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1 Introduction

There has been an ever increasing interest in the physics of solid surfaces for several
last decades. The interest has been stimulated—apart from the many prospective
applications of this field of physics—by enlarging the possibilities on hand due to the
ongoing development and refinement of suitable experimental tools. The progress in
the experimental part of surface physics has been accompanied by the perfection of
theoretical description, which has been facilitated by the steadily increasing capacity
of computers. A prominent example of surface-sensitive experimental methods are
scanning probe techniques, which are capable of resolving details on solid surfaces
down to individual atoms; these are namely the scanning tunneling microscope
(STM) and the atomic force microscope (AFM). On the one hand, the scanning
probe techniques allow the physicists to study the structure of many types of surfaces
on the atomic scale. On the other hand, the interpretation of, say, an STM image of
a given surface is not always straightforward. A theoretical analysis supplementing
the experiment is especially valuable in such cases in which the interpretation of the
experimental data turns out to be ambiguous.

While the first applications of the STM at the dawn of this method were mostly to
ordered crystal surfaces like, e.g. the Au(110) [1, 2] surface or the 7×7 reconstructed
Si(111) [3] surface, the range of the applications extended soon thereafter towards
other types of surfaces, including disordered surfaces of binary alloys, adsorbate-
covered surfaces etc. The introduction of the spin-polarized STM [4] (and recently
the magnetic exchange force microscope [5]) has further enriched the capabilities of
the scanning-probe methods, allowing it to probe magnetic properties of surfaces.

The goal of this thesis is to show on the examples of several surface systems
how the theoretical analysis and numerical simulations make it possible to under-
stand experimental data obtained by means of the STM and scanning tunneling
spectroscopy (STS). More specifically, the aims are to

1. interpret the images and spectra obtained with the STM on the (001) surface
of an alloy that consists of 64 atomic % Fe and 36 atomic% Ni (i.e. the alloy
known as the Invar), focusing on the lighter and darker spots and the back-
ground intensity modulation seen in the images as well as on the main features
of the tunneling spectra.

2. analyze the magnetic properties of the tungsten (001) surface covered by an ad-
sorbate of magnetic 3d transition metals in order to understand what findings
can be expected from the ongoing experimental investigation of such surfaces
by means of the spin-polarized STM. The problems to be studied include:

(a) monoatomic layers of the 3d transition metals on the W(001) surface in
which two different 3d metals are mixed together, thus forming a two-
dimensional surface alloy,

(b) disordered structures formed by sub-monolayer films of the 3d transition
metals on the W(001) surface, and
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(c) the effect of the surface magnetocrystalline anisotropy on the overlayers
of the 3d transition metals on the W(001) substrate.

The systems that have been chosen to be studied theoretically in this thesis have
already been subject to an STM study and, moreover, they are likely to be further
investigated by means of this experimental tool in the future, since there are still
open questions which can be answered this way. What all these systems have in
common is that they are solid state surfaces which contain more than just one
chemical element, they exhibit some degree of disorder, and they are in general
magnetic.

After summarizing the theoretical concepts and computational tools which are
going to be used throughout the thesis in Chapter 2, I will proceed to deal with
the Fe0.64Ni0.36(001) surface in Chapter 3 and with disordered magnetic films of
3d transition metals on the W(001) surface in Chapter 4. The experiment that
has motivated the theoretical research of the Fe0.64Ni0.36(001) (Invar) alloy surface
will be briefly described in Section 3.1. In Section 3.2, I will focus on my results
concerning the geometrical structure of Fe0.64Ni0.36(001) and its connection with
the topography of STM images of this surface. Section 3.3 is then focused on the
results concerning the electronic structure of the Invar (001) surface and the relation
of the electronic structure to the results of the scanning tunneling spectroscopy
(STS). In the next chapter, Section 4.1 will concern the two-dimensional binary
alloys of the 3d transition metals deposited as a monoatomic layer on the W(001)
surface; Section 4.2 will deal with the disordered sub-monolayer films of the 3d
transition metals on the W(001) substrate; Section 4.3 will contain a discussion of
how the relaxation of surface atomic positions influences the magnetic properties of
the overlayers on the tungsten substrate; and, in Section 4.4, the results concerning
the magnetocrystalline anisotropy of the overlayers will be eventually presented. The
main results at which I have arrived will be summarized at the ends of both chapters
that deal with the specific systems, in Section 3.4 and Section 4.5, respectively, and
then, finally, in the concluding chapter (Chapter 5) at the end of the thesis.
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2 Theory

2.1 Scanning tunneling microscope

Scanning tunneling microscope (STM), which was devised by Gerd Binnig, Heinrich
Rohrer, and collaborators [6] in early 1980s, provides a possibility to observe atomic-
sized features on a wide range of solid surfaces in a direct way—a possibility that was
indeed revolutionary at the time when this microscopic technique was invented. The
atomic structures that can be imaged by the STM include the patterns of surface
reconstructions, monoatomic steps, individual atoms or molecules adsorbed on sur-
faces, and other surface structures of comparable size (for the early development and
first applications of the STM, see[7]). Scanning tunneling microscopy, as a method
based on a scanning probe, renders a real-space image of the investigated surface,
hence the ‘direct observation’ mentioned above. The real-space picture given by the
STM distinguishes it from other experimental techniques, namely various diffrac-
tion methods, which were, of course, used to study atomic structures long before
the STM was invented. Although another scanning-probe technique, the atomic
force microscope (AFM), has been demonstrated to be capable of atomic resolu-
tion too, the STM remains an invaluable tool of surface science with innumerable
applications (see, e.g., [8] for some more examples, apart from those cited in [7]).

The probe of the STM is a metallic stylus ended by an atomically sharp tip. A
voltage bias is applied between the stylus and the sample during the scanning. The
stylus is mounted on a positioning system equipped with piezoelectric elements. The
motion of the stylus can be thus controlled by voltage applied to these piezoelectric
elements. Before the scanning starts, the stylus has to be placed above the investi-
gated surface in such a way that the gap between the tip of the stylus and the surface
is only several ångströms wide . The narrow gap between the two electrodes—the
tip and the sample—forms a potential barrier through which electrons can penetrate
due to the tunneling effect. As a result of the applied voltage bias, the electron flow
through the gap in one direction prevails over the flow in the opposite direction and
a nett electric current from one electrode to the other results. The magnitude of this
tunneling current is very sensitive to the width of the barrier, i.e. to the distance
separating the tip of the probe from the surface of the sample. The decrease of
the tunneling current with increasing barrier width is approximately exponential.
Therefore, the current is a good measure of the height of the tip’s position above
the scanned surface. This fact is utilized in the most common mode of operation,
called ‘constant current mode’, in which a feedback loop attempts to maintain the
tunneling current at a constant preset value by adjusting the vertical position of the
tip, i.e. by bringing it closer to the surface or retracting it away from the surface.
Because of the exponential dependence of the current on the barrier width, keeping
a constant current means that approximately constant distance of the tip from the
surface is maintained as the tip moves above the surface during the scanning. The
trajectory of the tip above the surface thus follows the profile of the surface itself.
The topography of the surface may be apparently reconstructed from the record of
the voltage that controls (by means of the piezoelectric elements) the position of
the tip. There are, however, some pitfalls in interpreting the obtained image as a
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surface topography. First, there is this qualifier ‘approximately’ in the statement
that keeping constant current results in constant distance between the tip and the
surface. The tunneling current depends, of course, not only on the width of the bar-
rier but also on its height and shape and on the electronic structure of the surface
(and also on that of the tip). The electron density or the height of the potential
barrier, which is related to local work function, may vary between different sites on
the surface and may thus contribute to the final image. Second, when dealing with a
surface on an atomic scale, it is even not obvious what the term ‘topography’ really
means. A more exact description of the tunneling process is therefore needed for
proper interpretation of the image produced by the microscope.

