kn which does not have any inversions - it
is an identity. Such n exists and is finite because the number of inversions in
a finite sequence is finite, and we keep decreasing their number as we construct
subsequent k’s. The value of (2.4) keeps decreasing (or not increasing) so its
value for kn = identity is lower than or equal to its value for all ki, i < n.

Any permutation k can be transformed to an identity in the described way
and we have shown that the value of (2.4) does not increase throughout this
process. Therefore identity leads to the lowest value of (2.4) and it is an optimal
solution.

We return to the optimization problem (2.2) with the added constraint that
ξ ∈ {0, 1/T}. The value of (2.4) is lowest for k being an identity, which corre-
sponds to ξtt = 1/T for all t and ξts = 0 for all t ̸= s.

We now loose the assumption that ξ ∈ {0, 1/T}. Then ξtt = 1/T − ε,
ε ∈ (0, 1/T ) is also a feasible solution. However, it corresponds to decreas-
ing the weight of the optimal assignment of x’s to y’s by ε and increasing the
weight of a different assignment by ε. The assignment of xt to yt is an optimal
one, so decreasing its weight in the objective function and increasing the weight
of different assignments of x’s to y’s does not lead to a better solution.

The optimal solution of (2.2) for empirical distributions gives the maximum
weights ξts to the optimal assignment of x’s to y’s. The optimal assignment
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is an identity. Therefore the optimal solution of (2.2) is ξ∗
tt = 1/T for all t

and ξ∗
st = 0 for all s ̸= t. This simplifies the objective function of (2.2) to

1
T

∑︁T
t=1 | xt − yt |r, and no more constraints are needed. So, the Wasserstein

distance of positive integer order of two empirically distributed random variables
is 1

T

∑︁T
t=1 | xt − yt |r.

Using this result, we now return to the original problem of computing the
measure of non-dominance.

Theorem 2.5 (Non-dominance for Empirically Distributed Variables). Let X
and Y be discrete random variables with ordered equiprobable atoms x1 ≤ · · · ≤
xT , y1 ≤ · · · ≤ yT . Then the measure of nth non-dominance of X and Y is
computed, using the Wasserstein distance of integer order r ≥ 1, as follows:

n-ND(X, Y )r = min
X̂

1
T

T∑︂
t=1

| xt − x̂t |r

subject to X̂ ⪰(n) Y.

Proof. It follows from Definition 2.1. We have seen in Theorem 2.3 that the
Wasserstein distance of positive integer order of empirically distributed random
variables with ordered atoms can be computed as 1

T

∑︁T
t=1 | xt − x̂t |r. The atoms

of the optimal solution X̂
∗ are ordered for the following reasons. Suppose a < b.

Then xa ≤ xb as follows from the assumptions of this theorem. If x̂c ≤ x̂d, then
Lemma 2.4 states that | xa − x̂c |r + | xb − x̂d |r≤| xa − x̂d |r + | xb − x̂c |r.
Because the objective function is minimized, the optimal solution satisfies that
x̂c ≤ x̂d whenever c < d. Because the condition X̂ ⪰(n) Y does not impose rules
which would imply that x̂a must be greater than x̂b for a < b, the atoms of X̂
are ordered. So, we can use the Theorem 2.3 to compute the distance of X and
X̂.

We saw in Chapter 1 that the condition X̂ ⪰(n) Y can be rewritten for n = 1,
or n = 2 as x̂t ≥ yt for all t, or ∑︁t

j=1 x̂j ≥ ∑︁t
j=1 yj for all t respectively.

14



3. Approximation of Stochastic
Dominance for Particular
Distributions
The measure of non-dominance can be computed exactly for some distributions.
This chapter presents its values for uniform, normal and exponential distributions.

3.1 Uniform Distribution
Suppose a < b, c < d are real numbers and X and Y are uniformly distributed
random variables: X ∼ U(a, b), Y ∼ U(c, d). Using the alternative definitions of
FSD, SSD and TSD, one quickly receives necessary and sufficient conditions for
FSD and SSD and necessary conditions for TSD under uniform distribution.

Theorem 3.1. Suppose X ∼ U(a, b) and Y ∼ U(c, d). Then

X ⪰(1) Y ⇐⇒ a ≥ c, b ≥ d.

X ⪰(2) Y ⇐⇒ a ≥ c, a + b ≥ c + d.

X ⪰(3) Y =⇒ a ≥ c, b − a ≥ d − c.

Proof. The Alternative Definition of FSD states that X ⪰(1) Y ⇐⇒ FX(x) ≤
FY (x) for all x. a ≥ c is a necessary condition for FX(x) ≤ FY (x) because
FX(x) = 0 for x ≤ a and FY (x) > 0 for x > c. Similarly, b ≥ d is a necessary
conditions for FX(x) ≤ FY (x) because FX(x) = 1 for x ≥ b and FY (x) < 1
for x < d. They are also sufficient conditions because the distribution functions
are straight lines on the support of the distribution and under these conditions
they do not intersect on it. So, if FX(a) ≤ FY (a) and FX(d) ≤ FY (d), then
FX(x) ≤ FY (x) for all x.

The Alternative Definition of SSD states that X ⪰(2) Y ⇐⇒ F
(2)
X (x) ≤ F

(2)
Y (x)

for all x. F
(2)
X (x) = 0 for x ≤ a and F

(2)
Y (x) > 0 for x ≥ c. This leads to a

necessary condition for X ⪰(2) Y : a ≥ c. If b ≥ d, then X ⪰(1) Y and therefore
also X ⪰(2) Y .

Suppose now that b < d. For x ≥ d, both FX(x) = 1 and FY (x) = 1 so the
integrated distribution functions increase by the same rate. So, it is necessary to
check that F

(2)
X (x) ≤ F

(2)
Y (x) only for x ∈ (a, d). FX and FY are straight lines on

the interval (a, b). Since we suppose that c ≤ a < b < d, they intersect exactly
once in the interval. For x lower than the point of the intersection FY (x) ≥
FX(x) so F

(2)
Y (x) ≥ F

(2)
X (x), too. FY (x) < FX(x) for all x greater then point

of intersection and lower than d, therefore, F
(2)
X (x) increases faster than F

(2)
Y (x)

between the point of intersection and d. It is therefore sufficient to check that
F

(2)
Y (x) ≥ F

(2)
X (x) at x = d because if the inequality is violated for any x from

the interval, it is violated at x = d, too. The integrated distribution functions at
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point d are in this case following:

F
(2)
X (d) = (b − a)2

2(b − a) + (d − b) = d − b + a

2 ,

F
(2)
Y (d) = (d − c)2

2(d − c) = d − c

2 .

Therefore F
(2)
X (d) ≤ F

(2)
Y (d) if and only if d−c

2 ≥ d − b+a
2 ⇔ a + b ≥ c + d. We

supposed that b < d but the case when b ≥ d also fulfills the condition a+b ≥ c+d
so we have a general necessary rule for X ⪰(2) Y .

It is also a sufficient rule. a ≥ c implies that F
(2)
X (x) − F

(2)
Y (x) ≤ 0 for

x ≤ c, a + b ≥ c + d implies that F
(2)
X (x) − F

(2)
Y (x) ≤ 0 for x ∈ (a, max(b, d)).

For x ≥ max(b, d), the integrated distribution functions do not intersect so the
condition cannot be violated.

The Alternative Definition of TSD states that X ⪰(3) Y ⇐⇒ F
(3)
X (x) ≤

F
(3)
Y (x) for all x. F

(3)
X (x) = 0 for x ≤ a and F

(3)
Y (x) > 0 for x ≥ c. This leads to

a necessary condition for X ⪰(3) Y : a ≥ c. The other necessary condition follows
from the fact that E X = b−a

2 ≥ E Y = d−c
2 is a necessary condition for TSD.

To prove that X ⪰(3) Y by showing that F
(3)
Y (x) − F

(3)
X (x) ≥ 0 for all x, one

must check that a ≥ c and that either b ≥ d or F
(3)
Y (x) − F

(3)
X (x) ≥ 0 at points b,

d, and that the minimum of F
(3)
Y (x) − F

(3)
X (x) on the intervals (a, b) and (b, d) is

greater than 0, and that E X ≥ E Y . There is, however, a necessary and sufficient
condition for TSD, which follows from the necessary conditions presented above.

Theorem 3.2. Suppose X ∼ U(a, b) and Y ∼ U(c, d). Then

X ⪰(3) Y ⇐⇒ X ⪰(2) Y ⇐⇒ a ≥ c, a + b ≥ c + d.

Proof. We will show that the necessary conditions for TSD presented in Theorem
3.1 imply the equivalent conditions for SSD. In both cases a ≥ c. If also b − a ≥
d − c holds, we add 2a to the left side of this inequality and 2c to the right side of
this inequality. The inequality is preserved because a ≥ c. We receive b+a ≥ d+c
which is the second condition for SSD.

So, using Theorem 3.1 and the sufficient condition for TSD from Theorem
1.7, we obtain

X ⪰(3) Y ⇒ a ≥ c, b − a ≥ d − c ⇒ a ≥ c, a + b ≥ c + d ⇔ X ⪰(2) Y ⇒ X ⪰(3) Y,

which proves the equivalence of SSD and TSD for uniform distributions.

We now proceed to compute the measure of non-dominance. The following
theorem shows how the Wasserstein distance of order 2 of two uniformly dis-
tributed random variables is computed.

Theorem 3.3. The Wasserstein distance of order 2 of two uniformly distributed
random variables X ∼ U(a, b), Y ∼ U(c, d) is

d2(X, Y )2 = (a − c)(b − d) + 1
3(a − b − c + d)2.
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Proof. We use Theorem 2.1 to compute it. Note that F −1
X (α) = a + α(b − a).

Therefore:

d2(X, Y )2 =
∫︂ 1

0
(F −1

X (α) − F −1
Y (α))2dα

=
∫︂ 1

0
(a + α(b − a) − c − α(d − c))2dα

=
∫︂ 1

0
α2(−a + b + c − d)2 + 2α(a − c)(−a + b + c − d) + (a − c)2dα

= 1
3(−a + b + c − d)2 + (a − c)(−a + b + c − d) + (a − c)2

= (a − c)(b − d) + 1
3(a − b − c + d)2.

Using this results and supposing that X̂ ∼ U(â, b̂), we can compute the 1-ND
for uniform distributions by solving the following program:

min
â,b̂

(a − â)(b − b̂) + 1
3(a − b − â + b̂)2 (3.1)

subject to â ≥ c,

b̂ ≥ d.

The following theorem describes the results of the program (3.1) above.

Theorem 3.4. The measure of first non-dominance of two uniformly distributed
random variables, X ∼ (a, b), Y ∼ (c, d), is computed by solving the problem
(3.1). It leads to the following results.

1. If a ≥ c and b ≥ d, then â = a and b̂ = b and 1-ND(X, Y ) = 0.

2. If 2a + b ≥ 2c + d and b < d, then â = a − d−b
2 and b̂ = d. The optimal

value of the objective function is 1
4(d − b)2 and 1-ND(X, Y ) = d−b

2 .

3. If a < c and a + 2b ≥ c + 2d, then â = c and b̂ = b − c−a
2 . The optimal value

of the objective function is 1
4(c − a)2 and 1-ND(X, Y ) = c−a

2 .

