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Department: Department of Geophysics

Supervisor: Jakub Veĺımský, Department of Geophysics

Abstract: Modelling of the electromagnetic response of the Earth has been ben-
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can provide insight into the amount of water present in the upper mantle. The
experimental lab-based measurements of the mantle rock electric conductivity
can introduce unknown amount of error into this process. In this work I will
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Introduction
The study of the Earth’s interior through geophysical methods is an ongoing field
of research, providing substantial insights into its structure and composition.
In particular, the study of Earth’s magnetic response to different internal and
external sources, can uncover the Earth’s electric conductivity.

Local studies of Earth’s magnetic response have been utilized for several
decades. The advent of satellite missions, like Swarm, measuring the Earth’s
magnetic field, have greatly accelerated the study of Earth’s deep interior on a
global scale.

Not only is the geomagnetic data collection an ongoing project, but also the
post-processing of such data into useful dataset is an active field of study. Par-
ticular interest for this work have the G019 [Grayver and Olsen, 2019] and MTI
[Sabaka et al., 2020] datasets. They applied two different approaches, dedicated
and comprehensive inversion, respectively, to extract from the satellite magnetic
field measurements the Earth’s response to tidal forcing in the Earth’s oceans.

Lately, there have been several studies inverting this data into local and global
conductivity models of the Earth’s upper mantle and transition zone, that range
in depth from 100 to 700 km under the sea level. One of the latest works, studying
the conductivity of upper mantle, is the one by Šachl et al. [2024].

Another field of active study is interpreting such conductivity models in terms
of thermal and chemical composition of Earth’s mantle. Such interpretation is
not only useful for obtaining more intrinsic physical properties like temperature,
but also allows us to cross-reference the results of electromagnetic studies with
the results of deep seismic and gravitational sounding.

In this work I will focus on properties of such interpretations. One of my main
inspirations is the work of Khan [2016]. This work comprehensively showcases
the thermodynamic methods of Connolly [1990, 2005, 2009] coupled with lab-
based measurements of mantle rock conductivities to obtain the thermochemical
properties of the Earth’s upper mantle using electromagnetic data.

Another work motivating this research is the WINTERC-G thermochemical
model by Fullea et al. [2021]. This model constructs the thermochemical structure
of the Earth, using the previously mentioned thermochemical modelling. The geo-
physical datasets constraining this model include global seismic sounding, gravity
variation measurements and thermal flow data, but exclude the electromagnetic
methods.

The WINTERC-G model has been followed up by the WINTERC-e model in
Martinec et al. [2021]. It is a synthetic conductivity model constructed from the
thermochemical WINTERC-G model using the lab-based mantle rock conductiv-
ity data. The viability of this model was validated by comparing its electromag-
netic responses to the tidal forcing against the satellite datasets.

The work of Šachl et al. [2024] inverts the tidal magnetic data into the global
3D conductivity of Earths upper mantle. I have contributed to this article by
interpreting the resulting conductivity data in terms of water content in the sub-
oceanic upper mantle.

My interpretation was achieved using the methods outlined by Khan [2016].
The electric conductivity of upper mantle is very sensitive to the amount of
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Figure 1: Lower water content estimates in weight fraction [ppm] corresponding
to the GO19-AP (left) and MTI (right) datasets.

water present. Due to this I have only interpreted the conductivity in terms of
the water content using lab-bases water dependent conductivity measurements
and the thermochemical data from the WINTERC-G model.

The results of this interpretation were maps of global suboceanic water content
values, illustrated in the Figure 1. This was done for the conductivity models
obtained by inversion of the GO19 and the latest MTI datasets by Šachl et al.
[2024].

Due to nature of the conductivity interpretation methods used in Šachl et al.
[2024], I have only derived the lower and upper estimate of the water content. An
illustration of the span between these upper and lower estimates can be better
illustrated on a radial profile of the water content shown in the Figure 2.

These upper and lower water content estimates are intrinsic to the water
interpretation method and do not reflect the error of such an estimate. The error
estimation, for both the upper and lower water content estimate, is exactly what
my interpretation of the electric conductivity in Šachl et al. [2024] lacks.

The goal of this work is to study the error of such water content estimations.
In the following chapters I will summarize the electromagnetic induction method
used in Šachl et al. [2024] to construct the interpreted conductivity models. I
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Figure 2: Average suboceanic profile of the lower (red dashed) and upper (blue
dashed) water content estimates in weight fraction [ppm] corresponding to the
GO19 (left) and MTI (right) conductivity models (black).

will further present the thermodynamic methods for computing the petrological
structure of the upper mantle, and the synthesis of lab-based conductivity models.

The lab-based measurements will be considered as the only contributor to the
errors of the synthetic conductivity modelling used for water content estimation.
I will study the propagation of these errors through synthetic conductivity models
and further through the modelling of the electromagnetic response to tidal forcing.
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1. Electromagnetic induction,
forward problem
This chapter describes the derivation of the electromagnetic induction method
used for computing the magnetic response of the Earth to tidally induced currents.
This model, used in Šachl et al. [2024], is based on Martinec [1999] and Veĺımský
and Martinec [2005].

1.1 Basic derivation
When modelling the electromagnetic induction (EMI) response of the Earth we
first define the modelled variables. The variables at play are the magnetic in-
duction B(r, t), the magnetic intensity H(r, t), the electric intensity E(r, t), the
electric induction D(r, t), the free electric current density jf (r, t) and the free
static electric charge ρf (r, t). These variables are governed by the Maxwell equa-
tions in the form

∇ · D = ρf , ∇ × E = ∂B
∂t
,

∇ ·B = 0, ∇ × H = jf + ∂D
∂t

.

(1.1)

The Maxwell equations must be complemented by so-called material relations
binding the variables together. For an isotropic linear medium these are

D = ϵ0E, B = µ0H,

ρe = ρf , jf = j = σE + σu × B,
(1.2)

where ϵ0 is the electric permittivity of vacuum, µ0 is the magnetic permeability
of vacuum, σ(r) is the electric conductivity, j(r, t) is the total current, ρe(r) is
the total static charge and u is the velocity of a conductive continuum. The last
material relation encodes the Ohm’s law and the Lorentz magnetic force, acting
on the charge carriers in the direction perpendicular to their movement and the
magnetic field.

Assuming zero static charge, the material relations reduce the number of free
variables to only two, B and E. The magnetic field B and the electric field E are
modelled inside the Earth defined as a perfect sphere G with radius a ≈ 6371 km
with center at r = 0. In this case the Maxwell equations take the form

∇ × E = −∂B
∂t
, ∇ · E = 0,

∇ × B = µ0σ (E + u × B) + µ0ϵ0
∂E
∂t
,∇ · B = 0.

(1.3)

Under the assumption, that the displacement current ϵ0∂E/∂t in negligible
compared to the electric currents present, we obtain so called magnetoquasistatic
approximation of Maxwell’s equations

∇ × E = −∂B
∂t
, ∇ · E = 0,

∇ × B = µ0σ (E + u × B) ,∇ · B = 0.
(1.4)
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The goal is to model the magnetic response of a conductive Earth to the tidal
forcing in the Earth’s oceans. In this case the electrically conductive oceanic
seawater is moving in the presence of the magnetic field. This means, that the
velocity u is almost everywhere zero, except for the uppermost layers of G, where
the oceans are present.

The total geomagnetic field can be separated into the main magnetic field of
the Earth BM , generated by dynamo action in the Earth’s outer core, and the
magnetic time variations Bt, so B = BM(r) + Bt(r, t). On the modelled time-
scales the field BM is time independent. The time-dependent variations Bt are in
this case generated by the tidal forcing and do not include other external sources,
like the ones originated in the magnetosphere and ionosphere. These must be
treated separately and subtracted from observed geomagnetic field in the process
of extraction of tidal signals. The absolute values of the main magnetic field are
assumed to be orders of magnitude larger than the time variations, meaning that
the current can be approximated as

jtotal = σE + σu × BM . (1.5)

Further I will denote B(r, t) as only the tidal magnetic field. The two term in
the equation above can be labeled as j + jimp, where jimp is the imposed current
density by the tidal forcing. Moreover, the total current can be rewritten in the
terms of electric field only, if we denote the jimp = σEimp.