2.2 Bardeen integral

The tunneling current flowing between two electrodes separated by a potential bar-
rier can be calculated using a formula derived by Bardeen [9]. Bardeen developed
his theory of the tunneling effect about twenty years before the STM was invented.
Later, the theory was adapted for the theoretical description of the STM. Here,
I will loosely follow the modification of Bardeen’s theory that has been suggested
by Chen [10, 11]. Although Bardeen originally formulated his theory as a many-
particle one (and he even stressed its many-body nature in the title of his paper), I
will restate it, like Chen did, in single-particle terms.

Bardeen’s expression for the tunneling current may be derived with the help
of the first-order time-dependent perturbation theory. However, the treatment of
the tunneling effect that is going to be expounded here deviates from the way in
which the perturbation theory is usually applied. The ordinary time-dependent
perturbation theory starts with one unperturbed system (described by a certain
unperturbed Hamiltonian) and one set of unperturbed stationary states, which are
the eigenstates of the unperturbed Hamiltonian. The perturbation then causes
transitions between the states within this one set of states. For the description of
the tunneling effect, on the other hand, it is convenient to introduce two different
sets of unperturbed states: one set for the initial states and the other for the final
states of the transition. An obvious interpretation is that these two sets comprise
eigenstates of two respective subsystems, each representing one of the electrodes
involved in the process of tunneling.

Let us suppose that the whole system of two interacting electrodes can be de-
scribed by a (single-particle) Hamiltonian

Ĥ = − h̄2

2me

∆ + V (~r), (1)

where h̄ is the reduced Planck constant, me the mass of the electron, ∆ denotes
the Laplace operator, and V is an effective electron potential. Similarly, the two
unperturbed Hamiltonians, each corresponding to one separate electrode, will have
the form

ĤS = − h̄2

2me

∆ + VS(~r), (2a)
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ĤT = − h̄2

2me

∆ + VT (~r). (2b)

The choice of the indices that discriminate between the two subsystems is motivated
by the the prospective application of the theory. In the case of the STM, one
electrode is a sample (S) and the other one is the tip (T ) of the stylus. I will
assume in the following that the tunneling happens in the direction from the tip
into the sample. Since the roles of the electrodes in the theory are completely
interchangeable, tunneling in the opposite direction could be treated in an analogous
way. We will now introduce two complete orthogonal sets of states, {ψ(S)

m } and

{ψ(T )
n }, defined as the eigenstates of the respective unperturbed Hamiltonian,

ĤSψ
(S)
m = E(S)

m ψ(S)
m , (3a)

ĤTψ
(T )
n = E(T )

n ψ(T )
n . (3b)

Now, let us divide the whole space into two semi-infinite regions (denoted by S
and T ) so that they would contain one of the electrodes each. The cutting surface (Σ)
separating these two regions should be placed somewhere inside the potential barrier
between the electrodes. The unperturbed effective potentials VS(~r) and VT (~r) have
to follow two conditions with respect to the just introduced semi-infinite regions:
First, the unperturbed potential of each electrode should be equal to the potential
V (the potential of the whole interacting system) inside the region associated with
that particular electrode. That is, VS(~r) = V (~r) for all ~r ∈ S and, analogously,
VT (~r) = V (~r) for all ~r ∈ T . Second, the unperturbed potential of each electrode
should be high enough in the region that contains the other electrode (i.e. VS(~r)
for ~r ∈ T and VT (~r) for ~r ∈ S), so that all relevant unperturbed wave functions fall
off to zero with increasing distance from the electrode to which they belong. By
‘relevant’, I mean any wave function corresponding to a state that is—or at least
may possibly become—occupied by an electron during the process of tunneling.
The latter requirement imposed on the potentials ensures that the unperturbed
stationary states are localized inside their respective electrodes.

Consider the temporal evolution of an electron state, described by a wave func-
tion Ψn(~r, t), that is initially (at t = 0) equal to ψ

(T )
n . Using the ansatz

Ψn(~r, t) = ψ(T )
n (~r)e−iE

(T )
n t/h̄ +

∑
m

cmn(t)ψ(S)
m (~r)e−iE

(S)
m t/h̄ (4)

for the wave function, we may express the evolution of the state by the time de-
pendence of the coefficients cmn(t). The square of the absolute value of a coefficient

cmn(t) is proportional to the probability of transition from the initial state ψ
(T )
n to

a final state ψ
(S)
m . From the time-dependent Schrödinger equation,

ih̄
∂

∂t
Ψn = ĤΨ, (5)

after substituting the right-hand side of Eq. (4) for Ψ and using Eqs. (1–3), we
obtain

ih̄
∑
m

∂cmn

∂t
ψ(S)

m e−iE
(S)
m t/h̄ = (V − VT )ψ(T )

n e−iE
(T )
n t/h̄ +

+
∑
m

cmn(t) (V − VS)ψ(S)
m e−iE

(S)
m t/h̄. (6)
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For the sake of brevity, the spatial dependence of the potentials and wave functions
has not been indicated explicitly in the above equation. In the first order perturba-
tion theory, the coefficients cmn(t) on the right-hand side of Eq. (6) may be replaced
by their initial values cmn(0). It follows from the initial condition that cmn(0) = 0.
Consequently, only the first term on the right-hand side of Eq. (6) remains non-
zero. An individual coefficient cmn may be separated on the left-hand side of Eq. (6)

by means of multiplying the equation by the complex conjugate to ψ
(S)
m e−iE

(S)
m t/h̄,

integrating over the whole space, and using the orthogonality relation
∫
d3r (ψ(S)

m )
∗
ψ

(S)
m′ = δmm′ (7)

for the unperturbed stationary states. After performing the above described steps,
we obtain

∂cmn

∂t
=

1

ih̄

∫
d3r (ψ(S)

m )
∗
(V − VT )ψ(T )

n ei(E
(S)
m −E

(T )
n )t/h̄. (8)