4. If 2a + b < 2c + d and a + 2b < c + 2d, then â = c and b̂ = d. The optimal
value of the objective function is (a − c)(b − d) + 1

3(a − b − c + d)2 and
1-ND(X, Y ) is equal to its square root, which is also d2(X, Y ).

Proof. It can be easily seen that the feasibility set in this case is convex. The
objective function is also convex, which can be seen from its Hessian matrix. The
second derivatives of the objective function are following:
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∂2(a − â)(b − b̂) + 1
3(a − b − â + b̂)2

∂â∂â
= 2

3 ,

∂2(a − â)(b − b̂) + 1
3(a − b − â + b̂)2

∂â∂b̂
=

∂2(a − â)(b − b̂) + 1
3(a − b − â + b̂)2

∂b̂∂â
= 1

3 ,

∂2(a − â)(b − b̂) + 1
3(a − b − â + b̂)2

∂b̂∂b̂
= 2

3 .

So, the Hessian matrix is
1
3 ·
(︄

2 1
1 2

)︄
,

which is a positive semi-definite matrix. Because the objective function and
the feasibility set are convex, the Karush-Kuhn-Tucker point is the optimal solu-
tion.

The Lagrange function of this problem is

L(â, b̂, u1, u1) = (a − â)(b − b̂) + 1
3(a − b − â + b̂)2 + u1(c − â) + u2(d − b̂).

We now derive the Karush-Kuhn-Tucker conditions for this problem. The
stationarity conditions are following:

∂L(â, b̂, u1, u1)
∂â

= −b + b̂ − 2
3(a − b − â + b̂) − u1 = 0, (3.2)

∂L(â, b̂, u1, u1)
∂b̂

= −a + â + 2
3(a − b − â + b̂) − u2 = 0. (3.3)

The feasibility conditions are â ≥ c and b̂ ≥ d.
The dual feasibility conditions are u1 ≥ 0 and u2 ≥ 0.
The complementary slackness conditions are u1(c − â) = 0 and u2(d − b̂) = 0.
Depending on the assumptions we make about the positiveness of u1 and u2,

we receive the following four solutions. Each of these four assumptions implies
that the dual feasibility conditions are satisfied.

Firstly, we suppose that u1 = 0 and u2 = 0. Then the stationarity conditions
mean that −b + b̂ − 2

3(a − b − â + b̂) = 0 and −a + â + 2
3(a − b − â + b̂) = 0 which

implies that â = a and b̂ = b. The primal feasibility conditions mean that a ≥ c
and b ≥ d. The complementary slackness conditions are satisfied. Therefore the
optimal solution is â = a and b̂ = b if a ≥ c and b ≥ d. Substituting for â and b̂
in the objective function (3.1), we receive (a − a)(b − b) + 1

3(a − b − a + b)2, which
equals 0. So the optimal value of the objective function is 0 in this case.

Secondly, we suppose that u1 = 0 and u2 > 0. Then the first complementary
slackness condition is satisfied and the second one yields that b̂ = d. The first
stationarity condition (3.2) yields for u1 = 0 and b̂ = d that −b + d − 2

3(a −
b − â + d) = 0, which implies that â = a − d−b

2 . Then the second stationarity
condition 3.3 yields that −a + a − d−b

2 + 2
3(a − b − a − d−b

2 + d) > 0, which implies
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that b < d. The first feasibility condition yields that a− d−b
2 ≥ c ⇔ 2a+b ≥ 2c+d,

the second one is always satisfied. Therefore â = a − d−b
2 and b̂ = d if a ≥ c and

2a+b ≥ 2c+d. Substituting for â and b̂ in the objective function (3.1), we receive
(a − a + d−b

2 )(b − d) + 1
3(a − b − a + d−b

2 + d)2 = − (d−b)2

2 + 1
3(3d−3b

2 )2 = 1
4(d − b)2.

Thirdly, we suppose that u1 > 0 and u2 = 0. Then the first complementary
slackness condition yields that â = c, the second one is satisfied. The stationarity
condition (3.3) implies that b̂ = b − c−a

2 . The second feasibility condition yields
that b̂ = b − c−a

2 ≥ d ⇔ a + 2b ≥ c + 2d. After substituting for â and b̂ in (3.2),
it implies that −b + b − c−a

2 − 2
3(a − b − c + b − c−a

2 ) > 0, which is equivalent
to the condition a < c. As a result, â = c and b̂ = b − c−a

2 if a < c and
a + 2b ≥ c + 2d. Substituting for â and b̂ in the objective function (3.1), we
receive (a− c)(b− b+ c−a

2 )+ 1
3(a− b− c+ b− c−a

2 )2 = − c−a
2 + 1

3(3a−3c
2 ) = 1

4(c−a)2.
Fourthly, we suppose that u1 > 0 and u2 > 0. Then the complementary

slackness conditions yield that â = c and b̂ = d. The feasibility conditions are
satisfied. After substituting for â and b̂, the stationarity conditions imply that
−b + d − 2

3(a − b − c + d) > 0 and −a + c + 2
3(a − b − c + d) > 0. By solving these

inequalities, we receive that 2a + b < 2c + d and that a + 2b < c + 2d. Therefore
â = c and b̂ = d if 2a + b < 2c + d and a + 2b < c + 2d. Substituting for â and b̂
in the objective function (3.1), we receive (a − c)(b − d) + 1

3(a − b − c + d)2.

The conditions of the first case, a ≥ c and b ≥ d, imply that X ⪰(1) Y so it is
correct that 1-ND(X, Y ) = 0 in this case.

The conditions defining the second case imply that a ≥ c. It can be seen by
adding −b to the left-hand side of 2a + b ≥ 2c + d and −d to the right-hand side
of it. It can be done because −b ≥ −d is implied by the second condition defining
this case. As a result, X ⪰(2) Y is implied by the conditions of the second case.
The optimal solution may be surprising because â may be lower than a in order
to minimize the Wasserstein distance between X and X̂.

It can be seen similarly that the conditions defining the third case imply that
b ≥ d. The condition a < c violates a necessary condition for X ⪰(2) Y .

By adding up the conditions that define the fourth case, we receive that
a+b < c+d. This violates a necessary condition for X ⪰(2) Y which is a necessary
condition for X ⪰(1) Y . As a result, if the conditions of the fourth case are
satisfied, then X ̸⪰(2) Y .

Only the first two cases correspond to computing the measure of first non-
dominance when second-order stochastic dominance holds. If we approximate
FSD by SSD in uniform distribution, the measure of non-dominance is going to
be d−b

2 , which is lower than the measure of non-dominance if the fourth case hold.
But, the measure of non-dominance if the third case hold may actually be lower
in some cases than when SSD holds.

All possible orderings of a, b, c, d are covered by the four described cases, and
for a given ordering only the conditions of one of the four cases are satisfied. If
a ≥ c and b ≥ d, the conditions of the first case are satisfied. If a < c and b ≥ d,
then depending on whether a + 2b ≥ c + 2d holds, either the conditions of the
third or of the fourth case are satisfied. If a ≥ c and b < d, then depending on
whether 2a+ b ≥ 2c+d holds, either the conditions of the second or of the fourth
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case are satisfied. If a < c and b < d, then the conditions of the fourth case are
satisfied.

We will now focus on the computation of 2-ND. We are going to be solving
the following program.

min
â,b̂

(a − â)(b − b̂) + 1
3(a − b − â + b̂)2 (3.4)

subject to â ≥ c,

â + b̂ ≥ c + d.

The following theorem describes the results of the above program.

Theorem 3.5. The measure of second non-dominance for two uniformly dis-
tributed random variables, X ∼ (a, b), Y ∼ (c, d), is computed by solving the
problem (3.4). It leads to the following results.

1. If a ≥ c and a + b ≥ c + d, then â = a, b̂ = b and 2-ND(X, Y ) = 0.

2. If a + b < c + d and a − b ≥ c − d, then â = a−b+c+d
2 , b̂ = −a+b+c+d

2 . The
optimal value of the objective function is 1

4(a + b − c − d)2 and 2-ND(X, Y )
= −a−b+c+d

2 .

3. If a < c and a + 2b ≥ c + 2d, then â = c and b̂ = b − c−a
2 . The optimal value

of the objective function is (c−a)2

4 and 2-ND(X, Y ) = c−a
2 .

4. If a− b < c−d and a+2b < c+2d, then â = c, b̂ = d. The optimal value of
the objective function is (a − c)(b − d) + 1

3(a − b − c + d)2 and 2-ND(X, Y )
is equal to its square root, which is also d2(X, Y ).

Proof. It can be easily seen that the feasibility set in this case is convex. The
objective function is the same as in the problem (3.1) and therefore also convex.
So, we use the Karush-Kuhn-Tucker conditions to receive the solution of this
convex program. The Lagrange function of this problem is

L(â, b̂, u1, u1) = (a − â)(b − b̂) + 1
3(a − b − â + b̂)2 + u1(c − â) + u2(c + d − â − b̂).

We derive the Karush-Kuhn-Tucker conditions for this problem. The station-
arity conditions are following:

∂L(â, b̂, u1, u1)
∂â

= −b + b̂ − 2
3(a − b − â + b̂) − u1 − u2 = 0, (3.5)

∂L(â, b̂, u1, u1)
∂b̂

= −a + â + 2
3(a − b − â + b̂) − u2 = 0. (3.6)

The feasibility conditions are â ≥ c and â + b̂ ≥ c + d.
The dual feasibility conditions are u1 ≥ 0 and u2 ≥ 0.
The complementary slackness conditions are u1(c − â) = 0 and u2(c + d − â −

b̂) = 0.
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Depending on the assumptions we make about u1 and u2, we receive the fol-
lowing solutions. Each of these four assumptions implies that the dual feasibility
conditions are satisfied.

Firstly, we suppose that u1 = 0 and u2 = 0. Then the stationarity conditions
imply that −b+ b̂− 2

3(a−b− â+ b̂) = 0 and a+ â+ 2
3(a−b− â+ b̂)−u2 = 0, which

implies that â = a and b̂ = b. The feasibility conditions mean that a ≥ c and
a + b ≥ c + d. The complementary slackness conditions are satisfied. Therefore,
â = a and b̂ = b if a ≥ c and a + b ≥ c + dd. Substituting for â and b̂ in the
objective function (3.4), we receive (a − a)(b − b) + 1

3(a − b − a + b)2 = 0.
Secondly, we suppose that u1 = 0 and u2 > 0. Then the second com-

plementary slackness condition implies that −â − b̂ + c + d = 0. By sub-
tracting the second stationarity condition (3.6) from the first one (3.5), we re-
ceive that −a + â + b − b̂ = 0. Combining these two equalities, we receive
that â = a−b+c+d

2 and b̂ = −a+b+c+d
2 . The first as well as the second sta-

tionarity condition imply for u2 > 0 that c + d > a + b. The first feasibil-
ity condition implies that a − b ≥ c − d. The second feasibility condition is
satisfied. Therefore, â = a−b+c+d

2 and b̂ = −a+b+c+d
2 if a + b < c + d and

a − b ≥ c − d. Substituting for â and b̂ in the objective function (3.4), we receive
(a− a−b+c+d

2 )(b− −a+b+c+d
2 )+ 1

3(a−b− a−b+c+d
2 + −a+b+c+d

2 )2 = 1
4(a+b−c−d)2+ 1

3 ·0 =
1
4(a + b − c − d)2.