Altogether this results in the relevant set of equations

∇ × E = −∂B
∂t
,∇ · E = 0,

∇ × B = µ0σ(E + Eimp) ,∇ · B = 0.
(1.6)

Oceanic tidal flows are periodic phenomena, dominated by semi-diurnal and
diurnal modes, although non-linear transient tides also exist [Einšpigel and Mar-
tinec, 2017]. The tidal patterns can vary on annual time scales, but for purposes
of EMI modelling it is assumed that oceanic velocity is strictly periodic, meaning

u(r, t) = u(r)eiωt . (1.7)

There are several tidal constituents, but the largest one is the principal lunar
semi-diurnal tide M2. The period of this constituent is not exactly 12 hours, but
approximately 12.41 h, due to additional rotation of the Moon. The associated
angular frequency is ω = 1.41 · 10−4 s−1. Due to this periodicity of the ocean
tides, the imposed electrical field is also periodic, meaning

Eimp(r, t) = E(imp)(r)eiωt . (1.8)

Due to linear nature of the equations 1.6 it is reasonable to restrict the solution
only to a periodic form, meaning

B = B(r)eiωt, E = E(r)eiωt. (1.9)

From now on I will represent all the time dependent variables u,B,E,Eimp, using
their complex amplitudes.
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Using this prescribed periodicity, the equations (1.6) can be rewritten as

∇ × E = −iωB,∇ · E = 0,
∇ × B = µ0σ(E + Eimp) ,∇ · B = 0.

(1.10)

By substituting the unknown electric field E in to the other equations we
reduce the system into only two equation for B:

∇ × (ρ∇ × B) + iωµ0B = µ0∇ × Eimp, (1.11)

∇ · B = 0, (1.12)

here ρ(r) = 1/σ(r) denotes the electric resistivity of the Earth.
To impose the boundary conditions for a complete strong formulation of the

boundary value problem, it is necessary to first explore the properties of the
magnetic field outside the conductive Earth. The atmosphere surrounding Earth
is considered to be an isolator, meaning σ(r) = 0, with no electric currents, j = 0.
In this case the equations (1.10) are reduced to

∇ × B = 0 ,∇ · B = 0. (1.13)

∇ × B = 0 implies that the magnetic field is conservative and that it can be
parametrized using a single scalar potential U(r). Substituting the magnetic field
by the potential in the divergence equation (1.13) yields the equation for U

∇ · (∇U) = 0 . (1.14)

This is a simple Laplace equation. Let’s assume the equation is valid everywhere
in R3 \ G. Every continuous solution for such a problem can be expressed in
spherical coordinates as

U(r) = U(r, ϑ, φ) = a
∞∑︂

j=1

j∑︂
m=−j

[︄
G

(e)
jm

(︃
r

a

)︃j

+G
(i)
jm

(︃
a

r

)︃j+1
]︄
Yjm(ϑ, φ), (1.15)

where Yjm are fully normalized complex spherical harmonics(SH), defined as

Yjm(ϑ, φ) =

⌜⃓⃓⎷(2l + 1)
4π

(l −m!)
(l +m)!P

m
j (cosϑ)eimφ, (1.16)

where Pm
j are the associated Legendre polynomials, ϑ is colatitude, and φ is

longitude.
The variables G(e)

jm and G
(i)
jm are coefficients of so-called external and internal

fields. The external terms in equation 1.15 rise with the growing r, meaning
they originate outside the Earth, while the internal terms increase as r decreases,
meaning they originate inside the Earth.

Demanding that for r → ∞ the magnetic potential vanishes, implies the
absence of external fields, meaning the coefficients G(e)

jm = 0 for all degrees j and
orders m.
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The magnetic field in the insulating atmosphere given by this potential can
be rewritten as

B(f) = −
∞∑︂

j=1

j∑︂
m=−j

S(−1)
jm (ϑ, φ)

(︄
jG

(e)
jm

(︃
r

a

)︃j−1
− (j + 1)G(i)

jm

(︃
a

r

)︃j+2
)︄

−
∞∑︂

j=1

j∑︂
m=−j

S(1)
jm(ϑ, φ)

(︄
G

(e)
jm

(︃
r

a

)︃j−1
+G

(i)
jm

(︃
a

r

)︃j+2
)︄
,

(1.17)

where S(λ)
jm are the vector spherical harmonics defined as

S(−1)
jm (ϑ, φ) = Yjm(ϑ, φ)er,

S(0)
jm(ϑ, φ) = ∂Yjm

∂ϑ
eφ − 1

sin(ϑ)
∂Yjm

∂ϑ
eϑ,

S(1)
jm(ϑ, φ) = ∂Yjm

∂ϑ
eϑ + 1

sin(ϑ)
∂Yjm

∂ϑ
eφ,

(1.18)

where er, eϑ, eφ are unit vectors in the respective spherical coordinates and B(f)

denotes the free-space solution valid outside G.
Now the boundary condition of the EMI problem in G can be set, by enforcing

continuity of magnetic field across the conductor-insulator boundary ∂G. The
solution inside the Earth can also be expanded using the vector harmonics basis
as

B(r, ϑ, φ) =
∞∑︂

j=1

j∑︂
m=−j

1∑︂
λ=−1

B
(λ)
jm(r)S(λ)

jm(ϑ, φ). (1.19)

It is important to point out that the basis S(λ)
jm is orthogonal in the L2(Ω) norm,

where Ω denotes the surface of a unit sphere. Hence, the coefficients of B(λ)
jm(r)

can be obtained as

B
(λ)
jm(r) =

(︄
δλ,−1 + δλ,0 + δλ,1

j(j + 1)

)︄∫︂
Ω

B(r, ϑ, φ) · S(λ)
jm(ϑ, φ)dΩ, (1.20)

where dΩ is a surface element of the unit sphere surface and the term preceding
the integral is one over norm of S(λ)

jm.
The continuity condition B(a, ϑ, φ) = B(f)(a, ϑ, φ) implies

B
(0)
jm(a) = 0,

B
(−1)
jm (a) = −jG(e)

jm + (j + 1)G(i)
jm,

B
(1)
jm(a) = −G(e)

jm −G
(i)
jm.

(1.21)

Assuming the coefficients of the external field G(e)
jm to be zero and the coefficients

of G(i)
jm to be unknown, results in two boundary value conditions,

B
(0)
jm(a) = 0,

B
(−1)
jm (a) + (j + 1)B(1)

jm(a) = 0.
(1.22)

As Veĺımský and Martinec [2005] mention, such a boundary value condition is
necessarily linked to the decomposition of B into vector spherical harmonics and
cannot be expressed as a simple Dirichlet or Neumann boundary condition.
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This concludes the definition of a strong formulation of the BPV problem
defined as

∇ × (ρ∇ × B(r)) + iωµ0B(r) = µ0∇ × Eimp(r), ∀r ∈ G, (1.23)

∇ ·B(r) = 0, ∀r ∈ G, (1.24)

B
(0)
jm(a) = 0, ∀j,m, (1.25)

B
(−1)
jm (a) + (j + 1)B(1)

jm(a) = 0, ∀j,m, (1.26)

where the magnetic field is a continuous complex vector function B : G → C3 in
G, and B(λ)

jm(r) are complex continuous function in [0, a] → C representing the co-
efficients of the decomposition of B into vector spherical harmonics. Furthermore,
Eimp is also a complex vector function in G. Lastly ρ(r) is a time-independent
positive real continuous function on G.