Integrating Eq. (8) with respect to the time variable and taking the square of the
absolute value of the coefficient cmn yields the transition probability,

|cmn(t)|2 =


|Mmn|

sin
(
(E

(S)
m − E

(T )
n )t / 2h̄

)

(E
(S)
m − E

(T )
n ) / 2




2

. (9)

In the last equation, Mmn denotes the matrix element

Mmn =

∫
d3r (ψ(S)

m )
∗
(V − VT )ψ(T )

n . (10)

The current that arises due to an electron tunneling from the state ψ
(S)
m to the state

ψ
(T )
n equals the transition probability per unit time multiplied by the charge of the

electron,

Imn = lim
t→∞

e|cmn(t)|2
t

= −2πe

h̄
|Mmn|2δ(E(S)

m − E(T )
n ). (11)

Summation over all possible transitions and accounting for the fact that the tun-
neling only occurs from an occupied state into an empty states finally leads to an
expression for the total tunneling current,

I =
2πe

h̄

∑
mn

[
fS(E(S)

m )− fT (E(T )
n )

] |Mmn|2δ(E(S)
m − E(T )

n − eU). (12)

The distribution functions fS and fT give the average number of electrons in a
stationary state with given energy in the sample and the tip, respectively. They are
typically equal to the Fermi distribution function corresponding to the temperature
of the system. For low temperatures, the distribution functions become equal to
zero above the Fermi level and to 1 (or 2, so as to account for spin degeneracy in
non-magnetic systems while treating two states that differ only by spin as one state)
below the Fermi level. The effect of the applied voltage bias U may be described
by introducing two separate quasi-Fermi levels, one for each electrode (sample and
tip), shifted by eU with respect to each other. Instead of redefining the distribution
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functions and the energy spectra so that they would include this energy shift, I found
it more convenient to put the shift into the argument of the Dirac δ-function that
ensures energy conservation during the tunneling process described by Eq. (12).

What remains to be done is transforming the formula for the matrix element
Mmn into a form that would be more symmetric (with respect to interchanging the
electrodes) and more appropriate for a practical calculation than Eq. (10). We start
with the observation that the term (V − VT ) can only be non-zero in the region
S (which contains the sample) because, for the region T (which contains the tip),
the equality V = VT has been postulated. The integration in Eq. (10) may thus be
limited to the region S, where V = VS. Taking this into account, we may rewrite
Eq. (10) as

Mmn =

∫

S

d3r (ψ(S)
m )

∗
(VS − VT )ψ(T )

n . (13)

The next step will consist in expanding the integrand in the following way:

Mmn =

∫

S

d3r
[

ψ(T )
n (− h̄2

2me

∆ + VS) (ψ(S)
m )

∗−

− (ψ(S)
m )

∗
(− h̄2

2me

∆ + VT )ψ(T )
n +

+ (− h̄2

2me

)
(
(ψ(S)

m )
∗
∆ψ(T )

n − ψ(T )
n ∆(ψ(S)

m )
∗) ]

. (14)

Applying Eqs. (3a,b) on the first two terms in the integrand on the right hand side
of Eq. (14) yields

Mmn =

∫

S

d3r
[

(E
(S)
m − E

(T )
n ) (ψ

(S)
m )

∗
ψ

(T )
n +

+ (− h̄2

2me

)
(
(ψ(S)

m )
∗
∆ψ(T )

n − ψ(T )
n ∆(ψ(S)

m )
∗) ]

. (15)

Because of the Dirac δ-function on the right-hand side of Eq. (11), only terms with

E
(S)
m = E

(T )
n contribute to the tunneling current. We may therefore omit the first

term on the right-hand side of Eq. (15), so eventually only the last of the three terms
on the right-hand side of Eq. (14) will remain:

Mmn = − h̄2

2me

∫

S

d3r
(
(ψ(S)

m )
∗
∆ψ(T )

n − ψ(T )
n ∆(ψ(S)

m )
∗)
. (16)

This remaining term may be rewritten, using the divergence and gradient operators,
as

Mmn = − h̄2

2me

∫

S

d3r div
(
(ψ(S)

m )
∗∇ψ(T )

n − ψ(T )
n ∇(ψ(S)

m )
∗)
. (17)

The last form of Mmn suggests using the Gauss theorem to transform the integral
over the three-dimensional region S into an integral over a closed surface that forms
a boundary of the region S. The only part of the boundary surface that contributes
to the integration is, however, the boundary Σ between the regions S and T . The
rest of the closed surface is situated in infinity, where ψ(T )(~r) is infinitely small.
Consequently, the whole expression after the divergence operator in Eq. (17) is
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infinitely small everywhere on the closed surface around S except for the surface Σ.
The final expression for the matrix element then becomes

Mmn = − h̄2

2me

∫

Σ

d~S ·
(
(ψ(S)

m )
∗∇ψ(T )

n − ψ(T )
n ∇(ψ(S)

m )
∗)
. (18)

The differential vector quantity d~S in the above equation has a magnitude of an
element of Σ and the direction of a normal to Σ. More specifically, d~S is supposed
to point from S to T (rather than vice versa), but this is not critical to keep in mind
because only the absolute value of Mmn is needed to calculate the tunneling current.
In conclusion, equations (12) and (18) are the principal results of the perturbative
approach to the problem of tunneling.

An especially appealing feature of Bardeen’s method is that it allows us to divide
a complex problem into two more feasible ones. We can separately calculate the
electronic structure of the sample and that of the tip. The results are then easily
combined by substituting the eigenfunctions of both subsystems into Eq. (18). Such
an approach, however, implicitly includes another approximation besides the already
discussed use of the perturbation theory. Although the unperturbed wave functions
that occur in Eq. (18) belong to separate electrodes, the effective potentials VT and
VS, which determine these wave functions, are still related to the effective potential V
of the whole coupled system of the sample and the tip. The relationship is established
through the requirement that VS be identical to V in the region S and VT be identical
to V in the region T . If the respective electronic structures of the two subsystems
(electrodes) are to be calculated truly separately, such relation to the coupled system
has to be broken. The calculated effective potentials of the isolated electrodes will
thus differ from the ‘correct’ potentials VS and VT (since the latter should be related
to V ). The largest difference can be expected inside the potential barrier between
the electrodes—near the separation surface Σ—where both electrodes influence the
shape of the potential simultaneously. Important factors that modify the shape of
the barrier are especially the external voltage bias and the contact potential (i.e. the
difference of work functions) between the electrodes. Unfortunately, these factors
cannot be taken into account as long as the electrodes are treated separately.

