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Abstract   

This study focuses on Sentinel-2 multispectral data for detecting changes associated with war 

conflicts in an urban environment in Google Earth Engine (GEE) cloud based platform. The 

area of interest was chosen to be the Gaza City and its surrounding, which became embroiled 

in a military conflict in October 2023. The Python scripts have been used to perform analyses 

and monitor spectral signs over time. The iteratively reweighted multivariate alteration 

detection (IR-MAD) method, which is based on the comparison of two images, was used to 

analyze the changes. The resulting raster of changes was validated with very high spatial 

resolution PlanetScope data. Based on the validation, an overall accuracy of 74% was achieved. 

As part of the research, a web-based mapping application was created to allow users to view 

conflict using pre-built tools. 

 

Key words: Change Detection, IR-MAD, Google Earth Engine, Gaza,  
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Abstrakt   

Tato studie se zaměřuje na multispektrální data Sentinel-2 pro detekci změn spojených s 

válečnými konflikty v městském prostředí v cloudové platformě Google Earth Engine (GEE). 

Jako zájmová oblast bylo vybráno město Gaza a blízké okolí, které se v říjnu 2023 zapletlo do 

válečného konfliktu. K provádění analýz a sledování spektrálních příznaků v čase byly použity 

skripty v jazyce Python. K analýze změn byla použita metoda iterativně převážené 

vícerozměrné detekce změn (IR-MAD), která je založena na porovnání dvou snímků. Výsledný 

rastr změn byl ověřen pomocí dat PlanetScope s velmi vysokým prostorovým rozlišením. Na 

základě validace bylo dosaženo celkové přesnosti 74 %. V rámci výzkumu byla vytvořena 

webová mapová aplikace, která umožňuje uživatelům prohlížet konflikty pomocí předem 

připravených nástrojů. 

 

Klíčová slova: Detekce změn, IR-MAD, Google Earth Engine, Gaza,  
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1. Introduction 

 

Remote sensing (RS) is commonly utilized to assess changes attributed to natural disasters such 

as floods and earthquakes. Its potential to observe anthropogenic activities makes it a valuable 

tool for monitoring urban destruction from human conflicts and wars. Collateral damage is a 

common phenomenon in urban areas affected by modern warfare, yet there is a lack of a reliable 

framework for reporting it. While professional organizations like the United Nations Satellite 

Centre (UNOSAT) provide organized reporting, human monitoring, though accurate, can be 

limited in speed. Additionally, it can also come with higher costs. The need for an automated 

method that can monitor damage objectively and without bias is crucial, especially in an 

internet era where public information can be skewed. 

Consequently, the primary objective of this research is to employ a comparatively robust 

Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) technique developed by 

Nielson (1998). The selection of this method was informed by its prior successful application 

in detecting changes in appliances such as monitoring forest cover change (La Barreda-

Bautista, A., Couturier, Luis 2011), in other cases IR-MAD was combined with object detection 

to discover illegal rooftop construction (Liu et al. 2021). This only proves the versatility of this 

method. Therefore, the versatility of this method allows for an opportunity to observe urban 

changes attributed to warfare. However, urban environments exhibit significantly less stability 

for RS, necessitating preprocessing of imagery to mitigate the potential for false changes arising 

from diverse reflectances (Herold, Roberts 2010). 

The initial task involves the implementation of the IR-MAD code provided by Canty, which is 

accessible through the “Change Detection in Google Earth Engine - The MAD Transformation 

tutorial” (Canty 2024). The code is applied to a selected area of interest (AOI) during two time 

periods: one before a conflict and the other after the conflict. The results are then evaluated 

against reference data. Tweaking and masking are incorporated into the process. The primary 

objective of this task is to determine the suitability and accuracy of IR-MAD as a method for 

monitoring changes in urban areas affected by warfare. In the second task, the Sentinel-2 data 

will be statistically evaluated with PlanetoScope data with very high spatial resolution to 

determine the accuracy of IR-MAD results. 

https://www.zotero.org/google-docs/?x819y0
https://www.zotero.org/google-docs/?FnI7ZU
https://www.zotero.org/google-docs/?FnI7ZU
https://www.zotero.org/google-docs/?CqOiGc
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The main objectives of this study were: 

- To utilize and test IR-MAD with Sentinel-2 data in the use of CD in urban 

areas affected by the war. The CD will be validated with very high spatial 

resolution PlanetScope data. 

- To create Python scripts for CD analyses. 

- To develop a website with a web mapping application for publishing the 

results. 
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2. Change Detection 

This chapter aims to provide a comprehensive review of relevant publications on CD in RS. It 

is structured into three subsections. The first subsection focuses on the characteristics of CD 

discipline in RS. The second subsection examines CD methods employed in monitoring war-

related damage. Lastly, the third subsection explores some of the applications of IR-MAD 

specifically for CD. 

CD is the process of identifying differences in the state of an object or phenomenon 

by observing it at different times (Singh 1989). Timely and accurate CD of the earth’s surface 

is crucial for better understanding relationships and interactions between human and natural 

phenomena (Lu, Mausel, Brondízio, Moran 2004). This allows us to identify trends, monitor 

processes, and gain a deeper understanding of Earth's dynamics. 

The fundamental principle of CD is that changes in the earth's surface should result in 

corresponding changes in digital number values. However, to be considered significant, these 

surface changes must be more substantial than radiance variations caused by other factors like 

the sun's angle, atmospheric conditions, or variations in surface moisture (Singh 1989; Jensen 

1983). 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?kQ3DWj
https://www.zotero.org/google-docs/?djLyfr
https://www.zotero.org/google-docs/?djLyfr
https://www.zotero.org/google-docs/?djLyfr
https://www.zotero.org/google-docs/?0L6BBr
https://www.zotero.org/google-docs/?0L6BBr
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2.1. Procedure 

According to Lu et al (2004) a CD research should provide the amount of area changed and 

change rate, spatial distribution of changed types, trajectories of land-cover types and accuracy 

assessment of CD results. These characteristics are optimal, it is however up to many factors 

that affect the result of CD analysis. These factors can be seen in Table 1. 

 

Table 1 : Factors affecting the results of CD 

 

Source: (Lu, Mausel, Brondízio, Moran 2004) 

   Considering these factors, it is important to note that for CD to be feasible in RS, 

precise geometric registration and calibration are desiired. Therefore, multitemporal images 

need to be preprocessed to ensure they are radiometrically and spatially comparable. Geometric 

correction ensures that pixels in multitemporal images refer to the same geographic location. 

Normalization and calibration address differences in imaging seasons, solar angles, and 

meteorological conditions. Once preprocessing is complete, the multitemporal data should be 

ready for CD analysis. (Ban, Yousif 2016) 

Category Factor 

Image Preprocessing (1) Precise geometric registration 

 (2) Calibration or normalization 

Ground Truth (3) Availability of quality ground truth data 

Study Area Characteristics (4) Complexity of landscape and environment 

Methodology (5) CD methods/algorithms 

 (6) Classification and CD schemes 

Analyst Expertise (7) Analyst's skills and experience 

 (8) Knowledge/familiarity of study area 

Resource Constraints (9) Time and cost restriction 

https://www.zotero.org/google-docs/?SNteal
https://www.zotero.org/google-docs/?SNteal
https://www.zotero.org/google-docs/?SNteal
https://www.zotero.org/google-docs/?Rnwbws
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 Another step in the CD framework is the characterization of change information, 

including the types of CD products, their characteristics, and methods, as depicted in Table 2. 

While numerous approaches exist to depict change, two methods are particularly prevalent. 

First, the binary change map synthesizes bitemporal CD data to highlight the spatial location 

of changes. Second, the "From-To" change map, a typical product of post-classification CD, 

emphasizes transitions between different land cover types by displaying the differences 

between assigned values, “From-To” map is exemplified in the study by El-Hattab (2016) 

“Applying post-classification CD technique to monitor an Egyptian coastal zone “ where 

change information has been displayed through negative, positive and no change, for each class 

by comparing base-classification to post-classification. 

Other frequently used products in Remote Sensing (RS) include those depicting the 

magnitude and direction of change, which are essential outputs through Change Vector 

Analysis (CVA). In CVA, change vectors are calculated by subtracting vectors on a pixel-by-

pixel basis, similar to image differencing. The magnitude and direction of these change vectors 

can be visualized into change information. Specifically, the magnitude represents the 

significance or intensity of the change, while the direction indicates the nature or type of 

change. 

An example of this application can be found in the study by Rahman and Mesev (2019), 

titled “Change Vector Analysis, Tasseled Cap, and NDVI-NDMI for Measuring Land 

Use/Cover Changes Caused by Short-Term Severe Drought: The 2011 Texas Event.” In this 

research, the authors utilized CVA on NDVI-NDMI to measure the magnitude of changes, 

producing a continuous scale that highlighted both significant and insignificant changes. The 

direction of change was also depicted for NDVI-NDMI, revealing changes towards increased 

wetness, alterations in chlorophyll content, bare-soil expansion, and decreased wetness. The 

magnitude of change is also an output of the Land Change Monitoring, Assessment, and 

Projection (LCMAP) program, which will be elaborated upon later in this chapter. 

Another notable approach involves identifying the likelihood of change occurring. This 

product is an estimated value representing the probability of change in a specific area, often 

derived from temporal analysis of historical datasets. By calculating this probability, it becomes 

possible to predict future conditions, which can aid in prevention and planning research 
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(Panuju, Paull, Griffin 2020). Estimating change probability has been implemented in various 

applications, for example Chen et al. (2017) used a probabilistic approach to determine the 

likelihoods of landslide-formed lakes forming. In another study, an estimation model was 

utilized to measure the susceptibility of areas to floods (Samanta, Pal, Palsamanta 2018). 

Similarly, Liang & Liu (2020) used a probabilistic model to estimate daily changes of  

inundation related to storm surges and river floods.  

Temporal change trajectories, or Land Use and Cover (LUCC) trajectories, are 

periodically observed sequences of land cover changes in pixels or objects, integrated into serial 

datasets. This category includes both temporal trends and seasonal patterns. Temporal trends 

focus on long-term directional changes, typically derived from aggregated data from periodic 

or non-periodic observations. Seasonal patterns encompass seasonal, trend, and irregular 

patterns in terms of fluctuations in regular and consistent intervals (Panuju, Paull, Griffin 2020). 

However, both of them utilize the same techniques such as Time Series Analysis (TSA), for 

examining data collected or recorded at successive points in time to identify the pattern or trend. 

For example, Huesca et al. (2015) used MODIS based TSA for monitoring seasonal patterns to 

assess changes in ecosystems through seasons. On the other hand, temporal trend has been 

observed in Biomass estimations. Browning et al. (2017) aimed at distinguishing seasonal 

patterns from long term trends to discover changes in the amount of biomass using TSA with 

NDVI.  

Lastly, Dynamic Simulation of Changes is a CD product used to simulate future land 

cover changes. It often utilizes heterogeneous data processed by Geographic Information 

Systems (GIS) and spatial analysis. This approach aims to interpret future changes by 

employing simulation models to predict land cover transformations. This category 

encompasses both anthropogenic and natural phenomena. For instance, Getu & Bhat (2022) 

utilized Cellular Automata and Markov models, combined with urban growth driver data and 

past TSA satellite imagery, to study and simulate future land use changes in the urban area of 

Bahir Dar city, Ethiopia. These methods often employ heterogeneous data to provide more 

inputs to the model.  

 

https://www.zotero.org/google-docs/?joOjQh
https://www.zotero.org/google-docs/?YHezKY
https://www.zotero.org/google-docs/?rjWNC6
https://www.zotero.org/google-docs/?VqSgGf
https://www.zotero.org/google-docs/?VqSgGf
https://www.zotero.org/google-docs/?VqSgGf
https://www.zotero.org/google-docs/?fG45aB
https://www.zotero.org/google-docs/?YmQjtP
https://www.zotero.org/google-docs/?SudGen
https://www.zotero.org/google-docs/?6NeEK9
https://www.zotero.org/google-docs/?6NeEK9
https://www.zotero.org/google-docs/?6NeEK9
https://www.zotero.org/google-docs/?6NeEK9
https://www.zotero.org/google-docs/?6NeEK9
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Table 2 : CD Products, their characteristics and methods.  

CD products Characteristic Method(s) Examples 

Binary Change Identifies whether 

change has occurred 

or not 

Image differencing, 

thresholding, CVA, MAD, 

IR-MAD, Slow Feature 

Analysis (SFA), deep 

learning 

Urban (Doxani, Karantzalos, 

Strati 2012) 

Buildings (Peng, Guan 2019) 

Forest damage (Hamdi, 

Brandmeier, Straub 2019) 

Types of Change: 

"From-To" 

Information 

Determines the 

specific nature of 

change 

Post-classification 

comparison, multi-temporal 

classification, object-based 

CD 

Land Cover change (El-

Hattab 2016) 

Agriculture (Wang, 

Guanzhou, Dai, Gong, Zhu 

2018) 

Magnitude and 

Direction of 

Change 

Quantifies the 

amount and direction 

of change 

Change Vector Analysis  

Drought assessment 

(Rahman, Mesev 2019) 

 

The Probability of 

Change 

Estimates the 

likelihood of change 

occurring 
Chi-square distribution, 

likelihood ratio, Dempster-

Shafer theory 

Flood susceptibility  

(Samanta, Pal, Palsamanta 

2018) 

Landslide lakes (Chen, Li, 

Zhang, Jiang, Tao, Shen 

2017) 

Temporal Change 

Trajectories. 

Temporal Trend 

Seasonal Pattern 

Tracks changes in 

individual locations 

over time 

Time series 

analysis,Seasonal trend 

analysis,curve fitting,  

Ecosystem assessment 

(Huesca et al. 2015) 

Abandoned 

agriculture.(Alcantara, 

Kuemmerle, Prishchepov, 

Radeloff 2012) 

Biomass estimation 

(Browning, Maynard, Karl, 

Peters 2017) 

 

Dynamic 

Simulation of 

Changes 

Models of change 

processes over time Land-use change models, 

cellular automata, Markov 

chain models, 

Landuse change (Islam, 

Rahman, Jashimuddin 

2018) 
Urban expansion (Getu, Bhat 

2022) 

Source: (Panuju, Paull, Griffin 2020) 

 

https://www.zotero.org/google-docs/?oIASmy
https://www.zotero.org/google-docs/?oIASmy
https://www.zotero.org/google-docs/?aTfC5j
https://www.zotero.org/google-docs/?ssXHte
https://www.zotero.org/google-docs/?ssXHte
https://www.zotero.org/google-docs/?hNrPiT
https://www.zotero.org/google-docs/?hNrPiT
https://www.zotero.org/google-docs/?VFoTVL
https://www.zotero.org/google-docs/?VFoTVL
https://www.zotero.org/google-docs/?VFoTVL
https://www.zotero.org/google-docs/?VFoTVL
https://www.zotero.org/google-docs/?VFoTVL
https://www.zotero.org/google-docs/?smkUqk
https://www.zotero.org/google-docs/?fwW67y
https://www.zotero.org/google-docs/?fwW67y
https://www.zotero.org/google-docs/?fwW67y
https://www.zotero.org/google-docs/?fwW67y
https://www.zotero.org/google-docs/?8b1aw8
https://www.zotero.org/google-docs/?8b1aw8
https://www.zotero.org/google-docs/?8b1aw8
https://www.zotero.org/google-docs/?Hugl8s
https://www.zotero.org/google-docs/?vDJuU4
https://www.zotero.org/google-docs/?vDJuU4
https://www.zotero.org/google-docs/?vDJuU4
https://www.zotero.org/google-docs/?vDJuU4
https://www.zotero.org/google-docs/?vDJuU4
https://www.zotero.org/google-docs/?hBnfxg
https://www.zotero.org/google-docs/?hBnfxg
https://www.zotero.org/google-docs/?ywkxCw
https://www.zotero.org/google-docs/?ywkxCw
https://www.zotero.org/google-docs/?ywkxCw
https://www.zotero.org/google-docs/?pwIZKg
https://www.zotero.org/google-docs/?pwIZKg
https://www.zotero.org/google-docs/?XJFvlC
https://www.zotero.org/google-docs/?XJFvlC
https://www.zotero.org/google-docs/?XJFvlC
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 Choosing the right method is as important as choosing the right data. Researchers need 

to consider their objective and which method is best. Cheng et al. (2023) summarized CD 

methods based on their algorithm granularity into three groups:  

● Pixel-based methods focus on the individual pixel as the basic unit of analysis. In these 

methods, changes are detected and measured by analyzing the spectral characteristics 

of each pixel, largely disregarding the spatial context. This approach treats pixels as 

independent entities, if changes in the Earth's surface correspond directly to changes in 

the pixel's spectral values. However, this assumption can be limiting, as it overlooks the 

spatial relationships between pixels and the broader context of the image. On the other 

side, Pixel-based are often the backbone of other methods, additionally they are 

effective due to their simplicity.  

● Object(region) based methods, which take spatial context into consideration, address 

the limitations of pixel-based approaches by grouping pixels in an image to form image 

objects that correspond to meaningful entities in the scene. This method relies on image 

segmentation and often employs various classification techniques to accurately 

delineate and categorize these objects. 

● Hybrid CD methods leverage the strengths of two or more individual techniques, 

drawing from both pixel-based and object-based approaches. By combining 

methodologies, hybrid approaches can overcome the limitations inherent in each 

method when used in isolation. For instance, they might utilize the spectral precision of 

pixel-based methods while incorporating the spatial context provided by object-based 

techniques. 

Pixel-based techniques were pioneering CD in the early days of RS, as the processing power 

required for object-based methods emerged later. Generally, increased granularity correlates 

with method complexity. While object-oriented methods offer potential for higher accuracy, 

they introduce additional steps to the CD process, such as image segmentation. If not executed 

optimally, segmentation can skew results in object-based methods. Additionally, pixel-based 

methods are often suboptimal for CD in Very High Resolution (VHR) imagery due to increased 

https://www.zotero.org/google-docs/?0k2Cqr
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spectral variability, and their limitations of comparing atmospheric noise. Object-oriented and 

hybrid approaches can address this issue by incorporating classification or other contextual 

data, overcoming the limitations of simpler techniques in VHR scenarios. (Hussain et. 2013). 

Hybrid CD methods, while potentially yielding the most accurate and insightful results, often 

demand a high degree of optimization. This is evident in  “ Detecting land use changes using 

hybrid machine learning methods in the Australian tropical regions” Sedighkia & Datta (2023) 

While the study used hybrid Machine learning methods together against conventional and 

robust methods for comparison, the authors found that conventional methods were more robust 

and less time consuming due to high computational complexities.  Researchers must therefore 

balance the choice between straightforward methods with potential limitations and complex 

methods that may offer better results but require significant optimization and computational 

power 

Alternatively CD methods can be distinguished by their change information acquisition 

process. Asokan & Anitha (2019) summarizes a taxonomy with following categories.  

● Algebra based CD involves applying raster oriented algebraic operations to each image 

pixel to calculate the difference between images. This category includes traditional 

methods like image differencing, image regression, and Change Vector Analysis 

(CVA). These methods share characteristics such as relative simplicity (with the 

exception of CVA) and the need to establish thresholds for identifying changed areas. 