1.2 Weak formulation
Let’s define a solution space W = W 1

2 (G)3 × L2(G), where W 1
2 (G)3 denotes

the Sobolev space of complex vector functions G → C3 and L2(G) denotes the
complex Lebesgue space. Let’s further define a testing space V = W 1

2 (G)3
0 ×

L2(G), such that for (B,Λ) ∈ V the tangential components of B to ∂G are zero
on ∂G. Now the weak formulation of the problem is defined as follows. Let the
µ0, ω be constant, real and positive. Let ρ ∈ L2(G) be real and positive function
and let Eimp ∈ W . Find (B,Λ) ∈ W such that

iµ0ω(δB,B)L3
2(G) + a(δB,B) + b(δB, δΛ,B,Λ) = F (δB),∀(δB, δΛ) ∈ V, (1.27)∫︂

∂G
B · S(0)

jmdS = 0, ∀j,m (1.28)

and ∫︂
∂G

B · S(−1)
jm + (j + 1)B · S(1)

jmdS = 0, ∀j,m. (1.29)

Here the form a(δB,B) is defined as

a(δB,B) =
∫︂

G
ρ(∇ × δB) · (∇ × B) dV, (1.30)

and the form b(δB, δλ,B, λ) is defined as

b(δB, δΛ,B,Λ) =
∫︂

G
Λ(∇ · δB) +

∫︂
G
δΛ · ∇ · B dV. (1.31)

This form encodes the equation ∇ · B = 0 using Lagrange multipliers Λ.
The linear form F (δB) is defined by the internal forcing as

F (δB) =
∫︂

G
∇ × Eimp · δB dV =

∫︂
G

Eimp · ∇ × δB dV. (1.32)
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1.3 Discretization

1.3.1 Lateral discretization
The weak formulation can be approximated by selecting the testing functions and
solution from a subset of a solution space, where all the complex functions can
be expressed as

B(r) =
jmax∑︂
j=1

j∑︂
m=−j

1∑︂
λ=−1

B
(λ)
jm(r)S(λ)

jm,

Λ(r) =
jmax∑︂
j=1

j∑︂
m=−j

Λjm(r)Yjm,

(1.33)

where B(λ)
jm(r) ∈ W 1

2 ([0, a]) and Λjm(r) ∈ L2([0, a]) for all j ≤ jmax and m =
−j, . . . , j, where jmax is SH cutoff.

Let’s express the divergence and rotation of B(r) using the functions D(r)
and R(r)

D = ∇ · B(r) =
jmax∑︂
j=1

j∑︂
m=−j

DjmYjm, (1.34)

R = ∇ × B(r) =
jmax∑︂
j=1

j∑︂
m=−j

1∑︂
λ=−1

R
(λ)
jmS(λ)

jm. (1.35)

It can be shown from the properties of spherical harmonic functions, that the
functions Djm are R(λ)

jm are equal to

Djm =
(︄
d

dr
− 2
r

)︄
B

(−1)
jm − j(j + 1)1

r
B

(1)
jm, (1.36)

R
(−1)
jm = −j(j − 1)1

r
B

(0)
jm, (1.37)

R
(1)
jm = −

(︄
d

dr
− 1
r

)︄
B

(0)
jm, (1.38)

R
(0)
jm = −1

r
B

(−1)
jm +

(︄
d

dr
− 1
r

)︄
B

(1)
jm. (1.39)

Let al(δB,B) and bl(δB, δΛ,B,Λ) be the corresponding linear forms for such
approximated spaces, expressed in the lateral SH basis. Martinec [1999] shows
that

al(δB,B) =
jmax∑︂
j=1

j∑︂
m=−j

1∑︂
λ=−1

∫︂ a

0
δR

(λ)
jm(r; R)(λ)

jmr
2dr, (1.40)

where (r; R) is defined as

(r; R)(λ)
jm =

∫︂
Ω
ρ(r,Ω)

jmax∑︂
j1=1

j1∑︂
m1=−j1

1∑︂
λ1=−1

R
(λ1)
j1m1(r)S(λ1)

j1m1(Ω) · S(λ)
jm(Ω)dΩ. (1.41)
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It is important to point out, that if the resistivity has no lateral variations, this
term is reduced to R(λ)

jm(r) due to orthogonality of S(λ)
jm basis in the L3

2(G) norm.
The operator bl(δB, δΛ,B,Λ) can be expressed as

bl(δB, δλ,B, λ) =
jmax∑︂
j=1

j∑︂
m=−j

∫︂ a

0
δΛjmDjmr

2dr

+
jmax∑︂
j=1

j∑︂
m=−j

∫︂ a

0
ΛjmδDjmr

2dr.
(1.42)

The leading term of the L2(G)3 scalar product can be written as

(δB,B)L3
2(G) =

jmax∑︂
j=1

j∑︂
m=−j

1∑︂
λ=−1

∫︂ a

0
δB

(λ)
jmB

(λ)
jmr

2dr. (1.43)

Finally, the right-hand side can be rewritten as

jmax∑︂
j=1

j∑︂
m=−j

1∑︂
λ=−1

∫︂ a

0
E(λ)

imp,jmδR
(λ)
jmr

2dr. (1.44)

1.3.2 Radial discretization
We can subdivide the interval [0, a] into n subintervals [rk, rk+1], such that 0 =
r0 < r1 < . . . < rn = a. We use a simple finite element discretization of the
W 1

2 ([0, a]) and L1
2([0, a]) spaces using set of basis functions

ψk(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r−rk−1

hk
, r ∈ [rk−1, rk],

rk−r
hk+1

, r ∈ [rk, rk+1],
0, elsewhere,

(1.45)

for discretizing W 1
2 ([0, a]), defined for k = 0, 1, . . . , n and

ηk(r) =

⎧⎨⎩1, r ∈ [rk, rk+1],
0, elsewhere,

(1.46)

to discretize L1
2([0, a]), defined for k = 0, 1, . . . , n− 1 and, hk = rk − rk−1.

The magnetic field coefficients B(λ)
jm and the Lagrange multiplier coefficients

Λjm can be represented in these bases as

B
(λ)
jm(r) =

n∑︂
k=0

B
(λ),k
jm ψk(r), (1.47)

Λjm(r) =
n−1∑︂
k=0

Λk
jmηk(r). (1.48)

The same can be done for the electric conductivity σ and the internal forcing
Eimp

σ(ϑ, φ, r) =
n∑︂

k=0
σk(ϑ, φ)ηk(r), (1.49)
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E(λ)
imp,jm =

n∑︂
k=0

E(λ),k
imp,jmηk(r). (1.50)

The final set of variables can be represented by the vectors

b = (B(λ),k
jm )k=0,1,...,n;j=1,...,jmax;m=−j,...,j;λ=−1,0,1 ∈ C3·(n+1)·(jmax+2)jmax , (1.51)

v = (λk
jm)k=0,1,...,n−1;j=1,...,jmax,m=−j,...,j ∈ Cn·(jmax+2)jmax . (1.52)

I will not delve into the full Galerkin approximation of the equations 1.27. The
discretization is described in Veĺımský and Martinec [2005] for the whole equation
except for the Lagrange constituent. The discretization of the Lagrange multiplier
part can be found in Martinec [1999]. The most important observation about
matrices derived from the Galerkin method, is the case where the resistivity
ρ(r) = ρ(r) is strictly radially dependent. As shown in Martinec [1999], the term
(r; R)l

jm collapses into ρRl
jm. In this case otherwise dense matrix of the Galerkin

approximation takes the form of a band matrix.
The solution of the discretized model above can be obtained using elmgFD

code by Veĺımský et al. [2018], which employs effective LAPACK subroutines for
factorization and solution of the band matrices stemming from the 1-D problem.
Although the existence and uniqueness of a solution of the weak formulation
is not shown, the code representing the Galerkin discretization was successfully
benchmarked against several other codes based on different approaches (integral
equations, finite differences). This validation was presented in Veĺımský et al.
[2018].

1.4 Internal forcing
The right-hand side of the linear system, depends on the tidal flows and the main
magnetic field. The tidal flows are for this purpose represented by a 2D vector
U(ϑ, φ) representing the vertically integrated velocity of the ocean currents. Such
a vector has zero radial part. Under the assumption, that the velocity is constant
throughout the entire water column, the point-wise velocity can be written as

u(r, ϑ, φ) =

⎧⎨⎩U(ϑ, φ)/b(ϑ, φ), r > a− b(ϑ, φ),
0, otherwise

, (1.53)

here b(ϑ, φ) is the bathymetry, depth of the ocean at the coordinates (ϑ, φ).
The main field BM(r, ϑ, φ), is represented in spherical harmonics, where the

coefficients taken from the 13th generation International Geomagnetic Reference
Field IGRF-13 [Alken et al., 2021]. This model of the Earth’s magnetic field also
expresses its time dependence using first derivatives of the coefficients. However,
this secular variation of the main field has negligible impact on the tidal signals,
and BM is expressed for a fixed epoch 2015.0. The bathymetry and the verti-
cally integrated oceanic velocity is taken from the model TPXO9 by Egbert and
Erofeeva [2002] for the M2 tidal flow patterns. To obtain the internal forcing
Eimp described in vector spherical harmonics, the term u × BM is computed on a
Gaussian grid for each layer containing ocean and then projected into the vector
spherical harmonics.
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2. Thermodynamic modelling of
mantle rocks
In this chapter I present the thermodynamic method for computing the mineral
structure of the Earth’s mantle. Such method utilizes the Gibbs energy mini-
mization, and its discretization as implemented in the Perple X software. I use
the formalism and the approach presented by Connolly [1990, 2005, 2009], the
author of Perple X, with some minor changes to the notation.