The condition for applicability of the perturbation theory is that the tunneling
current should cause just a negligible change of the stationary electronic structure of
the electrodes. Such a condition will often be fulfilled for the STM, unless a contact
mode is approached. On the other hand, the next approximation, which consists
in replacing the potentials VS and VT with potentials calculated for truly isolated
electrodes, is not automatically justified. The latter approximation implies that the
shape of the potential barrier must not be significantly affected by the coupling of
the two electrodes. This requirement can be roughly satisfied if the two electrodes
(i) are separated by a broad barrier with a region of a nearly flat potential in its
center and (ii) their contact potential is approximately compensated by the applied
voltage bias.

So far, I have not explicitly considered the spin of the electron. In a non-magnetic
system, it has only to be taken into account that any single-particle state charac-
terized by a particular wave function may be occupied by two electrons instead of
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one. The existence of the electron spin thus only contributes a factor of 2 to the
expression for the tunneling current in a non-magnetic case. If the sample or the
tip or both are magnetic, there may still exist a quantization axis such that the
projection of the spin onto that axis is a good quantum number. If this is the case,
the electron states can be divided according to the projection of the spin into two
groups (which we may call, e.g., spin-up electrons and spin-down electrons) and the
sum in Eq (12) then simply runs over both possible values of the spin. In the most
general case, in which no spin projection is a good quantum number, either because
the sample has a magnetic quantization axis different from the tip or because there
are some more complex magnetic structures in the sample (like, e.g., spin spirals),
the simple wave functions have to be replaced by two-component wave functions to
account for the spin. However, even in the last most general case, the generalization
of Eqs. (12) and (18) is quite straightforward.

2.3 Tersoff–Hamann model

The above described scheme allows for practical calculation of the tunneling current
based on known electronic structures of an isolated sample and an isolated tip of
the STM probe. However, the structure of the tip is often unknown or may even
vary from experiment to experiment due to the impossibility of manufacturing the
STM probes in a completely reproducible way. It is therefore desirable to introduce a
further approximation that would allow us to estimate the tunneling current without
any reference to the detailed structure of the tip. Such an requirement is met by the
approximation suggested by Tersoff and Hamann [12], which replaces the real tip by
a simple spherical-symmetric model. It should be noted here that the knowledge of
the electronic structure of the tip is, as a general rule, indispensable for a realistic
simulation of STM images and spectra (see, e.g., the introductory discussion in [13]
or [14]) and the method of Tersoff and Hamann must therefore be regarded merely
as a very rough approximation that may only allow for qualitative estimates. On
the other hand, some features of the images and spectra acquired by the STM turn
out to be more or less independent from what particular tip is used as a probe in the
experiment. Such features may be—and often were indeed—successfully interpreted
in terms of the Tersoff-Hamann approximation.

The principal assumption that enters into the derivation of the Tersoff-Hamann
approximation is the already mentioned spherical model of the tip. This assumption
translates into the spherical symmetry of VT (~r−~r0), where ~r0 in the position of the
imaginary center of the tip. A further assumption is that the potential VS(~r) has a
constant value V0 throughout the region T (that contains the tip) and, conversely,
VT (~r) equals the same constant value V0 throughout the region S (that includes the
sample). It is not difficult to satisfy the condition VS(~r) = V0 for ~r ∈ T because
VS may be arbitrary outside the region S in Bardeen’s theory—it only has to be
sufficiently high in the region T for the perturbation theory to work. In a practical
calculation, VS will typically approach a constant vacuum level far from the solid
sample. The requirement VT (~r) = V0 for ~r ∈ S, on the other hand, has to be
consistent with the assumed spherical symmetry of VT . The two requirements for
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VT , i.e. the isotropy of VT (~r − ~r0) and the constancy of VT (~r) for ~r ∈ S, may
only be reconciled if we assume that VT (~r) = V0 not only in the region S, but
everywhere apart from the interior of the spherical tip itself; i.e., VT should be
constant everywhere outside a certain sphere of radius R that is centered in ~r0. No
special assumption has to be made about the radius R, it only must not be too large,
so that the whole sphere that represents the tip of the STM probe is contained in
the region T and does not intersect the boundary surface Σ.

The solution of the Schrödinger equation (3a) for the wave function of the tip in
the region where VT (~r) = V0 is

ψ(T )
n (~r) ∝ 1

|~r − ~r0|e
−kn|~r−~r0|, (19)

where

kn =

√
2me(V0 − En)

h̄
. (20)

In the following, I will denote the right hand side of Eq. (19) by 4πχm(~r), i.e.,

χn(~r) =
1

4π|~r − ~r0|e
−km|~r−~r0|. (21)

While Eq. (19) holds only outside the sphere of radius R around the point ~r0, where
VT equals V0, the definition of the function χn(~r) as given by Eq. (21) is meant to
hold for any ~r. As a consequence, χn(~r) will in general deviate from ψT (~r) inside the
sphere that represents the tip of the STM probe. Nonetheless, the two functions will
equal each other (except for normalization) everywhere outside the sphere, especially
also at the separation surface Σ. From now on, I will drop the superscript (S) from

ψ
(S)
m , denoting the wave functions of the sample plainly by ψm. With the above

introduced notation at hand, we may rewrite Eq. (18) in the form

Mmn ∝ h̄2

2me

∫

T

d3r (ψm
∗∆χn − χn∆ψm

∗) . (22)

Eq. (22) has a form rather similar to Eq. (16) and it has been obtained from Eq. (18)
by a step essentially inverse to the one that led from Eq. (16) to (18). The different
domain of integration—the integration is performed over the region T instead of the
region S—is of minor importance since the electrodes are mutually interchangeable
in the theory and so are the corresponding regions S and T . A more important
difference between Eq. (22) and Eq. (16) is that the integrands are not equal in the
whole range of integration because of the possible difference between the functions
χn(~r) and ψ

(T )
m inside the sphere that represents the tip. The action of the Laplace

operator on ψm in the region T ,

∆ψm(~r) =
2me(V0 − Em)

h̄2 ψm(~r), (23)

follows immediately from the Schrödinger equation. The action of the same operator
on χn can be found from the explicit expression for χn, Eq (21), to be

∆χn(~r) =
2me(V0 − En)

4πh̄2 χm(~r)− δ(~r − ~r0). (24)
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By substituting Eqs. (23) and (24) into Eq. (22) and taking Em = En, we obtain
the proportionality

Mmn ∝ ψm(~r0). (25)

The contribution of a particular wave function ψm to a tunneling current is,
according to Eq. (12), proportional to the square of the absolute value of the matrix
element Mmn. Furthermore, according to the last equation, the matrix element
is proportional to the value of the wave function at ~r0, i.e. at the center of the
curvature of the tip. The square of the absolute value of a wave function at a
particular point equals the density of the probability that the electron would be
found in an infinitesimal neighborhood of that point. The total tunneling current
can be obtained by summation over all single-electron states that contribute to the
tunneling. For a macroscopically large sample, the discrete set of states passes into
a continuum. The sum of probability densities has to be replaced by an integration
of the local density of states at ~r0 over the relevant interval of electron energies. For
low temperatures, all states below the Fermi level may be considered as being fully
occupied and all states above the Fermi level totally empty. Under such conditions,
only those electron states in the sample contribute to the tunneling whose energy
falls into the interval from EF to EF + eU (or vice versa for an opposite bias),
where EF is the Fermi level in the sample and U denotes the voltage bias applied
on the sample. This considerations finally leads to the following relation between
the tunneling current and the local density of states:

