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1 Introduction

Semirings (i. e., non-empty sets equipped with two binary operations, usually
denoted as addition and multiplication, where the addition is commutative
and associative, the multiplication is associative and distributes over the ad-
dition) are widely used in various branches of mathematics and computer
science and in everyday practice as well (the semiring of natural numbers
for instance). In spite of this fact, structural properties of semirings are not
well understood so far and, in contrast to more fashionable rings, they are
studied relatively scarcely (albeit some material is collected in the mono-
graphs [5] and [6]). Congruence-simple objects serve a basic building stone
for any algebraic structure and these objects are massively popular in some
cases (as groups, rings, algebras). This is not case for semirings, however.
Congruence-simple commutative (finite, resp.) semirings (i. e. semirings
with precisely two congruences) were classified in [1] ([2], resp.) and the
classification carries over to the non-commutative case ([1]). Namely, if S
(= S(+, ·)) is a congruence-simple (cg-simple) semiring, then S fits into just
one of the following five classes:

(1) S is additively idempotent (i. e., s = 2s for every s ∈ S);

(2) S is additively cancellative (i. e., s+ t 6= s+ r for all r, s, t ∈ S, r 6= t);

(3) |S| = 2 and |S + S| = 1 = |SS|;

(4) |S + S| = 1 and SS = S;

(5) S is additively zeropotent (i. e., 2s = 3t for all s, t ∈ S) and S+S = S.

Examples of congruence-simple semirings from each of the first four classes
come readily to mind (see [9], [11]). On the other hand, it seems that no
example of a congruence-simple semiring of class (5) with non-trivial multi-
plication is known so far. The aim of this thesis is to show that the class (5)
contains such a semiring and to design a construction pattern which might
be used, under further development, to obtain explicit member of class (5).

The thesis is divided into four sections. Brief introduction is followed
by the section dealing with special replacement systems. In most of its
length, this section uses very general approach which reaches beyond needs
of the other sections but seems to be very promising for more combinatorial-
algebraic constructions. Third section offers a study of finite maximal sepa-
rating sets on 2 generators which are further used in constructions. The final
section collects some knowledge of congruence-simple additively zeropotent
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semirings, introduces a construction pattern for additively zeropotent semir-
ings and proves that class (5) contains semiring with non-trivial multiplica-
tion (and a bit more).
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2 Replacement systems

This section initiate a study of special replacement systems (see [10] for gen-
eral theory) coming from so called separating sets of words in free monoids,
meaning sets whose elements do not overlap. The corresponding replace-
ment relation enjoys the diamond and other useful properties and this yields
a better insight into structure and behaviour of the related transitive clo-
sures. These transitive relations (orders in many cases) will be used later in
section 4 to construct congruences of free zeropotent semirings, where they
will ensure some desired properties of factors.

Through the section we use basic notation and results in accordance with
customs in formal language theory and word combinatorics as presented in
[10], [4], [7] and [8].

2.1 Preliminaries

Let A∗ be the free monoid of words over a finite alphabet A of letters. The
empty word ε, that is the word of length zero, serves as neutral (or unit)
element of A∗ and we put A+ = A∗ \ {ε}; notice that A+ is a free semigroup
over A. The words from A+ are called nonempty (or nontrivial).

Let N be the set of all nonnegative integers and N+ = N \ {0}. For a
word w ∈ A∗, the length of w, denoted by |w|, is the number of occurrences
of all the letters a ∈ A in w. Thus |ε|=0 and |a1a2 · · · am| = m for all
m ∈ N+ and a1, a2, . . . , am ∈ A. Furthermore, we put alph(ε) = ∅ and
alph(a1a2 . . . am) = {a1, a2, . . . , am}.

A word z is a factor of a word w if w = uzv for some u, v ∈ A∗. If u 6= ε
or v 6= ε (equivalently, |z| < |w|), then z is called a proper factor. If u = ε
(v = ε, resp.), then z is called a prefix (suffix, resp.) of w; moreover if v 6= ε
(u 6= ε, resp.), then z is called a proper prefix (proper suffix, resp.) of w. If
u and v are both nonempty, then z is called an inner factor of w. The set
of all prefixes of u is denoted by pref(u) and the set of all suffixes of u is
denoted by suff(u).

A word w ∈ A+ is primitive, if for each u ∈ A+ and n ∈ N, the equality
v = un implies n = 1 (and v = u). It is quite easy to see that for each v ∈ A+

there exist a unique primitive word t ∈ A+, the primitive root of v (denoted
by

√
w in the sequel), and a number m ∈ N+ such that v = tm.

Nonempty words x and y are conjugate (words of each other) if there exist
words x1 and x2 such that x = x1x2 and y = x2x1. Conjugacy is trivially
an equivalence relation; if x and y are conjugate we often say that x is a
conjugate of y.
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The following two results belong to the folklore of combinatorics on words.
Respective proofs are not difficult and can be found in [7].

Lemma 2.1.1. Two nonempty words commute if and only if they are powers
of the same (primitive) word, i.e., they have the same primitive root.

Lemma 2.1.2. Let x and y be nonempty words. The following four condi-
tions are equivalent:

(i) the words x and y are conjugate;

(ii) the words x and y are of equal length and there exist unique words t1 and
t2 such that t2 6= ε, t = t1t2 is primitive, x ∈ (t1t2)

+ and y ∈ (t2t1)
+;

(iii) there exists a word z1 such that xz1 = z1y;

(iv) there exists a word z2 such that z2x = yz2.

Furthermore, assume that any of the four conditions above holds and that t1
and t2 are as in (ii). Then, for a word w, we have xw = wy if and only if
w ∈ (t1t2)

∗t1.

It is quite straightforward to see that if a word x is primitive, then each
conjugate y of x is also primitive.

2.2 Bordered and unbordered words

Call a word w ∈ A∗ bordered if there exist words x, y ∈ A∗, x 6= ε such that
w = xyx. We have the following

Lemma 2.2.1. The following conditions are equivalent for a word w:

(i) the word w is bordered;

(ii) there exist words u, t, v ∈ A+, |t| ≤ |u| = |v|, such that w = ut = tv;

(iii) there exist words p, q ∈ A+, |q| = |p| < |w|, such that wp = qw.

Proof. The implication (i)⇒ (ii) is clear. The implications (ii)⇒ (iii) and
(iii)⇒ (i) follow easily from Lemma 2.1.2.

A nonempty word w is unbordered if it is not bordered (notice that,
according to this definition, ε is unbordered). An unbordered word is called
primary in [8].

Lemma 2.2.2. Let z ∈ A+. Then z is unbordered if and only if no proper
non-trivial prefix (suffix, resp.) of z is a suffix (prefix, resp.) of it.
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Proof. Let v ∈ A+, v 6= z be both prefix and suffix of z. Thus there exist
x, y ∈ A+ such that z = vx = yv. According to Lemma 2.1.2 there exist
p, q ∈ A+ such that x = pq and y = qp. Hence z = vpq = qpv. At least one
of words v, q is not longer than |v|/2, which implies that z is bordered. The
other implication is obvious.

Lemma 2.2.3. Each nonempty unbordered word is primitive.

Proof. Let w be a nonempty word that is not primitive. Then w = tk where
t is the primitive root of w and k ≥ 2. Obviously, w is bordered.

Remark 2.2.4. The word w = aba, a, b ∈ A, a 6= b, is an example of a
primitive bordered word.

A word w is called almost unbordered if either w = ε or w 6= ε and
√
w is

unbordered.

Lemma 2.2.5. Let z ∈ A+ be an almost unbordered word, l =
√
z, and let

x, y ∈ A∗. Then xz = zy if and only if at least one (and then just one) of
the following cases takes place:

(1) x = y = ε;

(2)
√
x =

√
y = l (then, of course, x = y);

(3) there exists u ∈ A+ such that
√
x = zu,

√
y = uz and zu 6= uz.

Proof. We prove only the direct implication, the other one is obvious. If
x = y = ε, there is nothing to prove. Suppose that x and y are both
nonempty. By Lemma 2.1.2, x = (t1t2)

r, y = (t2t1)
r, and z = (t1t2)

st1 for
some numbers r ∈ N+, s ∈ N and words t1, t2 ∈ A∗, t2 6= ε such that t1t2
is primitive. Assume that t1t2 = t2t1 (meaning, since t1t2 is primitive, that
t1 = ε). Then xz = zy reduces to xz = zx, so by Lemma 2.1.1, the primitive
roots of x, y and z coincide and (2) is true. Suppose, finally, that t1t2 6= t2t1.
Then t1 6= ε and, since l is unbordered, we have s = 0. Clearly, z = t1,
t1t2 = zt2 and t2t1 = t2z, so (3) is valid. The proof is now complete.

Corollary 2.2.6. Let x, y, z ∈ A+ be words, z unbordered. Then xz = zy
holds if and only if there exists a word w such that x = zw and y = wz.

Lemma 2.2.7. Let z ∈ A+ be an almost unbordered word, l =
√
z, and let

x, y ∈ A∗. Then xzy = yzx if and only if at least one (and then just one) of
the following cases takes place:

(1) x = y;
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(2)
√
x =

√
y = l, i.e., x and y commute;

(3) there exists u ∈ A+ and r, s ∈ N+, r 6= s, such that uz is primitive,
x = (uz)ru and y = (uz)su.

Proof. We prove only the direct implication, the other one is obvious. If
x = y, then (1) holds trivially. Assume x 6= y. Suppose, without loss of
generality, that |x| > |y|. Then x = yp = qy for some nonempty words
p and q. The equality xzy = yzx implies that pz = zq. We now apply
Lemma 2.2.5. Since p and q are nonempty, either p and q have a common
primitive root l or there exist u ∈ A+ such that the primitive root of p is
zu, the primitive root of q is uz and zu 6= uz. In the former case there exist
m,n ∈ N, m 6= n, such that x = lm and y = ln, i.e., (2) is true. In the latter
case x = y(zu)k = (uz)ky for some k ∈ N+. By Lemma 2.1.2, y = (uz)su for
some s ∈ N. Then x = (uz)k+su and (3) holds since k > 0. The proof is now
complete.

Lemma 2.2.8. Let z ∈ A+ be an almost unbordered word, l =
√
z, and let

x, y ∈ A∗. Then xyz = zyx if and only if at least one (and then just one) of
the following cases takes place:

(1) xy = yx = ε;

(2)
√
x =

√
y = l;

(3) there exist u ∈ A+ and r, s ∈ N such that uz and zu are primitive
x = (zu)rz, y = (uz)su and zu 6= uz;

Proof. We apply Lemma 2.2.5. Then

1. either xy = yx = ε; or

2.
√
xy =

√
yx = l (implying of course that xy = yx), or

3. there exists u ∈ A+ such that
√
xy = zu,

√
yx = uz and zu 6= uz.

In the first case there is nothing to prove. Consider the second case. Clearly,
there exist m,n ∈ N such that x = lm and y = ln, so (ii) is valid. Finally,
assume that 3. holds. Then there exist k ∈ N+ such that xy = (zu)k

and yx = (uz)k. Since uz 6= zu, both x and y are nonempty. We have
(xyx = (zu)kx = x(uz)k and yxy = (uz)ky = y(zu)k, so by Lemma 2.1.2,
there exist r, s ∈ N, r+s = k such that x = (zu)rz and y = (uz)su. Obviously
(3) is satisfied, so we are done.
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Now, let z, p, q, u, v ∈ A∗ be words such that z is unbordered and noempty
and the equality

pzq = uzv (1)

is true. We wish to express u and v by means of z. Three cases arise: 1◦

|p| = |u|, 2◦ |p| > |u|, 3◦ |p| < |u|. In the first case, it is clear that p = u
does not necessarily depend at all on z.

Case 2◦ |p| > |u|. Let x and y be words such that p = ux and v = yq.
Then the equality (1) reduces to

xz = zy (2)

which, by Lemma 2.2.5, has the solutions x = (zw)n, y = (wz)n where the
parameter n ∈ N+ and w ∈ A∗ can be chosen freely so that wz is primitive,
the choice w = ε being quite possible. Recall also that a word is primitive if
and only if any conjugate of it is primitive. The parameters p, q, u, v of (1)
in the case 2◦ are restricted by p = u(zw)n, v = (wz)nq where n ∈ N+ and
u, q, w ∈ A∗ can be chosen freely as long as wz is primitive.

The case 3◦ |p| < |u| is analogous to 2◦, only the roles of p and u (q and
v, resp.) are interchanged. Thus u = p(zw)n, q = (wz)nv where n ∈ N+ and
p, v, w ∈ A∗ can be freely chosen so that wz is primitive.

Assume now that (1) holds. Let t ∈ A∗ be a word such that

ptq = utv (3)

is true. What can we say about t? In the case 1◦ |p| = |u| again not
necessarily much. In the case 2◦ |p| > |u| and 3◦ |p| < |u| we are lead to the
equality

xt = ty (4)

which, in the case 2◦, allows us to deduce that

(zw)nt = t(wz)n (5)

where n ∈ N+ and w ∈ A∗ is such that zw is primitive. By Lemma 2.1.2,
t = (zw)mz, where m ∈ N . We have established the folllowing result:

Theorem 2.2.9. Let z, u, v, p, q ∈ A∗ be words such that z 6= ε is unbordered
and pzq = uzv holds. Assume furthermore that t ∈ A∗. Then utv = ptq if
and only if at least one (and then just one) of the following conditions takes
place:

(1) either |u| = |p|;
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(2) p = u(zw)n (|p| > |u|), t = (zw)mz, and v = (wz)nq where m ∈ N,
n ∈ N+ and u, q, w ∈ A∗ are such that zw is primitive;

(3) u = p(zw)n (|p| < |u|), t = (zw)mz, and q = (wz)nv where m ∈ N,
n ∈ N+ and u, q, w ∈ A∗ are such that zw is primitive.

Let z, u, v, w ∈ A∗ be words such that z 6= ε is unbordered and the
equation

uvz = zvw (6)

is true. We wish to describe u, v, w similarly as in previous theorem. We
will use Lemma 2.2.5, which leads to three cases: 1◦ uv = vw = ε, 2◦√
uv =

√
vw = l, 3◦ there exists p ∈ A+ such that

√
uv = zp,

√
vw = pz

and zp 6= pz.
The first case immediately gives u = v = w = ε.
The case 2◦ may be further divided. If u = w = ε we obtain

√
v = z. If

u 6= ε 6= w then uv = vw and, according to Lemma 2.1.2, there exist words
t1, t2 ∈ A∗, t2 6= ε such that u = (t1t2)

s, w = (t2t1)
s, v = (t1t2)

rt1, s ≥ 1,
r ≥ 0 and t1t2 (t2t1) is primitive. If t1 6= ε then, since t1 is both prefix and
suffix of uv = vw and z is unbordered,

√
t1 = z. Then

√
t2 = z also, and

we obtain a contradiction with t1t2 being primitive. Thus t1 = ε and t2 = z.
Hence

√
u =

√
w = z, which means, by length argument that u = w and

either v = ε or
√
v = z.

In the case 3◦, there exists m ≥ 1 such that uv = (zp)m and vw = (pz)m.
If |u| = |z| (= |w|) then u = w = z and v may be arbitrary word from A∗.
If |u| < |z| then z = uz′ = z′′w, where z′ is a suffix of z and z′′ is a prefix of
z, z′ 6= ε 6= z′′. Hence uvz′′w = uz′vw, vz′′ = z′v and z′, z′′ are conjugate, a
contradiction. If |u| > |z| then u = zu′, w = w′z and zu′vz = zvw′z. Thus
u′v = vw′ and according to Lemma 2.1.2 there exist p, q ∈ A∗, p 6= ε such
that u′ = pq, w′ = qp and v = p(qp)n for some n ≥ 0.

We have established the following result:

Theorem 2.2.10. Let z, u, v, w ∈ A∗ be words such that z 6= ε is unbordered.
Then uvz = zvw if and only if at least one (and then just one) of the following
conditions takes place:

(1) u = w = zm, v = zn, m,n ≥ 0;

(2) u = w = z,
√
v 6= z;

(3) there exist p, q ∈ A∗, p 6= ε, such that
√
pq 6= z and u = zpq, w = qpz,

v = p(qp)n, n ≥ 0

10



2.3 Basic facts about separated pairs of words

An ordered pair (u, v) of words u, v ∈ A∗ is called overlapping if there exists
words x ∈ A+ and y, z ∈ A∗, yz 6= ε, such that u = yx and v = xz. The pair
(u, v) is separated (or non-overlapping) if it is not overlapping. A separated
pair of words can be characterized in several ways:

Lemma 2.3.1. Let u, v ∈ A∗. The following conditions are equivalent for
the ordered pair of words (u, v):

(i) the pair (u, v) is separated.

(ii) if r, s ∈ A∗ and t ∈ A+ are such that u = rt and v = ts, then r = s = ε
(and hence u = v).

