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Title: Smart extensions to regular cameras in the industrial environment

Author: Oskar Razyapov

Department: Department of Software Engineering

Supervisor: Mgr. Ladislav Peška, Ph.D., Department of Software Engineering

Abstract: The purpose of this work is to obtain an extensive set of videos with
automatically annotated locations of people. Using the collected data, we have
developed a Pixel-to-Real machine learning model, which aims to extend static
Closed-circuit television (CCTV) cameras to allow for localization of people and
measuring distance between the them, solely based on the input video data. To
gather the datasets, we have developed an Ultra-wideband (UWB) system, which
allows for precise people localization. By synchronizing UWB and video data,
we generated automatically annotated datasets, which were used for training
the Pixel-to-Real model. To facilitate the data acquisition, we have developed a
GUI, which allows to synchronize, visualize, and analyze video and UWB data
for fast and easy system calibration. Additionally, it facilitates an export of
the data for the model training. To demonstrate the accuracy of the developed
model, we have developed the Optical method for people localization based on the
height of people, and compared it with Pixel-to-Real model. We also performed a
comprehensive evaluation of UWB, Pixel-to-Real, and Optical methods against
Ground Truth people positions. Our methodology ensures the repeatability of the
experiments, which allows us to support the future research and development in
people localization.
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machine learning
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Abstrakt: Účelem této práce je získat rozsáhlou sadu videí s automaticky anoto-
vanými pozicemi lidí. Na základě shromážděných dat jsme vyvinuli model stro-
jového učení Pixel-to-Real, jehož cílem je vylepšit statické kamery uzavřeného tele-
vizního okruhu (CCTV) tak, aby umožňovaly lokalizaci lidí a měření vzdáleností
mezi nimi pouze na základě vstupních video dat. K získání datasetů jsme vyvinuli
ultraširokopásmový (UWB) systém, který umožňuje přesnou lokalizaci lidí. Syn-
chronizací UWB a video dat jsme vygenerovali automaticky anotované datasety,
které byly použity pro natrénování modelu Pixel-to-Real. Pro usnadnění sběru
dat jsme vyvinuli GUI, které umožňuje synchronizaci, vizualizaci a analýzu video
a UWB dat pro rychlou a snadnou kalibraci systému. GUI také usnadňuje export
dat připravených pro natrénování modelu. Pro demonstrace přesnosti vyvinutého
modelu jsme vyvinuli metodu Optical, která je založena na výšce osob, a porov-
nali ji s modelem Pixel-to-Real. Provedli jsme také komplexní hodnocení metod
UWB, Pixel-to-Real a Optical oproti reálným (Ground Truth) pozicím lidí. Naše
metodologie zajišťuje opakovatelnost experimentů, což podporuje budoucí výzkum
a vývoj v oblasti lokalizace lidí.

Klíčová slova: opakovatelné experimenty, cctv kamery, lokalizace, ultra širokopás-
mová technologie, strojové učení
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1 Introduction
Data annotation is a critical part of the training a machine learning model.

Unfortunately, it still has to be done manually, which is both time-consuming and
prone to human errors. The automation of this process can significantly reduce
annotation time, minimize costs and increase data quality.

1.1 Motivation
The primary objective of this work is to proof the concept of automatic data

annotation and acquire an extensive set of videos with automatically annotated
locations of people.

To demonstrate the usability of the collected data, we have developed a
machine learning model, which allows to predict people’s locations and measure
distance between them, solely relying on the input video streams. This model is
aimed to extend the capabilities of traditional static and indoor Closed-circuit
television (CCTV) cameras.

The main use cases of our system can be:

• Covid-19 social distancing: to ensure safe distances are maintained in
public spaces, e.g. schools, offices, and shopping centers.

• Hazardous work environments: to track the workers’ locations in indus-
trial environments, where there is a risk of contact with hazardous materials
or dangerous equipment.

• Indoor navigation and safety: to assist in navigation in large indoor
spaces such as hospitals, airports, and shopping malls. Localization data
can improve emergency response times, and help with optimization of
environmental conditions.

• Surveillance and security: to identify unauthorized access or suspicious
activities.

• Climate Control Systems: to adjust heating, air-conditioning, and
lighting based on real-time occupancy data. This allows to improve energy
efficiency and save money.

• Asset tracking: to track movement of an equipment and its localization
in industrial environments and warehouses.

• Assistance to people with disabilities: to assist people with vision
impairments. Our system can enhance safety by identifying objects in the
immediate vicinity of a person. This can be achieved through the integration
of an additional sensor that informs people about obstacles, for example, in
front of them.

We propose a cost-effective solution that solely relies on the existing infras-
tructure consisting of CCTV cameras and a PC acting as a server. This system
makes advanced positioning capabilities accessible to a broader range of users.
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1.1.1 IoT and Industry 4.0
Our system uses Internet of Things (IoT) technologies. This allows us to

achieve more precise positioning in larger areas of indoor environments. IoT
technologies enable devices to communicate over the internet, allowing real-time
data collection, which enhances the capabilities of existing surveillance systems.
The IoT sensors provide additional contextual data, which improves the accuracy
and reliability of the surveillance. This integration supports the principles of
Industry 4.0, promoting automation and inter-connectivity in surveillance systems,
allowing for more efficient management of indoor environments.

1.2 Our work
The development of a machine learning model requires extensive datasets with

accurate annotations. However, publicly available data often have low quality [1].
To address this, we created our own annotated dataset. Additionally, we used
localization sensors to improve the accuracy in location estimates.

To gather accurate people localization data for training the model, we have
developed own Ultra-wideband (UWB) network. The reason for choosing UWB
is described in Chapter 2. The UWB technology allows to accurately determine
the location by calculating time it takes to signals to travel between transmitting
and receiving devices. A detailed description of UWB technology is provided in
Section 2.1.2.

To ensure the precision of the collected data a considerable time was spent
collecting and analyzing the data. Therefore, to facilitate the data acquisition,
we have developed a Graphical User Interface (GUI), which is called the Indoor
Positioning System. This application enables us to synchronize, visualize, and
analyze video and UWB data, allowing for fast and easy system calibration. This
synchronization generates accurate, automatically annotated datasets, essential
for training the machine learning model.

Our methodology ensures the repeatability of the experiments, which allows
to support the future research and development in people localization. The
Indoor Positioning System (GUI) helps developers to check the precision of their
localization methods or develop new ones based on our dataset.

To demonstrate the practical application of our collected datasets, we have
developed two distinct methods for people localization in indoor environments:

• Pixel-to-Real method: a predictive model trained on a multi-tag UWB
system synchronized with video data. This is the model we aim to train.

• Optical method: a geometric people localization approach, which utilizes
camera’s intrinsic parameters and height of observed people. This approach
does not require the collected UWB annotations, but rather relies only on
the video input. This method is developed solely to compare it with Pixel-
to-Real model and show that our Indoor Positioning System application
can help evaluate any people localization method.

In general, we have compared and evaluated the Pixel-to-Real model against
both Optical and UWB localization methods. For all methods, we used our Indoor
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Positioning System application to extract the estimated people locations. The
comparison is detailed in Chapter 7.

An example of our application is shown in Figure 1.1.

Figure 1.1 An example of how video and UWB data can be synchronized and
visualized in Indoor Positioning System.

1.2.1 System installation process
With the Indoor Positioning System application our localization system can

be quickly installed in the customer’s premises.
The installation process of the localization system is comprised of the following

steps:

• Input data stream: In the customer’s premises, we acquire a continuous
stream of input data from their CCTV cameras.

• Data acquisition for system calibration: We then collect the UWB
measurements on the server for further analysis and calibration of our
system.

• Calibration: Once the data is collected, the system undergoes a detailed
calibration process. This post-processing step involves aligning the UWB
data with the video data to ensure the synchronization of both data streams.

• Model training: The calibration process produces annotated data that
combines video frames with precise location information. This annotated
dataset is then used to train the Pixel-to-Real model, which learns to
predict real-world coordinates from pixel coordinates, enabling the system
to perform accurate localization based on visual input alone.

• Deployment of the model: Once trained, the Pixel-to-Real model is
deployed within the customer’s site. The customer obtains a fully automated
localization system that operates based on the pre-trained model, requiring
no further intervention. This allows to use advanced positioning capabilities
without needing needing a technical knowledge, expertise, or expensive
additional hardware.

During the deployment, the system calibration is performed in a controlled
manner, using our own wireless network for the communication between the
UWB devices and server. This approach avoids potential privacy restrictions and

3



ensures that our system does not affect the existing customer’s infrastructure.
After deployment, the customer will be able to use the Indoor Positioning System
application. However, critical functions will be restricted to qualified personnel
and developers.

1.2.2 Experiments and challenges
Throughout the work, a variety of experiments have been performed in different

environments to simulate real-world scenarios and test the robustness of the
developed methods. These environments include a light manufacturing setup with
obstacles like cabinets and electrical enclosures, a long obstacle-free hallway, and
a laboratory equipped with computers.

During the experiments we encountered several challenges, including signal
interference, data shifts, and synchronization issues. By implementing techniques
such as rolling standard deviation and polynomial regression, we improved the
accuracy of UWB distance measurements. Additionally, using timestamps of
recorded data, we ensured reliable synchronization between UWB and video data.

1.3 Thesis Structure
The thesis is structured as follows. Chapter 2 discusses existing methods for

people localization, highlighting their weaknesses that our work is aimed to resolve.
Chapter 3 describes our journey in developing our own UWB network, including
the issues that we have encountered and resolved. Chapter 4 demonstrates how the
synchronization between video and UWB data is performed to create automatically
annotated datasets. Chapter 5 details the training process of the Pixel-to-Real
model.Chapter 6 explains the Optical method, including the camera calibration
process. Chapter 7 provides a comprehensive evaluation and comparison of UWB,
Pixel-to-Real and Optical localization methods, highlighting their strengths and
weakness. Finally, Chapter 8 concludes the work.

Two appendices are included: Appendix A describes notations used throughout
the work, which facilitates the understanding of the conducted experiments and
the collected data. Appendix A contains a list of figures.

4



2 Related Work
During the research, we explored different methodologies for indoor people

localization. For each method, we have highlighted their disadvantages and the
gaps that our work aims to address.

Several techniques may be used for indoor people localization, including Wi-Fi
[2], Bluetooth Low Energy (BLE) [3], Radio Frequency Identification Device
(RFID) [4], Ultra-wideband (UWB) [5], Computer vision [6] and Neural networks
[7]. All these methods aim at calculating the distances between static and
dynamic objects. The coordinates of static objects are known beforehand, while
the coordinates of dynamic objects are determined based on the distances provided
by the above techniques.

2.1 Comparison of localization techniques
Research performed by Zafari, F. and Gkelias, A. and Leung, K. [8] discusses the

capabilities and limitations of different localization techniques, emphasizing their
accuracy in short-range environments. This work states that precise localization
systems often require extra hardware, which might be expensive, especially
for small organizations. Additionally, it mentions the lack of standardization
and benchmarking for existing people localization techniques.

2.1.1 Received Signal Strength Indicator (RSSI)
RSSI is a measurement of the power present in a received radio signal. It is

used to estimate the signal strength and then determine the distance between
devices [9].

Several studies explore the use of radio frequency localization techniques, which
utilize the RSSI. These techniques include the use of BLE and Wi-Fi technologies.

The BLE is a wireless communication technology designed for low power
consumption and short bursts of data transfer, compared to classic Bluetooth.
The BLE is used for people localization by measuring RSSI between devices.

While the BLE and Wi-Fi approaches are simple and cost-effective, they have
low localization accuracy, especially in Non-line of Sight (NLoS) conditions. This
limitation appears primarily due to RSSI fluctuations caused by multi-path fading,
when signals and their reflections arrive at the receiver in different paths, resulting
in interference that impacts the received signal strength [10].

Moreover, the accuracy is further compromised by signal attenuation caused
by its passage through walls and other substantial obstacles. This problem is
explored in the work of Zafari, F. et al. [8]. It is worth mentioning that industrial
premises are often polluted by signals from a large number of other hardware
devices, which causes all these limitations.

Additionally, BLE devices operate on the overcrowded 2.4 GHz ISM band [11],
which is also used by classic Bluetooth [12] and Wi-Fi technology. This overlap
causes signal interference and multi-path fading, affecting the work of existing
infrastructure.
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2.1.2 Ultra-Wideband
Ultra-wideband (UWB) is a type of wireless communication technology that

uses a wide frequency spectrum (typically from 3.1 to 10.6 GHz) to transmit
signals (data) between UWB devices. The distance between devices is calculated
based on the time (Time of Flight (ToF)) it takes for the signal to travel from the
transmitting device to the receiving device. The communication protocol used in
this technology is described in detail in Section 3.3.1.

Compared to the BLE and Wi-Fi, UWB operates on a wider range of frequen-
cies, utilizes short-duration pulses for communication, and has low power spectral
density, allowing for more efficient elimination of signal interference [13].

Furthermore, recent research shows that, in general, UWB technology outper-
forms BLE v5.1 in complex environments with obstructed Line of Sight (LoS) and
significant multi-path effects [14].

2.1.3 Computer vision
The computer vision techniques do not require the use of any additional

hardware. However, they often have lower localization accuracy compared to other
hardware. The most common computer vision techniques include bird’s-eye view
[6], the use of people heights and stereo vision [15].

Stereo vision

The stereo vision is one of the most accurate computer vision method for
people localization [15]. It involves the use of two or more identical cameras
placed at different angles to capture images of the same scene from different
perspectives. By comparing the differences between the captured images, it is
possible to calculate the depth information and determine the precise location of
people in an environment [16].

Unfortunately, this method has a significant downside — it requires all cam-
eras to be perfectly aligned in order to precisely calculate the distance to the
observed object. This alignment involves ensuring that the cameras are correctly
positioned and that their fields of view overlap accurately, which allows for precise
triangulation. This calibration process is very time-consuming. Furthermore,
this requires a customer to buy additional hardware, and potentially change the
existing CCTV camera infrastructure, which is very expensive.

Bird’s-eye view

The bird’s-eye view refers to a perspective that looks down on an area from
above. The goal is to make the scene flat, so that all objects (in the image) appear
at the same depth. In this representation, it is possible to calculate the real-world
coordinates of people using their x and y pixel coordinates from the image. The
downside of this approach is that it significantly relies on the angle of view of
the camera and requires the transformation process of the normal camera view
to a bird’s-eye view. This process itself involves significant errors in distance
estimation.
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Geometric approach

Given these considerations, we have implemented a geometric-based people
localization, which utilizes the height of each person in the image to estimate their
locations. Later in our work, this method is referred to as the Optical method. In
Section 7.4, we will reveal that the Optical method has lower accuracy compared
to the UWB and developed Pixel-to-Real method.

2.2 Addressing the above mentioned problems
These existing methodologies often lack the capability for automatic annotation,

which is crucial for training and validating machine learning models. Our solution
is aimed to addresses this gap by providing automatically annotated video data.

Moreover, most people localization techniques require additional hardware. To
address this, we propose a cost-effective solution (the Pixel-to-Real model) that
solely relies on the existing infrastructure.

Based on all the advantages of UWB technology over other IoT technologies,
we decided to implement this technology in our work.
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3 Study of UWB technology:
calibration and experiments

This section is intended solely to provide a detailed description of communica-
tion between UWB devices and the challenges encountered while attempting to
implement an UWB localization.

Initially, we planned to use an existing implementation of the UWB localization.
Based on the collected UWB data, we wanted to synchronize it with video
recordings for training the Pixel-to-Real model.

However, we have not found any existing implementation of UWB localization
that would suit our goals. Therefore, we decided to implement it from scratch.

3.1 ESP32 UWB board
We chose the ESP32 board from Makerfabs1, equipped with a BU01 UWB

module2, which is based on the Decawave’s UWB DW10003 module. An example
of the ESP32 board integrated with an UWB module is depicted in Figure 3.1.

Figure 3.1 ESP32 UWB board from Makerfabs. Please pay attention to the antenna
direction, which is crucial in further experiments. The board has a microUSB port,
which is used to power the board, as well as to connect it to a laptop.

The ESP32 board is a low-cost and low-power System-on-a-Chip (SoS) that
includes a microprocessor, Wi-Fi, and dual-mode Bluetooth, which enable a
reliable communication over the wireless network. The BU01 UWB module
further enhances this capability by enabling a communication between UWB chips
to calculate precise locations.

The ESP32 board integrated with UWB module can be of two types: an anchor
and a tag. The specific role is determined by different firmware versions uploaded
onto the device, enabling the same hardware to perform various tasks. An anchor

1https://www.makerfabs.com/esp32-uwb-ultra-wideband.html
2https://docs.ai-thinker.com/_media/uwb/docs/bu01_product_specification_en_v1.0.pdf
3https://www.qorvo.com/products/p/DW1000
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acts as a stationary reference point, essential for precise position determination.
On the other hand, a tag acts as a mobile device attached to an object whose
position need to be tracked.

The UWB module performs continuous scanning to lock onto another UWB
module. Upon establishing a connection, they initiate a ranging process, which
measures Time of Flight (ToF) for data packets to travel back and forth between
the boards. This time is then multiplied by the speed of light to provide the
actual distance between boards [17] (the communication protocol is described in
Section 3.3.1 in more detail). The calculated distance is then used to determine the
location using triangulation4. This technique is discussed in detail in Section 3.4.5.

In addition, the BU01 UWB module is equipped with an antenna that is used
to transmit the signal, as shown on Figure 3.1. Please note the importance of the
antenna orientation, as it plays a crucial role in the performance and accuracy
of our further experiments. Correct antenna alignment is important for correct
signal transmission and reception.

The ESP32 board requires an external power supply to operate, because it does
not have a built-in battery. On the other hand, it is equipped with a microUSB
port, which can be used to connect power banks. The power banks allow for
flexible use of the boards without the need for a stationary power supply.

Firmware setup

The ESP32 board is designed to be compatible with the Arduino IDE5, which
simplifies the process of writing and uploading the firmware.

Before uploading the firmware, it is necessary to set up the Arduino IDE with
the essential ESP32 packages, which enable to work with ESP32 boards. Upon
successful installation of the necessary libraries, the firmware for both the anchor
and tag can be uploaded to the boards.

3.1.1 Antenna calibration
The data packets transmitted from one device to another contain the time of

transmission. Once the counterpart receives the data packet, it records the time
of reception and calculates the ToF based on these two timestamps.

However, as shown in Figure 3.1, the UWB module is equipped with an
antenna. The delay caused by this antenna also contributes to the resulting ToF.
This antenna delay is internal to the module, and therefore, should not be included
in the resulting ToF, as illustrated in Figure 3.2.

Therefore, an accurate antenna calibration is essential. This calibration
involves adjusting the ToF to exclude the antenna delay. This step is critical for
achieving accurate distance measurements, as even minor discrepancies can lead
to significant errors in position estimation. For instance, a 3 ns error in ToF can
result in an approximately 1-meter error in distance measurement due to the
high speed of wireless signal propagation.

The calibration process is conducted using a known distance between the tag
and anchor, performing iterative adjustments to the delay parameter until the

4https://en.wikipedia.org/wiki/Triangulation
5https://www.arduino.cc/en/software
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Figure 3.2 The antenna delay diagram [18].

measured distance closely matches the actual distance. This process is performed
by a specific firmware designed for calibration purposes6. Due to variations in the
antennas provided by the factory, each UWB device must be calibrated individually
to ensure accuracy.

An example of the placement of the tag and the anchor during the calibration
process is depicted in Figure 3.3, where the calibration distance is 1 meter. In our
experiments, we established the actual reference distance using ground markers,
and calibrated devices at a distance of 5 meters. The reason is discussed in
Section 3.4.4. The official recommendations state that it is enough to set the
antenna delay either on a tag or anchor. However, the results of our experiments
indicate that in order to achieve accurate results, each tag and each anchor must
be calibrated separately.

3.1.2 One Anchor – One Tag
After calibrating the antenna, we initiated a test run of the system with a

single tag and a single anchor to evaluate the basic functionality and accuracy of
the UWB ESP32 boards. For this, we used the existing implementation, provided
by the official library7.

We initiated a ranging process, where the anchor was continuously measuring
the distance to the tag. We logged the results to the serial console in Arduino

6https://github.com/jremington/UWB-Indoor-Localization_Arduino
7https://github.com/thotro/arduino-dw1000/tree/master/examples
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Figure 3.3 An example of the placement of the anchor and the tag during the antenna
calibration process. Antennas of UWB modules are directed towards each other making
a clear LoS. The antenna is calibrated at a distance of 1 meter. The anchor is connected
to a laptop, enabling the observation of results logged to the serial console in the Arduino
IDE. The tag is powered by a power bank.

IDE, providing real-time feedback on distance measurements and any potential
anomalies observed during the experiment. This initial test run was essential to
verify the system operational integrity before adding complexity and scaling up
the number of tags and anchors.

During several test runs, we discovered that the boards communicate most
effectively when UWB modules are directed towards each other, achieving a Line
of Sight (LoS) communication. An example of the LoS communication is shown
in Figure 3.3. Conversely, when UWB modules were directed away from each
other, they performed a Non-line of Sight (NLoS) communication, as illustrated in
Figure 3.4. This led either to signal loss or to an increase in estimated distances
due to signal propagation effects, which were caused by reflection and diffraction
of the signals from other objects. In the following text, these measurements are
referred to as “Towards Each Other” and “Away From Each Other” measurements,
respectively.

The difference in the “Towards Each Other” and “Away From Each Other”
measurements is further illustrated in the box plot, depicted in Figure 3.5. The plot
shows the spread and tendency of the both types of measurements at a distance
of 1 meter. The “Towards Each Other” measurements are more tightly clustered
around the mean, indicating less variability compared to the “Away From Each
Other” measurements. Additionally, the histograms shown in Figure 3.6 reveal
that the “Away From Each Other” measurements show a wider spread of values
from the mean, and skewness towards higher values compared to the “Towards
Each Other” measurements. This results in the higher standard deviation and
variance. The statistics for these measurements are presented in Table 3.1.

An example of the collected data with antennas directed towards each other is
shown in Table 3.2. This table shows the samples of measured distances in meters,
which are calculated based on ToF of the signal.
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Figure 3.4 An example of the placement of the anchor and the tag, when antennas
of UWB modules are directed away from each other, creating Non-line of Sight (NLoS)
communication. Distance between modules is 1 meter. The anchor is connected to a
laptop, enabling the observation of results logged to the serial console in the Arduino
IDE. The tag is powered by a power bank.

Figure 3.5 Box plot for the “Towards Each Other” and “Away From Each Other”
UWB measurements at a distance of 1 meter.
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Figure 3.6 The histograms with overlaid density plots for the “Towards Each Other”
and “Away From Each Other” UWB measurements. The actual distance between the
tag and the anchor is 1 meter.

Statistics
Towards Each Other Away From Each Other

Number of records 335 335
Mean (Average) (m) 1.011 1.308

Standard Deviation (m) 0.016 0.031
Minimum (m) 0.97 1.23
Maximum (m) 1.06 1.40

Variance 0.000257 0.000985

Table 3.1 Statistics for “Towards Each Other” and “Away From Each Other” mea-
surements. Mean, standard deviation, minimum and maximum values are provided in
meters.

Distance measurements
Tag ID Range (m)

1 0.99
1 1.02
1 1.00
1 1.04
1 1.03

Table 3.2 An example of the collected data, measured between a single anchor and a
single tag. The anchor and tag are directed “Towards Each Other” for better accuracy
of gathered data. The “From” column contains the tag address. The “Range” column
lists the measured distance in meters.
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3.1.3 Two Anchors – One Tag
As the next step, we attempted to scale up the system to support communica-

tion between one tag and two anchors, as depicted in Figure 3.7. This expansion
is necessary for position estimation using triangulation. With all sides of the
triangle and the coordinates of the anchors known, it is possible to estimate the
coordinates of the tag. The anchor baseline is known beforehand.

Figure 3.7 An example of the placement of two anchors and one tag. Each anchor
is positioned one meter away from the tag, with both anchors are placed towards to
the tag, ensuring a clear LoS for optimal communication. Each device is powered by a
power bank.

However, the use of two anchors introduces the synchronization problem
in distance measurements: to compute the tag coordinates using triangulation,
distance measurements collected from both anchors need to be synchronized in
time, as any time lag between measurements can result in significant errors in
coordinates, especially if the tag is moving.

There are different possibilities of data synchronization. For instance, after
completing the communication with a tag, an anchor can send the distance
measurement including the timestamp of the measurement to a dedicated machine.
Then the machine can synchronize the distance measurements received from the
anchors based on the provided timestamps. Unfortunately, ESP32 UWB devices,
like other radio-frequency devices, are subject to a clock drift [19]. The clock
drift usually occurs when the internal clock frequency slightly deviates due to
factors such as temperature variations, voltage changes, aging of the electronic
components, or clock source errors. These deviations, though often small, can
accumulate and lead to significant timing discrepancies over time, resulting in
misaligned data measurements. Regular synchronization with a more accurate
external time source, such as high-precision oscillators, can help to mitigate this
issue.

A simpler method involves synchronizing the collected measurements from
both anchors directly on the tag. In particular, the tag can sequentially communi-
cate with multiple anchors, storing all the estimated distances for later position
estimation.
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Fortunately, there exists a solution8 that favors the latter synchronization
method, supporting a two-anchor setup with a Python-based server for data
collection and storage. The big advantage of this implementation is that the server
can be hosted on a separate machine, allowing to free the ESP32 board resources
from an extra cost of storing the collected data.

However, a limitation of this system is that it currently supports only one
operational tag in the system. The tag sequentially gathers distance measurements
from the both anchors, one after another. This method effectively addresses issues
with distance synchronization. After collecting the distances, the tag directly
transmits this data to the server.