I ∝
∫ EF +eU

EF

ρ(~r0, E)dE, (26)

where ρ(~r0, E) is the local density states of electrons in the sample at energy E
and at the spatial point ~r0. From that, we obtain for the differential tunneling
conductivity the relation

σ =
dI

dU
∝ ρ(~r0, EF + eU). (27)

The quantity called ‘local density of states’, which has been used in the last two
relations, may be defined in terms of a sum of probability densities at given energy
as the number of single-particle states approaches infinity. Specifically, we may
write1

ρ(~r0, E) = lim
N→∞

N∑
m=0

|ψm(~r0)|2δ(Em − E). (28)

During the discussion leading to Eqs. (26) and (27), I have tacitly assumed
that the proportionality constant of Eq. (25) is independent from the energy of
the tunneling electrons, so that I would not have to consider different weighting
coefficients for contributions from electrons at different energies. Such an assumption
is, however, not always justified. The constant of proportionality is given by an
unknown normalizing prefactor of the wave function of the tip, which may in turn

1The limit that appears in Eq. (28) has to be interpreted in terms of distributions (generalized
functions), not in the sense of point convergence of ordinary functions.
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depend on the energy E
(T )
n . Note that Eq. (19) defines the wave function ψ

(T )
n

only up to this unknown prefactor. The uncertainty about the precise value of the
proportionality constant hinders any quantitative evaluation of the tunneling current
using the Tersoff-Hamann approximation in the form introduced here. Nonetheless,
there may still occur such conditions that the normalizing prefactor in front of ψ

(T )
n

varies only mildly with E
(T )
n and the stationary states of the tip are distributed with

an approximately uniform density over the relevant interval of energies. Then the
relations given by Eq. (26) for the tunneling current and Eq. (27) for the tunneling
conductivity may remain valid. For example, if we want to describe an experiment
that was carried out under low voltage bias, only a narrow range of energies has to
be considered and the variation of Mmn with energy may be neglected. An STM
image taken in the constant current mode at low bias can be interpreted as a map of
the local density of states of electrons above the sample surface. In a spectroscopic
measurement, a rather wide range of voltages would be explored, thus casting the
applicability of the discussed relations into doubt. We are, nevertheless, usually
interested only in some prominent features like peaks in the differential tunneling
conductivity when performing spectroscopic measurements. Provided that both the
density of states and the form of wave functions of the electrons in the tip depend
smoothly enough on energy, so that the tip does not introduce any such pronounced
features into the spectra, a peak in tunneling conductance can be ascribed to a peak
in the local density of states of the sample, just as indicated by Eq. (27). To sum
up, the Tersoff-Hamann approximation does not permit a quantitative evaluation
of the tunneling current, but it may still be successful in interpreting the relative
changes of the current in terms of a varying local density of states.

2.4 Density functional theory

The Hamiltonian of any system consisting of atoms can be written in the form

Ĥ = T̂e + T̂N + V̂ee + V̂eN + V̂NN , (29)

where the operators on the right-hand side represent, respectively, the kinetic energy
of electrons,

T̂e = − h̄2

2me

×
Ne∑
i=1

∆~ri
, (30)

the kinetic energy of atomic nuclei,

T̂N = − h̄
2

2
×

NA∑
i=1

1

Mi

∆~Ri
, (31)

the potential energy of the electron–electron interaction,

V̂ee =
e2

4πε0
× 1

2

Ne∑
i=1

Ne∑
j=1

1

|~ri − ~rj| , (32)
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the potential energy of electrons in the field of nuclei

V̂eN = − e2

4πε0
×

Ne∑
i=1

NA∑
j=1

Zj

|~ri − ~Rj|
, (33)

and the potential energy of the nucleus–nucleus interaction

V̂NN =
e2

4πε0
× 1

2

NA∑
i=1

NA∑
j=1

ZiZj

|~Ri − ~Rj|
. (34)

The symbols ∆~ri
and ∆~Ri

denote, respectively, Laplace operators that perform dif-
ferentiation with respect to the position ~ri of the i-th electron in the first case and
with respect to the position ~Ri of the nucleus of the i-th atom in the other case; Ne

and NA are the respective numbers of electrons and atoms in the system; me stands
for the mass of electron, Mi for the mass of the nucleus of the i-th atom; e denotes
the elementary charge (which, except for the sign, equals the charge of the electron);
ε0 is the vacuum permittivity; and Zi denotes the atomic number of the respective
atom (i.e., it gives the charge of the nucleus as a number of elementary charges).
The summations in Eq. (32) and Eq. (34) skip the instances in which i = j. All the
above expressions hold for a non-relativistic case.

The masses of atomic nuclei are several orders of magnitude greater than the
mass of electron. This strong inequality implies that we can expect the nuclei to be
much more localized than the electrons, at least in the ground state and in low-lying
excited states. Such conditions justify the use of the Born-Oppenheimer approxima-
tion. This approximation consists in treating the nuclei as being localized in fixed
geometrical points while only the electrons are handled as quantum-mechanical ob-
jects, i.e., only the system of electrons is represented by a (many-particle) wave func-

tion. As a second step in the approximation, an effective potential VN(~R1, . . . , ~RNA
)

felt by the nuclei may be introduced so that it would incorporate—apart from V̂NN

representing the direct coulombic interaction among the nuclei—also another contri-
bution that describes the effect of electrons on the nuclei. The latter contribution to
the effective potential VN would be equal to the ground-state energy of the system of
electrons for the given positions {~Ri} of the nuclei. I am not going to deal with the
dynamics of atomic nuclei anywhere in this thesis; therefore I will always restrict
myself to calculations within the first step of the Born-Oppenheimer approxima-
tion. In other words, I will always assume the atomic nuclei to be just fixed charged
points. Their positions will be either taken from experimental data or calculated by
applying the condition that the ground-state positions should yield minimal total
energy for the combined system of all electrons and nuclei.

After excluding the dynamics of nuclei from the description, the Hamiltonian for
which the Schrödinger equation has to be solved reduces to

Ĥel = T̂e + V̂ee +
Ne∑
i=1

v(~ri). (35)

The last term on the right-hand side of Eq. (35) comes from the electron–nucleus
interaction term V̂NN in Eq. (29). The single-particle potential v that constitutes
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this term will be referred to as an ‘external’ potential. The name is meant to
indicate that the potential is external to the system of electrons. If we were to
consider the whole system including both the electrons and the nuclei, the forces
exerted by the nuclei on the electrons and the corresponding potential v would have
to be, of course, described as internal. Given the origin of the potential v, it can be
obviously evaluated using the formula

v(~r) = − e2

4πε0

NA∑
i=1

Zi

|~r − ~Ri|
. (36)

The nuclear positions ~Ri now assume a role of external parameters rather than
dynamical variables. We may additionally consider a truly external field acting
on the electrons, like e.g. an electrostatic field induced by external electrodes. A
corresponding additional term would have to be introduced onto the right-hand
side of Eq. (36) then. In any case, the origin and the explicit form of the external
potential v is not going to matter in the following considerations.