(iii) if p, q ∈ A∗ are such that up = qv, then either |u| ≤ |q| and |v| ≤ |p| or
p = q = ε (and hence u = v).

Proof. Suppose that (u, v) is overlapping. Then u = yx and v = xz for
some x ∈ A+ and y, z ∈ A∗ such that yz 6= ε. Certainly (ii) does not hold.
Now uz = yv and either |u| > |y| or |v| > |z| (since yz is nonempty), so
(iii) is not true either. On the other hand, if (ii) is not valid, then (u, v) is
certainly overlapping. Suppose finally that (iii) is not true. Then up = qv
for some p, q ∈ A∗ such that pq 6= ε and either |u| > |q| or |v| > |p|. Assume,
without loss of generality, that |u| > |q|. Certainly u = qx and v = xp
for some nonempty word x, implying (since pq 6= ε) that the pair (u, v) is
overlapping.

From Lemma 2.2.2, for any word w ∈ A∗, the pair (w,w) is overlapping if
and only if w is bordered. As well, the pairs (ε, w) and (w, ε) are separated
for each w ∈ A∗.

An ordered pair (u, v) of words u, v ∈ A∗ will be called left (right, resp.)
strongly separated if it is separated and either u (resp. v) is not a factor of
v (resp. u) or u = v or u = ε (v = ε, resp.). The pair will be called strongly
separated if it is both left and right strongly separated.

The above definitions imply straightforwardly

Lemma 2.3.2. The following conditions are equivalent for each word u ∈ A∗:

(i) the pair (u, u) is separated;

(ii) the pair (u, u) is left strongly separated;

(iii) the pair (u, u) is right strongly separated;

11



(iv) the pair (u, u) is strongly separated;

(v) the word u is unbordered.

Certainly the pairs (ε, w) and (w, ε) are strongly separated for each word
w ∈ A∗. Also the following lemma is easily verified.

Lemma 2.3.3. Let u, v ∈ A∗ be distinct words of equal length, i.e., words
such that u 6= v and |u| = |v|. Then the following conditions are equivalent:

(i) the pair (u, v) is separated;

(ii) the pair (u, v) is left strongly separated;

(iii) the pair (u, v) is right strongly separated; and

(iv) the pair (u, v) is strongly separated.

Lemma 2.3.4. Let u, v ∈ A∗ be such that u 6= v. Then the following condi-
tions are equivalent:

(i) the pairs (u, v), (v, u) are left strongly separated;

(ii) the pairs (u, v), (v, u) are right strongly separated;

(iii) the pairs (u, v), (v, u) are strongly separated;

(iv) for each w ∈ A∗, if both u and v are factors of w, then |u|+ |v| ≤ |w|.

Proof. It is easy to see that (i), (ii) and (iii) are pairwise equivalent. The
lemma is certainly true if either u = ε or v = ε, so assume that both u and
v are nonempty.

Let us show that (iii) implies (iv). Let w, p, q, y, z ∈ A∗ be words such
that w = puq = yvz. Since (u, v) is strongly separated, u 6= v and u, v are
nonempty, the above occurrences of u and v in w have to be totally separate.
This means that either |p| ≥ |yv| or |z| ≥ |uq|. In both cases, |u|+ |v| ≤ |w|
and (iv) is true.

We prove finally that (iv) implies (iii). Surely neither u is a subword of
v nor vice versa. Let p, q ∈ A∗ be such that up = qv. By our assumption,
|up| = |qv| ≥ |u| + |v|. Certainly, |p| ≥ |v| and |q| ≥ |u|. By Lemma 2.3.1
(iii), the pair (u, v) is separated. Thus (u, v) is strongly separated.

Lemma 2.3.5. Let (u, v) ∈ A∗ × A∗ be a separated pair of words such that
u 6= v. Then there does not exist nonempty conjugate words x and y such
that x is a suffix of u and y is a prefix of v.
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Proof. Assume, on the contrary, that u = px and v = yq for some nonempty
conjugate words x and y. By Lemma 2.1.2, there exist words z and w such
that x = zw, y = wz, u = pzw and y = wzq. This is a contradiction.

Corollary 2.3.6. Let (u, v) ∈ A∗×A∗ be a separated pair of words such that
u 6= v. Then, for p, q, x, y ∈ A∗, the equalities u = pxy and v = yxq hold if
and only if u = p, v = q and x = y = ε.

Proof. The direct implication is true by the previous lemma. The reverse
implication is clear.

Lemma 2.3.7. Let (u, v) ∈ A∗ × A∗ be a separated pair of words such that
u 6= v. If x, y, z ∈ A∗ then uzx = yzv if and only if at least one (and then
just one) of the following conditions takes place:

(1) x = v and y = u;

(2) x = tmv, y = utm, z = tn, t 6= ε, m,n ∈ N, r > 0;

(3) x = (pq)rv, y = u(qp)r, z = (qp)sq, r, s ∈ N, r > 0, q 6= ε 6= p.

Proof. We will prove first that u is a prefix of y and v is a suffix of x. Assume
that the claim does not hold, and, without loss of generality, that u = yd
where d ∈ A+. Certainly, |d| ≤ |z|, otherwise (u, v) is not separated. Then
z = dt for some t ∈ A∗ and dtx = tv. Obviously, there exists p ∈ A∗ such that
dt = tp. We note that d and p are conjugate (and nonempty) and v = px.
Since u = yd, we get a contradiction with Lemma 2.3.5.

Now, there exist x′, y′ ∈ A∗ such that x = x′v and y = uy′. Hence
uzx′v = uy′zv and zx′ = y′z. Either x′ = y′ = ε, which leads to case (1) or,
according to Lemma 2.1.2 there exist words t1, t2 ∈ A∗, t2 6= ε, such that t1t2
is primitive, and numbers r, s ∈ N, r > 0, satisfying y′ = (t1t2)

r, x′ = (t2t1)
r

and z = (t1t2)
st1. If t1 = ε then x′ = y′ and case (2) takes place. If t1 6= ε,

then case (3) takes place.

Lemma 2.3.8. Let (u, v) ∈ A∗ × A∗ be a separated pair of words such that
u 6= v. Then xuy 6= yvx for all x, y ∈ A∗.
Proof. Assume, contrarywise, that there exist words x, y ∈ A∗ for which
xuy = yvx. If |x| = |y|, then x = y and u = v, a contradicition. As-
sume, without loss of generality, that |x| > |y|. Then there exist nonempty
words p and q such that x = yq = py. Now, by Lemma 2.1.2, there exist
words t1, t2 ∈ A∗, t2 6= ε, such that t1t2 is a primitive word, and numbers
m,n ∈ N, m > 0, satisfying p = (t1t2)

m, q = (t2t1)
m and y = (t1t2)

nt1. Obvi-
ously, xuy = yvx implies (t1t2)

m+nt1u(t1t2)
nt1=(t1t2)

nt1v(t1t2)
m+nt1. Then

(t1t2)
mu = v(t1t2)

m meaning that u and v are conjugate. Since (distinct)
conjugate words cannot form a separated pair, we have a contradiction.
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Lemma 2.3.9. Let (u, v) ∈ A∗ × A∗ be a separated pair of words such that
u 6= v. Then uxy 6= yxv for all x, y ∈ A∗.

Proof. Let, on the contrary, uxy = yxv. According to Lemma 2.3.7, u is a
prefix of y and v is a suffix of y. Thus y = uy′v, since the pair (u, v) is sepa-
rated. But then uxuy′v = uy′vxv and xuy′ = y′vx, which is a contradiction
with Lemma 2.3.8.

Theorem 2.3.10. Let u, v ∈ A∗, u 6= v, be words such that pairs (u, v) and
(v, u) are separated. Assume furthermore that d, t, x, y ∈ A∗ are words for
which the equality

dut = xvy (7)

is true. Then dwt 6= xwy for each w ∈ A∗.

Proof. Assume, contrarywise, that w ∈ A∗ is such that dwt = xwy. Since
u 6= v, both (u, v) and (v, u) are separated, and (7) holds, the exposed
occurrences of u in dut and v in xvy have to be totally separated. This implies
that either |d| ≥ |xv| or |x| ≥ |du|. Assume, without loss of generality, that
|d| ≥ |xv|. Let y1 ∈ A∗ be such that d = xvy1. The equality (7) implies that
y = y1ut. Now dwt = xwy allows us to deduce that vy1w = wy1u. Since
(v, u) is separated and u 6= v, the word w must be of the form w = vpu,
where p ∈ A∗. Substituting vpu for w in vy1w = wy1u gives y1vp = puy1.
This is a contradiction with Lemma 2.3.8.

2.4 Separating sets of words

A set Z ⊆ A∗ is called separating (strongly separating) if all ordered pairs
from Z × Z are separated (strongly separated, resp.) The definition of a
strongly (left or right) separated pair of words implies straightforwardly

Lemma 2.4.1. Let Z ⊆ A∗. Then

(i) the set Z is strongly separating if and only if every pair in Z×Z is left
strongly separated;

(ii) the set Z is strongly separating if and only if every pair in Z × Z is
right strongly separated;

(iii) if Z is a separating set, then every word from Z is unbordered;

(iv) if Z is a separating set (strongly separating set, resp.), then Z ∪ {ε} is
a separating set (strongly separating set, resp.).

14



Applying Axiom of Choice (i. e., Zorn Lemma) we see that each sepa-
rating (strongly separating, resp.) set is contained in a maximal separating
(strongly separating, resp.) set. This can be seen for instance as follows.
Consider a separating set Z ⊆ A∗. Let Z0 = Z and

U0 = {w ∈ A∗ \ Z0 | ∀ z ∈ Z0 : (z, w) and (w, z) are separated } .

Let k ∈ N and assume that Zk and Uk are given. Let wk ∈ Uk be the
minimal element with respect to lexicographical order (assuming that A is
well ordered). Let Zk+1 = Zk ∪ {wk} and

Uk+1 = {w ∈ A∗ \ Zk+1 | ∀ z ∈ Zk+1 : (z, w) and (w, z) are separated } .

Obviously, limn→∞ Zn is a maximal separating set.
A (strongly) separating set Z will be called almost maximal if Z ∪ {ε} is

maximal (see Lemma 2.4.1 (iv)).

Example 2.4.2.

(i) The empty set ∅ and the one-element set {ε} are strongly separating.

(ii) The set A of variables is an almost maximal strongly separating set.

Maximal (almost) separating sets are more deeply studied in section 3.

2.5 Reduced and meagre words

Let us now consider the (number of) occurrences of one word in another. For
all w, z ∈ A∗, let Tr(w, z) = {(u, z, v) |u, v ∈ A∗, w = uzv} and tr(w, z) =
|Tr(w, z)|.

Let w, z ∈ A∗ Certainly if |w| < |z|, then Tr(w, z) = ∅ and tr(w, z) = 0.
On the other hand, if |w| ≥ |z|, then Tr(w, z) may be nonempty; the upper
bound tr(w, z) ≤ |w| − |z|+ 1 is easily verified. As a special case tr(w, ε) =
|w|+ 1.

We generalize the functions Tr and tr as follows. For any w ∈ A∗ and
any set S ⊆ A∗ of words, let Tr(w, S) =

⋃
z∈S Tr(w, z) and tr(w, S) =∑

z∈S tr(w, z).
A word w is S-reduced if tr(w, S) = 0 and S-meagre if tr(w, S) ≤ 1. When

S is clear we use the terms reduced and meagre, respectively. Certainly, if
S = ∅, then every word is reduced. Contrarywise, when ε ∈ S, then no word
is reduced and ε is the only meagre word. On the other hand, if S = A, then
ε is the only reduced word and A ∪ {ε} is the set of all meagre words.

Assume now that Z ⊆ A+ is strongly separating. Clearly, each word in
Z is Z-meagre; for each z ∈ Z, the total number of occurrences of the words
from Z in z is one.
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Lemma 2.5.1. Let p, q, x, y ∈ A∗ and z1, z2 ∈ Z be words such that pz1q =
xz2y. If p and x (q and y, resp.) are reduced, then p = x, q = y and z1 = z2.

Proof. Assume without loss of generality that p and x are reduced. We first
show that p = x. Assume, contrarywise, that |p| > |x|, the case |p| < |x|
being shown in a similar manner. Now, since Z is strongly separating, p =
xz2w for some word w. This contradicts the fact that p is reduced. Thus we
deduce that p = x. Again, since Z is strongly separating, the words z1 and
z2 are equal. This finally implies that q = y and we are done.

Lemma 2.5.2. Let p, q, x, y ∈ A∗ and z ∈ Z be words such that x and y are
reduced and xy = pzq. Then there are words u, v ∈ A+ such that x = pu,
y = vq and z = uv. Moreover, both p and q are reduced and |z| ≥ 2.

Proof. If |x| ≤ |p|, then p = xt for some t ∈ A∗, and so y = tzq. Obviously, y
is not reduced, a contradiction. Assume thus that |p| < |x|, so x = pu, where
u is a nonempty word. Analogously, we may show that y = vq for some word
v 6= ε. Certainly z = uv and since u and v are nonempty, the length of z is
at least two. As a factor of x (y, resp.) the word p (q, resp.) is reduced.

Suppose that the words u and v are reduced and uv is not. Then there
exists exactly one word z ∈ Z such that z = xy for some nonempty suffix x
of u and nonempty prefix y of v. Since Z is strongly separating, the words
z, x and y are uniquely determined.

Lemma 2.5.3. Let w ∈ A∗. There exist m ∈ N, reduced words x0, x1,
. . . , xm ∈ A∗ and z1, z2, . . . , zm ∈ Z such that w = x0z1x1z2x2 · · · zmxm.

Proof. We proceed by induction on |w|. The result is clear for reduced or
meagre w, so the basic step of the induction is easily verified. In the general
case the remark preceding this lemma is applied.

Proposition 2.5.4. Let Z ⊆ A+ be a strongly separating set. For each
w ∈ W there exist uniquely determined m ∈ N, reduced x0, x1, . . . , xm ∈ A∗

and z1, z2, . . . , zm ∈ Z such that w = x0z1x1z2x2 · · · zmxm. Moreover,

Tr(w,Z) = { (x0, z1, x1z2x2 · · · zmxm), (x0z1x1, z2, x2z3x3 · · · zmxm),
. . . , (x0z1x1 · · · zm−1xm−1, zm, xm)}

and tr(w,Z) = m.

Proof. The existence of the decomposition is shown in Lemma 2.5.3. The
uniqueness follows from Lemma 2.5.2 by induction on |w|.
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2.6 The replacement relation ρ

We wish to study certain types of string rewriting (or reduction) systems, in
particular those, where the production rules are such that the words x on the
left hand side of the rules x → y form a (strongly) separating set. For the
sake of completeness we start the considerations from the very beginning,
binary relations on the free monoid A∗.

Call a binary relation α on A∗ stable, if (x, y) ∈ α implies (uxv, uyv) ∈ α
for all u, v ∈ A∗.

For each z, t ∈ A∗ let ρz,t be the binary relation on A∗ defined by ρz,t =
{(uzv, utv) |u, v ∈ A∗}. Let λz,t be the reflexive closure of ρz,t, λz,t = ρz,t ∪
idA∗ . Obviously ρz,t is the stable closure of the one element relation (z, t)
and λz,t is the reflexive stable closure of (z, t).

Let Z ⊆ A∗ and ψ : Z → A∗ be a function. Define the relation ρZ,ψ by
ρZ,ψ =

⋃
z∈Z ρz,ψ(z). Let λZ,ψ be the reflexive closure of ρZ,ψ. Certainly, both

ρZ,ψ and λZ,ψ are stable.
Recall that a binary relation ξ over a set X is irreflexive if (x, x) /∈ ξ for

all x ∈ X. Again, one easily sees that the relation ρZ,ψ is irreflexive if and
only if ψ(z) 6= z for each z ∈ Z.

Lemma 2.6.1. Let Z ⊆ A∗ and let ψ : Z → A∗ be a function. Then

(i) |{x ∈ A∗ | (w, x) ∈ ρZ,ψ}| ≤ tr(w,Z);

(ii) |{x ∈ A∗ | (w, x) ∈ λZ,ψ}| ≤ tr(w,Z) + 1.

Proof. The definitions above and the definition of tr(w,Z) imply the claims
straightforwardly.

The result below is also a consequence of the preceding definitions.

Lemma 2.6.2. Let Z ⊆ A∗ and let ψ : Z → A∗ be a function. For each
w ∈ A∗, the following conditions are equivalent.

(i) w is Z-reduced

(ii) for each x ∈ A∗, (w, x) is not in ρZ,ψ;

(iii) for each y ∈ A∗, (w, y) ∈ λZ,ψ implies y = w.

Recall that a binary relation ξ relation over a set X is antisymmetric if
the condition (x, y), (y, x) ∈ ξ implies x = y for each x, y ∈ X.