Additionally, the integration of the server helps to get rid of the need for the
UWB devices to be connected to a laptop for data retrieval. Instead, the server
can be used to receive the measurements from the tag using a wireless network.

Nevertheless, the challenge of selecting an appropriate wireless network for
communication between the tag and server was the next problem we had to
address. In the following section, we will delve into the various wireless network
possibilities we evaluated and describe the solution we implemented to effectively
address this issue.

3.2 First experiments in large environments
Before going into detail about the wireless network, let us describe our initial

experiments in large environments.
Up until this point, our experiments with anchors and tags were limited to

short distances, when the devices were placed on a table and the laptop served as
the server receiving the measurements from the tags.

Motivated by the goal of monitoring more people simultaneously and to
evaluate how precisely the UWB devices can measure distances, we decided to
examine how effectively the system can perform in a more realistic conditions and
whether it is possible to integrate additional tags.

3.2.1 Description of the first experiments in large environ-
ments

We performed experiments at the Faculty of Mathematics at Charles University.
Figure 3.8 illustrates the S301 corridor where these experiments were carried out.
The goal of the experiments was to collect the distances estimated by the UWB
devices.

It is important to note that during these experiments we considered ideal
environment without any artificial obstacles that might affect the communication of
UWB devices. However, we later realized that the environment naturally contains
obstacles that impacted our experiments, as discussed in Section 3.4.3. Some
examples of obstacles include cabinets, an electrical enclosure, and vegetation.

Additionally, we placed UWB ESP32 boards inside protective boxes to ensure
their safety during our experiments. Moreover, this approach made it easier to

8https://github.com/Makerfabs/Makerfabs-ESP32-UWB/tree/main/example/IndoorPositioning
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Figure 3.8 This picture serves solely as an introductory illustration of the experiment
environment. It shows the S301 experiment environment.

manage the devices throughout our experiments. An example of the secure box is
shown in Figure 3.9.

Figure 3.9 An example of a protective box that is used to protect ESP32 UWB
boards.

Reference system

To effectively evaluate a distance estimation method and consequently coordi-
nates, a reference system that provides accurate measurements is essential. Such a
system enables precise evaluations of accuracy of the method we have developed.

To establish such reference system, we utilized paper stickers as markers. We
placed them on the floor to outline the reference system, as shown in Figure 3.10.

Initially, the stickers were placed in three rows, maintaining an interval of
1.25 meters between each row and a 2 meter space between the stickers within
a row. In subsequent experiments, we adjusted the spacing between the stickers
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Figure 3.10 An example of the reference system used during our experiments. The
stickers are placed in three rows, maintaining an interval of 1.25 meters between each
row and a 2 meter space between the stickers within a row.

within each row to 1 meter and then further to 0.5 meters to enhance the precision
during measurements. Throughout the rest of this work we will use RS1m and
RS0.5m notations respectively to indicate a specific reference system.

During the experiments, we held the tags in our hands and walked through
the experiment environment, stopping at each paper sticker for a certain period
of time. This allowed us to collect data corresponding to each specific sticker, for
which we knew the actual distance from the baseline and its coordinates. We used
this information to evaluate the measured distances. The analysis of the collected
data is provided in Chapter 7.

3.2.2 The data collected during experiments
An example of E5(DA_S301_S6(T3_A2_TPh_Md_Wp)) experiment conducted in

S301 environment is shown in Figure 3.11 (the notation is explained below).

Figure 3.11 An example of the experiment E5(DA_S301_S6(T3_A2_TPh_Md_Wp))

Throughout the rest of this work, we will use the specific notation, which will
simplify the experiment description. For example, E5(DA_S301_S6(T3_A2_TPh_Md_Wp))
→ Draw(E5) represents 5th experiment. The type of experiments is data acquisition
DA, conducted in the S301 environment. It follows the S6 scenario (described in
Section 7.1). In this scenario, three people synchronously walk along the paper
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sticker rows, stopping at each paper sticker for one second. They walk in both
directions. Each person walks solely along a certain sticker row. The experiment
involves the use of 3 tag and 2 anchors. The anchors are placed on the cabinet.
Tags are placed on hands (TPh). The experiment involve dynamic movement
(Md) on predefined lines (Wp) only. The set of the collected raw distances is then
represented as Draw(E5). Please refer to Appendix A for more detail about this
notation.

An example of collected Draw(E5) set of distances is shown in Table 3.3. It
consists of the measurement timestamp, the Tag ID, the Anchor ID, and the
corresponding distance to that anchor.

Distance measurements
Timestamps Tag ID Anchor ID Distance Anchor ID Distance

1685796766737 1 101 4.81 102 5.07
1685796767011 2 101 5.15 102 5.05
1685796767286 3 101 5.95 102 5.54
1685796767558 1 101 4.79 102 5.04
1685796767831 2 101 5.08 102 4.94
1685796768103 3 101 5.87 102 5.43
1685796768376 1 101 4.77 102 5.01
1685796768648 2 101 4.87 102 4.74
1685796768918 3 101 5.73 102 5.25

Table 3.3 An example of the data Draw(E5) collected during E5.

Together with the collection of the UWB data, we recorded a video of the
experiment. Throughout the rest of this work, we will use the VD(expid) notation
to represent video data, where expid is the identifier of the experiment. An
example of the VD(E5) video frame is shown in Figure 3.11.

Throughout the work, we have conducted lots of different experiments. The
data collected during each experiment is available in main repository of this thesis
on GitHub9. The data corresponding to the E5 experiment is available 10.

First attempts in synchronization of video and UWB data

When synchronizing data between different sources, it is important to ensure
accurate data alignment. The data can either be collected simultaneously and
synchronized immediately, eliminating the need for later synchronization, or
collected separately, requiring subsequent synchronization. The former approach
makes the both data monolithic, which are later difficult to split and process,
while latter allows each dataset to be used independently, but requires precise
timestamps for accurate data alignment.

We considered the second approach, as our goal is to collect data that can be
used by others to develop new localization methods, or test existing.

9https://github.com/Razyapoo/Master-Thesis/tree/main/Recorded Experiments
10https://github.com/Razyapoo/Master-Thesis/tree/main/Recorded Experiments/Experi-

ments (4-6) 2023.03.06/Experiment 5
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Initially, we recorded UWB data along with the timestamps and used a mobile
phone to record videos. Figure 3.8 shows an example view from a mobile phone
camera. We utilized an acoustic signal to indicate the start of the experiment. This
sound served as an indicator from which the data was considered synchronized.
However, this method introduced several complexities. For example, a video
provided relative timestamps rather than absolute timestamps, making it difficult
to align the data precisely.

Subsequently, we switched to using webcams for video recording. This
approach is similar to connecting to CCTV cameras and allows recording absolute
timestamps. We synchronized the data by minimizing the absolute difference
between frame timestamps:

min|TSvideo(i)− TSUW B(j)|

where TSvideo(i) represents the timestamp of the i-th video frame and TSUW B(j)
represents the timestamp of the j-th UWB data.

We have adopted this method in our subsequent experiments, with further
details available in Chapter 4.

3.2.3 Communication with the server
During our first experiments, the server was operating in a passive listening

mode, where it only received and processed distance data sent by a tag. This
formed a decentralized architecture of the system, where a tag independently
initiated a connection with anchors, calculated the distance from them and sent
the measurement result to the server.

Public access points

The initial approach considered for establishing communication between the
server and tags was the use of public access points and wireless networks, which
are usually pre-installed in environments like hospitals or industrial premises. This
seemed advantageous due to an existing infrastructure, which could potentially
simplify deployment.

The Faculty of Mathematics at Charles University has its own MQ Telemetry
Transport (MQTT) server utilized for a communication of IoT devices. After
trying to use it, we encountered significant challenges in transmitting data through
the public network and subsequently accessing this data on the server, primarily
due to the privacy restrictions.

It is also important to note that utilizing a public network can potentially
affect the communication of other components within network. Therefore, we
decided to establish our own private network via a laptop, which fortunately
resolved the connectivity issue. In addition, this network is only needed during
the deployment stage for the communication with the ESP32 UWB devices.

3.2.4 Inconsistency in the data
As the next step, we tried to involve two tags to communicate with anchors.

We assumed that the system was functioning correctly and data was accurately
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measured for both tags. However, after several experiments, either by accident or
fortunately, we ran into a problem.

Occasionally, the distance measurements collected and related to one tag
actually contained measurements related to another tag. This was due to the
implementation of the Two-Way Ranging (TWR) protocol provided by the original
DW1000 library, which did not function as expected. Specifically, with two tags
and one anchor, the tag positioned closer to the anchor overwrote data intended
for the tag positioned farther away.

Please refer to Figure 3.12, which illustrates the anchor positioned 1 meter
from Tag 1 and 0.5 meters from Tag 2. The anchor and tags are aligned on the
same line. UWB antennas of the both tags are directed towards the anchor’s
antenna ensuring a clear LoS between each tag and the anchor.

It is important to note that the inconsistencies in the data were observed
in all cases where one tag was positioned closer to the anchor than another
tag, regardless of whether all three devices were aligned on the same line or
not. However, the alignment illustrated in Figure 3.12 not only leads to data
overwriting, but also causes conflicts between tags, resulting in signal interruption
and attenuation, and preventing tags from communicating with the anchor. This
is a very important observation, as it helped us with our further experiments.

Figure 3.12 An example of the setup leading to inconsistency in data collected by
the tags. The anchor and the tags are aligned on the same line. Each device is powered
by a power bank (not visible on the image). This alignment not only leads to data
overwriting, but also causes conflicts between tags, resulting in signal interruption and
attenuation, and preventing tags from communicating with the anchor.

This issue arose because the original implementation stores the calculated
distance measurements between the anchor and tags in a shared global variable
on the anchor side. This variable is not specifically allocated for a particular tag,
which leads to inconsistencies in the data measured using tags.

A possible solution to this problem would be to have the anchors directly
send the calculated distances to the server. However, ensuring that the distance
measurements collected from different anchors are properly synchronized and
correctly associated with a specific tag presents a significant challenge, as was
discussed in Section 3.1.3.

We decided not to rewrite the entire library, because we were unclear about
its details, and changing it could lead to new possible issues that might take a
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long time to resolve.
Intuitively, it was clear that once a tag establishes communication with an

anchor, that anchor should be exclusively reserved for that tag and not accept
messages from other tags. Furthermore, after the distance is calculated, the anchor
should complete the communication with the current tag by sending the distance
to it before switching to an another tag. Instead, in the original library, the tag
requests the measured distance from the anchor after the communication has
completed. This setup poses a risk since the measured distance, stored in the
shared variable, can be overwritten by another tag at any time, as happened to
us during our experiments.

Fortunately, we discovered a code on GitHub11 that is written by Seokseong
Jeon. This code seemed promising to us for working with a larger number of tags.
It implements the DS-TWR protocol in the similar way as the official DW1000
library. In contrast, it includes examination of source and destination addresses
and utilizes different states to manage the communication between the anchors
and tags.

However, we have encountered difficulties in enabling communication
between the anchors and the tags, as they were not communicating
at all. The reason is that the provided system is designed specifically to work
with the standalone DWM1000 module12, which utilizes the Arduino Pro Mini to
enable the interaction with the Raspberry Pi, which transfers the collected data
over the network to the server.

In contrast, our setup uses UWB ESP32 boards from Makerfabs. They
integrate Bluetooth and WiFi capabilities, enabling them to communicate with
the server over the wireless network directly without requiring any additional
hardware.

As a result, we reimplemented the system to ensure proper communica-
tion and functionality.

3.3 The implementation of our own IoT network
Before going into the details of code changes, it is essential to understand the

Two-Way Ranging (TWR) protocol.

3.3.1 An overview of existing ranging protocols
The distance between anchors and tags can be measured using a ranging

algorithm, which calculates Time of Flight (ToF) of the signal, such as radio wave
or light. This measurement can be calculated using different techniques, including
One-Way Ranging (OWR), Two-Way Ranging (TWR), and Time Difference of
Arrival (TDoA)13.
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Figure 3.13 One-Way Ranging [20].

One-way Ranging

The One-way Ranging (OWR) involves a single transmission from a sender
to a receiver. Please refer to Figure 3.13. Tag transmits the “Poll” message,
including the time t1, representing the transmission time. Upon receiving this
message, Anchor records the reception time and calculates the propagation time
tprop, which represents ToF. The main disadvantage of the OWR is that it requires
both the devices to have synchronized internal clocks [21], which may lead to the
clock drift. ToF is then equal to tprop.

Two-Way Ranging

Figure 3.14 Two-Way Ranging [20].

Two-Way Ranging (TWR), on the other hand, requires both the devices to
exchange messages. The distance is calculated based on the time it takes for a
signal to travel from one device to another and back. Please refer to Figure 3.14.
A Tag initiates the exchange by transmitting a “Poll” message to an Anchor,
which then logs the reception time of the message. Subsequently, the Anchor waits
for a certain period, treplyB, and sends back a “Poll ACK” message containing the

11https://github.com/somidad/dw1000-positioning/
12https://www.qorvo.com/products/p/DWM1000
13https://en.wikipedia.org/wiki/Time_of_arrival
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transmission time and the time when “Poll” message was received, based on its
own clock. Upon receiving the “Poll ACK” message, the Tag logs the time of
the reception, based on its own clock, and proceeds to calculate the round-trip
time tround.

This method has an advantage of being asynchronous, as it eliminates the
strict synchronization between anchor and tag [21]. The Time of Flight (ToF), or
tprop, is then computed by the following formula:

tprop = 1
2(tround − treplyB)

where tround denotes the round-trip time, which is stored in Tag, and treplyB
denotes the time delay for Anchor, after which it sends the response signal to Tag.

However, UWB devices typically have clock drift issues, which leads to
significant errors in the ToF estimates. These errors increase as treplyB increases
[22].

Double-Sided Two-Way Ranging

Figure 3.15 Double-Sided Two-Way Ranging [20][23].

Double-Sided Two-Way Ranging (DS-TWR) protocol involves two round-trip
exchanges to compute the distance between two devices. See figure Figure 3.15.
Tag initiates the first round-trip exchange by sending “Poll” message, to which
Anchor responds by sending “Poll ACK” message, thus initiating the second
round-trip exchange. Tag then responds to Anchor by the “Range” message,
completing the full DS-TWR exchange. Both devices record the transmission and
reception times of the messages, allowing for precise calculation of the distance
between them.

There are two types of DS-TWR protocol: symmetric14 and asymmetric. The
symmetric version requires the reply times from each device to be the same.

14https://en.wikipedia.org/wiki/Symmetrical_double-sided_two-way_ranging
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However, this can cause the clock drift, significantly affecting the accuracy of
the ToF measurement [22].

To reduce this error, Neirynck, Luk and McLaughlin proposed an asymmetric
version of TWR protocol [22], which does not require same reply times for each
device. The resulting ToF estimate, tprop, is then calculated using the following
expression:

tprop = troundA · troundB − treplyA · treplyB

troundA + troundB + treplyA + treplyB
(3.1)

In this work, we implement the asymmetric version of the Double-Sided Two-
Way Ranging (DS-TWR) protocol and use Equation (3.1) to compute ToF of
signals.

Distance calculation

Since UWB utilizes radio waves for communication, the distance between the
Anchor and the Tag can be calculated using the following formula:

d = c · tprop (3.2)

where c is the speed of light, tprop is the estimated ToF, and d is the actual
distance between the Anchor and the Tag.

3.3.2 Discovery and Ranging phases
As illustrated in Figure 3.16, there are two phases in which both the anchor

and the tag operate: discovery and ranging. In the discovery phase, the tag
discovers the desired number of anchors available in the current network. In the
ranging phase, the tag iteratively performs the Double-Sided Two-Way Ranging
(DS-TWR) protocol with each discovered anchor to measure the distance to it.

3.3.3 Decentralized architecture
In this section, we will describe our first approach, which is aimed to ensure the

correct operation of UWB devices, and allows us to use more tags simultaneously.
It is presented for solely for informative purposes, to show what challenges we
have encountered and why we decided to switch to centralized architecture. It
also details the DS-TWR protocol for its better understanding.

In the next section, Section 3.3.4, we will describe our final solution, which
we implemented from scratch. It has another implementation details, however the
basic idea of the DS-TWR protocol remains the same.

The code provided by Seokseong Jeon on GitHub15 involves different states
in communication between the anchors and the tags. We revised these states
to better meet our requirements and removed unnecessary components
responsible for interactions with the Arduino Pro Mini and Raspberry Pi. In the
following sections, we will describe the initialization and communication process
of anchors and tags.

15https://github.com/somidad/dw1000-positioning/
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Figure 3.16 Discovery and Ranging phases during message exchanges [23].

Device initialization

Before the actual communication can start, both the anchors and the tags
need to be activated.

First, the anchors are activated and initialized with necessary settings. After
completing the setup, they transition to the listening mode, STATE_IDLE, and
wait for incoming requests from the tags, as shown in Figure 3.17.

Next, the tags are switched on. They are activated sequentially to avoid signal
attenuation and interruptions, which occur due to the fact that all tags start
sending “Blink” request messages to the anchors at the same time. As a result an
anchor is unable to process any incoming requests from tags. This is the issue we
addressed during our first experiments. Upon initiation, the tags connect to the
server over the private wireless network, and transition to the STATE_IDLE. The
server starts passively listening for incoming messages from the connected tags.

We assigned each UWB device a unique identifier based on its MAC address,
which facilitated their management and identification. To ensure clear differentia-
tion between devices, we allocated mutually exclusive ranges of addresses for the
anchors and the tags, such that the anchors process only messages from tags, and
tags process only messages from anchors.

The tag coordinates are calculated using triangulation, which requires distance
measurements from at least two anchors. However, these measurements need to
be synchronized in time for precise estimation of the coordinates. As discussed
in the Section 3.1.3, there are two different ways to synchronize data, including
synchronization on the server or synchronization directly on the tag. We chose
the latter, because it ensures that synchronization is handled automatically on the
tag, as distances are collected sequentially one by one. This avoids the potential
clock drift issues associated with timestamp-based synchronization on the server.
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Discovery phase

Figure 3.17 Decentralized architecture. Updated states used in an anchor during
the communication between an anchor and a tag [24].

Figure 3.18 Decentralized architecture. Updated states used in a tag during the
communication between an anchor and a tag [24].

To start the discovery phase the tag transmits a “Blink” signal aimed at
discovering all the anchors available in the current UWB network, and transitions
to a STATE_DISCOVERY waiting for responses from the anchors.

Upon receiving the “Blink” signal and checking the source address of the tag,
the anchor transitions to a STATE_RANGING_INIT and waits for a random delay,
which is necessary to prevent the tag from being overloaded with responses from
the anchors. This is due to the fact, that an UWB device, as any other radio-wave
device, requires a time to process the incoming signals [23]. After the random
delay expires, the anchor sends a “Ranging Init” signal back to the tag, indicating
its presence in the UWB network and then transitions back to the STATE_IDLE.

Upon receiving the “Ranging Init” signal, the tag examines the destination
address contained in the message. If the message is intended for it, the tag
remembers the identifier of the discovered anchor for later communication. The
tag only waits for incoming “Ranging Init” signals from anchors for a certain
period of time, DISCOVERY_TIMEOUT. If the desired number of anchors has not
been discovered after that timeout, the tag returns to the STATE_IDLE to initiate a
new discovery phase. Otherwise, the tag transitions to a STATE_RANGING, thereby
initiating a ranging phase.
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Ranging phase

Starting from this point and throughout the DS-TWR communication process,
both the anchor and tag consistently check addresses contained in the message. If
either the source or destination address does not match, they ignore that message.

During the STATE_RANGING the tag iteratively perform the DS-TWR protocol
with each discovered anchor by transmitting a “Poll” message and recording the
transmission time. It then transitions to a STATE_POLLACK and waits for the
response from the anchor for POLLACK_TIMEOUT milliseconds. If no response is
received within the defined timeout, the tag returns back to the STATE_RANGING
to initiate the communication with an another anchor.

Upon receiving the “Poll” message, the anchor records the reception time,
waits for a predefined treplyB delay, and sends the “Poll ACK” message back to
the tag. Then it transitions to a STATE_RANGE and waits for RANGE_TIMEOUT
milliseconds for the response.

Upon receiving the “Poll ACK” message, the tag records the reception time,
waits for a predefined treplyA delay, sends a “Range” message back to the an-
chor and records the message transmission time. Then it transitions to a
STATE_RANGEREPORT and waits for RANGE_REPORT_TIMEOUT milliseconds for the
response from the anchor. If there is no response, the tag transitions back to the
STATE_RANGING to initialize the communication with an another anchor.

In order to solve the problem discussed at the beginning of Section 3.2.4 and
depicted in Figure 3.12, where data collected and related to one tag contained
measurements related to another tag, we decided to compute the actual distance
on the tag side.

Therefore, if the anchor successfully receives the “Range” message, it records
the message reception time, sends all the collected reception timestamps in the
response message and transitions to the STATE_IDLE, thereby concluding the
communication process from its side.

Upon receiving the “Range report” message, the tag calculates the ToF. It
then determines the actual distance from the anchor using Equation (3.2).

Server implementation in C++

Up to this point, we have been using a server provided by Makerfabs, which
allowed us to work with only one tag. We updated it to support two tags by
assigning each tag a specific port.

As we were trying to support more tags, it became impractical to manually
add a new port for each newly connected tag.

Eventually, we decided to implement our own server in C++, as it gives more
control over server management.

Server initialization

The server has two responsibilities. The first responsibility is to handle new
connection requests from the tags. Another responsibility of the server is to handle
incoming requests containing estimated distances from the tags that are already
connected to the server.
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Upon completing the distance estimation, the tag transitions back to the
STATE_RANGING. In this state, if the desired number of distance measurements
has been collected, the tag sends them to the server. Otherwise, it returns to the
STATE_SCAN and initiates the discovery phase again.

Adding states to the server

An issue occurred when a tag transitioned directly to STATE_SCAN without
delay, immediately starting a new communication with anchors and preventing
other tags from interacting with these anchors. Additionally, if a tag failed
to collect enough distance measurements due to communication issues with a
particular anchor, it would get stuck in a cycle without progressing. To address this,
we introduced a delay, requiring the tag to wait after sending the measurements
to the server and before starting a new discovery phase.

Furthermore, even when a tag was already connected to the server, it was
crucial to first notify the server about the intention of the tag to send the distance
measurements before the actual submission. Therefore, as illustrated in Figure 3.19,
we introduced two different server states: STATE_IDLE and STATE_COMMUNICATION.
Additionally, as illustrated in Figure 3.18, we added three more states to a
tag: STATE_SEND_REQUEST_TO_SERVER, STATE_REQUEST_ACK_FROM_SERVER, and
STATE_SEND_DISTANCE_TO_SERVER.

Figure 3.19 Decentralized architecture. Server states.

To initiate various actions during the communication, the server and the tags
use different request flags. For instance, “REQUEST” signals to the server that
the tag is ready to transmit measured distances to the server.

Therefore, the server initially remains in the STATE_IDLE, waiting for incom-
ing requests from a tag. If a tag is in the STATE_RANGING and has collected
enough distance estimates, it transitions to the STATE_SEND_REQUEST_TO_SERVER
and verify if the connection with the server is still active. If the connection
has been lost, the tag transitions back to the STATE_IDLE and begins a new
discovery phase. Otherwise, the tag sends a request flag “TRANSMIT” to the
server to initiate the distance transmission process. It then transitions to the
STATE_REQUEST_ACK_FROM_SERVER and waits for a response from the server. If
there is no response within a certain period, for example if the server is busy
communicating with another tag, the tag transitions to the STATE_SCAN and
initializes a new discovery phase. We fixed this gap in the implementation of
centralized architecture by retrying the submission again.

Upon receiving the request from the tag, if the server is available, it records
the tag identifier and sends an acknowledgement flag “ACCEPTED” to indicate
successful receipt of the request. Then it transitions to the STATE_COMMUNICATION,
as illustrated in Algorithm 1. This state is essential, as it shows that the server is
currently involved in communication with the tag. This prevents other tags from
interrupting the server while it is already communicating with the particular tag.
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Algorithm 1 Getting a request from a tag
if state = STATE_IDLE and flag(buffer, ”REQUEST”) then

tagId ← extractTagId(buffer)
sendToTag(tag, ”ACCEPTED”)
state ← STATE_COMMUNICATION

end if

After receiving the acknowledgment signal, the tag transitions to the
STATE_SEND_DISTANCE_TO_SERVER state, sends the measured distances and its
identifier to the server, and waits for a predefined period of time for confirmation.
This specific time period is needed to transmit the messages back and forth
between the tag and the server. This timeout period should ensure that the tag
has enough time to receive a response from the server. If the period is too short,
the tag will not be able to receive a response from the server.

Upon receiving the measured distances, the server verifies the source. If the
request comes from an unexpected tag, the server ignores it and waits for the
expected one. Once the correct request is received, the server stores the measure-
ments, sends the acknowledgement flag “RECEIEVED” to the tag, indicating
successful receipt, and returns to the STATE_IDLE, where it resumes listening for
new requests from other tags. Refer to the Algorithm 2 for more details.

Algorithm 2 Receiving the distance measurements on the server
if state = STATE_COMMUNICATION and match(buffer, tagId) then

receivedData ← extractData(buffer)
saveData(receivedData)
sendToTag(tag, ”RECEIVED”)
state ← STATE_IDLE
clearTagId(tagId)

end if

The STATE_SEND_DISTANCE_TO_SERVER is specifically designed for transmit-
ting the distance measurements and for receiving acknowledgement from the server.
The tag’s communication states were designed for possible future expansions. For
instance, if the tag does not receive a response from the server within a certain
time, it will reattempt to send the measured distance instead of returning to
the discovery phase. However, this reattempt should occur only once to prevent
repeated signal transmissions that could cause delays or even block incoming
messages from other tags. We added this possibility in the centralized version of
the UWB system.