Finding the thresholds may prove to be difficult. (Asokan, Anitha 2019; Lu, Mausel, 

Brondízio, Moran 2004) 

● Transformation based CD involves methods that transform image pixels to find 

change information from multi-temporal data. This category includes techniques such 

as Principal Component Analysis (PCA), MAD, and Tasseled Cap transformation. 

These methods usually reduce data redundancy between bands and generate new 

component / band or components / bands containing derived information. However, 

each analysis is scene-dependent and results can sometimes be difficult to interpret. 

Thresholding is required to identify change areas within these new components. 

(Asokan, Anitha 2019; Lu, Mausel, Brondízio, Moran 2004) 

https://www.zotero.org/google-docs/?HRqRdk
https://www.zotero.org/google-docs/?2vggz7
https://www.zotero.org/google-docs/?2vggz7
https://www.zotero.org/google-docs/?EXZXSM
https://www.zotero.org/google-docs/?EXZXSM
https://www.zotero.org/google-docs/?EXZXSM
https://www.zotero.org/google-docs/?9tvhwH
https://www.zotero.org/google-docs/?9tvhwH
https://www.zotero.org/google-docs/?9tvhwH
https://www.zotero.org/google-docs/?9tvhwH
https://www.zotero.org/google-docs/?9fWh63
https://www.zotero.org/google-docs/?9fWh63
https://www.zotero.org/google-docs/?9fWh63
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● Classification based CD is made out of different classification techniques such as 

unsupervised CD. The main advantage of this method is that it can provide accurate 

change information which is not much affected by external factors, on the other hand 

classification creates classes which may later hide changes within classes that could be 

interesting. (Asokan, Anitha 2019) Additionally, subsequent classification and 

comparison is constrained to the initial set of class labels. (Deer 1995). 

● Advanced models based CD methods use different reflectance and spectral mixture 

models. The main idea behind these methods is to convert image reflectance values into 

physical parameters such as vegetation information. These physical parameters are then 

compared between observational periods.  

● Neural network and fuzzy/deep learning methods  combine RS techniques like 

neural networks and fuzzy modeling (Asokan, Anitha 2019). Fuzzy Clustering as 

opposed to conventional clustering allows for more than one clustering class (URL 1). 

These methods have an advantage in allowing for the distinction of different types of 

changes, and therefore, different types of phenomena that are too complex for classical 

algorithms (algebraic or transformation-based methods). While this is certainly an 

advantage, pre-processing is crucial for a successful model, whether supervised, which 

requires an extensive amount of labeled data to train the network, or unsupervised, 

which still needs interpretation and computing power. (Parelius 2023)  

● Geographic information systems (GIS) methods allow for integration of RS and GIS, 

in general it is a synthesis of using multispectral data with other geographic data, 

however CD can be solely just GIS based (Lu, Mausel, Brondízio, Moran 2004). This 

is a significant advantage, especially in urbanized areas where additional spatial data 

beyond satellite imagery is available, such as old maps, land registries, or land use 

records. Land registries, for example, can be used in conjunction with RS data for 

updating land register through CD. (Jovanović, Gavrilović, Sladić, Radulović, 

Govedarica 2021) 

● Visual analysis involves visual interpretation of multitemporal image composites and 

on-screen digitizing of changed areas. This method was largely utilized in the early 

years of RS, however, it is still being used today, largely by UNOSAT in damage 

assessment reports. A skilled analyst can incorporate their knowledge of data and the 

https://www.zotero.org/google-docs/?oUlbkF
https://www.zotero.org/google-docs/?OwZUdV
https://www.zotero.org/google-docs/?K2D9Sm
https://www.zotero.org/google-docs/?T80mHp
https://www.zotero.org/google-docs/?21umd9
https://www.zotero.org/google-docs/?21umd9
https://www.zotero.org/google-docs/?21umd9
https://www.zotero.org/google-docs/?QIoGlN
https://www.zotero.org/google-docs/?QIoGlN
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spatial context of the image to accurately detect change; however, it is very time-

consuming. (Lu, Mausel, Brondízio, Moran 2004) 

In reality, fusion of methods in research is being used encompassing all of these categories. 

They all have their advantages and disadvantages and specific use cases and therefore are 

utilized side by side, it is however, important to note that with increasing computational 

innovation and advances in machine learning’s deep learning approaches are beginning to form 

a narrative for CD for future as their precision and efficiency has been increasing in past few 

years and is set to progress more. (Afaq, Manocha 2021) 

2.2. Data for Change Detection 

 Choosing data for CD is synonymous with choosing the method because the selection 

of appropriate data is crucial for detecting and analyzing changes over time. Data plays a vital 

role in determining the method which should be used for CD and vise versa. There are 5 main 

groups of data in RS partly summarized by Cheng et al. (2023) . Their overview can be seen 

in Table 3.  

Table 3: Overview of available data 

Data Image Attributes Application Scenarios Advantages Disadvantages 

SAR  Electromagnetic 

signals 

Surface mapping Penetrates 

clouds/smoke 

Noisy, distortion, 

complex processing 

Multispectral  Discrete spectral 

bands, visible/IR 

Land cover, vegetation 

analysis 

Versatile, easy 

to interpret 

spectral resolution, 

atmospheric 

condition 

Hyperspectral  Continuous spectral 

bands 

Material identification, 

subtle change 

High spectral 

resolution, 

detects change 

Complex analysis, 

large data, spatial 

resolution 

3D Data 

(LiDAR) 

Point clouds, 

elevation 

Terrain mapping, 

urban modeling, 

forestry 

Precise 3D 

structure 

Expensive, limited 

coverage, weather 

Heterogeneous  Multi-sensor, multi-

temporal 

Multi-temporal 

analysis 

Combines data 

strengths 

Preprocessing, 

registration 

challenges 

Source: Cheng et al. (2023) 

https://www.zotero.org/google-docs/?Lk9ofo
https://www.zotero.org/google-docs/?sNv7M5
https://www.zotero.org/google-docs/?sujka2
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Synthetic Aperture Radar (SAR) is a powerful imaging technology that utilizes 

electromagnetic signals to create detailed two-dimensional or three-dimensional maps of the 

Earth's surface. Unlike traditional cameras that rely on sunlight, SAR acts as its own emitter, 

making it capable of capturing images day and night, and even penetrating through clouds 

and vegetation (URL 2). However, SAR data does have its disadvantages. The information 

gathered by SAR systems is susceptible to geometric distortions, electromagnetic 

interference, and speckle noise. These factors can complicate the analysis of SAR images, 

which need to be addressed in industrial applications.  

SAR is a valuable tool for various applications, including monitoring forests, tracking 

agricultural growth, mapping coastlines, and studying urban environments. For example, Li et 

al. (2019) used image differencing with Sentinel-1's SAR imagery to conduct urban building 

CD in Nanjing City, China. The research showed promising results after optimizing both 

images for a weighted difference image to combat speckle noise. Radar data can also detect 

building damage. Kim, Park & Lee (2023) used the Kompsat-5  to perform a texture analysis 

of building damage caused by the 2016 earthquake in Japan, achieving 72.5% grid-based 

accuracy. SAR also allows for moisture monitoring because dry soils are more permeable to 

radar waves, whereas moist soil tends to absorb radar energy. The difference in reflection back 

to the active sensor can indicate soil moisture. Dilip et al. (2023) used Sentinel-1 data to develop 

a drought index for monitoring recurrent early-season droughts in India triggered by delayed 

monsoons. 

Multi-spectral data “comprises a set of co-registered images, each of which captures the 

spatially varying brightness of a scene in a specific spectral band, or electromagnetic 

wavelength region” (Warner 2017). It can be used to identify various features on the earth’s 

surface based on their spectral characteristics. Other benefits include inexpensiveness and 

accessibility. Conversely, openly available imagery has limited spectral resolution and images 

are affected both by interfering atmospheric conditions and seasonal changes. Due to its 

availability and versatility, the use-cases of multispectral data are virtually “unlimited”. One 

notable example involving multispectral usability is the creation of a near real-time change 

detection system for identifying changes using Sentinel-2 data in forests in Mexico and 

Colombia. This system achieved a 92.5% accuracy by incorporating classification and cloud 

computing for classifying classes in the near real-time (Pacheco-Pascagaza et al. 2022). 

https://www.zotero.org/google-docs/?BUlnRF
https://www.zotero.org/google-docs/?2ZqvGK
https://www.zotero.org/google-docs/?2ZqvGK
https://www.zotero.org/google-docs/?2ZqvGK
https://www.zotero.org/google-docs/?2ZqvGK
https://www.zotero.org/google-docs/?2jN6OO
https://www.zotero.org/google-docs/?Jje2Z6
https://www.zotero.org/google-docs/?iawLSS
https://www.zotero.org/google-docs/?JcAtPm
https://www.zotero.org/google-docs/?JcAtPm
https://www.zotero.org/google-docs/?JcAtPm
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Multispectral data was an optimal choice for such a task because vegetation exhibits high 

reflectance in the near-infrared (NIR) region of the electromagnetic spectrum. 

Hyper-spectral data whilst being similar to multispectral data capture much larger 

quantities of contiguous and narrow spectral bands across the electromagnetic spectrum. This 

can help distinguish materials with similar spectral signatures such as smooth urban surfaces 

and water. On the other hand, hyper-spectral sensors are relatively expensive and with limited 

spatial resolution and with a lot of redundant information. An application scenario for this type 

of data would be when there would be a need to identify specific and detailed spectral 

signatures. (You, Cao, Zhou 2020). Seydi & Hasanlou (2021) argued that hyper-spectral data, 

with its higher spectral resolution compared to multispectral data, enhances CD of similar 

targets. They tested this by implementing Convolutional Neural Networks and spectral 

unmixing to detect binary seasonal changes in farmland in China and the USA. The results 

demonstrated over 90% accuracy in both cases. However, despite these promising outcomes, 

research on hyper-spectral CD remains limited compared to the extensive studies utilizing 

multispectral data. Researchers still have to address the challenges posed by its disadvantages 

while also contending with limitations inherent to both hyperspectral and multispectral data, 

such as atmospheric conditions. 

3D CD data are closely tied to Light Detection and Ranging (LiDAR) technology, 

which uses laser pulses to measure distances between the sensor and the ground or other 

objects. This data allows for the observation of changes in relief or object heights, particularly 

in urban environments. LiDAR-produced point clouds can detect changes in urban greenery, 

building construction, and demolition. Therefore, 3D CDs could be used for land-use 

monitoring, construction monitoring, and the detection of illegal construction activities  (Stilla, 

Xu 2023). For instance, in one research example utilizing point clouds, the authors used 

onboard LiDAR to detect changes in traffic and seasonal vegetation by comparing LiDAR-

generated point clouds with studied city's 3D model. The collected data was then processed 

through Markov random field based change extraction. The research successfully identified 

cars, pedestrians, and seasonal changes in vegetation. (Zováthi, Nagy, Benedek 2022) 

Another way to work with 3D data, known as Digital Elevation Model (DEM) 

differencing, is used to detect changes between DEMs by subtracting one from the other to 

https://www.zotero.org/google-docs/?qX62ta
https://www.zotero.org/google-docs/?N7N3Uz
https://www.zotero.org/google-docs/?N7N3Uz
https://www.zotero.org/google-docs/?N7N3Uz
https://www.zotero.org/google-docs/?WT2GRB
https://www.zotero.org/google-docs/?WT2GRB
https://www.zotero.org/google-docs/?IMtlR5
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identify variations. An example of this method is illustrated in a study where researchers 

compared Digital Elevation Models (DEMs) created using LiDAR with probabilistic CD and 

support vector machines to detect landslides adjacent to roads. These results were then 

compared to official surveys of the terrain. The study successfully identified 53 out of the 80 

landslides documented in the official survey and even detected additional landslides that had 

not been identified by the survey. (Mora et al. 2018) 

Heterogeneous data combines information from multiple sources, such as spectral and 

SAR data, to provide more comprehensive and accurate CD results. By integrating these diverse 

data sources, the strengths of each type can be leveraged to enhance the overall analysis. 

However, integration of more data types can be complicated and can often lead to noise and 

errors in the fusion process. In case that the data share different temporal inconsistencies, it can 

make it difficult to compare for different information. Therefore, an application scenario would 

be when the sensors combined in this data have higher temporal frequency. (Stilla, Xu 2023) 

The fusion of data has been utilized in numerous studies, with effective examples 

highlighting its importance in predictive models, where the use of more inputs may lead to 

better prediction accuracy. Ahmad et al. (2023) used classification on Landsat 8, supplemented 

with additional data such as road networks and elevation, to predict future changes using the 

Modules of Land Use Change Evaluation. This approach successfully estimated that the urban 

area of Lahore will increase by 23.15% by 2040. 

In conclusion, remote sensing offers a plethora of powerful and informative data sources 

for CD. Each technology, from the detailed topographic data of LiDAR to the all-weather 

capabilities of SAR, brings its own strengths and weaknesses. Hyper-spectral data excels in 

detecting changes in specific objects but can be challenging to work with due to data 

redundancy and computing costs, while multispectral data is versatile and user-friendly but may 

fall short in spectral resolution or be affected by atmospheric conditions. SAR data is 

advantageous for its ability to operate day and night but is susceptible to noise. Similarly, 3D 

data allows for precise measurements and clear CD but is currently only useful on a local scale 

such in urban space or terrain based CDs. Lastly, heterogeneous data holds significant potential 

as computing power increases and machine learning advances, but practical application can be 

difficult due to variations in data sources and the need for extensive optimization. 

https://www.zotero.org/google-docs/?vQXKcd
https://www.zotero.org/google-docs/?vQXKcd
https://www.zotero.org/google-docs/?vQXKcd
https://www.zotero.org/google-docs/?GJWLZr
https://www.zotero.org/google-docs/?sGWKPh
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2.2.1. Past and Current Datasets  

Numerous CD datasets have been published and are being operated. These datasets are usually 

products of various institutions seeking to uncover changes using satellite data. They are not 

only results of previously stated methods and data, but also represent collective effort and 

progress in the field. These datasets differ from other RS datasets such as Corine Land Cover 

or Dynamic World by focusing on the change of certain phenomena or type. This focus adds a 

different dimension of information, as it shows how the Earth's surface has changed over time. 

Land Cover Flows is a dataset published by the European Environment Agency (EEA) 

in 2020. It follows the main drivers of change across 38 EEA member states and the United 

Kingdom. The currently downloadable dataset observed changes between the years 2000 and 

2018. It is derived from Corine Land Cover and interprets 1892 possible one-to-one changes 

between 44 different Corine Land Cover classes. The dataset observes changes like urban 

expansion, deforestation, and reforestation through 9 main classes of change and more 

subclasses. It is the most comprehensive dataset of change ever created in Europe (URL 3). 

The United States Geological Survey (USGS) counterpart to the European effort is Land 

Change Monitoring, Assessment, and Projection (LCMAP). This project provides several types 

of change data in numerous product categories, separated into grids over all contiguous United 

States between the years 1985 to 2021. Datasets are downloadable from USGS and include 

several CD products, such as: 

● Annual Land Cover Change: a synthesis product derived from the primary land cover. 

● Time of Spectral Change: identifies the temporal origin of the changes defined as 

"breaks" where spectral observations have diverged from model prediction. 

● Change Magnitude: provides information on the spectral strength or intensity of the 

time series model "break." 

● Time Since Last Change: represents the time, in days, from either the product 

publication or the last "break." The time series only considers the first change of the 

https://www.zotero.org/google-docs/?wodDdt
https://www.zotero.org/google-docs/?wodDdt
https://www.zotero.org/google-docs/?wodDdt
https://www.zotero.org/google-docs/?wodDdt
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year for the whole year, so if there are more changes within a year, a new change will 

be recorded in the next year. 

The project uses Landsat collection data and U.S. Analysis Ready Data for classification 

using a boosted decision tree classifier and time series modeling to monitor changes. The 

problem with LCMAP is that it is path-dependent with the Landsat 1 data, making innovation 

harder. Using multiple collections is discouraged, and using new Landsat observations may 

result in changes to the model. (USGS 2022) 

Land use is not the only type of CD dataset. Other notable focused datasets focus on the 

state of vegetation. Notably, the Global Mangrove watch observes the net change in the 

mangrove area to help conservation (URL 4). Another vegetation focused change dataset is the 

Global Forest Change made by the Global Land Analysis and Discovery (GLAD) project. 

GLAD uses Landsat data and time series to produce a series of binary maps depicting changes 

in forest cover between the years 2000 and 2023. The maps are able to show the results of 

disasters' impacts on forests, just like in the case of the 2005 extratropical cyclone Gudrun that 

decimated the southern Swedish temperate forest. Deforestation in the Brazilian Amazon is 

also a highlight of this change dataset, as it is one of the most aggressively deforested places 

on Earth (Hansen et al. 2013).  

Global Forest Watch (GFW) is a global institution that operates in numerous countries. 

It functions as an initiative dedicated to near real-time monitoring of the world's forests to 

promote conservation and mitigate deforestation. GFW provides openly accessible maps with 

data visualizations for public use with the aim of supporting conservation and mitigating 

deforestation.. Users can further contribute by reviewing observed forest cover changes and 

uploading ground-truth data, such as photographs or areas, through a mobile application called 

the "Forest Watcher". These changes can be interpreted through online web maps powered by 

Planet and Google Earth Engine or accessed on the Data Hub, which offers all data as open 

access. 

Currently, GFW incorporates over 170 diverse datasets from various sources and scales. 

These dataset sources range from local forestry ministries to other relevant institutions. 

However, near-real-time monitoring is facilitated by dedicated alert services, such as the 

https://www.zotero.org/google-docs/?Ic8Nl7
https://www.zotero.org/google-docs/?Ic8Nl7
https://www.zotero.org/google-docs/?Ic8Nl7
https://www.zotero.org/google-docs/?Ic8Nl7
https://www.zotero.org/google-docs/?L2t34U
https://www.zotero.org/google-docs/?jAlqFH
https://www.zotero.org/google-docs/?jAlqFH
https://www.zotero.org/google-docs/?jAlqFH
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RADD (Radar for Detecting Deforestation) a sentinel-1 based system and GLAD alert systems, 

which will be further elaborated upon later in this chapter. Additionally, previously mentioned 

Global Forest Change is also incorporated in the web map (URL 5). 

Apart from land use change, there are not many change datasets focused on 

anthropogenic phenomena. An exception is the Atlas of Urban Expansion, which performed 

post-classification analysis using Landsat 5 through 8 on various cities across the globe. It 

tracked built-up area and road changes between 1990 and 2014 by sets of "from-to" maps for 

each city. The data is publicly available, but unfortunately, the project data ends in 2013. The 

project was able to detect the significant changes occurring in expanding cities in developing 

countries. (URL 6) 

Most of the previous examples are based on supra-yearly or even temporally isolated 

datasets. Terra-I is not one of them. This project tracks vegetation changes resulting from 

human activities in near real-time, providing updates every 16 days across the Latin America. 