The above Hamiltonian of the electron system, Eq. (35), although simplified, does
not yet allow for a direct solution of the corresponding Schrödinger equation. An
approximate solution has to be sought therefore. A very successful approximation
can be based on the density functional theory (DFT). The computational schemes
based on the DFT are nowadays routinely applied to many-electron systems ranging
from atoms and molecules to crystals. The DFT itself provides an exact description
of the many-electron ground state in principle, but its exact form cannot be directly
utilized for any practical calculation scheme. The theory has, however, proven useful
in motivating reasonable approximations, namely the local density approximation
(LDA) and its various generalizations. The basic idea behind the density functional
theory is to avoid the (generally very complicated) many-particle wave function
Ψ(~r1, ~r2, . . . , ~rN) and to express instead all ground-state properties of the many-
electron system in terms of one-particle electron density n(~r). The one-particle
density is defined as

n(~r) = N

∫
d3r2 . . .

∫
d3rN |Ψ(~r, ~r2, . . . , ~rN)|2, (37)

where N denotes the number of electrons (formerly denoted by Ne).

DFT is founded on two theorems, originally formulated and proven by Hohenberg
and Kohn [15] in 1964. The first Hohenberg-Kohn theorem states, in essence, that
the the external potential v(~r) is a unique functional of the ground-state electron
density n(~r). The precise meaning of this statement, however, needs to be clarified
in some more detail. The first two terms on the right-hand side of Eq. (35)—i.e. the
kinetic term and the term that represents the electron–electron interaction—remain
always the same. These terms are fully determined by the fact that the interacting
particles are electrons and by the number N of the electrons. Different systems of
the same number N of interacting electrons can differ only in the external poten-
tial v(~r). Once the external potential is also known, all properties of the system
described by the Hamiltonian, Eq. (35), are determined in principle, including all
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properties of the ground state of the system. In this sense, the ground-state wave
function may be considered a functional of the external potential, although the func-
tional is not unique because the ground state may be possibly degenerate. Since
the electron density is, according to Eq. (37), a (unique) functional of the corre-
sponding wave function, the ground-state density n(~r) is eventually a functional of
the external potential too. Likewise, all other characteristics of the ground state are
uniquely determined by the ground-state wave function as well, so they may be also
regarded as functionals of the external potential. Let us introduce the notation n[v]
for the ground-state electron density n that is associated with an external potential
v in the above explained way. We may now ask whether the functional n[v] can be
inverted. It is not guaranteed for an arbitrary density n(~r) that there exist an exter-
nal potential which would lead just to that ground-state density n(~r). The densities
which may be associated with some external potential are called v-representable.
The v-representable densities thus form the domain of the functional inverse to the
n[v] functional. One particular v-representable density n(~r) can be clearly obtained
by various potentials which differ from each other only by a position-independent
additive constant. We will therefore consider two external potentials v and v′ to be
equivalent for the purpose of the DFT, if

v − v′ = const. (38)

What the first Hohenberg-Kohn theorem says is that if two external potentials v(~r)
and v′(~r) lead to one and the same ground-state electron density n(~r), then the
potentials are necessarily equivalent in the sense of Eq. (38). The proof of the
theorem may be found not only in the original paper of Hohenberg and Kohn [15]
but also in almost any textbook dealing with the DFT (e.g. [16]).

We have seen that just like the ground-state density n may be regarded a func-
tional of the external potential v, so may be v, conversely, regarded as a functional
of n (provided n is v-representable) and that the latter functional is even unique.
It has been already mentioned that the ground-state wave function is a (generally
non-unique) functional of the external potential. From the chain of relations

n→ v → Ψ (39)

follows that we can also handle the ground-state wave function as a functional of
n, though not unique. Through the ground-state wave function Ψ, all physical
properties of the ground state are functionals of the ground-state density as well,
which is exactly the central idea of the DFT.

Let us consider the following functional F [n] of the density n:

F [n] = 〈Ψ[n]|T̂e + V̂ee|Ψ[n]〉, (40)

where Ψ[n] denotes the ground-state wave function corresponding to the density n.
The functional F [n] is obviously defined for v-representable densities only. In con-
trast to other functionals depending on n through the possibly degenerate ground-
state wave function Ψ, the above introduced functional F [n] is even unique. To show
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that the ambiguity of Ψ[n] does not affect the uniqueness of F [n], let us consider
another functional E[n],

E[n] = F [n] +

∫
d3r (v[n](~r)) n(~r). (41)

The functional E[n] has clearly the meaning of the ground-state energy pertaining
to the system of electrons with the ground-state density n. Even if the ground
state were degenerate and Ψ[n] were thus ambiguous, there would always be one
ground-state energy for a given system since the ground-state energy must be only
one by definition. Of course, the functional E[n] supposed to represent the ground-
state energy would be ambiguous unless we fix the arbitrary additive constant in the
potential v[n]. Suppose that we have determined the potential uniquely by means
of some additional condition (like that the mean value of the potential over the
whole space should be zero, or that the potential should be zero at some particular
point, etc.) so as to remove this ambiguity. As soon as we choose v[n] uniquely, the
functional E[n] becomes unique as well, the ambiguity of Ψ[n] notwithstanding. We
may now express F [n] in terms of E[n], using Eq. (41), as

F [n] = E[n]−
∫
d3r (v[n](~r)) n(~r). (42)

We can see from the above discussion that Eq. (42) determines F [n] without any
ambiguity.

We now introduce the following functional of both n and v with the help of the
functional F [n]:

E[v, n] = F [n] +

∫
d3r v(~r)n(~r). (43)

The functional E[v, n] will be dubbed ‘energy functional’. The second theorem
of Hohenberg and Kohn says that—the external potential v(~r) and the number of
electrons N being given—the energy functional E[v, n] assumes its minimal value for
the density n0(~r) that corresponds to the ground-state of the system of N electrons
in the external potential v. This minimal value equals the ground-state energy of
the system. The fixed number of electrons imposes a constraint

N =

∫
d3r n(~r) (44)

on possible variations of the one-particle density n.