Weaknesses of the decentralized system

Eventually, server states helped eliminate server overload from direct data
transmissions. Previously, when multiple tags sent messages simultaneously, the
server often failed to separate and correctly process these messages, resulting in
mixed, lost, or delayed data.

While the state integration resolved many issues with multiple tags, challenges
remained. We were only able to gather data on the server from a maximum of
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two tags at once. In addition, the data did not arrive at the server as frequently as
was expected because the tags were competing to communicate with the anchors.
Simultaneous requests from tags often resulted in signal collisions, preventing
anchors from responding.

To address this problem, we modified the condition requiring a tag to
collect data from at least two anchors before sending it to the server. We reduced
the number of required anchors to one. Additionally, this adjustment allowed us
to add a third tag to the system. However, we began receiving many messages
on the server that only contained measurements from one anchor, despite having
two or three anchors active. As a result, the entire system began to operate
slower because received distance measurements were from only one anchor, and
the overall frequency of data related to a single tag was lower.

We have often encountered situations where anchors became non respon-
sive without any apparent reason. They did not receive any requests from the
tag. This could happen if the number of interrupts occurring in a short period
exceeded the processor ability to handle them efficiently, or if interruption flags
were not cleared properly after handling an interrupt. As a temporary solution,
we implemented a timeout mechanism to detect when an anchor gets stuck. After
timeout, the anchor performs a hard reset and re-initializes with its initial settings.
While this is not the ideal solution, it helped to mitigate the issue at the cost of
the delay it takes to reset an anchor.

During the ranging phase, as soon as the anchor and the tag established a
connection, they recorded the address of their counterpart to ensure that future
messages would arrive from the correct source. However, this led to a situation
where an anchor, upon receiving numerous requests from other tags, spent time
checking their addresses and informing them that it is already busy. As a result,
the anchor could not respond to the tag it is currently communicating with. This
delay often caused timeouts designed to monitor if the counterpart was alive
and responding. Consequently, it led to communication breakdowns between the
anchor and the tag.

An important issue occured when three tags operated simultaneously with
two anchors. The server often received data related only to one particular tag.
This tag attracted all the attention of the anchors. We addressed this issue
by implementing the list of recently communicating tags. In particular, when a
tag estimates the distance to a certain anchor, that anchor adds that tag to its
list of recently communicating tags. Then upon receiving a new request from a
tag, the anchor starts communication only if the tag is not already in its list. The
size of this list can vary. In our experiments, we utilized a list of size one.

However, the use of least recently communicating tags did not significantly
improve the situation, since communication was often disrupted. This issue arose
because a tag might be in the list of one anchor but not in the list of another,
and vice-versa for another tag. Such discrepancies in the lists between different
anchors led to inconsistent communications. This situation led us to consider the
potential benefits of developing a centralized version of the system.

To address all these problems, we explored several potential solutions. One
promising approach involves assigning each tag its own dedicated frequency channel
for interactions with the anchors. Throughout the communication, an anchor
tunes to the same channel as the active tag. After completing the interaction, the
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anchor switches to the channel of an another tag. However, while this method
eliminates the issue of the signal collision and competition among tags, it is
time-consuming due to the need for anchors to continually switch channels [25].

Through our experience with UWB devices, we have begun to understand
why tags might interrupt each other. As mentioned in Section 3.3.1, during
the DS-TWR communication process, both the anchor and the tag await reply
delay upon receiving the message from the counterpart. This delay requires
careful adjustment because it can lead to mutual interruptions between devices
if they transmit signals simultaneously. This problem applies especially to tags,
as synchronization between them is hard to achieve. While the use of different
channels might help, another solution is to implement a centralized system
where the server acts as an arbitrator in communications between anchors and
tags. In such systems, the synchronization needs to be managed only between the
anchors and only during the ranging phase.

3.3.4 Centralized architecture - Our final solution
In this section we describe our own implementation of the DS-TWR

protocol, which finally enabled us to work with three tags simultaneously.
In the centralized architecture, the server acts as an arbitrator, controlling the

communication process. It determines the sequential order in which tags should
communicate with anchors, ensuring that only one tag communicates with the
anchors at a time.

The centralized architecture has many benefits. For instance, it reduces
the load on the server and eliminates competition between tags for the attention
of the anchors. It reduces the time, which an anchor spends checking the source
address and handling messages from multiple tags. This architecture helps reduce
the complexity of synchronizing delays during the DS-TWR communication
process. Finally, its key benefit is the ability to control the order in which
the tags communicate with the anchors, allowing for enhanced management of
the communication process. All these benefits were confirmed during the testing
phase.

However, there are some drawbacks. For example, the frequency of data
reception is lower than in a decentralized system, because each anchor must
passively wait after communicating with one tag before it can proceed with others.
Eventually, in the centralized version, we achieved even higher frquency of the
received data compared to the decentralized version.

After considering all the advantages and disadvantages, we decided to imple-
ment our own UWB network based on a centralized architecture.

Our adaptation of the server for centralized architecture

In the decentralized architecture the server acts primarily as a passive listener,
waiting for incoming requests from tags. It cannot send outgoing requests to
instruct a tag to start interacting with anchors. To address this limitation we
have explored several approaches.

One such approach involves the tag frequently asking the server to check its
availability for communication. If the server is available, it responds to the tag
with a command to begin communicating with anchors. This command can then

31



be interpreted as “Measure!”. If the server is not available, it simply ignores the
incoming message from a tag.

Upon receiving the “Measure!” command form the server, the tag initiates
communicating with the anchors. This approach ensures that only one tag
communicates with the anchors at a time, preventing the anchor from being
overloaded by multiple simultaneous requests from the tags.

However, a downside of this method is that it can lead to the server being
overloaded by continuous requests from the tags, requesting the permission to
start their communication with the anchors. This affects an ability of the server
to effectively manage communications and respond in time to the tags.

This issue highlighted the need for a more reliable server management method
that can effectively handle high volume of incoming requests without the delays
in responses.

Considering this potential problems, we have introduced a queue of
connections, which is managed by the server, and eliminated all the server
states to simplify the architecture.

The server operates in two main modes. In the first mode, it accepts new
connections from tags. In particular, upon activation, each tag sends a request to
the server, indicating its presence on the network. After receiving the request, the
server adds a tag to the queue of connections.

In the second mode, if the server is currently not busy and the queue is not
empty, the server selects a tag from the queue and sends it the “Measure!” request
flag to initialize communication with anchors, as illustrated in Algorithm 3. This
code is available in the main repository of the thesis on GitHub16

Algorithm 3 Server’s request to initiate communication with anchors.
1: if !tagQueue.empty() and !isServerBusy then
2: tag ← tagQueue.pop() ▷ Select next tag for communication
3: sendToTag(tag, ”Measure!”)
4: isServerBusy ← true
5: end if

As in the decentralized architecture, both the server and tags in the cen-
tralized system use request flags to initiate various actions. To simplify the
communication process, we reduced the number of signals to two. Specifically,
“Measure!” is used to signal a tag to start communication with the anchors, and
“RECEIVED” is used to confirm the successful receipt of distance measurements
by the server. Furthermore, we introduced isServerBusy indicator, which shows
when the server is engaged in active communication with a specific tag. This
prevents the server from sending a new request to another tag from the queue,
while it is already involved in an active connection with a certain tag.

After estimating the distances from the required number of anchors, the
tag sends these measurements to the server. Upon receiving the distances, the
server stores them locally, pushes the tag to the end of the queue and sends the
“RECEIVED” acknowledgement back to the tag to confirm successful receipt.
The server then repeats the same process with the next tag from the queue. This

16https://github.com/Razyapoo/Master-Thesis/blob/main/Implementation/Server/Server.cpp
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cycle allows the server to handle each tag in a sequential order, resolving the issue
where a single tag could monopolize the attention of the anchors.

Our own DS-TWR implementation for the centralized architecture

Remember that the code provided by the Makerfabs performs well, but only
when there is a single operating tag in the system, as discussed in the Section 3.2.4.
We hypothesized that integrating this with a centralized architecture might
potentially eliminate this limitations.

To test this, we extended the code provided by Makerfabs to support message
exchanges between the tags and the server. Subsequent testing revealed that this
setup is still optimal only for a single operating tag. Attempts to add more tags
to operate simultaneously led to communication issues, resulting in estimated
distances being recorded as zero and sometimes even negative.

Eventually, we decided against overwriting the official library. Instead, we
chose to adapt the code from the decentralized architecture.

As was mentioned at the beginning of this section, one significant disadvantage
of the centralized architecture is that the frequency of the collected data is lower
than in the decentralized architecture. To improve the communication speed, we
removed all states that were used in the communication between anchors and
tags, as well as between tags and the server. Instead the anchors and the tags
always expect a certain message type from their counterparts as defined by the
DS-TWR protocol.

DS-TWR protocol involves two round-trip exchanges to compute the distance
between two devices, each consisting of two message transmissions. To indicate
a certain step within a single round-trip exchange, both the anchor and the
tag use specific message types. These types are identified by flags contented
within the messages. Moreover, each device consistently verifies the address of
the counterpart to prevent interruptions from other devices and to escape the
problem with message overwriting, which is discussed in Section 3.2.4.

This changes allowed us to increase both the speed of the communication and,
consequently, the frequency of the measurements collected from the tags.

One potential problem in the decentralized architecture, as well as in the official
DW1000 library, is that each tag first performs a Discovery phase to identify
the required number of anchors before initiating DS-TWR communication. This
method poses a risk of deadlock when a person moves from one room to another,
potentially loosing the signal from previously discovered anchors. In industrial
environment this can happen often.

To address this issue, we eliminated the Discovery phase. Instead a tag
directly initiates the Ranging phase by sending a “Poll” message to an anchor.
This modification enhances the tag independence and mobility, allowing it to
dynamically interact with any available anchor without being restricted to a
specific set of anchors. This approach significantly reduces the time spent on the
communication and the change of communication failures.

Once a tag receives the “Measure!” request from the server, it broadcasts a
“Poll” message, including its address. Upon receiving the “Poll” message, the
anchor records the tag’s address together with the message’s reception time. Then
it waits for a specific delay. This setup raises a question about how to manage
responses from multiple anchors. Simultaneous responses could overload the tag
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with incoming requests, causing it to freeze and preventing it from responding to
the anchors.

In the decentralized system, this issue was managed by introducing random
wait times before anchors responded to the tag, a process that occurred during
the Discovery phase. Since we eliminated the Discovery phase in the centralized
architecture, we needed a new solution.

We addressed the issue by establishing constant treply reply delays for each
anchor. Experimentally, we found that using identical reply delays for all anchors
caused signal collisions, preventing the tag from responding. This problem arose
when we added a second and then a third anchor to the system. Eventually, we
found optimal, distinct reply delays for each anchor to avoid collisions. These
values were challenging to determine correctly, as many combinations led to
collisions

When reply delay expires, the anchor responses to the tag with a “Poll
ACK” message. Then the tag and the anchor communicate using the DS-TWR
communication protocol. In the end, the tag calculates distances from the required
number of anchors and sends them to the server, as discussed in the Section 3.3.4.

3.4 Evaluation of the collected UWB data
After the successful implementation of the DS-TWR protocol, we examined

the precision of the UWB devices in distance estimation.
We performed experiments in four different environments: Dorm - ExpEnv1,

Rot - ExpEnv2, S301 - ExpEnv3 and S8 - ExpEnv4.

3.4.1 Setting up the experiment environments
To evaluate the precision of distance estimations, we used the RS1m reference

system, which was discussed in Section 3.2.1.

• Dormitory - Experiment Environment 1

• Description: Simulates a narrow hallway of a manufacturing environment.
The environment is shown in Figure 3.20.
• Challenges: Includes reinforced concrete walls, causing signal interference,

which significantly affects the accuracy of UWB measurements, as discussed
in Section 3.4.3.

• Rotunda - Experiment Environment 2

• Description: Simulates a small laboratory, equipped with large set of
personal computers. The environment is shown in Figure 3.21.
• Challenges: Involves the strong signal interference caused by large number

of personal computers and other electronic devices.

• S301 - Experiment Environment 3

• Description: Simulates a light version of a manufacturing environment. The
environment is shown in Figure 3.22.
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• Challenges: Includes cabinets that create obstacles, resulting in Non-line
of Sight (NLoS) conditions. Additionally, it includes an electrical enclosure,
creating signal interference, when the tag is located in close proximity to it.
• Schema: Schema is available in Figure A.1.

• S8 - Experiment Environment 4

• Description: Simulates the long hallway, which is free of obstacles. The
environment is shown in Figure 3.23.
• Challenges: Includes cabinets that create obstacles, resulting in Non-line

of Sight (NLoS) conditions. Includes an electrical enclosure, creating signal
interference.
• Schema: Schema is available in Figure A.2

Figure 3.20 A photo of the Dorm - ExpEnv1. It simulates a narrow hallway of
a manufacturing environment, including reinforced concrete walls that cause signal
interference.
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Figure 3.21 A photo of Rot - ExpEnv2. It simulates a small laboratory, equipped
with large set of personal computers.

Figure 3.22 A photo of the S301 - ExpEnv3. It simulates a light version of a
manufacturing environment. This environment is challenging due to the presence of
cabinets and an electrical enclosure.
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Figure 3.23 A photo of the S8 - ExpEnv4. It simulates the long hallway. This
environment is challenging due to the presence of an electrical enclosure.
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Plastic pipes as helping structure

Initially, during the experiments, we held the tags in our hands and walked
through the experiment environment, stopping at each paper sticker for a certain
period of time.

However, we discovered that people also contribute to the location error
when holding a tag. Due to the natural variability of posture, they may not hold
the tag exactly at the point where the sticker is, thus adding additional error
to the estimated distance. Furthermore, people significantly contribute to the
signal interference. When a person holds a tag close to his body, the signal is
interrupted. We found that holding the tag slightly away from the body, without
touching it, or above the head, does not affect the signal.

To address these problems, we used plastic pipes, as shown in Figure 3.23.
We used them as stands for the tags, and placed them on each sticker for a certain
period of time to measure the distance. The height of the pipes matches the
height at which we held the tags. As the result, this allowed us to align the tags
precisely with the locations of the stickers.

To precisely align the antennas of the anchors and tags, we used a pencil and
thread and later a laser device.

3.4.2 Experiment scenarios for UWB evaluation
To examine the precision of the measured distances, we used several different

scenarios aimed at measuring the distances and comparing them with the reference
Ground Truth distances, given by RS1m reference system. The calibration of UWB
devices was performed at an optimal distance of 5 meters. The reason is discussed
in more detail in Section 3.4.4.

Furthermore, we conducted both static and dynamic experiments in all sce-
narios. In static experiments, the tags remained stationary, while in dynamic
experiments, the tags were moved throughout the experiment environment.

In static experiments, we defined an anchor line for the anchors and a separate
tag line for the tags, as shown in Figure 3.20. The tags and anchors stayed
stationary along their corresponding lines. During the experiments, we shuffled
the positions of the anchors and tags within their respective lines to ensure varied
data collection. In the dynamic experiments, the anchors remained stationary,
while the tags where moved independently of each other.

• Scenario 1: Static tag calibration

• Setup: Configurations included various combinations of each tag and each
anchor. For example, one tag with one anchor, one tag with two anchors,
two tags with one anchor, two tags with two anchors, etc.
• Objective: Calibrate and examine the accuracy of UWB measurements in

static conditions.

• Scenario 2: Dynamic tag calibration

• Setup: Used the same configurations as in Scenario 1, but added dynamic
movements of the tags.
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• Objective: Calibrate and evaluate the accuracy of UWB measurements
under dynamic conditions.

• Scenario 3: Obstacles

• Setup: Introduced obstacles while using various configurations of tags and
anchors.
• Objective: Assess the impact of obstacles and tag rotations on the accuracy

of UWB measurements.

• Scenario 4: Tag rotations

• Setup: Performing yaw rotations of tags.
• Objective: Assess the impact of obstacles and tag rotations on the accuracy

of UWB measurements.

• Test Types

• Direct Tests: Distances are measured between the anchors and tags placed
in the same rows. For example, the pair of Anchor 102 and Tag 3 shown in
Figure 3.24.
• Diagonal Tests: Distances are measured between the anchors and tags

placed in different rows. For example, the pair of Anchor 101 and Tag 1.

Figure 3.24 An example of direct and diagonal tests. This represents the E83
experiment.

3.4.3 Observations
During our experiments we have identified several anomalies. Some of these

were expected, while others appeared unexpectedly.
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During the experiments that follow the Scenario 1, we found that each tag
and anchor requires its own calibrated antenna delay parameter, contrary to
the suggestion of the official recommendations stated in DW1000 library. We
sequentially placed each tag at the left, right, and middle sticker rows to measure
distances and perform individual UWB device calibration. These experiments are
available in the main repository of this thesis on GitHub17.

Additionally, increasing the CPU frequency of UWB devices significantly im-
proved communication speed. At 160 MHz, calculating distances from two anchors
and sending them to the server took 250 milliseconds on average. Increasing the
frequency to 240 MHz reduced this time to about 100-125 milliseconds.

Noise and signal interference

Following the Scenario 2, we discovered the discrepancy in the distance mea-
surements. When the microUSB power connections of an anchor and a tag were
directed towards each other, as in the case of Anchor 101 and Tag 3 shown
in Figure 3.24, the signal was amplified, resulting in measured distances lower
than the actual distances. Conversely, when the power connections were directed
away from each other, as in the case of Anchor 102 and Tag 1, this led to signal
attenuation, resulting in higher measured distances. Initial thought was that
deviations in distances were caused by the devices themselves, because their lights
were blinking. However, the problem was in the USB cables used for powering
the UWB devices that acted as unintended antennas. They caused the signal
dispersion effect: in the first case, the signal pulse remained strong due to the
constructive interference, while in the latter case, signal dispersion reduced its
strength.

During the experiments that follow the Scenario 3, we tested how the signal
interacts with different obstacles. When signals pass through hands and chairs
they do not make an interference. However, other objects, like walls, vegetation
leafs and laptop can affect the signal, sometimes resulting in signal loss.

In addition, in the E83(Calib_Dorm_S3(T3_A2_TPp_Md_Wp)) experiment, we
examined how people influence the signal propagation even when they do not hold
any tag. When two tags and the anchor are placed in the same row, as shown on
Figure 3.24, the signal is clearly received. However, when a person stands between
tags, the tag behind the person loses the Line of Sight (LoS) with the anchor,
causing a a connection break between the anchor and the tag. This situation is
illustrated in Figure 3.25.

The orientation of the antennas matters. When the antennas of the
anchor and the tag are directed away from each other, the measured distance
increases and becomes unpredictable. This is the issue detailed in Section 3.1.2.

This observation was also confirmed in the E6(Calib_S301_S4(T1_A2_TPh_Ms_Wp))
experiment, which examined tag rotations around the yaw axis. The tag showed
increased measurements and lost connection when turning by more than 45 degrees
with respect to the anchor.

Furthermore, we observed a signal interference near the electrical enclosure, as
shown on Figure 3.26. In particular, the area of approximately 2 meters from the

17https://github.com/Razyapoo/Master-Thesis/tree/main/Recorded Experiments/Experi-
ments (32 - 84) 2023.12.23 - 2023.12.30
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Figure 3.25 A person blocks the communication between the anchor and tag (behind
person).

electrical enclosure was affected by the significant signal interference. In our initial
versions of the DS-TWR implementation this interference resulted in signal loss.
And in our latest implementations we observed its impact in affected distance
measurements. This situation is analyzed in detail in the Chapter 7 and illustrated
in Figure A.3.

Importance of the time delays during communication

Reply delay

As described in Section 3.3.1, during the DS-TWR communication, anchors
and tags use reply delays to properly process the received signals. This delays
prevent collisions that occur when multiple UWB devices start sending signals
simultaneously, as discussed in Section 3.3.4. Although reply delays allows adjust-
ing communication speed, very short delays can cause a loss of communication
and require device resets.

Furthermore, the reply delay should be calibrated for each set of tags separately
in order to avoid the collisions during the communication.

Hard resets

Even with correct reply delays, the anchors often stopped receiving signals from
tags. We struggled with this problem for a long time without finding a solution.
We added a watchdog to monitor if the anchor received or sent a signal within a
certain period. If not, it performed a hard reset to resume the communication
with the tag.

Experimentally we found that the optimal timeout value is 500 milliseconds,
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Figure 3.26 Interference area caused by electrical enclosure.

as a lower value could lead to indefinite cycling of the device, potentially causing
it to burn out. This exact scenario occurred during our experiments.

3.4.4 Analysis of deviations in collected measurements
During the dynamic experiments, we noticed that the deviation in the measured

UWB distances increased with the distance from the anchors, considering the
calibration of the anchor and tag at a distance of 1 meter.

The Table 3.4 shows the deviation in measured distances compared to the
Ground Truth distances given by RS1m reference system. The deviations are shown
in Table 3.4.

Given this observation, we calibrated the anchors and tags at 5 meters, im-
proving accuracy for both shorter and longer distances. Distances less than 5
meters showed a negative shift, while distances greater than 5 meters showed a
positive shift. This allowed us to reduce the absolute error in distance estimation
to approximately 0.12 meters, considering the same area size.

The main goal is to collect as precise UWB coordinates as possible, as
this is mandatory for training the precise Pixel-to-Real model.

Therefore, we have trained polynomial regression model to correct the UWB
distance estimations.

Resolving the deviations in data

Let’s define (for more detail please refer to Appendix A):

• Draw(Eexpid) as the set of the raw distances collected during Eexpid experi-
ment.
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Measured distance Reference distance
1 1.008
2 2.031
3 3.052
4 4.103
5 5.144
6 6.142
7 7.171
8 8.204
9 9.289

Table 3.4 An example of the discrepancy between the measured UWB distances
and reference Ground Truth distances. It shows the average values of the estimated
distances at each meter.

• Dcorr(Eexpid) as the set of the corrected distances collected during Eexpid

experiment.

Since the measured data Draw did not have a linear relationship, we imple-
mented polynomial regression to correct measurements. We trained a function
CorrectUWBData on known data and then used it to correct the measured
distances, as follows:

Dcorr(Eexpid) = CorrectUWBData(Draw(Eexpid))
We stayed at each paper sticker for a certain period. This allowed us to detect

standing periods using a standard rolling deviation, calculate the average distances
for each period, and map them to the Ground Truth distances. This mapping
helped to create the regression function, which we used to correct all measured
distances, for both standing and moving periods.

The pseudocode of data correction function CorrectUWBData looks as fol-
lows:

Algorithm 4 Correcting UWB distances using polynomial regression
Input: Raw distance data Draw, Ground Truth data RS1m, window size w, deviation
threshold δ
Output: Corrected distance data Dcorr
function CorrectUWBData(Draw, RS1m, w, δ)

rollingStd← CalculateRollingStd(Draw, w)
stationaryPeriods← DetectStationaryPeriods(Draw, rollingStd, δ)
averages← CalculateAverages(stationaryPeriods)
regressionFunction← TrainPolynomialRegression(averages, RS1m)
Dcorr ← CorrectRawData(Draw, regressionFunction)
return Dcorr

end function

Instead of using rolling standard deviation, we also considered the use of ArUco
markers18. Each marker is unique and therefore can be used to represent a specific

18https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
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standing period. We held markers in front of the camera to later identify them
during video processing. We have collected such data during E7-E14

19 experiments,
but did not evolve this approach further.

The analysis of UWB data in GUI

The data analysis stage took us a considerable amount of time. Investigating
the correct way of data analysis and correction involved extensive research. This
has provided us with significant knowledge, which allows for faster deployment of
our system for customers. We expect the deployment process to take approximately
1 or 2 days.

We integrated the capability to analyze and correct the collected UWB data
into our Indoor Positioning System application. This analysis is performed in a
dedicated window, as shown in Figure 3.27. The main purpose of this capability
is to identify and correct anomalies in the collected data.

Figure 3.27 Data analysis window in Indoor Positioning System application.

The tool enables the users to select a specific time range for analysis. This
feature is crucial for focusing on particular segments of data, allowing for more
detailed data examination.

3.4.5 Calculating coordinates using UWB data
After estimating the UWB distances, we calculated people’s coordinates using

triangulation.
19https://github.com/Razyapoo/Master-Thesis/tree/main/Recorded Experiments/
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Triangulation theory

We assume that people stay on the same floor when moving. Additionally,
people hold tags at the same height as the anchors. This allows us to ignore the
third dimension (height) in their coordinates.

Triangulation is a process of determining the location of a point (tag) by
forming triangles to it from known points (anchors). It involves the two points
of circle intersections (with centers at the anchors), defining two possible points
where the tag can be located [26].

Figure 3.28 Triangulation setup with two anchors and one possible location of the
tag. Another location can be found symmetrically.

Let’s define the triangle formed by the anchors and tag, denoted as A1A2T
(see Figure 3.28):

• A1: Anchor 1 with coordinates (x1, y1)

• A2: Anchor 2 with coordinates (x2, y2)

• T : Tag with coordinates (xUWB, yUWB)

• A1A2: Anchor baseline, which is equal to a

• A1T : Estimated UWB distance from Tag to Anchor 1, which is equal to d1

• A2T : Estimated UWB distance from Tag to Anchor 2, which is equal to d2

Then the coordinates of the possible tag locations can be found as follows:

T1,2 =
(︃

x1 + p · x2 − x1

a
± h · y2 − y1

a
, y1 + p · y2 − y1

a
∓ h · x2 − x1

a

)︃
Assuming that the anchors always have known coordinates, we can easily select

the relevant (xUWB, yUWB) coordinates for the Tag.
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Visualization of the UWB people localization

Due to the specifics of the environments, such as the presence of cabinets
or walls, it is often difficult to determine the exact locations of people from the
video alone. To address this problem, we added a dedicated window to the Indoor
Positioning System that displays a top-down scheme of the observed area. An
example is shown on Figure 3.29.