The system operates on the premise that natural vegetation follows a predictable pattern of 

changes, which can be monitored using MODIS data. A neural network is trained to understand 

the normal pattern of changes in vegetation greenness in relation to factors such as rainfall and 

elevation. NDVI is used to calculate a baseline, and deviations from this baseline are identified 

as changes. Areas that do not follow the expected pattern, as predicted by the model considering 

rainfall and seasonality, are labeled as undergoing change. (Reymondin et al. 2012) 

Another notable sub-year CD product developed by the Global Land Analysis and 

Discovery (GLAD) project is the DIST-ALERT: Near-Real Time Disturbance Alert. This 

product provides near real-time alerts of potential disturbances, measured as percentage loss in 

vegetation cover. Similar to Terra-I, the DIST-ALERT algorithm establishes a baseline for 

normal vegetation activity using data from the past three years within a 31-day window. 

Disturbances are identified by a secondary algorithm that evaluates spectral distance to filter 

out non-forest changes, such as variations in sun angle. This process utilizes Harmonized 

Sentinel-2 data and Landsat data. With a multiday resolution, the DIST-ALERT system has 

been operational since 2022 and forms part of the Observational Products for End-Users from 

Remote Sensing Analysis project. (Hansen, Pickens, Song 2024).  

https://www.zotero.org/google-docs/?EwhHS2
https://www.zotero.org/google-docs/?EwhHS2
https://www.zotero.org/google-docs/?EwhHS2
https://www.zotero.org/google-docs/?l49dTY
https://www.zotero.org/google-docs/?l49dTY
https://www.zotero.org/google-docs/?l49dTY
https://www.zotero.org/google-docs/?G79Zgk
https://www.zotero.org/google-docs/?G79Zgk
https://www.zotero.org/google-docs/?G79Zgk
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3. Change Detection for Detecting Changes Related to Armed 

Conflicts 

Numerous case studies and reviews have examined various propositions and methodologies to 

implement the most appropriate methods for monitoring war-related damage in urban areas. 

Monitoring in this case is critical due to the devastating impact of war on civilian infrastructure, 

cultural heritage, and public safety. Accurate and timely damage assessment is essential for 

humanitarian aid delivery, post-conflict reconstruction planning, and investigations of potential 

war crimes. According to the United Nations (UN) (2023), approximately 114 million people 

are displaced by ongoing wars. An additional 33,000 civilians are estimated to have been killed 

in conflicts in 2023 alone. Cities, being the centers of society, often become centers of conflict. 

For example, the Civil War in Syria resulted in 33,500 damaged structures in Aleppo alone, 

which together with other damages to infrastructure in the city between 2016–2018 would cost 

8 billion dollars to repair according to the World Bank's Syria Damage Assessment of Selected 

Cities: Aleppo, Hama, Idlip (2017). 

 Currently, there are only a few public monitoring missions or organizations utilizing 

RS for monitoring war damage. One of them being the UNOSAT which is part of the United 

Nations Institute for Training and and Research (UNITAR). UNOSAT offers Rapid Mapping 

Service which allows for governments and non-governmental organizations to access maps and 

analysis outputs regarding natural and humanitarian disasters. Recent outputs regarding the 

Gaza conflict are created through manual visual analysis using very high spatial resolution data 

like Maxar’s WorldView-3 with 30 cm (panchromatic band) to asses building damage, 

additionally NDVI differencing has also been used for detecting changes in vegetation using 

the WorldView-2 data with 50 cm spatial resolution (panchromatic band). (URL 7) 

Andrew Marx (2016) introduced a method for monitoring urban devastation in Aleppo 

and Damascus during the civil war. The study uses a methodology predicated on band 

normalization. The aim was to determine which changes in reflectance would explain the 

devastation of the built-up area, using Landsat 8 and 9. The central hypothesis is to normalize 

the images using invariant features, which will then allow the analysis to compare these images 

over time and find the disturbances that have taken place. "This approach creates an expected 

value for every pixel of these two cities at every date of the year, based on that pixel's historical 

https://www.zotero.org/google-docs/?oCPES3
https://www.zotero.org/google-docs/?nq2HDO
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baseline. The signal for newly destroyed buildings is detected when their post-destruction pixel 

value is significantly higher than their expected value for that date" (Marx 2016). This method 

has its shortcomings, one of them being the noise of the baseline images, which is unaccounted 

for in the transformed bands, which makes it only marginally more accurate than the other 

bands. The overall accuracy of the composite band was 74 % when evaluated against the ground 

truth pixels. 

Fakhri and Gkanatsios (2021) used Support Vector Machine post-classification and 

optical and radar data combination for detection in Mosul City (Syria) and achieved an overall 

accuracy of 94%. Researchers in this study used Sentinel-1 and -2 data, combining both to 

accurately classify urban areas and then compare pre- and post-damage in the post-

classification analysis (Fakhri, Gkanatsios 2021). Despite the satisfactory results, the study can 

be faulted in the use-case of only one observed area, which makes it only proven to work at 

specific imagery and region. 

Mueller et al. (2021) focused on Convolutional Neural Network (CNN) techniques 

trained using human-labeled destruction instances from Syrian cities. Google Earth / Maxar 

satellite imagery, gridded into a 64 by 64 pixel matrix, served as the dataset. Eventually, 

random-forest algorithms were implemented as the second stage of the model to increase its 

accuracy. This model proved to have a 90% Overall accuracy (Mueller et al. 2021). This result 

is only relative; the model may perform worse in reality. One of the limitations of this paper 

was the use of Google Earth imagery, which is compiled from many different datasets that 

could influence the results. 

Overall, each presented study has its advantages and disadvantages, but monitoring 

needs a stable and robust method that will be universal. There are many different aspects of 

variables that may affect the spectral characteristics of different locations. Therefore, the CD 

between classifications would be the most effective method to be used universally. 

Additionally, as machine learning techniques evolve at a rapid pace, convolutional neural 

networks (CNNs) stand out as holding the most potential, albeit demanding advanced 

computing and graphics power for optimal performance. 



 

 

31 

Aside from the UNOSAT monitoring efforts, the conflicts in Ukraine and Palestine have 

inspired other monitoring initiatives. Notably, O. Ballinger (2023) implemented the Pixel-Wise 

T-test to detect changes using Sentinel-1 imagery. The analysis focused on the Gaza Strip and 

its urban areas to create probability maps indicating damage likelihood. The algorithm has been 

tested and trialed on the 2020 Beirut explosion. However, in the case of Gaza Strip, the 

algorithm achieved around 80% overall accuracy. The results, however, did not come without 

their caveats. Due to the nature of the algorithm, older changes were more likely to be detected, 

and non-war-related changes, such as dynamic tent cities, were detected as damage. Results are 

available through a Google Earth Engine web app for the public to view, along with geolocated 

photographs and videos pinpointed on the map. (URL 7) 

A similar approach is utilized by C. Sher and J. V. D. Hoyek. In their assessments, SAR 

data was also utilized in Sentinel-1 imagery. Their approach is based on the interferometric 

synthetic aperture radar workflow. Furthermore, their method relies on tracking changes in 

coherence, an indicator of structural stability and presence, across many years of data. Likely 

damaged areas are then post-processed to remove false positives. This approach also excludes 

non-urban areas and is cross-referenced to individual buildings, providing sub-weekly reports. 

Although these assessments had tremendous success in media reports, the official methodology 

or approach has not yet been published, and hence accuracy has not yet been determined. 

(ESCWA 2024) 

 

4. IR-MAD  

In relation to the previous chapters, IR-MAD can be considered a transformation-based CD 

method that produces binary maps, which are pixel-oriented, calculated from multispectral or 

hyperspectral data. With that categorization IR-MAD is on the robust side of methods, reducing 

redundancy and obtaining new information derived from spectral information of the bands.  

Before the creation of IR-MAD, only multivariate alteration detection (MAD) was 

available, A. A. Nielsen developed it in 1997 to showcase a new robust method to compare the 

traditional methods at the time such as PCA. MAD transformation answered the issue of 

differencing images for CD, as simply differencing images can result in changes due to varying 
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radiometric conditions rather than actual changes. By being invariant to linear scaling, MAD is 

insensitive to differences in gain settings in measuring devices.(Nielsen, Conradsen, Simpson 

1998). MAD uses linear transformation and canonical correlation to incorporate change 

information by subtracting the canonical variates derived from the linear transformation 

administered through the Canonical correlation analysis (CCA) (Nielsen, Conradsen, Simpson 

1998). However, MAD itself was due to its straightforwardness susceptible to outliers which 

may show false changes due to atmospheric differences or noise. The incorporation of iterative 

reweighting (IR-MAD) aims to consider outliers and thus mitigate the impact of noise and other 

spurious effects by improving the no-change background by giving higher weights to the 

observations of no-change in the Canonical Correlation statistics. (Nielsen 2005) 

IR-MAD has been used in numerous studies as a supplementary method to synthesize 

with other methods in order to obtain the desired results. For example, IR-MAD was employed 

to depict information about urban sprawl in Wuhan City, China, and was subsequently 

integrated with other methods to enhance the accuracy of urban CD. IR-MAD was specifically 

chosen because of its ability to handle noise and diverse urban spectral characteristics and 

compared to other methods such is CVA, whilst detecting changes with the use of pair of 

GaoFen-2 VHR multispectral imagery (Luo, Liu, Wu, Guo 2018). In another study regarding 

urban sprawl in Germany, IR-MAD was used to supplement the classification of changes in 

land use in a time series by finding no-change areas between Surface Reflance Landsat Imagery 

(Ghazaryan et al. 2021). 

Furthermore, IR-MAD has been tested on non-urban settings as well, notably the 

deforestation. La Barreda-Bautista et al. (2011) compared IR-MAD with post-classification 

techniques to detect changes in land use, deforestation and regeneration of forests on Landsat 

imagery. IR-MAD showed promising results in detecting changes and mitigating false changes 

as opposed to conventional post-classification methods. In a similar study IR-MAD has been 

utilized together with post-classification analysis to find binary changes in an Indonesian 

rainforest in order to find more subtle classes for classification which would not be normally 

detected by general land cover classes. (Panuju, Paull, Trisasongko 2019) 

https://www.zotero.org/google-docs/?wT5zEO
https://www.zotero.org/google-docs/?wT5zEO
https://www.zotero.org/google-docs/?6PqHc4
https://www.zotero.org/google-docs/?6PqHc4
https://www.zotero.org/google-docs/?F6BY6K
https://www.zotero.org/google-docs/?VH3eoY
https://www.zotero.org/google-docs/?EkSqro
https://www.zotero.org/google-docs/?pX8rPD
https://www.zotero.org/google-docs/?YtaXXC
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4.1. MAD and Canonical Correlation Analysis procedure 

The Multivariate Alteration Detection (MAD) procedure, developed in 1997 by Nielsen and 

Conradsen, utilizes Canonical Correlation Analysis (CCA), a classical statistical analysis, to 

enhance the detection of changes across different images. The essence of using CCA is to 

maximize the similarity between the linear combinations U and V of the two original image 

sets X and Y. This process ensures that genuine changes become more apparent in the 

difference image. The MAD components themselves are the scalar differences of the 

transformed image bands of U and V, encapsulating the change information in a single image. 

Due to the transformation of both images MAD does not strictly demand pre-processing of the 

images as the procedure alone can be used for normalization. 

 

(1) 

Before the detection, let's consider two N-band optical/infrared images (denoted as X 

and Y) of the same scene acquired at different times, between which ground reflectance changes 

have occurred at some locations but not everywhere. Each pixel is multidimensional, having 

more than one band (1 to N), so we can consider each pixel as a random vector (pixel vector) 

just like in depiction (1). For a CD set of bandwise differences, it would be possible to create a 

change vector with low absolute values representing non-change values and high values 

demonstrating change. However, as Nielson (1998) suggests, simple differencing only makes 

sense if the imagery is normalized, on the same scale, and calibrated over time. Additionally, 

subtracting multiple bands at once is difficult to visualize when there are more than three bands. 

To address this issue and emphasize changes across various spectral bands, a linear 

transformation that maximizes a measure of change, such as variance, can be applied. Nielson 

(1998) describes a parameter-rich measure of change that allows for different coefficients to 

multiply and combine more than the spectral bands in the way that the change information is 

invariant to linear scaling. This measure is depicted in the linear combinations of U and V in 

equation 2. Here, all intensities across all N bands in the first image (X) and the second image 
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(Y) are combined and multiplied by vector coefficients for each image and band so that the 

correlation between the two combinations U and V, defined as: 

 

(2) 

The symbol   represents the transpose of the column vector , transforming it into a 

row vector . Transposition allows the coefficient vectors to multiply with 

the pixel vectors. Once these linear combinations are formed, the change information is 

captured in their scalar difference  where high absolute values are maximum change 

areas and values close to zero can be considered no-change areas. Consequently, this change 

information is consolidated into single images, rather than being dispersed among all  bands. 

The vector coefficients  and  still have to be determined in an appropriate manner. Nielsen 

(1998) suggests applying the CCA. This method finds a linear combination of U and a separate 

linear combination V, that maximizes the correlation (3).  

(3) 

The resulting maximized correlation between U and V is called the Canonical 

Correlation. The coefficients are computed so the canonical correlation is maximized. However 

any arbitrary multiple of U and V would have the same correlation since the multiples would 

cancel out in both the numerator and the denominator of the pairwise correlation coefficient 

formula (3), therefore, a restraint must be applied and a convenient one is to request unit 

variance for U and V.  

 

(4) 

With the constraint (4) applied to the CCA,  the covariance of U and V can be directly 

maximized. The coefficients are then found by solving each eigenvalue problem for each pair 
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of bands. Solution of the eigenvalue problems generates new multiband images and the 

components of which are called the Canonical variates (CVs). The CVs are ordered by their 

pairwise correlation rather than by wavelength, therefore, the pair of  and  is the most 

correlated pair and the next pair of  and  is the next most correlated pair, with the added 

constraint that  and  pair is uncorrelated (orthogonal) to  and . This process continues 

such that each subsequent pair  and   is the most correlated pair subject to being uncorrelated 

with all previous pairs.  

Finally MAD variates are introduced as the difference between transformed pairs (eg. 

x). Where  equals the order of the CVs and the MAD based on the correlation and the equals 

the number of pairs/bands. The MAD variates are also ordered by correlation, making the first 

variate showing maximum similarity and minimum change and the second maximum similarity 

while being uncorrelated to the first MAD variate. In this way, MAD varieties are essentially 

uncorrelated difference images where each new image shows maximum difference (change) 

under the constraint of being uncorrelated with the previous ones. MAD values nearing zero 

are expected to show minimal or no change, whereas higher values are associated with higher 

chance of the fact that change has occurred.  

4.2. Iteratively Reweighted Multivariate Alteration Detection (IR-MAD)   

MAD variates are susceptible to detecting uninteresting changes due to noise or arbitrary 

spurious differences. The iteratively reweighted extension to MAD was developed by Nielsen 

(2005) to establish an increasingly accurate background of no change against which to detect 

actual change, thereby mitigating the effect of uninteresting changes. This is achieved by 

assigning higher weights to observations of no change in the calculation of the coefficients in 

canonical correlation analysis (CCA). 

(5) 

  Assuming no changes in ground reflectance, the differences between the  CVs would 

be due to random noise and fluctuations, which are normally distributed. As a result, the MAD 

variates, being (orthogonal) uncorrelated, should follow a zero-mean normal distribution due 

https://www.zotero.org/google-docs/?gUlyWF
https://www.zotero.org/google-docs/?gUlyWF
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to the Central Limit Theorem. Hence, under that assumption, the sum of squared standardized 

MAD variates represented by Z in equation (5) should approximately follow χ² distribution 

with N degrees of freedom. Therefore, with the standardization, Z can be interpreted as the 

likelihood ratio test statistic for change where null hypothesis equals “no change” and 

alternative hypothesis “change”. Likelihood ratio test statistic is then used to derive the chi-

square distributed test statistics. Consequently,  p values for an observation z from the χ² 

distribution with N degrees of freedom are calculated as shown in equation (6). Where z is the 

observation; the is the cumulative distribution function and (1 -) defines the right tail 

test which is synonymous with likelihood ratio test.  

 

(6) 

With calculated p values can label observations based on their placement in the distribution. In 

the context of IR-MAD the p value represents the probability that the observation (z) would 

occur if the null hypothesis of no change would be true . Thus small p values are associated 

with change as they bear lower probability of following the  χ² distribution. IR-MAD uses the 

p value itself to weigh each pixel before re-sampling to determine the means and covariances 

for the next iteration. Larger weights are given to the pixels which have higher p values and 

smaller weights to pixels with small p values, thus gradually reducing the influence of the 

change observation in the MAD transformation, and therefore establishing a better “no-change” 

background. The process repeats until an optimal no-change background is established or based 

on the user-chosen number of iterations. With each iteration there will be higher canonical 

correlations and therefore higher maximization of variance of the difference images. (Canty 

2019, p. 390) 

 

 

 

https://www.zotero.org/google-docs/?sueJc2
https://www.zotero.org/google-docs/?sueJc2
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Figure 1: Example of  χ² distribution with 5 degrees of freedom with the Right Tail test with 

significance Level of 0.05 

 

Source: Author’s work 

Once the “no-change” background is achieved, the final sum of squared standardized 

MAD variates (Z) can be used for thresholding to create a binary image using a right-tail test. 

In Figure (x), we see an example of the right-tail test of a χ² distribution with 5 degrees of 

freedom. The significance level (alpha) is set to find a critical value at which the null hypothesis 

of “no change” is rejected in favor of the alternative hypothesis of “change.” The alpha is set 

at 0.05, meaning there is a 5% risk that a pixel will be classified as a change even though it is 

actually no change. P values are compared to the alpha, and if they are equal to or smaller than 

the alpha, the null hypothesis is rejected. Binary layers derived from the critical value can be 

created to show the “changes”. 
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5. Study Area, Data and Software 

This chapter outlines the tools, software, and study area that enabled the CD analysis. Firstly, 

a study area was carefully selected to test the method. This chapter then details the 

characteristics of the Sentinel-2 and Planetscope satellites, which provided the data for the 

analysis. Lastly, it highlights the pivotal tools used in the analysis: the Google Earth Engine 

(GEE) Application Programing Interface (API) and the Visual Studio Code. These tools were 

integral in processing the satellite data and performing the necessary computations for the CD 

analysis. 