The next section of this chapter, presenting the theory of the Gibbs energy
method, has been mostly copied verbatim from my Bachelor thesis [Knopp, 2021],
due to identity of the topic at hand.

2.1 Gibbs energy minimization
For a time-independent model of the Earth’s mantle, it is possible to charac-
terize a small enough region of the mantle only by its chemical composition,
pressure and temperature. In order to determine other physical properties such
as density, viscosity, thermal and electrical conductivity, heat capacity and micro-
scopic arrangement of its components, it is sufficient to apply the Gibbs energy
minimization approach. The Gibbs energy G(P, T,X) in thermodynamic sense
depends only on the temperature T , the pressure P , and the composition vec-
tor X = (X1, X2, . . . , Xd). The composition vector consists of the individual
component fractions in the mixture with d components,

Xi = Ni/N, (2.1)

where Ni is the number of particles for the i-th component, and

N =
d∑︂

i=1
Ni. (2.2)

Obviously, X lives in the unit d-simplex

Pd =
{︄

X ∈ [0, 1]d,
d∑︂

i=1
Xi = 1

}︄
. (2.3)

For fixed (P, T ) conditions and a given total chemical composition, X0, the
system can contain up to s coexisting phases in a thermodynamic equilibrium.
Each of these phases has a distinct composition vector Xj and corresponding
concentration in the system ψj. It must hold, that

1 =
s∑︂

j=1
ψj, (2.4)

X0 =
s∑︂

j=1
ψjXj. (2.5)
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The complete knowledge of the Gibbs energy GP,T (X) ≡ G(P, T,X) yields
the number of phases s, the concentrations ψj, and the compositions Xj of the
coexisting phases by minimizing the function

g
(︂
s, {ψj,Xj}s

j=1

)︂
=

s∑︂
j=1

ψjGP,T (Xj), (2.6)

subjected to constraints (2.4, 2.5). It can be shown, that the optimal value of this
sum lies on the convex hull of the function GP,T (X), where the total composition
vector X0 is projected on the convex hull as shown in the Figure 2.1. In other
words,

s∑︂
j=1

ψjGP,T (Xj) ≤ GP,T (X0). (2.7)

Furthermore the composition vectors of the coexisting phases can be found at
the intersections of the function GP,T (X) with its own convex hull. Then the
concentrations ψj can be viewed as barycentric coordinates of the point (g,X0)
in a s-simplex with the vertices {(GP,T (Xj),Xj)}s

j=1.

α

β

X0
X

G

Figure 2.1: A simplified scheme of a two-phase, two-component system X =
(x, 1−x). For a fixed temperature and pressure, there are two minima of the Gibbs
energy GP T (X) representing the two phases α and β. For a fixed composition
X0 = (x0, 1−x0), the Gibbs energy GP T (X0) is not optimal. Considering presence
of heterogeneities in the system, the optimal Gibbs energy lies on the convex hull
of the function GP T (X).

The number s itself can be determined according to the Gibbs phase rule. It
states, that s = d + 2 − f , where f is the number of degrees of freedom on the
(P, T ) phase diagram. For most (P, T ) conditions it holds, that f = 2. However,
when phase transitions occur due to the temperature or the pressure change, the
number of degrees of freedom can also reach the value 0 or 1.

Note that s is the maximal number of coexisting phases. For example, if
Xj = X0 for a particular phase j, then ψj = 1 and ψi = 0, ∀i ̸= j. This concept
is generalized also for those X0 positioned on edges or faces of the s-simplex
considered above.

This exact analytical approach has its obvious downsides. First, one has
to know the complete function G(P, T,X) in order to construct its convex hull
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for each P and T . Another complication arises from the identification of the
intersection points. Nevertheless, this framework provides an efficient tool to
explain the presence of different phases and their coexistence. It also serves as a
guide for construction of discrete phase transition approximations.

One of the simplest approximations is a model with finite number of chemically
pre-identified phases. Let there be S known possible phases in the model. Each
phase has a defined chemical composition Xj, and a known Gibbs energy function
Ḡ

j(P, T ). The total composition of the system is X0 and we aim to constrain the
concentrations of the individual phases ψ̄j. Again it must hold, that

1 =
S∑︂

j=1
ψ̄

j
, (2.8)

X0 =
S∑︂

j=1
ψ̄

jXj. (2.9)

The concentrations ψ̄j complying with these conditions, must minimize the ex-
pression

ḡP,T ({ψ̄j}S
j=1) =

S∑︂
j=1

ψ̄
j
Ḡ

j(P, T ), (2.10)

in order for the system to be thermodynamically stable for given (P, T ).
This expression is linear with respect to the vector of concentrations {ψ̄j}S

j=1
and so are the restrictions (2.8,2.9) thus one can apply linear programming to
find the solution. One particular example for a two-component system is shown
in the Figure 2.2.

α

β

γ

δ
η

ϕ

x0
x

G

Figure 2.2: Example of 6 isochemical phases α, β, γ, δ, η, and ϕ in the (G,X)
space for a two-component mixture X = (x, 1 − x). The black line represents
the convex hull for given (P, T ) conditions. For this particular choice of total
composition X0 = (x0, 1 − x0), the system consists of a superposition of β and γ
phases in accordance with the Gibbs phase rule.

Not all known phases have a fixed composition. This fact can be solved
by the so-called solution models. The basic idea to parametrize the solution
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as a superposition of a known set of p isochemical phases (end-points). The
composition of a solution can be described by the barycentric coordinates in a
p-simplex with the isochemical phases positioned in its vertices. The final Gibbs
energy of the whole solution is then the weighted sum of the end-point values in
the p-simplex corrected for the entropy of mixing term.

For computational purposes this parametrization is further discretized in a
Cartesian manner into isochemical phases, which Connolly [2005] calls the pseudo-
compounds. Then it is possible to increase the number of isochemical phases
considered in the system. The linear minimization then explores a more densely
occupied (G,X) space. An example of such parametrization in a two-component
system is shown in the Figure 2.3. A detailed list of the solution phases considered
in the Earth’s mantle is discussed in the following section.

X0
X

G

α1

α3 α4
α5α2
α6

α7
α8

β1

β5β4

β6

β2
β3

β7

Figure 2.3: Solution models α and β represented in a two-component system.
The solutions are respectively discretized into pseudo-compounds αi and βj. The
values of G for α2, . . . , α7 are interpolated from the end-point values α1 and α8
corresponding to the isochemical phases. Similar interpolation is applied also for
β.

The Gibbs energy minimization is realized by the Perple X software. Provided
with a thermodynamic database describing the isochemical phases and database
of the solution models, the Perple X programs verami and meemum carry out the
Gibbs energy minimization process for a given composition and (P, T ) conditions.
The resulting set of present phases and their concentrations is accompanied by
selected physical properties, such as the seismic wave velocities and densities.
However, the electrical conductivity of individual phases and the bulk electrical
conductivity are not provided directly by Perple X. Their calculation is the topic
of Chapter 3 of this thesis. Further reading on the internal workings of verami
and meemum programs can be found in Connolly [2009].

For future reference, I use this method as a deterministic part of the whole
problem. I can retrieve the resulting molar phase fraction vector as a function of
pressure temperature and composition ψj(T, P,X).
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2.2 Upper mantle modelling
In this work I will only model the suboceanic the upper mantle, ranging approxi-
mately from 35 km to 670 km under the Earths surface. Its composition excluding
water can be approximated as a compound of the major oxides present. This so
called CFMASN model consists of CaO, FeO, MgO, Al2O3, SiO2, and Na2O
[Xu et al., 2008]. This sets the number of compounds to 6. The composition
vector is defined by molar fraction, meaning that it has to be normalized. These
constraints the vector only to 5 dimensions.