Currently, we support a top-down view only for UWB localization.

Figure 3.29 UWB localization window in Indoor Positioning System. Red squares
correspond to anchor locations, while blue triangles represent people.

3.4.6 Evaluation of UWB localization
We extended the coordinate system to cover the space between the anchor

baseline and the camera filming the area. The origin of the real-world coordinate
system is assumed to be at the left wall and camera line (see Figure 3.29). The
camera is placed 2.08 meters behind the anchor baseline. The reason for shifting
the coordinate system is to avoid sticking to the UWB coordinate system and
extend it to cover the entire space of the environment, simulating real industrial
conditions.

The evaluation of the estimated UWB coordinates is performed in Chapter 7
together with analysis of coordinates provided by Optical and Pixel-to-Real
methods. This approach avoids repetition and simplifies the explanation of our
analysis.

By utilizing the capabilities of our data analyzer, we ensured that the UWB
coordinates are precisely estimated compared to the ground truth coordinates.
This accuracy confirms that the UWB coordinates are reliable for further analysis
and for developing the Pixel-to-Real predictive model, which is discussed in
Chapter 5.
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4 Synchronization between
Video and UWB data

With correct distance measurements, we switched to the task of video and
UWB synchronization. While the initial steps in synchronization are discussed in
Section 3.2.2, this chapter is essential, as it represents the next step in developing
the Pixel-to-Real model.

4.1 Timestamp-based synchronization
To improve synchronization, we switched to using webcams. This allowed us

to assign absolute timestamps to each frame for more accurate synchronization
with UWB data, which are also assigned with absolute timestamps. The times-
tamps correspond to Unix timestamps since Epoch, which makes them sequential
and unique.

Video and UWB data are collected at different frequencies, which leads to
mismatch in the timestamps. However, this can be resolved by matching each
frame with UWB measurement that has the closest timestamp. This ensures
that the matched data are collected as simultaneously as possible.

Let us define the following sets of data:

• TSvideo = {tf(1), tf(2), . . . , tf(n)} as the set of timestamps corresponding to
video frames f(i).

• TSUWB = {tu(1), tu(2), . . . , tu(m)} as the set of timestamps corresponding to
uwb measurements.

where m and n are number of collected video frames and UWB measurements,
respectively.

The search of the closest timestamp is performed as follows:

• For each tf(i) ∈ TSvideo, find tu(k) ∈ TSUWB, such that ∀tu(j) ∈ TSUWB :
|tf(i) − tu(k)| ≤ |tf(i) − tu(j)|

The UWB measurements are collected at lower frequency (4 Hz per tag)
compared to the video (16 Hz). Additionally, anchors may periodically stop
working and restart, as discussed in Section 3.4.3. This may further reduce
the frequency of the collected UWB measurements, leading to potential gaps in
the data. Moreover, message loss due to interference or other factors can also
contribute to incomplete UWB data.

4.2 Adding video recording to the server
For more simultaneous synchronization, we introduced an additional thread to

the server dedicated to video recordings. This thread is responsible for recording
separate frames from the webcam and assigning them with the Unix timestamps
since Epoch.
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Additionally, we added a separate window, which allows us to track actual
status of the recording. In particular, the green color indicates that the recording
is being conducted without any problems, and the red color indicates that the
recording has been interrupted. An example is shown in Figure 4.1.

Figure 4.1 The green color indicates that the recording is being conducted without
any problems.
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5 Pixel-to-Real model
After collecting videos with annotated positions, we proceeded with training

the machine learning model.
To uniquely determine people positions by the model, it is important to use a

correct representation of input data. Additionally, the model should produce the
same output for a given input every time.

The Convolutional Neural Network (CNN) can learn specific features in images
and use them to accurately determine people locations. However, training a CNN
typically requires high computational power.

On the other hand, a simpler models, such as linear regression or decision tree,
allow us to train models faster and require less computational power, which is one
of the most important criteria for many companies. These models can be highly
effective and sufficient when the relationship between input and output data is
straightforward. In our work we use decision tree as discussed later in Section 5.3.

5.1 Pixel coordinates as an input for the Pixel-
to-Real model

We use the (xp, yp) pixel coordinates as an input for the Pixel-to-Real model
to estimate the (xP2R, yP2R) real-world coordinates, as follows:

(xP2R, yP2R) = f(xp, yp) (5.1)
where f represents the trained Pixel-to-Real function.

The (xp, yp) coordinates represent the center of the bottom edge of the bound-
ing box detected by the YOLOv4 object detection framework. This choice is based
on the fact that people have different heights, and the floor forms a common plane
on which all people stand at the same level, as shown in Figure 5.1. This allows
us to eliminate the third dimension (height) in real-world coordinates.

Figure 5.1 Projection of people coordinates onto the floor.

As discussed in Section 3.4.5, we hold tags at the same height as the anchors,
which allows eliminate height when calculating (xUWB, yUWB) coordinates. This
allows us to train the function f by matching the (xp, yp) and (xUWB, yUWB)
coordinates, considering the UWB coordinates as a reference.
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5.1.1 Alignment of detected people with UWB coordinates
As discussed in Section 4.1, for each video frame we find the UWB coordinates

with the closest timestamp for each detected person. However, YOLOv4 produces
detection boxes in the non-deterministic way, which leads to the problem of
matching each person with the corresponding UWB coordinates. This problem
can be solved by recognizing and tracking people to ensure the correct association
between a tag and person. Recognition methods may include face recognition,
clothing recognition, or behaviour analysis. People can also wear markers, such as
Aruco markers, which makes the recognition process easier.

However, this process is challenging due to the difficulty of recognizing people
in large areas, especially when cameras are positioned far from the people. Fur-
thermore, tracking the people continuously is challenging task, especially when
people mingle.

To address these challenges and to train the model accurately, we simplified
the training data by ensuring that only one person is visible in the camera’s field
of view throughout the entire video. This approach guarantees that all measured
UWB coordinates relate to a single person only, eliminating the need for complex
tracking and identification algorithms. Furthermore, it is sufficient to collect the
training data using only one person, because our model relies solely on the pixel
coordinates of the bottom edge of the bounding box, and tag-person association
is needed only for model evaluation.

Let us define the following sets of data:

• P = {(xp(1), yp(1)), (xp(2), yp(2)), . . . , (xp(n), yp(n))} as the set of pixel coordi-
nates in the video frames, corresponding to a single person. Each (xp(i), yp(i))
coordinates correspond to the frame with the timestamp tf(i) ∈ TSvideo.

• W = {(xUWB(1), yUWB(1)), (xUWB(2), yUWB(2)), . . . , (xUWB(m), yUWB(m))} as the set
of real-world coordinates from UWB measurements, corresponding to a
single person. Each (xUWB(i), yUWB(i)) coordinates correspond to the frame
with the timestamp tu(i) ∈ TSUWB.

The timestamps of the collected data serve as unique identifiers for that
data. Thus, the timestamps can be used as means of aligning UWB coordinates
with pixel coordinates. This alignment defines the following set:

A =
{︂(︂(︂

xp(i), yp(i)
)︂
,
(︂
xUWB(k), yUWB(k)

)︂)︂
| k = argmin

j
|tf(i) − tu(j)|

}︂
(5.2)

5.2 Training the Pixel-to-Real model
To develop an accurate machine learning model for people localization, it is

essential to split the dataset into distinct training, testing and validation sets.
This ensures that the model is trained and evaluated on distinct datasets.

5.2.1 Splitting the dataset into training and testing sets
Several strategies existing for splitting the dataset, including by-frame splitting,

segment-based splitting, and using separate videos for training and testing.
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During by-frame splitting, every second frame of the video is used for training
the model, and the remaining frames are used for testing. However, this can lead
to model overfitting, because adjacent frames are highly similar. As a result, the
model might perform bad on new, unseen data.

Segment-based splitting involves dividing the video into large, continuous
segments and assigning them to the training, testing and validation sets. However,
if these segments are similar in content, this also may result in overfitting.

To solve the problems associated with overfitting, we used separate videos
for training and testing the model. To ensure the diversity in the data we have
recorded videos using different:

• Scenarios:

– Scenario 5: Training and validation of the Pixel-to-Real model

Figure 5.2 Scenario 5.

• Objective: To gather the extensive dataset for model training
• Setup: A person walks backwards along the entire length of the ex-

periment environment, stopping every 0.5 meters for 30 seconds. Upon
reaching the end of the line, the person moves to the line on the right
and moves forward. The distance between lines is 0.417 meters. The
process is repeated throughout the entire recording.
• Corresponding experiments are: E109-E117

– Scenarios 6-10: Testing the Pixel-to-Real model.
• See Section 7.1 for more detail.
• Corresponding experiments are: E118-E132

• Environments: S301, S8.
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– See Section 3.4.1 for more detail.

This approach minimizes the correlation between training, testing and valida-
tion data, providing a more accurate assessment of the model’s performance.

5.3 Extreme Gradient Boosting framework for
model training

While linear regression is a powerful regression model, it is not suitable for
our goal, as the relationship between pixel coordinates and UWB coordinates is
not linear. Furthermore, polynomial regression also resulted in overfitting, which
led to inaccurate predictions on unseen data.

After further research, we chose Extreme Gradient Boosting (XGBoost). XG-
Boost is a machine learning algorithm that works based on gradient boosted
decision tree [27]. This model proved to be more robust in handling the non-linear
relationships between pixel and UWB coordinates and in handling the outliers and
noise in the data. Handling the outliers is important, especially in the environ-
ments, where objects cause significant interference. An example of the interference
caused by the electrical enclosure is discussed in Section 3.4.3.

The XGBoost represents the Pixel-to-Real function f (from Equation (5.1)).
We train it on a dataset A (from Equation (5.2)).

Although, our Indoor Positioning System application does not provide direct
capability to train the model, this feature will be added in the future work. Instead,
it allows us to export the set A consisting of synchronized coordinates, providing
flexibility in selecting a machine learning method. Furthermore, it supports the
use of the trained model, enabling the application of the model to new unseen
data.

The evaluation of the trained Pixel-to-Real model is provided in Chapter 7.
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6 Optical people localization

Figure 6.1 Projection of the 3D scene onto the 2D image plane. Op represents the
principal point of the camera, OOpt represents the origin of the camera coordinate
system, f is a camera’s focal length.

In this chapter, we will describe the Optical method for people localization
that we have implemented to further evaluate the Pixel-to-Real model. By
implementing it, we also demonstrate the capability of our Indoor Positioning
System application to evaluate other people localization methods.

A camera captures the real-world 3D scene as a 2D image using Planar
Projection [28], resulting in a loss of depth information. For example , the
points P 1, P 2, . . . , P 5 project to the same point P p on the image (camera sensor),
as shown in Figure 6.1. Fortunately, it is possible to reconstruct the 3D coordinates
from 2D image coordinates, if the distance (depth) from the camera to the observed
person zOpt and camera intrinsic parameters are known.

Similar to the UWB system, we expected to find an existing implementation
of the 3D reconstruction from a 2D image. However, we have only found solutions
that do not take into account the intrinsic camera parameters, resulting in very
low accuracy in determining people locations. Therefore, we decided to implement
our own Optical method for people localization, which relies on the height of the
observed people and camera intrinsic parameters.

6.1 Height-based distance estimation
As discussed in Chapter 5, we detect people using YOLOv4 framework. Once

people are detected, their distance from the camera is calculated based on their
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height in the image (height of the detection box in pixels) and the focal length f
of the camera. This process requires precise calibration and understanding of the
camera’s parameters.

As discussed in Chapter 4, we use the webcam to capture the scene. We
assume that all its parameters are fixed, including focal length, Field of View
(FoV), rotation and orientation. Additionally, we use the already known heights of
the observed people, and heuristic method to assign each person with his height.
In the future, we plan to add a heuristic method to estimate people’s heights
without any prior knowledge.

The distance zOpt can be calculated by the following formula:

zOpt = H · f
h

(6.1)

where H is the actual height of the person, f is the focal length of the camera,
and h is the height of the person in the image (see Figure 6.1).

This equation requires to know the focal length of the camera, which may
vary for each camera, even for the same camera model from the same supplier.
Therefore, it is mandatory to perform intrinsic calibration of the camera to get
the correct focal length.

6.1.1 Intrinsic calibration
Modern cameras are not ideal, as they have the shift of the principal point.

Fortunately, intrinsic calibration of the camera can help estimate this shift together
with focal length.

The intrinsic parameters of a camera are typically represented by a matrix
known as the Intrinsic Matrix K, which includes the focal lengths and the
coordinates of the principal point [29]:

K =

⎡⎢⎢⎢⎣
fx 0 cx

0 fy cy

0 0 1

⎤⎥⎥⎥⎦
where fx and fy are the focal lengths in the x and y directions, cx and cy are

the coordinates of the principal point.
Non-linear intrinsic parameters such as lens distortion are also important to

consider. Although, they are not included in the linear camera model described
by the intrinsic parameter matrix, these parameters can be estimated using image
rectification techniques [30].

Kenji Hata and Silvio Savarese provide an excellent explanation of the calibra-
tion and rectification processes in their CS231A Course1.

With known depth information zOpt, the real-world coordinates can be calcu-
lated as follows:

xOpt = (xp − cx) · zOpt · fx (6.2)
yOpt = (yp − cy) · zOpt · fy (6.3)

1https://web.stanford.edu/class/cs231a/course_notes.html

54

https://web.stanford.edu/class/cs231a/course_notes.html


where (xOpt, yOpt, zOpt) are real-world coordinates of the observed object predicted
by the Optical method (with respect to the camera coordinate system), (xp, yp)
are image coordinates of the observed object, (fx, fy) are the focal lengths in
the x and y directions, (cx, cy) are the coordinates of the principal point. Focal
lengths and principal point are taken from the intrinsic parameter matrix.

6.2 Camera calibration
The calibration is performed using the OpenCV library and a 9× 6 chessboard

calibration pattern. This process involves capturing multiple images of the
chessboard pattern from different angles and distances, which are then used to
estimate the camera’s intrinsic parameters. An example of the calibration process
is shown in Figure 6.2.

Figure 6.2 The process of the camera intrinsic calibration. Detection of the chessboard
pattern.

6.3 Implementation of the Optical method
Intrinsic calibration only gives the coordinates relative to the camera’s coordi-

nate system. To get the coordinates in the world coordinate system, it is necessary
to apply a rotation and translation transformations.

Figure 6.3 Pipeline of the coordinates’ reconstruction.

When converting camera coordinates to real-world coordinates, we consider
only translation, which allows to extend the coordinate system to cover the entire
space of the environment, simulating real industrial conditions, as discussed in
Section 3.4.6.

Additionally, to align with the coordinates provided by the UWB and Pixel-
to-Real methods, we eliminate the height dimension in the Optical method.
Furthermore, we assume that people always stand on the same floor (at the same
height). Therefore, we select only (xOpt, zOpt) coordinates.

The evaluation of the Optical method is provided in Chapter 7.
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7 Evaluation and comparison of
people localization methods

In this section, we will evaluate and compare the UWB, Pixel-to-Real and
Optical methods. In the end, we will highlight the strengths and limitations of
each method.

7.1 Experiments scenarios
During experiments, we followed distinct scenarios to evaluate the performance

of our localization methods. It is important to note that in these scenarios we
used four anchors placed in pairs on opposite sides from each other, as shown in
Figure 7.1. All scenarios consider clear Line of Sight (LoS), without obstacles.

• Scenario 6: Walking solely along the stickers.

• Objective: Test the accuracy of distance measurements and estimate
people’s coordinates. This experiment is similar to the Scenario 2 described
in Section 3.4.1, but involve three people instead of using plastic pipes.

• Setup: Three people synchronously walk along the paper sticker rows,
stopping at each paper sticker for one second. They walk in both directions,
towards Anchor 1 and Anchor 2 pair, and Anchor 3 and Anchor 4 pair.
Each person walks solely along a certain sticker row.

• Complexity: Evaluation of measured distances and estimated coordi-
nates is straightforward, as the distance to each paper sticker is known.

• Scenario 7: Walking along the stickers and next to them. Row
switching is forbidden.

• Objective: Observe the possible deviation in measurements and try to
estimate people’s coordinates.

• Setup: The setup is similar to the Scenario 6. In addition, the first
person (from the left) walks next to his sticker row on the inner side,
toward the middle person. The second person walks solely on his sticker
row. The third person also walks next to his sticker row on the inner
side, toward the middle person. It is only allowed to walk right on the
predefined row and forbidden to change rows.

• Complexity: Evaluation of estimated people’s locations is more chal-
lenging, as tags are located closer to each other, potentially causing signal
interference. Additionally, tags and anchors are not aligned on a straight
line.

• Scenario 8: Walking along the stickers and next to them. Row
switching is allowed.

56



(a) Scenario 6 (b) Scenario 7 (c) Scenario 8

(d) Scenario 9. (e) Scenario 10.

Figure 7.1 Experiment scenarios aimed at testing the developed methods.
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• Objective: Test the accuracy of distance measurements and observe the
possible deviation in measurements, particularly when tags are rotating
and causing signal interference. Then try to estimate people’s coordinates.

• Setup: The setup is similar to Scenario 7. In contrast, people can walk
asynchronously. Additionally, the first person (from the left) walks along
the predefined sticker row and next to to it from the inner side, toward
the middle person. The second person walks along the predefined row
and is allowed to walk next to the row from both sides. The third person
walks the same as the first person, but from another side.
• Complexity: People may walk asynchronously in any direction, poten-

tially creating Non-line of Sight (NLoS) for other tags. Additionally, when
switching between rows, tag rotations can cause signal interference with
other tags and affect measurement accuracy, emulating the Scenario 4
described in Section 3.4.1, but with three people.

• Scenario 9: Free walk. Only inside the area bounded by four
anchors.

• Objective: Simulate more natural movement patterns and test the
behavior.

• Setup: Three people walk freely within the area bounded by the four
anchors in different directions, without following a predefined path.

• Complexity: This scenario presents a more difficult task as the nature
of the movement is unpredictable. This results in a more challenging eval-
uation of the accuracy of distance measurements and estimated people’s
coordinates.

• Scenario 10: Free walk everywhere. Inside and outside the area
bounded by four anchors.

• Objective: Simulate even more natural movements under more natural
conditions.

• Setup: The setup is similar to Scenario 9, but people can walk outside
the area bounded by the four anchors. They are allowed to sit on chairs,
walk to the plants and enter the doors.
• Complexity: This scenario presents the most challenging experiment.

The nature of movements is unpredictable, and the presence of addi-
tional objects like chairs, plants, and doors further contributes to signal
interference.

We perform our evaluation solely based on the Scenario 5 and Scenario 6.

7.2 Experiments aimed at evaluating the devel-
oped methods

The evaluation is performed on the data collected during the following experi-
ments. Raw data are available on GitHub1:

1https://github.com/Razyapoo/Master-Thesis/tree/main/Recorded Experiments
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• E109(DA_S8_S5(T1_A2_TPh_Md_Wpn))

This experiment simulates the system’s calibration process at the deployment
stage. The data collected during this experiment is used to train the Pixel-
to-Real model, due to the large area of the S8 - ExpEnv4 environment. In
this scenario a person walks slowly, stopping at each paper sticker (Scenario
5). This allows for extensive analysis of the collected data.

• E113(DA_S301_S5(T1_A2_TPh_Md_Wpn))

This experiment simulates a simple scenario with a single person and allows
for the evaluation of the model trained on the data collected in E109. This
experiment is conducted in an environment S301 - ExpEnv3. This envi-
ronment differs from the one on which the model is trained, making the
evaluation especially interesting as it tests the model’s performance in a
new environment. Although the data collected during this experiment can
also be used to calibrate our system and train the Pixel-to-Real model, we
let this task for the future work. This experiment can be considered as the
one that is used during the system’s calibration process at the deployment
stage.

• E118(DA_S8_S6(T3_A4_TPh_Md_Wp))

This experiment simulates more realistic conditions and aims to demonstrate
the performance of our system in the operational stage. It involves the
walking of three people at almost normal walking speed and is recorded in
the same environment as E109. For evaluation, we use the model trained on
data from E109.

• E124(DA_S301_S6(T2_A4_TPh_Md_Wp))

Similar to E118, this experiment simulates realistic conditions to evaluate our
system’s performance in the operational stage, using the model trained on
data from E109. It involves the walking of 2 people at almost normal walking
speed. This experiment is conducted in the S301 - ExpEnv3 environment,
which is different from the one on which the model is trained.

This notation represents the 109th, 113th, 118th and 124th experiments. The
type of experiments is data acquisition DA, conducted in the environments S8
and S301. The E109 and E113 experiments follow the scenario S5 (see Section 5.2),
while the E118 and E124 experiments follow the scenario S6. The E109 and E113

experiments involve the use of 1 tag and 2 anchors. The E118 experiment involves
the use of 3 tags and 4 anchors. The E124 experiment involves the use of 2 tags and
4 anchors. Tags are placed on hands (TPh) in each experiment. The experiments
involve dynamic movement (Md). The E109 and E113 experiments involve walking
pattern both on predefined lines and next to them (Wpn), while the E118 and E124

experiments involve walking pattern on predefined lines (Wp) only. During these
experiments, we have collected Draw(E109), Draw(E113), Draw(E118), Draw(E124) sets
of distances. Please refer to Appendix A for more detail about this notation.

The UWB method provides a set of coordinates that are calculated specifically
for each experiment from Dcorr(E109), Dcorr(E113), Dcorr(E118), Dcorr(E124) sets of
distances. A Dcorr(Eexpid) set of distances is derived from Draw(Eexpid) by correction
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of raw distances using polynomial regression, as described in Section 3.4.4. The
set of coordinates provided by the UWB method is further denoted as CUWB(E109)
for experiment E109, CUWB(E113) for experiment E113, CUWB(E118) for experiment E118

and CUWB(E124) for experiment E124.
The Pixel-to-Real method provide a set of coordinates that are predicted by

the Pixel-to-Real model, as described in Chapter 5. It is important to note that
the Pixel-to-Real model is trained on the CUWB(E109) coordinates calculated based
on Dcorr(E109) set of the corrected distances. However, similar to the UWB and
Optical methods, the Pixel-to-Real method is tested in both S8 - ExpEnv4 and
S301 - ExpEnv3 environments. This allows to evaluate the model’s performance
and demonstrate its effectiveness. The set of coordinates provided by the Pixel-
to-Real method is further denoted as CP2R(E109) for experiment E109, CP2R(E113)
for experiment E113, CP2R(E118) for experiment E118 and CP2R(E124) for experiment
E124.

The Optical method provide a set of coordinates that are calculated using
the Equation (6.3). This set of coordinates is further denoted as COpt(E109) for
experiment E109, COpt(E113) for experiment E113, COpt(E118) for experiment E118

and COpt(E124) for experiment E124.
People detection is performed on the undistorted images for all methods.

Undistortion is performed using the intrinsic camera parameters.
The analysis of E118 and E124 experiments is very difficult and time consuming,

because they assume more realistic conditions. In particular, these experiments
involve more people as participants. Furthermore, during these experiments, the
participants walk faster, which makes post-processing of the collected data more
difficult and complex.

Assuming that UWB method is used only during the calibration process of
our localization system and only at the deployment stage, we can conclude that
during deployment, it is much more effective to perform experiments like E109

and E113, which allow for more precise system calibration. On the other hand,
such experiments should include more participants to enhance the accuracy of the
calibration.

During this analysis, we have created around 120 different plots and around
50 tables with statistics, which visualize the calculated statistics and metrics. Not
all of them are shown in this work, but only the most interesting and informative
ones. However, all these plots and statistics are available on GitHub2.

7.3 Selecting coordinates for the evaluation
The evaluation of the estimated coordinates involves their comparison with

the reference Ground Truth coordinates. However, this is a complex task, as it
requires the knowledge of the Ground Truth coordinates for every position within
the entire environment.

To address this, we utilize the capabilities of our Indoor Positioning System
application. As was discussed Section 3.4.4, it allows to detect time periods where
a person is standing.

2https://github.com/Razyapoo/Master-Thesis/tree/main/PixelToReal, Optical and UWB
evaluation/Relusts of evaluation (Plots, Statistics)
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During the collection of data, necessary for Pixel-to-Real model, we force people
to stand on the sticker papers for which the coordinates are known, providing us
with the reference Ground Truth coordinates.

For each detected standing period, we calculate an average of the coordinates
within that period, and use it as a single representative for comparison with
Ground Truth coordinates. This helps to smooth out the estimated coordinates
and mitigates the risk of selecting an outlier with a high error as the representative
value.

For evaluation, we use a RS0.5m reference system with adjusted spacing between
the stickers within each row to a 0.5 meters to evaluate the developed methods
more precisely.

7.4 Comparative evaluation of coordinates
In this section we will perform the comparative evaluation of the coordinates

provided by UWB, Pixel-to-Real and Optical methods.

7.4.1 Evaluation based on Ground Truth coordinates
In this section, we will perform the evaluation of the coordinates obtained

using UWB, Pixel-to-Real and Optical methods by comparing them with the
Ground Truth reference system RS0.5m (paper stickers). This evaluation aims to
determine the absolute accuracy of each localization method.

We use the following notation to express the error in coordinates estimation
for each method:

Error(C{method}, RS0.5m) =

⎧⎨⎩|x{method} - xref|, for x coordinate
|y{method} - yref|, for y coordinate

(7.1)

where method can acquire one of the following values: UWB, P2R, Opt.
A pair (xUWB, yUWB) represents the coordinates obtained using the UWB

method; a pair (xP2R, yP2R) represents the coordinates obtained using the Pixel-
to-Real method; a pair (xOpt, yOpt) represents the coordinates obtained using the
Optical method; and a pair (xref, yref) represents the reference Ground Truth
coordinates within the RS0.5m reference system.