5.1. Study Area: Gaza City urban area  

Gaza City and the entire Gaza Strip are among the most recent areas affected by warfare. The 

Gaza Strip has an elongated shape and is densely built up, as shown in Map-1. Unlike Israeli 

settlements, Gaza's land cover is heavily urbanized. For this study, Gaza City and its 

surrounding urban area were selected for analysis, as Gaza City became the epicenter following 

the attack by Palestinian armed groups on nearby Israeli towns and civilians. In response, the 

Israeli military declared a "state of war alert" and moved its troops into Gaza, resulting in 

widespread destruction. The conflict is estimated to have caused 39 145 fatalities, displaced 1.9 

million people internally, and damaged 60% of residential buildings as of July 24, 2024 

according to the UN (URL 8). The total area of interest is roughly 110 km². Its compact size, 

compared to the entire Gaza Strip, allowed for a more thorough analysis and accuracy 

assessment representative of the condition of the whole Gaza Strip. The area of interest (AOI) 

is defined by the administrative boundaries of Beir Hanun, Beit Lahiya, Jabalya, Umm an 

Naset, and Gaza, accessed through the Humanitarian Data Exchange (URL 9). 
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Figure 2: Location of Gaza Strip and Study Area 

 

Source: Author’s work 2024 

Data sources: OpenStreetMap contributors, Natural Earth and Sentinel-2 10-m Land 

Use/LandCover Time Series Downloader 
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5.2. Data 

In this research, Sentinel-2 multispectral imagery and PlanetScope optical imagery were used 

for analysis and validation. The final output was derived solely from Sentinel-2 multispectral 

imagery, utilizing most of its bands capturing a range of wavelengths that facilitate IR-MAD 

analysis. PlanetScope, with its 3-5 meter resolution, served as a suitable candidate for validating 

the IR-MAD CD due to Sentinel-2's lower resolution of 10-20 meters. 

5.2.1. Sentinel-2 

Sentinel satellites, operated by the European Space Agency (ESA) as part of the Copernicus 

programme, provide continuous Earth observation data. Sentinel-2, having the highest 

resolution among publicly accessible satellite data, was selected as the primary data source for 

the CD in part due to its analysis availability.  

The Sentinel-2 mission consists of two identical satellites (Sentinel-2A and Sentinel-

2B) in polar orbits, following the same sun-synchronous path 180° apart. Before the launch of 

the second Sentinel-2B satellite in 2017, the sole Sentinel-2A satellite was capable of achieving 

global coverage in 10 days. However, the addition of a 180° satellite helped reduce this range 

to approximately 5 days. The mean orbital altitude is 786 km, with an inclination of 98.62°. 

This sun-synchronous orbit ensures consistent illumination conditions for image acquisition, 

allowing the satellites to pass over specific locations on Earth at the same local time (URL 2). 

Both Sentinel satellites carry the MultiSpectral Instrument (MSI), which provides the 13 bands 

of the Sentinel-2 product in the range of 0.443 to 2.19 micrometers and a focal range of 290 

km. The complete range of bands and their central wavelengths can be seen in Table 4. 
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Table 4: Sentinel-2 mission parameters 

Sentinel-2 Bands Spatial Sample Distance (m) Central wavelength (nm) 

1 - Coastal aerosol 60 443 

2 - Blue 10 490 

3 - Green 10 560 

4 - Red 10 665 

5 - Vegetation red edge 20 705 

6 - Vegetation red edge 20 740 

7 - Vegetation red edge 20 783 

8 - NIR 10 842 

8a - Vegetation red edge 20 865 

9 - Water vapour 60 945 

10 - SWIR - Cirrus 60 1380 

11 - SWIR 20 1610 

12 - SWIR 20 2190 

Source: (ESA Standard Document: Sentinel-2 User Handbook 2015) 

5.2.2. PlanetScope 

The PlanetScope constellation operated by Planet Labs consists of over 130 Dove satellites in 

sun-synchronous orbits at altitudes between 475 and 525 km. The distributed nature of this 

constellation allows for near-daily revisits of any location on Earth, with equator crossing times 

between 9:30 and 11:30 am local solar time. The orbit inclination of 98° ensures consistent 

illumination for image acquisition. 

Each Dove satellite carries a multispectral imager, capturing imagery in four standard 

bands (Blue, Green, Red, and Near-Infrared), with some capturing additional bands (Green I, 

Red Edge, Yellow, and Coastal Blue). The 3-5 meter spatial resolution, combined with the high 

temporal resolution (almost daily), makes PlanetScope data ideal for monitoring rapid changes 

on Earth's surface. In 2021, Planet Labs refreshed the original Dove satellites with a next-

generation model, diversifying the PlanetScope product line. Currently, three main categories 

of PlanetScope data are available: Visual Scene (RGB), Analytic (8 band), and Basic (4 band), 

each with an orthorectified option.  

While PlanetScope's spectral range is narrower than Sentinel-2's 13 bands, its finer 

spatial resolution and daily revisit frequency provide a unique advantage for applications 

https://www.zotero.org/google-docs/?rrs0fr
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requiring high temporal and spatial resolution. Additionally, PlanetScope data is accessible 

through a student program on the Planet Labs website, making it a complementary choice 

alongside Sentinel-2 in this research (URL 10). 

5.2.3. Dynamic world 

The Dynamic World land cover product, developed by Google in collaboration with the World 

Resources Institute, provides near real-time, high-resolution land cover classification. Utilizing 

deep learning models with a highly scalable cloud-based system, it continuously classifies land 

cover into nine distinct categories: water, trees, grass, flooded vegetation, crops, shrubs, and 

scrubs, built, bare, and snow and ice, based on Sentinel-2 satellite imagery. This product offers 

detailed land cover in near-real time, making it possible to mask Sentinel-2 imagery 

corresponding with the same capture date. The Dynamic World data follows the temporal 

resolution of Sentinel-2 imagery, resulting in classification updates every 2-5 days  Brown et 

al. (2022). Figure 3 displays the Dynamic World data for the date corresponding to the pre-war 

change baseline. This data is derived from the same Sentinel-2 image used in this research to 

test the IR-MAD technique. It helps establish the pre-war built-up area mask specific to that 

date. The built-up mask in Figure 3 is quite dominant. However, it groups together different 

types of built up, such as less dense suburban houses, smaller buildings, and dense high-rise 

buildings, into the same class. There is minimal presence of water bodies and natural vegetation 

in the AOI, and bare ground follows the militarized border and coast.  

 

 

 

 

 

 

https://www.zotero.org/google-docs/?S4FKi1
https://www.zotero.org/google-docs/?S4FKi1
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Figure 3: Land use as classified by the Dynamic world on the 27th of September 2023  

 Source: Dynamic World, Author’s work 

 

5.3. Software  

In this research two softwares have been utilized. GEE API together with Visual Studio Code 

have been utilized to undergo the IR-MAD for CD, and ArcGIS Pro has been used for manually 

classifying reference data for validation.  

5.3.1. Google Earth Engine API 

Google Earth Engine (GEE) is a cloud-based platform for geospatial analysis. By using 

Google's computational infrastructure, it lets users access and process vast amounts of satellite 

imagery and geospatial datasets quickly and efficiently, eliminating the need to download and 

store massive datasets locally. Analyses can therefore utilize cloud-based computation, 

mitigating the need for computational power locally. This enables the creation of web hosted 

and continuous services such as Global Forest Change as mentioned in the Change datasets.    
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Sentinel, and MODIS, offering a vast catalog. Users can access different catalogs with products 

from various times. Data can then be analyzed using the GEE API in the GEE code editor, 

accessible via JavaScript in the GEE code editor or an independent Python environment. The 

API functions are equivalent in both environments. JavaScript in the GEE platform is generally 

more intuitive, being integrated with the website's map viewer and visualization tools, while 

the GEE API for Python offers more freedom to incorporate different Python libraries. The 

GEE API was used with the web-hosted platform to access tasks and collect imagery prompted 

from the environment. Outputs were saved into personal projects as assets and later accessed 

via the export path defined at the beginning of the code. Besides cloud computing of the outputs, 

a vast array of functions was used in Canty’s code for implementing the IR-MAD. Additionally, 

the K Means Clustering function from the GEE library was utilized to compare with traditional 

thresholding techniques. 

5.3.2. Visual studio code and Python libraries 

Visual Studio Code, an integrated development environment (IDE), was utilized to process the 

API and other libraries. Although Google Colab is cloud-based and more intertwined with 

Google infrastructure, Visual Studio Code allows access to locally stored data. This facilitated 

the use of other libraries for visualizing, exporting and calculating statistics for imagery such 

as scipy or rasterio and easier workflow with Arcgis Pro 

Another notable library used for working with the GEE API in Python is geemap, a package 

for interactive geospatial analysis and visualization with GEE. In working with IR-MAD, 

geemap was primarily used for visualization, providing capabilities similar to the web-hosted 

GEE platform, such as image stretching and band RGB compositing. Additionally, the 

geemap's exporting function was heavily utilized, enabling the local export of GEE imagery at 

a chosen scale to a local machine.  
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6. Methodology 

Methodology of this research is derived directly from the research objectives, which aims to 

fulfill with the completing of 4 crucial steps: 

1) Preliminary processes 

2) IR-MAD execution and thresholding  

3) Accuracy assessment 

4) Web map development  

Together, these steps make up the methodology of the CD analysis. The ultimate goal is to 

derive the most accurate CD of changes occurring in Gaza City between the selected dates, that 

can be later incorporated into the web application and for the whole Gaza Strip.  

6.1. Preliminary processes 

6.1.1. IR-MAD implementation and environment selection  

The IR-MAD algorithm has been developed for various environments, including Matlab, 

ENVI, Google Earth Engine (GEE), Python, and even in the ESA Charter Mapper. The most 

recent implementation combines Python and Google Earth Engine by utilizing the GEE API 

with Python in an IDE of choice. This approach allows the computation of the algorithm to be 

done remotely while keeping the code stored locally. The GEE API can be accessed by the 

Python IDE through the `import ee` command and facilitated with `ee.Authenticate()` and 

`ee.Initialize(project='ee-project_name')`. Once authorization is complete, users can utilize the 

GEE API with the same functions available in the GEE website's code editor, although without 

the embedded visualization tools. 

 This implementation, along with other remote sensing methods utilizing Python and the 

GEE API, is utilized in the "Image Analysis, Classification, and Change Detection in Remote 

Sensing, with Algorithms for Python'' by Canty (2019). Tutorials based on the book’s CD 

chapter were later uploaded to the GEE community (URL 11) and are available as open access 
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with downloadable Jupyter Notebooks. For this research, the "Change Detection in Google 

Earth Engine - The MAD Transformation (Part 2)"(URL 12) tutorial and its Jupyter notebook 

was downloaded through available Google Colab and functions programed and described by 

Canty were processed into separate module so the function run_imad and other instrumental 

functions can be simply called into the Jupyter Notebook. The functions that form the inner 

workings of the IR-MAD analysis, as described in Chapter 4, are included in Canty’s tutorial 

and served as the foundation upon which the rest of the code was reprogrammed to suit the 

specific needs of this research. That included, apply_mask, export_image  and collect. These 

functions were relatively simple and provided means of manipulating the data.  

6.1.2. Obtaining imagery  

For the IR-MAD two multi-band images of the same scene acquired at different times, between 

which ground reflectance changes have occurred at some locations but not everywhere are 

required. What is not required, is the Surface Reflectance (SR) correction, as IR-MAD does not 

require so due to its transformation properties. However, for purposes of the research SR will 

be used to further mitigate the effects of the atmosphere on the imagery. Therefore, Sentinel-2 

Level 2A images were used for the analysis. Location in question was Gaza city and its 

surrounding.  Due to the compact size of the AOI and urban density, dates with no cloud cover 

were selected for the IR-MAD analysis instead of computing cloud masking, finding these dates 

was done by visual check and with the use of SCl, QA and metadata of the images. Changes 

resulted in clouds and their shadow would significantly affect the results, overshadowing the 

changes on the ground, creating false changes. Firstly, date for detecting changes was collected 

to compare to the 27th of September as the last date of Sentinel-2s imagery before the conflict 

that had minimal cloud cover to temper with the analysis, essentially, it's the closest date to 7th 

of October when the Israeli-Hamas crisis began. This date was collected to be 26th of 

November, being a cloudless image which coincided with Planetscope data which were later 

on interpreted for creation of assessment points to test the accuracy.  

6.1.3. Pre-processing 

Similar to the O. Bellinger’s approach (URL 7) of monitoring changes in the Gaza Strip, a 

choice was made to concentrate exclusively on alterations within the urban area, excluding the 
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surrounding shrubland and water bodies. Accordingly, the Dynamic World land cover product 

was accessed via the Google Earth Engine (GEE) API to mask out all non-urban areas. Land 

cover data generated on September 27th (2023) was selected to delineate the built-up area 

within the study region.  

 The apply_mask function was programmed to mask Sentinel-2 images prior to 

executing the run_imad function. The apply_mask function takes a Sentinel-2 image and a 

binary mask image as inputs, producing a Sentinel-2 image constrained to the masked extent, 

masking everything but what class is used to make the mask. Mask was extracted from the 

Dynamic World database via the eq. function which selected the most likely class name of 

'built' for the mask. The run_imad function inputs a Sentinel-2 image and binary mask image, 

resulting in an image with the extent of the mask as depicted in Figure 4.  

Figure 4: Assessment points and the built mask   

Source: Dynamic world, Sentinel-2 and Author’s work 
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6.2. IR-MAD execution and thresholding 

To determine the most accurate binary change maps, different band combinations and 

thresholds were compared. Initially, downsampled 10-m band combinations were evaluated 

together, followed by 20-m layers. Within the 20-m and 10-m layers, visible and infrared bands 

– B2, B3, B4, B8, B11, B12 were utilized for the analysis and comparison.The spectral bands 

with the highest resolution as well as the SWIR bands were selected. The coastal aerosol band 

(B1), which is used to monitor chlorophyll concentrations in water as well as phytoplankton 

and algal blooms or for atmospheric corrections and unsuitable for urban non-vegetation CD 

analyses. As well as the Red Edge bands (B5, B6, B7 and B8A), which are more suitable for 

looking for changes in vegetation, forest ecosystems or agriculture. The choice allowed a trade-

off between spectral information and the computational cost that would be added with 

additional bands. The objective was to identify the most accurate binary layer that encompassed 

changes between September 27 and November 26, 2023 and whether 10-m sampling for 

calculating covariances in the IR-MAD is more accurate then 20-m.  

Canty's code (2024) was utilized to achieve this, notably, the run_irmad function which 

inputs the selected images for analysis together with a list containing bands to undergo the 

analysis. Canty’s code allows for scaling within the function for covariance and MAD, this 

scale sets at what scales are the covariance matrices, the scale is later passed into the run_irmad 

function for execution of the main function. The tested bands were visible infrared bands, but 

any combination of bands could be used. Once the function was initialized, the GEE platform 

received a task via the export path to the GEE project, which was specified as a variable in the 

code. This task can be monitored in the task manager, where it generates an N-band difference 

layer and an image of squared standardized MAD variates, this image is appended as the last 

band following the MAD variates. The resulting layer was then accessed via the export path in 

the code, and the new MAD variates were selected along with a new image (im_z) that selected 

the Z-image using the .select tool. The Z is the sum of square standardized MAD variates and 

is expected to follow the chi-square distribution. Once im_z was obtained, the degrees of 

freedom were calculated by subtracting one from the total number of bands. With the degrees 

of freedom known, level of significance was used to test for change.  
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One of the disadvantages of many transformation and algebraic methods such as IR-

MAD, PCA or CVA is often the need to distinguish changes from no changes manually or with 

other means such as thresholding, which is a costly task that often relies on vast amounts of 

time spent trying out different optimal thresholds(Lu et al. 2004). However, various algorithms 

have been developed for thresholding, but the amount of methods is vastly different for various 

tasks. Therefore, simple effective and thresholding methods often come from universal 

techniques such as the unsupervised change classification suggested by Canty (2019). In his 

example the unsupervised algorithm used gaussian cluster changes for aggregating the 

information to various classes. However, in the MAD tutorial (2024) K-means tutorial was 

used. Due to the availability from the tutorial K-means clustering was used to find the binary 

layers. Additionally, IR-MAD allows for thresholding based on its statistical properties. This 

approach is derived from the iterative reweighting procedure of the IR-MAD and from Canty's 

chapter on IR-MAD in his book where one of the example outputs had the significance level 

set at 0.0001 for individual variates in order to highlight changes. However, in this research a 

binary layer is a desired result and therefore the threshold will be executed over the final sum 

of squared standardized variates (Figure 5), and in order to be rigorous the level of significance 

was set at 0.00005 to assure a robust binary layer.  
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Figure 5:   Sum of squared standardized MAD variates stretched at 2 deviations 

 

Source: Author’s work  

 In the context of this approach, errors can occur in two main forms: Type I and Type 

II errors. Type I Error (False Positive) occurs when the null hypothesis (no change) is 

incorrectly rejected, leading to the labeling of pixels as showing change where there is none. 

Conversely, Type II Error (False Negative) happens when the null hypothesis (no change) is 

incorrectly accepted, resulting in the failure to label pixels as changed where a change actually 

exists. The chosen significance level of 0.00005 means that any p-value in the image less or 

equal 0.00005 is considered statistically significant, indicating a change. The p-value image 

represents the probability of observing the given data (or something more extreme) under the 

null hypothesis of no change, and is the same image that has been used to determine the iterative 
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reweighting in IR-MAD. Therefore, a lower p-value suggests stronger evidence against the null 

hypothesis. By setting the significance level at 0.00005, a stringent criterion is set: only changes 

that are highly unlikely to have occurred by chance (less than 0.005% probability) are 

distinguished. Essentially such a strict level should mitigate false positives which in context of 

war-related changes monitoring seemed more appropriate. This is done by using the 

‘noChangeMask’ image that has been demonstrated in Canty's tutorial (2024). Using the 

selected significance level and degrees of freedom, the critical value was determined using the 

Omnicalculator’s Critical Value Calculator (URL 13) at 27.29 for the Test statistic Z, 

establishing the threshold for distinguishing between no change and change. OmniCalculator, 

similarly as chi square test sheets, calculates the critical value based on level of significance, 

type of distribution, type of test (Right-tail) and degrees of freedom. This critical value was 

then used to create binary layers, which were exported to ArcGIS Pro for evaluation against the 

ground truth data.  

K-means clustering algorithm was utilized to summarize the change information from 

the MAD variates. K-means clustering is an unsupervised machine learning method that divides 

data into a fixed number of groups so that the data points within the groups are similar to one 

another while being different from data points in different groups. The K-means clustering 

algorithm was accessed through the GEE library under the function ee.Clusterer.wekaKMeans 

and optimized for generating specified number of clusters while being trained on 50,000 pixels 

for 20-m data and 200,000 thousand pixels on 10 m data in order to ensure comparatively same 

training sets (URL 14). First cluster images were generated with 2 classes, and then multiclass 

clusters were generated to find the ones with best results. The resulting cluster layers were 

exported into a binary layer and evaluated against the ground truth data. 

6.3. Accuracy assessment procedure 

Conducting an accuracy assessment for CD is crucial for validating the reliability of detected 

changes. This involves comparing the detected changes with a reference dataset (ground truth). 

A common tool for this purpose is the confusion matrix and metrics such as overall accuracy 

(OA), user’s accuracy (UA), producer’s accuracy (PA). 
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OA measures the proportion of correctly identified change and no-change pixels. UA 

indicates the probability that a pixel classified as change (or no-change) is correct, while PA 

reflect 

To determine the binary map with the highest accuracy and evaluate IR-MADs 

performance in depicting changes between September 27 and November 26, 2023, an accuracy 

assessment was conducted. This process required a reference layer with ground truth data. 