For construction of the approximate Gibbs energy function I will utilize the
thermochemical database of Stixrude and Lithgow-Bertelloni [2005a,b], which
operates in the CFMASN model. This database is available in Perple X and is
compatible with the default solution model file. For the purpose of modelling the
upper mantle I consider only 5 permitted solid phases: olivine (ol), clinopyroxene
(cpx), orthopyroxene (opx), C2/c pyroxene (C2/c) and garnet (gt). These min-
erals have to be described a set of solution models. Here I am using the solution
models summarized in the Table 2.1.

Solution phase Chemical composition
ola [MgxFe1−x ]2SiO4 0 ≤ x ≤ 1
C2/c pxa [MgxFe1−x ]4Si4O12 0 ≤ x ≤ 1
opxa [CayFexMg1−x−y ]2

·[FexAlyMg1−x−y ]2 Si4 O12 0 ≤ x+ y ≤ 1
cpxa [Ca1−x−yNaxMgy ]2

·[FewMgy+zAl1−x−y−w−z ]2 Si4 O12 0 ≤ x+ y + z + w ≤ 1
gta [ ( Na1/3Al2/3 )w FexCayMg1−w−x−y ]3

·[MgzAl1−z−wSiw+z ]2 Si2 O12 0 ≤ x+ y + z + w ≤ 1

Table 2.1: Chemical composition of solutions and isochemical phases as in a)Xu
et al. [2008] and b)Stixrude and Lithgow-Bertelloni [2007]. Here w, x, y, z are the
degrees of freedom.

2.3 Water content
The presence of water is not admitted within the framework of the CFMASN
model. However, it plays an important role for the electrical conductivity of
individual phases. After Khan [2016] I use the water content Cw as a separate
parameter outside the Gibbs energy minimization process. It is defined as a
point-wise weight percentage of water present in the phase mix. The water is not
evenly distributed in all the resulting phases. A frequently used approximation
of such distribution is to employ set of water partition coefficient defined as

Di/j = Ci
w

Cj
w

, (2.11)

where Ci
w and Cj

w are the water contents of solid phase i and j respectively. Values
of these coefficients can vary depending on the composition of the phase mix,
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temperature and pressure. For the purpose of this study I omit these variations
and consider them to be constant.

I am using a set of partition coefficients expressed in relation to the water
content of olivine. In this case the bulk water content can be expressed as

Cw =
s∑︂
i

ψiC
i
w = Col

w (ψol +ψcpxDcpx/ol +ψopxDopx/ol +ψC2/cD(C2/c)/ol +ψgtDgt/ol),

(2.12)
where ψi is the molar fraction of the phase i. Used values for the partition
coefficients are presented in the Table 2.2. Water partition coefficient of pyroxenes
(orthopyroxene, clinopyroxene) are sourced from Demouchy et al. [2017]. Due to
insufficient data describing the water partition of C2/c pyroxene in the upper
mantle solid phase mix I set its partition coefficient relative to olivine to be the
same as the partition coefficient of orthopyroxene. For garnet, I use the value of
the partition coefficient derived in Novella et al. [2014].

i/j Di/j

cpx/ol 0.8
opx/ol 5.6
gt/ol 0.8

Table 2.2: Water partition coefficients for clinopyroxene, orthopyroxene and gar-
net with respect to olivine.

18



3. Mantle rock conductivity
This section contains the methods for obtaining the electric conductivity of the
mantle rocks and their mix. Parts of this section are based on my Bachelor thesis
Knopp [2021].

Most of the present mantle phases are silica-based and can be considered semi-
conductors. Their conductivity spans the range of 6 orders of magnitude, from
10−7S/m to 10−1S/m. There are three charge transport mechanisms contributing
to the total conductivity of mantle phases: the ionic conductivity σi, the pro-
ton conductivity σp, and the small polaron hopping conductivity σh [Yoshino,
2010]. All of these mechanisms, if present, act in a parallel manner and the total
conductivity of the phase is σ ≡ σ(T, P,XFe, Cw)

σ = σi + σh + σp . (3.1)

The ionic conductivity is the simplest conducting mechanism in mantle minerals.
It is caused by the movement of ions between vacancies in the crystal lattice. A
specific type of ionic conductivity is proton conductivity. It typically depends on
the water content in the mineral. The water here provides the positive hydrogen
ion as a charge transporting particle, where the proton hops between point defects
in the crystal lattice.

In the case of small polaron hopping the charge carrier is a quasi particle
called polaron, that moves (hops) between iron sites in the phase solution. Thus,
the strength of the mechanism depends on the amount of iron in the mineral.
The theory of small polaron hopping is further described in Triberis [2017].

Each conductivity term in the equation 3.1 depends also on temperature,
and pressure. These dependencies can be parametrized by the activation energy
(or enthalpy) and the activation volume in an Arrhenius-like expression. Their
values as well as their dependencies on the water and iron content are determined
experimentally from high pressure and temperature conductivity measurements.

3.1 Experimental values
In the environment of the upper mantle the most prevalent conductivity mech-
anism is the water dependent proton conductivity. Under the assumption that
a measurable water content is present, Cw > 0.001%, it is permissible to mostly
neglect the ionic conductivity and focus only on water dependent terms.

The process of experimentally measuring the electric conductivity dependency
on temperature, pressure and water content can be tricky. Due to the high pres-
sure and temperature conditions, that create the major upper mantle oxides, the
synthesis of the measured samples is very technically challenging. The synthe-
sized samples need not be pure. In the case of more broadly defined mineral
like olivine (as defined in Table 2.1) some free parameters of the solution can
vary. This variation is in some cases measured and accounted for in the resulting
electrical conductivity dependency, e.g. the amount of iron, that can influence
the polaron hopping conductivity. Due to these challenges, the results of differ-
ent experimental groups yield different sets of upper mantle mineral conductivity
dependencies, varying not only as sets of parameters, but also as sets of fits.
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When trying to model the electrical conductivity of the upper mantle, one has
a large degree of freedom in the choice of lab derived results. I choose a set of the
wet minerals electrical conductivity dependencies below based on the presence
of error estimation for the measured fit parameters and on the viability of the
models in the modelled pressure and temperature conditions used in this work.

The electric conductivity model for olivine presented in Xu et al. [2006] is
purely water dependent model, described by only three parameters.

σol = Cr
wσp0e

− Hp
RT . (3.2)

Similar model by Zhao and Yoshino [2016] is used for the clinopyroxene de-
pendency.

Cr
wσp0e

− Hp
RT . (3.3)

The model for orthopyroxene by Zhang et al. [2012] is the most parametrized,
because the iron content independent polaron hopping mechanism is included
for fitting the experimental data. Also, the activation enthalpy of the proton
conductivity therm is non-constant and water dependent.

σh0e
− Hh

RT + Cr
wσp0e

− Hp−αC
1/3
w

RT . (3.4)

The only pressure dependent conductivity is that for garnet by Dai and Karato
[2009]. This model includes activation volume for the proton conductivity term
in the Arrhenius-like expression.

σp0C
r
we

− Hh+P V

RT . (3.5)

Values for all the parameters above are given in Table 3.1. The values include
the error provided by the experimental studies, and it is taken at face value as a
standard deviation of a normal distribution.

log10

(︂
σp0

[S/m]

)︂
Hp

[kJ/mol] r log10

(︂
σh0

[S/m]

)︂
Hh

[kJ/mol]
α

[kJ/mol]
V

[cm3/mol]

ol 3.0(4) 87(5) 0.62(15) - - - -
cpx 3.69(15) 111(2) 1.28(5) - - - -
opx 2.58(14) 81(3) - 3.99(23) 181(7) 0.08(3) -
gt 3.29(16) 70(5) 0.63(19) - - - −0.57(5)

Table 3.1: Experimental values for the conductivity dependencies parameters.