Thirdly, we suppose that u1 > 0 and u2 = 0. Then the first complementary
slackness condition yields that â = c. The second stationarity condition (3.6)
implies for u2 = 0 and â = c that−a + c + 2

3(a − b − c + b̂) = 0, which implies that
b̂ = b+ a−c

2 . To satisfy the first stationarity condition for u1 > 0, it must hold that
a < c. The first feasibility condition is always satisfied in this case. To satisfy the
second one, it must hold that a + 2b ≥ c + 2d. Therefore, â = c and b̂ = b + a−c

2 if
a < c and a+2b ≥ c+2d. Substituting for â and b̂ in the objective function (3.4),
we receive (a−c)(b−b− a−c

2 )+ 1
3(a−b−c+b+ a−c

2 )2 = − (a−c)2

2 + 1
3(3a−3c

2 )2 = (a−c)2

4 .
Fourthly, we suppose that u1 > 0 and u2 > 0. Then the complementary

slackness conditions yield that â = c and −â − b̂ + c + d = 0, which implies that
b̂ = d. The feasibility conditions are therefore satisfied. The second stationarity
condition (3.6) means that −a + c + 2

3(a − b − c + d) > 0, which implies that
a+2b < c+2d. Because both (3.5) and (3.6) equal 0, it holds that −b+ b̂− 2

3(a−
b − â + b̂) − u1 = −a + â + 2

3(a − b − â + b̂). Because u1 is positive in this case, we
receive that −b + b̂ − 2

3(a − b − â + b̂) > −a + â + 2
3(a − b − â + b̂). Substituting for

â and b̂, we receive that c − d > a − b. Therefore, â = c and b̂ = d if a − b < c − d
and a + 2b < c + 2d. Substituting for â and b̂ in the objective function (3.4), we
receive (a − c)(b − d) + 1

3(a − b − c + d)2.

The conditions of the first case, a ≥ c, a + b ≥ c + d, imply that X ⪰(2) Y
so it is correct that 2-ND(X, Y ) = 0 in this case. The second and the third case
violate the SSD rules apparently. The conditions of the fourth case imply that
a < c so the SSD rules are violated in this case as well. So, it is correct that
2-ND(X, Y ) ̸= 0 in these cases.

All possible orderings of a, b, c, d are covered by the four described cases, and
for a given ordering only the conditions of one of the four cases are satisfied. If
a ≥ c and a + b ≥ c + d, the conditions of the first case are satisfied. If a ≥ c
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and a + b < c + d, then −a − b > −c − d and a − b ≥ c − d, so the conditions
the second case are satisfied. If a < c and a + b ≥ c + d, then −a > −c and
2a + 2b ≥ 2c + 2d, which implies that a + 2b ≥ c + 2d, so the conditions of the
third case are satisfied. If a < c and a + b < c + d, then the conditions of the
second, or the third or the fourth case hold. If a − b ≥ c − d, then the conditions
of the second case hold. These conditions imply that b ≥ d so the conditions of
the third and the fourth case are violated. If a − b < c − d, then depending on
whether a + 2b ≥ c + 2d holds, the conditions of the third or of the fourth case
are satisfied.

Because we have shown that SSD and TSD are equivalent for uniform distri-
bution, the 3-ND is also equivalent to 2-ND.

3.2 Normal Distribution
Suppose µX and µY are real numbers, σ2

X and σ2
Y are real positive numbers and

X and Y are normally distributed random variables: X ∼ N(µX , σ2
X) and

Y ∼ N(µY , σ2
Y ).

It is shown in Levy [2006] that the following holds:

Theorem 3.6. Let X ∼ N(µX , σ2
X) and Y ∼ N(µY , σ2

Y ). Then

X ⪰(1) Y ⇐⇒ µX ≥ µY and σ2
X = σ2

Y ,

X ⪰(2) Y ⇐⇒ µX ≥ µY and σ2
X ≤ σ2

Y . (3.7)

Mikulka [2011] showed that (3.7) is a necessary and sufficient condition also
for X ⪰(∞) Y . Because ISD is a necessary condition for TSD and DARA SD, and
SSD is a sufficient condition for them, (3.7) is a necessary and sufficient condition
for X ⪰(3) Y and X ⪰(D) Y as well. So, under the assumption of normal distri-
bution, SSD, TSD, DARA SD, and ISD are equivalent. We, therefore, compute
only 1-ND(X, Y ), and 2-ND(X, Y ).

Pflug and Pichler [2014] state that the Wasserstein distance of order 2 of two
normally distributed variables can be computed as follows. σ denotes the square
root of σ2.

Theorem 3.7. The Wasserstein distance of order 2 of two normally distributed
variables X ∼ N(µX , σ2

X), Y ∼ N(µY , σ2
Y ) is

d2(X, Y )2 = (µX − µY )2 + (σX − σY )2.

Therefore, assuming X̂ ∼ N(µ̂, σ̂2), the measure of first non-dominance of
two normally distributed random variables is computed as follows:

min
µ̂,σ̂

(µX − µ̂)2 + (σX − σ̂)2 (3.8)

subject to µ̂ ≥ µY ,

σ̂ = σY .

The following theorem describes the results of the program (3.8) above.
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Theorem 3.8. The measure of first non-dominance for two normally distributed
random variables, X ∼ N(µX , σ2

X) and Y ∼ N(µY , σ2
Y ), is computed by solving

the problem (3.8). It leads to the following results.

1. If µX ≥ µY , then µ̂ = µX and σ̂ = σY . The optimal value of the objective
function is then (σX − σY )2 and 1-ND(X, Y ) is its square root, which is
| σX − σY |.

2. If µX < µY , then µ̂ = µY and σ̂ = σY . The optimal value of the objective
function is then (µX −µY )2 +(σX −σY )2 and 1-ND(X, Y ) is its square root,
which is d2(X, Y ).

Proof. Because σ̂ = σY due to the second condition, the problem remaining to
be solved is following:

min
µ̂

(µX − µ̂)2

subject to µ̂ ≥ µY .

The objective function is quadratic, hence convex, and the feasibility set is also
convex. So, we will solve this problem using the Karush-Kuhn-Tucker conditions.
The Lagrange function of this problem is

L(µ̂, u) = (µX − µ̂)2 + u(µY − µ̂).

The stationarity condition is

∂L(µ̂, u)
∂µ̂

= 2 · (µX − µ̂) − u = 0.

The feasibility condition is µ̂ ≥ µY , and the dual feasibility condition is u ≥ 0.
The complementary slackness condition is u·(µY −µ̂) = 0. We immediately receive
that if u = 0, then µ̂ = µX , and if u > 0, then µ̂ = µY . The feasibility condition
and the stationarity condition state when each of these solutions holds.

The situation when X ⪰(2) Y falls into the first case of Theorem 3.8. The
situation when X ⪰(1) Y is as a special case of it when σ2

X = σ2
Y . Then 1-

ND(X, Y ) = 0 as desired.
The measure of second non-dominance of two normally distributed random

variables is computed as follows:

min
µ̂,σ̂

(µX − µ̂)2 + (σX − σ̂)2 (3.9)

subject to µ̂ ≥ µY ,

σ̂ ≤ σY .

We could add the assumption that σ̂ > 0 to the program (3.9) to ensure
that X̂ satisfies the definition of normal distribution. However, we will see in
the following theorem that the optimal solutions of the program (3.9) satisfy this
anyway.

The results of the program above are described in the following theorem.
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Theorem 3.9. The measure of second non-dominance for two normally dis-
tributed random variables, X ∼ N(µX , σ2

X) and Y ∼ N(µY , σ2
Y ), is computed

by solving the problem (3.9). It leads to the following results.

1. If µX ≥ µY and σX ≤ σY , then µ̂ = µX and σ̂ = σX . The optimal value of
the objective function is then 0 so 2-ND(X, Y )=0.

2. If µX ≥ µY and σX > σY , then µ̂ = µX and σ̂ = σY . The optimal value of
the objective function is then (σX − σY )2 and 2-ND(X, Y ) = σX − σY .

3. If µX < µY and σX ≤ σY , then µ̂ = µY and σ̂ = σX . The optimal value of
the objective function is then (µX − µY )2 and 2-ND(X, Y ) = µY − µX .

4. If µX < µY and σX > σY , then µ̂ = µY and σ̂ = σY . The optimal value of
the objective function is then (µX − µY )2 + (σX − σY )2 and 2-ND(X, Y ) is
its square root, which is d2(X, Y ).

Proof. Program (3.9) is convex so the Karush-Kuhn-Tucker point is its optimal
solution. Its Lagrange function is

L(µ̂, σ̂, u1, u2) = (µX − µ̂)2 + (σX − σ̂)2 + u1(µY − µ̂) + u2(σ̂ − σY ).

We derive the Karush-Kuhn-Tucker conditions. The stationarity conditions are
following:

∂L(µ̂, σ̂, u1, u2)
∂µ̂

= 2(µ̂ − µX) − u1 = 0,

∂L(µ̂, σ̂, u1, u2)
∂σ̂

= 2(σ̂ − σX) + u2 = 0.

The feasibility conditions are µ̂ ≥ µY and σ̂ ≤ σY . The dual feasibility conditions
are u1 ≥ 0 and u2 ≥ 0. The complementary slackness conditions are u1(µY −µ̂) =
0 and u2(σ̂ − σY ) = 0.

Depending on the assumptions we make about u1 and u2, we receive the
following four solutions. The dual feasible conditions are always satisfied due to
the assumptions.

Firstly, we assume that u1 = 0 and u2 = 0. The stationarity conditions
then yield that µ̂ = µX and σ̂ = σX . The feasibility conditions then imply that
µX ≥ µY and σX ≤ σY . The complementary slackness conditions are satisfied.
The optimal value of the objective function is then 0.

Secondly, we assume that u1 = 0 and u2 > 0. Using the first stationarity
condition and the second complementary slackness condition, we receive that
µ̂ = µX and σ̂ = σY . The remaining conditions imply that this holds if µX ≥ µY

and σX > σY . The optimal value of the objective function is then (σX − σY )2.
Thirdly, we assume that u1 > 0 and u2 = 0. Using the second stationarity

condition and the first complementary slackness condition, we receive that µ̂ = µY

and σ̂ = σX . The remaining conditions imply that this holds if µX < µY and
σX ≤ σY . The optimal value of the objective function is then (µX − µY )2.

Fourthly, we assume that u1 > 0 and u2 > 0. We receive from the complemen-
tary slackness conditions that µ̂ = µY and σ̂ = σY . The stationarity conditions
then imply that µX < µY and σX > σY . The feasibility conditions are satisfied.
The optimal value of the objective function is then (µX − µ̂)2 + (σX − σ̂)2.
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It was already mentioned that SSD, TSD, and DARA SD are equivalent for
normally distributed random variables. Therefore also 2-ND = 3-ND = 4-ND for
normally distributed random variables.

3.3 Exponential Distribution
Suppose λX and λY are real positive numbers, and X and Y are exponentially
distributed random variables: X ∼ Exp(λX), Y ∼ Exp(λY ).

Using the infinite-order stochastic dominance, it follows from Mikulka [2011]
that for exponentially distributed random variables the first-order, the second-
order, the third-order, and DARA stochastic dominance are equivalent to each
other.
Theorem 3.10. Let X and Y be exponentially distributed random variables.
X ∼ Exp(λX), Y ∼ Exp(λY ). Then

X ⪰(1) Y ⇔ X ⪰(2) Y ⇔ X ⪰(3) Y ⇔ X ⪰(D)⇔ X ⪰(∞) Y ⇔ λX ≤ λY .