Although UNOSAT provides damage assessments, these are limited to buildings and structural 

damage, resulting in uneven spatial distribution and neglect of other changes such as craters, 

debris or soil disruption as the result of heavy equipment. Ideally, sub-meter imagery would be 

used to create a comprehensive reference dataset, but such imagery is not publicly available. 

Consequently, a visual analysis of available sources was undertaken. 

PlanetScope by Planet Labs provides the highest resolution imagery available to 

students, with a pixel resolution of 3 meters. Imagery from  September 27 and  November 26 

of 2023 was obtained for accuracy assessment purposes, and was used to visually identify 

changes between the two dates.. Both images were visualized in ArcGIS Pro, where about 500 

assessment points were generated using the Create Accuracy Assessment Points tool and 

scattered across the urban mask of the study area (Figure 3). And then labeled for change and 

no change through visual interpretation.  

After creating the binary maps, the classified changes were appended to the accuracy 

assessment points. The Compute Confusion Matrix tool was then utilized to obtain the accuracy 

metrics. Image of the sum of squared MAD variates was then evaluated based on different p-

values in order to find the most optimal threshold with highest accuracy. OA, UA and PA were 

calculated. 

6.4. Website Development 

Once the optimal approach for detecting changes was deduced, a web map for the whole Gaza 

Strip was developed in GEE. The aim of the app was to track the changes over time, and 

therefore, dates, with zero cloud cover covering the Gaza Strip were used across the whole 

temporal range of the conflict. The dates were processed as in the Accuracy Assessment 

Procedure and then processed into a series of binary maps, showcasing changes from the first 
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day to dates in between. The binary maps with  the highest accuracy were chosen to be 

displayed in the web map, showcasing the changes that occurred between the dates. The 

application was published on a website created with Google Sites technology. 

 The selected images correspond to the following dates: September 27, 2023, November 

1, 2023, November 26, 2023, December 26, 2023, January 20, 2024, March 5, 2024, April 4, 

2024, May 9, 2024, June 18, 2024, and July 18, 2024. The image selection process and 

preprocessing mirrored the previously used methodology. However, the final binary change 

maps were derived from the most accurate method, selected based on a comparison of different 

pixel and binary layer extraction techniques. The web map was then embedded into a Google 

Site. 

 

  

 

7. Results 

The results chapter presents the findings of this research, organized into three subsections. The 

first subsection details the determination of the threshold through the level of significance, 

involving statistical analysis to identify critical threshold values that differentiate significant 

data points. The second subsection outlines the outcomes of obtaining change information 

through k-means clustering, highlighting data groupings and patterns of change. The final 

subsection evaluates the types of changes included in the analysis, and the ability of IR-MAD 

to detect changes related to warfare.  

7.1. Binary layers generated by the level of significance 

The 20-m dataset results (Table 5) showed a 74% OA in detecting changes against the ground 

truth data, indicating a balance of false positives and negatives. Out of 485 points evaluated, 

221 were correctly classified as 'no change,' matching the ground truth data, while 138 were 

accurately identified as 'change.' The remaining points were mostly misclassified. The UAs and 
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PAs were nearly identical, with the lowest accuracy observed in the PA for the 'change' class 

and the highest in the Producer accuracy for the 'no change' class. 

Table 5: Confusion matrix of binary layer produced by IR-MAD on bands B2, B3, B4, B8, 

B11, B12 sampled to 20-m at 0.00005 alpha (critical value 27.293)  

 No change Change Total User’s accuracy 

No change 221 65 308 0.7727 

Change 61 138 177 0.6934 

Total 282 203 485  

Producer’s 

accuracy  0.7836 0.6798  0.7402 

Source: Author’s work  

In contrast, the 10-m dataset showed lower accuracy than the 20-m dataset when using the same 

threshold. It achieved 69% OA. The results, compared to those from the 20-m sampling, 

revealed a noticeable imbalance between Type I and Type II errors, with false negatives being 

more common than false positives. This discrepancy in error types indicates a tendency to miss 

actual changes (false negatives) more frequently than falsely identifying changes (false 

positives), but in both. The overall matches differed by 23 points, indicating worse performance 

at this scale and higher inaccuracies. 

Table 6: Confusion matrix of binary layer produced by IR-MAD on bands B2, B3, B4, B8, 

B11,B12 sampled to 10-m at 0.00005 alpha (critical value 27.293)  

 No change Change Total User’s accuracy 

No change 220 71 308 0.7142 

Change 87 115 177 0.6497 

Total 282 203 485  

Producer’s 

accuracy  0.7801 0.5665  0.6907 

Source: Author’s work  
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Visually, the two binary layers showed significant differences in the area of detected changes 

as illustrated in binary maps of  Figure 6. The binary mask generated from the 20-m sampled 

data exhibited a dominant change class, whereas the binary mask generated from the 10-m 

resolution data predominantly indicated the no change class, with detected changes being more 

isolated. Roads are visible in both of the maps showcasing the changing dynamics of roads.  

Figure 6: Binary change maps with 10-m (Left) and 20-m (Right) resolutions.Note: red 

indicates change, blue indicates no change 

 

Source: Author’s work  

Specifically, the IR-MAD analysis using the images with 10-m pixels classified 30 km² as 

changed, while the 20-m dataset classified 41.09 km² as changed, out of a total mask area of 76 

km². These results indicate that either 39.47% (10-m spatial resolution) or 52.75% (20-m spatial 

resolution) of the area experienced changes between September 27th and November 26th, 2023. 

For comparison, IR-MAD analysis conducted over a similar time span and the same AOI the 
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previous year (from September 22nd to November 11th, 2022) identified a total change area of 

23.5 km² or using the 10-m dataset.  

The resulting maps also follow the trend set in the UNOSAT’s damage assessment (2023) 

which examined building damage on 26th of November 2023. In Figure 7, all buildings labeled 

as destroyed over the built up mask are placed. Showing similarities to the binary masks, 

especially in the coastal area (left) where IR-MAD detected large swaths of continuous change, 

and with the relatively unaffected center of the AOI where changes in the binary masks are 

minimal and destroyed buildings are absent. 

Figure 7: UNOSAT damage assessment of buildings; buildings labeled as “destroyed”  

 

 

 

 

 

 

 

 

 

Source: UNOSAT’s damage assessment (URL 15) 

 

7.2. Binary Layers Generated by k-means clustering 

Clustering of the MAD variates into two classes enhanced the dominant class of no-change and 

minimized the occurrence of false positives at the expense of false negatives. Broader sets of 
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changes using the K-means algorithm were visualized by setting 6 classes, which based on 

context, were combined as the final binary layer of two classes. Table 9 shows the confusion 

matrix of the 20-m and 6-cluster image combined into the binary layer. Unlike the 10-m image, 

the clustering did classified change with more extensive area reaching 71% OA. Higher 

accuracy results, however, did not indicate the desired simplicity from this approach, and 

learning for several classes did not find any particular classes of change, except the case 20-m 

imagery which with 6 classes indicated a stepping stone class between the outlier values and 

no change values.  

Table 7: Confusion matrix of binary layer produced by IR-MAD on bands B2, B3, B4, B8, 

B11, B12 sampled to 20-m and clustered to 6 classes 

 No change Change Total User 

No change 279 127 399 0.6817 

Change 12 74 86 0.8604 

Total 284 201 485  

Producer  0.9557 0.3681  0.7134 

Source: Author’s work  

Image sampled at 10-m was also tested at six classes to capture more change pixels from the 

two-cluster outputs, as the addition of classes led to noisier no-change clusters as opposed to 

larger change clusters. With six classes, three were identified as change and three as no change, 

resulting in a binary layer with 68% OA. The confusion matrix (Table 8) showed a conservative 

change class with negligible amounts of false positives but a substantial number of false 

negatives. 
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Table 8: Confusion matrix of binary layer produced by IR-MAD on bands B2, B3, B4, B8, 

B11, B12 sampled to 10-m and clustered to 6 classes 

 No change Change Total User 

No change 279 150 456 0.6503 

Change 5 51 56 0.9107 

Total 284 201 485  

Producer  0.9823 0.2537  0.6800 

Source: Author’s work  

The disparity of the multi-cluster derived binary layers at different scales is apparent in their 

placement of pixels. In Figure 8, the conservative binary layer derived from the 10-m MAD 

variates and the dominant change layer of the image derived from the 20-m MAD variates can 

be seen.  
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Figure 8: Binary layers generated by multi-class clustering; 10-m spatial resolution from 6 

classes (left) and 20-m spatial resolution from 6 classes (right) 

Source: Author’s work 

To further  investigate the distribution and peaks of the Sum of Squared Standardized MAD 

variates (Z) and its effect on clustering algorithms in space, the Z image can be plotted in 3D, 

and be interpreted for change itself. Figure 9 shows the AOI and its Z values in 3D space. The 

magnitude of the values Z corresponds with the elevation of the pixel's position within the 

spatial field. 
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Figure 9: 3D plot of Sum of square Standardized MAD variates generated from 20-m 

sampling 

Source: Author’s work 

Similarly as in figure 5, the most significant changes are highlighted, but in this case the pixels 

are  shown in aggregates. The original Z image was aggregated to suppress outliers, as the 

highest value of the dataset has over 29,000. Therefore, the units in the image are aggregated 5 

per 5 pixels. However, aggregating those did not diminish the magnitude of several changes. 

The high peaks are notably the surfaces of exposed ground as a result of bulldozing from 

building outposts and tracks for tanks, and vegetation clearing. It is these places with the yellow 

peaks that the k-means algorithm clusters to for change with 2 classes. Hence it highlights the 

fundamental difference between thresholding the image as the k-means cluster around the peaks 

and similar values to highlight the similar groups of change whilst the threshold will set the 

same change level across all peaks, however the existence of massive outliers represented by 

values in the thousands and ten thousands makes the smaller values cling to the no change 

cluster as the distance is simply way to distant. In comparison, aggregating 10-m pixels into 

the same size units as the 20-m 3D unit. Resulted in less differentiated values, as more pixels 
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were averaged (Figure 10). Peaks in this case were more similar in their height showing Z value 

peaks that have not been as pronounced as in the 20-m plot. 

Figure 10: 3D plot of Sum of square Standardized MAD variates generated from 10-m 

sampling 

Source: Author’s work  

 

 

 

7.3. Detection of war related damage 

Although not directly distinguished from the main classified change class, noticeable changes 

related to the effects of war were located. Figure 11 shows examples of different types of 

damage across the AOI. 
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Figure 11: Examples of detected changes using the threshold and change clustering. 

Coordinates WGS 84 : (a)-[34°27'35"E, 31°32'19"N], (b)-[34°28'43"E, 31°31'11"N, (c)-

[34°28'9"E,31°33'20"N], (d)-[34.4857914°E, 31.5422456°N] 

Source: PlanetLabs, Author’s work 

The top row (a) shows inflicted damage and devastation bordering the denser urban area of the 

Gaza city. In the top right of the image there can be high-rise buildings before the conflict and 

their destruction following the conflict. In this case both of the approaches for retrieving change 

information were able to obtain change information, although the clustering of changes has 
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misidentified the affected buildings as no change. Another change observed in the row (a) is 

the changes of the road network, clearly visible, roads low-lying infrastructure are often 

covered with debris and dust. It is also the enterpoint into the densely built up part of Gaza city, 

making it the primary road for tanks and the Israeli army to enter with. The flattened area is 

also deemed to be the previous Hamas training center and currently an Israeli Defence Force 

strongpoint, with fortifications. 

The row (b) represents changes related to craters. The New York Post (URL 16) 

suggests there are large quantities of craters from the same period. However, due to the 

limitations of available imagery, only craters outside of dense urban built-up areas are visible 

with PlanetScope. Therefore, the craters, and hence the images in row (b), are bordering the 

built-up mask. Even though IR-MAD was able to detect the change associated with one of the 

craters, the second one was outside the built-up mask generated from the dynamic world. 

Row (c) is located up north in the AOI near the border with Israel, and according to the 

New York Post (URL 16) it's the enroute for tanks and heavy vehicles which would explain the 

significant changes, the area is also known to be full of Israeli fortifications, photographic 

evidence of bulldozers supports the fact that Israeli army bulldozes area including civil 

structures for military operation. Most abstractly, however the changes are again caused in 

uncovering of the soil and hence changing the SR values of the pixel. The difference is then 

high in comparison to the previous image showcasing change, especially if vegetation has been 

removed. The image in (c) is the location of the aggregated peaks of Z values in the figure 10. 

Interestingly, the clustering approach did not detect the changes in the structures, although they 

were directly affected. 

 Similar effect can be seen in the row (d) where urban vegetation was in form of gardens 

effectively wiped out, making it a significant change in both approaches and especially whilst 

utilizing the k-means clustering which precisely distinguished the structures from bare ground 

through the change layer, whereas the threshold suggests changes overreaching the bare soil 

and identified surrounding buildings as change. However, both in this case correctly identified 

change resembling complete annihilation of several structures.  
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 In detecting changes related to rubble and building damage, the results showed disparity 

between the two approaches, in Figure 12, a city block with geolocated drone  footage evidence 

sourced from CNN shows absolute destruction of the Ahmed Yassin Mosque in the area that 

occurred on the 9th of October (URL 17). Here, clustering did not detect a little to no changes 

whilst the threshold did. Showcasing that larger MAD variates values which were clustered 

together do not necessarily denote the qualitative side of change. Bombardment caused 

destruction is definitely a significant change associated with war related damage, but it does 

not necessarily correlate with higher MAD values. 

 

Figure 12: Georeferenced drone footage of Ahmed Yassin mosque post-airstrike (October 9) 

with 20-meter threshold change mask overlay 

Source: CNN, author’s work 

The georeferencing was possible with the use of remaining edges of the surrounding 

buildings. In Figure 11 the mixed pixel problem is apparent, as the 20-m pixel can encompass 

2 to 3 buildings, essentially combining the values of the heterogeneous surface. On the other 

hand, with a 20-m clustering approach with 71% OA, this approach was not able to correctly 

distinguish the changes and the destruction of this particular mosque except in part of the 

image (Figure 13). 
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Figure 13: Georeferenced drone footage of Ahmed Yassin mosque post-airstrike (October 9) 

with 20-meter cluster-based change mask overlay 

Source: CNN, Author’s work 

 

Based on the results, a web application was created using the Google Earth Engine 

(GEE) platform to illustrate the temporal changes in the Gaza Strip throughout the conflict 

period.    

 The Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) algorithm was 

applied to these dates and across the entire temporal range, from September 2023 to July 2024. 

Binary layers were exported using the superior threshold approach and visualized for each pair 

of dates. These visualizations are accessible through a GEE app at: 

https://ee-cernikjac.projects.earthengine.app/view/change-detection-in-the-gaza-strip 

which is embedded with other information about the research at: 

https://sites.google.com/view/change-detection-gaza/home  

 

 

  

https://ee-cernikjac.projects.earthengine.app/view/change-detection-in-the-gaza-strip
https://sites.google.com/view/change-detection-gaza/home
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8. Discussion and Conclusion 

This research aimed to achieve three main goals: to utilize and evaluate the Iteratively 

Reweighted Multivariate Alteration Detection (IR-MAD) algorithm with Sentinel-2 data for 

CD in urban areas affected by war, to create Python scripts for CD analyses, and to develop a 

website with a web mapping application for publishing the results. 

The IR-MAD method demonstrated promising results in detecting changes and war-

related alterations, such as debris, destroyed houses, vegetation, and craters. A threshold 

derived from the significance level for the chi-square distribution proved superior to k-means 

clustering, achieving a 74% OA and identifying a 52% change between September 27th and 

November 26th, 2023. Resulting OA is 6% lower accuracy than the approach utilized by O. 

Bellinger (2023) whose SAR based workflow achieved 80% accuracy of detecting damaged 

buildings in Gaza. It is however important to note that the available resolution did not allow for 

assessment of buildings and IR-MAD was utilized to detect all changes, in that regard, visual 

inspection showed that IR-MAD was able to successfully attribute large values to the uncovered 

soil and ground related changes such as fortifications. Interestingly, 20-meter pixel sizes 

yielded better results than 10-meter pixels, which may be attributed to the dense urban built-up 

areas and the widespread effects of warfare, such as dust and debris. The mixed pixel problem 

or “mixels” could've been an advantage, as it scaled down the heterogeneity of the urban 

surface, helping to create a more integrated and consistent array of change pixels. Comparing 

the results of different pixel scales in settings with less substantial changes could, therefore, be 

valuable. In such scenarios, 10-meter or higher resolution data might be superior for detecting 

craters, changes in individual buildings, or convoys, as it allows for the detection of more 

isolated changes. These changes could be lost in the larger pixel size of lower-resolution 

datasets. An interesting implication of higher resolution imagery for IR-MAD could be in 

Ukraine where the scale of operations is so large and widespread that changes are more isolated.  

 Furthermore, It is important to note that the level of significance isn't a universal 

thresholding method and is partly specific to IR-MAD. Image Z follows a unimodal 

distribution, making it harder to threshold using conventional methods such as Otsu's algorithm. 

K-means clustering was therefore utilized as a potential way to create consistent binary maps. 

To enhance the results, thresholding with 6 classes was tested, and although it showed 
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promising results for 20-meter classes, it lost its simplicity due to the need to combine classes 

into changes and no changes, and the resulting OA was lower at 71%.  

Therefore, to save computational and time costs and the accuracy, the threshold-

oriented method was chosen for binary classification in the web map, displaying change 

information through change and no-change masks across the whole Gaza Strip since the start 

of the conflict, exceeding the test AOI. The website was developed in Google Sites with  the 

GEE app  using the assets exported from the Python scripts. 

Regarding the goal of developing the Python scripts, the goal was achieved, although 

most of the credit goes to the work of Dr. Mort Canty whose tutorials made it possible. His 

functions were turned into a Python library, for better utility, and custom functions such as 

masking using the Dynamic world were added together with an automatized process of 

exporting and thresholding GEE imagery, but the code still remains a derivative of the original 

tutorial. However, few visualization and testing scripts were also developed to display the 

results in 3D. 

Although satisfactory results were achieved and IR-MAD can be utilized for monitoring 

changes in war affected urban areas; the methodology faced its limitations, particularly in the 

accuracy assessment. Although the randomly generated points were representative of the area, 

they may not have been representative of the research objective, meaning the points could have 

included an attribute for the ground truth type of change related to warfare (crater, strongpoint, 

etc). The quality of the points themselves is also in question, as PlanetScope could not achieve 

the most accurate reference data compared to sub-meter resolution imagery. Furthermore, 

thresholding, although effective, lacked a theoretical foundation comparable to other CD 

methods. A more robust thresholding method, perhaps based on machine learning hyper-

optimization, could secure optimal thresholds consistently while utilizing a similar concept to 

this research. Additionally, masking the built-up area posed challenges. While damage to civil 

infrastructure is one of the most devastating effects of warfare, agriculture and natural areas are 

also affected by heavy machinery, fires, and chemicals. 