The calculated error metrics are provided in:

• Table 7.1 for the E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) experiment, consider-
ing the entire area of the environment, which is 17.08 meters long.

• Table 7.2 for the E113(DA_S301_S5(T1_A2_TPh_Md_Wpn)) experiment. In this
experiment we consider only the entire range of the experiment, which is
8.58 meters long.

• Table 7.3 for the E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) experiment, consider-
ing the entire area of the environment, which is 17.08 meters long.
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• Table 7.4 for the E124(DA_S301_S6(T2_A4_TPh_Md_Wp)) experiment. In this
experiment we consider only the entire range of the experiment, which is
8.08 meters long.

• Table 7.5 for the E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) experiment, consider-
ing the reduced area of the environment, which is 10.08 meters long.

• Table 7.6 for the E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) experiment, consider-
ing the reduced area of the environment, which is 10.08 meters long.

Method Coordinate MAE MSE

Error(CUWB(E109, Tag 1), RS0.5m(Tag 1))
xUWB 0.0997 0.0264
yUWB 0.0248 0.0013

Error(CP2R(E109, Tag 1), RS0.5m(Tag 1))
xP2R 0.099 0.023
yP2R 0.0855 0.0169

Error(COpt(E109, Tag 1), RS0.5m(Tag 1))
xOpt 0.3445 0.1441
yOpt 0.2059 0.0839

Table 7.1 Comparative evaluation metrics showing the discrepancy between estimated
and reference Ground Truth coordinates (pseudo-code: error = |c{method} - cref|,
where c = {x, y}). These metrics are calculated based on data collected in E109
experiment, considering the entire area of the experiment, which is 17.08
meters long.

Method Coordinate MAE MSE

Error(CUWB(E113, Tag 1), RS0.5m(Tag 1))
xUWB 0.0187 0.0006
yUWB 0.01 0.0002

Error(CP2R(E113, Tag 1), RS0.5m(Tag 1))
xP2R 0.075 0.0123
yP2R 0.1656 0.0553

Error(COpt(E113, Tag 1), RS0.5m(Tag 1))
xOpt 0.1993 0.0452
yOpt 0.183 0.0477

Table 7.2 Comparative evaluation metrics showing the discrepancy between estimated
and reference Ground Truth coordinates. These metrics are calculated based on data
collected in E113 experiment, considering the area of the experiment, which is
8.58 meters long.

Accuracy (Mean Average Error)

The Mean Absolute Error (MAE), in the tables Table 7.1 and Table 7.3,
indicate that the coordinate estimations in the S8 - ExpEnv4 have an error of
approximately 0.16 m in the x-coordinate and 0.14 m in the y-coordinate (these
values are taken as upper limit of the MAE from both tables). Fortunately, these
errors can be reduced when considering a smaller area of observation, specifically
within a 10.08-meter distance from the anchor baseline, as shown in Table 7.5
and Table 7.6. The reason is that at larger distances, in the S8 - ExpEnv4
environment, there is a strong signal interference from an electrical enclose, which
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Method Coordinate MAE MSE

Error(CUWB(E118, Tag 1), RS0.5m(Tag 1))
xUWB 0.1444 0.0306
yUWB 0.1075 0.0232

Error(CUWB(E118, Tag 2), RS0.5m(Tag 2))
xUWB 0.1631 0.0404
yUWB 0.1366 0.0471

Error(CUWB(E118, Tag 3), RS0.5m(Tag 3))
xUWB 0.1337 0.0327
yUWB 0.1188 0.0245

Error(CP2R(E118, Tag 1), RS0.5m(Tag 1))
xP2R 0.1009 0.016
yP2R 0.2343 0.1157

Error(CP2R(E118, Tag 2), RS0.5m(Tag 2))
xP2R 0.0924 0.0145
yP2R 0.201 0.0743

Error(CP2R(E118, Tag 3), RS0.5m(Tag 3))
xP2R 0.1302 0.0259
yP2R 0.3279 0.26

Error(COpt(E118, Tag 1), RS0.5m(Tag 1))
xOpt 0.3194 0.1193
yOpt 0.1509 0.0497

Error(COpt(E118, Tag 2), RS0.5m(Tag 2))
xOpt 0.3163 0.1225
yOpt 0.12 0.0226

Error(COpt(E118, Tag 3), RS0.5m(Tag 3))
xOpt 0.2689 0.0855
yOpt 0.5384 0.8775

Table 7.3 Comparative evaluation metrics showing the discrepancy between estimated
and reference Ground Truth coordinates. These metrics are calculated based on data
collected in E118 experiment, considering the entire area of the experiment, which
is 17.08 meters long.

is discussed in Section 3.4.3. The errors in estimations are even smaller in the
data collected in S301 - ExpEnv3 environment. This suggests that the localization
system is relatively accurate, especially in the y coordinate, and confirms that
UWB localization can achieve 10 cm accuracy under ideal conditions [31] and
shorter ranges (within 10.08 meters).

In general, the UWB coordinates show the lowest Mean Absolute Error
(MAE) values for both x and y coordinates, considering the entire area of
observation within 17.08-meter distance from anchor baseline. However, based
on analysis performed on data collected during E118 experiment, Pixel-to-Real
method outperforms even the UWB method along x-coordinate, as shown in
Table 7.3. This is due to interference caused by the electrical enclosure, which
affects the UWB estimations. The advantage of the Pixel-to-Real model is that
it uses only video images as an input and, therefore, is not exposed to signal
interference. The fact that Pixel-to-Real method outperforms the UWB method is
further demonstrated in the Table 7.6. This table contains statistics based on data
collected within a 10.08-meter distance from anchor baseline, excluding the area,
where the electrical enclosure is located. It shows that the UWB method again
outperforms the Pixel-to-Real method when the area of observation is limited to
a smaller area.

Overall, the Pixel-to-Real method performs better than Optical method,
but produces less accurate coordinates compared to UWB coordinates.

Consistency (Mean Squared Error)
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Method Coordinate MAE MSE

Error(CUWB(E124, Tag 1), RS0.5m(Tag 1))
xUWB 0.0568 0.0049
yUWB 0.057 0.0041

Error(CUWB(E124, Tag 2), RS0.5m(Tag 2))
xUWB 0.0341 0.0016
yUWB 0.0465 0.0027

Error(CP2R(E124, Tag 1), RS0.5m(Tag 1))
xP2R 0.0821 0.0082
yP2R 0.0681 0.0103

Error(CP2R(E124, Tag 2), RS0.5m(Tag 2))
xP2R 0.0998 0.0116
yP2R 0.0393 0.0023

Error(COpt(E124, Tag 1), RS0.5m(Tag 1))
xOpt 0.1787 0.0354
yOpt 0.1368 0.0289

Error(COpt(E124, Tag 2), RS0.5m(Tag 2))
xOpt 0.1256 0.018
yOpt 0.0746 0.0099

Table 7.4 Comparative evaluation metrics showing the discrepancy between estimated
and reference Ground Truth coordinates. These metrics are calculated based on data
collected in E124 experiment, considering the area of the experiment, which is
8.08 meters long.

Method Coordinate MAE MSE

Error(CUWB(E109, Tag 1), RS0.5m(Tag 1))
xUWB 0.0445 0.003
yUWB 0.0218 0.001

Error(CP2R(E109, Tag 1), RS0.5m(Tag 1))
xP2R 0.054 0.0054
yP2R 0.0666 0.0123

Error(COpt(E109, Tag 1), RS0.5m(Tag 1))
xOpt 0.2158 0.0552
yOpt 0.1404 0.0348

Table 7.5 Comparative evaluation metrics showing the discrepancy between estimated
and reference Ground Truth coordinates. These metrics are calculated based on data
collected in E109 experiment, considering the reduced area of the experiment,
which is 10.08 meters long.

The Mean Squared Error (MSE) for UWB is the lowest, showing that the
UWB method is more consistent with less error variance. On the other hand, the
Optical method has the highest MSE values, indicating higher error variance.
Finally, the pixel-to-real method has moderate MSE values, better than optical
but worse than UWB.

Overall, Pixel-to-Real method performs well. It offers a good balance between
accuracy and consistency. It has lower accuracy compared to UWB coordinates,
but performs better than optical method. This method could even outperform the
UWB method in the complex environments causing the strong signal interference.

Furthermore, the reduction in range significantly benefits all methods, particu-
larly the UWB method.

Visual analysis with respect to the Ground Truth coordinates

To further evaluate the accuracy of the estimated UWB coordinates, as well
as coordinates provided by Optical and Pixel-to-Real methods, we can visualize
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Method Coordinate MAE MSE

Error(CUWB(E118, Tag 1), RS0.5m(Tag 1))
xUWB 0.1095 0.0185
yUWB 0.109 0.0145

Error(CUWB(E118, Tag 2), RS0.5m(Tag 2))
xUWB 0.1066 0.0165
yUWB 0.1108 0.0361

Error(CUWB(E118, Tag 3), RS0.5m(Tag 3))
xUWB 0.0881 0.0152
yUWB 0.095 0.0101

Error(CP2R(E118, Tag 1), RS0.5m(Tag 1))
xP2R 0.0796 0.0107
yP2R 0.075 0.0122

Error(CP2R(E118, Tag 2), RS0.5m(Tag 2))
xP2R 0.087 0.0094
yP2R 0.1616 0.0533

Error(CP2R(E118, Tag 3), RS0.5m(Tag 3))
xP2R 0.0974 0.0176
yP2R 0.1095 0.0239

Error(COpt(E118, Tag 1), RS0.5m(Tag 1))
xOpt 0.2218 0.0561
yOpt 0.0671 0.0058

Error(COpt(E118, Tag 2), RS0.5m(Tag 2))
xOpt 0.2012 0.0464
yOpt 0.114 0.0194

Error(COpt(E118, Tag 3), RS0.5m(Tag 3))
xOpt 0.195 0.0466
yOpt 0.1435 0.0318

Table 7.6 Comparative evaluation metrics showing the discrepancy between estimated
and reference Ground Truth coordinates. These metrics are calculated based on data
collected in E118 experiment, considering the reduced area of the experiment,
which is 10.08 meters long.

the collected data.
It is important to note that throughout our analysis we have created a variety

of diagrams. Not all of these diagrams are attached in Appendix A. However,
all of them are available on GitHub3. In the following text we will provide only
reference path (in the footnotes), unless stated otherwise.

Scatter plots Figure A.3 – Figure A.13 illustrate the correlation between
the reference Ground Truth coordinates and UWB, Pixel-to-Real and Optical
coordinates collected in E109, E113, E118 and E124 experiments. Figure A.3 and
Figure A.6 reveal that the estimated UWB coordinates closely match the Ground
Truth coordinates in the area up to the 10.08 meters from the camera. However,
beyond this distance, the UWB coordinates become more scattered and less
accurate, particularly in S8 - ExpEnv4. This also confirms the observations
described using statistical metrics showing the accuracy.

Figure A.4, Figure A.7, Figure A.9 and Figure A.12 are interesting for us, as
they highlight the performance of the Pixel-to-Real model in different environments.
Let us remember that the Pixel-to-Real model was trained on the data collected
during E109 experiment.

Comparing the Figure A.3, showing the estimated UWB coordinates, and
Figure A.4, showing the coordinates predicted by Pixel-to-Real model, we can
state that the Pixel-to-Real model performs well in the S8 - ExpEnv4. On the

3https://github.com/Razyapoo/Master-Thesis/tree/main/PixelToReal, Optical and UWB evaluation/Relusts
of evaluation (Plots, Statistics)/Plots/Comparison with ground truth coordinates
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other hand, Figure A.7 demonstrates the model’s performance in the new, E113

environment.
Figure A.10 (this plot is intended only for Person 1, for other people please find

plots under the name of the experiment) indicates that the Pixel-to-Real model
slightly outperforms the UWB method, especially on distances larger than 10.08
meters from the anchor baseline and within the area of the electrical enclosure.
However, considering the results from other experiments, within the reduced area
of a 10.08-meters distance from the anchor baseline, the UWB coordinates are
more precised than the coordinates predicted by Pixel-to-Real method.

Exploring Figure A.5, Figure A.8, Figure A.11 and Figure A.13, we can
conclude that the Pixel-to-Real method shows higher accuracy in estimated
coordinates compared to Optical method, which again confirm the accuracy of the
Pixel-to-Real method. Other scatter plots showing the evaluation of UWB, Pixel-
to-Real and Optical methods compared to reference Ground Truth coordinates
are available here 4.

Box plots and histograms Figure A.14 – Figure A.17 illustrate the discrepancy
between the estimated x and y coordinates and the corresponding reference
Ground Truth coordinates in both environments. These diagrams reveal that the
UWB method performs similarly in both, S301 - ExpEnv3 and S8 - ExpEnv4
environments, as does the optical method. However, in S301 - ExpEnv3, the
Pixel-to-Real model estimates the y-coordinate less accurate compared to its
estimations in S8 - ExpEnv4. Conversely, the x-coordinate is predicted with
approximately the same accuracy in both environments. This is further illustrated
in Figure A.14 and Figure A.16, and Figure A.15 and Figure A.17. An interesting
point is that the x-coordinate estimated using the UWB method in E109 shows an
error of 1 meter. This corresponds to the coordinates (position) estimation shown
in Figure A.3 in 6th row, counting from left. Figure A.3 shows that this position
is located in the area close to the electrical enclosure.

Other descriptive plots 5 highlight the distribution of errors in collected
coordinates over time. The largest errors are observed at increased distances from
the origin, likely due to the greater distance and potential interference effects.

Error as the Euclidean distance from Ground Truth coordinates

This analysis is aimed at calculating the error as the distance between estimated
people’s positions and corresponding reference positions across E109, E113, E118

and E124 experiments. In the following section Section 7.5, we will extend this
analysis by calculating the distances between people as estimated by each method,
including UWB, Optical, and Pixel-to-Real, and then compare these distances
with the corresponding distances between people in the Ground Truth reference
system.

To accurately evaluate the positions estimated by each method, we calculate
the Euclidean distance between the estimated people’s positions and reference
Ground Truth people’s positions for each data point. This provides a clear metric
of how closely each method’s estimates match the actual reference positions.

The calculated summary statistics, which show the discrepancy between the
4Reference vs estimated scatter plots
5Error trend over time (in coordinates)
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Method Mean Median Max Min StdDev
UWB 0.1069 0.0703 1.0076 0.0036 0.1278

Pixel-to-Real 0.1468 0.1014 0.8315 0.007 0.1362
Optical 0.4265 0.4245 1.4044 0.0559 0.2150

Table 7.7 Summary statistics for distance errors calculated as the Euclidean distance
between estimated and reference people’s positions (pseudocode: ∥p{method} − pref∥).
The data is collected in E109, considering the entire area of the experiment,
which is 17.08 meters long.

Method Mean Median Max Min StdDev
UWB 0.0229 0.0185 0.0791 0.0022 0.0161

Pixel-to-Real 0.2052 0.1453 0.658 0.0099 0.1608
Optical 0.2843 0.2688 0.5576 0.0945 0.1106

Table 7.8 Summary statistics for distance errors calculated as the Euclidean distance
between estimated and reference people’s positions. The data is collected in E113,
considering the entire area of the experiment, which is 8.58 meters long.

reference and estimated people positions as the Euclidean distance between them
is shown in the following tables:

• Table 7.7 for the E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) experiment, consider-
ing the entire area of the environment, which is 17.08 meters long.

• Table 7.8 for the E113(DA_S301_S5(T1_A2_TPh_Md_Wpn)) experiment. In this
experiment we consider only the entire range of the experiment, which is
8.58 meters long.

• Table 7.9 for the E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) experiment, consider-
ing the entire area of the environment, which is 17.08 meters long.

• Table 7.10 for the E124(DA_S301_S6(T2_A4_TPh_Md_Wp)) experiment. In this
experiment we consider only the entire range of the experiment, which is
8.08 meters long.

• Table 7.11 for the E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) experiment, consid-
ering the reduced area of the environment, which is 10.08 meters long.

• Table 7.12 for the E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) experiment, consid-
ering the reduced area of the environment, which is 10.08 meters long.

All the data presented in the tables is available in the main repository of the
thesis on GitHub 6. This repository also contains data about other participants,
where applicable.

Mean Euclidean distance error

The mean euclidean distance error indicates that, on average, when
considering the reduced area of the experiment within the 10.08-meters distance

6Distance error statistics between estimated and reference positions
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Method Mean Median Max Min StdDev
UWB 0.2035 0.1936 0.5889 0.0508 0.1136

Pixel-to-Real 0.2753 0.1797 0.8195 0.0208 0.241
Optical 0.3698 0.3482 0.8193 0.0717 0.1831

Table 7.9 Summary statistics for distance errors calculated as the Euclidean distance
between estimated and reference people’s positions. The data is collected in E118,
considering the entire area of the experiment, which is 17.08 meters long.
These statistics correspond only to first participant of the experiment, wearing Tag 1.

Method Mean Median Max Min StdDev
UWB 0.0881 0.0724 0.1594 0.0518 0.0379

Pixel-to-Real 0.1138 0.101 0.2813 0.0255 0.0787
Optical 0.2473 0.2488 0.3344 0.1623 0.0594

Table 7.10 Summary statistics for distance errors calculated as the Euclidean distance
between estimated and reference people’s positions. The data is collected in E124,
considering the entire area of the experiment, which is 8.08 meters long.
These statistics correspond only to first participant of the experiment, wearing Tag 1.

Method Mean Median Max Min StdDev
UWB 0.0536 0.0548 0.1704 0.0051 0.0327

Pixel-to-Real 0.0961 0.067 0.6228 0.007 0.0922
Optical 0.2743 0.2607 0.777 0.0559 0.1223

Table 7.11 Summary statistics for distance errors calculated as the Euclidean distance
between estimated and reference people’s positions. The data is collected in E109,
considering the reduced area of the experiment, which is 10.08 meters long.

Method Mean Median Max Min StdDev
UWB 0.1719 0.1665 0.3098 0.0978 0.0608

Pixel-to-Real 0.1268 0.1057 0.2816 0.0208 0.0854
Optical 0.2356 0.2086 0.3757 0.0717 0.0831

Table 7.12 Summary statistics for distance errors calculated as the Euclidean distance
between estimated and reference people’s positions. The data is collected in E118,
considering the reduced area of the experiment, which is 10.08 meters long.
These statistics correspond only to first participant of the experiment, wearing Tag 1.
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from anchor baseline, the estimated UWB people’s positions are 0.1 meter away
from the reference people’s positions. However, for larger areas of the experiments,
the distance error increases. This can be seen particularly in Table 7.9.

Comparing all summaries from Table 7.7 to Table 7.12, we can conclude
that, on average, the Pixel-to-Real method estimates people’s positions with an
approximately equal distance error in each environment. The exception, however,
is the data collected in the E118 experiment, considering the entire area of the
experiment, which includes an area 17.08 meters long from the anchor baseline.
The summary statistics for this situation are shown in table Table 7.9. Here, the
mean distance error is 0.27, which is relatively high. This is due to the 17.08
meters long area of the experiment, which affects the Pixel-to-Real model, as
people are detected poorly at larger distances from a camera. It is important to
note that the Pixel-to-Real method assumes the pixel coordinates of the center of
the bottom edge of the bounding box of the detected person.

The Optical method has the highest mean distance error in each experiment,
regardless of whether the entire or reduced area of the experiment environment
is considered. This is mainly due to the error along the x-coordinate, which is
discussed in detail in the previous analysis, at the beginning of Section 7.4.1. This
also suggests, that the Pixel-to-Real method outperforms the Optical method,
especially at larger distances from a camera.

Error as Euclidean Distance: Median, Min, Max, and Std Dev

The median distance error across all methods and experiments are lower
than the mean errors, indicating a skew towards smaller errors with the presence
of significant outliers. The UWB method has the least skew, while the Optical
method has the most.

Across all experiments, UWB consistently shows the lowest minimum (Min),
maximum (Max) and standard deviation of errors, indicating fewer extreme
deviations. The Optical method often has the highest errors, indicating greater
variability and less predictable performance, especially at larger distances from
the camera. Pixel-to-Real method performs better than the Optical method, but
generally worse than the UWB method. This method shows better performance
in an area closer to the camera, but on the other hand worse at long distances.

Furthermore, histogram plots shown in Figure A.18, Figure A.19, Figure A.20
and Figure A.21 and scatter plots7, show the errors in position estimations as
the Euclidean distance between the estimated and reference positions. These
diagrams reveal that UWB and Pixel-to-Real methods estimate people’s positions
relatively close to the corresponding reference positions. However, in E109, there
is an outlier, which has 1 meter distance error. This outlier corresponds to the
position located within the area close to the electrical enclosure, as was revealed
before. On the other hand, distance errors for the Optical method are higher
compared to UWB and Pixel-to-Real methods.

7Distance errors between estimated and reference positions
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7.4.2 Evaluation of Pixel-to-Real coordinates based on
UWB coordinates

In this section, we will evaluate the coordinates obtained using the Pixel-to-Real
method.

By comparing the coordinates estimated using the Pixel-to-Real model with
UWB coordinates, we can evaluate the Pixel-to-Real model and show the error in
the coordinates’ estimation relative to the UWB coordinates.

The main focus of this section is to evaluate the coordinates obtained using
the Pixel-to-Real model by comparing them to the UWB coordinates, as the
Pixel-to-Real model is trained on the UWB measurements. However, we have also
compared the coordinates provided by the Optical method to those provided by
the UWB method, for informational purposes only. Although, the results of this
comparison are available on the GitHub 8, this analysis is not described in the
following text.

Previous analysis has demonstrated that the UWB method performs well, con-
sistently showing low error metrics across various experiments and environments,
especially in smaller areas of around 10.08 meters long. In addition, the use of
UWB coordinates as a reference system facilitates the deployment of our indoor
positioning system in the customer’s premises, as the complexity of creating a
reference system consisting of paper stickers strongly depends on the type of an
environment. As a result, creating such helping system can be very difficult and
time-consuming process.

These factors allow us to use the UWB system as a reference system during
the calibration process in the deployment stage.

Similar to the previous analysis, we will use the following notation to express
the error in coordinates estimation for Pixel-to-Real method:

Error(CP2R, CUWB) =

⎧⎨⎩|xP2R - xUWB|, for x coordinate
|yP2R - yUWB|, for y coordinate

(7.2)

A pair (xUWB, yUWB) represents the coordinates obtained from the UWB method;
a pair (xP2R, yP2R) represents the coordinates obtained from the Pixel-to-Real
method.

As the UWB technology is used only during the deployment stage, we se-
lected to analyze the E109 and E113 experiments, because the closely emulate the
deployment stage. These experiments produce lower errors in UWB estimations
compared to the E118 and E124 experiments.

Although the UWB-based evaluation of the data collected during the E118 and
E124 experiments is not shown in this section, this analysis is available in the main
repository of the thesis on GitHub9, in the corresponding folders (in each type of
diagrams).

The calculated error metrics are provided in:
8https://github.com/Razyapoo/Master-Thesis/tree/main/PixelToReal, Optical and UWB evaluation/Relusts

of evaluation (Plots, Statistics)/Statistics/Comparison with uwb coordinates/Error statistics for each coordinate
(MAE, MSE and RMSE)

9https://github.com/Razyapoo/Master-Thesis/tree/main/PixelToReal, Optical and UWB evaluation/Relusts
of evaluation (Plots, Statistics)/Plots/Comparison with uwb coordinates/
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• Table 7.13 for the E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) experiment, consid-
ering the entire area of the environment, which is 17.08 meters long.

• Table 7.14 for the E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) experiment, consid-
ering the reduced area of the environment, which is 10.08 meters long.

• Table 7.15 for the E113(DA_S301_S5(T1_A2_TPh_Md_Wpn)) experiment.

Method Coordinate MAE MSE

Error(CP2R(E109, Tag 1), CUWB(E109, Tag 1)) xP2R 0.0510 0.0071
yP2R 0.0814 0.0164

Table 7.13 Comparative evaluation metrics showing the discrepancy between esti-
mated and UWB coordinates. These metrics are calculated based on data collected in
E109 experiment, considering the entire area of the experiment, which is 17.08
meters long.

Method Coordinate MAE MSE

Error(CP2R(E109, Tag 1), CUWB(E109, Tag 1)) xP2R 0.0323 0.0034
yP2R 0.0597 0.0113

Table 7.14 Comparative evaluation metrics showing the discrepancy between esti-
mated and UWB coordinates. These metrics are calculated based on data collected
in E109 experiment, considering the reduced area of the experiment, which is
10.08 meters long.

Method Coordinate MAE MSE

Error(CP2R(E113, Tag 1), CUWB(E113, Tag 1)) xP2R 0.0759 0.0125
yP2R 0.1664 0.0551

Table 7.15 Comparative evaluation metrics showing the discrepancy between esti-
mated and UWB coordinates. These metrics are calculated based on data collected in
E113 experiment, considering the entire area of the experiment, which is 8.58
meters long.

Accuracy (Mean Absolute Error)

Let’s explore the Table 7.13 and Table 7.14 tables, which show the evaluation
of the CP2R(E109) coordinates collected in the full and reduced areas of the S8 -
ExpEnv4 environment, respectively, during the E109 experiment.

We can observe that in the reduced area of the environment, which is 10.08
meters long, the Pixel-to-Real model estimates the coordinates more accurately.
Specifically, considering the reduced area, the MAE value for the x-coordinate is
0.0323 meters and for the y-coordinate is 0.0597 meters. In comparison, in the full
area, the MAE value for the x-coordinate is 0.0510 meters and for the y-coordinate
is 0.0814 meters. This highlights that, on average, the Pixel-to-Real model
estimates the coordinates more accurately in the reduced area. It is important
to note that the Pixel-to-Real model was trained on the CUWB(E109) coordinates,
collected in the S8 - ExpEnv4 environment, during the E109 experiment.