3.2 Averaging mineral conductivities
Knowing the conductivities of present phases is just the first piece of the puzzle.
The second one is to combine the phase conductivities into the total bulk conduc-
tivity of the phase mixture. When modelling the bulk conductivity of a phase mix
the arrangement of the different components of varying conductivities is crucial.
If, for example, the different mineral were formed into sheets and stacked on top
of each other, the bulk conductivity would be also direction dependent and the
simple scalar value used in the chapter 1 would not be applicable.
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For now lets assume that bulk conductivity depends on the conductivities and
volume fractions of the individual phases. For phases j = 1, . . . , s I denote the
phase conductivities σ1, . . . , σs and their volume fractions c1, . . . , cs, which are
related to the phase molar concentrations ψ̄j through the scaling

cj = M jψ̄
j

ρj
/

⎛⎝ s∑︂
i=1

M iψ̄
i

ρi

⎞⎠ . (3.6)

Here M j is the molar weight and ρj is the density of the j-th phase.
The bulk conductivity can be obtained in infinitely many ways, depending on

the spatial structure of the phase mixture and the direction of the electric current.
By the nature of the sheet stacking example above one can try to constrain the
bulk conductivity by this extreme case. The first is the minimal extreme of
serially connected phases, where the bulk conductivity is the weighted harmonic
average of the present phase conductivities.

σH =
(︄

n∑︂
i

ci

σi

)︄−1

. (3.7)

The second is the maximal extreme of bulk conductivity, where the phases are
connected parallelly to each other in the direction of the current. Here the bulk
conductivity is only the weighted arithmetic average of the present phase con-
ductivities

σA =
n∑︂
i

ciσi . (3.8)

There exists a more complex approach to constrain the bulk electric conductivity,
using so-called Hashin-Shtrikman (HS) bounds. For the construction of the HS
bounds one has to assume the isotropic and maximally entropic configuration of
the phases present. Such assumption is permissible for the unknown state of the
upper mantle phase mix ruled by the laws of thermodynamics. Here I am using
the following approximation for HS bounds used in Khan [2016],

σ±
HS =

(︄
n∑︂
i

ci

σi + 2σ±

)︄−1

− 2σ± . (3.9)

Here σHS± denote the conductivity values for the lower HS− and upper HS+
bounds. The minimum and maximum conductivities present in the phase mixture
are denoted by σ− and σ+, respectively.

Figure 3.1 illustrates the properties of the HS bounds for a simplified exam-
ple of a two-phase mixture. Note that the weighted arithmetic average σA and
weighted harmonic average σH, are also shown in the figure and lie outside the
range of their respective HS bounds. As this Figure shows, the differences be-
tween the HS bounds are still large, but they are so far the best way to constrain
the bulk conductivity.

By combining the bulk conductivity constrains with the lab derived parame-
ters I present two bulk conductivity functions

σHS±(T, P, Cw, {ψj}(T, P,X), {αi}) = σHS±(T, P, Cw,X, {αi}m
i=1). (3.10)
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Figure 3.1: The HS bounds σHS±, the weighted arithmetic average σA for a two
phase mixture. The phases have the electrical conductivities σ1 = 0.01 S/m and
σ2 = 1 S/m and volume fractions c1 and c2 = 1 − c1, respectively.

These are the electric conductivity functions corresponding to the upper and
lower HS bounds for given temperature T , pressure P , bulk water content Cw

and chemical composition vector X. The set {αi}m
i=1 encodes the parameters,

described in the Table 3.1, where m is the number of parameters.
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4. Error propagation
In this chapter I present the basics of inverse problem theory as presented by
Tarantola [2005] and methods for analyzing probability distributions resulting
from the relevant inverse and forward problems.

Let’s define a linear vector space A with an associated homogenous probability
density µA(a) : A → [0,∞] such that for any probability density ρ(a) : A →
[0,∞], the probability of observing a variable in a measurable subset A is

M(A) =
∫︂

A
ρ(a)µa da. (4.1)

For the purposes of inverse problems we define a model space M and a data space
D, with their respective homogenous probability densities µM(m) : M → [0,∞]
and µD(d) : D → [0,∞]. We can further use a Cartesian product of these spaces
M×D, which has a homogenous probability density µ(m,d) = µM(m)×µD(d).

For the purposes of modelling a physical phenomenon there has to be defined
so-called joint probability density Θ(d,m), describing the probability of observing
both the data in state d and the model parameter in state m. Furthermore, let’s
define a conditional probability density θ(d|m) : D → [0,∞] as

Θ(d,m) = θ(d|m)µM(m) , (4.2)

denoting the probability of observing the data in state d given a fixed model
parameter m.

The conditional density θ(d|m) is encoding the forward modelling of the phys-
ical phenomenon. Let’s define two prior probability densities ρD(d) and ρM(m),
describing the knowledge of the data probability density and prior assumptions
about the model parameters, respectively. Let’s further define the joint prior
probability density ρ(d,m) = ρD(d)ρM(m). Combining the prior probability
density and the theoretical information in joint probability density yields their
conjunction as a posterior probability density

σ(d,m) = K
ρ(d,m)Θ(d,m)

µ(d,m) , (4.3)

where K is a normalization constant. To get a solution to an inverse problem
as a posterior probability density in the model space M, the equation 4.3 needs
to be integrated over the data space D. This integration result in the following
expression

σM(m) = K
∫︂

D

ρ(d,m)Θ(d,m)
µ(d,m) dd

= K
∫︂

D

ρD(d)ρM(m)θ(d|m)µM(m)
µD(d)µM(m) dd

= KρM(m)
∫︂

D

ρD(d)θ(d|m)
µD(d) dd.

(4.4)

It is useful to consider the case of exact data, where ρD(d) = δ(d0 − d), where
δ denotes the Dirac’s delta distribution and d0 the exact data. In this case the
model posterior probability density can be simplified to

σM(m) = KρM(m)θ(d0|m). (4.5)
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4.1 Normal distribution approximation
For a well centered probability distribution ρ(a) : Cn → [0,∞] of a variable a
one can approximate it with a normal distribution

ρ(a) ≈ K exp
(︃

−1
2(a − a0)C−1(a − a0)

)︃
, (4.6)

where the covariance matrix C is a hermitian matrix and a0 is the average value

a0 =
∫︂

aρ(a)da. (4.7)

The coefficients cij of the matrix C are defined as

cij =
∫︂

(a − a0)i(a − a0)jρ(a)da. (4.8)

For a finite number of data points, picked from the distribution ρ, the covariance
matrix coefficients Cij can be approximated as

cij =
∑︁(a − a0)i(a − a0)j

n
. (4.9)

4.2 Propagation of laboratory measurements
errors into electrical conductivity profiles

Let Tk and Pk be the temperature and pressure in k-th thermodynamically mod-
elled layer, for r ∈ [rk−1, rk]. The temperature and pressure are assumed to have
no lateral variations. Let Cw and X0 be the bulk water content and chemical
composition vector, considered constant throughout the whole modelled mantle.
For the purposes of this work, the only model variable in this setup is the wa-
ter content. Due to non-negativity of the bulk water content Cw percentage, I
represent the water content using a Jeffreys parameter m = log10(Cw), M = R.
Although values of the water content percentage larger than 1 % do not make
physical sense, due to water saturation, I will not restrict the model space from
above.

The data space consists of the radial conductivity profiles. The electric con-
ductivity is also a positive parameter, so the data space is also represented by
vector Jeffreys parameter d = (log10(σ))k, D = Rn. For the model and data
spaces defined like this, the homogenous probability density µM(m) = 1 and
µD(d) = 1 are used.

To obtain conditional probability density θ(d|m) for the forward problem
from the end of Chapter 3 I have to contract this exact solution over the set of
conductivity parameters from the Table 3.1. Let

d(Cw, {αi}) = (log10(σk))n
k=0 = (log10(σHS±(Tk, Pk,X0)))n

k=0(Cw, {αi}). (4.10)

This denotes, that the vectors of the data space are dependent on the water
content and the conductivity parameters. Meaning that each of the elements of
a data vector shares the same set of the experimental conductivity parameters
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{αi}. From now on I will be dropping the HS± subscript meaning, there will be
implicitly two versions of the forward problem.

Let each of the experimental conductivity parameters be taken out of a normal
distribution

ρα = Ke
−

(αi−µαi )2

2σ2
αi , (4.11)

where µαi
and σαi

, the mean and the standard deviation, are taken directly from
the Table 3.1. Now the conditional probability distribution is

θ(d|m) = K
∫︂
Rm

δ(d − d(Cw, {αi}))e
−
∑︁

i

(αi−µαi )2

2σ2
αi dα, (4.12)

where again K denotes some normalization constant.
To get a numerical approximation of this distribution I use a Monte Carlo

approach by sampling the parameters α from their respective normal distribution
using the Box-Muller algorithm. Using such method one can obtain on demand
a single sample from the distribution 4.12.