In consequence, the 1-ND = 2-ND = 3-ND = 4-ND for exponentially dis-
tributed random variables. Under the assumption that X ⪰(n) Y for any n,
1-ND = 2-ND = 3-ND = 4-ND = 0. If X ̸⪰(n) Y , then 1-ND = 2-ND = 3-ND
= 4-ND > 0. We use again the Wasserstein distance of order 2 to compute the
distance of two exponentially distributed random variables.
Theorem 3.11. The Wasserstein distance of order 2 of two exponentially dis-
tributed random variables X ∼ Exp(λX), Y ∼ Exp(λY ) is

d2(X, Y )2 = 2 ·
(︄

λX − λY

λXλY

)︄2

.

Proof. We use Theorem 2.1 to compute it. Note that F −1
X (α) = − ln(1−α)

λX
. There-

fore:

d2(X, Y )2 =
∫︂ 1

0
(F −1

X (α) − F −1
Y (α))2dα

=
∫︂ 1

0

(︄
− ln(1 − α)

λX

+ ln(1 − α)
λY

)︄2

dα

=
(︄

λX − λY

λXλY

)︄2

·
∫︂ 1

0
ln2(1 − α)dα

=
(︄

λX − λY

λXλY

)︄2

· 2.

The last equality holds because
∫︁ 1

0 ln2(1 − α)dα = 2, which can be seen using
the substitution t = ln(1 − α) and integration by parts.

∫︂ 1

0
ln2(1 − α)dα =

∫︂ 0

−∞
t2 · etdt

= 2 ·
∫︂ 0

−∞
etdt

= 2
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Suppose X̂ ∼ Exp(λ̂). To satisfy the definition of exponential distribution,
we must add the assumption that λ̂ > 0. Such assumption did not exist when
we computed the measure of non-dominance for uniform distributions and it was
unnecessary for the computation of the measure of non-dominance for normal dis-
tributions. To find the measure of non-dominance for exponential distributions,
we solve the following program:

min
λ̂

2 ·

⎛⎝λX − λ̂

λX λ̂

⎞⎠2

(3.10)

subject to λ̂ ≤ λY .

λ̂ > 0.

The results of the above program are summarized in the following theorem.

Theorem 3.12. The measure of non-dominance of two exponentially distributed
random variables, X ∼ Exp(λX), Y ∼ Exp(λY ), is following.

1. If λX ≤ λY , then λ̂ = λX and n-ND(X, Y ) = 0 for any n.

2. If λX > λY , then λ̂ = λY . The optimal value of the objective function (3.10)
is then 2 ·

(︂
λX−λY

λXλY

)︂2
, and the measure of non-dominance of any order n is

its square root. So, n-ND(X, Y ) =
√

2 · λX−λY

λXλY
.

Proof. First, we lose the assumption that λ̂ > 0. The objective function of this
problem is not convex. But, the constraint function λ̂ − λY ≤ 0 is affine, so the
Karush-Kuhn-Tucker conditions are necessary conditions for a locally optimal
solution. We will first find the Karush-Kuhn-Tucker points, and then verify
whether they are the optimal solutions. The Lagrange function is

L(λ̂, u) = 2 ·

⎛⎝λX − λ̂

λX λ̂

⎞⎠2

+ u · (λ̂ − λY ).

We derive the Karush-Kuhn-Tucker conditions. The stationarity condition
states that

∂L(λ̂, u)
∂λ̂

= 4 · λ̂ − λX

λX · λ̂
3 + u = 0.

The feasibility condition is λ̂ ≤ λY . The dual feasibility condition is u ≥ 0. The
complementary slackness condition is u · (λ̂ − λY ) = 0.

If we set u = 0, we receive from the stationarity condition that λ̂ = λX . The
feasibility condition implies that this holds if λX ≤ λY . The dual feasibility and
the complementary slackness conditions are satisfied.

If we set u > 0, we receive from the complementary slackness condition that
λ̂ = λY . The stationarity condition implies for u > 0 that 4 · λ̂−λX

λX ·λ̂3 < 0, which
means that λY < λX . The feasibility and dual feasibility conditions are satisfied.
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We will use the second order sufficient conditions (SOSC) to show that these
points are local minimums of this problem. We are going to need the second
derivative of Lagrange function, which is

∂2L(λ̂, u)
∂λ̂∂λ̂

= 12λX − 8λ̂

λX · λ̂
4 .

In the first case, when u = 0 and λ̂ = λX , the second derivative of the
Lagrange function is equal to 4/λ4

X . So, it is always positive and z · 4/λ4
X · z is

also always positive for any z ∈ R, z ̸= 0. Therefore, the SOSC hold in this
case, and λ̂ = λX is a locally optimal solution of the problem if λX ≤ λY . The
objective function is then equal to 0.

In the second case, when u > 0 and λ̂ = λY , the constraint λ̂ − λY ≤ 0 is
active. The set of z, for which the inequality z · ∂2L(λ̂,u)

∂λ̂∂λ̂
· z > 0 must hold, is

empty because z · ∂(λ̂−λY )
∂λ̂

= z · 1 = 0 does not hold for any z ∈ R, z ̸= 0. So, the
SOSC hold in this case, too. λ̂ = λY is a locally optimal solution of the problem
if λX > λY . The objective function is then equal to 2 ·

(︂
λX−λY

λXλY

)︂2
.

Both of these solutions satisfy that λ̂ > 0 so they are feasible also when we add
the second constraint of the problem (3.10). Each of these solutions is the only
locally optimal solution for a given ordering of λX and λY , so they are also the
globally optimal solutions for the given ordering if the global solution exists. To
check that, we have to check that the objective function does not decrease to lower
values at the left open end of the feasible set. Because limλ̂→0 2 ·

(︂
λX−λ̂

λX λ̂

)︂2
= ∞,

we have found the globally optimal solution for each ordering of λX and λY .

The first case of Theorem 3.12 corresponds to the situation when X ⪰(n) Y
and the second case corresponds to the situation when X ̸⪰(n) Y for any n.
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4. Estimation of Non-Dominance
We have derived the measure of non-dominance for certain distributions exactly
in the previous chapter. We will now focus on other widely used distributions for
which we have not derived the exact values of n-ND. To gain some understanding
of non-dominance in these distributions, we will perform a numerical study.

We are going to use empirical distributions to estimate the distributions of
interest. We randomly generate T numbers from the distributions of X and Y and
use them as atoms of two discrete distributions with equiprobable atoms. We then
explore the relationship of these two empirical distributions, which we denote X̃
and Ỹ , and compute their measure of non-dominance. We use the Wasserstein
distance of order 2 to compute the n-ND(X̃, Ỹ ) of the empirical distributions.

Following Theorem 2.5 about non-dominance in empirical distributions, 1-
ND of two empirical distributions X̃, Ỹ with ordered atoms x1 ≤ · · · ≤ xT ,
y1 ≤ · · · ≤ yT is computed as follows:

1-ND(X̃, Ỹ )2 = min
x̂1,...,x̂T

1
T

T∑︂
t=1

(xt − x̂t)2 (4.1)

subject to xt̂ ≥ yt, t = 1, . . . , T.

We will show that this optimization problem has a solution that simplifies its
application.

Theorem 4.1. Let X̃ and Ỹ be discrete random variables with equiprobable atoms
such that x1 ≤ · · · ≤ xT and y1 ≤ · · · ≤ yT . Then

1-ND(X̃, Ỹ )2 = 1
T

T∑︂
t=1

(min(0, xt − yt))2.

Proof. Problem (4.1) is convex so the Karush-Kuhn-Tucker point is its optimal
solution. Its Lagrange function is

L(x̂, u) = 1
T

T∑︂
t=1

(xt − x̂t)2 +
T∑︂

t=1
ut(yt − x̂t).

We derive the Karush-Kuhn-Tucker conditions. The stationarity conditions
state for every t = 1, . . . , T that

∂L(x̂, u)
∂x̂t

= 2
T

(xt − x̂t) − ut = 0

The feasibility conditions are x̂t ≥ yt for all t. The dual feasibility conditions are
ut ≥ 0 for all t. The complementary slackness conditions are ut·(yt−x̂t) = 0 for all
t. These conditions hold for all t = 1, . . . , T but they restrict each t separately.
This enables us to find the solution for each t separately, which simplifies the
solution substantially.

For each t the conditions lead to the following solutions.

• If xt ≥ yt, then x̂t = xt.
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• If xt < yt, then x̂t = yt.

This shows that the summands of the objective function (4.1) are either 0 if
xt − yt ≥ 0, or (xt − yt)2 otherwise.

We will use Theorem 2.5 to compute 2-ND of two empirical distributions. For
empirical random variables X̃, Ỹ with ordered atoms x1 ≤ · · · ≤ xT , y1 ≤ · · · ≤
yT , 2-ND is computed as follows:

2-ND(X, Y )2 = min
x1̂,...,xT̂

1
T

T∑︂
t=1

(xt − x̂t)2 (4.2)

subject to
t∑︂

j=1
x̂j ≥

t∑︂
j=1

yj, t = 1, . . . , T.

Using this, we now perform a numerical study on particular distributions.

4.1 Log-Normal Distribution
Log-normal distribution is a distribution which is in a tight relationship with nor-
mal distribution. If a random variable X is log-normally distributed, then random
variable Z = ln(X) is normally distributed. The distribution is determined by
two parameters, µ and σ. µ is a real number, σ is a positive real number. Its
probability density function is

1
xσ

√
2π

· exp
(︄

−(ln x − µ)2

2σ2

)︄
· Ix>0.

Its mean is η = eµ+σ2/2 and its variance is s2 = e2µ+σ2(eσ2 −1). Assuming positive
σ, they are both always positive.

The quantile function of log-normal distribution is quite complicated:

F −1(α) = exp(µ +
√

2σ2 · erf−1(2α − 1)),

where erf(z) = 2√
π

∫︁ z
0 e−t2

dt. We could not compute the Wasserstein distance of
two log-normally distributed random variables because Theorem 2.1, which we
used for it in Chapter 3, uses the quantile function. As a result, we could not
compute the measure of non-dominance. We perform a numerical study to gain
more understanding of it in log-normal distributions.

It was shown in Levy [2006] that the following rules hold for stochastic dom-
inance in log-normal distributions hold.

Theorem 4.2. Suppose ηX , ηY , sX , sY are the means and standard deviations of
X and Y . Then

X ⪰(1) Y ⇐⇒ ηX ≥ ηY and s2
X = s2

Y ,

X ⪰(2) Y ⇐⇒ ηX ≥ ηY and ηX

sX

≥ ηY

sY

.

We suppose for the purpose of the numerical study that X ∼ ln(0, 1) and we
alternate the parameters of Y. We generate 1000 numbers from each distribution.
They define the empirical distributions, X̃, Ỹ , that estimate the log-normal ones.
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We compute 1-ND(X̃, Ỹ ) and 2-ND(X̃, Ỹ ) for each pair of empirical distributions.
We do it 200 times for each set of parameters defining X and Y so we receive
200 values of 1-ND(X̃, Ỹ ) and 2-ND(X̃, Ỹ ) for each set of parameters. We then
compute their mean and standard deviation. We present our results in Table
4.1. The first two columns specify the parameters defining Y , the third column
describes the strongest holding stochastic dominance relationship if X ⪰ Y , and
the following columns present the mean 1-ND(X̃, Ỹ ) and 2-ND(X̃, Ỹ ) and their
standard deviations for each set of parameters.