71



Furthermore, examining the Table 7.15, we can state that the Pixel-to-Real
model has worse accuracy in the new S8 - ExpEnv4 environment. The MAE value
for the x-coordinate is 0.0759 meters and for the y-coordinate is 0.1664 meters.

Eventually, this comparison shows that the Pixel-to-Real model has good
accuracy when compared with UWB. This is important as the Pixel-to-Real
model is trained on the UWB coordinates. This implies that it is crucial to have
UWB coordinates as precise as possible in relation to the reference ground truth
coordinates provided by paper stickers. Moreover, the factor of whether the model
was trained and tested in the same environment, in which the coordinates used
for the Pixel-to-Real model training were collected, also influences the quality of
the coordinates estimated by the model.

The box plots shown in Figure A.22, Figure A.23 and Figure A.24 visually
illustrate the observations discovered in Table 7.13, Table 7.14 and Table 7.15.

Error as the Euclidean distance from UWB coordinates

Similar to the analysis performed in Section 7.4.1, we can evaluate the Pixel-
to-Real estimations by calculating the Euclidean distance between the estimated
Pixel-to-Real positions and the positions provided by the UWB method.

This analysis is very important, as it provides a clear metric of how closely
the positions estimated by Pixel-to-Real model matches the positions estimated
by UWB method, and allows to evaluate the trained Pixel-to-Real model.

The calculated summary statistics, which show the discrepancy between the
UWB positions and positions estimated using the Pixel-to-Real method, are shown
in the following tables:

• Table 7.16 for the E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) experiment, consid-
ering the entire area of the environment, which is 17.08 meters long.

• Table 7.17 for the E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) experiment, consid-
ering the reduced area of the environment, which is 10.08 meters long.

• Table 7.18 for the E113(DA_S301_S5(T1_A2_TPh_Md_Wpn)) experiment. In
this experiment we consider only the entire range of the experiment, which
is 8.58 meters long.

Method Mean Median Max Min StdDev
Pixel-to-Real 0.1041 0.0689 0.8210 0.0023 0.1128

Table 7.16 Summary statistics for distance errors calculated as the Euclidean distance
between estimated (Pixel-to-Real) and reference (UWB) people’s positions (pseudo-code:
∥pP2R − pUWB∥). The data is collected in E109, considering the entire area of the
experiment, which is 17.08 meters long.

The mean Euclidean distance error, from Table 7.16, Table 7.17 and Ta-
ble 7.18, shows that the Pixel-to-Real model estimates the positions better in the
environment where the model was trained (S301 - ExpEnv3) compared to the
environment new to the model (S8 - ExpEnv4). The mean value is 0.0750 meters
in the reduced area and 0.1041 meters in the full area of the E109 experiment,
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Method Mean Median Max Min StdDev
Pixel-to-Real 0.0750 0.0450 0.6025 0.0023 0.0956

Table 7.17 Summary statistics for distance errors calculated as the Euclidean distance
between estimated (Pixel-to-Real) and reference (UWB) people’s positions. The data
is collected in E109, considering the reduced area of the experiment, which is
10.08 meters long.

Method Mean Median Max Min StdDev
Pixel-to-Real 0.2058 0.1423 0.6698 0.0128 0.1601

Table 7.18 Summary statistics for distance errors calculated as the Euclidean distance
between estimated (Pixel-to-Real) and reference (UWB) people’s positions. The data is
collected in E113, considering the entire area of the experiment, which is 8.58
meters long.

while in the full area of the E113 experiment the mean value is 0.2058. This
indicates that the Pixel-to-Real model’s performance degrades when applied to
environments different from those it was trained on, highlighting the importance
of environmental consistency during model training and its subsequent use.

It is important to note that the maximum (Max) distance error in the S8
- ExpEnv4 environment (Table 7.16 and Table 7.17), where E109 is performed
and the model is trained, is larger than in the S301 - ExpEnv3 environment
(Table 7.18), where the E113 is performed. The maximum value is 0.6025 meters in
the reduced area and 0.8210 meters in the full area of the E109 experiment, while
in the E113 the maximum value is 0.6698 meters. This discrepancy is likely caused
by the signal interference observed in the area next to the electrical enclosure,
which is located at the end of the S8 - ExpEnv4 environment, as discussed in
Section 3.4.3.

Figure A.25, Figure A.26 and Figure A.27 show histograms that depict the
distribution of Euclidean distance errors in the data (positions) from the E109

experiment (full area of 17.08 meters and reduced area of 10.08 meters) and
the E113 experiment (full area of 8.58 meters). These histograms reveal that,
although the Pixel-to-Real model records the highest (Max) error in the S8 -
ExpEnv4 environment during E109, the majority of distance errors are near zero
when compared to the S301 - ExpEnv3 environment, where the Pixel-to-Real
model demonstrates larger distance errors.

7.5 Evaluation of distances between people
An accurate estimation of the distance between individuals is crucial for

maintaining safe social distancing and preventing hazardous situations. These
conditions had to be satisfied during the Covid-19 pandemic. Additionally, by
placing anchors on hazardous equipment, we can notify people in time when
someone is getting very close to dangerous areas.

To achieve this, we can use coordinates calculated by various methods such as
UWB, Pixel-to-Real, and Optical. However, as was shown during the previous
analysis in Section 7.4, the precision of these coordinates may vary between
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methods. Therefore, it becomes important to evaluate not just the coordinates
themselves, but also the distances between tags (people).

It is important to note that even if the estimated coordinates are inaccurate,
the distances between people might still be correctly estimated. This can occur
because any consistent shift (compared to Ground Truth) in people’s coordinates
can be canceled out when calculating distances. Hence, evaluating distances
between individuals can provide an additional metric for the evaluation of UWB,
Pixel-to-Real and Optical methods.

During this evaluation, we will perform the comparison on the data collected
during the following experiments:

• E118(DA_S8_S6(T3_A4_TPh_Md_Wp))

• E124(DA_S301_S6(T2_A4_TPh_Md_Wp))

We consider only E118 and E124 experiments, because they involve at least two
participants. Moreover, both experiments follow the S6 scenario, where people
are walking parallel, along the predefined lines (paper stickers), following the Wp

walking pattern. This allows to easily check the distance between people.

7.5.1 Evaluation based on Ground Truth distances between
people

In this section, we will perform the evaluation of the distances between people
obtained using UWB, Pixel-to-Real and Optical methods and compare them to
distances between people calculated in the reference Ground Truth system RS0.5m.

To show the discrepancy between distances, we will use the following notation:

Error(DPeople{method}(tagid_1, tagid_2), DPeopleRS(tagid_1, tagid_2))
(7.3)

where DPeople{method} (tagid_1, tagid_2) is a function returning the distance
between two people, which is calculated using the coordinates provided by method.
The method variable can take on the following values: UWB, P2R, Opt.

The calculated error metrics are provided in:

• Table 7.19 for the E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) experiment, consid-
ering the entire area of the environment, which is 17.08 meters long

• Table 7.20 for the E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) experiment, consid-
ering the reduced area of the environment, which is 10.08 meters long

• Table 7.21 for the E124(DA_S301_S6(T2_A4_TPh_Md_Wp)) experiment. In this
experiment we consider only the entire range of the experiment, which is
8.08 meters long

In order to evaluate the calculated distances, we can consider several different
metrics: MAE, Median, Min and Max.

Accuracy (Mean Absolute Error)
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Method MAE Median Min Max

Error(DPeopleUWB(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.175 0.070 0.005 0.470
Error(DPeopleUWB(Tag 1, Tag 3), DPeopleRS(Tag 1, Tag 3)) 0.130 0.029 0.011 0.431
Error(DPeopleUWB(Tag 2, Tag 3), DPeopleRS(Tag 2, Tag 3)) 0.145 -0.028 0.000 0.382
Error(DPeopleP2R(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.143 0.093 0.008 0.532
Error(DPeopleP2R(Tag 1, Tag 3), DPeopleRS(Tag 1, Tag 3)) 0.152 -0.063 0.010 0.470
Error(DPeopleP2R(Tag 2, Tag 3), DPeopleRS(Tag 2, Tag 3)) 0.177 -0.122 0.022 0.445
Error(DPeopleOpt(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.050 0.005 0.001 0.224
Error(DPeopleOpt(Tag 1, Tag 3), DPeopleRS(Tag 1, Tag 3)) 0.161 0.010 0.004 0.936
Error(DPeopleOpt(Tag 2, Tag 3), DPeopleRS(Tag 2, Tag 3)) 0.191 0.012 0.000 1.510

Table 7.19 Evaluation metrics showing the discrepancy between the reference Ground
Truth and estimated distances between people. The Min and Max values show an
absolute value. These metrics are calculated based on data collected in E118 experiment,
considering the entire area of the experiment, which is 17.08 meters long.

Method MAE Median Min Max

Error(DPeopleUWB(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.151 0.127 0.005 0.370
Error(DPeopleUWB(Tag 1, Tag 3), DPeopleRS(Tag 1, Tag 3)) 0.113 0.043 0.023 0.431
Error(DPeopleUWB(Tag 2, Tag 3), DPeopleRS(Tag 2, Tag 3)) 0.125 -0.104 0.000 0.318
Error(DPeopleP2R(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.106 0.093 0.008 0.255
Error(DPeopleP2R(Tag 1, Tag 3), DPeopleRS(Tag 1, Tag 3)) 0.127 -0.046 0.010 0.385
Error(DPeopleP2R(Tag 2, Tag 3), DPeopleRS(Tag 2, Tag 3)) 0.167 -0.126 0.022 0.425
Error(DPeopleOpt(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.026 -0.010 0.001 0.053
Error(DPeopleOpt(Tag 1, Tag 3), DPeopleRS(Tag 1, Tag 3)) 0.033 -0.017 0.004 0.134
Error(DPeopleOpt(Tag 2, Tag 3), DPeopleRS(Tag 2, Tag 3)) 0.021 -0.003 0.000 0.072

Table 7.20 Evaluation metrics showing the discrepancy between the reference Ground
Truth and estimated distances between people. The Min and Max values show an
absolute value. These metrics are calculated based on data collected in E118 experiment,
considering the reduced area of the experiment, which is 10.08 meters long.

The Mean Absolute Error (MAE) helps to understand on average dis-
crepancy between the estimated distances and reference Ground Truth distances
between people. Lower MAE values signify higher accuracy, meaning the estimated
distances are closer to the reference Ground Truth distances.

Table 7.19 shows the statistics calculated for the entire area of the E118

experiment. It suggests that on average, the MAE for all methods is approximately
0.15 meters. Although, this value decreases when considering a reduced area of
10.08 meters from the anchor baseline, it still remains around 0.12 meters for
UWB and Pixel-to-Real methods, as shown in Table 7.20. Interestingly, in this
case, the Optical method shows the lowest error, around 0.03 meters.

It is important to note that E118 and E124 experiments are challenging to
analyze as they more closely emulate real world conditions, such as when people
are moving fast. This again highlights the importance of the more controlled
movements with UWB boards throughout the calibration process during the
deployment stage. Controlled movements allow for gathering more data and
processing it more easily, significantly improving the performance of the trained
Pixel-to-Real model.
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Method MAE Median Min Max

Error(DPeopleUWB(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.050 0.016 0.012 0.124
Error(DPeopleP2R(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.079 0.099 0.010 0.152
Error(DPeopleOpt(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag 2)) 0.052 -0.041 0.019 0.146

Table 7.21 Evaluation metrics showing the discrepancy between the reference Ground
Truth and estimated distances between people. The Min and Max values show an
absolute value. These metrics are calculated based on data collected in E124 experiment,
considering the entire area of the experiment, which is 8.08 meters long.

Comparing values from Table 7.19 and Table 7.20 to the MAE values from
Table 7.21, we can state that our system perform much better within the area of
the experiment, when it is up to 8.08 meters long. It is worth it to note that the
Pixel-to-Real model in E124 performs worse than UWB and Optical methods. The
MAE value of the Pixel-to-Real model in E124 is 0.079 meters, while UWB and
Optical methods show 0.05 and 0.052 meters, respectively.

Median

The median value indicates the most common distance error. To compute
this metric, we calculate the distance error by subtracting the reference Ground
Truth distance from the estimated distance using the following formula:

error = estimatedDistance - referenceDistance (7.4)

The median value can be negative as well as positive, reflecting whether the
estimated distances tend to be shorter or longer than the reference Ground Truth
distances between people. If the value is negative, then the estimated distance is
shorter than the reference one, and vice versa.

Exploring the Table 7.19, Table 7.20 and Table 7.21 tables, we can state that
the sign of median values remains consistent in both the UWB and Pixel-to-Real
methods. However, the sign of the median value in the Optical method changes
from positive to negative. This suggests that with increased distance from the
camera, the Optical method starts underestimating the distance between people.
This is potentially due to the increased distortion and perspective issues. This
assertion is further supported by the box plots shown in Figure A.28, Figure A.29
and Figure A.30. These box plots show the distribution of errors in distances
between people estimated by UWB, Pixel-to-Real and Optical methods compared
to the Ground Truth distances between people. It is important to note that these
plots contains negative and positive distance error values.

Additionally, by comparing Figure A.28 and Figure A.29, we can observe that
each method starts underestimating the distance between each pair of people
when extending the area of the experiment from 10.08 meters to 17.08 meters.

Min and Max

The minimum (Min) and maximum (Max) values are calculated using the
absolute values of distance errors. In other words, they show a minimum and
maximum deviation between the estimated and reference Ground Truth distances.
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Comparing Table 7.19 and Table 7.20, we can observe that UWB shows
tendency to overestimate distances in larger areas, with reduced errors in smaller
areas, as seen in the Max distance error value. This trend can also be observed
in Figure A.28, Figure A.29 and Figure A.30, when comparing them.

The Pixel-to-Real model also shows improvements in smaller area. The Optical
method, compared to UWB and Pixel-to-Real methods, significantly improves the
distance estimations, suggesting that it may struggle with increased distortion
and perspective issues at larger distances, especially when detecting the person
holding the Tag 3. Maximum value is reduced from 1.510 meters to 0.072 meters.
Furthermore, in the reduced area, the Optical method shows the lowest MAE
values across all pairs (Table 7.20), with low Max errors, indicating that it is
highly accurate at shorter distances when estimating the distance between people.

Table 7.21 shows that each localization method benefits in the smaller area of
8.08 meters. The MAE and Max values suggests that all methods have better
performance in smaller areas.

Influence of area size on measurement accuracy

The analysis reveals that the UWB method do not benefit much from reducing
the area of the E118 experiment. All statistics for UWB method remains almost
the same comparing full area (17.08 meters) to reduced area (10.08 meters).

Based on the result from previous analysis in Section 7.4, the UWB method
requires more controlled conditions throughout the data acquisition during the
deployment stage (considering E109 as a more controlled experiment, where the
participant walks slower).

Let’s remember that we assume to use UWB only throughout the calibration
process at the deployment stage to train and evaluate the Pixel-to-Real model. On
the other hand, even in less controlled experiments, which have smaller areas, the
UWB method performs with a good accuracy. For example, this can be observed
in E124 experiment, which is 8.08 meters long. Here, the UWB shows 0.05 meters
as MAE value.

For other methods, like Pixel-to-Real and Optical, the area size of an experi-
ment environment significantly influences measurement accuracy. Longer area, as
in the full area of E118, lead to higher maximum errors, particularly for the Optical
method. The inaccuracies are primarily due to depth perception limitations and
field of view constraints. Conversely, smaller areas, as in the reduced area of E118

and E124, result in lower maximum errors, indicating better performance in smaller
environments.

It is interesting to note that the minimum distance error values are close to
zero for all methods, indicating that in some cases, these methods estimate the
distance between people correctly. This shows the potential for highly accurate
estimations under optimal conditions, particularly in smaller environments.

The Pixel-to-Real method even outperforms UWB in some cases. For ex-
ample, it has lower Error(DPeopleP2R(Tag 1, Tag 2), DPeopleRS(Tag 1, Tag
2)) value in E118 experiment. This is because the E118 and E124 experiments
are less controlled, resulting in worse correction of UWB coordinates. On the
other hand, the Pixel-to-Real model is trained on data collected under the more
controlled E109 experiment, in which UWB data was corrected perfectly, and thus
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resulted with better accuracy than Pixel-to-Real method.
Eventually, these experiments allow to understand the behavior of the local-

ization methods in different environments under more realistic conditions.

7.5.2 Evaluation of Pixel-to-Real distances between people
based on UWB distances between people

In this section we will evaluate the distances between people estimated using
the Pixel-to-Real method by comparing them to the distances between people
estimated using the UWB method. This analysis aims to further evaluate the
trained Pixel-to-Real model.

We will use the following notation to express the error in distance estimation
for Pixel-to-Real method:

Error(DPeopleP2R(tagid_1, tagid_2), DPeopleUWB(tagid_1, tagid_2)) (7.5)

The calculated error metrics are provided in:

• Table 7.22 for the E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) experiment, consid-
ering the entire area of the environment, which is 17.08 meters long.

• Table 7.23 for the E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) experiment, consid-
ering the reduced area of the environment, which is 10.08 meters long.

• Table 7.24 for the E124(DA_S301_S6(T2_A4_TPh_Md_Wp)) experiment. In this
experiment we consider only the entire range of the experiment, which is
8.08 meters long.

Method MAE Median Min Max

Error(DPeopleP2R(Tag 1, Tag 2), DPeopleUWB(Tag 1, Tag 2)) 0.263 0.080 0.042 0.725
Error(DPeopleP2R(Tag 1, Tag 3), DPeopleUWB(Tag 1, Tag 3)) 0.232 -0.154 0.004 0.609
Error(DPeopleP2R(Tag 2, Tag 3), DPeopleUWB(Tag 2, Tag 3)) 0.197 -0.104 0.001 0.826

Table 7.22 Comparative evaluation metrics showing the discrepancy between esti-
mated distances between people using Pixel-to-Real method and the corresponding
distances provided by UWB method. The Min and Max values show an absolute value.
These metrics are calculated based on data collected in E118 experiment, considering
the entire area of the experiment, which is 17.08 meters long.

Method MAE Median Min Max

Error(DPeopleP2R(Tag 1, Tag 2), DPeopleUWB(Tag 1, Tag 2)) 0.187 -0.042 0.042 0.466
Error(DPeopleP2R(Tag 1, Tag 3), DPeopleUWB(Tag 1, Tag 3)) 0.163 -0.139 0.004 0.481
Error(DPeopleP2R(Tag 2, Tag 3), DPeopleUWB(Tag 2, Tag 3)) 0.132 -0.018 0.001 0.392

Table 7.23 Comparative evaluation metrics showing the discrepancy between esti-
mated distances between people using Pixel-to-Real method and the corresponding
distances provided by UWB method. The Min and Max values show an absolute value.
These metrics are calculated based on data collected in E118 experiment, considering
the reduced area of the experiment, which is 10.08 meters long.
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Method MAE Median Min Max

Error(DPeopleP2R(Tag 1, Tag 2), DPeopleUWB(Tag 1, Tag 2)) 0.069 0.028 0.009 0.162

Table 7.24 Comparative evaluation metrics showing the discrepancy between esti-
mated distances between people using Pixel-to-Real method and the corresponding
distances provided by UWB method. The Min and Max values show an absolute value.
These metrics are calculated based on data collected in E124 experiment, considering
the entire area of the experiment, which is 8.08 meters long.

Comparing Table 7.22 and Table 7.23, we can underscore the importance of
the length of the area of interest. These tables contain metrics calculated from
the data collected during the E118 experiment, considering the entire and reduced
areas of the S8 - ExpEnv4, respectively.

At longer distances from the anchor baseline, the error in distance between
people increases significantly. Considering the entire area (17.08 meters long) of
the S8 - ExpEnv4 environment, the average MAE is 0.23 meters and the Max is
0.7 meters. In contrast, considering the reduced area (10.08 meters long) of the
S8 - ExpEnv4 environment, the average MAE is 0.16 meters and the Max is
0.45 meters, which is almost 30% smaller.

This error is not only caused by longer distances from the anchor baseline,
but also by the signal interference caused by the electrical enclose, as discussed in
Section 3.4.3.

Additionally, considering the entire area (8.08 meters long) of the E118 exper-
iment, the average MAE is 0.069 meters and the Max is 0.162 meters. This
demonstrates that the error significantly decreases together with the length of the
area of an environment.

This assertion is further supported by the box plots shown in Figure A.31,
Figure A.32 and Figure A.33. These box plots show the distribution of errors
in distances between people estimated by Pixel-to-Real method compared to
the corresponding distances between people estimated by UWB method. It is
important to note that these plots contains negative and positive distance error
values.

Comparing the Figure A.31 to the Figure A.32, we can observe that the
distance error converge towards zero from the both positive and negative sides.
In the full area of E118 (17.08 meters long), the distribution of errors shows more
significant deviation, while in the reduced area (10.08 meters long), the errors
are closer to zero. This trend is even more visible in the smaller area of the
E124 experiment (8.08 meters long), where the distance errors are minimal (see
Figure A.33).

This indicates that the accuracy of the model improves as the area of experiment
environment is reduced, converging towards zero error in smaller environments. It
is also interesting to note that in the S8 - ExpEnv4 the distances between people
are more underestimated (distance errors are in most negative), while in the S301
- ExpEnv3 they are more overestimated (distance errors are in most positive).
This discrepancy may be due to differences in environmental factors such as light
conditions, signal reflection, and interference, which can affect the accuracy of
Pixel-to-Real model differently in various environments.
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8 Conclusion
In this work, we have proposed a method for collecting automatically annotated

data and collected an extensive set of videos with automatically annotated locations
of people. This proposal aims to improve the field of people localization and
addresses the lack of videos with high-quality annotations. Using the collected
data, we have trained a Pixel-to-Real model, which aims to extend the capabilities
of static and indoor CCTV cameras to allow for people localization and measuring
the distance between them, solely based on the input video data.

We identified weaknesses of the existing localization systems. Many of them
require extra hardware, which can be expensive, especially for small organiza-
tions. We also noticed a lack of standardization and benchmarking of existing
people localization techniques, making it difficult to compare different systems.
Throughout the work, we have been striving to resolve these issues.

To collect the annotated video datasets, we developed our own UWB local-
ization system from scratch and improved its precision using the developed by
us Indoor Positioning System application. During the development of the UWB
localization system, we addressed several challenges related to working with IoT
devices and gained an invaluable knowledge that will save our time when deploying
the entire system for a customer.

We resolved synchronization between the videos and UWB measurements by
using the UNIX timestamps since Epoch, which allowed us to precisely align video
frames with the closest in time UWB measurements.

By synchronizing the videos with UWB measurements, we acquired a dataset,
which we then used to train the Pixel-to-Real model.

We also developed the Optical method, which estimates people’s positions
using their heights and camera intrinsic parameters. We used this method to
evaluate the Pixel-to-Real model.

In the end, we conducted a comprehensive analysis and evaluation of the
developed UWB, Pixel-to-Real, and Optical people localization methods by com-
paring them with reference Ground Truth people positions. By doing so, we
demonstrated that the Indoor Positioning System application can help to develop
and evaluate any people localization method by allowing to align and export the
estimations produced by different methods.

We designed our Indoor Positioning System application specifically to facilitate
the deployment of the Pixel-to-Real model at customer’s premises. With the
knowledge and expertise gained throughout the work, we expect to deploy our
system within two working days.

Through extensive examining of our system in different environments, we
proved that our concept ensures repeatability, which is crucial for future improve-
ment in the filed of people localization.

Future work

We plan to increase the the frequency of the position estimations produced by
the UWB system. This problem can be solved either by improving the firmware
for tags and anchors, or implementing the interpolation technique to fill the gap
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between the subsequent UWB measurements.
To address the discrepancies in UWB measurements discussed in Section 3.1.1,

we attempted to dynamically adjust the antenna delay during the communication
stage between a tag and anchors in order to correct the measured distances. The
idea was to calculate the antenna delay for each distance interval during the
calibration stage and then automatically adjust it during the communication stage.
However, this attempt was unsuccessful. We plan to improve this approach in the
future, as it will allow to collect more precise distance measurements.

Although, our Indoor Positioning System application does not provide direct
capability to train the model, we plan to add this feature to make the system
more user-friendly.

In the Section 7.4.2, we have discovered that Pixel-to-Real model produces an
error in estimations compared to UWB positions. This highlights the need for
more accurate UWB positions, which we plan to improve in the future.

Additionally, we plan to integrate people recognition and tracking to ensure
correct tag-person association for more precised evaluation of our system.

Finally, we plan to integrate our localization system with other technologies,
such as asset tracking, climate control systems, assistance to people with disabilities
and more. This will expand the application area of our system.
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A Appendix A: Experiment
Abbreviations

To structure and name the different experiments performed during our research,
we introduce a compact identification system that includes key aspects of each
experiment:

Abbreviation format for experiment description
ExperimentIdentifier(ExperimentType_Environment_Scenario(Tags_

Anchors_TagPlacement_MovementType_WalkLine))
Where:

• ExperimentIdentifier: An identifier of an experiment

• Format: E{id}

• Example: E1.
• Corresponds to the number of the experiment located in the main reposi-

tory of this thesis on GitHub1 .

• ExperimentType: A type of an experiment.