Lemma 2.6.3. Let Z ⊆ A∗ and let ψ : Z → A∗ be a function. The following
conditions are equivalent.
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(i) ρZ,ψ is antisymmetric;

(ii) λZ,ψ is antisymmetric;

(iii) ψ(z1) = z1 and ψ(z2) = z2 whenever x, y, w ∈ A∗ and z1, z2 ∈ Z are
such that xz1y = ψ(z2)w and xψ(z1)y = z2w.

Proof. Certainly (i) and (ii) are equivalent. Assume that ρZ,ψ is antisym-
metric and let x, y, w ∈ A∗ and z1, z2 ∈ Z be such that xz1y = ψ(z2)w and
xψ(z1)y = z2w. Surely, (xz1y, xψ(z1)y),(z2w,ψ(z2)w) ∈ ρZ,ψ. Since ρZ,ψ is
antisymmetric, we have xz1y = xψ(z1)y and z2w = ψ(z2)w implying that
ψ(z1) = z1 and ψ(z2) = z2. Thus (i)⇒(iii).

Assume that (iii) holds. Let u, v ∈ A∗ be such that (u, v) and (v, u)
are both in ρZ,ψ. Then there exist x, y, x′, y′ ∈ A∗ and z1, z2 ∈ Z such that
u = xz1y, v = xψ(z1)y, v = x′z2y

′ and u = x′ψ(z2)y
′. Suppose that |x′| ≥ |x|,

the case |x′| < |x| being treated in a similar way. There exists p ∈ A∗ such
that x′ = xp. Then pz2y

′ = ψ(z1)y and z1y = ψ(z2)y
′, so by (iii), ψ(z1) = z1

and ψ(z2) = z2 implying that u = v.

Let X, Y ⊆ A∗ and let f : X → Y be a function. Then f is length-
increasing (strictly length-increasing, resp.) if |x| ≤ |f(x)| (|x| < |f(x)|,
resp.) for each x ∈ X. The function f is length-decreasing (strictly length-
decreasing, resp.) if |x| ≥ |f(x)| (|x| > |f(x)|, resp.) for each x ∈ X.

Let us state some simple results concerning strictly lenght-increasing
(strictly length-decreasing, resp.) functions ψ and relations ρZ,ψ and λZ,ψ.

Lemma 2.6.4. Let Z ⊆ A∗ and let ψ : Z → A∗ be a strictly length-increasing
(strictly length-decreasing, resp.) function. Then

(i) ρ is irreflexive and antisymmetric.

(ii) λ is reflexive and antisymmetric.

(iii) |x| < |w| (|x| > |w|, resp.) for each (x,w) ∈ ρZ,ψ.

(iv) |x| ≤ |w| (|x| ≥ |w|, resp.) for each (x,w) ∈ λZ,ψ.

A word w ∈ A∗ is almost ((Z,ψ)−)reduced if x = w whenever (w, x) ∈
ρZ,ψ. The following lemma is a direct consequence of the definition.

Lemma 2.6.5. Let Z ⊆ A∗ and let ψ : Z → A∗ be a function. Then

(i) a word w ∈ A∗ is almost reduced if and only if ψ(z) = z for all z ∈ Z
such that z is a factor of w;
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(ii) if ψ(z) 6= z for all z ∈ Z, then each almost reduced word is reduced.

We now turn our attention to strongly separating sets.

Lemma 2.6.6. Let Z ⊆ A+ be a strongly separating set and let ψ : Z → A∗

be a function. Then for each (u, v) ∈ ρZ,ψ
(i) tr(u, Z) ≤ tr(v, Z) + 1;

(ii) if v is reduced, then u is meagre;

(iii) if either |ψ(z)| ≤ 2 or ψ(z) is reduced for every z ∈ Z, then tr(v, Z) ≤
tr(u, Z) + 1;

(iv) if |ψ(z)| ≤ 1 for every z ∈ Z, then tr(v, Z) ≤ tr(u, Z).

Proof. Let (u, v) ∈ ρZ,ψ. Then there exist x, y ∈ A∗ and z ∈ Z such that
u = xzy and v = xψ(z)y. Clearly, z is the only word in Z that exists in u
and possibly does not exist in v. By Proposition 2.5.4, the claim (i) is true
as well as (ii). Consider (iii) and assume that either |ψ(z′)| ≤ 2 or ψ(z′) is
reduced for every z′ ∈ Z. If ψ(z) is reduced, then u is meagre by the previous
case. If, on the other hand, |ψ(z)| ≤ 2, then the substitution of ψ(z) for z
in u produces to v at most two new occurrences of words in Z. Since in the
substitution one occurrence of z vanishes, the claim tr(v, Z) ≤ tr(u, Z) + 1
holds. Using an analogous reasoning, (iv) is true.

Lemma 2.6.7. Let Z ⊆ A∗ be a strongly separating set and let ψ : Z → A∗

be a function. Assume furthermore that p, q, x, y ∈ A∗ and z ∈ Z are words
such that pzq = xzy and pψ(z)q 6= xψ(z)y. Then

(i) (pzq, pψ(z)q), (xzy, xψ(z)y) ∈ ρz,ψ(z);

(ii) there exists w ∈ A∗ such that (pψ(z)q, w) and (xψ(z)y, w) are both in
ρz,ψ(z);

(iii) if w ∈ A∗ is such that (pψ(z)q, w) and (xψ(z)y, w) are both in ρz,ψ(z),
then w 6= pψ(z)q and w 6= xψ(z)y.

Proof. Recall the definiton: ρz,ψ(z) = {(xzy, xψ(z)y) |x, y ∈ A∗}. Trivially,
(i) is true. Since ψ(z) 6= z (otherwise pψ(z)q = pzq = xzy = xψ(z)y, a
contradiction), (iii) is true as well.

Consider (ii). Since (pzq, pψ(z)q) and (xzy, xψ(z)y) are in ρz,ψ(z), pψ(z)q
6= xψ(z)y, and Z is strongly separating, the word pzq = xzy is necessarily of
the form y1zy2zy3 for some words y1, y2, y3 ∈ A∗, where

{pψ(z)q, xψ(z)y} = {y1ψ(z)y2zy3, y1zy2ψ(z)y3}.
Then, choosing w = y1ψ(z)y2ψ(z)y3, it is clear that (ii) holds.
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Lemma 2.6.8. Let Z ⊆ A+ be a strongly separating set and let ψ : Z → A∗

be a function. Assume furthermore that p, q, x, y ∈ A∗ and z1, z2 ∈ Z, z1 6=
z2, are such that pz1q = xz2y. Then

(i) (pz1q, pψ(z1)q) ∈ ρz1,ψ(z1), (xz2y, xψ(z2)y) ∈ ρz2,ψ(z2);

(ii) there exists w ∈ A∗ such that (pψ(z1)q, w) ∈ ρz2,ψ(z2) and (xψ(z2)y, w) ∈
ρz1,ψ(z1);

(iii) if w ∈ A∗ is such that (pψ(z1)q, w) is in ρz2,ψ(z2) and (xψ(z2)y, w) is
in ρz1,ψ(z1), then ψ(z1) 6= z1 implies that w 6= xψ(z2)y and ψ(z2) 6= z2

implies that w 6= pψ(z1)q.

Proof. The proof is quite analogous to that of 2.6.7.

Proposition 2.6.9. Let Z ⊆ A∗ be a strongly separating set and let ψ : Z →
A∗ be a function. Let furthermore u, v, w ∈ A∗ and z1, z2 ∈ Z be such that
(w, u) ∈ ρz1,ψ(z1), (w, v) ∈ ρz2,ψ(z2) and either 1◦ u 6= v and z1 = z2 or 2◦ z1

and z2 are both nonempty and z1 6= z2. Then there exists w′ ∈ A∗ such that
(u,w′) ∈ ρz2,ψ(z2) and (v, w′) ∈ ρz1,ψ(z1). Moreover, if ψ(z1) 6= z1 (ψ(z2) 6= z2,
resp.) or z1 = z2, then w′ 6= v (w′ 6= u, resp.).

Proof. There are p, q, x, y ∈ A∗ such that w = pz1q = xz2y, u = pψ(z1)q and
v = xψ(z2)y. If z1 = z2, then Lemma 2.6.7 applies. If z1 6= z2, then Lemma
2.6.8 can be used.

Remark 2.6.10. Firstly, notice that Proposition 2.6.9 follows from Proposition
2.5.4 in a quite comfortable way. Then, observe that Lemma 2.6.8 remains
true for z1 = ε, z1 6= z2 or z2 = ε, z1 6= z2, provided that either Z ⊆ A ∪ {ε}
or ψ(ε) = ε (so that Proposition 2.6.9 is true as well in this case).

Proposition 2.6.11. Let Z ⊆ A∗ be a strongly separating set and let ψ :
Z → A∗ be a function. Assume that either 1◦ ε /∈ Z or 2◦ Z ⊆ A ∪ {ε}
or 3◦ ε ∈ Z and ψ(ε) = ε. Then

(i) if u, v, w ∈ A∗ are such that (w, u) ∈ ρZ,ψ, (w, v) ∈ ρZ,ψ and u 6= v,
then there exists x ∈ A∗ such that (u, x) ∈ ρZ,ψ and (v, x) ∈ ρZ,ψ;

(ii) the relation λZ,ψ is upwards confluent (i. e., if (w, u) ∈ λZ,ψ and
(w, v) ∈ λZ,ψ then (u, x) ∈ λZ,ψ and (v, x) ∈ λZ,ψ for some x ∈ A∗).

Proof. Use Proposition 2.6.9 (and Remark 2.6.10).

Example 2.6.12. Assume that {a, b} ⊆ A, put Z = {ε, a2b2} (clearly, Z is a
strongly separating set), ψ(ε) = ba, ψ(a2b2) = b. Then (a2b2, a2bab2) ∈ ρε,ba
and (a2b2, b) ∈ ρa2b2,b. On the other hand, {x | (a2bab2, x) ∈ ρa2b2,b} = ∅
and {y | (b, y) ∈ ρε,ba} = {bab, b2a}. Consequently, neither Lemma 2.6.8 nor
Proposition 2.6.9 remain true in this case.
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2.7 When tr(w) = |{x | (w, x) ∈ ρ}|
In this subsection, let Z be a strongly separating set of words with ε /∈ Z
and let ψ : Z → A∗. For every w ∈ A∗, put (ts(w) =) ts(w,Z, ψ) = |{x ∈
A∗ | (w, x) ∈ ρZ,ψ}|. Of course (use Lemma 2.6.1 (i)), we have ts(w) ≤ tr(w).

Proposition 2.7.1. The following conditions are equivalent:

(i) ts(w) = tr(w) for every w ∈ A∗.

(ii) |{x | (w, x) ∈ λ}| = tr(w) + 1 for every w ∈ A∗.

(iii) ψ(z) 6= ε for all z ∈ Z and if z1, z2 ∈ Z and p, q ∈ A∗, then either
ψ(z1) 6= z1pq or ψ(z2) 6= qpz2.

Proof. (i) implies (iii). Assume, on the contrary, that ψ(z1) = z1pq and
ψ(z2) = qpz2. If w = z1pz2, then tr(w) = tr(p) + 2 and ts(w) ≤ ts(p) + 1 <
tr(w).

(iii) implies (i). Let, on the contrary, w ∈ A∗ be such that ts(w) < tr(w).
According to Proposition 2.5.4, w = r0z1r1z2r2 · · · zmrm, m ≥ 0, zi ∈ Z, ri
reduced. Now, tr(w) = m, and hence m ≥ 2 and there are 1 ≤ i < j ≤
m such that ψ(zi)w1zj = ziw1ψ(zj), wherew1 = rizi+1ri+1 · · · zj−1rj−1. If
zi = zj = z then ψ(z)w1z = zw1ψ(z) and according to Lemma 2.2.8 either
ψ(z) = zr or there exist u ∈ A+ and s ∈ N such that ψ(z) = (zu)sz, both
cases leading to contradiction. Thus zi 6= zj and, according to Lemma 2.3.7,
either ψ(zi) = zi and ψ(zj) = zj or ψ(zi) = zip and ψ(zj) = pzj, p 6= ε or
ψ(zi) = zipq and ψ(zj) = qpzj, p 6= ε 6= q, all cases leading to contradiction.

(ii) implies (i). Use Lemma 2.6.1.
(i) and (iii) implies (ii). By (iii), ψ(z) 6= z for every z ∈ Z. Now, (ii)

follows from (i).

Proposition 2.7.2. The equivalent conditions of Proposition 2.7.1 follow
from each of the following three conditions:

(1) ψ(z) 6= z, ε and |ψ(z)| ≤ |z| for every z ∈ Z;

(2) ψ(z) 6= ε and ψ(z) is reduced for every z ∈ Z;

(3) ψ(z) 6= z, zxz, ε for all z ∈ Z, x ∈ A∗ and if z1, z2 ∈ Z are such that
ψ(z1) 6= ψ(z2), then the pair (ψ(z1), ψ(z2)) is separated.

Proof. The result is clear when (1) or (2) is true. Now, let (3) be true
and let ψ(z1) = z1pq and ψ(z2) = qpz2. If ψ(z1) 6= ψ(z2), then the pair
(ψ(z1), ψ(z2)) is separated, and therefore p = ε = q and ψ(z1) = z1, a
contradiction. Thus ψ(z1) = ψ(z2) and we get z1 = z2 = z by Lemma 2.3.9.
That is, zpq = ψ(z) = qpz and the rest follows from Lemma 2.2.8.
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2.8 When the relation ρ is antitransitive I

In this subsection, let Z be a strongly separating set of words such that ε /∈ Z
and let ψ : Z → A∗ be a function such that ψ(z) 6= z for every z ∈ Z. Denote
ρ = ρZ,ψ. Obviously, the relation ρ is irreflexive.

Recall that a binary relation ξ over a set X is (strictly 2-) antitransitive
if for all x, y, z ∈ X the condition (x, y), (y, z) ∈ ξ implies (x, z) /∈ ξ. Equiv-
alently, ξ is (strictly 2-) antitransitive if for all x, y, z ∈ X the condition
(x, y), (x, z) ∈ ξ implies (y, z) /∈ ξ. Surely, an antitransitive relation has to
be irreflexive.

Proposition 2.8.1. The relation ρ is antitransitive if and only if the follow-
ing condition is satisfied.

(1) For all z1, z2 ∈ Z and w ∈ A∗ such that z1wψ(z2) 6= ψ(z1)wz2 we have
(z1wψ(z2), ψ(z1)wz2) /∈ ρ and (ψ(z1)wz2, z1wψ(z2)) /∈ ρ.

Proof. Denote u = z1wψ(z2) and v = ψ(z1)wz2. Assume that ρ is anti-
transitive. Let z1, z2 ∈ Z and w ∈ A∗ be such that z1wψ(z2) 6= ψ(z1)wz2.
Denote t = z1wz2. Obviously, (t, u) = (z1wz2, z1wψ(z2)) and (t, v) = (z1wz2,
ψ(z1)wz2) are both in ρ. Since ρ is antitransitive, neither (u, v) nor (v, u) is
in ρ.

Assume that ρ satisfies the condition (1). Let (p, u′) and (p, v′) be in ρ. If
u′ = v′, then (u′, v′) = (v′, u′) is not in ρ since ρ is irreflexive. Suppose that
u′ 6= v′. Since (p, u′), (p, v′) ∈ ρ, there exist z1, z2 ∈ Z and x′, x′′, y′, y′′ ∈ A∗

such that p = x′z1y
′ = x′′z2y

′′, u′ = x′′ψ(z2)y
′′ and v′ = x′ψ(z1)y

′. Since Z is
strongly separating and ε /∈ Z, the exposed occurrences of the words z1 and
z2 in p are totally separated. Assume, without loss of generality, that the
exposed occurrence of z2 in p is a factor of y′. There then exist w, y ∈ A∗ such
that y′ = wz2y. Denote x = x′, so p = xz1wz2y, u

′ = xz1wψ(z2)y and v′ =
xψ(z1)wz2y. If (u′, v′) ∈ ρ ((v′, u′) ∈ ρ, resp.), then also (u, v) ∈ ρ ((v, u) ∈ ρ,
resp.), a contradiction with the condition (1). Thus ρ is antitransitive.

Lemma 2.8.2. Let z ∈ Z and w ∈ A∗. Then zwψ(z) 6= ψ(z)wz if and only
if at least one of the following three cases takes place:

(1) ψ(z) = ε and w 6= zn for every n ∈ N;

(2) ψ(z) 6= ε and ψ(z) 6= (zu)m · z for all u ∈ A∗ and m ∈ N+;

(3) ψ(z) = (zu)m · z where u ∈ A∗ and m ∈ N+ and w 6= (uz)n · u for each
n ∈ N.
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Proof. It is straightforward to see that if neither (1) nor (2) nor (3) is true,
then zwψ(z) = ψ(z)wz. On the other hand, by applying Lemma 2.1.1 and
Lemma 2.2.8 we see that if (1) or (2) or (3) is valid, then zwψ(z) 6= ψ(z)wz.