To approximate the inverse problem solution i.e. to obtain the posterior dis-
tribution for m = log10(Cw), given exact data-point d0 = (log10(σ0))k, I use the
Metropolis-Hastings algorithm. Firstly, I need to define the prior distribution for
the water content. I assume only a realistic range of the water content to be
0.001% < Cw < 0.1% and the distribution in this range to be homogenous for
log10(Cw). This means that

ρM(m = log10(Cw)) =

⎧⎨⎩
1

−1−(−3) , −3 < log10(Cw) < −1
0 otherwise

. (4.13)

Furthermore, I am only able to sample the conductivity from the conditional
probability and not the other way around, in the case of a real computation. For
this I will approximate the 4.12 by a normal distribution for a given m. I can,
for the given parameter m, compute the average µD,m and the covariance matrix
CD,m. This can be achieved using a large, but finite, number of samples from the
conditional distribution θ(d|m). Now I can directly compute the approximate
conditional probability as

θ̂(d|m) = Ke
1
2 (d−µD,m)C−1

d,m(d−µD,m), (4.14)

where again K denotes some normalization constant.
Now I can finally get to run the Metropolis-Hastings algorithm to sample the

discrete posterior probability distribution

σM̂(m) = KρM(m)θ̂(d = d0|m) . (4.15)

I start by picking a random m0 from the uniform prior distribution ρM . I repeat
the sampling to get a new m′. Next, I compute the fraction of their conditional
probability

p0 = θ̂(d = d0|m′)
θ̂(d = d0|m0)

. (4.16)

If p0 ≥ 1, I accept the next sample m′ and set m1 = m′ and if p0 < 1, I accept
m′ with the probability of p0, otherwise I reject it and set m1 = m0. This process
repeats for many mn. This final set of model parameters {mn} will approximate
the posterior distribution for the water content σM̂(mi).
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4.3 Propagation of laboratory measurements
errors into tidally induced magnetic field

In this case the data space represents the magnetic field of M2 tides. It is impos-
sible to measure the magnetic field everywhere. Realistically, the only observable
part of the field is on the surface and above it. The data space then describes the
vector of internal coefficients d = (G(i)

jm), coupled to the surface magnetic field B
using the formula

G
(i)
jm =

B
(−1)
jm (a) − jB

(1)
jm(a)

2j + 1 . (4.17)

In an experimental setting the internal field coefficients are obtained for example
by analysis of Swarm and CHAMP satellite magnetic measurements [Šachl et al.,
2024, 2022]. In particular, I refer to the GO19 model obtained by dedicated
inversion method by Grayver and Olsen [2019], and the MTI family of models
stemming from a comprehensive approach [Sabaka et al., 2020].

I can set the data space to be D = Cjmax(jmax+2). The associated data space
homogenous distribution is considered to be trivial, as in the previous cases.

I denote the solution for the EMI forward modelling as

d = (G(i)
jm) = G(i)((σk)), (4.18)

where the input variables like the internal forcing Eimp are considered to be con-
stant. The only variable is the electric conductivity. In this case the conductivity
entering into the EMI model is assumed to be only radial, with no lateral varia-
tions.

The model space still describes the water content m = log10(Cw) and has the
same properties as in the previous case. The thermodynamic and conductivity
model are only valid for a section of the upper mantle. Due to this limitation of
the forward problem for the electrical conductivity, the calculated model has to
be combined with some background model σk

0 . The conductivity coefficients used
in the EMI forward problem can be then set as

σk(Cw, {αi}) =

⎧⎨⎩σk(Cw, {αi}), ks < k < ke

σk
0 , otherwise

, (4.19)

where ks < ke indexes of the lowermost and uppermost thermodynamically mod-
elled layers.

The conditional distribution for this problem is set to be

θ(d|m) = K
∫︂
Rm

δ(d − G(i)((σk(Cw, {αi}))))e
−
∑︁

i

(αi−µαi )2

2σ2
αi dα . (4.20)

It is important to mention, that also in this case, there are two forward problems,
each corresponding to one of the HS bounds.

I will not be exploring the associated inverse problem, due to computational
limitations, but in the next section I will present the conditional distribution in
terms of normal distribution approximation.
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5. Results
In this section I will present the results of the forward and inverse modelling for
the synthetic conductivity model and the forward modelling of the EMI model for
the synthesized conductivity as described in the previous section. It is necessarily
to further specify the parameters of the thermodynamic model, temperature Tk,
pressure Pk and chemical composition X and the modelled layers themselves.

Firstly the thermodynamically modelled layers each span the depth 20 km
and their centers range from the depth of 93 km to 393 km, bellow the ocean
surface. The pressure profile is sourced from the PREM model [Dziewonski and
Anderson, 1981]. The pressure depth dependence is shown in the Figure 5.1a.
The temperature and chemical composition is obtained from the thermochem-
ical WINTERC-G model [Fullea et al., 2021]. The WINTERC-G model maps
the whole upper mantle in terms of temperature and chemical composition, con-
structed using gravity, seismic and thermal data. Due to the 3D nature of this
model I only use the lateral average values for every depth layer. The 1D tem-
perature profile is shown in the Figure 5.1b. The chemical composition is almost
constant in the radial direction. The constant value of the chemical composition
is presented in the Table 5.1.

The thermochemical model computes the volume fraction of the major upper
mantle phases for each modeled layer. The calculated phase profile is shown in
the Figure 5.2 in terms of depth and volume fractions.

Xw

CaO 3.93
FeO 8.05
MgO 37.8
Al2O3 4.52
SiO2 45.7
Na2O 0.0

Table 5.1: Values of chemical composition used in the thermodynamic model
expressed in weight percentages.

5.1 Synthetic mantle conductivity profiles
Now I can combine the thermodynamic model with the conductivity model. To
sample the conditional probability distributions, from the equation 4.12, for a
given water content, I am using a Monte Carlo method to average over 100000
samples. The resulting distributions are represented as histograms with the aver-
age conductivity shown. Such histograms are computed for both the upper and
lower HS bound of the bulk electric conductivity. I have chosen a set of four
water content values to showcase the impact of the water content on the bulk
electric conductivity. The values of water content are 10 ppm, 60 ppm, 210 ppm
and 300 ppm. The histograms of the upper and lower HS bounds for the selected
water content values are shown in the Figures 5.4, 5.5, 5.6 and 5.7. The Figure 5.3
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(a) Pressure profile from the PREM
model for the given depth range.

(b) Average temperature profile from
the WINTERC-G model.

Figure 5.1: Used temperature and pressure values for the conductivity and ther-
modynamic model.

shows all the average values for the lower and upper HS bounds for the selected
water content values.

By comparing the histograms I can deduce several observations about the
probability distribution. A first trivial observation is that for larger water content
the conductivity rises. This is obvious from the equations 3.2 to 3.5. The second
observation visible just from these histograms is, that the lower HS bound is
always better defined that the upper HS bound for a given water content.

These histograms for each layer do not encode the correlations between the
bulk conductivities in different depths. For this purpose I have also constructed
the covariance matrices of the conditional probability distributions for each of the
selected water contents, presented in the Figures 5.8 and 5.9 for the lower and
upper HS bounds. The layers on these graphs are numbered from 0, corresponding
to the lowermost depth 393 km, to 15, corresponding to the uppermost depth
93 km. The largest variance can be observed for the lowermost layers. The off-
diagonal elements of the covariance matrices are always positive and comparable
to the diagonal elements. This implies that large jumps between the layers are
improbable. In a full EMI to conductivity inversion schema, like the one in Šachl
et al. [2024], similar property of the resulting conductivity profile is enforced by
a gradient regularization as a prior model distribution.