• Possible values: { Calib, DA }
• Calib: Calibration of the UWB system
• DA: Data acquisition for model training

• Environment: An identifier of an environment

• Possible values: { Dorm, Rot, S301, S8 }
• Dorm: Dormitory - Experiment Environment 1 (Dorm - ExpEnv1)
• Rot: Rotunda - Experiment Environment 2 (Rot - ExpEnv2)
• S301: S301 - Experiment Environment 3 (S301 - ExpEnv3)
• S8: S8 - Experiment Environment 4 (S8 - ExpEnv4)

• Scenario: Scenario ID

• Format: S{id}

• Example: S1

• Tags: Number of tags used

• Format: T{Number}

• Example: T3

• Anchors: Number of anchors used
1https://github.com/Razyapoo/Master-Thesis/tree/main/Recorded Experiments
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• Format: A{Number}

• Example: A2

• TagPlacement: The placement of a tag

• Format: TP{placement_type}

• Possible values: { TPp, TPh }
• TPp: Tags placed on pipes
• TPh: Tags placed on hands
• Note: Initially, anchors were placed on cabinets, but in very first experi-

ments. However, in later experiments, they were always placed on pipes.
Therefore, by default, anchors should be considered as placed on pipes
unless stated otherwise in the text.

• MovementType: A type of a movement during an experiment.

• Format: M{movement_type}

• Possible values: { Ms, Md }
• Ms: Static experiment
• Md: Dynamic experiment
• Note: For data acquisition, this is always set as Dynamic. Static experi-

ments are performed only during calibration process.

• WalkLine: Specifies the walking pattern

• Format: W{walking_type}

• Possible values: { Wp, Wn, Wpn, Wf }
• Wp: Walking on predefined lines (paper stickers)
• Wn: Walking next to predefined lines
• Wpn: Walking on both predefined lines and next to them
• Wf: Free walking
• Note: For static experiments during the calibration of the UWB system,

Walk defines the lines on which the tags are placed. For dynamic experi-
ments, especially during the data acquisition process, Walk defines the
walking pattern.

These abbreviations are always described in the text in the place where they
appear. These abbreviations are intended to facilitate orientation in performed
experiments. An example of the abbreviation is as follows:

• E83(Calib_Dorm_S3(T3_A2_TPp_Md_Wp)): This experiment represents a cali-
bration Calib conducted in the Dorm - ExpEnv1 environment; it follows the
S3 scenario and involves the use of 1 tag and 2 anchors; tags are placed on
pipes (TPp); the experiment is static (Ms) with pipes are placed on predefined
lines only (Wp).
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• E115(DA_S8_S5(T1_A2_TPh_Md_Wpn)): This experiment represents a data
acquisition DA conducted in the S8 - ExpEnv4 environment; it follows the
S5 scenario and involves the use of 1 tag and 2 anchors; tags are placed on
pipes (TPp); the experiment is static (Ms) with pipes are placed on predefined
lines and next to them (Wpn).

Abbreviation format for datasets

Video Data

• VD(expid, [start_time, end_time])
→ { (frameid, frametimestamp) }

• Function returning a video data for a given experiment ID and an optional
specific range of timestamps.

• Tag ID uniquely identifies a person.
• The result is a tuple, consisting of video frame ID and timestamp in

milliseconds since the Unix Epoch.
• If start_time and end_time are not specified, the function returns data

for the entire range of timestamps (video duration).

Distances

• D{type}(expid, [tagid], [start_time, end_time])
→ { timestamp, tagid, anchorid1, distance1, anchorid2,
distance2 }

• Function returning a set of raw, or corrected distances collected using
UWB technology for a given experiment ID, an optional Tag ID, and an
optional specific range of timestamps.

• type can be either raw for uncorrected data or corr for corrected data.
• Tag ID uniquely identifies a person.
• This represents data measurements before (raw) or after (corr) correc-

tion.
• The returned values consist of timestamp of the measurement, tag iden-

tifier, anchor identifier, and distances from each anchor.
• If tagid is not specified, the function returns coordinates of all tags.
• If start_time and end_time are not specified, the function returns

coordinates for the entire range of video.

• D{type}(expid, tagid, anchorid, [start_time, end_time])
→ { distance }
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• Function returning a set of raw or corrected distances for a given
experiment ID, Tag ID and Anchor ID pair, and an optional specific
range of timestamps.

• type can be either raw for uncorrected data or corr for corrected data.
• Tag ID uniquely identifies a person.
• This represents data measurements before (raw) or after (corr) correc-

tion.
• If tagid is not specified, the function returns coordinates of all tags.
• If start_time and end_time are not specified, the function returns

coordinates for the entire range of video.

• DPeople{method}(tagid_1, tagid_2) → { distance{frameid} }

• Function calculating the Euclidean distance between two sets of coordi-
nates C{method}(expid, tagid_1) and C{method}(expid, tagid_2), where
method can be UWB, P2R, Opt, or RS.

• method and expid are assumed to be the same. Therefore they are
omitted in the main formula. This is a necessary step, because otherwise
the formula will not fit into tables.

• Sets C{method} are synchronized by frames. We consider pairs of tags
(people) only from the same frame.

• Returns a set of distances. Each element of the set corresponds to a
distance between people in a certain frame.

Coordinates

• C{method}(expid, [tagid], [start_time, end_time])
→ { (x{method}, y{method}) }

• Function returning a set of coordinates derived from the specified method
(UWB, P2R, Opt) for a given experiment ID, an optional Tag ID, and an
optional specific range of timestamps.

• For UWB, the function returns a set of coordinates derived from the
corrected UWB distances Dcorr(expid, [tagid], [start_time,
end_time]) for a given experiment ID, an optional Tag ID, and an
optional specific range of timestamps.

• If tagid is not specified, the function returns coordinates of all tags.
• If start_time and end_time are not specified, the function returns

coordinates for the entire range of video.
• Tag ID uniquely identifies a person.

Reference system

• RS{spacing}([tagid]) → { (xref, yref) } or { dref }
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• Function returning the reference system for the specified spacing (1m,
0.5m) and an optional Tag ID.

• Tag ID uniquely identifies a person.
• Return values consist of either reference coordinates (xref, yref) or reference

distances (dref), spaced according to the specified spacing (1m, 0.5m).
• If tagid is specified, the function returns reference points specific to that

tag; otherwise, it returns all reference points in the current reference
system.

To show that in the experiment E83(Calib_Dorm_S3(T3_A2_TPp_Md_Wp)) we
get Draw(E83) dataset, we use the following representation:

E83(Calib_Dorm_S3(T3_A2_TPp_Md_Wp))→ Draw(E83)
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A Appendix B: Set of images

Figure A.1 Schema of the S301 - Experiment Environment 3
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Figure A.2 Schema of the S8 - Experiment Environment 4

Figure A.3 The scatter plot illustrates the correlation between the estimated UWB
coordinates (green) and the reference Ground Truth coordinates (blue). This data is
collected in E109, considering the entire area of the environment, which is 17.08 meters
long.
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Figure A.4 The scatter plot illustrates the correlation between coordinates predicted
by Pixel-to-Real method (yellow) and the reference Ground Truth coordinates (blue).
This data is collected in E109, considering the entire area of the environment, which is
17.08 meters long.

Figure A.5 The scatter plot illustrates the comparison of coordinates estimated using
Pixel-to-Real model (yellow) and coordinates estimated using Optical method (red)
with respect to the reference Ground Truth coordinates (blue). This data is collected in
E109.
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Figure A.6 The scatter plot illustrates the correlation between the estimated UWB
coordinates (green) and the reference Ground Truth coordinates (blue). This data is
collected in E113, considering the entire area of the environment, which is 8.58 meters
long.

Figure A.7 The scatter plot illustrates the correlation between coordinates predicted
by Pixel-to-Real method (yellow) and the reference Ground Truth coordinates (blue).
This data is collected in E113, considering the entire area of the environment, which is
8.58 meters long.
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Figure A.8 The scatter plot illustrates the comparison of coordinates estimated using
Pixel-to-Real model (yellow) and coordinates estimated using Optical method (red)
with respect to the reference Ground Truth coordinates (blue). This data is collected in
E113, considering the entire area of the environment, which is 8.58 meters long.

Figure A.9 The scatter plot illustrates the correlation between coordinates predicted
by Pixel-to-Real method (yellow) and the reference Ground Truth coordinates (blue).
This data is collected in E118 for Person 1, considering the entire area of the environment,
which is 17.08 meters long. Data and plots for other participants of the E118 experiment
are available on GitHub.

91



Figure A.10 The scatter plot illustrates the comparison of coordinates estimated using
UWB method (green) and coordinates estimated using Pixel-to-Real model (yellow)
with respect to the reference Ground Truth coordinates (blue). This data is collected in
E118 for Person 1, considering the entire area of the environment, which is 17.08 meters
long. Data and plots for other participants of the E118 experiment are available on
GitHub.
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Figure A.11 The scatter plot illustrates the comparison of coordinates estimated
using Pixel-to-Real model (yellow) and coordinates estimated using Optical method
(red) with respect to the reference Ground Truth coordinates (blue). This data is
collected in E118 for Person 1, considering the entire area of the environment, which
is 17.08 meters long. Data and plots for other participants of the E118 experiment are
available on GitHub.
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Figure A.12 The scatter plot illustrates the correlation between coordinates predicted
by Pixel-to-Real method (yellow) and the reference Ground Truth coordinates (blue).
This data is collected in E124 for Person 1, considering the entire area of the environment,
which is 8.08 meters long. Data and plots for other participants of the E124 experiment
are available on GitHub.
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Figure A.13 The scatter plot illustrates the comparison of coordinates estimated
using Pixel-to-Real model (yellow) and coordinates estimated using Optical method
(red) with respect to the reference Ground Truth coordinates (blue). This data is
collected in E124 for Person 1, considering the entire area of the environment, which
is 8.08 meters long. Data and plots for other participants of the E124 experiment are
available on GitHub.

Figure A.14 The boxplot illustrates the distribution of absolute errors in UWB
coordinates, as well as coordinates estimated using Pixel-to-Real and Optical methods.
This data is collected in E109, considering the entire area of the environment, which is
17.08 meters long.
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Figure A.15 The histogram plot illustrates the distribution of absolute errors in
UWB coordinates, as well as coordinates estimated using Pixel-to-Real and Optical
methods. This data is collected in E109, considering the entire area of the environment,
which is 17.08 meters long.

Figure A.16 The boxplot illustrates the distribution of absolute errors in UWB
coordinates, as well as coordinates estimated using Pixel-to-Real and Optical methods.
This data is collected in E113, considering the entire area of the environment, which is
8.58 meters long.
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Figure A.17 The histogram plot illustrates the distribution of absolute errors in
UWB coordinates, as well as coordinates estimated using Pixel-to-Real and Optical
methods. This data is collected in E113, considering the entire area of the environment,
which is 8.58 meters long.
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Figure A.18 The histogram plot illustrates the distribution of absolute errors in
UWB coordinates (positions), as well as coordinates (positions) estimated using Pixel-
to-Real and Optical methods, as Euclidean distances between the estimated coordinates
(positions) and the corresponding reference Ground Truth coordinates (positions). This
data is collected in E109, considering the entire area of the environment, which is 17.08
meters long.
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Figure A.19 The histogram plot illustrates the distribution of absolute errors in
UWB coordinates (positions), as well as coordinates (positions) estimated using Pixel-
to-Real and Optical methods, as Euclidean distances between the estimated coordinates
(positions) and the corresponding reference Ground Truth coordinates (positions). This
data is collected in E113, considering the entire area of the environment, which is 8.58
meters long.
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Figure A.20 The histogram plot illustrates the distribution of absolute errors in
UWB coordinates (positions), as well as coordinates (positions) estimated using Pixel-
to-Real and Optical methods, as Euclidean distances between the estimated coordinates
(positions) and the corresponding reference Ground Truth coordinates (positions). This
data is collected in E118 for Person 1, considering the entire area of the environment,
which is 17.08 meters long. Data and plots for other participants of the E118 experiment
are available on GitHub.
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Figure A.21 The histogram plot illustrates the distribution of absolute errors in
UWB coordinates (positions), as well as coordinates (positions) estimated using Pixel-
to-Real and Optical methods, as Euclidean distances between the estimated coordinates
(positions) and the corresponding reference Ground Truth coordinates (positions). This
data is collected in E124 for Person 1, considering the entire area of the environment,
which is 8.08 meters long. Data and plots for other participants of the E124 experiment
are available on GitHub.

Figure A.22 The boxplot illustrates the distribution of absolute errors in coordinates
estimated using Pixel-to-Real method compared to UWB coordinates. This data is
collected in E109, considering the entire area of the environment, which is 17.08 meters
long.
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Figure A.23 The boxplot illustrates the distribution of absolute errors in coordinates
estimated using Pixel-to-Real method compared to UWB coordinates. This data is
collected in E109, considering the reduced area of the environment, which is 10.08 meters
long.

Figure A.24 The boxplot illustrates the distribution of absolute errors in coordinates
estimated using Pixel-to-Real method compared to UWB coordinates. This data is
collected in E113, considering the entire area of the environment, which is 8.58 meters
long.
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Figure A.25 The histogram illustrates the distribution of absolute errors as a distance
between the positions (coordinates) estimated by Pixel-to-Real method and the positions
(coordinates) estimated by UWB coordinates. This data is collected in E109, considering
the entire area of the environment, which is 17.08 meters long.

Figure A.26 The histogram illustrates the distribution of absolute errors as a distance
between the positions (coordinates) estimated by Pixel-to-Real method and the positions
(coordinates) estimated by UWB coordinates. This data is collected in E109, considering
the reduced area of the environment, which is 10.08 meters long.
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Figure A.27 The histogram illustrates the distribution of absolute errors as a distance
between the positions (coordinates) estimated by Pixel-to-Real method and the positions
(coordinates) estimated by UWB coordinates. This data is collected in E113, considering
the entire area of the environment, which is 8.58 meters long.

Figure A.28 The box plot illustrates the distribution of errors in distance between
people estimated by UWB, Pixel-to-Real and Optical methods compared to the Ground
Truth distances between people. This data is collected in E118, considering the entire
area of the environment, which is 17.08 meters long. It is important to note that this
plot contains negative as well as positive distance error values.
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Figure A.29 The box plot illustrates the distribution of errors in distance between
people estimated by UWB, Pixel-to-Real and Optical methods compared to the Ground
Truth distances between people. This data is collected in E118, considering the reduced
area of the environment, which is 10.08 meters long. It is important to note that this
plot contains negative as well as positive distance error values.

Figure A.30 The box plot illustrates the distribution of errors in distance between
people estimated by UWB, Pixel-to-Real and Optical methods compared to the Ground
Truth distances between people. This data is collected in E124, considering the entire
area of the environment, which is 8.08 meters long. It is important to note that this
plot contains negative as well as positive distance error values.
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Figure A.31 The box plot illustrates the distribution of errors in distance between
people estimated by Pixel-to-Real method compared to the distances between people
estimated by UWB method. This data is collected in E118, considering the entire area
of the environment, which is 17.08 meters long. It is important to note that this plot
contains negative as well as positive distance error values.

Figure A.32 The box plot illustrates the distribution of errors in distance between
people estimated by Pixel-to-Real method compared to the distances between people
estimated by UWB method. This data is collected in E118, considering the reduced area
of the environment, which is 10.08 meters long. It is important to note that this plot
contains negative as well as positive distance error values.
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Figure A.33 The box plot illustrates the distribution of errors in distance between
people estimated by Pixel-to-Real method compared to the distances between people
estimated by UWB method. This data is collected in E124, considering the entire area
of the environment, which is 8.08 meters long. It is important to note that this plot
contains negative as well as positive distance error values.

107



Bibliography
1. Brezani, S. et al. Smart extensions to regular cameras in the industrial

environment. Procedia Computer Science. 2022, vol. 200, pp. 298–307.
2. Li, Q. et al. Fingerprint and Assistant Nodes Based Wi-Fi Localization in

Complex Indoor Environment. IEEE Access. 2016, vol. 4, pp. 2993–3004.
Available from doi: 10.1109/ACCESS.2016.2579879.

3. Dickinson, P. et al. Indoor positioning of shoppers using a network of
Bluetooth Low Energy beacons. In: 2016 International Conference on Indoor
Positioning and Indoor Navigation (IPIN). IEEE, 2016, pp. 1–8.

4. Liu, M. et al. RFID 3-D indoor localization for tag and tag-free target based
on interference. IEEE Transactions on Instrumentation and Measurement.
2018, vol. 68, no. 10, pp. 3718–3732.

5. Silva, B. et al. Experimental study of UWB-based high precision localization
for industrial applications. In: 2014 IEEE International Conference on Ultra-
WideBand (ICUWB). 2014, pp. 280–285. Available from doi: 10.1109/
ICUWB.2014.6958993.

6. Yang, Z. et al. Bird’s-eye View Social Distancing Analysis System. In: 2022
IEEE International Conference on Communications Workshops (ICC Work-
shops). 2022, pp. 427–432. Available from doi: 10.1109/ICCWorkshops53468.
2022.9814627.

7. Zhang, W. et al. Deep neural networks for wireless localization in indoor
and outdoor environments. Neurocomputing. 2016, vol. 194, pp. 279–287.

8. Zafari, F. et al. A survey of indoor localization systems and technologies.
IEEE Communications Surveys & Tutorials. 2019, vol. 21, no. 3, pp. 2568–
2599.

9. Wikipedia contributors. Received signal strength indicator — Wikipedia,
The Free Encyclopedia [https : / / en . wikipedia . org / w / index . php ?
title=Received_signal_strength_indicator&oldid=1226746544]. 2024.
[Online; accessed 8-July-2024].

10. Lindhé, M. et al. An experimental study of exploiting multipath fading for
robot communications. In: Robotics: Science and Systems. 2007, p. 49.

11. Wikipedia contributors. ISM radio band — Wikipedia, The Free En-
cyclopedia [https://en.wikipedia.org/w/index.php?title=ISM_radio_
band&oldid=1218327506]. 2024. [Online; accessed 14-April-2024].

12. Wikipedia contributors. Bluetooth Low Energy — Wikipedia, The
Free Encyclopedia [https://en.wikipedia.org/w/index.php?title=
Bluetooth_Low_Energy&oldid=1218377189]. 2024. [Online; accessed 14-
April-2024].

13. Dhieb, M. et al. A Gaussian pulse generator for ultra-wideband radar system.
In: Proc. Septiémes Journées Scientifiques des Jeunes Chercheurs en Génie
Electrique et Informatique (GEI). 2007, pp. 563–573.

108

https://doi.org/10.1109/ACCESS.2016.2579879
https://doi.org/10.1109/ICUWB.2014.6958993
https://doi.org/10.1109/ICUWB.2014.6958993
https://doi.org/10.1109/ICCWorkshops53468.2022.9814627
https://doi.org/10.1109/ICCWorkshops53468.2022.9814627
https://en.wikipedia.org/w/index.php?title=Received_signal_strength_indicator&oldid=1226746544
https://en.wikipedia.org/w/index.php?title=Received_signal_strength_indicator&oldid=1226746544
https://en.wikipedia.org/w/index.php?title=ISM_radio_band&oldid=1218327506
https://en.wikipedia.org/w/index.php?title=ISM_radio_band&oldid=1218327506
https://en.wikipedia.org/w/index.php?title=Bluetooth_Low_Energy&oldid=1218377189
https://en.wikipedia.org/w/index.php?title=Bluetooth_Low_Energy&oldid=1218377189


14. Botler, L. et al. Direction Finding with UWB and BLE: A Comparative
Study. In: 2020 IEEE 17th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS). 2020, pp. 44–52. Available from doi: 10.1109/
MASS50613.2020.00016.

15. Bahadori, S. et al. Real-time people localization and tracking through fixed
stereo vision. Applied Intelligence. 2007, vol. 26, pp. 83–97.

16. Wikipedia contributors. Stereopsis — Wikipedia, The Free Encyclopedia
[https://en.wikipedia.org/w/index.php?title=Stereopsis&oldid=
1220871393]. 2024. [Online; accessed 8-July-2024].

17. Qorvo. TECHNOLOGY [https://www.qorvo.com/innovation/ultra-
wideband/technology]. 2018. [Online; accessed 26-April-2024].

18. Qorvo. APS014 APPLICATION NOTE. ANTENNA DELAY CALIBRA-
TION OF DW1000-BASED PRODUCTS AND SYSTEMS [https://www.
qorvo.com/products/d/da008449]. 2018. [Online; accessed 16-April-2024].

19. Wikipedia contributors. Clock drift — Wikipedia, The Free Encyclopedia
[https://en.wikipedia.org/w/index.php?title=Clock_drift&oldid=
1210473399]. 2024. [Online; accessed 27-April-2024].

20. Kwak, M.; Chong, J. A new Double Two-Way Ranging algorithm for
ranging system. 2010. Available from doi: 10.1109/ICNIDC.2010.5657814.

21. Dardari, D. et al. Ranging With Ultrawide Bandwidth Signals in Multipath
Environments. Proceedings of the IEEE. 2009, vol. 97, pp. 404–426. Available
from doi: 10.1109/JPROC.2008.2008846.

22. Neirynck, D. et al. An alternative double-sided two-way ranging method.
In: 2016 13th Workshop on Positioning, Navigation and Communications
(WPNC). 2016, pp. 1–4. Available from doi: 10.1109/WPNC.2016.7822844.

23. Qorvo. Implementation of Two-Way Ranging with the DW1000 (Application
Note APS013) [https://www.qorvo.com/products/d/da008448]. 2015.
[Online; accessed 29-April-2024].

24. Jeon, S. ToA based positioning with DW1000 UWB module [https://
github.com/somidad/dw1000-positioning]. GitHub, 2018.

25. Piotr. Multiple Tags - best way to achieve it [https://github.com/
thotro/arduino-dw1000/issues/181]. GitHub, 2017. [Online; accessed
27-April-2024].

26. Wikipedia contributors. Triangulation — Wikipedia, The Free Encyclo-
pedia [https://en.wikipedia.org/w/index.php?title=Triangulation&
oldid=1217396660]. 2024. [Online; accessed 27-April-2024].

27. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System.
In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. San Francisco, California, USA:
Association for Computing Machinery, 2016, pp. 785–794. KDD ’16. isbn
9781450342322. Available from doi: 10.1145/2939672.2939785.

28. Wikipedia contributors. Planar projection — Wikipedia, The Free
Encyclopedia [https://en.wikipedia.org/w/index.php?title=Planar_
projection&oldid=1142967567]. 2023. [Online; accessed 13-July-2024].

109

https://doi.org/10.1109/MASS50613.2020.00016
https://doi.org/10.1109/MASS50613.2020.00016
https://en.wikipedia.org/w/index.php?title=Stereopsis&oldid=1220871393
https://en.wikipedia.org/w/index.php?title=Stereopsis&oldid=1220871393
https://www.qorvo.com/innovation/ultra-wideband/technology
https://www.qorvo.com/innovation/ultra-wideband/technology
https://www.qorvo.com/products/d/da008449
https://www.qorvo.com/products/d/da008449
https://en.wikipedia.org/w/index.php?title=Clock_drift&oldid=1210473399
https://en.wikipedia.org/w/index.php?title=Clock_drift&oldid=1210473399
https://doi.org/10.1109/ICNIDC.2010.5657814
https://doi.org/10.1109/JPROC.2008.2008846
https://doi.org/10.1109/WPNC.2016.7822844
https://www.qorvo.com/products/d/da008448
https://github.com/somidad/dw1000-positioning
https://github.com/somidad/dw1000-positioning
https://github.com/thotro/arduino-dw1000/issues/181
https://github.com/thotro/arduino-dw1000/issues/181
https://en.wikipedia.org/w/index.php?title=Triangulation&oldid=1217396660
https://en.wikipedia.org/w/index.php?title=Triangulation&oldid=1217396660
https://doi.org/10.1145/2939672.2939785
https://en.wikipedia.org/w/index.php?title=Planar_projection&oldid=1142967567
https://en.wikipedia.org/w/index.php?title=Planar_projection&oldid=1142967567


29. Hata, K.; Savarese, S. CS231A Course Notes 1: Camera Models [https:
//web.stanford.edu/class/cs231a/course_notes/01-camera-models.
pdf]. Stanford University, 2015. [Online; accessed 21-May-2024].

30. Wikipedia contributors. Camera resectioning — Wikipedia, The Free
Encyclopedia [https://en.wikipedia.org/w/index.php?title=Camera_
resectioning&oldid=1219295408]. 2024. [Online; accessed 21-May-2024].

31. Mazhar, F. et al. Precise Indoor Positioning Using UWB: A Review of Meth-
ods, Algorithms and Implementations. Wireless Personal Communications.
2017, vol. 97, pp. 4467–4491.