Corollary 2.8.3. Let z ∈ Z be such that ψ(z) is reduced and let m ∈ A∗.
Then zmψ(z) 6= ψ(z)mz if and only if either 1◦ ψ(z) 6= ε or 2◦ ψ(z) = ε
and m 6= zn for each n ∈ N.

Lemma 2.8.4. Let z1, z2 ∈ Z, z1 6= z2, and let w ∈ A∗. Then z1wψ(z2) 6=
ψ(z1)wz2 if and only if at least one of the following three cases is satisfied:

(1) there exist u, v ∈ A∗, uv 6= ε such that ψ(z1) = z1uv and ψ(z2) 6= vuz2;

(2) there exist u, v ∈ A∗, uv 6= ε such that ψ(z1) 6= z1uv and ψ(z2) = vuz2;

(3) there exist u, v ∈ A∗, uv 6= ε such that ψ(z1) = z1uv, ψ(z2) = vuz2 and
w 6= (uv)n · u for each n ∈ N;

Proof. By Lemma 2.3.7, the equality z1wψ(z2) = ψ(z1)wz2 is valid if and
only if there exist words u, v ∈ A∗ and n ∈ N such that ψ(z1) = z1uv,
ψ(z2) = vuz2, and w = (uv)nu. The claim easily follows.

Corollary 2.8.5. Let z1, z2 ∈ Z be such that z1 6= z2 and at least one of
the words ψ(z1) and ψ(z2) is reduced. Then z1wψ(z2) 6= ψ(z1)wz2 for each
w ∈ A∗.

Corollary 2.8.6. Let z1, z2 ∈ Z be such that z1 6= z2 and either |ψ(z1)| ≤ |z1|
or |ψ(z2)| ≤ |z2|. Then z1wψ(z2) 6= ψ(z1)wz2 for each w ∈ A∗.

Proposition 2.8.7. Assume that for each z ∈ Z, either |ψ(z)| ≤ 1 or ψ(z)
is reduced. Then the relation ρ is antitransitive if and only if (u, v) /∈ ρ and
(v, u) /∈ ρ, whenever u = z1wψ(z2), v = ψ(z1)wz2, where z1, z2 ∈ Z are such
that either 1◦ z1 6= z2 or 2◦ z1 = z = z2 and ψ(z) 6= ε or 3◦ z1 = z = z2

and ψ(z) = ε and w 6= zn for each n ∈ N.

Proof. Combine Proposition 2.8.1 and Lemmas 2.8.2 and 2.8.4.

Proposition 2.8.8. Assume that ψ is length decreasing. Then the relation
ρ is antitransitive if and only if (u, v) /∈ ρ and (v, u) /∈ ρ, whenever u =
z1wψ(z2), v = ψ(z1)wz2, where z1, z2 ∈ Z are such that either 1◦ z1 6= z2 or
2◦ z1 = z = z2 and ψ(z) 6= ε, or 3◦ z1 = z = z2, ψ(z) = ε and w 6= zn for
each n ∈ N.

Proof. Combine Proposition 2.8.1 and Lemma 2.8.2 and Corollary 2.8.6.
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Proposition 2.8.9. Assume that |z1|+ |z2|−|z3| 6= |ψ(z1)|+ |ψ(z2)|−|ψ(z3)|
for all z1, z2, z3 ∈ Z. Then the relation ρ is antitransitive.

Proof. Let, on the contrary, (w, u) ∈ ρ, (u, v) ∈ ρ and (w, v) ∈ ρ. Then
pz1q = w = rz3s, pψ(z1)q = u = xz2y, rψ(z3)s = v = xψ(z2)y. Consequently
|w|−|u| = |z1|−|ψ(z1)|, |w|−|v| = |z3|−|ψ(z3)| and |u|−|v| = |z2|−|ψ(z2)|.
From this, we get |z3| − |ψ(z3)| = |w| − |v| = |w| − |u| + |u| − |v| = |z1| −
|ψ(z1)| + |z2| − |ψ(z2)| and |z1| + |z2| − |z3| = |ψ(z1)| + |ψ(z2)| − |ψ(z3)|, a
contradiction.

Corollary 2.8.10. If |z| − |ψ(z)| is odd for every z ∈ Z, then the relation ρ
is antitransitive.

Remark 2.8.11.

(i) The relation λ = λZ,ψ is antisymmetric (i. e., u = v, whenever (u, v) ∈ λ
and (v, u) ∈ λ) iff ρ is (strictly) antisymmetric.

(ii) The relation λ is almost antitransitive (i. e. (w, v) /∈ λ, whenever
(w, u) ∈ λ and (u, v) ∈ λ and v 6= w 6= u 6= v) iff ρ is antitransitive.

(iii) The relation λ is antitransitive (i. e. (w, v) /∈ λ, whenever (w, u) ∈ λ
and (u, v) ∈ λ and w 6= u 6= v) iff ρ is antitransitive and (strictly)
antisymmetric.

Remark 2.8.12. If Z = {ε} and ψ(ε) 6= ε, then ρ is both antisymmetric and
antitransitive.

2.9 More facts about separated pairs of words

Throughout this subsection, let u, v ∈ A∗ be such that u 6= v, |u| = |v| and
both the pairs (u, v) and (v, u) are separated. According to 2.3.3, these two
pairs are strongly separated (clearly, u 6= ε 6= v).

Lemma 2.9.1. uvx = xuv iff x = (uv)m for some m ≥ 0.

Proof. We will proceed by induction on |x|. If x = ε, thenm = 0. If |x| < |u|,
then u = xr, v = sx, and so x = ε and m = 0 again. Finally, if |u| ≤ |x|,
then up = x = qv, uvqv = uvx = xuv = upuv, vq = pu, p = vt, q = tu and
uvt = up = x = qv = tuv. If |t| = |x|, then u = ε = v, a contradiction. Thus
|t| < |x|, t = (uv)m1 by induction and x = uvt = (uv)m, m = m1 + 1.

Lemma 2.9.2. If pux = xvq and |x| ≤ |pu|, then just one of the following
two cases takes place:
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(1) p = vt, q = tu and x = vtu (then |x| = |pu| = |vq|);

(2) p = xvt and q = tux (then |x| < |p| = |q|).

Proof. We have pu = xz and vq = zx. If |z| ≤ |u|, then u = u1z, v = zv1,
and hence z = ε. Consequently, pu = x = vq and it follows that p = vt,
q = tu and x = vtu, so that (1) is true. On the other hand, if |u| < |z|, then
u2u = z = vv2, u2 = vt, v2 = tu and z = vtu. From this, pu = xz = xvtu,
p = xvt, vq = zx = vtux, q = tux and |x| < |p|.

Lemma 2.9.3. pux = xvq iff p = yvt, q = tuy and x = (yvtu)my (=
y(vtuy)m), m ≥ 0.

Proof. Only the direct implication needs a proof and we will proceed by
induction on |x|.

If |x| ≤ |pu|, then either 2.9.2 (1) is true and we put y = ε, m = 1, or
2.9.2 (2) is true and we put y = x, m = 0.

If |pu| < |x|, then pux1 = x = x1vq, 1 ≤ |x1| < |x|, and we use induction
hypothesis.

Lemma 2.9.4. puyv = uyvq iff at least one (and then just one) of the
following two cases takes place:

(1) p = ε = q;

(2) p = uzvt, q = tuzv and y = (zvtu)mz, m ≥ 0.

Proof. Again, only the direct implication needs a proof.
If |p| < |u|, then u = pr, v = sq, ryv = uys and, by 2.3.7, r = uu1,

s = v1v. Now, u = puu1, v = v1vq and p = ε = q.
If |u| ≤ |p|, then p = uu2, q = v2v and yvv2 = u2uy. It remains to use

2.9.3

Lemma 2.9.5. Let p, q, x, y ∈ A∗ be such that |x| ≤ |p|. Then puyvx =
xuyvq iff at least one (and then just one) of the following two cases takes
place:

(1) p = x = q;

(2) p = xuzvt and q = tuzvx and y = (zvtu)mz, m ≥ 0.

Proof. As usual, only the direct implication needs a proof. We have p = xp1,
q = q1x, |p1| = |q1| and p1uyv = uyvq1. The rest follows from 2.9.4.

Lemma 2.9.6. Let p, q, x, y ∈ A∗ be such that |p| < |x|. Then puyvx =
xuyvq iff x = puzvt = tuzvq and y = (zvtu)mz, m ≥ 0.

Proof. Standard (use 2.9.4).
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2.10 Auxiliary results I

Throughout this subsection, let Z be a strongly separating set of words,
Z 6= {ε}, and let p, q, r, s, t, w, z ∈ A∗ be such that ptq = w = rzs, z ∈ Z
and p, q are (Z-) reduced.

Lemma 2.10.1. Just one of the following nine cases takes place:

(a1) r = pg, t = gh, q = ks, z = hk, g 6= ε 6= h, k 6= ε and h, k, s are
reduced;

(a2) r = pg, t = gz, q = s, g 6= ε and s is reduced;

(a3) r = pg, t = gzh, s = hq, g 6= ε 6= h;

(a4) r = p, z = th, q = hs, h 6= ε and h, s, r, t are reduced;

(a5) r = p, z = t, s = q and r, s are reduced;

(a6) r = p, t = zh, s = hq, h 6= ε and r is reduced;

(a7) p = rg, z = gh, t = hf , s = fq, g 6= ε 6= f , h 6= ε and r, g, h are
reduced;

(a8) p = rg, z = gt, q = s, g 6= ε 6= t and r, g, t, s are reduced;

(a9) p = rg, z = gh = gtf , h = tf , q = fs, g 6= ε 6= f and r, g, h, t, f , s
are reduced;

Proof. It will be divided into three parts:

(i) Let |p| < |r|. Then r = pg, g 6= ε, ptq = pgzs and tq = gzs. Since q
is reduced, we have |g| < |t|, t = gh, h 6= ε, ghq = gzs, hq = zs and
pt = pgh = rh.

If |h| < |z|, then z = hk, k 6= ε, hq = zs = hks, q = ks and (a1) is
fulfilled.

If |h| = |z|, then h = z, q = s, t = gz and (a2) is satisfied.

If |h| > |z|, then h = zh1, h1 6= ε, h1q = s, t = gzh1 and (a3) is true.

(ii) Let |p| = |r|. Then p = r and tq = zs.

If |t| < |z|, then z = th, h 6= ε, tq = zs = ths, q = hs and (a4) is valid.

If |t| = |z|, then z = t, q = s and (a5) holds.

If |t| > |z|, then t = zh, h 6= ε, zhq = tq = zs, hq = s and (a6) follows.
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(iii) Let |p| > |r|. Then p = rg, g 6= ε, rgtq = ptq = rzs and gtq = zs.
Since g is reduced, we have |g| < |z|, z = gh, h 6= ε. Moreover,
gtq = zs = ghs and tq = hs.

If |h| < |t|, then t = hf , f 6= ε, hfq = tq = hs, fq = s and (a7) is
clear.

If |h| = |t|, then t = h, q = s, z = gt and (a8) is evident.

If |h| > |t|, then h = tf , f 6= ε, tfs = tq = hs, q = fs and (a9) is
visible.

Lemma 2.10.2. Assume that (a1) is true. Then:

(i) w = pgzs = pghks, z = hk, t = gh, q = ks, g 6= ε 6= h, k 6= ε, |z| ≥ 2,
|t| ≥ 2, h, k, s, p, ks are reduced and the pair (t, z) is not separated.

(ii) If pg is reduced, then tr(w) = 1.

(iii) If t is reduced, then g is reduced.

(iv) If g is reduced and pg is not reduced, then p = p1u, g = vq1, t = vq1h,
w = p1uvq1zs, u 6= ε 6= v, uv ∈ Z, p1, q1, u, v are reduced and
tr(w) = 2.

Proof.

(i) The assertion follows easily from (a1).

(ii) Combine (i) and 2.5.4.

(iii) Obvious from t = gh.

(iv) Since p, g are reduced and pg is not, we have pg = p1z1q1, p = p1u,
g = vq1, z1 = uv ∈ Z, u 6= ε 6= v, p1, q1 reduced and |z1| ≥ 2. Thus
w = p1uvq1zs and tr(w) = 2 by 2.5.4.

Lemma 2.10.3. Assume that (a2) is true. Then:

(i) w = pgzs, t = gz, q = s, g 6= ε, |t| ≥ 2, s is reduced and t is not
reduced.

(ii) If pg is reduced, then tr(w) = 1.
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(iii) If g is reduced and pg is not reduced, then p = p1u, g = vq1, t = vq1z,
w = p1uvq1zs, u 6= ε 6= v, uv ∈ Z, p1, q1, u, v are reduced and
tr(w) = 2.

Proof. We can proceed similarly as in the proof of 2.10.2.

Lemma 2.10.4. Assume that (a3) is true. Then:

(i) w = pgzs = pgzhq, t = gzh, s = hq, g 6= ε 6= h, |t| ≥ 3 and t is not
reduced.

(ii) If pg and s are reduced, then tr(w) = 1.

Proof. Similar to the proof of 2.10.2.

Lemma 2.10.5. Assume that (a4) is true. Then:

(i) w = pzs = pths, z = th, q = hs, t 6= ε 6= h, |z| ≥ 2 and h, s, t, hs are
reduced.

(ii) tr(w) = 1.

Proof. Easy.

Lemma 2.10.6. Assume that (a5) is true. Then:

(i) w = pzs = pts, z = t, q = s, s is reduced and t is not reduced.

(ii) tr(w) = 1.

Proof. Easy.

Lemma 2.10.7. Assume that (a6) is true. Then:

(i) w = pzhq, t = zh, s = hq, h 6= ε, |t| ≥ 2 and t is not reduced.

(ii) If hq is reduced, then tr(w) = 1.

(iii) If h is reduced and hq is not reduced, then w = pzp1uvq1, h = p1u,
q = vq1, t = zp1u, u 6= ε 6= v, uv ∈ Z, p1, q1, u, v are reduced and
tr(w) = 2.

Proof. Similar to the proof of 2.10.2.

Lemma 2.10.8. Assume that (a7) is true. Then:

(i) w = rzfq = rghfq, z = gh, t = hf , s = fq, g 6= ε 6= f , h 6= ε, |z| ≥ 2,
|t| ≥ 2, h, g, r, rg are reduced and the pair (z, t) is not separated.
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(ii) If fq is reduced, then tr(w) = 1.

(iii) If t is reduced, then f is reduced.

(iv) If f is reduced and fq is not reduced, then f = p1u, q = vq1, t = hp1u,
w = rzp1uvq1, u 6= ε 6= v, uv ∈ Z, p1, q1, u, v are reduced and
tr(w) = 2.

Proof. Similar to the proof of 2.10.2.

Lemma 2.10.9. Assume that (a8) is true. Then:

(i) w = rgts, z = gt, q = s, g 6= ε 6= t, |z| ≥ 2 and r, g, t, s, rg are
reduced.

(ii) tr(w) = 1.

Proof. Easy.

Lemma 2.10.10. Assume that (a9) is true. Then:

(i) w = rgtfs, z = gtf , q = fs, g 6= ε 6= f , |z| ≥ 2 and r, g, t, f , s, tf ,
rg, fs are reduced.

(ii) tr(w) = 1.

Proof. Easy.

Lemma 2.10.11. If tr(w) ≥ 2, then just one of the five conditions (a1),
(a2), (a3), (a6) and (a7) holds.

Proof. Combine the preceding lemmas of this subsection.

Lemma 2.10.12.

(i) If at least one of (a2), (a3), (a5) and (a6) holds, then t is not reduced.

(ii) If t is reduced, then just one of (a1), (a4), (a7), (a8), (a9) holds.

(iii) If t is reduced and tr(w) ≥ 2, then just one of (a1), (a7) holds and
tr(w) = 2.

Proof. Combine the preceding lemmas of this subsection.

Lemma 2.10.13.

(i) If t is reduced then tr(w) ≤ 2.
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(ii) If t = ε, then (a9) is satisfied.

(iii) If t ∈ A (i. e., |t| = 1), then just one of (a4), (a5), (a8), (a9) is true
(if (a5) is true, then z = t ∈ A) and tr(w) = 1.

(iv) If |t| ≤ 1, then tr(w) = 1.

(v) If z ∈ A (i. e., |z| = 1), then just one of (a2), (a3), (a5), (a6) is true
(if (a5) is true, then t = z ∈ A).

(vi) If z ∈ A and tr(w) ≥ 2, then either (a2) or (a6) holds and t is not
reduced.

Proof. Combine the preceding lemmas of this subsection.