In terms of tools and processing, the process of CD analysis also had its complications. 

Notably, failure to integrate accuracy assessment into python. After creation of the reference 
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data in ArcGIS Pro, Accuracy Assessment was convenient in this environment, however, upon 

creating dozens of binary layers and confusion matrices, an automated python based accuracy 

function would not only save time but also help in future development for threshold 

optimization. Furthermore, regarding the GEE App, a more direct approach could be taken via 

the Streamlit option, making direct uploading and visualization straightforward and less path 

dependent.  

However, these limitations can be improved upon. IR-MAD showed promising results 

in detecting changes in war-affected urban areas and hence opened the door for future 

improvement. Therefore, future developments would be:  

● Developing a thresholding method that is consistent with across different 

images and yields higher accuracy 

● The creation of a robust and contextually relevant reference layer for accuracy 

assessment, and this layer should subsequently be evaluated using IDE and not 

GIS in order to achieve better simplicity and workflow. 

● Dual and separate analysis of urban areas and surrounding non-built up areas 

to further enhance context.  

● Automatized framework for continuous update of GEE app binary layers or a 

Streamlit option directly from IDE. 

 

 

 

 

 

 

 



 

 

69 

9. References 

Websites 

[URL 1] GeeksforGeeks. ML | Fuzzy Clustering - GeeksforGeeks. [online]. [cit. 2024-05-05]. 

Available from: <https://www.geeksforgeeks.org/ml-fuzzy-clustering/> 

[URL 2] ESA. Sentinel-2 operations. [online]. [cit. 2024-05-07]. Available from: 

<https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations> 

[URL 3] Cenia. Land Cover Flows. [online]. [cit. 2024-06-11]. Available from: 

<https://landcover.cenia.cz/corine-land-cover/land-cover-flows/).> 

[URL 4] Global Mangrove Watch. [online]. [cit. 2024-06-11]. Available from: 

<[https://www.globalmangrovewatch.org/> 

[URL 5] Global Forest Watch. Forest Monitoring, Land Use & Deforestation Trends. 

[online]. [cit. 2024-06-11]. Available from: <https://www.globalforestwatch.org> 

[URL 6] Atlas of Urban Expansion 2016, UNOHABITAT, NYU, Lincoln Institute of land 

policy. [online]. [cit. 2024-06-12]. Available from: <http://www.atlasofurbanexpansion.org> 

[URL 7] Ballinger, O. A New Tool Allows Researchers to Track Damage in Gaza. Bellingcat. 

November 15, 2023. [online]. [cit. 2024-07-24]. Available from: 

<https://www.bellingcat.com/resources/2023/11/15/a-new-tool-allows-researchers-to-track-

damage-in-gaza/> 

[URL 8] UNRWA. UNRWA Situation Report #124 on the situation in the Gaza Strip and the 

West Bank, including East Jerusalem. June 24, 2024. [online]. [cit. 2024-07-28]. Available 

from: <https://www.unrwa.org/resources/reports/unrwa-situation-report-124-situation-gaza-

strip-and-west-bank-including-east-Jerusalem> 

[URL 9] State of Palestine - Subnational Administrative Boundaries - Humanitarian Data 

Exchange. [online]. [cit. 2024-05-02]. Available from: <https://data.humdata.org/dataset/cod-

ab-pse?> 



 

 

70 

[URL 10] PlanetScope. [online]. [cit. 2024-06-07]. Available from: 

<https://developers.planet.com/docs/data/planetscope/> 

[URL 11] Google Earth Engine. Google Earth Engine Tutorials, Python tutorials. [online]. 

[cit. 2024-01-20]. Available from: <https://developers.google.com/earth-

engine/tutorials/community> 

[URL 12] Canty, M. Change Detection in Google Earth Engine - The MAD Transformation 

(Part 2). Google for Developers. [online]. [cit. 2024-06-17]. Available from: 

<https://developers.google.com/earth-engine/tutorials/community/imad-tutorial-pt> 

[URL 13] Omni Calculator. Critical value calculator. [online]. [cit. 2024-06-22]. Available 

from: <https://www.omnicalculator.com/statistics/critical-value> 

[URL 14] Google Earth Engine. Unsupervised Classification (clustering). Google for 

Developers. [online]. [cit. 2024-06-27]. Available from: 

<https://developers.google.com/earth-engine/guides/clustering#colab-python> 

[URL 15] Humanitarian Data Exchange. UNOSAT Gaza Strip Comprehensive Damage 

Assessment - 26 November 2023. [online]. [cit. 2024-07-11]. Available from: 

<https://data.humdata.org/dataset/unosat-gaza-strip-comprehensive-damage-assessment-26-

november-2023?> 

[URL 16] Erden, B., Levit, Z., Shao, E., Wallace, T., Boxerman, A. Maps: Tracking the 

Attacks in Israel and Gaza: Where Israeli forces are advancing toward Gaza. The New York 

Times. October 7, 2023. [online]. [cit. 2024-07-27]. Available from: 

<https://www.nytimes.com/interactive/2023/10/07/world/middleeast/israel-gaza-maps.html>  

[URL 17] CNN Staff. Before and After Images show Gaza Mosque Devastation. CNN. 

October 18, 2023[online][cit. 2024-07-27]Available from: 

<https://edition.cnn.com/2023/10/10/world/gaza-mosque-before-after-images-

dg/index.html>  

 

https://edition.cnn.com/2023/10/10/world/gaza-mosque-before-after-images-dg/index.html
https://edition.cnn.com/2023/10/10/world/gaza-mosque-before-after-images-dg/index.html


 

 

71 

 

 

Documents  

AOUN, Joy-Fares; ARSHAD, Raja Rehan. 2017. Syria Damage Assessment of Selected 

Cities: Aleppo, Hama, Idlib. Washington, D.C.: World Bank Group. Available from: 

http://documents.worldbank.org/curated/en/530541512657033401/Syria-damage-assessment-

of-selected-cities-Aleppo-Hama-Idlib. 

 

AFAQ, Yasir and MANOCHA, Ankush, 2021. Analysis on change detection techniques for 

remote sensing applications: A review. Ecological Informatics. 1 July 2021. Vol. 63, p. 

101310. DOI 10.1016/j.ecoinf.2021.101310. 

 

AHMAD, Muhammad Nasar, SHAO, Zhenfeng and JAVED, Akib, 2023. Modelling land 

use/land cover (LULC) change dynamics, future prospects, and its environmental impacts 

based on geospatial data models and remote sensing data. Environmental Science and 

Pollution Research. 1 March 2023. Vol. 30, no. 12, p. 32985–33001. DOI 10.1007/s11356-

022-24442-2. 

 

ALCANTARA, Camilo, KUEMMERLE, Tobias, PRISHCHEPOV, Alexander V. and 

RADELOFF, Volker C., 2012. Mapping abandoned agriculture with multi-temporal MODIS 

satellite data. Remote Sensing of Environment. 1 September 2012. Vol. 124, p. 334–347. DOI 

10.1016/j.rse.2012.05.019. 

 

ASOKAN, Anju and ANITHA, J., 2019. Change detection techniques for remote sensing 

applications: a survey. Earth Science Informatics. June 2019. Vol. 12, no. 2, p. 143–160. DOI 

10.1007/s12145-019-00380-5. 

 

BAN, Yifang and YOUSIF, Osama, 2016. Change Detection Techniques: A Review. In: 

BAN, Yifang (ed.), Multitemporal Remote Sensing: Methods and Applications. Online. 

http://documents.worldbank.org/curated/en/530541512657033401/Syria-damage-assessment-of-selected-cities-Aleppo-Hama-Idlib
http://documents.worldbank.org/curated/en/530541512657033401/Syria-damage-assessment-of-selected-cities-Aleppo-Hama-Idlib
http://documents.worldbank.org/curated/en/530541512657033401/Syria-damage-assessment-of-selected-cities-Aleppo-Hama-Idlib
http://documents.worldbank.org/curated/en/530541512657033401/Syria-damage-assessment-of-selected-cities-Aleppo-Hama-Idlib


 

 

72 

Cham: Springer International Publishing. p. 19–43. ISBN 978-3-319-47037-5. [Accessed 1 

July 2024]. 

 

BROWN, Christopher F., BRUMBY, Steven P., GUZDER-WILLIAMS, Brookie, BIRCH, 

Tanya, HYDE, Samantha Brooks, MAZZARIELLO, Joseph, CZERWINSKI, Wanda, 

PASQUARELLA, Valerie J., HAERTEL, Robert, ILYUSHCHENKO, Simon, SCHWEHR, 

Kurt, WEISSE, Mikaela, STOLLE, Fred, HANSON, Craig, GUINAN, Oliver, MOORE, 

Rebecca and TAIT, Alexander M., 2022. Dynamic World, Near real-time global 10 m land 

use land cover mapping. Scientific Data. 9 June 2022. Vol. 9, no. 1, p. 251. DOI 

10.1038/s41597-022-01307-4. 

CANTY, Morton John, 2019. Image analysis, classification, and change detection in remote 

sensing: with algorithms for Python. Fourth edition. Boca Raton: CRC Press, Taylor & 

Francis Group. ISBN 978-1-138-61322-5. 

 

CHEN, Xi, LI, Jing, ZHANG, Yunfei, JIANG, Weiguo, TAO, Liangliang and SHEN, Wei, 

2017. Evidential Fusion Based Technique for Detecting Landslide Barrier Lakes From Cloud-

Covered Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing. May 2017. Vol. 10, no. 5, p. 1742–1757. DOI 

10.1109/JSTARS.2017.2665529. 

 

CHENG, Guangliang, HUANG, Yunmeng, LI, Xiangtai, LYU, Shuchang, XU, Zhaoyang, 

ZHAO, Qi and XIANG, Shiming, 2023. Change Detection Methods for Remote Sensing in 

the Last Decade: A Comprehensive Review.. Online. 9 May 2023. arXiv. arXiv:2305.05813. 

Available from: http://arxiv.org/abs/2305.05813 [Accessed 28 April 2024]. 

 

DEER, Peter, 1995. Digital Change Detection Techniques in Remote Sensing. Technical 

report (Electronics and Surveillance Research Laboratory (Australia)) ; DSTO-TR-0169. 

 

DILIP, T., KUMARI, Mamta, MURTHY, C. S., NEELIMA, T. L., CHAKRABORTY, 

Abhishek and DEVI, M. Uma, 2023. Monitoring early-season agricultural drought using 

temporal Sentinel-1 SAR-based combined drought index. Environmental Monitoring and 

Assessment. 7 July 2023. Vol. 195, no. 8, p. 925. DOI 10.1007/s10661-023-11524-y. 



 

 

73 

 

DOXANI, G., KARANTZALOS, K. and STRATI, M. Tsakiri-, 2012. Monitoring urban 

changes based on scale-space filtering and object-oriented classification. International Journal 

of Applied Earth Observation and Geoinformation. 1 April 2012. Vol. 15, p. 38–48. DOI 

10.1016/j.jag.2011.07.002. 

FAKHRI, Falah and GKANATSIOS, Ioannis, 2021. Integration of Sentinel-1 and Sentinel-2 

data for change detection: A case study in a war conflict area of Mosul city. Remote Sensing 

Applications: Society and Environment. April 2021. Vol. 22, p. 100505. DOI 

10.1016/j.rsase.2021.100505. 

EL-HATTAB, Mamdouh, 2016. Applying post classification change detection technique to 

monitor an Egyptian coastal zone (Abu Qir Bay). The Egyptian Journal of Remote Sensing 

and Space Science. 1 March 2016. Vol. 19. DOI 10.1016/j.ejrs.2016.02.002. 

ESCWA, 2024.Assessment of physical damage caused to buildings by the war on Gaza: 

October 2023 – April 2024, Available from: assessment-physical-damage-buildings-war-

gaza-english.pdf (unescwa.org) 

GETU, Kenu and BHAT, H. Gangadhara, 2022. Dynamic simulation of urban growth and 

land use change using an integrated cellular automata and markov chain models: a case of 

Bahir Dar city, Ethiopia. Arabian Journal of Geosciences. 24 May 2022. Vol. 15, no. 11, p. 

1049. DOI 10.1007/s12517-022-10304-1. 

GHAZARYAN, Gohar, RIENOW, Andreas, OLDENBURG, Carsten, THONFELD, Frank, 

TRAMPNAU, Birte, STICKSEL, Sarah and JÜRGENS, Carsten, 2021. Monitoring of Urban 

Sprawl and Densification Processes in Western Germany in the Light of SDG Indicator 

11.3.1 Based on an Automated Retrospective Classification Approach. Remote Sensing. 27 

April 2021. Vol. 13, no. 9, p. 1694. DOI 10.3390/rs13091694. 

 

HAMDI, Zayd Mahmoud, BRANDMEIER, Melanie and STRAUB, Christoph, 2019. Forest 

Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data. 

Remote Sensing. January 2019. Vol. 11, no. 17, p. 1976. DOI 10.3390/rs11171976. 

https://doi.org/10.1016/j.rsase.2021.100505
https://www.unescwa.org/sites/default/files/pubs/pdf/assessment-physical-damage-buildings-war-gaza-english.pdf
https://www.unescwa.org/sites/default/files/pubs/pdf/assessment-physical-damage-buildings-war-gaza-english.pdf


 

 

74 

HANSEN, M. C., POTAPOV, P. V., MOORE, R., HANCHER, M., TURUBANOVA, S. A., 

TYUKAVINA, A., THAU, D., STEHMAN, S. V., GOETZ, S. J., LOVELAND, T. R., 

KOMMAREDDY, A., EGOROV, A., CHINI, L., JUSTICE, C. O. and TOWNSHEND, J. R. 

G., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science. 15 

November 2013. Vol. 342, no. 6160, p. 850–853. DOI 10.1126/science.1244693. 

HANSEN, Matthew C, PICKENS, Amy and SONG, Zhen, [no date]. OPERA DIST product. 

University of Maryland, Department of Geographical Sciences, Global Land Analysis and 

Discovery  (GLAD) laboratory. 

HUESCA, Margarita, MERINO-DE-MIGUEL, Silvia, EKLUNDH, Lars, LITAGO, Javier, 

CICUÉNDEZ, Victor, RODRÍGUEZ-RASTRERO, Manuel, USTIN, Susan L. and 

PALACIOS-ORUETA, Alicia, 2015. Ecosystem functional assessment based on the “optical 

type” concept and self-similarity patterns: An application using MODIS-NDVI time series 

autocorrelation. International Journal of Applied Earth Observation and Geoinformation. 1 

December 2015. Vol. 43, p. 132–148. DOI 10.1016/j.jag.2015.04.008. 

HUSSAIN, Masroor, CHEN, Dongmei, CHENG, Angela, WEI, Hui and STANLEY, David, 

2013. Change detection from remotely sensed images: From pixel-based to object-based 

approaches. ISPRS Journal of Photogrammetry and Remote Sensing. 1 June 2013. Vol. 80, p. 

91–106. DOI 10.1016/j.isprsjprs.2013.03.006. 

ISLAM, Kamrul, RAHMAN, Md. Farhadur and JASHIMUDDIN, Mohammed, 2018. 

Modeling land use change using Cellular Automata and Artificial Neural Network: The case 

of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators. 1 May 2018. Vol. 88, p. 

439–453. DOI 10.1016/j.ecolind.2018.01.047. 

 

JENSEN, John R., 1983. Biophysical Remote Sensing. Annals of the Association of 

American Geographers. March 1983. Vol. 73, no. 1, p. 111–132. DOI 10.1111/j.1467-

8306.1983.tb01399.x. 

JOVANOVIĆ, Dušan, GAVRILOVIĆ, Milan, SLADIĆ, Dubravka, RADULOVIĆ, 

Aleksandra and GOVEDARICA, Miro, 2021. Building Change Detection Method to Support 



 

 

75 

Register of Identified Changes on Buildings. Remote Sensing. January 2021. Vol. 13, no. 16, 

p. 3150. DOI 10.3390/rs13163150. 

KIM, Minhwa, PARK, Sang-Eun and LEE, Seung-Jae, 2023. Detection of Damaged 

Buildings Using Temporal SAR Data with Different Observation Modes. Remote Sensing. 

January 2023. Vol. 15, no. 2, p. 308. DOI 10.3390/rs15020308. 

 

LA BARREDA-BAUTISTA, Betsabe De, A., Alejandra, COUTURIER, Stephane and LUIS, 

Jose, 2011. Tropical Dry Forests in the Global Picture: The Challenge of Remote Sensing-

Based Change Detection in Tropical Dry Environments. In: CARAYANNIS, Elias (ed.), 

Planet Earth 2011 - Global Warming Challenges and Opportunities for Policy and Practice. 

Online. InTech. ISBN 978-953-307-733-8. [Accessed 31 March 2024]. 

  

Land Change Monitoring, Assessment,  and Projection (LCMAP) Collection 1.0  Continuous 

Change Detection and  Classification (CCDC)  Algorithm Description Document (ADD), 

2022. . Department of the Interior  U.S. Geological Survey. 

 

LI, Lu, WANG, Chao, ZHANG, Hong, ZHANG, Bo and WU, Fan, 2019. Urban Building 

Change Detection in SAR Images Using Combined Differential Image and Residual U-Net 

Network. Remote Sensing. January 2019. Vol. 11, no. 9, p. 1091. DOI 10.3390/rs11091091. 

 

LIANG, Jiayong and LIU, Desheng, 2020. Estimating Daily Inundation Probability Using 

Remote Sensing, Riverine Flood, and Storm Surge Models: A Case of Hurricane Harvey. 

Remote Sensing. January 2020. Vol. 12, no. 9, p. 1495. DOI 10.3390/rs12091495. 

 

LIU, Yang, SUN, Yujie, TAO, Shikang, WANG, Min, SHEN, Qian and HUANG, Jiru, 2021. 

Discovering Potential Illegal Construction Within Building Roofs from UAV Images Using 

Semantic Segmentation and Object-Based Change Detection. Photogrammetric Engineering 

& Remote Sensing. 1 April 2021. Vol. 87, no. 4, p. 263–271. DOI 10.14358/PERS.87.4.263. 

 

LU, Dengsheng, MAUSEL, Paul, BRONDÍZIO, Eduardo and MORAN, Emilio, 2004. 



 

 

76 

Change Detection Techniques. International Journal of Remote Sensing. 1 January 2004. Vol. 

25. 

 

LUO, Hui, LIU, Chong, WU, Chen and GUO, Xian, 2018. Urban Change Detection Based on 

Dempster–Shafer Theory for Multitemporal Very High-Resolution Imagery. Remote Sensing. 

21 June 2018. Vol. 10, no. 7, p. 980. DOI 10.3390/rs10070980. 

MARX, Andrew J., 2016. Detecting urban destruction in Syria: A Landsat-based approach. 

Remote Sensing Applications: Society and Environment. October 2016. Vol. 4, p. 30–36. DOI 

10.1016/j.rsase.2016.04.005. 