110

https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf
https://en.wikipedia.org/w/index.php?title=Camera_resectioning&oldid=1219295408
https://en.wikipedia.org/w/index.php?title=Camera_resectioning&oldid=1219295408


List of Figures

1.1 An example of how video and UWB data can be synchronized and
visualized in Indoor Positioning System. . . . . . . . . . . . . . . 3

3.1 ESP32 UWB board from Makerfabs. Please pay attention to the
antenna direction, which is crucial in further experiments. The
board has a microUSB port, which is used to power the board, as
well as to connect it to a laptop. . . . . . . . . . . . . . . . . . . . 8

3.2 Antenna Delay Diagram . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 An example of the placement of the anchor and the tag during

the antenna calibration process. Antennas of UWB modules are
directed towards each other making a clear LoS. The antenna is
calibrated at a distance of 1 meter. The anchor is connected to
a laptop, enabling the observation of results logged to the serial
console in the Arduino IDE. The tag is powered by a power bank. 11

3.4 An example of the placement of the anchor and the tag, when
antennas of UWB modules are directed away from each other, cre-
ating Non-line of Sight (NLoS) communication. Distance between
modules is 1 meter. The anchor is connected to a laptop, enabling
the observation of results logged to the serial console in the Arduino
IDE. The tag is powered by a power bank. . . . . . . . . . . . . . 12

3.5 Box plot for the “Towards Each Other” and “Away From Each
Other” UWB measurements at a distance of 1 meter. . . . . . . . 12

3.6 The histograms with overlaid density plots for the “Towards Each
Other” and “Away From Each Other” UWB measurements. The
actual distance between the tag and the anchor is 1 meter. . . . . 13

3.7 An example of the placement of two anchors and one tag. Each
anchor is positioned one meter away from the tag, with both
anchors are placed towards to the tag, ensuring a clear LoS for
optimal communication. Each device is powered by a power bank. 14

3.8 This picture serves solely as an introductory illustration of the
experiment environment. It shows the S301 experiment environment. 16

3.9 An example of a protective box that is used to protect ESP32 UWB
boards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.10 An example of the reference system used during our experiments.
The stickers are placed in three rows, maintaining an interval of
1.25 meters between each row and a 2 meter space between the
stickers within a row. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.11 An example of the experiment E5(DA_S301_S6(T3_A2_TPh_Md_Wp)) 17
3.12 An example of the setup leading to inconsistency in data collected

by the tags. The anchor and the tags are aligned on the same
line. Each device is powered by a power bank (not visible on the
image). This alignment not only leads to data overwriting, but
also causes conflicts between tags, resulting in signal interruption
and attenuation, and preventing tags from communicating with
the anchor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

111



3.13 One-Way Ranging [20]. . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14 Two-Way Ranging [20]. . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15 Double-Sided Two-Way Ranging [20][23]. . . . . . . . . . . . . . . 23
3.16 Discovery and Ranging phases during message exchanges [23]. . . 25
3.17 Decentralized architecture. Updated states used in an anchor

during the communication between an anchor and a tag [24]. . . . 26
3.18 Decentralized architecture. Updated states used in a tag during

the communication between an anchor and a tag [24]. . . . . . . . 26
3.19 Decentralized architecture. Server states. . . . . . . . . . . . . . . 28
3.20 A photo of the Dorm - ExpEnv1. It simulates a narrow hallway of

a manufacturing environment, including reinforced concrete walls
that cause signal interference. . . . . . . . . . . . . . . . . . . . . 35

3.21 A photo of Rot - ExpEnv2. It simulates a small laboratory,
equipped with large set of personal computers. . . . . . . . . . . . 36

3.22 A photo of the S301 - ExpEnv3. It simulates a light version of a
manufacturing environment. This environment is challenging due
to the presence of cabinets and an electrical enclosure. . . . . . . 36

3.23 A photo of the S8 - ExpEnv4. It simulates the long hallway. This
environment is challenging due to the presence of an electrical
enclosure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.24 An example of direct and diagonal tests. This represents the E83

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.25 A person blocks the communication between the anchor and tag

(behind person). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.26 Interference area caused by electrical enclosure. . . . . . . . . . . 42
3.27 Data analysis window in Indoor Positioning System application. . 44
3.28 Triangulation setup with two anchors and one possible location of

the tag. Another location can be found symmetrically. . . . . . . 45
3.29 UWB localization window in Indoor Positioning System. Red

squares correspond to anchor locations, while blue triangles repre-
sent people. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 The green color indicates that the recording is being conducted
without any problems. . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Projection of people coordinates onto the floor. . . . . . . . . . . 49
5.2 Scenario 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1 Projection of the 3D scene onto the 2D image plane. Op represents
the principal point of the camera, OOpt represents the origin of the
camera coordinate system, f is a camera’s focal length. . . . . . . 53

6.2 The process of the camera intrinsic calibration. Detection of the
chessboard pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Pipeline of the coordinates’ reconstruction. . . . . . . . . . . . . . 55

7.1 Experiment scenarios aimed at testing the developed methods. . . 57

A.1 Schema of the S301 - Experiment Environment 3 . . . . . . . . . 87
A.2 Schema of the S8 - Experiment Environment 4 . . . . . . . . . . . 88

112



A.3 The scatter plot illustrates the correlation between the estimated
UWB coordinates (green) and the reference Ground Truth coordi-
nates (blue). This data is collected in E109, considering the entire
area of the environment, which is 17.08 meters long. . . . . . . . . 88

A.4 The scatter plot illustrates the correlation between coordinates pre-
dicted by Pixel-to-Real method (yellow) and the reference Ground
Truth coordinates (blue). This data is collected in E109, considering
the entire area of the environment, which is 17.08 meters long. . . 89

A.5 The scatter plot illustrates the comparison of coordinates estimated
using Pixel-to-Real model (yellow) and coordinates estimated using
Optical method (red) with respect to the reference Ground Truth
coordinates (blue). This data is collected in E109. . . . . . . . . . 89

A.6 The scatter plot illustrates the correlation between the estimated
UWB coordinates (green) and the reference Ground Truth coordi-
nates (blue). This data is collected in E113, considering the entire
area of the environment, which is 8.58 meters long. . . . . . . . . 90

A.7 The scatter plot illustrates the correlation between coordinates pre-
dicted by Pixel-to-Real method (yellow) and the reference Ground
Truth coordinates (blue). This data is collected in E113, considering
the entire area of the environment, which is 8.58 meters long. . . 90

A.8 The scatter plot illustrates the comparison of coordinates estimated
using Pixel-to-Real model (yellow) and coordinates estimated using
Optical method (red) with respect to the reference Ground Truth
coordinates (blue). This data is collected in E113, considering the
entire area of the environment, which is 8.58 meters long. . . . . . 91

A.9 The scatter plot illustrates the correlation between coordinates pre-
dicted by Pixel-to-Real method (yellow) and the reference Ground
Truth coordinates (blue). This data is collected in E118 for Person
1, considering the entire area of the environment, which is 17.08
meters long. Data and plots for other participants of the E118

experiment are available on GitHub. . . . . . . . . . . . . . . . . 91
A.10 The scatter plot illustrates the comparison of coordinates estimated

using UWB method (green) and coordinates estimated using Pixel-
to-Real model (yellow) with respect to the reference Ground Truth
coordinates (blue). This data is collected in E118 for Person 1,
considering the entire area of the environment, which is 17.08
meters long. Data and plots for other participants of the E118

experiment are available on GitHub. . . . . . . . . . . . . . . . . 92
A.11 The scatter plot illustrates the comparison of coordinates estimated

using Pixel-to-Real model (yellow) and coordinates estimated using
Optical method (red) with respect to the reference Ground Truth
coordinates (blue). This data is collected in E118 for Person 1,
considering the entire area of the environment, which is 17.08
meters long. Data and plots for other participants of the E118

experiment are available on GitHub. . . . . . . . . . . . . . . . . 93

113



A.12 The scatter plot illustrates the correlation between coordinates pre-
dicted by Pixel-to-Real method (yellow) and the reference Ground
Truth coordinates (blue). This data is collected in E124 for Person 1,
considering the entire area of the environment, which is 8.08 meters
long. Data and plots for other participants of the E124 experiment
are available on GitHub. . . . . . . . . . . . . . . . . . . . . . . . 94

A.13 The scatter plot illustrates the comparison of coordinates estimated
using Pixel-to-Real model (yellow) and coordinates estimated using
Optical method (red) with respect to the reference Ground Truth
coordinates (blue). This data is collected in E124 for Person 1,
considering the entire area of the environment, which is 8.08 meters
long. Data and plots for other participants of the E124 experiment
are available on GitHub. . . . . . . . . . . . . . . . . . . . . . . . 95

A.14 The boxplot illustrates the distribution of absolute errors in UWB
coordinates, as well as coordinates estimated using Pixel-to-Real
and Optical methods. This data is collected in E109, considering
the entire area of the environment, which is 17.08 meters long. . . 95

A.15 The histogram plot illustrates the distribution of absolute errors
in UWB coordinates, as well as coordinates estimated using Pixel-
to-Real and Optical methods. This data is collected in E109, con-
sidering the entire area of the environment, which is 17.08 meters
long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.16 The boxplot illustrates the distribution of absolute errors in UWB
coordinates, as well as coordinates estimated using Pixel-to-Real
and Optical methods. This data is collected in E113, considering
the entire area of the environment, which is 8.58 meters long. . . 96

A.17 The histogram plot illustrates the distribution of absolute errors
in UWB coordinates, as well as coordinates estimated using Pixel-
to-Real and Optical methods. This data is collected in E113, con-
sidering the entire area of the environment, which is 8.58 meters
long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.18 The histogram plot illustrates the distribution of absolute errors
in UWB coordinates (positions), as well as coordinates (positions)
estimated using Pixel-to-Real and Optical methods, as Euclidean
distances between the estimated coordinates (positions) and the cor-
responding reference Ground Truth coordinates (positions). This
data is collected in E109, considering the entire area of the environ-
ment, which is 17.08 meters long. . . . . . . . . . . . . . . . . . . 98

A.19 The histogram plot illustrates the distribution of absolute errors
in UWB coordinates (positions), as well as coordinates (positions)
estimated using Pixel-to-Real and Optical methods, as Euclidean
distances between the estimated coordinates (positions) and the cor-
responding reference Ground Truth coordinates (positions). This
data is collected in E113, considering the entire area of the environ-
ment, which is 8.58 meters long. . . . . . . . . . . . . . . . . . . . 99

114



A.20 The histogram plot illustrates the distribution of absolute errors
in UWB coordinates (positions), as well as coordinates (positions)
estimated using Pixel-to-Real and Optical methods, as Euclidean
distances between the estimated coordinates (positions) and the cor-
responding reference Ground Truth coordinates (positions). This
data is collected in E118 for Person 1, considering the entire area of
the environment, which is 17.08 meters long. Data and plots for
other participants of the E118 experiment are available on GitHub. 100

A.21 The histogram plot illustrates the distribution of absolute errors
in UWB coordinates (positions), as well as coordinates (positions)
estimated using Pixel-to-Real and Optical methods, as Euclidean
distances between the estimated coordinates (positions) and the cor-
responding reference Ground Truth coordinates (positions). This
data is collected in E124 for Person 1, considering the entire area
of the environment, which is 8.08 meters long. Data and plots for
other participants of the E124 experiment are available on GitHub. 101

A.22 The boxplot illustrates the distribution of absolute errors in coor-
dinates estimated using Pixel-to-Real method compared to UWB
coordinates. This data is collected in E109, considering the entire
area of the environment, which is 17.08 meters long. . . . . . . . . 101

A.23 The boxplot illustrates the distribution of absolute errors in coor-
dinates estimated using Pixel-to-Real method compared to UWB
coordinates. This data is collected in E109, considering the reduced
area of the environment, which is 10.08 meters long. . . . . . . . . 102

A.24 The boxplot illustrates the distribution of absolute errors in coor-
dinates estimated using Pixel-to-Real method compared to UWB
coordinates. This data is collected in E113, considering the entire
area of the environment, which is 8.58 meters long. . . . . . . . . 102

A.25 The histogram illustrates the distribution of absolute errors as a
distance between the positions (coordinates) estimated by Pixel-to-
Real method and the positions (coordinates) estimated by UWB
coordinates. This data is collected in E109, considering the entire
area of the environment, which is 17.08 meters long. . . . . . . . . 103

A.26 The histogram illustrates the distribution of absolute errors as a
distance between the positions (coordinates) estimated by Pixel-to-
Real method and the positions (coordinates) estimated by UWB
coordinates. This data is collected in E109, considering the reduced
area of the environment, which is 10.08 meters long. . . . . . . . . 103

A.27 The histogram illustrates the distribution of absolute errors as a
distance between the positions (coordinates) estimated by Pixel-to-
Real method and the positions (coordinates) estimated by UWB
coordinates. This data is collected in E113, considering the entire
area of the environment, which is 8.58 meters long. . . . . . . . . 104

115



A.28 The box plot illustrates the distribution of errors in distance be-
tween people estimated by UWB, Pixel-to-Real and Optical meth-
ods compared to the Ground Truth distances between people. This
data is collected in E118, considering the entire area of the environ-
ment, which is 17.08 meters long. It is important to note that this
plot contains negative as well as positive distance error values. . . 104

A.29 The box plot illustrates the distribution of errors in distance be-
tween people estimated by UWB, Pixel-to-Real and Optical meth-
ods compared to the Ground Truth distances between people. This
data is collected in E118, considering the reduced area of the envi-
ronment, which is 10.08 meters long. It is important to note that
this plot contains negative as well as positive distance error values. 105

A.30 The box plot illustrates the distribution of errors in distance be-
tween people estimated by UWB, Pixel-to-Real and Optical meth-
ods compared to the Ground Truth distances between people. This
data is collected in E124, considering the entire area of the environ-
ment, which is 8.08 meters long. It is important to note that this
plot contains negative as well as positive distance error values. . . 105

A.31 The box plot illustrates the distribution of errors in distance be-
tween people estimated by Pixel-to-Real method compared to the
distances between people estimated by UWB method. This data
is collected in E118, considering the entire area of the environment,
which is 17.08 meters long. It is important to note that this plot
contains negative as well as positive distance error values. . . . . 106

A.32 The box plot illustrates the distribution of errors in distance be-
tween people estimated by Pixel-to-Real method compared to the
distances between people estimated by UWB method. This data is
collected in E118, considering the reduced area of the environment,
which is 10.08 meters long. It is important to note that this plot
contains negative as well as positive distance error values. . . . . 106

A.33 The box plot illustrates the distribution of errors in distance be-
tween people estimated by Pixel-to-Real method compared to the
distances between people estimated by UWB method. This data
is collected in E124, considering the entire area of the environment,
which is 8.08 meters long. It is important to note that this plot
contains negative as well as positive distance error values. . . . . 107

116



List of Tables

3.1 Statistics for “Towards Each Other” and “Away From Each Other”
measurements. Mean, standard deviation, minimum and maximum
values are provided in meters. . . . . . . . . . . . . . . . . . . . . 13

3.2 An example of the collected data, measured between a single anchor
and a single tag. The anchor and tag are directed “Towards Each
Other” for better accuracy of gathered data. The “From” column
contains the tag address. The “Range” column lists the measured
distance in meters. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 An example of the data Draw(E5) collected during E5. . . . . . . . 18
3.4 An example of the discrepancy between the measured UWB dis-

tances and reference Ground Truth distances. It shows the average
values of the estimated distances at each meter. . . . . . . . . . . 43

7.1 Comparative evaluation metrics showing the discrepancy between
estimated and reference Ground Truth coordinates (pseudo-code:
error = |c{method} - cref|, where c = {x, y}). These metrics
are calculated based on data collected in E109 experiment, con-
sidering the entire area of the experiment, which is 17.08
meters long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Comparative evaluation metrics showing the discrepancy between
estimated and reference Ground Truth coordinates. These metrics
are calculated based on data collected in E113 experiment, con-
sidering the area of the experiment, which is 8.58 meters
long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Comparative evaluation metrics showing the discrepancy between
estimated and reference Ground Truth coordinates. These metrics
are calculated based on data collected in E118 experiment, con-
sidering the entire area of the experiment, which is 17.08
meters long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4 Comparative evaluation metrics showing the discrepancy between
estimated and reference Ground Truth coordinates. These metrics
are calculated based on data collected in E124 experiment, con-
sidering the area of the experiment, which is 8.08 meters
long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.5 Comparative evaluation metrics showing the discrepancy between
estimated and reference Ground Truth coordinates. These metrics
are calculated based on data collected in E109 experiment, consid-
ering the reduced area of the experiment, which is 10.08
meters long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.6 Comparative evaluation metrics showing the discrepancy between
estimated and reference Ground Truth coordinates. These metrics
are calculated based on data collected in E118 experiment, consid-
ering the reduced area of the experiment, which is 10.08
meters long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

117



7.7 Summary statistics for distance errors calculated as the Euclidean
distance between estimated and reference people’s positions (pseu-
docode: ∥p{method} − pref∥). The data is collected in E109, consid-
ering the entire area of the experiment, which is 17.08
meters long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.8 Summary statistics for distance errors calculated as the Euclidean
distance between estimated and reference people’s positions. The
data is collected in E113, considering the entire area of the
experiment, which is 8.58 meters long. . . . . . . . . . . . 67

7.9 Summary statistics for distance errors calculated as the Euclidean
distance between estimated and reference people’s positions. The
data is collected in E118, considering the entire area of the
experiment, which is 17.08 meters long. These statistics
correspond only to first participant of the experiment, wearing Tag
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.10 Summary statistics for distance errors calculated as the Euclidean
distance between estimated and reference people’s positions. The
data is collected in E124, considering the entire area of the
experiment, which is 8.08 meters long. These statistics
correspond only to first participant of the experiment, wearing Tag
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.11 Summary statistics for distance errors calculated as the Euclidean
distance between estimated and reference people’s positions. The
data is collected in E109, considering the reduced area of the
experiment, which is 10.08 meters long. . . . . . . . . . . . 68

7.12 Summary statistics for distance errors calculated as the Euclidean
distance between estimated and reference people’s positions. The
data is collected in E118, considering the reduced area of the
experiment, which is 10.08 meters long. These statistics
correspond only to first participant of the experiment, wearing Tag 1. 68

7.13 Comparative evaluation metrics showing the discrepancy between
estimated and UWB coordinates. These metrics are calculated
based on data collected in E109 experiment, considering the
entire area of the experiment, which is 17.08 meters long. 71

7.14 Comparative evaluation metrics showing the discrepancy between
estimated and UWB coordinates. These metrics are calculated
based on data collected in E109 experiment, considering the
reduced area of the experiment, which is 10.08 meters long. 71

7.15 Comparative evaluation metrics showing the discrepancy between
estimated and UWB coordinates. These metrics are calculated
based on data collected in E113 experiment, considering the
entire area of the experiment, which is 8.58 meters long. . 71

7.16 Summary statistics for distance errors calculated as the Euclidean
distance between estimated (Pixel-to-Real) and reference (UWB)
people’s positions (pseudo-code: ∥pP2R − pUWB∥). The data is col-
lected in E109, considering the entire area of the experiment,
which is 17.08 meters long. . . . . . . . . . . . . . . . . . . . 72

118



7.17 Summary statistics for distance errors calculated as the Euclidean
distance between estimated (Pixel-to-Real) and reference (UWB)
people’s positions. The data is collected in E109, considering the
reduced area of the experiment, which is 10.08 meters long. 73

7.18 Summary statistics for distance errors calculated as the Euclidean
distance between estimated (Pixel-to-Real) and reference (UWB)
people’s positions. The data is collected in E113, considering the
entire area of the experiment, which is 8.58 meters long. 73

7.19 Evaluation metrics showing the discrepancy between the reference
Ground Truth and estimated distances between people. The Min
and Max values show an absolute value. These metrics are calcu-
lated based on data collected in E118 experiment, considering the
entire area of the experiment, which is 17.08 meters long. 75

7.20 Evaluation metrics showing the discrepancy between the reference
Ground Truth and estimated distances between people. The Min
and Max values show an absolute value. These metrics are calcu-
lated based on data collected in E118 experiment, considering the
reduced area of the experiment, which is 10.08 meters long. 75

7.21 Evaluation metrics showing the discrepancy between the reference
Ground Truth and estimated distances between people. The Min
and Max values show an absolute value. These metrics are calcu-
lated based on data collected in E124 experiment, considering the
entire area of the experiment, which is 8.08 meters long. 76

7.22 Comparative evaluation metrics showing the discrepancy between
estimated distances between people using Pixel-to-Real method
and the corresponding distances provided by UWB method. The
Min and Max values show an absolute value. These metrics are
calculated based on data collected in E118 experiment, considering
the entire area of the experiment, which is 17.08 meters
long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.23 Comparative evaluation metrics showing the discrepancy between
estimated distances between people using Pixel-to-Real method
and the corresponding distances provided by UWB method. The
Min and Max values show an absolute value. These metrics are
calculated based on data collected in E118 experiment, considering
the reduced area of the experiment, which is 10.08 meters
long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.24 Comparative evaluation metrics showing the discrepancy between
estimated distances between people using Pixel-to-Real method
and the corresponding distances provided by UWB method. The
Min and Max values show an absolute value. These metrics are
calculated based on data collected in E124 experiment, considering
the entire area of the experiment, which is 8.08 meters
long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

119



List of Abbreviations
E109 This experiment represents a data acquisition DA conducted in the S8 en-

vironment; it follows the S5 scenario and involves the use of 1 tag and 2
anchors; tags are placed on hands (TPh); the experiment involves dynamic
movement (Md) with walking pattern both on predefined lines and next to
them (Wpn); it produces Draw(E109) set of distances.
E109(DA_S8_S5(T1_A2_TPh_Md_Wpn)) → Draw(E109). 59–62, 64–73, 77, 117–119

E113 This experiment represents a data acquisition DA conducted in the S301
environment; it follows the S5 scenario and involves the use of 1 tag and 2
anchors; tags are placed on hands (TPh); the experiment involves dynamic
movement (Md) with walking pattern both on predefined lines and next to
them (Wpn); it produces Draw(E113) set of distances.
E113(DA_S301_S5(T1_A2_TPh_Md_Wpn)) → Draw(E113). 59–62, 65–67, 70–73,
117–119

E118 This experiment represents a data acquisition DA conducted in the S8 en-
vironment; it follows the S6 scenario and involves the use of 3 tags and 4
anchors; tags are placed on hands (TPh); the experiment involves dynamic
movement (Md) with walking pattern on predefined lines only (Wp); it pro-
duces Draw(E118) set of distances.
E118(DA_S8_S6(T3_A4_TPh_Md_Wp)) → Draw(E118). 59–63, 65–70, 74, 75,
77–79, 117–119

E124 This experiment represents a data acquisition DA conducted in the S301
environment; it follows the S6 scenario and involves the use of 2 tags and 4
anchors; tags are placed on hands (TPh); the experiment involves dynamic
movement (Md) with walking pattern on predefined lines only (Wp); it produces
Draw(E124) set of distances.
E124(DA_S301_S6(T2_A4_TPh_Md_Wp)) → Draw(E124). 59, 60, 62, 64–68, 70,
74–79, 117–119

E5 This experiment represents a data acquisition DA conducted in the S301 en-
vironment; it follows the S6 scenario and involves the use of 3 tags and 2
anchors; tags are placed on hands (TPh); the experiment involves dynamic
movement (Md) with walking pattern on predefined lines only (Wp); it pro-
duces Draw(E5) set of distances.
E5(DA_S301_S6(T3_A2_TPh_Md_Wp)) → Draw(E5). 17, 18, 111, 117

E6 This experiment represents an UWB calibration Calib conducted in the S301
environment; it follows the S4 scenario and involves the use of 1 tag and 2
anchors; tags are placed on hands (TPh); the experiment is static (Ms); it
produces Draw(E6) set of distances.
E6(Calib_S301_S4(T1_A2_TPh_Ms_Wp)) → Draw(E6). 40

E83 This experiment represents an UWB calibration Calib conducted in the Dorm
environment; it follows the S3 scenario and involves the use of 3 tags and
2 anchors; tags are placed on plastic pipes (TPp); the experiment involves
dynamic movement (Md) with walking pattern on predefined lines only (Wp);
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it produces Draw(E83) set of distances.
E83(Calib_Dorm_S3(T3_A2_TPp_Md_Wp)) → Draw(E83). 39, 40, 112

BLE Bluetooth Low Energy. 5, 6

BLE v5.1 Bluetooth Low Energy v5.1. 6

CCTV Closed-circuit television. 1, 3, 6

CNN Convolutional Neural Network. 49

Covid-19 Coronavirus disease 2019. 1, 73

Dorm - ExpEnv1 Dormitory - Experiment Environment 1. 34, 35, 82, 83, 112

DS-TWR Double-Sided Two-Way Ranging. 23, 24

FoV Field of View. 54

GUI Graphical User Interface. 2

Industry 4.0 Fourth Industrial Revolution. 2

IoT Internet of Things. 2, 7, 19

LoS Line of Sight. 6, 11, 14, 20, 40, 56, 111

MAE Mean Absolute Error. 62, 63, 71, 72, 74–77, 79

MQTT MQ Telemetry Transport. 19

MSE Mean Squared Error. 64

NLoS Non-line of Sight. 5, 11, 12, 35, 58, 111

OWR One-Way Ranging. 21

PC Personal Computer. 1

RFID Radio Frequency Identification Device. 5

Rot - ExpEnv2 Rotunda - Experiment Environment 2. 34, 36, 82, 112

RSSI Received Signal Strength Indicator. 5

S301 - ExpEnv3 S301 - Experiment Environment 3. 34, 36, 59, 60, 63, 66, 72,
73, 79, 82, 112

S8 - ExpEnv4 S8 - Experiment Environment 4. 34, 37, 59, 60, 62, 65, 66, 71–73,
79, 82, 84, 112

SoS System-on-a-Chip. 8
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TDoA Time Difference of Arrival. 21

ToF Time of Flight. 6, 9, 21–23

TWR Two-Way Ranging. 20, 21

UWB Ultra-wideband. 2, 5, 6

XGBoost Extreme Gradient Boosting. 52

YOLOv4 You Only Look Once version 4. 49, 50, 53
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A Attachments
A.1 Source code (Implementation)

• Indoor Positioning System the main GUI for data visualization and
analysis

• ESP32 UWB the firmware for ESP32 UWB devices

• Server the multi-threaded server for video and UWB data recording

• PixelToReal training of the Pixel-to-Real model

• Camera Intrinsic Calibration the calibration of the camera for Optical
method

A.2 Data for Indoor Positioning System (GUI)
The data prepared to open in GUI.

A.3 Archive
Contains a journal for notes collected during experiments and project develop-

ment and papers used as a motivation for the work.

A.4 GitHub
All the data collected during experiments, source codes, results of the evaluation

of the localization methods (also those, which are not included in Attachments)
are available in the main repository of the Thesis on GitHub:
https://github.com/Razyapoo/Master-Thesis/

Technical and user documentations are available in the main repository of the
Thesis:
https://github.com/Razyapoo/Master-Thesis/tree/main/Archive/Documentation
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