2.11 Auxiliary results II

In this subsection, let Z be a strongly separating set of words, Z 6= {ε} and
let p1, q1, p2, q2, t1, t2, w1, w2 ∈ A∗ and z1, z2 ∈ Z be such that p1z1q1 = w1 =
p2t2q2, p1t1q1 = w2 = p2z2q2 and p1, q1 are (Z-) reduced.

Lemma 2.11.1. Assume that |p1| = |p2|. Then p1 = p2, z1q1 = t2q2 and
t1q1 = z2q2. Moreover:

(i) If |t2| < |z1|, then z1 = t2r1, t1 = z2r1, q2 = r1q1, r1 6= ε, |t1| ≥ 2 and
t1 is not reduced.

(ii) If |t2| = |z1|, then z1 = t2, t1 = z2 and q1 = q2.

(iii) If |t2| > |z1|, then t2 = z1s1, z2 = t1s1, q1 = s1q2, s1 6= ε, |t2| ≥ 2 and
t2 is not reduced.

Proof. Easy.

Lemma 2.11.2. Assume that |p1| < |p2|. Then p2 = p1u1, z1q1 = u1t2q2,
t1q1 = u1z2q2, u1 6= ε, |u1| < |t1|, t1 = u1u2, u2q1 = z2q2, u2 6= ε, |t1| ≥ 2.
Moreover:

(i) If |q1| ≤ |q2|, then q2 = r2q1, u2 = z2r2, t1 = u1z2r2 and t1 is not
reduced.

(ii) If |q1| > |q2|, then q1 = v1q2, t1v1 = u1z2, z1v1 = u1t2, z2 = u2v1,
v1 6= ε and u2, v1 are reduced.

(iii) If |q1| > |q2| and |z1| ≤ |u1|, then u1 = z1s2, v1 = s2t2, t1 = z1s2u2,
z2 = u2s2t2 and neither u1 nor p2 nor t1 is reduced.
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(iv) If |q1| > |q2| and |z1| > |u1|, then z1 = u1v2, t2 = v2v1, v2 6= ε and v2

is reduced.

Proof. Easy.

Lemma 2.11.3. Assume that |p1| > |p2|. Then p1 = p2u3, t2q2 = u3z1q1,
z2q2 = u3t1q1, u3 6= ε and p2, u3 are reduced. Moreover:

(i) If |t2| ≤ |u3|, then q2 = r3z1q1, u3 = t2r3, p1 = p2t2r3, t2r3t1 = z2r3z1

and t2, r3 are reduced. Further, |t2| < |z2|, z2 = t2s3, s3 6= ε, r3t1 =
s3r3z1, |z1| < |t1|, t1 = kz1, r3k = s3r3, k 6= ε, |t1| ≥ 2 and t1 is not
reduced.

(ii) If |t2| > |u3|, then t2 = u3u4, z1q1 = u4q2, u4 6= ε and |t2| ≥ 2.

(iii) If |t2| > |u3| and |q2| ≤ |q1|, then neither u4 nor t2 is reduced.

(iv) If |t2| > |u3| and |q2| > |q1|, then q2 = v3q1, z1 = u4v3, u3t1 = z2v3,
v3 6= ε, v3, u4 are reduced, |u3| < |z2|, z2 = u3v4, t1 = v4v3, v4 6= ε and
v4 is reduced.

Proof. Easy.

Lemma 2.11.4. Assume that either |t1| ≤ 1 or t1 is reduced and the same
is true for t2. Then at least one of the following three cases takes place:

(i) z1 = t2, z2 = t1, p1 = p2 and q1 = q2.

(ii) z1 = u1v2, z2 = u2v1, t1 = u1u2, t2 = v2v1, p2 = p1u1, q1 = v1q2,
u1, u2, v1, v2 ∈ A+ and all u1, u2, v1, v2 are reduced.

(iii) z1 = u4v3, z2 = u3v4, t1 = v4v3, t2 = u3u4, p1 = p2u3, q2 = v3q1,
u3, u4, v3, v4 ∈ A+ and all u3, u4, v3, v4 are reduced.

Proof. It follows from 2.11.1, 2.11.2 and 2.11.3 that only the cases 2.11.1 (ii),
2.11.2 (iv) and 2.11.3 (iv) come into account.

2.12 Disturbing pairs

Let Z be a strongly separating set of words, Z 6= {ε}, and let ψ : Z → A∗

be a mapping. Consider the relations ρ and λ defined in subsections 2.6 and
2.8.

An ordered pair (z1, z2) ∈ Z × Z will be called disturbing if there exist
words u, v, r, s ∈ A+ such that z1 = ur, z2 = sv, ψ(z1) = us and ψ(z2) = rv.

An ordered pair (z1, z2) ∈ Z×Z will be called paradisturbing if ψ(z1) = z2

and ψ(z2) = z1.
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Lemma 2.12.1. Let (z1, z2) ∈ Z ×Z be a disturbing pair, z1 = ur, z2 = sv,
ψ(z1) = us,ψ(z2) = rv, u, v, r, s ∈ A+. Put w1 = urv and w2 = usv. Then:

(i) |z1| ≥ 2, |z2| ≥ 2, |ψ(z1)| ≥ 2, |ψ(z2)| ≥ 2.

(ii) The words u, v, r and s are reduced.

(iii) (w1, w2) ∈ ν.

(iv) tr(w1) = 1 = tr(w2).

(v) Both w1 and w2 are pseudoreduced.

(vi) w1 = w2 iff r = s.

(vii) If w1 = w2, then w1 is strongly pseudoreduced.

Proof. Easy.

Lemma 2.12.2. Let (z1, z2) ∈ Z × Z be a paradisturbing pair. Then:

(i) (z1, z2) ∈ ν.

(ii) tr(z1) = 1 = tr(z2).

(iii) Both z1 and z2 are weakly pseudoreduced.

Proof. Obvious.

Proposition 2.12.3. There exist no disturbing pairs, provided that either
Z ⊆ A or ψ(Z) ⊆ A.

Proof. Obvious.

Proposition 2.12.4. Suppose that for every z ∈ Z, either |ψ(z)| ≤ 1 or
ψ(z) is reduced. Then the following conditions are equivalent:

(i) There exist no disturbing and no paradisturbing pairs in Z × Z.

(ii) Every pseudoreduced meagre word is reduced.

Proof.
(i) implies (ii). Let, on the contrary w1 be a weakly pseudoreduced with

tr(w1) = 1. Then w1 = p1z1q1, where z1 ∈ Z and p1, q1 are reduced (use
2.6.6). If w2 = p1t1q1, t1 = ψ(z1), then (w1, w2) ∈ ρ, and hence (w2, w1) ∈ ρ,
since w1 is weakly pseudoreduced. Consequently, w2 = p2z2q2, z2 ∈ Z, and
w1 = p2t2q2, t2 = ψ(z2). Now, 2.11.4 applies. If 2.11.4 (i) is true, then (z1, z2)
is paradisturbing. If 2.11.4 (ii) is true, then (z1, z2) is disturbing. Finally, if
2.11.4 (iii) is true, then (z2, z1) is disturbing.

(ii) implies (i). See 2.12.1 and 2.12.2.
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2.13 Meagre and pseudomeagre words

Let Z be a strongly separating set of words such that Z 6= {ε} (except for
2.13.9) and let ψ : Z → A∗ be a mapping. Consider the relations ρ and λ
defined in 2.6 and 2.8.

A word w is called meagre if tr(w) ≤ 1.
A word w is called pseudomeagre if (w, x) ∈ ρ for at most one x ∈ A∗.

Lemma 2.13.1. Every meagre word is pseudomeagre.

Proof. Obvious.

Lemma 2.13.2. Let z ∈ Z be such that ψ(z) ∈ {ε, z}. Then the word zn,
n ≥ 2, is pseudomeagre but not meagre.

Proof. It follows from 2.6.6 that tr(zn) = n ≥ 2, and so zn is not meagre.
On the other hand, if (zn, x) ∈ ρ, then x = zn−1 for ψ(z) = ε and x = zn for
ψ(z) = z.

Lemma 2.13.3. Let z1, z2, z ∈ Z and u, v, x ∈ A∗ be such that z1xz2 = uzv.

(i) If u = ε, then z = z1 and v = xz2.

(ii) If v = ε, then z = z2 and u = z1x.

(iii) If u 6= ε 6= v, then u = z1u1, v = v1z2 and x = u1zv1.

Proof.

(i) Easy to see.

(ii) Easy to see.

(iii) If |u| < |z1|, then z1 = uy, y 6= ε, uyxz2 = z1xz2 = uzv, yxz2 = zv,
a contradiction. Thus |u| ≥ |z1| and, similarly, |v| ≥ |z2|. The rest is
clear.

Lemma 2.13.4. Let z ∈ Z and x ∈ A∗ be such that ψ(z) = zxz. Then:

(i) tr(zxz) ≥ 2 and zxz is not meagre.

(ii) zxz is pseudomeagre iff ψ(z1) = z1vzuz1 whenever z1 ∈ Z and x = uz1v
(or ψ(z) = zuz1vz).

Proof.
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(i) Obvious.

(ii) Clearly, (ε, z, xz), (zx, z, ε) ∈ Tr(zxz), εψ(z)xz = zxzxz = zxψ(z)ε
and (zxz, zxzxz) ∈ ρ. If x is reduced, then tr(zxz) = 2 by 2.6.6,
and hence zxz is pseudomeagre (and the other condition is satisfied
trivially).

Now, let (u1, z1, v1) ∈ Tr(zxz), u1 6= ε 6= v1. According to 2.13.3,
u1 = zu, v1 = vz and x = uz1v. We have zxz = zuz1vz and
(zxz, zuψ(z1)vz) ∈ ρ. Consequently, zuψ(z1)vz = zxzxz iff uψ(z1)v =
xzx = uz1vzuz1v and iff ψ(z1) = z1vzuz1. The rest is clear.

Lemma 2.13.5. Let z1, z2 ∈ Z and x, y ∈ A∗ be such that ψ(z1) = yxz1 and
ψ(z2) = z2xy. Then:

(i) tr(z2xz1) ≥ 2 and z2xz1 is not meagre.

(ii) z2xz1 is pseudomeagre iff ψ(z3) = z3vyuz3 whenever z3 ∈ Z and x =
uz3v (or ψ(z1) = yuz3vz1 or ψ(z2) = z2uz3vy).

Proof.

(i) Obvious.

(ii) Clearly, (ε, z2, xz1), (z2x, z1, ε) ∈ Tr(z2xz1), εψ(z2)xz1 = z2xyxz1 =
z2xψ(z1)ε and (z2xz1, z2xyxz1) ∈ ρ. If x is reduced, then tr(z2xz1) = 2
by 2.6.6, and hence z2xz1 is pseudomeagre (and the other condition is
satisfied trivially).

Now, let (u1, z3, v1) ∈ Tr(z2xz1), u1 6= ε 6= v1. According to 2.13.3,
u1 = z2u, v1 = vz1 and x = uz3v. We have z2xz1 = z2uz3vz1 and
(z2xz1, z2uψ(z3)vz1) ∈ ρ. Consequently, z2uψ(z3)vz1 = z2xyxz1 iff
uψ(z3)v = xyx = uz3vyuz3v and iff ψ(z3) = z3vyuz3. The rest is
clear.

Proposition 2.13.6. Suppose that every pseudomeagre word is meagre. Then
the following three conditions are satisfied:

(b1) ε 6= ψ(z) 6= z for every z ∈ Z;

(b2) If z1, z2 ∈ Z and x, y ∈ A∗ are such that ψ(z1) = yxz1 and ψ(z2) =
z2xy, then x 6= ε 6= y and x is not reduced;
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(b3) If z1, z2, z3 ∈ Z and u, v, y ∈ A∗, then either ψ(z1) 6= yuz3vz1 or ψ(z2 6=
z2uz3vy or ψ(z3) 6= z3vyuz3

Proof. The condition (b1) follows from 2.13.2. Further, if ψ(z1) = yxz1

and ψ(z2) = z2xy, then x is not reduced due to 2.13.5, and hence x 6= ε.
Moreover, if y = ε, then z2z1 is pseudomeagre, but not meagre, and therefore
x 6= ε 6= y and we have shown (b2). Finally, (b3) follows from 2.13.5.

Proposition 2.13.7. Suppose that the following two conditions are satisfied:

(c1) ε 6= ψ(z) 6= z and ψ(z) 6= zxz for all z ∈ Z and x ∈ A∗;

(c2) If z1, z2 ∈ Z and x, y ∈ A∗ are such that ψ(z1) 6= ψ(z2), then either
ψ(z1) 6= yxz1 or ψ(z2) 6= z2xy.

Then every pseudomeagre word is meagre.

Proof. Let, on the contrary, w be pseudomeagre word, but not meagre. Then
tr(w) ≥ 2, and therefore pz1q = w = rz2s, where (p, z1, q) 6= (r, z2, s) and
z1, z2 ∈ Z; we will assume |rz2| ≤ |pz1|, the other case being similar.

Assume, for a moment, that z1 = z = z2. Then |r| < |p| and we get a
contradiction by easy combination of (c1) and 2.10.11. Consequently, z1 6=
z2 and it follows easily that |r| < |p|. Then ψ(z1) 6= ψ(z2) and we get a
contradiction with (c2).

Proposition 2.13.8.

(i) Suppose that ψ(z) 6= ε and that z is neither a prefix nor a suffix of ψ(z)
for every z ∈ Z. Then every pseudomeagre word is meagre.

(ii) Suppose that |ψ(z)| ≤ |z| for every z ∈ Z. Then every pseudomeagre
word is meagre if and only if ε 6= ψ(z) 6= z for every z ∈ Z.

Proof. See 2.13.6 and 2.13.7

Remark 2.13.9. Let Z = {ε}. Then ε is the only meagre word. Moreover:

(i) If ψ(ε) = ε, then all words are pseudomeagre (and hence there exist
pseudomeagre words that are not meagre).

(ii) If ψ(ε) = t and | var(t)| = 1, t = am, a ∈ A, m ≥ 1, then a word w is
pseudomeagre iff w = an, n ≥ 0. Consequently, there exist pseudomea-
gre words that are not meagre.

(iii) If ψ(ε) = t and | var(t)| ≥ 2, then ε is the only pseudomeagre word
(and hence all pseudomeagre words are meagre).
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2.14 Disturbing triples

This subsection is an immediate continuation of the preceding one.
An ordered triple (z1, z2, z3) ∈ Z×Z×Z will be called disturbing if there

exist u, v, g, h ∈ A+ and p ∈ A∗ such that z1 = uv, z3 = gh and ψ(z2) = vpg.

Lemma 2.14.1. Let (z1, z2, z3) ∈ Z ×Z ×Z be a disturbing triple, z1 = uv,
z3 = gh, ψ(z2) = vpg, u, v, g, h ∈ A+, p ∈ A∗. Then:

(i) |z1| ≥ 2, |z3| ≥ 2 and |ψ(z2)| ≥ 2.

(ii) The words u, v, g, h are reduced.

(iii) (u1, v1) ∈ ρ, tr(u1) = 1 and tr(v1) ≥ 2, where u1 = uz2h and v1 =
uvpgh.

Proof. Easy (use 2.6.9).

Proposition 2.14.2. There exist no disturbing triples, provided that either
Z ⊆ A or ψ(Z) ⊆ A.

Proof. Obvious.

Proposition 2.14.3. Suppose that for every z ∈ Z, either |ψ(z)| ≤ 1 or
ψ(z) is reduced. Then the following conditions are equivalent:

(i) There exist no disturbing triples in Z × Z × Z.

(ii) If (w1, w2) ∈ ρ and tr(w1) = 1, then tr(w2) ≤ 1.

(iii) If (w1, w2) ∈ ρ and w1 is meagre, then w2 is meagre.

Proof.
(i) implies (ii). We have w1 = pz2q, z2 ∈ Z, p, q reduced, and w2 = ptq,

t = ψ(z2). Now, assume that w2 = rz3s and 2.10.1 applies. If |t| ≤ 1, then
tr(w2) = 1 by 2.10.13 (iv), and therefore we will assume that |t| ≥ 2. Then t
is reduced and, according to 2.10.12 (iii) we can assume that (a1) holds, the
case (a7) being similar.

By 2.10.2 w2 = pghks, z3 = hk, t = gh, q = ks, g 6= ε 6= h, k 6= ε and,
moreover, g is reduced, since t is so. If pg is reduced, then tr(w2) = 1 by
2.10.2 (ii). If pg is not reduced, then, by 2.10.2 (iv), pg = p1z1q1, z1 = uv,
p = p1u, g = vq1, t = vq1h, u 6= ε 6= v and the triple (z1, z2, z3) is disturbing.

(ii) implies (iii), (iii) implies (i). Obvious.
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2.15 When the relation ρ is antisymmetric

As usual, let Z be a strongly separating set of words such that Z 6= {ε}
(except for 2.15.7, 2.16.11) and let ψ : Z → A∗ be a mapping.