MORA, Omar, LENZANO, M., TOTH, Charles, GREJNER-BRZEZINSKA, Dorota and 

FAYNE, Jessica, 2018. Landslide change detection based on Multi-Temporal airborne 

LIDAR-derived DEMs. Geosciences. 16 January 2018. Vol. 8, p. 23. DOI 

10.3390/geosciences8010023. 

MUELLER, Hannes, GROEGER, Andre, HERSH, Jonathan, MATRANGA, Andrea and 

SERRAT, Joan, 2021. Monitoring war destruction from space using machine learning. 

Proceedings of the National Academy of Sciences. 8 June 2021. Vol. 118, no. 23, p. 

e2025400118. DOI 10.1073/pnas.2025400118. 

 

NIELSEN, Allan A., CONRADSEN, Knut and SIMPSON, James J., 1998. Multivariate 

Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image 

Data: New Approaches to Change Detection Studies. Remote Sensing of Environment. April 

1998. Vol. 64, no. 1, p. 1–19. DOI 10.1016/S0034-4257(97)00162- 

NIELSEN, Allan Aasbjerg, 2005. AN ITERATIVE EXTENSION TO THE MAD 

TRANSFORMATION FOR CHANGE DETECTION IN MULTI- AND HYPERSPECTRAL 

REMOTE SENSING DATA. . 2005. 

PACHECO-PASCAGAZA, Ana María, GOU, Yaqing, LOUIS, Valentin, ROBERTS, John 

F., RODRÍGUEZ-VEIGA, Pedro, DA CONCEIÇÃO BISPO, Polyanna, ESPÍRITO-SANTO, 

Fernando D. B., ROBB, Ciaran, UPTON, Caroline, GALINDO, Gustavo, CABRERA, 

Edersson, PACHÓN CENDALES, Indira Paola, CASTILLO SANTIAGO, Miguel Angel, 

CARRILLO NEGRETE, Oswaldo, MENESES, Carmen, IÑIGUEZ, Marco and BALZTER, 

https://doi.org/10.1016/j.rsase.2016.04.005
https://doi.org/10.1073/pnas.2025400118


 

 

77 

Heiko, 2022. Near Real-Time Change Detection System Using Sentinel-2 and Machine 

Learning: A Test for Mexican and Colombian Forests. Remote Sensing. January 2022. Vol. 

14, no. 3, p. 707. DOI 10.3390/rs14030707. 

PANUJU, Dyah, PAULL, David and GRIFFIN, Amy, 2020. Change Detection Techniques 

Based on Multispectral Images for Investigating Land Cover Dynamics. Remote Sensing. 1 

June 2020. Vol. 12, p. 1781. DOI 10.3390/rs12111781. 

PANUJU, Dyah R., PAULL, David J. and TRISASONGKO, Bambang H., 2019. Combining 

Binary and Post-Classification Change Analysis of Augmented ALOS Backscatter for 

Identifying Subtle Land Cover Changes. Remote Sensing. January 2019. Vol. 11, no. 1, p. 

100. DOI 10.3390/rs11010100. 

PARELIUS, Eleonora Jonasova, 2023. A Review of Deep-Learning Methods for Change 

Detection in Multispectral Remote Sensing Images. Remote Sensing. 16 April 2023. Vol. 15, 

no. 8, p. 2092. DOI 10.3390/rs15082092. 

PENG, Daifeng and GUAN, Haiyan, 2019. Unsupervised change detection method based on 

saliency analysis and convolutional neural network. Journal of Applied Remote Sensing. 8 

May 2019. Vol. 13, p. 1. DOI 10.1117/1.JRS.13.024512. 

RAHMAN, Shoumik and MESEV, Victor, 2019. Change Vector Analysis, Tasseled Cap, and 

NDVI-NDMI for Measuring Land Use/Cover Changes Caused by a Sudden Short-Term 

Severe Drought: 2011 Texas Event. Remote Sensing. 23 September 2019. Vol. 11, p. 2217. 

DOI 10.3390/rs11192217. 

REYMONDIN, Louis, JARVIS, Andrew, PEREZ-URIBE, Andres, TOUVAL, Jerry, 

ARGOTE, Karolina, COCA CASTRO, Alejandro, REBETEZ, Julien and GUEVARA, 

Edward, 2012. Terra-i A methodology for near real-time monitoring of habitat change at 

continental scales using MODIS-NDVI and TRMM. 

SAMANTA, Sailesh, PAL, Dilip Kumar and PALSAMANTA, Babita, 2018. Flood 

susceptibility analysis through remote sensing, GIS and frequency ratio model. Applied 

Water Science. 21 April 2018. Vol. 8, no. 2, p. 66. DOI 10.1007/s13201-018-0710-1. 



 

 

78 

SEDIGHKIA, Mahdi and DATTA, Bithin, 2023. Detecting land use changes using hybrid 

machine learning methods in the Australian tropical regions. GeoJournal. 1 December 2023. 

Vol. 88, no. 1, p. 241–253. DOI 10.1007/s10708-022-10678-5. 

SEYDI, Seyd Teymoor and HASANLOU, Mahdi, 2021. A New Structure for Binary and 

Multiple Hyperspectral Change Detection Based on Spectral Unmixing and Convolutional 

Neural Network. Measurement. 1 December 2021. Vol. 186, p. 110137. DOI 

10.1016/j.measurement.2021.110137. 

SINGH, Ashbindu, 1989. Review Article Digital change detection techniques using remotely-

sensed data. International Journal of Remote Sensing. June 1989. Vol. 10, no. 6, p. 989–1003. 

DOI 10.1080/01431168908903939. 

STILLA, Uwe and XU, Yusheng, 2023. Change detection of urban objects using 3D point 

clouds: A review. ISPRS Journal of Photogrammetry and Remote Sensing. March 2023. Vol. 

197, p. 228–255. DOI 10.1016/j.isprsjprs.2023.01.010. 

WEST VIRGINIA UNIVERSITY and WARNER, Timothy, 2017. Nature of Multispectral 

Image Data. Geographic Information Science & Technology Body of Knowledge. Online. 17 

July 2017. Vol. 2017, no. Q3. DOI 10.22224/gistbok/2017.3.1. [Accessed 28 June 2024]. 

YOU, Yanan, CAO, Jingyi and ZHOU, Wenli, 2020. A Survey of Change Detection Methods 

Based on Remote Sensing Images for Multi-Source and Multi-Objective Scenarios. Remote 

Sensing. January 2020. Vol. 12, no. 15, p. 2460. DOI 10.3390/rs12152460. 

ZOVÁTHI, Örkény, NAGY, Balázs and BENEDEK, Csaba, 2022. Point cloud registration 

and change detection in urban environment using an onboard Lidar sensor and MLS reference 

data. International Journal of Applied Earth Observation and Geoinformation. 1 June 2022. 

Vol. 110, p. 102767. DOI 10.1016/j.jag.2022.102767.  

 

 

 

  

https://doi.org/10.1007/s10708-022-10678-5
https://doi.org/10.1080/01431168908903939
https://doi.org/10.1016/j.isprsjprs.2023.01.010


 

 

79 

Data sources  

Copernicus  (2023, 2024) Sentinel-2, Earth Engine Catalog [online]. Processed by ESA. 

Retrieved from Google Earth Engine Catalog. 

Dynamic World (2023). Earth Engine Catalog [online]. Retrieved from Google Earth Engine 

Catalog. 

Planet (2023). Planetscope [online]. Retrieved from: 

[www.planet.com](https://www.planet.com) 

UNOSAT (2023). Gaza Strip Comprehensive Damage Assessment – 26 November 2023 

[online]. Retrieved from: https://data.humdata.org/dataset/unosat-gaza-strip-comprehensive-

damage-assessment-26-november-2023? 

OpenStreetMap contributors (2024). OpenStreetMap [online]. Retreived from: 

[https://www.openstreetmap.org](https://www.openstreetmap.org) 

ESRI (2023). Esri Landcover [online] Retreived from: 

https://livingatlas.arcgis.com/landcoverexplorer 

 

  



 

 

80 

10. Supplementary Materials 

IR-MAD functions derived from Canty’s tutorial  

#canty module for Google Earth Engine 

import ee 

""" 

This module contains functions sourced from Dr. Mort Canty's tutorial on change detection 

using the MAD transformation. For implementation. The module needs to be in the same 

located in the same code as the code for executing the module.  

The Tutorial is available at: https://developers.google.com/earth-

engine/tutorials/community/imad-tutorial-pt2 

""" 

ee.Authenticate() 

# Initialize the library. 

ee.Initialize(project='ee-thesiswar') # for intializing the project and acessing the API, 

import geemap 

import numpy as np 

import random, time 

import matplotlib.pyplot as plt 

from scipy.stats import norm, chi2 

from pprint import pprint  # for pretty printing 

######################################################### 

# MAD transformation 

# Enter your own export to assets path name here ----------- 

EXPORT_PATH = 'projects/ee-thesiswar/assets/imad/' 

print(EXPORT_PATH) 

# ------------------------------------------------ 

def trunc(values, dec = 3): 

    '''Truncate a 1-D array to dec decimal places.''' 

    return np.trunc(values*10**dec)/(10**dec) 

# Display an image in a one percent linear stretch. 

def covarw(image, weights=None, scale=20, maxPixels=1e10): 

    ''' 

    Return the centered image and its weighted covariance matrix. 

 

    Parameters: 

    - image: The input image. 

    - weights: The weights to be used for the covariance calculation. If not provided, a 

constant weight of 1 will be used. 

    - scale: The scale at which to compute the covariance. Default is 20 scaling here 

allowed for comparison of images with different resoltuons 

    - maxPixels: The maximum number of pixels to compute the covariance. Default is 1e10. 

 

    Returns: 

    A tuple containing the centered image and its weighted covariance matrix. 

    ''' 

 

    try: 

        # Get geometry, band names, and number of bands. 

        geometry = image.geometry() 

        bandNames = image.bandNames() 



 

 

81 

        N = bandNames.length() 

 

        # If weights are not provided, use a constant weight of 1. 

        if weights is None: 

            weights = image.constant(1) 

 

        # Create an image with band names and weights. 

        weightsImage = image.multiply(ee.Image.constant(0)).add(weights) 

 

        # Compute means and centered image. 

        means = image.addBands(weightsImage) \ 

                    .reduceRegion(ee.Reducer.mean().repeat(N).splitWeights(), 

                                scale=scale, 

                                maxPixels=maxPixels) \ 

                    .toArray() \ 

                    .project([1]) 

        centered = image.toArray().subtract(means) 

 

        # Compute weighted covariance matrix. 

        B1 = centered.bandNames().get(0) 

        b1 = weights.bandNames().get(0) 

        nPixels = ee.Number(centered.reduceRegion(ee.Reducer.count(), 

                                                scale=scale, 

                                                maxPixels=maxPixels).get(B1)) 

        sumWeights = ee.Number(weights.reduceRegion(ee.Reducer.sum(), 

                                                    geometry=geometry, 

                                                    scale=scale, 

                                                    maxPixels=maxPixels).get(b1)) 

        covw = centered.multiply(weights.sqrt()) \ 

                    .toArray() \ 

                    .reduceRegion(ee.Reducer.centeredCovariance(), 

                                    geometry=geometry, 

                                    scale=scale, 

                                    maxPixels=maxPixels) \ 

                    .get('array') 

        covw = ee.Array(covw).multiply(nPixels).divide(sumWeights) 

 

        return (centered.arrayFlatten([bandNames]), covw) 

 

    except Exception as e: 

        print('Error: %s' % e) 

def corr(cov): 

    ''' 

    Transfrom covariance matrix to correlation matrix. 

 

    Parameters: 

    - cov: The covariance matrix. 

 

    Returns: 

    The correlation matrix. 

    ''' 

 

    # Diagonal matrix of inverse sigmas. 
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    sInv = cov.matrixDiagonal().sqrt().matrixToDiag().matrixInverse() 

 

    # Transform. 

    corr = sInv.matrixMultiply(cov).matrixMultiply(sInv).getInfo() 

 

    # Truncate. 

    return [list(map(trunc, corr[i])) for i in range(len(corr))] 

 

def geneiv(C, B): 

    ''' 

    Return the eigenvalues and eigenvectors of the generalized eigenproblem 

 

    Parameters: 

    - C: A 2D array representing the matrix C. 

    - B: A 2D array representing the matrix B. 

 

    Returns: 

    - A tuple (lambdas, eigenvecs) containing the eigenvalues and eigenvectors. 

    Raises: 

    - Any exception that occurs during the computation. 

 

    Example usage: 

    C = [[1, 2], [3, 4]] 

    B = [[5, 6], [7, 8]] 

    lambdas, eigenvecs = geneiv(C, B) 

    print("Eigenvalues:", lambdas) 

    print("Eigenvectors:", eigenvecs) 

    ''' 

 

    try: 

        # Convert input arrays to Earth Engine Arrays. 

        C = ee.Array(C) 

        B = ee.Array(B) 

 

        # Compute the inverse of the Cholesky decomposition of B (Li = choldc(B)^-1). 

        Li = ee.Array(B.matrixCholeskyDecomposition().get('L')).matrixInverse() 

 

        # Solve the symmetric, ordinary eigenproblem Li*C*Li^T*x = lambda*x. 

        Xa = Li.matrixMultiply(C) \ 

            .matrixMultiply(Li.matrixTranspose()) \ 

            .eigen() 

 

        # Extract the eigenvalues as a row vector. 

        lambdas = Xa.slice(1, 0, 1).matrixTranspose() 

 

        # Extract the eigenvectors as columns. 

        X = Xa.slice(1, 1).matrixTranspose() 

 

        # Compute the generalized eigenvectors as columns by multiplying Li^T with X. 

        eigenvecs = Li.matrixTranspose().matrixMultiply(X) 

 

        # Return the eigenvalues and eigenvectors as a tuple. 

        return (lambdas, eigenvecs) 
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    except Exception as e: 

        print('Error: %s' % e) 

def mad_run(image1, image2, scale=20): 

    ''' 

    The MAD transformation of two multiband images. 

 

    Parameters: 

    - image1: The first multiband image. 

    - image2: The second multiband image. 

    - scale: The scale at which to compute the covariance. Default is 20. 

 

    Returns: 

    A tuple containing the U, V, MAD, and Z images 

Raises: 

    - Any exception that occurs during the computation. 

 

    ''' 

    try: 

        # Combine two images into one 

        image = image1.addBands(image2) 

        # Get the number of bands. 

        nBands = image.bandNames().length().divide(2) 

        # Compute the centered image and its weighted covariance matrix. 

        centeredImage, covarArray = covarw(image, scale=scale) 

        # Extract band names for the two sets of bands. 

        bNames = centeredImage.bandNames() 

        bNames1 = bNames.slice(0, nBands) 

        bNames2 = bNames.slice(nBands) 

        # Select bands for the two centered images. 

        centeredImage1 = centeredImage.select(bNames1) 

        centeredImage2 = centeredImage.select(bNames2) 

        s11 = covarArray.slice(0, 0, nBands).slice(1, 0, nBands) 

        s22 = covarArray.slice(0, nBands).slice(1, nBands) 

        s12 = covarArray.slice(0, 0, nBands).slice(1, nBands) 

        s21 = covarArray.slice(0, nBands).slice(1, 0, nBands) 

        # Calculate matrices for generalized eigenproblems. 

        c1 = s12.matrixMultiply(s22.matrixInverse()).matrixMultiply(s21) 

        b1 = s11 

        c2 = s21.matrixMultiply(s11.matrixInverse()).matrixMultiply(s12) 

        b2 = s22 

        # Solution of generalized eigenproblems. 

        lambdas, A = geneiv(c1, b1) 

        _, B = geneiv(c2, b2) 

        rhos = lambdas.sqrt().project(ee.List([1])) 

        # MAD variances. 

        sigma2s = rhos.subtract(1).multiply(-2).toList() 

        sigma2s = ee.Image.constant(sigma2s) 

        # Ensure sum of positive correlations between X and U is positive. 

        tmp = s11.matrixDiagonal().sqrt() 

        ones = tmp.multiply(0).add(1) 

        tmp = ones.divide(tmp).matrixToDiag() 

        s = tmp.matrixMultiply(s11).matrixMultiply(A).reduce(ee.Reducer.sum(), 
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[0]).transpose() 

        A = A.matrixMultiply(s.divide(s.abs()).matrixToDiag()) 

        # Ensure positive correlation. 

        tmp = A.transpose().matrixMultiply(s12).matrixMultiply(B).matrixDiagonal() 

        tmp = tmp.divide(tmp.abs()).matrixToDiag() 

        B = B.matrixMultiply(tmp) 

        # Canonical and MAD variates as images. 

        centeredImage1Array = centeredImage1.toArray().toArray(1) 

        centeredImage2Array = centeredImage2.toArray().toArray(1) 

        U = ee.Image(A.transpose()).matrixMultiply(centeredImage1Array) \ 

                    .arrayProject([0]) \ 

                    .arrayFlatten([bNames2]) 

        V = ee.Image(B.transpose()).matrixMultiply(centeredImage2Array) \ 

                    .arrayProject([0]) \ 

                    .arrayFlatten([bNames2]) 

        MAD = U.subtract(V) 

        # Chi-square image. 

        Z = MAD.pow(2) \ 

               .divide(sigma2s) \ 

               .reduce(ee.Reducer.sum()) 

        return (U, V, MAD, Z) 

    except Exception as e: 

        print('Error: %s' % e) 

 

 ######################################### 

# iMAD functions 

def chi2cdf(Z, df): 

        """ 

        Calculate the cumulative distribution function (CDF) of the chi-square 

distribution. 

 

        Parameters: 

        Z (ee.Image): The input image representing the chi-square random variable. The 

sum of squared Standardized MAD variates. 

        df (int): The degrees of freedom of the chi-square distribution.Number of Bands - 

1 

        Returns: 

        ee.Image: The image representing the CDF of the chi-square distribution. 

 

        Notes: 

        - The chi-square distribution is a continuous probability distribution that 

arises in the context of 

            hypothesis testing and confidence interval estimation for the variance of a 

normally distributed population. 

        - The CDF of the chi-square distribution gives the probability that a chi-square 

random variable is less than or equal to a given value. 

 

        """ 

        return ee.Image(Z.divide(2)).gammainc(ee.Number(df).divide(2)) 

def imad(current,prev): 

    ''' 

    Iterator function for iMAD. 

 



 

 

85 

    Parameters: 

    - current: The current iteration value. 

    - prev: The previous iteration valu 

    - returns done 

    ''' 

    done =  ee.Number(ee.Dictionary(prev).get('done')) 

    return ee.Algorithms.If(done, prev, imad1(current, prev)) 

 

def imad1(current,prev): 

    ''' 

    Iteratively re-weighted MAD. 

 

    Parameters: 

    - current: The current iteration value. 

    - prev: The previous iteration value. 

 

    Returns: 

    The updated iteration value. 