µY σ2
Y SD holding 1-ND std 1-ND 2-ND std 2-ND

-1 0.25 - 0.003 0.001 0.003 0.001
-1 1 SSD 0.003 0.035 0.0 0.0
-1 2 SSD 0.814 0.931 0.0 0.0
-1 4 - 11.281 7.14 1.01 0.476
0 0.25 - 0.136 0.014 0.136 0.014
0 2 - 4.547 2.277 1.025 0.219
0 4 - 36.392 28.919 5.622 1.467
1 0.25 - 1.541 0.064 1.516 0.06
1 1 - 4.822 0.789 2.838 0.188
1 2 - 16.324 4.611 5.718 0.6
1 4 - 101.44 63.264 18.455 3.868
2 0.25 - 7.252 0.202 6.749 0.156
2 1 - 17.223 1.907 10.514 0.536
2 2 - 48.474 12.898 18.442 1.641
2 4 - 302.706 236.554 53.8 11.572

Table 4.1: Estimated non-dominance in log-normal distributions with reference
distribution ln(0, 1).

It can be seen from the results presented in Table 4.1 that 2-ND is always
lower than (or equal to) 1-ND. It should be so because FSD is stricter than SSD
so X̂ has to satisfy stricter conditions in order to dominate Y with respect to
FSD. As a result, it differs from X more and the measure of non-dominance is
higher.

When X ⪰(2) Y , the estimated measure of second non-dominance is 0 as we
expect. The estimated measure of second non-dominance is 0.003 in the first row
so it is still very close to zero but it is higher than when SSD holds. It correctly
describes the fact that the rule for SSD, F

(2)
X (x) ≤ F

(2)
Y (x), is violated only on a

very short interval consisting of very low x’s.
Both 1-ND and 2-ND increase with increasing µY . It is understandable be-

cause ηX ≥ ηY is a necessary condition for both X ⪰(1) Y and X ⪰(2) Y , and
ηX ≥ ηY ⇐⇒ eµX+σ2

X/2 ≥ eµY +σ2
Y /2. If σX = σY , it implies that µX ≥ µY is

a necessary condition for X ⪰(1) Y and X ⪰(2) Y . As µY increases, µX becomes
increasingly far from being higher than µY .

A similar rule holds for σ2. With increasing σ2
Y , both 1-ND and 2-ND increase.

The only exception to this rule can be seen by comparing the first two rows of
Table 4.1, where the 2-ND decreases. It is correct in this case because SSD does
not hold for the parameters defining the first row.
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4.2 Gamma Distribution
Gamma distribution can be seen as a generalization of exponential distribution.
It uses two parameters, k > 0 and θ > 0, and its probability density function is

1
θkΓ(k)xk−1e− x

θ · Ix>0.

Gamma distribution with parameters k = 1 and θ = 1
λ

is equivalent to expo-
nential distribution with parameter λ. It holds for X ∼ Γ(k, θ) that E X = kθ
and var X = kθ2.

It was shown in Ali [1975] and Mikulka [2011] that the following stochastic
dominance rules hold for random variables with gamma distribution.

Theorem 4.3. Let X ∼ Γ(kX , θX) and Y ∼ Γ(kY , θY ). Then

X ⪰(1) Y ⇐⇒ θX ≥ θY and kX ≥ kY ,

X ⪰(2) Y ⇐⇒ X ⪰(∞) Y ⇐⇒ kX

kY

≥ θY

θX

and kX ≥ kY .

The fact that X ⪰(2) Y is equivalent to X ⪰(∞) Y implies that it is equivalent
also to X ⪰(3) Y and X ⪰(D) Y . To our best knowledge and according to Ok-
agbue et al. [2020], there is no closed-form expression for the inverse cumulative
distribution function of gamma distribution. We therefore cannot use Theorem
2.1 to receive the Wasserstein distance of two gamma distributed random vari-
ables. Hence, we are not able to derive an exact formula for the computation
of the measure of non-dominance. The numerical study helps us to gain some
knowledge about the values of 1-ND and 2-ND.

As in the case of the log-normal distribution, we generate 1000 numbers from
the distributions of X and Y , which define the empirical distributions X̃and Ỹ .
We repeat it 200 times for each set of parameters. We receive 200 values of
1-ND(X̃, Ỹ ) and 2-ND(X̃, Ỹ ) for each set of parameters.

We set X ∼ Γ(1, 1) and alternate the parameters defining Y. We present the
results for θY = 1, 2, 3 and kY = 1, 2, 3, 4 in Table 4.2. The first two columns
specify the parameters defining Y , and the following columns present the aver-
age 1-ND(X̃, Ỹ ) and 2-ND(X̃, Ỹ ) and their standard deviations for each set of
parameters. In case of the presented parameters X ̸⪰(n) Y for any n.

It can be seen in Table 4.2 that 1-ND(X̃, Ỹ ) is higher than 2-ND(X̃, Ỹ ) for all
presented parameters, which is correct. Both 1-ND(X̃, Ỹ ) and 2-ND(X̃, Ỹ ) in-
crease with increasing kY or θY . It makes sense because as kY increases, kX = 1
is even further from being higher than kY , which is a necessary condition for
X ⪰(n) Y . Similarly, θX ≥ θY is a necessary condition for X ⪰(1) Y , and increas-
ing θY leads to θX being further from satisfying it. It holds for fixed kX and θX

that if θY increases, they become even further from satisfying X ⪰(2) Y .
We may also notice that if the dominance is violated only by the value of kY

(θY = 1), the measures non-dominance tend to be lower than when the dominance
is violated only by the value of θY (kY = 1).

The distributions defined by the first two rows of Table 4.2 where kY = 1
can be seen as exponential distributions with parameters λY = 1/2 and λY =
1/3. The reference distribution Γ(1, 1) is also an exponential distribution with
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kY θY 1-ND std 1-ND 2-ND std 2-ND

1 2 1.431 0.096 1.006 0.064
1 3 2.805 0.152 1.986 0.096
2 1 1.093 0.063 0.997 0.05
2 2 3.524 0.129 3.002 0.1
2 3 5.977 0.181 5.008 0.136
3 1 2.148 0.071 2.002 0.061
3 2 5.59 0.141 5.002 0.118
3 3 9.04 0.2 7.993 0.163
4 1 3.183 0.088 3.004 0.079
4 2 7.634 0.152 7.006 0.133
4 3 12.104 0.217 11.002 0.183

Table 4.2: Estimated non-dominance in gamma distributions with reference dis-
tribution Γ(1, 1).

parameter λX = 1. So, it is possible to compute the measure of non-dominance
in these two cases exactly based on Theorem 3.12. For λX = 1 and λY = 1

2 , the
n-ND(X, Y )2 is

2 ·
(︄

1 − 1
2

1 · 1
2

)︄2

= 2.

For λX = 1 and λY = 1
3 , the n-ND(X, Y )2 is

2 ·
(︄

1 − 1
3

1 · 1
3

)︄2

= 8.

Their square roots are approximately 1.414 and 2.828. These values corre-
spond quite well to the mean 1-ND(X̃, Ỹ ). It seems that the approximations of
gamma distributions by the empirical distributions are quite good for estimating
1-ND. Mean 2-ND(X̃, Ỹ ) is substantially lower than 1-ND(X̃, Ỹ ), which is in-
correct in this case. It should be the same for exponentially distributed random
variables. It shows the limits of estimating the measure of second non-dominance
by empirical distributions. We assumed in Section 3.3 that X̂, the variable which
is as close to X as possible while dominating Y , is exponentially distributed.
Such assumption is missing when comparing empirical distributions. Therefore
the X̂, which emerges here in the numerical study, can be a vector that is very
unlikely to be generated from exponential distribution.

An example of it can be seen in Figure 4.1. Let X̃ be the empirical approx-
imation of Γ(1, 1) and Ỹ be the empirical approximation of Γ(1, 3). X̂ is the
distribution that emerges from the computation of 2-ND(X̃, Ỹ ). X̃ and Ỹ were
generated 200 times and therefore X̂ was computed 200 times as well. Figure
4.1 shows the distribution functions for the average X̃, Ỹ and X̂ over those 200
generations and computations. X̂, which emerged from computing 1-ND, was
also examined. It cannot be seen in the graph because its distribution coincides
with the distribution of Γ(1, 3).

We show the estimated measures of non-dominance for another set of gamma
distributions. This time X ∼ Γ(2, 1) so the reference variable does not corre-
spond to any exponential distribution. We alternate the parameters defining Y :
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Figure 4.1: Distribution functions of the average of empirical variables.

θY = 1, 2, 3 and kY = 1, 2, 3, 4. The procedure of computing 1-ND(X̃, Ỹ ) and
2-ND(X̃, Ỹ ) is the same as in the previous case. The results are shown in Table
4.3. The first two columns specify the parameters defining Y , the third column
describes the strongest holding stochastic dominance relationship if X ⪰ Y , and
the following columns present the average 1-ND(X̃, Ỹ ) and 2-ND(X̃, Ỹ ) and their
standard deviations for each set of parameters.

kY θY SD holding 1-ND std 1-ND 2-ND std 2-ND

1 1 FSD 0.002 0.008 0.0 0.0
1 2 SSD 0.575 0.119 0.033 0.049
1 3 - 1.892 0.176 1.0 0.11
2 2 - 2.454 0.134 2.005 0.099
2 3 - 4.906 0.195 4.0 0.149
3 1 - 1.062 0.074 1.001 0.063
3 2 - 4.496 0.141 3.998 0.111
3 3 - 7.929 0.188 6.974 0.156
4 1 - 2.102 0.086 2.007 0.076
4 2 - 6.551 0.164 6.014 0.141
4 3 - 10.986 0.206 9.987 0.181

Table 4.3: Estimated non-dominance in gamma distributions with reference dis-
tribution Γ(2, 1).

Firstly, we may notice in Table 4.3 that when X ⪰(1) Y , both 1-ND(X̃, Ỹ ) and
2-ND(X̃, Ỹ ) either equal 0, or they are very close to it, which can be attributed to
the simulation error. When X ⪰(2) Y , 2-ND(X̃, Ỹ ) is also very close to 0. Neither
1-ND, nor 2-ND is as low in cases when X ̸⪰ Y . The empirical estimation of
gamma distribution approximates whether stochastic dominance holds well in
these cases.

What was noted in the description of Table 4.2 holds as well. 1-ND is always
lower than 2-ND. Both 1-ND and 2-ND increase with increasing kY and θY , and
they increase more significantly with increasing θY .

33



5. Application to Portfolio
Optimization
We will now apply stochastic dominance theory to portfolio optimization, and we
will show the role of the measure of non-dominance. We first present the notation
and models for portfolio optimization with stochastic dominance constraints as
described by Dentcheva and Ruszczynski [2006]. We proceed by incorporating the
measure of non-dominance and defining the closest dominating portfolio from two
perspectives, and finally, we apply the theory to actual financial data.