Note that while it may be tempting to think about the functionals E[v, n] as
defined by Eq. (43) and E[n] as defined by Eq. (41)—both of which are related to
the energy of the system in some way—as if they were identical, they are definitely
not. Only if v0 = v[n], the equality E[v0, n] = E[n] holds. In any case, however, we
may rewrite the definition of E[v, n] as

E[v0, n] = 〈Ψ[n]|Ĥel[v0]|Ψ[n]〉, (45)

where Ĥel[v0] is the Hamiltonian we obtain from Eq. (35) by substituting the external
potential v0 for v.
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The two Hohenberg-Kohn theorems allows us to restate the quest for a ground-
state electron density of a many-electron system as a variational problem. The
ground-state density is the one that minimizes the above defined energy functional
and the minimal value of the functional is the energy of the ground state. However,
the original formulation by Hohenberg and Kohn imposes an inconvenient restriction
on the electron density n(~r) that enters into E[v, n] as a variational parameter,
namely that n must be v-representable. The requirement of v-representability may
be lifted if one uses an alternative approach to the DFT, suggested by Levy [17].
Levy proposed another functional of the electron density (which is now usually called
the Levy-Lieb functional),

Q[n] = min
Ψ→n

〈Ψ|T̂e + V̂ee|Ψ〉. (46)

The minimum on the right-hand side of Eq. (46) is searched under the constraint
that the wave function Ψ is compatible with the electron density n in the sense of
Eq (37) and that the wave function must be completely antisymmetric. Levy has
shown that Q[n] is closely related to the functional F [n] of Hohenberg and Kohn.
Specifically, F [n] = Q[n] for any v-representable density n. it is easy to show that
if one replaces F [n] by Q[n] in the definition of the functional E[v, n], Eq. (43), the
second theorem of Hohenberg and Kohn will still hold for such an altered functional
E[v, n]. The replacement will, however, extend the domain of the functional to all
densities n that may originate from some N -particle wave function.

In conclusion, there exist a certain functional of the one-particle electron density
n(~r) that assumes its minimal value equal to the ground state energy for the correct
ground-state density n0(~r). The difficulty with the DFT is that the explicit form of
this energy functional is not known. Note that in the above presented constructions
of the energy functional E[v, n], either that of Levy or that of Hohenberg and Kohn,
the ground-state many-particle wave function was used in a hidden way: recall
Eq. (39). Unfortunately, the many-particle wave function is just the quantity we
seek to avoid in the calculations. The definition of the functional E[v, n] that was
useful to demonstrate its existence and basic properties therefore does not offer much
help when a real calculation of the ground-state properties has to be performed. A
different practical approach to evaluate the energy functional and find its minimum
is needed. The predominantly used method to solve this problem is based on Kohn-
Sham equations and the local density approximation.

2.5 Kohn-Sham equations

The fact that the energy functional E[v, n] assumes its minimal value at the ground-
state electron density n(~r) = n0(~r) leads to the requirement that its variation with
respect to the electron density be zero,

(
δE[v, n]

δn

)
δn(~r) = 0, (47)

provided that n = n0 and that the variation δn is constrained by the condition
∫
d3r n(~r) = N, (48)
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which fixes the total number of electrons. Alternatively, the constraint can be in-
corporated in the variational condition Eq. (47) by means of a Lagrange multiplier
µ (which is independent from ~r and has the physical meaning of the chemical po-
tential). This reformulation renders

δE[v, n(~r)]

δn(~r)

∣∣∣∣
n=n0

= µ. (49)

Kohn and Sham [18] suggested splitting the energy functional up into the following
terms:

E[v, n] = T0[n] + VH [n] + VXC [n] +

∫
d3r v(~r)n(~r), (50)

where the functional T0[n] stands for the kinetic energy of non-interacting electrons
whose density equals n(~r), VH [n] is the Hartree functional that represents electro-
static energy of the electron gas without correlation or exchange effects,

VH [n] =
e2

8πε0

∫
d3r

∫
d3r′

n(~r)n(~r ′)
|~r − ~r ′| , (51)

and VXC [n] is a functional that accounts for exchange and correlation effects, i.e.
for the effects that are not included in the other parts of the split energy functional.

After substituting the expansion Eq. (50) into Eq. (49), the variational condition
passes into

δT0[n]

δn
+ veff(~r) = µ, (52)

where the effective potential veff(~r) is defined as

veff = v + vH [n] + vXC [n], (53)

the n-dependent contributions to the effective potential being given by

vH [n] =
δVH [n]

δn
(54a)

or

vH [n](~r) =
e2

4πε0

∫
d3r′

n(~r ′)
|~r − ~r ′| , (54b)

and

vXC [n] =
δVXC [n]

δn
. (55)

We would have obtained exactly the same equation as Eq. (52) if we were interested
in the ground state density of a gas of non-interacting electrons in an external po-
tential equal to veff . By non-interacting electrons, we shall understand hypothetical
particles which possess the same mass as electrons and obey the Pauli exclusion
principle like electrons, but do not exert any electromagnetic or other force on each
other, in contrast to the electrons. Of course, in the case of the non-interacting
electrons, the functional T0[n] simply represents the total inner kinetic energy of the
electron gas with density n(~r).
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The problem of the non-interacting particles in an external potential can be
solved easily. The corresponding many-particle wave function will assume the form
of a Slater determinant consisting of N single-particle wave functions (often referred
to as ‘orbitals’). The effective potential, as defined by Eq. (53), is independent from
the electron spin. We may therefore separate the single-particle wave function into
a spin and a spatial part and we only need to deal with the spatial part for the
moment. The spatial parts of the orbitals, ϕi(~r), can be found as solutions of the
Schrödinger equation into with the effective potential veff enters, i.e.,

(
− h̄2

2me

∆ + veff(~r)

)
ϕi(~r) = Eiϕi(~r). (56)

The Schrödinger equation has infinitely many solutions. Since we are interested in
the ground-state solution of the many-particle problem, we will take those solutions
of the single-particle Schrödinger equation which are associated with the lowest
possible energies. Let us suppose that the solutions ϕi are ordered according to
their corresponding energy Ei, starting from the lowest energy for i = 1. Of course,
we cannot take N -times one and the same solution ϕ1(~r) that corresponds to the
lowest single-particle energy E1 and compose the Slater determinant of this single-
particle orbital alone. The Pauli exclusion principle has to be observed, otherwise the
Slater determinant would become zero. Consequently, we may take any particular
form of the spatial part of a single-particle orbital only twice at most (due to two
possible spin states). So we have to take the first N/2 different solutions ϕi(~r),
i = 1, . . . , N/2, associated with the N/2 lowest energies2. Let us assume that the
single-particle wave functions are normalized to unity:

∫
d3r |ϕi(~r)| = 1 ∀i = 1, . . . ,∞. (57)

The sum of the squares of their absolute values (times the spin degeneracy) then
yields the ground-state electron density n0,

n0(~r) = 2

N/2∑
i=1

|ϕi(~r)|2 . (58)