    ''' 

    image = ee.Image(ee.Dictionary(prev).get('image')) 

    Z = ee.Image(ee.Dictionary(prev).get('Z')) 

    allrhos = ee.List(ee.Dictionary(prev).get('allrhos')) 

    nBands = image.bandNames().length().divide(2) 

    weights = chi2cdf(Z,nBands).subtract(1).multiply(-1) 

    scale = ee.Dictionary(prev).getNumber('scale') 

    niter = ee.Dictionary(prev).getNumber('niter') 

    # Weighted stacked image and weighted covariance matrix. 

    centeredImage, covarArray = covarw(image, weights, scale) 

    bNames = centeredImage.bandNames() 

    bNames1 = bNames.slice(0, nBands) 

    bNames2 = bNames.slice(nBands) 

    centeredImage1 = centeredImage.select(bNames1) 

    centeredImage2 = centeredImage.select(bNames2) 

    s11 = covarArray.slice(0, 0, nBands).slice(1, 0, nBands) 

    s22 = covarArray.slice(0, nBands).slice(1, nBands) 

    s12 = covarArray.slice(0, 0, nBands).slice(1, nBands) 

    s21 = covarArray.slice(0, nBands).slice(1, 0, nBands) 

    c1 = s12.matrixMultiply(s22.matrixInverse()).matrixMultiply(s21) 

    b1 = s11 

    c2 = s21.matrixMultiply(s11.matrixInverse()).matrixMultiply(s12) 

    b2 = s22 

    # Solution of generalized eigenproblems. 

    lambdas, A = geneiv(c1, b1) 

    _, B       = geneiv(c2, b2) 

    rhos = lambdas.sqrt().project(ee.List([1])) 

    # Test for convergence. 

    lastrhos = ee.Array(allrhos.get(-1)) 

    done = rhos.subtract(lastrhos) \ 

               .abs() \ 

               .reduce(ee.Reducer.max(), ee.List([0])) \ 

               .lt(ee.Number(0.0001)) \ 

               .toList() \ 

               .get(0) 
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    allrhos = allrhos.cat([rhos.toList()]) 

    # MAD variances. 

    sigma2s = rhos.subtract(1).multiply(-2).toList() 

    sigma2s = ee.Image.constant(sigma2s) 

    # Ensure sum of positive correlations between X and U is positive. 

    tmp = s11.matrixDiagonal().sqrt() 

    ones = tmp.multiply(0).add(1) 

    tmp = ones.divide(tmp).matrixToDiag() 

    s = tmp.matrixMultiply(s11).matrixMultiply(A).reduce(ee.Reducer.sum(), 

[0]).transpose() 

    A = A.matrixMultiply(s.divide(s.abs()).matrixToDiag()) 

    # Ensure positive correlation. 

    tmp = A.transpose().matrixMultiply(s12).matrixMultiply(B).matrixDiagonal() 

    tmp = tmp.divide(tmp.abs()).matrixToDiag() 

    B = B.matrixMultiply(tmp) 

    # Canonical and MAD variates. 

    centeredImage1Array = centeredImage1.toArray().toArray(1) 

    centeredImage2Array = centeredImage2.toArray().toArray(1) 

    U = ee.Image(A.transpose()).matrixMultiply(centeredImage1Array) \ 

                   .arrayProject([0]) \ 

                   .arrayFlatten([bNames1]) 

    V = ee.Image(B.transpose()).matrixMultiply(centeredImage2Array) \ 

                   .arrayProject([0]) \ 

                   .arrayFlatten([bNames2]) 

    iMAD = U.subtract(V) 

    # Chi-square image. 

    Z = iMAD.pow(2) \ 

              .divide(sigma2s) \ 

              .reduce(ee.Reducer.sum()) 

    return ee.Dictionary({'done': done, 'scale': scale, 'niter': niter.add(1), 

                          'image': image, 'allrhos': allrhos, 'Z': Z, 'iMAD': iMAD}) 

 

########################################################## 

# to run imad 

def run_imad(aoi, image1, image2, assetFN, scale=20, maxiter=100,): 

    """ 

    Run the iMAD algorithm on two input images. 

 

    Parameters: 

    - aoi: Area of interest (ee.Geometry) to clip the output image. 

    - image1: First input image (ee.Image). 

    - image2: Second input image (ee.Image). 

    - assetFN: Filename for exporting the iMAD result as an asset (str). 

    - scale: Scale for the analysis (int, default=20). 

    - maxiter: Maximum number of iterations for the iMAD algorithm (int, 

default=100).Elsewise, the algorithm will stop when the change in the MAD variances is 

less than 0.0001. 

    """ 

    try: 

        # Get the number of bands in the first input image 

        N = image1.bandNames().length().getInfo() 

        # Create a list of names for the iMAD images and the Z image 

        imadnames = ['iMAD'+str(i+1) for i in range(N)] 
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        imadnames.append('Z') 

        # Create a list of numbers from 1 to maxiter for iteration 

        inputlist = ee.List.sequence(1, maxiter) 

        # Create the initial dictionary for the first iteration 

        first = ee.Dictionary({'done':0, 

                            'scale': scale, 

                            'niter': ee.Number(0), 

                            'image': image1.addBands(image2), 

                            'allrhos': [ee.List.sequence(1, N)], 

                            'Z': ee.Image.constant(0), 

                            'iMAD': ee.Image.constant(0)}) 

        # Iterate through the list of numbers using the imad function 

        result = ee.Dictionary(inputlist.iterate(imad, first)) 

        # Retrieve the results from the iteration 

        iMAD = ee.Image(result.get('iMAD')).clip(aoi) 

        rhos = ee.String.encodeJSON(ee.List(result.get('allrhos')).get(-1)) 

        Z = ee.Image(result.get('Z')) 

        niter = result.getNumber('niter') 

        # Create an iMAD export image with the iMAD and Z bands 

        iMAD_export = ee.Image.cat(iMAD, Z).rename(imadnames).set('rhos', rhos, 'niter', 

niter) 

        # Export the iMAD image to an asset 

        assetId = EXPORT_PATH + assetFN 

        assexport = ee.batch.Export.image.toAsset(iMAD_export, 

                        description='assetExportTask', 

                        assetId=assetId, scale=scale, maxPixels=1e10) 

        assexport.start() 

        # Print the export information 

        print('Exporting iMAD to %s\n task id: %s'%(assetId, str(assexport.id))) 

    except Exception as e: 

        print('Error: %s'%e) 

 

Main code executing Canty’s functions and handling data

 

# Project path for exporting----------- 

EXPORT_PATH = 'projects/ee-thesiswar/assets/imad/' 

print(EXPORT_PATH) 

# ------------------------------------------------ 

import ee 

 

# Trigger the authentication flow. 

ee.Authenticate() 

 

# Initialize the library. 

ee.Initialize(project='ee-thesiswar') 
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print("hello world") 

# Import other packages used in the tutorial 

import canty # IRMAD>>this module needs to be saved in the same folder as the Jupyter 

import geemap 

import numpy as np 

##################################################################################### 

# Functions for handling data and masking 

def collect(aoi, date, date2): # Collects the first image within the specified time range 

for the first and second period, filters by aoi 

    try: 

        # Collect the first image within the specified time range for the first period 

        im1 = ee.Image( ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") 

                               .filterBounds(aoi) 

                               .filterDate(ee.Date(date), ee.Date(date).advance(1, 

'day')) 

                               

.filter(ee.Filter.contains(rightValue=aoi,leftField='.geo')) 

                               .sort('CLOUDY_PIXEL_PERCENTAGE') 

                               .first() 

                               .clip(aoi) ) 

        

        # Collect the first image within the specified time range for the second period 

        im2 = ee.Image( ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") 

                               .filterBounds(aoi) 

                               .filterDate(ee.Date(date2), ee.Date(date2).advance(1, 

'day')) 

                               

.filter(ee.Filter.contains(rightValue=aoi,leftField='.geo')) 

                               .sort('CLOUDY_PIXEL_PERCENTAGE') 

                               .first() 

                               .clip(aoi) ) 

        # Get the timestamps of the collected images 

        timestamp1 = im1.date().format('E MMM dd HH:mm:ss YYYY') 

        print(timestamp1.getInfo()) 

        timestamp2 = im2.date().format('E MMM dd HH:mm:ss YYYY') 

        print(timestamp2.getInfo()) 

        # Get the image IDs 

        image1_id = im1.id().getInfo() 

        image2_id = im2.id().getInfo() 

 

        # Print the image IDs 

        print("Image 1 ID:", image1_id) 

        print("Image 2 ID:", image2_id) 

        

        # Return the collected images 

        return (im1, im2) 

    

    except Exception as e: 

        print('Error: %s'%e) 

def apply_mask(image, mask): 

        """ 

        Apply a mask to a Sentinel image. 
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        Args: 

            image (ee.Image): Sentinel image. 

            mask (ee.Image): Mask image. 

 

        Returns: 

            ee.Image: Sentinel image with the mask applied. 

        """ 

        masked_image = image.updateMask(mask) 

 

        return masked_image 

    # Load ESA WorldCover dataset 

def export_image(image, folder_path, image_name, scale=20): 

    """ 

    Export an image from Google Earth Engine using geemap. 

 

    Args: 

        image (ee.image.Image): The image to export. 

        folder_path (str): The path to the folder where the image will be exported. 

        image_name (str): The name to use for the exported file. 

        scale (int, optional): The scale of the exported image. Defaults to 30. 

    """ 

    # Create the full export path 

    export_path = f"{folder_path}\\{image_name}.tif" 

 

    # Create a geemap Map instance 

    Map = geemap.Map() 

 

    # Add the image to the map 

    Map.addLayer(image, {}, 'Image') 

 

    # Export the image 

    geemap.ee_export_image(image, export_path, scale=scale) 

 

    # Display the map 

    Map 

def process_images(aoi, dates, visirbands, city_mask): 

    """ 

    Processes images based on the provided area of interest (AOI), dates, 

visible/infrared bands, and city mask. 

 

    Parameters: 

    aoi (ee.Geometry): The area of interest for image processing. 

    dates (list): A list of date strings in the format 'YYYY-MM-DD' to filter the image 

collection. 

    visirbands (list): A list of band names to select from the image collection. 

    city_mask (ee.Image): An image mask to apply to the processed images. 

 

    Returns: 

    None 

    """ 

    

    for i in range(len(dates) - 1): 

        date1 = dates[i] 
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        date2 = dates[i + 1] 

 

        # Collect the two Sentinel-2 images for the specified dates 

        im1, im2 = collect(aoi, date1, date2) 

        

        # Apply the city mask to the images 

        im1 = apply_mask(im1, city_mask) 

        im2 = apply_mask(im2, city_mask) 

 

        # Generate the output name based on the date range 

        output_name = f'FINAL20MAcrosstherange_{date1}_{date2}' 

        file_names.append(output_name)  # Append the output name to the list 

 

        # Run the IMAD function on the masked images 

        canty.run_imad(aoi, im1.select(visirbands), im2.select(visirbands), output_name) 

 

# Folder path for exporting images to the local machine 

folder_path = r'C:\Users\jachy\Desktop\iMAD\Outputs' 

##################################################################################### 

# Areo of interest (AOI) for the study as a featureCollection derived from a shapefile 

located as an asset in the Earth Engine 

aoi = ee.FeatureCollection( 

    'projects/ee-thesiswar/assets/Gaza_AOI').geometry() #North Gaza 

##################################################################################### 

# Masking using the Dynamic World 

START = ee.Date('2023-09-27') # select desired day 

# Define the end date by advancing the start date by one day 

END = START.advance(1, 'day') 

 

# Create a composite filter that combines spatial and temporal filters 

col_filter = ee.Filter.And( 

    ee.Filter.bounds(ee.Geometry(aoi)),  # Filter to include only images intersecting the 

area of interest (AOI) 

    ee.Filter.date(START, END),  # Filter to include only images within the specified 

date range 

) 

 

# Apply the filter to the Dynamic World Image Collection 

dw_col = ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1').filter(col_filter) 

 

# Define the class names present in the Dynamic World dataset 

CLASS_NAMES = [ 

    'water', 

    'trees', 

    'grass', 

    'flooded_vegetation', 

    'crops', 

    'shrub_and_scrub', 

    'built', 

    'bare', 

    'snow_and_ice', 

] 
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# Extract the first image from the filtered collection 

dw_image = ee.Image(dw_col.first()) 

# Clip the Dynamic World image to the area of interest 

dw_image_clipped = dw_image.clip(aoi) 

built_mask = dw_image_clipped.select('label').eq(CLASS_NAMES.index('built')) 

 

# Generate a binary layer where 'built' areas are 1 and others are 0, then apply selfMask 

to keep only 'built' areas 

binary_layer = built_mask.gt(0).selfMask() 

# Update the mask of the built_mask layer with the binary_layer to isolate 'built' areas 

city_mask = built_mask.updateMask(binary_layer) 

############################################################################# 

# execution of Pre-procesing 

# Define the bands to be used in the analysis 

visirbands = ['B2', 'B3', 'B4', 'B8', 'B11', 'B12'] 

# Define the dates for the two periods 

file_names = [] # empty list to save the names of the processed images 

# Batch Processing of dates 

dates = [ 

    "2023-09-27", 

    "2023-11-01", 

    "2023-11-26", 

    "2023-12-26", 

    "2024-01-20", 

    "2024-03-05", 

    "2024-04-04", 

    "2024-05-09", 

    "2024-06-18", 

    "2024-07-18", 

] 

dates =  ["2023-09-27","2024-07-23"]# for individual processing, in case of not needing 

batch 

process_images(aoi, dates, visirbands, city_mask) # Function to process images in batch 

and send tasks to GEE for processing 

# Run the IRMAD >> parameters: (aoi, image1, image2, output_name) individdually 

#canty.run_imad(aoi, im1.select(visirbands), im2.select(visirbands),'ExampleIRMAD') # 

Function to run IRMAD on two images 

####################################################################################### 

alpha_values = [0.00005] 

# Iterate through all the p values in the list (option for more) 

# Iterate through each file name.and export the binary masks locally into the a local 

machine 

for file_name in file_names: 

    try: 

        # Load the image from GEE. 

        im_z = ee.Image(EXPORT_PATH + file_name).select(6).rename('Z') # assuming that 

the 6th band is the Z-score and we have 6 bands for the analysis 

 

        # p-values image by canty 

        pval = canty.chi2cdf(im_z, 6).subtract(1).multiply(-1).rename('pval') 

        # Iterate through all the p values in the list 

        for p_value in alpha_values: 

            # Create a binary mask: 1 where pval is less than p_value (indicating 
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change), 0 otherwise (indicating no change) 

            binaryMask = pval.lt(p_value).rename('binaryMask') 

 

            # Define the export name by removing the dot from the p_value 

            export_name = f'MASKS{str(p_value).replace(".", "_")}_{file_name}' 

 

            # Export the binaryMask with the unique name 

            #export_image(binaryMask, folder_path, export_name, scale=20) # Export the 

binary mask 

            print(f"Exported mask with p-value: {p_value} for {file_name}") 

 

    except Exception as e: 

        print(f"Error processing file {file_name}: {e}") 

 

print("Export is finished.") 

# Iterate through each file name.for clustering 

region = aoi 

for file_name in file_names: 

    try: 

        # Load the image from GEE. 

        input = ee.Image(EXPORT_PATH + file_name).select(0, 1, 2, 3, 4, 5) 

 

        # Make the training dataset.and set scales 

        training = input.sample(region=region, scale=20, numPixels=50000) 

 

        # Instantiate the clusterer and train it.based on the training dataset and the 

mean 

        clusterer = ee.Clusterer.wekaKMeans(10).train(training) 

 

        # Cluster the input using the trained clusterer. 

        result = input.cluster(clusterer) 

        # Export the clustered image with a unique name. 

        export_name = f'cluster20_6classes10ss{file_name}' 

        #export_image(result, folder_path, export_name, scale=20) 

        print(f"Exported cluster for {file_name}") 

 

    except Exception as e: 

        print(f"Error processing file {file_name}: {e}") 

 

print("Export is finished.") 

 

 

Visualizing Z values in 3D 

# Preliminaries such as AOI and previous modules + functions need to be in the same 

jupyter notebook for this code to work 

# the output shoudl visualize the image in 3D space based its values 

import plotly.graph_objects as go 
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import kaleido 

 

#dataset = ee.Image(EXPORT_PATH + filename).select(6).rename('Z') 

 

region = aoi 

#10mVisirbandSS 

# Get the elevation data within the region 

elevation = dataset.select('Z').clip(region) 

 

# Define a scale in meters 

scale = 20 

 

# Reduce the region to a numpy array 

elevation_data = geemap.ee_to_numpy(elevation, region=region, scale=scale) 

 

# Downsample if necessary to avoid performance issues 

# Aggregate data into a lower resolution grid 

def aggregate_data(data, factor): 

    """Aggregate data by a factor, averaging over each block.""" 

    new_shape = (data.shape[0] // factor, data.shape[1] // factor) 

    aggregated_data = np.zeros(new_shape) 

    for i in range(new_shape[0]): 

        for j in range(new_shape[1]): 

            block = data[i*factor:(i+1)*factor, j*factor:(j+1)*factor] 

            aggregated_data[i, j] = np.mean(block) 

    return aggregated_data 

 

# Set the aggregation factor (e.g., 5x5 pixels combined into one) 

aggregation_factor = 5 

elevation_data_aggregated = aggregate_data(elevation_data, aggregation_factor) 

 

# Create x and y coordinates based on the aggregated data dimensions 

nrows, ncols = elevation_data_aggregated.shape 

x = np.linspace(0, ncols - 1, ncols) 

y = np.linspace(0, nrows - 1, nrows) 

x, y = np.meshgrid(x, y) 

 

# Define a custom colorscale with white for zero values 

colorscale = [ 

    [0, 'white'],       # White for zero values 

    [0.001, 'white'], 

    [0.01, 'blue'],      # Transition to blue for low values 

    [0.1, 'yellow'],     # Green for mid-range values 

    [1, 'red']          # Red for high values 

] 

 

# Generate 3D plot using plotly 

fig = go.Figure(data=[go.Surface(z=elevation_data_aggregated, x=y, y=x, 

colorscale=colorscale)]) 

 

# Update layout for better visualization 

# Update layout to hide X and Y axes 

fig.update_layout( 
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    scene=dict( 

        xaxis=dict( 

            title='', 

            showticklabels=False, 

            showbackground=False, 

            zeroline=False  # Remove the pedestal 

        ), 

        yaxis=dict( 

            title='', 

            showticklabels=False, 

            showbackground=False, 

            zeroline=False  # Remove the pedestal 

        ), 

        zaxis=dict( 

            title='Z values', 

            titlefont=dict(size=18),  # Increase font size of Z axis title 

            tickfont=dict(size=14)    # Increase font size of Z axis ticks 

        ), 

        camera=dict( 

            eye=dict(x=1, y=0.2, z=1)  # Adjust these values to rotate the plot 

        ) 

    ), 

    legend=dict( 

        orientation="h",  # Make the legend horizontal 

        x=0.5, 

        xanchor="center", 

        y=-0.1, 

        yanchor="top", 

        font=dict(size=14)  # Increase font size of legend 

    ) 

) 

 

# Show the plot 

#fig.show() 

fig.show(renderer="png", width=2000, height=1500) 

 