5.2 Posterior water inversion
With the ability to construct the covariance matrix of the conditional probability
I can try to solve the inverse problem in terms of water posterior probability
distribution in terms of the equation (4.15). I will do an experiment on a set of
synthetic conductivity profiles.
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Figure 5.2: Phase profile showing volume fractions of the present phases

Firstly I will invert two profiles, the average lower and upper HS bounds for
reasonable water content value Cw = 210 ppm. These profiles are my exact data
points. I will calculate the posterior distribution of the water content for the
upper HS forward problem, where the exact data is the average of the upper HS
bound for Cw = 210 ppm. The same is done for the lower HS problem, with
respect to the average lower HS bound. Graphs of these trivial inversions are
shown in figure 5.10a.

This first synthesis problem shows again that the upper HS forward problem
has lower resolution (the distribution is more spread out) than the lower HS
problem. The other observation is that this inverse problem result in a wide spans
of probable water content values, where the approximate standard deviation of
the posterior distributions is on the scale of 0.1 log10(wt%).

Now I will compare the lower and upper HS forward problems on the same
data set. I will take the log10 average of the average lower and upper HS bounds as
the exact data for the conductivity profile. This resulting posterior probabilities
for this synthetic inversion are shown in Figure 5.10b. This last Figure shows the
inverse relation between the HS bounds and water content. The posterior water
content distribution for upper HS bound represent the distribution of the lower
water content estimate. Inversely the posterior water content distribution for the
lower HS bound represent the distribution of the upper water content estimate.
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Figure 5.3: Profiles of the average HS lower(left) and upper(right) bounds for all
the selected water content values.

Figure 5.4: Probability distributions of lower(left) and upper(right) HS bounds
for 10 ppm
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Figure 5.5: Probability distributions of lower(left) and upper(right) HS bounds
for 60 ppm

Figure 5.6: Probability distributions of lower(left) and upper(right) HS bounds
for 210 ppm
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Figure 5.7: Probability distributions of lower(left) and upper(right) HS bounds
for 300 ppm

5.3 Error propagation through the EMI model
To compute the conditional probability for the internal field coefficient (G(i)

jm) I
will first have to set up the EMI model. Firstly, I will set the background model
σ0(r) as mentioned in the equation 4.19. I will use a 1D conductivity background
model, constructed by averaging the suboceanic parts of the 3-D conductivity
model WINTERC-e Wd-emax [Martinec et al., 2021]. This 1D reduction of the
background model is shown in the Figure 5.11. The model spans the whole radius
of the Earth.

The whole EMI model is computed on 204 layers, which are mostly concen-
trated in the crust and upper mantle. The SH cut-off jmax = 20. The thermody-
namically modeled layers are the ones from the previous section.

I have computed the solution of the EMI forward problem for each of the pre-
viously shown conductivity profile distributions, synthesized for the water content
values 10, 60, 210, 300 ppm. After sampling the resulting internal field coefficient
G

(i)
jm for each of the water content values I interpreted them only in the terms

of the average and covariance matrix. The average values can be comprehen-
sively interpreted using Lowes-Mauersberger(LM) spectra as defined in Sabaka
et al. [2016]. This spectrum reduces the directional indexes m and expresses the
magnetic power of the SH order j as

Rj = 4π j + 1
2j + 1

⎛⎝1
2 |G(i)

j0 |2 +
j∑︂

m=1
|G(i)

jm|2 + |G(i)
j−m|2

⎞⎠ . (5.1)

The Lowes-Mauersberger spectra of the average G(i)
jm coefficients for models with

different water content values are shown in the Figure 5.12 for lower HS bound
and in the Figure 5.13 for upper HS bound. These spectra can be compared to
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(a) Cw = 10 ppm (b) Cw = 60 ppm

(c) Cw = 210 ppm (d) Cw = 300 ppm

Figure 5.8: Covariance matrix for the probability distributions of lower HS bound
forward problem for differences water content values. The matrix indexes corre-
spond to the layer coefficients k, where k = 0 corresponds to the lowermost layer
and k = 15 to the uppermost layer.
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(a) Cw = 10 ppm (b) Cw = 60 ppm

(c) Cw = 210 ppm (d) Cw = 300 ppm

Figure 5.9: Covariance matrix for the probability distributions of upper HS bound
forward problem for differences water content values. The matrix indexes corre-
spond to the layer coefficients k, where k = 0 corresponds to the lowermost layer
and k = 15 to the uppermost layer.
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(a) Inversion of the upper and lower
forward problems with respect to the
synthetic lower and upper HS average
profiles.

(b) Inversion of the upper and lower
forward problems with respect to the
log10 average of the lower and upper
HS average profiles.

Figure 5.10: Posterior water content distributions as an inversion of synthetic
conductivity profiles. The water content Cw = 210 ppm is denoted on the graphs
as a vertical black line.

Figure 5.11: The background model We-max replaced by the synthetic conduc-
tivity distributions for the modelled depth range. The full conductivity profile is
on the left and a zoom in on this profile is shown on the right.

the ones presented in Šachl et al. [2022]. The Figure 5.14, which has been taken
over from Šachl et al. [2022], shows the LM spectra of M2 tidal magnetic internal
field coefficients for measurements taken by the Swarm and CHAMP satellites as
processed in the G019 dataset [Grayver and Olsen, 2019] and in the MTI family
of datasets [Sabaka et al., 2020], labeled MTI601–MTI901, using 6 to 9 years of
Swarm data. The Figure also shows the EMI response for the WINTERC-e Wd-
emax 3D model [Šachl et al., 2022]. It is obvious, that the 1D EMI model used
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Figure 5.12: LM spectra of average internal magnetic field coefficients for the
lower HS bound conductivity models.

here does not yield the same results as the 3D WINTERC-e Wd-emax model,
this can be seen for the SH orders j = 4, 6. The orders of magnitude of these
internal field coefficients are similar to the ones from the 1D EMI computation
for the conductivity models synthesis by me.

The last result for of the EMI forward modelling are the covariance matrices
for the calculated G

(i)
jm coefficients. These matrices are presented in the figures

5.15 and 5.16 for the lower and upper HS bound forward problem, respectively.
The patterns of correlation and anti-correlation are independent on the water

content and the type of forward model. The main takeaway from these covariance
matrices is that the maximal variance can range from 0.01µT2 to 10µT2.
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Figure 5.13: LM spectra of average internal magnetic field coefficients for the
upper HS bound conductivity models.

Figure 5.14: LM spectra for different experimental and synthesized dataset of the
internal M2 magnetic field coefficients constructed by Šachl et al. [2022]
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(a) Cw = 10 ppm (b) Cw = 60 ppm

(c) Cw = 210 ppm (d) Cw = 300 ppm

Figure 5.15: Real part of the covariance matrix for the probability distributions
of G(i)

jm coefficients for the lower HS bound forward problem. The matrix uses a
joint SH index n = (j − 1)(j + 1) + j +m+ 1.
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(a) Cw = 10 ppm (b) Cw = 60 ppm

(c) Cw = 210 ppm (d) Cw = 300 ppm

Figure 5.16: Real part of the covariance for the probability distributions of G(i)
jm

coefficients for the upper HS bound forward problem. The matrix uses a joint
SH index n = (j − 1)(j + 1) + j +m+ 1.

39



Conclusion
I have demonstrated a Bayesian approach to the approximation of the error prop-
agation of the lab-based mantle rock conductivity measurements through the syn-
thetic conductivity of the upper mantle and its magnetic response to the M2 tidal
forcing.

The error of the current lab based measurements of the upper mantle rocks is
amplified by the bulk conductivity computation. The resulting variances of these
bounds for log-conductivity are in the orders of 0.1.

Such variance causes the resolution of an inverse problem in terms of constant
bulk water content, expressed in log weight percentages, to be in the order of
0.1 log10(wt%)2. On the other hand such large posterior variance of the water
content are much smaller than the differences between the upper and lower water
content estimates in terms of the HS bounds.

When considering the full forward problem mapping upper mantle water con-
tent to the magnetic response to the M2 tidal forcing, the variances of the SH
coefficient of the internal magnetic field are in the orders of 1µT2.

This implies that such errors can pose a problem moving forward, although
they do not blur the lines between the upper and lower water content estimates.

The lab-based conductivities and from them calculated synthetic conductiv-
ity of upper mantle do not account for the effect of possible errors introduced
in the thermodynamic model and the possible inconsistency between the ther-
modynamically computed ideal phases and the in situ synthesized samples. This
means that this work presents a lower error estimate for the methods presented
above.
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