5.1 Portfolio Optimization with Stochastic
Dominance Constraints

We assume that there are finitely many assets that we may use to construct a
portfolio. We denote the number of assets n, and the weights of the portfolio
λ = (λ1, . . . , λn)T or later also ω = (ω1, . . . , ωn)T . We assume that the weights
are non-negative and they sum up to one. Λ = {λ ∈ R,

∑︁n
i=1 λi = 1, λi ≥ 0} is

the set of all possible weights.
We assume that there exists a benchmark investment with random return Y ,

and we denote the random return of portfolio with weights λ as R(λ). The general
form of a portfolio optimization problem with stochastic dominance constraints
was presented in Dentcheva and Ruszczynski [2006]. For f being a concave con-
tinuous function of the portfolio weights, which we wish to maximize, the form
is following:

max
λ

f(λ) (5.1)

subject to R(λ) ⪰(n) Y,

λ ∈ Λ.

We use past returns to estimate the distributions of returns of the n considered
assets and of the benchmark investment. rit denotes the return of ith asset at time
t, t = 1, . . . , T . yt denotes the return of the benchmark investment at time t. To
estimate the distribution, we consider each of these T returns equally likely - each
of them happens with probability 1/T .

We apply the above program (5.1) in two ways: we use the first-order, and
the second-order stochastic dominance in the constraint. Mean return is used as
the measure of return in both cases: f(λ) = E R(λ).

The following program was formulated in Kuosmanen [2004]. The objec-
tive function is the estimated mean return, and the constraints ensure that
R(λ) ⪰(1) Y .
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max
λ,πt,s

1
T

T∑︂
t=1

n∑︂
i=1

λirit (5.2)

subject to
n∑︂

i=1
λirit ≥

T∑︂
s=1

πtsys, t = 1, . . . , T,

T∑︂
t=1

πts = 1, s = 1, . . . , T,

T∑︂
s=1

πts = 1, t = 1, . . . , T,

πts ∈ {0, 1}, s = 1, . . . , T, t = 1, . . . , T,

λ ∈ Λ.

We denote the optimal solution of this problem as λ∗1. It represents the
weights of the optimal portfolio and the optimal value of the objective function
is its mean return.

We use model presented in Dentcheva and Ruszczynski [2006] for portfolio op-
timization with the second-order stochastic dominance constraints. They showed
that the SSD relationship can be described using expected shortfall, and derived
from it the following formulation of portfolio optimization problem with second-
order stochastic dominance constraints:

max
λ,st,s

1
T

T∑︂
t=1

n∑︂
i=1

λirit (5.3)

subject to
n∑︂

i=1
λiris + sts ≥ yt, s = 1, . . . , T, t = 1, . . . , T,

1
T

T∑︂
s=1

sts ≤ F
(2)
Y (yt), t = 1, . . . , T,

sts ≥ 0, s = 1, . . . , T, t = 1, . . . , T,

λ ∈ Λ.

The optimal solution of this problem, λ∗2, represents the weights of the opti-
mal portfolio. The optimal value of the objective function is its expected return.
We should also note that (5.3) is a linear program which allows us to solve it for
much larger data than the mixed-integer linear program (5.2). But, our goal is
to compare the results of these two problems so we will solve them for the same
data.

The FSD constraint implemented in (5.2) is stricter than the SSD constraint
implemented in (5.3), and we have seen in the first chapter that FSD implies
SSD. Therefore the feasible set in the second case is larger, and it includes the
feasible set of the first case. Therefore also the optimal solution of the second
program leads to higher (or the same) expected returns than the optimal solution
of the first program.
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5.2 Closest Dominating Portfolios
It holds that R(λ∗1) ⪰(1) Y , R(λ∗1) ⪰(2) Y , R(λ∗2) ⪰(2) Y , but it does not usually
hold that R(λ∗2) ⪰(1) Y and R(λ∗2) ⪰(1) R(λ∗1). Our goal is to analyze how far
from it the solution λ∗2 is. We will compute the corresponding measure of first
non-dominance, and we introduce two other approaches to study how much must
λ∗2 change in order for R(λ∗2) ⪰(1) Y to hold. These approaches are based on
two ways in which we define the closest dominating portfolio.

Firstly, we search for a portfolio whose weights are as close as possible to λ∗2

while dominating the benchmark Y with respect to FSD.
Secondly, we compute the measure of first non-dominance 1-ND(R(λ∗2), Y ).

X̂ emerges from this computation. It dominates Y with respect to FSD while
being as close as possible to R(λ∗2) with respect to the Wasserstein distance of
order 2. We can then search for such weights ω that lead to the distribution R(ω)
being as close as possible to the distribution of X̂ with respect to the Wasserstein
distance of order 2. To simplify the notation, λ∗ denotes λ∗2 in this section.

We use the Euclidean distance to measure the distance of the vectors repre-
senting the weights of portfolios. The Euclidean distance of two vectors λ and ω
is defined as follows:

dE(λ, ω) =
(︄

n∑︂
i=1

(λi − ωi)2
)︄ 1

2

.

The first approach leads to the following definition.

Definition 5.1 (Closest Strongly Dominating Portfolio). Let Y be the random
return of a benchmark investment and let λ∗ be the weights of an optimal portfolio
with respect to the second-order stochastic dominance. We say that portfolio with
weights ωS is the closest strongly dominating portfolio (CSD) to λ∗, if it is the
optimal solution of the following program:

min
ω

dE(λ∗, ω) (5.4)

subject to R(ω) ⪰(1) Y,

ω ∈ Λ.

We can rewrite the program (5.4) in a way that can be applied to our situa-
tion. The Euclidean distance of the two vectors can be rewritten according to its
definition. The condition R(ω) ⪰(1) Y was rewritten for our situation in problem
(5.2).
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min
ω

1
n

n∑︂
t=1

n∑︂
i=1

(λ∗
i − ωi)2 (5.5)

subject to
n∑︂

i=1
ωirit ≥

T∑︂
s=1

πtsys, t = 1, . . . , T,

T∑︂
t=1

πts = 1, s = 1, . . . , T,

T∑︂
s=1

πts = 1, t = 1, . . . , T,

πts ∈ {0, 1}, s = 1, . . . , T, t = 1, . . . , T,

ω ∈ Λ.

The optimal solution of this program, ωS, represents the weights of the closest
strongly dominating portfolio. The optimal value of the objective function is the
squared Euclidean distance of ωS and λ∗.

The second approach leads to the following definition.

Definition 5.2 (Closest Weakly Dominating Portfolio). Let Y be the random
return of a benchmark investment and let λ∗ be the weights of an optimal portfolio
with respect to the second-order stochastic dominance. Let X̂ be the random
variable that emerges from the computation of 1-ND(R(λ∗), Y ). We say that a
portfolio with weights ωW is the closest weakly dominating portfolio (CWD) to
λ∗, if it is the optimal solution of the following program.

min
ω

d2(X̂, R(ω)) (5.6)

subject to ω ∈ Λ.

We can rewrite the problem (5.6) in a way that can be applied to our situa-
tion. Although both X̂ and R(ω) are empirically distributed random variables,
we cannot use the simplification of the Wasserstein distance for empirically dis-
tributed variables from Theorem 2.3 in the objective function. It is caused by the
fact that we cannot order the returns R(ω) beforehand. So instead, we compute
the Wasserstein distance using the procedure for two discretely distributed ran-
dom variables from Theorem 2.2. Let x̂t represent the tth return of X̂. Then the
program can be formulated in the following way:
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min
ξts,ω

T∑︂
t=1

T∑︂
s=1

ξts(x̂t − zs)2 (5.7)

subject to zs =
n∑︂

i=1
ωi · ris, s = 1, . . . , T,

T∑︂
s=1

ξts = 1
T

, t = 1, . . . , T,

T∑︂
t=1

ξts = 1
T

, s = 1, . . . , T,

ξts ≥ 0, s = 1, . . . , T, t = 1, . . . , T.

ω ∈ Λ.

zs represents the sth return of the portfolio with weights ω. The optimal solu-
tion of this program, ωW , represents the weights of the closest weakly dominating
portfolio. The optimal value of the objective function is the squared Wasserstein
distance of order 2 of R(ωW ) and X̂.

5.3 Data
We use the prices of twelve assets covered by the German stock index DAX in
September 2021. DAX consisted of 30 companies traded on the Frankfurt Stock
Exchange. For portfolio optimization, we consider only 12 assets, which had the
highest weight in the index in September 2021 and which have been traded at the
stock exchange at least since October 2007. As a result, we consider the following
assets: Adidas, Allianz, BASF, Bayer, Daimler, Deutsche Börse, Deutsche Post,
Infineon Technologies, Munich Re, SAP, Siemens, and Volkswagen Group.

We work with the monthly returns from October 2007 to September 2021.
To compute the returns, we use close prices adjusted for splits and dividends as
downloaded from finance.yahoo.com. The return of ith asset at time t, rit, is com-
puted as pit−pit−1

pit−1
where pit is the price of ith asset at time t. Basic characteristics

of the monthly returns of the 12 considered stocks are presented in Table 5.1.
It shows their mean, minimal, and maximal return, and the standard deviation
of returns based on the whole data set covering returns from October 2007 to
September 2021.

To find the optimal portfolios with respect to the first-order and the second-
order stochastic dominance, we must set a benchmark investment. To keep the
benchmark consistent throughout the period, we use a portfolio that consists of
1
n

of each of n considered assets. It means in this case that the benchmark invest-
ment is a portfolio consisting of 1

12 of each of the twelve considered companies.
Its mean return, minimum, maximum, and standard deviation is also presented
in Table 5.1.

In order to receive more than one result for each of the programs presented in
Section 5.1 and Section 5.2, we split the data regarding stock returns from the last
14 years into 7 disjoint data sets. Each of them consists of the returns in particular
2 years, hence of 24 observations. Tables presenting the basic characteristics of the
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Name Mean Min Max Std
Adidas 0.015 -0.343 0.248 0.091
Allianz 0.008 -0.397 0.308 0.082
BASF 0.009 -0.228 0.303 0.08
Bayer 0.004 -0.243 0.196 0.073
Daimler 0.009 -0.267 0.423 0.101
Deutsche Borse 0.008 -0.222 0.247 0.075
Deutsche Post 0.013 -0.415 0.305 0.082
Infineon Technologies 0.021 -0.481 1.316 0.172
Munich Re 0.009 -0.202 0.163 0.057
SAP 0.01 -0.311 0.24 0.067
Siemens 0.008 -0.293 0.189 0.074
Volkswagen Group 0.013 -0.449 0.379 0.117
Benchmark 0.011 -0.27 0.259 0.065

Table 5.1: Basic characteristics calculated form monthly data.

considered assets in each of these periods separately can be found in Attachment
A.1.

5.4 Results
We used Python for data preparation and for the presentation of results, and
GAMS for solving the optimization problems. The scripts and the data are avail-
able in the attachment of this work. We used the CPLEX solver for the mixed-
integer programming problem (5.2) as well as for the linear programming problem
(5.3). We used the BARON solver for the mixed-integer non-linear programming
problem (5.5), and the CONOPT solver for the nonlinear programming problem
(5.7). It was necessary to set λ∗2 as the starting value of ω when solving the
problem (5.7). It did not usually reach the globally optimal solution otherwise.

We computed the weights of optimal portfolios with respect to the first-order
and the second-order stochastic dominance (we denote them FSD and SSD), the
weights of the closest strongly dominating portfolio (CSD), and the weights of
the closest weakly dominating portfolio (CWD) in each of the seven time periods.
We present one table for each time period that shows them. The weights of assets
that are not presented in the tables are 0 in the given period. If the weights do
not add up precisely to one, it is caused by rounding errors. The tables show
also the mean return of each of these portfolios. Table 5.2 shows the optimal
portfolios in the first period.