Proposition 2.15.1. The relation ρ (= ρZ,ψ) is irreflexive if and only if
ψ(z) 6= z for every z ∈ Z.

Proof. Obvious from the definition of ρ.

Proposition 2.15.2. The relation ρ is antisymmetric (i. e., u = v, whenever
(u, v) ∈ ρ and (v, u) ∈ ρ) if and only if the following three conditions hold:

(1) If z1, z2 ∈ Z and x, y ∈ A∗ are such that z2 = xψ(z1)y and ψ(z2) =
xz1y, then ψ(z2) = z2 (and hence ψ(z1) = z1 as well);

(2) If z1, z2 ∈ Z and x, y ∈ A∗ are such that z2 = yxψ(z2) (z2 = ψ(z2)xy,
resp.) and ψ(z1) = z1xy (ψ(z1) = yxz1, resp.), then x = ε = y (and
hence ψ(z1) = z1, ψ(z2) = z2);

(3) If z1, z2 ∈ Z and x, y, u, v ∈ A+ are such that z1 = uy, z2 = xv,
ψ(z1) = vy and ψ(z2) = xu, then u = v (and hence ψ(z1) = z1,
ψ(z2) = z2).

Proof. Use 2.5.4.

Corollary 2.15.3. Assume that for every z ∈ Z,either |ψ(z)| ≤ 1 or ψ(z)
is reduced. Then:

(i) The relation ρ is antisymetric if and only the following two conditions
hold:

(i1) If (z1, z2) ∈ (Z×Z)∩(A×A) is a paradisturbing pair, then z1 = z2;

(i2) There exist no disturbing pairs in Z × Z.

(ii) The relation ρ is both irreflexive and antisymmetric if and only if there
exist no disturbing nor paradisturbing pairs in Z × Z.

Proposition 2.15.4. The following conditions are equivalent:

(i) If (u, v) ∈ ρ and (v, v) ∈ ρ, then u = v.

(ii) If (u, v) ∈ ρ and (u, u) ∈ ρ, then u = v.

(iii) Either ψ(z) 6= z for every z ∈ Z or ψ(z) = z for every z ∈ Z.
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Proof. Easy to check.

Proposition 2.15.5. Assume that |z1|−|ψ(z1)| 6= |ψ(z2)|−|z2| for all z1, z2 ∈
Z. Then the relation ρ is both irreflexive and antisymmetric (i. e., it is
strictly antisymmetric).

Proof. Use 2.5.4.

Proposition 2.15.6. The relation ρ is weakly antisymmetric (i. e., u = v,
whenever (u, v) ∈ ρ, (v, u) ∈ ρ, (u, u) ∈ ρ) if and only if ψ(z1) = z1, whenever
z1, z2, z3 ∈ Z and p, q, r, s, x, y ∈ A∗ are such that pz1q = rz2s = xψ(z3)y and
pψ(z1)q = xz3y.

Proof. Obvious.

Remark 2.15.7. Let Z = {ε}. If ψ(ε) = ε, then ρ = idA∗ , and hence ρ is
antisymmetric, but not irreflexive. If ψ(ε) 6= ε, then ρ is both irreflexive and
antisymmetric. Moreover, 2.15.4 is true in both cases.

2.16 When the relation ρ is antitransitive II

This subsection is an immediate continuation of preceding one.

Proposition 2.16.1. The relation ρ is weakly antitransitive (i. e., (w, v) /∈
ρ, whenever u, v, w ∈ A∗ are such that u 6= v 6= w 6= u, (w, u) ∈ ρ and
(u, v) ∈ ρ) if and only if the following condition is satisfied:

(1) If z1, z2 ∈ Z and x, y, k ∈ A∗ are such that ψ(z1) 6= z1, ψ(z2) 6= z2

and z1kψ(z2) 6= ψ(z1)kz2, then (u, v) /∈ ρ and (v, u) /∈ ρ, where u =
xz1kψ(z2)y and v = xψ(z1)kz2y

Proof. See 2.8.1.

Lemma 2.16.2. Let z ∈ Z and k ∈ A∗. Then zkψ(z) 6= ψ(z)kz iff ψ(z) 6= z
and either ψ(z) = ε and k 6= zn for every n ≥ 0 or ε 6= ψ(z) 6= (zu)mz for
all u ∈ A∗ and m ≥ 1 or ψ(z) = (zv)tz and k 6= (vz)nv for some v ∈ A∗,
t ≥ 1 and every n ≥ 0.

Proof. Easy.

Lemma 2.16.3. Let z ∈ Z be such that ψ(z) is reduced and let k ∈ A∗.
Then zkψ(z) 6= ψ(z)kz iff either ψ(z) 6= ε or ψ(z) = ε and k 6= zn for every
n ≥ 0.

Proof. This follows from 2.16.2.
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Lemma 2.16.4. Let z1, z2 ∈ Z, z1 6= z2, and k ∈ A∗. Then z1kψ(z2) 6=
ψ(z1)kz2 iff at least one of the following three conditions is satisfied:

(1) ψ(z1) 6= z1 and ψ(z2) = z2;

(2) ψ(z2) 6= z2, ψ(z1) = z1uv for some u, v ∈ A∗ and either ψ(z2) 6= vuz2

or ψ(z2) = vuz2 and k 6= (uv)nu for every n ≥ o;

(3) ψ(z2) 6= z2, ψ(z1) 6= z1xy for all x, y ∈ A∗.

Proof. Easy.

Lemma 2.16.5. Let z1, z2 ∈ Z be such that z1 6= z2 and both ψ(z1), ψ(z2)
are reduced. Then z1kψ(z2) 6= ψ(z1)kz2 for every k ∈ A∗.

Proof. This follows easily from 2.16.4

Proposition 2.16.6. Assume that for every z ∈ Z, either |ψ(z)| ≤ 1 or
ψ(z) is reduced. Then the relation ρ is weakly antitransitive if and only if
(u, v) /∈ ρ and (v, u) /∈ ρ, whenever u = xz1kψ(z2)y, v = xψ(z1)kz2y and z1,
z2 are such that:

(1) If z1, ψ(z1) ∈ A ∩ Z, then ψ(z1) 6= z1;

(2) If z2, ψ(z2) ∈ A ∩ Z, then ψ(z2) 6= z2;

(3) If z1 = z2 = z and ψ(z) = ε, then k 6= zn for every n ≥ 0.

Proof. Combine 2.16.1, 2.16.2 and 2.16.4.

Corollary 2.16.7. Assume that for every z ∈ Z, ψ(z) 6= z and either
|ψ(z)| ≤ 1 or ψ(z) is reduced (equivalently, either ψ(z) is reduced or ψ(z) = ε
or ψ(z) ∈ A and ψ(z) 6= z). Then the relation ρ is weakly antitransitive if
and only if (u, v) /∈ ρ and (v, u) /∈ ρ (i. e., u, v are incomparable in ρ), when-
ever u = xz1kψ(z2)y, v = xψ(z1)kz2y and z1, z2 ∈ Z are such that either
z1 6= z2 or z1 = z2 and ψ(z1) 6= ε or z1 = z2 and ψ(z1) = ε and k 6= zn1 for
every n ≥ 0.

Proposition 2.16.8. Assume that ψ(z0) 6= z0 for at least one z0 ∈ Z. Then
the following conditions are equivalent:

(i) The relation ρ is irreflexive and weakly antitransitive.

(ii) The relation ρ is strictly antitransitive (i. e., (w, v) /∈ ρ whenever
(w, u) ∈ ρ and (u, v) ∈ ρ).
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(iii) The relation ρ is antitransitive (i. e., u = v = w, whenever (w, u) ∈ ρ,
(u, v) ∈ ρ and (w, v) ∈ ρ).

(iv) The condition 2.16.1 (1) is satisfied and ψ(z) 6= z for every z ∈ Z.

Proof.
(i) implies (ii). Let (w, u), (u, v), (w, v) ∈ ρ. Since ρ is weakly antitransi-

tive, either w = u or u = v or w = v. On the other hand, since ρ is irreflexive,
we have w 6= u 6= v 6= w, a contradiction.

(ii) implies (iii). Obvious.
(iii) implies (iv). Clearly, ρ is weakly antitransitive, and hence 2.16.1 (1)

follows from 2.16.1. Moreover, ψ(z) 6= z follows from 2.15.4.
(iv) implies (i). Use 2.15.1 and 2.16.1.

Proposition 2.16.9. Assume that |z1|+|z2|−|z3| 6= |ψ(z1)|+|ψ(z2)|−|ψ(z3)|
for all z1, z2, z3 ∈ Z. Then the relation ρ is strictly antitransitive.

Proof. Let (w, u), (u, v), (w, v) ∈ ρ. Then pz1q = w = rz3s, pψ(z1)q = u =
xz2y, rψ(z3)s = v = xψ(z2)y. Consequently, |w| − |u| = |z1| − |ψ(z1)|,
|w| − |v| = |z3| − |ψ(z3)|, |u| − |v| = |z2| − |ψ(z2)|. From this we get |z3| −
|ψ(z3)| = |w| − |v| = |w| − |u|+ |u| − |v| = |z1| − |ψ(z1)|+ |z2| − |ψ(z2)| and
|z1|+ |z2| − |z3| = |ψ(z1)|+ |ψ(z2)| − |ψ(z3)|, a contradiction.

Remark 2.16.10. The condition from 2.16.9 is satisfied e. g. if |z| − |ψ(z)| is
odd for every z ∈ Z.

Remark 2.16.11. Let Z = {ε}. If ψ(ε} = ε, then ρ = idA∗ , and hence ρ is
antitransitive, but not strictly antitransitive. If ψ(ε) 6= ε, then ρ is strictly
antitransitive.

Proposition 2.16.12. Assume that ε /∈ Z and for every z ∈ Z zx 6= ψ(z) 6=
yz, x, y ∈ A∗. Then ρ is antitransitive.

Proof. According to 2.8.1, we have to prove that for all z1, z2 ∈ Z and
w ∈ A∗ such that z1wψ(z2) 6= ψ(z1)wz2 we have (z1wψ(z2), ψ(z1)wz2) /∈ ρ
and (ψ(z1)wz2, z1wψ(z2)) /∈ ρ. Suppose, for a contradiction, that there
are z1, z2 ∈ Z and w ∈ A∗ such that (z1wψ(z2), ψ(z1)wz2) ∈ ρ (the other
case is similar). This means that there exist u, v ∈ A∗ and z ∈ Z such
that z1wψ(z2) = uzv and ψ(z1)wz2 = uψ(z)v. If u = ε then z = z1,
v = wψ(z2) and ψ(z1)wz2 = ψ(z1)wψ(z2), thus z2 = ψ(z2), a contradic-
tion. Hence we may assume that u = z1u

′ and hence wψ(z2) = u′zv and
ψ(z1)wz2 = z1u

′ψ(z)v. Since z1x 6= ψ(z1), z1 = ψ(z1)s for a proper s ∈ A∗

(s is a suffix of z1), wψ(z2) = u′zv and wz2 = su′ψ(z)v. Now, let w = snw′,
u′ = smu′′, w′, u′′ be such that s is not a prefix of either one of them.
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Then snw′ψ(z2) = smu′′zv and snw′z2 = sm+1u′′ψ(z)v. If n ≤ m then
w′z2 = sm−n+1u′′ψ(z)v and (s is not a prefix of w′) there exists a suffix of z1

which is a prefix of z2, a contradiction. If n > m then sn−mw′ψ(z2) = u′′zv
and (s is not a prefix of u′′) there exists a suffix of z1 which is a prefix of z,
a contradiction again.

2.17 Transitive closure of ρ

In this subsection, let Z ⊆ A+ \ A be a strongly separating set and let
ψ : Z → A be a function. Moreover, let τ (τZ,ψ) denote the transitive closure
of ρ (ρZ,ψ) and ξ denote the reflexive transitive closure of ρ.

Lemma 2.17.1.

(i) ξ = τ ∪ idA∗.

(ii) ξ is a transitive closure of λ.

(iii) if (u, v) ∈ τ then there exist u0, u1, . . . , un ∈ A+ such that u0 = u,
un = v and (ui−1, ui) ∈ ρ, i = 1, . . . , n.

Proof. Immediate consequences of definition.

Proposition 2.17.2. Let u, v, w ∈ A+ be such that (w, u) ∈ τ and (w, v) ∈ τ .
Then either u = v or (u, v) ∈ τ or (v, u) ∈ τ or there exists w′ ∈ A+ such
that (u,w′) ∈ τ and (v, w′) ∈ τ .

Proof. Let m, n be the lengths of ρ-sequences from w to u, v. We can proceed
by double induction on m, n, using 2.6.11.

Proposition 2.17.3. Let u, v, w ∈ A+ be such that (w, u) ∈ ξ and (w, v) ∈ ξ.
Then there exists w′ ∈ A+ such that (u,w′) ∈ ξ and (v, w′) ∈ ξ.

Proof. Immediate consequence of 2.17.2.

Proposition 2.17.4. For every u ∈ A+ there exists precisely one r(u) ∈ A+

such that (u, r(u)) ∈ ξ and r(u) is reduced.

Proof. The existence follows from the fact that whenever (u, v) ∈ ρ then
|u| > |v|, the uniqueness follows from 2.17.2.

Lemma 2.17.5. Let u ∈ A+ and z ∈ Z. Then:

(i) If p ∈ pref(z), p 6= z and v ∈ A+ is such that (up, v) ∈ τ then p ∈
suff(v).
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(ii) If s ∈ suff(z), s 6= z and v ∈ A+ is such that (su, v) ∈ τ then s ∈
pref(v).

(iii) If p ∈ pref(z), p 6= z, then r(up) = r(u)p.

(iv) If s ∈ suff(z), s 6= z, then r(su) = s r(u).

Proof. We assume that p 6= ε (this case is trivial). Let v ∈ A+ be such
that (up, v) ∈ ρ. Since Z is strongly separating, the replaced occurence of
element from Z must be a factor of u. Hence p is a suffix of v. The rest
follows by induction on length of ρ-sequence from up to v and su may be
treated analogously.

Proposition 2.17.6. There are no words u, v ∈ A+, y ∈ A∗ and c ∈ A such
that (ycv, v) ∈ τ and (ucy, u) ∈ τ .

Proof. Assume for a contradiction, that there exist such u, v and y and that
|u|+ |v| is minimal (this means that both u and v are reduced, otherwise we
can use r(u) and r(v)). Let y be the shortest possible for given u and v (once
again, this means that y is reduced). (ucy, u) ∈ τ and hence u = u′p, y = sy′

and z = pcs for some z ∈ Z. Thus (sy′cv, v) ∈ τ and, due to 2.17.5, v = sv′,
which implies (y′csv′, v′) ∈ τ . y′csv′ cannot be reduced and thus y′ = y′′p′,
z′ = p′cs for an appropriate z′ ∈ Z (y′ and v′ are reduced and s is suffix of
an element of Z). This yields to (u′pcsy′′p′, u′p) ∈ τ and hence p′ ∈ suff(u′p)
(due to 2.17.5 again), thus p ∈ suff(p′) or p′ ∈ suff(p). Moreover, we know
that both pcs and p′cs are elements of strongly separating set Z and hence
p = p′. Finally, we get to (u′pcsy′′, u′) ∈ τ and (y′′pcsv′, v′) ∈ τ . Let c′ ∈ A
be such that (pcs, c′) ∈ ρ. We obtain (u′c′y′′, u′) ∈ τ and (y′′c′v′, v′) ∈ τ , a
contradiction with minimality of |u|+ |v|, since ps 6= ε.

Lemma 2.17.7. Let u, v ∈ A∗ be such that (u, v) ∈ ρ, z ∈ Z be such that
z is a factor of u and c ∈ A be such that (z, c) ∈ ρ. Then u = u1zu2 and
v = v1zu2, where (u1, v1) ∈ ρ or v = u1zv2, where (u2, v2) ∈ ρ or v = u1cu2.

Proof. Obvious.

Lemma 2.17.8. Let u, v ∈ A∗ be such that (u, v) ∈ τ , z ∈ Z be such that
z is a factor of u, c ∈ A be such that (z, c) ∈ ρ and (v0, v1, . . . , vm) be a
reducing sequence from u to v. Then either z is a factor of v and u = u1zu2,
v = v1zv2, (u1, v1) ∈ ξ, (u2, v2) ∈ ξ or there exists index i, 1 ≤ i ≤ m, such
that vi is made from vi−1 through replacing word z by letter c.

Proof. Immediate consequence of 2.17.7.
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Lemma 2.17.9. Let u, v ∈ A∗ be such that (u, v) ∈ τ , z ∈ Z be such that z
is a factor of u and z is not a factor of v and c ∈ A be such that (z, c) ∈ ρ.
Then there exists a reducing sequence (w0, w1, . . . , wm) from u to v such that
w1 is made from w0 through replacing word z by letter c.

Proof. Let (v0, v1, . . . , vm) be a reducing sequence from u to v. According
to 2.17.8 there exists index i, 1 ≤ i ≤ m, such that vi is made from vi−1

through replacing word z by letter c. Let w0 = v0, wj be made from vj−1

through replacing word z by letter c for 1 ≤ j < i and wj = vj for i ≤ j ≤ m.
(w0, w1, . . . , wm) is obviously a reducing sequence from u to v and the rest is
clear.

Corollary 2.17.10. Let u, v ∈ A∗ be such that (u, v) ∈ τ , z ∈ Z be such
that z is a factor of u and c ∈ A be such that (z, c) ∈ ρ. Then either z is a
factor of v and u = u1zu2, v = v1zv2, (u1, v1) ∈ ξ, (u2, v2) ∈ ξ or there exists
a reducing sequence (w0, w1, . . . , wm) from u to v such that w1 is made from
w0 through replacing word z by letter c.

Proof. Consequence of 2.17.8 and 2.17.9.

Lemma 2.17.11. If u, v ∈ A∗ and zk, zl ∈ Z, zk 6= zl then (uzkv, uzlv) /∈ τ .

Proof. Suppose for a contradiction that there exist u, v ∈ A∗ and zk, zl ∈ Z,
zk 6= zl such that (uzkv, uzlv) ∈ τ . Assuming 2.17.10, either (uψ(zk)v, uzlv) ∈
τ (a contradiction yields from |uψ(zk)v| < |uzlv|) or zk is a factor of u or v
(and a contradiction yields again from the lengths of “sides” of zk).

Proposition 2.17.12. Let u, v ∈ A∗ be reduced, zk, zl ∈ Z, zk 6= zl, and
w ∈ A∗ be ρ-maximal word such that (w, uzkv) ∈ τ and (w, uzlv) ∈ τ . Then
w = uzkxzlv, x ∈ A∗, x is reduced, (uzkx, u) ∈ τ and (xzlv, v) ∈ τ or
w = uzlxzkv, x ∈ A∗, x is reduced, (uzlx, u) ∈ τ and (xzkv, v) ∈ τ .

Proof. Suppose that z ∈ Z is a factor of w and c ∈ A is such that (z, c) ∈ ρ.
We will use 2.17.10 for (w, uzkv) ∈ τ and for (w, uzlv) ∈ τ . Notice that, since
u and v are reduced, the only factor of uzkv (uzlv, resp.), which is an element
of Z is zk (zl, resp.). If z is a factor of both uzkv and uzlv then zk = z = zl,
a contradiction. If there exist reducing sequence (w0, w1, . . . , wm) from w
to uzkv such that w1 is made from w0 through replacing word z by letter c
and reducing sequence (w′0, w

′
1, . . . , w

′
m′) from w to uzlv such that w′1 is made

from w′0 through replacing word z by letter c then w = w0 = w′0 and w1 = w′1
and we achieve a contradiction with ρ-maximality of w.

Hence either z = zk, w = u1zkv1, (u1, u) ∈ ξ, (v1, v) ∈ ξ and there exists
reducing sequence (w′0, w

′
1, . . . , w

′
m′) from w to uzlv such that w′1 is made from
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w′0 through replacing word zk by letter c or z = zl, w = u1zlv1, (u1, u) ∈ ξ,
(v1, v) ∈ ξ and there exists reducing sequence (w0, w1, . . . , wm) from w to
uzkv such that w1 is made from w0 through replacing word zl by letter c.

Word w is certainly not reduced, thus it must contain as a factor at least
two words from Z (or one word from Z at least twice), otherwise there exists
unique w′ such that (w,w′) ∈ ρ, which would have desired properties, a
contradiction with ρ-maximality of w.

Suppose, for a while, that w contains as a factor twice word zk, i. e. w =
y1zky2zky3 and, according to the second paragraph of the proof, (y1zky2, u) ∈
ξ and there exists reducing sequence (w′0, w

′
1, . . . , w

′
m′) from w to uzlv such

that w′1 = y1cy2zky3. But then also (y1cy2, u) ∈ ξ and (y1cy2zky3, uzkv) ∈ τ
and (y1cy2zky3, uzlv) ∈ τ , a contradiction with ρ-maximality of w. Similarly,
w may contain as a factor only one occurence of zl.

Finally, we obtained that w contains as a factors at least two occurences
of words from Z and at most one occurence of zk and one occurence of zl.
Thus w = u′zkxzlv

′ (or w = u′zlxzkv
′), where u′, x, v′ are reduced and

moreover (u′, u) ∈ ξ, (xzlv
′, v) ∈ ξ, (u′zkx, u) ∈ ξ, (v′, v) ∈ ξ (or (u′, u) ∈ ξ,

(xzkv
′, v) ∈ ξ, (u′zlx, u) ∈ ξ, (v′, v) ∈ ξ). Since u, v, u′ and v′ are reduced

we obtain u′ = u, v′ = v, (uzkx, u) ∈ τ and (xzlv, v) ∈ τ (or (uzlx, u) ∈ τ
and (xzkv, v) ∈ τ).

Proposition 2.17.13. For all u, v ∈ A∗, w ∈ A+ and z, z′ ∈ Z such that
ψ(z) = ψ(z′) = c ∈ A either (w, uzv) /∈ τ or (w, uz′v) /∈ τ .

Proof. Suppose for a contradiction an existence of u, v ∈ A∗, w ∈ A+ and
z, z′ ∈ Z such that ψ(z) = ψ(z′) = c ∈ A, (w, uzv) ∈ τ and (w, uz′v) ∈ τ .
We may assume without loss of generality that u and v are reduced and
w is ρ-maximal. According to 2.17.12 either w = uzxz′v, x ∈ A∗, x is
reduced, (uzx, u) ∈ τ and (xz′v, v) ∈ τ or w = uz′xzv, x ∈ A∗, x is reduced,
(uz′x, u) ∈ τ and (xzv, v) ∈ τ . In both cases (ucx, u) ∈ τ and (xcv, v) ∈ τ ,
a contradiction with 2.17.6.
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3 Maximal strongly separating sets

3.1 Preliminaries

Throughout the entire section, whenever we speak about separating set, we
mean strongly separating set which does not contain ε. This will allow us to
maintain readability of the text without need of further definitions. More-
over, we will assume in this section that A = {a, b}.

Lemma 3.1.1. Let Z ⊂ A+. Then Z is a separating set if and only if for
all z1, z2 ∈ Z and w ∈ A+ such that both z1 and z2 are factors (different
occurences if z1 = z2) of w |w| ≥ |z1|+ |z2|.

Proof. Immediate consequence of definition.

Lemma 3.1.2. Let Z ⊂ A+. Then Z is a maximal separating set if and only
if Z is separating set and for every u ∈ A+ \ Z there exists z ∈ Z such that
(at least) one of the following conditions takes place:

(1) z is a factor of u;

(2) u is a factor of z;

(3) pref(z) ∩ suff(u) 6= {ε};

(4) pref(u) ∩ suff(z) 6= {ε}.

Proof. Immediate consequence of definition.

3.2 First observation

Remark 3.2.1. Let Z be a separating set. If Z ∩ A 6= ∅ then Z ⊆ A.

Proof. Suppose that a ∈ Z (b ∈ Z being similar). Then either Z = {a}
or there exists z ∈ Z, z 6= a. Since Z is separating, z does not contain a
as factor (a is element of Z) and hence z = bn, n ≥ 1. If n ≥ 2, we get
contradiction with 3.1.1 (w = bn+1), thus n = 1 and Z = A.

Remark 3.2.2. Let Z be a separating set. If Z 6= A then |z| > 1 for every
z ∈ Z.

Let Z be a separating set, Z 6= A. It is obvious that every word from Z
must begin and end with different letters and, moreover, all words from Z
must begin with the same letter and end with the other one. For the rest
of this section we assume that all words in separating sets begin with a and
end with b (which allows us to omit the assumption Z 6= A as well).
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Let Z be a finite maximal separating set and let N ∈ N be greater than
the length of the longest word of Z (precise value of N is not important, we
need N just to be big enough for purposes shown in the sequel). Consider the
word aNbN . Certainly aNbN /∈ Z but according to 3.1.2 there exists z ∈ Z
such that z is a factor of aNbN (condition (2) cannot take place due to our
choose of N and conditions (3) and (4) are excluded due to the assumption
that z begins with a and end with b). Consider the word aN(ba)NbN . Once
again there must exist a word z′ ∈ Z which is a factor of aN(ba)NbN . Since
Z is separating, z′ cannot be a factor of a(ba)Nb and we may summarize this
paragraph in following lemma:

Lemma 3.2.3. Let Z be a finite maximal separating set. Then there exist
z, z′ ∈ Z such that z = ak0bl0 k0, l0 ≥ 1 and z′ = ak(ba)mb, k ≥ 1, m ≥ 0
or z′ = a(ba)mbl, l ≥ 1, m ≥ 0. Moreover, either k ≥ 2 (l ≥ 2, resp.) or
m = 0.

The preceding lemma allows us to distinguish types of finite maximal
separating sets: left (k ≥ 2) and right (l ≥ 2) (the case m = 0 will be treated
in the following lemma). In the rest of this section we will assume that finite
maximal separating sets are of the left type (we do not loose generality by
this choice as everything further stated would work similarly for the right
type.)

Lemma 3.2.4. Z is a finite maximal separating set and |Z| = 1 if and only
if Z = {anb} for some n ∈ N.

Proof. The direct implication is trivial consequence of lemma 3.2.3. Obvi-
ously the set {anb} is separating. The maximality is proved easily using
lemma 3.1.2 if we divide words of A+ into the three categories: {bu;u ∈ A∗},
{am;m ∈ N}, {ambu;m ∈ N, u ∈ A∗}.

Remark 3.2.5. Complete list (without the restrictions stated above) of one-
element maximal separating sets is {anb}, {abn}, {bna}, {ban}, n ∈ N.

We have already treated the case |Z| = 1 and hence we may proceed to
following proposition:

Proposition 3.2.6. Let Z be a finite maximal separating set and |Z| > 1.
Then there exist 1 ≤ m ≤ |Z| − 1, k0, k1, . . . , km ≥ 2, l0, l1, . . . , lm−1 ≥ 2
and z0, z1, . . . , zm ∈ Z such that zi = aki(ba)ibli, i = 0, 1, . . . ,m − 1 and
zm = akm(ba)mb.

Proof. Combining lemma 3.2.3 and lemma 3.2.4, we obtain that there exist
m ≥ 1, km ≥ 2 and zm ∈ Z such that zm = akm(ba)mb. Considering words
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aN(ba)ibN , i = 0, 1, . . . ,m − 1 we get (similarly as in lemma 3.2.3) that
there exist z0, z1, . . . , zm−1 ∈ Z such that zi = aki(ba)ibli , ki ≥ 1, li ≥ 1,
i = 0, 1, . . . ,m − 1. In order to keep the set Z separating ki ≥ 2, li ≥ 2,
i = 0, 1, . . . ,m − 1. Finally, words z0, z1, . . . , zm are pair-wise distinct and
hence m ≤ |Z| − 1.

Lemma 3.2.7. Z is a finite maximal separating set and |Z| = 2 if and only
if Z = {a2b2, a2bab}.

Proof. Let Z be a finite maximal separating set and |Z| = 2. According to
3.2.6 m = 1 and there exist k0, k1, l0 ≥ 2 and z0, z1 ∈ Z such that z0 = ak0bl0 ,
z1 = ak1bab. Consider the word aNba2bN . Similarly as in lemma 3.2.3 we
obtain that either z0 or z1 is a factor of aNba2bN and hence k0 = 2. Similarly,
using words aNb2abN and aNba2babN , we get l0 = 2 and k1 = 2. Thus
Z = {a2b2, a2bab}.

It remains to prove that Z is maximal (separating set). Let u ∈ A+ be
such that a2 is not a factor of u. Then either u = a or u = bv or u = abv,
v ∈ A∗. All cases can be treated by Z easily using 3.1.2. Let u = u′a2u′′,
u′, u′′ ∈ A∗ such that u′′ does not contain a2 as a factor and a /∈ pref(u′′).
Then u is a member of one of the classes u′a2, u′a2b, u′a2b2v, u′a2ba, u′a2babv,
v ∈ A∗. All cases are once again treated by Z using 3.1.2.

Lemma 3.2.8. Z is a finite maximal separating set and |Z| = 3 if and only
if Z ∈ {{a2b2, a2bab2, a2babab}, {a2b3, a2b2ab, a2bab}, {a3b2, a2ba2b2, a2bab},
{a2b2, a3bab, a2ba2bab}, {a3b2, a3bab, a3ba2b}}.

Proof. Let Z be a finite maximal separating set and |Z| = 3. According
to 3.2.6 m ∈ {1, 2}. If m = 2 then there exist k0, k1, k2, l0, l1 ≥ 2 and
z0, z1, z2 ∈ Z such that z0 = ak0bl0 , z1 = ak1babl1 , z2 = ak1babab. Similarly as
in lemma 3.2.7 we obtain that Z = {a2b2, a2bab2, a2babab}.

Ifm = 1 then there exist k0, k1, l0 ≥ 2 and z0, z1 ∈ Z such that z0 = ak0bl0 ,
z1 = ak1bab. Consider the word aNba2bN . Z is a maximal separating set and
hence there exists, according to lemma 3.1.2, an element of Z which is a
factor of aNba2bN . This yields that either k0 = 2 or z′ = ak

′
ba2bl

′
, z′ ∈ Z

and k0 ≥ 3. In the latter case, by choosing more appropriate words, we
obtain that Z = {a3b2, a2ba2b2, a2bab}. Let further k0 = 2. Consider the
word aNba2babN . Either k1 = 2 or z′ = ak

′
ba2babl

′
, k1 ≥ 3 or z′ = ak

′
ba2b,

k1 ≥ 3. In the second case, we obtain Z = {a2b2, a3bab, a2ba2bab}, in the
third case Z = {a3b2, a3bab, a3ba2b}. If k0 = k1 = 2 then l0 ≥ 3 (we want Z
to be three-element set) and hence Z = {a2b3, a2b2ab, a2bab}.

All the possible sets are obviously separating. The maximality can be
proved similarly as in 3.2.7.
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Lemma 3.2.9. Z is a finite maximal separating set and |Z| = 4 if and only
if Z ∈ {{a2b2, a2bab2, a2babab2, a2bababab}, {a2b2, a2bab3, a2bab2ab, a2babab},
{a2b3, a2b2ab, a2bab2, a2babab}, {a2b4, a2b3ab, a2b2ab, a2bab}, {a2b3, a2b2ab2,
a2b2abab, a2bab}, {a4b2, a2ba3b2, a2ba2b2, a2bab}, {a3b2, a3ba2b2, a2ba2ba2b2,
a2bab}, {a3b2, a2ba2b2, a3bab, a2ba2bab}, {a2b2, a4bab, a2ba3bab, a2ba2bab}, {a2b2,
a3bab, a3ba2bab, a2ba2ba2bab}, {a3b2, a4bab, a3ba2b, a3ba3bab}, {a3b2, a3bab,
a4ba2b, a3ba3ba2b}, {a4b2, a3ba3b2, a3bab, a3ba2b}, {a4b2, a4bab, a4ba2b, a4ba3b}}.

Proof. The proof is purely technical and all required techniques were already
introduced, henceforth we note only the result.

3.3 More properties

In this subsection further properties of maximal separating sets are studied.
We recall that we assume that finite maximal separating sets have at least
two elements (and does not equal A), are of left type and their elements
begin with a (and end with b).

Proposition 3.3.1. For every n ∈ N there exists finite maximal separating
set Z, |Z| = n.

Proof. Case n = 1 is treated by 3.2.4. Let n ≥ 2 and Z = {a2(ba)ib2,
a2(ba)n−1b; i = 0, . . . , n − 2}. Z is separated (the squares at the beginning
and the end of the words succesfully blocks any overlap). The maximality
can be proved similarly as in 3.2.7. Let u ∈ A+ be such that a2 is not a
factor of u. Then either u = a or u = bv or u = abv, v ∈ A∗. All cases
can be treated easily by 3.1.2. Let u = u′a2u′′, u′, u′′ ∈ A∗ such that u′′ does
not contain a2 as a factor and a /∈ pref(u′′). Then u is a member of one of
the classes u′a2(ba)i, u′a2(ba)ib, u′a2(ba)ib2v, u′a2(ba)n−1bv, i = 0, . . . , n− 1,
v ∈ A∗. All cases are once again treated using 3.1.2.

Remark 3.3.2. {anbaib; i = 0, . . . , n−1}, n ≥ 2 are finite maximal separating
sets.