It can be seen in Table 5.2 as well as in the following tables that the mean
return of the optimal portfolio with respect to FSD is lower than or equal to the
mean return of the optimal portfolio with respect to SSD. It corresponds to the
theory because the feasible set in the first case is a subset of the feasible set in
the second case. The mean return of the CSD portfolio is lower than the mean
return of the FSD portfolio. It is correctly so because they must both dominate
the benchmark with respect to FSD, and while the FSD portfolio is optimized
to have the maximal mean return, the CSD portfolio is optimized to be as close
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Name FSD SSD CSD CWD
Adidas 0.129 0 0.12 0.025
BASF 0.038 0 0.046 0
Bayer 0.002 0 0 0
Daimler 0 0 0.003 0
Deutsche Borse 0 0 0.004 0
Deutsche Post 0.2 0 0.193 0
Infineon Technologies 0.113 0.055 0.109 0.09
Munich Re 0.309 0.476 0.319 0.459
SAP 0.02 0 0.021 0
Siemens 0.055 0 0.053 0
Volkswagen Group 0.134 0.468 0.132 0.426
Mean return 0.00171 0.00517 0.00151 0.00534

Table 5.2: Optimal portfolios based on data from Oct. 2007 to Sept. 2009.

to the SSD portfolio as possible. The mean return of the CWD portfolio is
similar to the mean return of the SSD portfolio. It is caused to the fact that
the distribution of the optimal portfolio with respect to SSD violates first-order
stochastic dominance of the benchmark only slightly. Therefore, the distribution
of X̂ is quite similar to the distribution of the SSD portfolio, and the distribution
of the CWD portfolio is as similar as possible to the distribution of X̂.

To gain a better understanding of the results, we show the empirical distribu-
tion functions (EDF) of the benchmark investment and of the optimal portfolios
with respect to FSD and SSD in Figure 5.1.

Figure 5.1: EDFs of optimal portfolios with respect to FSD and SSD based on
data from Oct. 2007 to Sept. 2009.

The distribution function of the returns of the FSD portfolio is always below
the distribution function of the benchmark investment. It satisfies the Alterna-
tive Definition of FSD from Theorem 1.1. The distribution function of the SSD
portfolio intersects the distribution function of the benchmark investment several
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times. Although the distribution function of the SSD portfolio is higher than the
distribution function of the benchmark investment at some points, which violates
FSD, the difference is not large, and it does not happen for most of the points.
This is the reason why the distribution of X̂ is quite similar to it. It can be seen in
Figure 5.2, which shows the distribution functions of the benchmark investment,
X̂ and the CWD portfolio.

Figure 5.2: EDFs of X̂ and the CWD portfolio based on data from Oct. 2007 to
Sept. 2009.

The distribution function of X̂ is always below the distribution function of the
benchmark which is correct because X̂ is supposed to dominate the benchmark
with respect to FSD. The distribution of the CWD portfolio is supposed to be as
close as possible to the distribution of X̂ but it does not have to dominate the
benchmark with respect to FSD. It can be seen in Figure 5.2 that it really does
not dominate the benchmark with respect to FSD since its distribution function
intersects the distribution function of the benchmark investment.

To present a complete set of graphs for this time period, we present Figure
5.3, which shows also the distribution function of returns of the CSD portfolio.
A distribution function of the FSD portfolio is presented for comparison. It
can be seen that they are very similar. On the other hand, the distribution of
the CSD portfolio noticeably differs from the distribution of the SSD portfolio
(see Figure 5.1 for comparison), even though the CSD portfolio’s weights are as
similar as possible to the SSD portfolio’s weights. The distribution function of
the benchmark investment is also shown. It can be seen that the distribution
function of the CSD portfolio is always below it, which implies that the CSD
portfolio dominates the benchmark with respect to FSD, as it should.

We proceed by presenting Table 5.3 which shows the optimal portfolios in the
following period.

The properties of portfolios presented in Table 5.3 are similar to those of port-
folios presented in Table 5.2. As before, the mean return of the CWD portfolio is
similar to the mean return of the SSD portfolio. This time, however, it is slightly
lower. This can also happen. The mean of X̂ is always greater than or equal to
the mean of the SSD portfolio. But, the CWD portfolio may have higher as well
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Figure 5.3: EDFs of the CSD portfolio compared to other investments based on
data from Oct. 2007 to Sept. 2009.

Name FSD SSD CSD CWD
Adidas 0.045 0.081 0.067 0.083
Allianz 0 0 0.003 0.017
BASF 0.384 0.473 0.396 0.443
Daimler 0.009 0 0.013 0.01
Deutsche Borse 0.039 0 0.059 0.001
Infineon Technologies 0.155 0.17 0.161 0.173
SAP 0.277 0.229 0.257 0.222
Siemens 0 0 0 0.001
Volkswagen Group 0.09 0.048 0.044 0.051
Mean return 0.01421 0.01558 0.01362 0.01522

Table 5.3: Optimal portfolios based on data from Oct. 2009 to Sept. 2011.

as lower mean return than X̂.
Table 5.4 shows the optimal portfolios in the third period. Deutsche Post

had the highest mean return of all considered assets in the period from October
2011 to September 2013, which can be seen in Table A.3 in the attachment. Its
distribution also dominates the distribution of the benchmark investment with
respect to FSD in this period. Therefore, the optimal portfolio with respect to
FSD consists of Deutsche Post only. Its mean return cannot be improved by
adding any other asset to the portfolio. Obviously, it dominates the benchmark
also with respect to SSD so the SSD optimal portfolio is the same. As a result,
the CSD and the CWD portfolios are the same as well.

The optimal portfolios in the following time periods have similar properties.
The following tables present their weights.

Weights as low as 0.001 can be seen in the CWD portfolios in Table 5.3 and
Table 5.6. It is not a numerical error. The distribution of the CWD portfolio is
very slightly closer to the distribution of X̂ with them than without them.

It can be seen in Table 5.8 that the optimal portfolios with respect to FSD
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Name FSD SSD CSD CWD
Deutsche Post 1
Mean return 0.04451

Table 5.4: Optimal portfolios based on data from Oct. 2011 to Sept. 2013.

Name FSD SSD CSD CWD
Adidas 0 0 0.047 0
Bayer 0.081 0 0 0.002
Deutsche Borse 0.743 0.768 0.757 0.772
Infineon Technologies 0.176 0.232 0.191 0.223
Munich Re 0 0 0.005 0.003
Mean return 0.01745 0.01764 0.01514 0.01762

Table 5.5: Optimal portfolios based on data from Oct. 2013 to Sept. 2015.

Name FSD SSD CSD CWD
Adidas 0.694 0.667 0.674 0.669
Deutsche Borse 0 0 0.005 0
Deutsche Post 0.024 0 0 0
Infineon Technologies 0.282 0.333 0.302 0.329
Munich Re 0 0 0 0.001
Volkswagen Group 0 0 0.018 0.001
Mean return 0.04357 0.04361 0.04325 0.04358

Table 5.6: Optimal portfolios based on data from Oct. 2015 to Sept. 2017.

Name FSD SSD CSD CWD
Adidas 0.273 0 0.269 0
Deutsche Borse 0.722 1 0.723 0.991
Deutsche Post 0 0 0.008 0
Munich Re 0.005 0 0 0
Volkswagen Group 0 0 0 0.009
Mean return 0.02026 0.02155 0.02012 0.02144

Table 5.7: Optimal portfolios based on data from Oct. 2017 to Sept. 2019.

Name FSD SSD CSD CWD
Deutsche Post 0.481
Infineon Technologies 0.519
Mean return 0.03752

Table 5.8: Optimal portfolios based on data from Oct. 2019 to Sept. 2021.
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and SSD are the same in the last considered time period. Unlike in the period
from October 2011 to September 2013, they consist of more than one asset.
Infineon Technologies had the highest mean return in this period, but its minimal
return, −0.276, was lower than the minimal return of the benchmark (see Table
A.7). Therefore, its returns cannot dominate the benchmark with respect to FSD
nor with respect to SSD. Deutsche Post had the second-highest return in this
period, and their combination presented in Table 5.8 dominates the benchmark
investment with respect to FSD. Its minimal return, −0.185, is equal to the
minimal return of the benchmark investment. It cannot be lower in order for the
FSD or SSD to hold. Therefore, the SSD optimal portfolio is the same as the
FSD, and so are the CSD and CWD portfolios.

In every period, the optimal portfolio with respect to SSD contains only assets
which are represented in the optimal portfolio with respect to FSD. To dominate
the benchmark with respect to FSD, the portfolio has to be more diversified than
when the requirement is to dominate the benchmark with respect to SSD. This
sometimes allows the SSD portfolio to contain fewer assets than the FSD portfolio
consists of. It contains the ones with the higher mean return.

The closest strongly dominating portfolio contains all of the assets that the
SSD portfolio consists of in every period. Sometimes, it also contains all of the
assets that the FSD portfolio consists of as can be seen in Table 5.3. Sometimes,
it contains at least some of the assets, which are in the FSD portfolio and are not
in the SSD portfolio, which can be seen in Table 5.2 and Table 5.7. This could
be expected because, just like the FSD portfolio, it is supposed to dominate the
benchmark with respect to FSD so it is understandable that it is more similar to
it. But, in all five periods when the FSD and the SSD portfolios differ, the CSD
portfolio contains also assets that are not included in the FSD or SSD portfolios,
which may be surprising

Based on our results, the closest weakly dominating portfolio contains all of
the assets that the SSD portfolio consists of. We believe that this is a likely but
not inevitable outcome. As already mentioned, the distribution of X̂ can be very
similar to the distribution of the SSD portfolio. Therefore, also the distribution
of the CWD portfolio can be very similar so it tends to consist of similar assets.
But, as can be seen in Table 5.3, Table 5.6, or Table 5.7, it may include completely
different assets which are not included in the SSD or in the FSD portfolio. It is
not as surprising this time because when constructing the CWD portfolio, we are
trying to imitate a theoretical distribution of X̂ which is unrelated to the FSD
portfolio. The mean return of the CWD portfolio is higher than the mean return
of the FSD portfolio in all cases. It implies that the CWD portfolio does not
dominate the benchmark with respect to FSD because the FSD portfolio has the
highest possible return while dominating the benchmark with respect to FSD.

The optimal portfolios with respect to FSD and SSD are different in five out
of the seven considered time periods. We provide an overview of the measures of
non-dominance and of the distances of weights between them in these five time
periods in Table 5.9.

It can be seen in Table 5.9 that the higher the non-dominance is, the higher
the distance of the weights is. It is consistent with the natural expectation that,
if the portfolios are more similar, the measure of non-dominance between them
is lower. It means that when the non-dominance was small, the optimal portfolio
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Time Period 1-ND(λ∗2, λ∗1) dE(λ∗2, λ∗1)
2007-2009 16.79 · 10−3 45.24 · 10−2

2009-2011 3.25 · 10−3 12.25 · 10−2

2013-2015 2.34 · 10−3 10.16 · 10−2

2015-2017 2 · 10−3 6.22 · 10−2

2017-2019 5.37 · 10−3 38.97 · 10−2

Table 5.9: Comparison of the measure of non-dominance and distance between
optimal portfolios with respect to SSD and FSD.

with respect to SSD did not need to be changed much in order for it to dominate
FSD portfolio with respect to FSD.