Proposition 3.3.3. Let Z = {z(1), z(2), . . . , z(n)} be a finite maximal sepa-

rating set. Then z(i) = ak
(i)
bu(i)al

(i)
b, u(i) ∈ A∗, i = 1, . . . , n, k(i) ≥ 2, l(i) ≥ 0

and min k(i) = max l(i) + 1.

Proof. The shape of elements of Z is immediate consequence of 3.2.4 (amb ∈
Z would mean that Z = {amb}, a contradiction with |Z| ≥ 2). Let k =
min k(i) and l = max l(i). If k ≤ l then we get a contradiction with Z being
separating (there is an element of Z with suffix alb and an element of Z with
prefix akb). Consider the word u = (al+1b)N . Z is maximal separating set
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and hence according to 3.1.2 there exists z ∈ Z which overlaps with u, thus
k ≤ l + 1.

We will call the l from the proof of the preceding proposition a charac-
teristic power (of set Z).

Remark 3.3.4. For every l ∈ N there exists a finite maximal separating set
such that l is its characteristic power.

Proof. For l = 1 we can take arbitrary set from the proof of 3.3.1, for l ≥ 2
we can take sets from 3.3.2.

Lemma 3.3.5. Let Z be a finite maximal separating set and z ∈ Z. Then
a2 ∈ pref(z).

Proof. Z is of left type and hence ak(ba)mb ∈ Z for some k ≥ 2 and m ≥ 1.
In order to maintain Z separating the statement must hold.

Let Z be a finite maximal separating set. From 3.1.2 we already know
that for every u ∈ A+ there exists z ∈ Z such that u and z have non-trivial
overlap. Surprisingly, we can say more about the overlap:

Proposition 3.3.6. Let Z be a finite maximal separating set and u ∈ A+,
|u| ≥ 2. Then there exists z ∈ Z such that (at least) one of following condi-
tions takes place:

(1) z is a factor of u;

(2) u is a factor of z;

(3) there exists v ∈ pref(z) ∩ suff(u) such that |v| ≥ 2;

(4) there exists v ∈ pref(u) ∩ suff(z) such that |v| ≥ 2.

Proof. Let u ∈ A+. Consider the word aNubN . According to 3.1.2, there
exists z ∈ Z such that z is a factor of aNubN . Clearly, z is not a factor of any
of words aN+1, aNb, abN , bN+1 (under given assumptions on Z) and hence z
has with u overlap of length at least 2.
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4 Zeropotent semirings

4.1 General approach

Let S be a semiring. A non-empty subset I of S is called a bi-ideal of S
if (S + I) ∪ SI ∪ IS ⊆ I (i.e., I is an ideal both of the additive and the
multiplicative semigroup of the semiring S). A semiring S will be called bi-
ideal-simple if |S| ≥ 2 and I = S whenever I is a bi-ideal of S with |I| ≥ 2.
Immediately from definitions, we receive:

Proposition 4.1.1. Every congruence-simple semiring is bi-ideal-simple.

Proof. If I is a bi-ideal, then the relation (I × I) ∪ idS is a congruence of
S.

Let S be an additively zeropotent semiring. This means that there exists
an element o in S such that s + s = o = o + s for every s ∈ S. Let
Ann(s) = {t ∈ S; s+ t = o}.

Lemma 4.1.2. Let S be a zs-semiring and ∼ a congruence on S. Then [o]∼
is a bi-ideal of S.

Proof. Obvious.

Proposition 4.1.3. Let S be an additively zeropotent semiring such that
S = S + S and SS 6= o. S is congruence simple iff S is bi-ideal simple and
for all r, s ∈ S, r 6= s, there exist t, t′ ∈ W such that Ann(trt′) 6= Ann(tst′).

Proof. If S is congruence simple, then it is bi-ideal simple. It is easy to see
that relation ∼, defined as r ∼ s iff for all t, t′ ∈ W Ann(trt′) = Ann(tst′)
is a congruence. Hence, ∼= idS (∼= S × S would mean that Ann(s) =
Ann(o) = S for every s ∈ S and hence S +S = o) and for all r, s ∈ S, r 6= s,
there exist t, t′ ∈ S such that Ann(trt′) 6= Ann(tst′).

Suppose now that S is bi-ideal simple, for all r, s ∈ S, r 6= s, there
exist t, t′ ∈ W such that Ann(trt′) 6= Ann(tst′) and ∼ is a congruence on S,
∼6= idS. Then there exist r, s ∈ S, r 6= s, such that r ∼ s. Moreover, there
exist t, t′ ∈ S such that Ann(trt′) 6= Ann(tst′), hence there exists t′′ ∈ S such
that trt′ + t′′ 6= tst′ + t′′, o ∈ {trt′ + t′′, tst′ + t′′}. Since trt′ + t′′ ∼ tst′ + t′′,
[o]∼ 6= {o}. S is bi-ideal simple, thus [o]∼ = S and ∼= S × S.

The preceding proposition connects congruence-simplicity and bi-ideal-
simplicity for our particular class of semirings much stronger than it is pos-
sible in general.

Following few simple lemmas show the way for obtaining a bi-ideal-simple
semiring. We denote by Bs the bi-ideal generated by s.
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Lemma 4.1.4. Let S be an additively zeropotent semiring such that S =
S + S and SS 6= o and s, t ∈ S. Then Bs+t ⊆ Bs, Bst ⊆ Bs and Bts ⊆ Bs.

Proof. Obvious.

Lemma 4.1.5. B = {s ∈ S |Bs 6= S} is a bi-ideal and S/B is bi-ideal
simple.

Proof. Easy.

4.2 Construction pattern

Let T denote the set of all finite subsets ofA+ (A is a finite alphabet, |A| = n).
Now, define an operation addition on T by E + F = E ∪ F if E 6= ∅ 6= F ,
E ∩ F = ∅, and E + F = ∅ otherwise. It is easy to see that T (+) is a free
zeropotent commutative semigroup over A+, oT = ∅ and that T + T = {E ∈
T ; |E| 6= 1} = T \ A+.

Using the addition, we also define a multiplication on T by E · F =∑
ui · vj, ui ∈ E, vj ∈ F . Again it is quite easy to see that T (+, ·) becomes

a free zeropotent semiring over the set A.
Let Z ⊂ A+ be a strongly separating set such that |z| ≥ 2 for every

z ∈ Z and Z1, Z2, . . . , Zn be such that Zi 6= ∅, Z1 ∪ Z2 ∪ · · · ∪ Zn = Z
and Zi ∩ Zj = ∅, i 6= j (this means, amongst others, that |Z| ≥ n). Put
β = {(uaiv, u

∑
z∈Zi

zv); i = 1, . . . , n, u, v ∈ A∗}, denote by γ the transitive
closure of β and denote by α the reflexive and transitive closure of β ∪ β−1.
One checks immediately that α is just the congruence of the semiring T
generated by pairs (ai,

∑
z∈Zi

z), i = 1, . . . , n.
Before we proceed to prove that α is non-trivial congruence, we will check

under which conditions S + S = S holds for S = T/α. Let / be a relation
defined on A as ai/aj if ai ∈ alph(z) for some z ∈ Zj. Let /∗ be a reflexive and
transitive closure of /. These definitions lead immediately to the following
lemma:

Lemma 4.2.1. S = S+S if and only if for every ai ∈ A there exists aj ∈ A
such that aj /

∗ ai and |Zj| ≥ 2.

Corollary 4.2.2. If |A| = 2 then S = S + S if and only if |Z| ≥ 3.

Proof. Combine the preceding lemma and reasoning before 3.2.3.

Let ψ : Z → A be defined by ψ(z) = ai for z ∈ Zi. Let ρ, τ and ξ be
defined as in section 2 (i. e. ρ = {((uzv, uaiv); i = 1, . . . , n z ∈ Zi}).
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Lemma 4.2.3. Let (s, t) ∈ γ, s =
∑k

i=1wi, t =
∑k′

i=1w
′
i, wi ∈ A+ and let

s0, s1, . . . , sm be a β-sequence from s to t, si 6= o, 0 ≤ i ≤ m. Then for every
1 ≤ j′ ≤ k′ there exists 1 ≤ j ≤ k such that (w′j′ , wj) ∈ ξ.

Proof. By induction on m.

Lemma 4.2.4. Let r, s, t ∈ T be such that (s, r) ∈ γ and (s, t) ∈ γ. Then
there exists s′ ∈ T such that (r, s′) ∈ γ ∪ idT and (t, s′) ∈ γ ∪ idT .

Proof. Let s0, s1, . . . , sm be a β-sequence from s to r. We will prove the
assertion by induction on m. If m = 1 then s = uaiv+s′, r = u

∑
z∈Zi

zv+s′

for some 1 ≤ i ≤ n, u, v ∈ A∗, s′ ∈ T . If t0, t1, . . . , tk is a β-sequence from s
to t, we may obtain a γ ∪ idT -sequence t′0, t

′
1, . . . , t

′
k from r to s′ where t′j is

derived from tj, 0 ≤ j ≤ k, by replacing occurences of ai originated in uaiv
by

∑
z∈Zi

z.
Suppose that for m ≤ k assertion holds and let m = k + 1. Hence

there exists (by induction) s′m−1 ∈ T such that (sm−1, s
′
m−1) ∈ γ ∪ idT and

(t, s′m−1) ∈ γ ∪ idT . If sm−1 = s′m−1 then (t, sm−1) ∈ γ ∪ idT and (t, r) ∈ γ,
leading to s′ = r. If (sm−1, s

′
m−1) ∈ γ then, by induction, there exists s′ ∈ T

such that (r, s′) ∈ γ ∪ idT and (s′m−1, s
′) ∈ γ ∪ idT , and hence (t, s′) ∈

γ ∪ idT .

Corollary 4.2.5. Let (s, t) ∈ α, s, t ∈ T , s 6= t. Then there exists a sequence
s0, s1, . . . , sm, m ≥ 1, such that s0 = s, sm = t and one of the following three
cases takes place:

(1) (si−1, si) ∈ β for all 1 ≤ i ≤ m (i. e., (s, t) ∈ γ);

(2) (si, si−1) ∈ β for all 1 ≤ i ≤ m (i. e., (t, s) ∈ γ);

(3) there exists 1 ≤ j < m such that (si−1, si) ∈ β for all 1 ≤ i ≤ j and
(si, si−1) ∈ β for all j + 1 ≤ i ≤ m (i. e., (s, sj) ∈ γ and (t, sj) ∈ γ);

Proof. Easy consequence of Lemma 4.2.4.

Lemma 4.2.6. Let (s, t) ∈ γ and let s0, s1, . . . , sm be a β-sequence from
s to t, si 6= o, 0 ≤ i ≤ m. Let s =

∑k
i=1 ti, ti ∈ T . Then there exist

m(i) ∈ N ∪ {0}, s(i)
j ∈ T , 0 ≤ j ≤ m(i), 1 ≤ i ≤ k, such that s

(i)
0 = ti,

s
(i)
0 , s

(i)
1 , . . . , s

(i)
m(i) is a β-sequence, m =

∑k
i=1m(i) and t =

∑k
i=1 s

(i)
m(i).

Proof. By induction on m.

Lemma 4.2.7. If r, s ∈ T are such that (s, o) ∈ γ and (s, r) ∈ β then
(r, o) ∈ γ.
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Proof. Easy.

Lemma 4.2.8. Let s ∈ T . If (o, s) ∈ γ then (s, o) ∈ γ.

Proof. If (s, o) ∈ β then s = uaiv + u
∑

z∈Zi
zv + s′, u, v ∈ A∗, s′ ∈ T . But

then (u
∑

z∈Zi
zv+u

∑
z∈Zi

zv+s′, s) ∈ β and we are done. The rest of proof
follows by induction on length of β-sequence from o to s, using 4.2.7.

Corollary 4.2.9. Let (s, o) ∈ α, s ∈ T , s 6= o. Then there exists a sequence
s0, s1, . . . , sm, m ≥ 1, such that s0 = s, sm = o and (si−1, si) ∈ β for all
1 ≤ i ≤ m (i. e., (s, o) ∈ γ).

Proof. Easy consequence of 4.2.5 and 4.2.8.

Proposition 4.2.10. For every w ∈ A+ (w, o) /∈ α.

Proof. Suppose, for a contradiction, that there exists at least one w ∈ A+

such that (w, o) ∈ α, and hence, according to Corollary 4.2.9, (w, o) ∈ γ.
We will choose w and β-sequence s0, s1, . . . , sm from w to o such that m is
minimal. Obviously, w = uakv, u, v ∈ A∗, ak ∈ A, s1 = u

∑
z∈Zk

zv and
m > 1.

Let Zk = {z1, z2, . . . , zl}. If l = 1, we get a contradiction with choose of w
such that m is minimal and hence we may assume that l ≥ 2. According to
Lemma 4.2.6, there exist m(i) ∈ N ∪ {0}, s(i)

j ∈ T , 0 ≤ j ≤ m(i), 1 ≤ i ≤ l,

such that s
(i)
0 = zi, s

(i)
0 , s

(i)
1 , . . . , s

(i)
m(i) is a β-sequence, m =

∑l
i=1m(i) and

t =
∑l

i=1 ks
(i)
m(i). Since sm = o, there exists a word w′ which appears twice as

a summand in sm. If both appearances originate in the same s
(i)
m(i), we obtain

a contradiction with minimality of m (we could choose w = uziv). If w′ is a

summand of two different s
(i)
m(i), s

(j)
m(j) then, according to 4.2.3, (w′, uziv) ∈ ξ

and (w′, uzjv) ∈ ξ and we obtain contradiction with 2.17.13 and 2.17.11.

We have shown that α is a proper congruence of the semiring T . Now, T
is a finitely generated algebraic structure, and therefore α is contained in a
proper maximal congruence δ of T . Setting R = T/δ we get a (non-trivial!)
congruence-simple semiring R of class (5), and hence such semirings exist.
The following subsection deals with particular cases for which more can be
said about such a maximal congruence.

4.3 Further steps towards simplicity

Let A = {a, b} in this subsection and Z be a strongly separating set, |Z| ≥ 3
(Z = Za ∪ Zb). Let S be a zeropotent semiring defined as in the preceding
subsection. According to 4.2.2 S = S + S holds.
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Lemma 4.3.1. Following conditions are equivalent for every w ∈ A+:

(1) Bw = S;

(2) a ∈ Bw;

(3) There exists w′ ∈ A+ such that w is a factor of w′ and (w′, a) ∈ ξ.

Proof. Easy.

The following two propositions provides us basic tools to determine which
elements of A+ might be congruent with o (in maximal congruence).

Proposition 4.3.2. If Z is an almost maximal strongly separating set then
for every w ∈ A+, Bw = S (and hence w /∈ B).

Proof. We will proceed by induction on length of w. Clearly, Ba = Bb = S.
Let w ∈ A+ be such that |w| ≥ 2. According to 3.3.6 there exist u ∈ A+ and
z ∈ Z such that both w and z are factors of u, |u| ≤ |w|+ |z|−2 and u ∈ Bw.
Let w′ is made from u through replacing z by an appropriate letter. Then
|w′| < |w| (and hence Bw′ = S) and w′ ∈ Bw. Therefore S = Bw′ ⊆ Bw.

Proposition 4.3.3. If Z ′ ⊃ Z is an almost maximal strongly separating set
then for every y ∈ Z ′ \ Z, By 6= S (and hence y ∈ B).

Proof. According to 4.3.1 we have to analyze the set K of words which are in
τ with a. Obviously, a ∈ K, Za ⊂ K and for every element of K word created
by replacing letter a (b, resp.) in it with an element of Za (Zb, resp.) forms
another element of K. On the other hand, all elements of K (a excluding)
can be achieved from a by finitely many steps of described process. Thus
y which does not overlap with any element of Z cannot be an element of
K.

We would like to notice that the preceding proposition does not need the
assumption |A| = 2.

Lemma 4.3.4. Let Z = {a2b2, a2bab2, a2babab}, Za = {a2b2, a2bab2} and
Zb = {a2babab}. Then a2 + a4baba+ a5bab ∈ B.

Proof. Let s = a2 + a4baba+ a5bab. We will prove that Bs does not contain
any element of S \ {o} such that sum of lengths ot its summands is lower
than |a2|+|a4baba|+|a5bab|. Obviously s contains as summands only reduced
words, s · b = a2b + a4babab + a5bab2 = a2b + a2b + a5bab2 = o and s · ab =
a3b + a4baba2b + a5babab = a3b + a4baba2b + a3b = o. If we multiply s from
left by reduced word we will obtain reduced words (as summands) and if we
multiply s from right with an element of a2A∗ we wil obtain reduced words
as well. Hence summands of s cannot be shortened.
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The preceding lemma showed us that S is not congruence-simple. Un-
fortunately, it seems that similar witness of non-simplicity may be found for
other Z as well, and hence a natural conjecture occurs that S proposed by
the construction is not congruence-simple itself for arbitrary Z. The proof
of this conjecture and an explicit construction of maximal congruence on S
remain open problems.
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