Table 5.10 provides an overview of the measures of non-dominance and dis-
tances of weights between the optimal portfolios with respect to SSD and the
closest strongly dominating portfolios in the five periods when they differ.

Time Period 1-ND(λ∗2, ωS) dE(λ∗2, ωS)
2007-2009 16.55 · 10−3 44.47 · 10−2

2009-2011 2.73 · 10−3 10.26 · 10−2

2013-2015 1.81 · 10−3 4.85 · 10−2

2015-2017 1.13 · 10−3 3.65 · 10−2

2017-2019 5.12 · 10−3 38.58 · 10−2

Table 5.10: Comparison of the measure of non-dominance and distance between
the optimal portfolio with respect to SSD and the CSD portfolio.

The distance of weights between λ∗2 and ωS (Table 5.10) is noticeably lower
than the distance of weights λ∗2 and λ∗1 (Table 5.9) in every period. It is correct
because both λ∗1 and ωS dominate the benchmark with respect to FSD but ωS

was found as the closest portfolio to λ∗2 which satisfies that.
As in the previous table, it holds also in Table 5.10 that the higher the measure

of first non-dominance is, the higher the distance of portfolio weights is. This
ordering holds also when we combine the data from both tables. However, it
does not mean that these measures can fully substitute one another, which can
be seen from the following example. Let us focus on the third row of Table 5.9
and on the second row of Table 5.10. The Euclidean distance of weights is very
similar in these two cases: 10.16 · 10−2 and 10.26 · 10−2. The second one is higher
by approximately 1 %. However, the measures of non-dominance are 2.34 · 10−3

and 2.73 · 10−3. The second one is higher by 17 %. So, although it holds in this
data set that the measure of non-dominance increases with increasing distance
of weights, they do not increase proportionately. The measure of non-dominance
brings a different type of information about the distance of portfolios so it cannot
be replaced by the measure of distance.

To conclude, we have seen that the weights of the SSD portfolio can be notice-
ably more similar to the weights of the CSD portfolio than to the weights of the
FSD portfolio. So, the FSD portfolio is quite far from being the closest dominat-
ing portfolio to the SSD portfolio. The CSD portfolio dominates the benchmark
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with respect to FSD by definition. On the other hand, the CWD portfolio did not
dominate the benchmark with respect to FSD in any of the presented cases. The
measure of non-dominance between portfolios evolves similarly to their Euclidean
distance but it brings a different type of information.
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Conclusion
We introduced stochastic dominance of different types in the first chapter (FSD,
SSD, TSD, DARA SD, and ISD). We presented their definitions using the ex-
pected values of utility functions of compared random variables and also the
alternative definitions using the distribution functions of the random variables.
They were useful for deriving stochastic dominance rules for random variables
with particular distributions.

We defined a measure of non-dominance in the second chapter. It quantifies
how much must a random variable change to dominate another random variable
with respect to stochastic dominance of a given order. In general, it is found by
solving an optimization problem, but we derived its special form for empirically
distributed random variables.

We computed the exact values of the measure of first and second non-dominan-
ce for uniformly, and normally distributed random variables. The measure of
second non-dominance corresponds to the measure of third non-dominance in
case of uniform distributions, and to the measures of any higher non-dominance
in case of normal distributions. We derived a measure of non-dominance also for
exponentially distributed variables. It is the same for all of the considered orders
of stochastic dominance. This allows us to measure the quality of stochastic
dominance approximation exactly in these distributions.

We were not able to formulate the optimization problem defining non-domi-
nance for log-normally and gamma distributed random variables. A numerical
study was used to approximate the measures of first and second non-dominance
in these distributions. We approximated them by empirical distributions consist-
ing of 1000 atoms and computed the measure of non-dominance between them.
Although there were simulation errors, the results were overall in accordance with
our expectations. When gamma distribution coincided with exponential distri-
bution, we saw that the measure of first non-dominance was estimated quite well.
However, estimation of the measure of second non-dominance showed weaknesses
of our approach.

We concentrated on portfolio optimization in the fifth chapter and applied
the theory to real-life data. We used monthly returns of twelve assets covered by
the German stock index DAX. We found optimal portfolios with respect to FSD
and SSD in seven different time periods, and we computed how far are they from
each other. It was expressed by the measure of non-dominance as well as by the
distance of their weights. We defined the closest strongly dominating and the
closest weakly dominating portfolios. The closest weakly dominating portfolios
did not dominate the benchmark in the presented cases, but the closest strongly
dominating portfolios did. They provide a different view on how far the optimal
portfolio with respect to SSD is from dominating the benchmark with respect to
FSD.

In conclusion, we introduced and applied a new measure of non-dominance,
which allows us to measure the quality of stochastic dominance approximation.
We showed that it can be computed exactly for some distributions, and estimated
for other distributions. It can be used also to measure the distance of portfolios,
and to assess how far are they from dominating the benchmark. Further research
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could focus on searching its exact values for more distributions. One could also
consider using a different measure of distance in its definition, which may allow
its exact computation for more distributions such as the log-normal and gamma
distribution. It could be also interesting to focus on improving the estimations of
the measure of second non-dominance. Imposing more rules on the empirically
distributed X̂ in this case, may be helpful.
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A. Attachments

A.1 Data Characteristics in Each Period

Name Mean Min Max Std
Adidas 0.001 -0.343 0.248 0.127
Allianz -0.015 -0.397 0.18 0.131
BASF -0.001 -0.228 0.254 0.112
Bayer -0.002 -0.167 0.125 0.071
Daimler -0.017 -0.243 0.423 0.147
Deutsche Borse -0.013 -0.222 0.247 0.122
Deutsche Post -0.003 -0.415 0.305 0.147
Infineon Technologies 0.017 -0.481 1.316 0.39
Munich Re -0.003 -0.095 0.14 0.057
SAP -0.003 -0.267 0.151 0.088
Siemens -0.007 -0.293 0.186 0.118
Volkswagen Group 0.012 -0.449 0.358 0.178
Benchmark -0.003 -0.27 0.259 0.106

Table A.1: Basic characteristics of monthly data from Oct. 2007 to Sept. 2009.

Name Mean Min Max Std
Adidas 0.012 -0.15 0.244 0.104
Allianz -0.0 -0.212 0.141 0.082
BASF 0.017 -0.214 0.137 0.085
Bayer -0.001 -0.197 0.097 0.068
Daimler 0.005 -0.256 0.211 0.093
Deutsche Borse -0.009 -0.197 0.112 0.083
Deutsche Post -0.006 -0.135 0.109 0.066
Infineon Technologies 0.023 -0.205 0.283 0.121
Munich Re -0.0 -0.118 0.106 0.054
SAP 0.008 -0.129 0.108 0.05
Siemens 0.008 -0.196 0.189 0.069
Volkswagen Group 0.018 -0.169 0.22 0.116
Benchmark 0.006 -0.17 0.113 0.063

Table A.2: Basic characteristics of monthly data from Oct. 2009 to Sept. 2011.
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Name Mean Min Max Std
Adidas 0.028 -0.106 0.159 0.06
Allianz 0.027 -0.132 0.146 0.069
BASF 0.023 -0.088 0.154 0.062
Bayer 0.035 -0.05 0.117 0.044
Daimler 0.031 -0.092 0.245 0.094
Deutsche Borse 0.021 -0.188 0.133 0.067
Deutsche Post 0.045 -0.055 0.144 0.047
Infineon Technologies 0.017 -0.165 0.199 0.092
Munich Re 0.023 -0.076 0.109 0.042
SAP 0.017 -0.079 0.139 0.058
Siemens 0.017 -0.074 0.119 0.053
Volkswagen Group 0.029 -0.093 0.267 0.091
Benchmark 0.026 -0.082 0.134 0.047

Table A.3: Basic characteristics of monthly data from Oct. 2011 to Sept. 2013.

Name Mean Min Max Std
Adidas -0.007 -0.219 0.128 0.08
Allianz 0.013 -0.065 0.093 0.045
BASF 0.003 -0.087 0.138 0.057
Bayer 0.015 -0.099 0.133 0.059
Daimler 0.009 -0.12 0.167 0.064
Deutsche Borse 0.018 -0.086 0.149 0.055
Deutsche Post 0.004 -0.108 0.066 0.046
Infineon Technologies 0.017 -0.094 0.128 0.069
Munich Re 0.011 -0.129 0.082 0.048
SAP 0.005 -0.091 0.086 0.046
Siemens -0.001 -0.096 0.11 0.051
Volkswagen Group -0.015 -0.423 0.137 0.106
Benchmark 0.006 -0.074 0.081 0.043

Table A.4: Basic characteristics of monthly data from Oct. 2013 to Sept. 2015.

Name Mean Min Max Std
Adidas 0.047 -0.104 0.193 0.07
Allianz 0.018 -0.091 0.136 0.052
BASF 0.017 -0.136 0.107 0.061
Bayer 0.006 -0.15 0.119 0.066
Daimler 0.01 -0.173 0.218 0.087
Deutsche Borse 0.011 -0.046 0.098 0.046
Deutsche Post 0.022 -0.14 0.113 0.053
Infineon Technologies 0.036 -0.091 0.253 0.081
Munich Re 0.009 -0.11 0.095 0.053
SAP 0.023 -0.064 0.24 0.065
Siemens 0.021 -0.084 0.145 0.06
Volkswagen Group 0.02 -0.201 0.204 0.096
Benchmark 0.02 -0.081 0.125 0.045

Table A.5: Basic characteristics of monthly data from Oct. 2015 to Sept. 2017.
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Name Mean Min Max Std
Adidas 0.017 -0.075 0.163 0.071
Allianz 0.01 -0.102 0.114 0.058
BASF -0.008 -0.185 0.132 0.068
Bayer -0.017 -0.18 0.154 0.081
Daimler -0.008 -0.204 0.126 0.077
Deutsche Borse 0.022 -0.07 0.108 0.042
Deutsche Post -0.003 -0.15 0.141 0.074
Infineon Technologies -0.005 -0.235 0.189 0.088
Munich Re 0.016 -0.033 0.089 0.036
SAP 0.009 -0.107 0.112 0.057
Siemens -0.004 -0.112 0.113 0.057
Volkswagen Group 0.01 -0.1 0.142 0.075
Benchmark 0.003 -0.081 0.089 0.045

Table A.6: Basic characteristics of monthly data from Oct. 2017 to Sept. 2019.

Name Mean Min Max Std
Adidas 0.007 -0.199 0.185 0.095
Allianz 0.004 -0.195 0.308 0.097
BASF 0.012 -0.187 0.303 0.092
Bayer -0.005 -0.243 0.196 0.095
Daimler 0.03 -0.267 0.271 0.113
Deutsche Borse 0.004 -0.157 0.134 0.071
Deutsche Post 0.034 -0.141 0.22 0.076
Infineon Technologies 0.041 -0.276 0.262 0.103
Munich Re 0.008 -0.202 0.163 0.089
SAP 0.011 -0.311 0.128 0.088
Siemens 0.023 -0.165 0.164 0.081
Volkswagen Group 0.018 -0.281 0.379 0.125
Benchmark 0.016 -0.185 0.177 0.075

Table A.7: Basic characteristics of monthly data from Oct. 2019 to Sept. 2021.
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