Recall, however, that the variational condition for the ground states of both sys-
tems, that of interacting and that of non-interacting electrons, can be written in the
same form, namely Eq. (52). The ground state density n0(~r) which is the solution to
the auxiliary problem of non-interacting electrons therefore must be the right solu-
tion to the original problem of interacting electrons too. The ground-state electron
density of the system of interacting electrons can be thus found through Eq. (58).
The single-particle wave functions ϕi(~r) used to construct the density are referred
to as the Kohn-Sham orbitals and the Schrödinger-like equation, Eq. (56), which
determines the Kohn-Sham orbitals, as the Kohn-Sham equation. The only—but
substantial—difference between the Kohn-Sham equation for the interacting system

2Even number of electrons is supposed here. Since we will be interested in systems where
N →∞, the distinction between odd an even N is not going to be an important matter.
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and the single-particle Schrödinger equation for the corresponding non-interacting
system is an indispensable dependence of the effective potential on electron density
in the interacting case. To emphasize the importance of this fact, let me restate the
Kohn-Sham equation once again, now with the effective potential being decomposed
according to Eq. (53) and with any dependence on the electron density n explicitly
noted:

(
− h̄2

2me

∆ +
e2

4πε0

∫
d3r′

n(~r ′)
|~r − ~r ′| + vXC [n](~r) + v(~r)

)
ϕi(~r) = Eiϕi(~r). (59)

We can easily obtain the ground state electron density n0(~r) if we know the Kohn-
Sham orbitals ϕi(~r). In order to find the Kohn-Sham orbitals, we have to solve
the Kohn-Sham equation, Eq. (59). We should, however, substitute the correct
ground-state density n0 for n in the Kohn-Sham equation. We thus end up with a
problem of finding a self-consistent electron density n(~r) = n0(~r) that would conform
to Eqs. (58) and (59) simultaneously. Such a problem of self-consistency has to be
solved iteratively. One has to begin with some trial electron density, solve the Kohn-
Sham equation, calculate a new electron density from the Kohn-Sham orbitals, and
repeat the last two steps until the electron density does not change substantially any
more. In a practical calculation, it is usually necessary to take some combination of
the new and the old electron density to the next iteration instead of keeping purely
the new density itself, otherwise the resulting density will not converge. However,
a detailed description of this procedure, called ‘mixing’, is beyond the scope of this
introductory chapters.

The Kohn-Sham orbitals {ϕi} and the associated single-particle energies {Ei}
describe the auxiliary system of non-interacting electrons. Unfortunately, these
quantities cannot be easily linked to any of those properties of the interacting system
that would allow for a straightforward physical interpretation, like, for example, one-
electron Green’s functions or one-electron excitation energies. Nevertheless, for the
lack of any better one-particle characteristics, I shall still use ϕi and Ei taken from a
DFT calculation to interpret observations made by the STM. I shall therefore assume
that the above named quantities can be substituted for those single-electron wave
functions and single-electron energies that appear, e.g., in Eqs. (12) and (18). As
there is no rigorous justification for such a step, it must be considered just another
one in the series of approximations.

2.6 Local density approximation

Until now, we have carefully avoided writing down the explicit form of the exchange-
correlation energy functional VXC [n] or the corresponding exchange-correlation po-
tential vXC [n](~r). The reason for this is simply that the exact form of the exchange-
correlation part of the energy functional is unknown. The difficulty in finding the
exchange-correlation functional is by no means surprising indeed. Solving the many-
body problem has been avoided by introducing the energy functional E[v0, n], which
depends on the electron density n(~r) only, rather than on the whole many-particle
wave function. As a consequence, the energy functional has to incorporate all the
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difficulties of the original many-body problem. Subsequently, several parts which
were comparatively easy to handle have been isolated from the functional E[v0, n],
namely the kinetic energy of non-interacting particles T0, the Hartree term VH , and
the potential energy in external fields. The rest is the exchange-correlation term.
All the complicated phenomena of the many-electron system have been thus finally
pushed into the exchange-correlation functional VXC .

If there is no hope of finding an explicit formula for VXC , one might ask what
good it was to elaborate the above theory at all. However, while the exchange-
correlation potential is not known exactly, reasonable approximations can be made
for it. Since VXC constitutes, as a rule, just a lesser contribution to the total energy
functional as compared to the other terms that appear on the right-hand side of
Eq. (50), it may be considered a justifiable step to replace it with an approximate
formula. Most of the routinely used DFT-based algorithms rely on the (in general
not fulfilled) assumption that the value of the exchange-correlation potential vXC

at a certain point ~r depends exclusively on the properties of the electron density at
this very point ~r. Specifically, the local density approximation (LDA) is based on
the assumption that vXC(~r) depends on the value n(~r) at ~r only.

Within the LDA, the functional VXC [n] representing the exchange-correlation
energy may be expressed using some function εLDA(n) of the density in the following
way:

V
(LDA)
XC [n] =

∫
d3r εLDA (n(~r)) n(~r). (60)

Note that εLDA is a function of a numeric value n(~r)—the density at a certain point
~r—rather than being a functional of the whole spatial distribution of the electron
density. The exchange-correlation potential then becomes

vXC(~r) = εLDA (n(~r)) + n(~r)
dεLDA(n)

dn

∣∣∣∣
n=n(~r)

. (61)

A physically substantiated choice for the function εLDA(n0) is the value of the
exchange-correlation energy of homogeneous electron gas with electron density n(~r) =
n0. With this choice, the LDA becomes exact in the limit of a slowly varying density
n(~r), but it often yields reasonably good results (total energy, equilibrium inter-
atomic distances etc.) even for realistic atomic systems, where the electron density
changes in space appreciably. The exchange-correlation energy of the homogeneous
electron gas can be found using Monte-Carlo calculations [19] and several param-
eterizations have been suggested for it (either based on theoretical considerations
or on the Monte-Carlo results or both). The next natural step beyond the LDA
consists in introducing also the gradient of the electron density into the description
of VXC [n], so that not only the local value of n(~r), but also its changes in the vicinity
of ~r may be taken into account. This leads to the generalized gradient approximation
(GGA), in which

V
(GGA)
XC [n] =

∫
d3r εGGA (n(~r),∇n(~r)) n(~r). (62)
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2.7 Spin-polarized systems

Several spin-polarized systems (ferromagnets, antiferromagnets, etc.) will be treated
in this thesis. All the above considerations regarding the DFT and the derivation
of the Kohn-Sham equations hold, strictly speaking, for the spin polarized systems
as well. However, the LDA in the above form, in which it does not explicitly in-
clude the spin-polarization, would be a very poor approximation for such systems.
Also the resulting Kohn-Sham orbitals and their eigenenergies, even if they were
obtained from an exact (but not spin-polarized) DFT rather than from LDA, would
be useless for an interpretation of STM experiments performed on magnetic systems.
The description of the spin-polarized systems improves when the spin is explicitly
introduced into the Kohn-Sham scheme from the beginning. We shall decompose
the total electron density into two parts,

n(~r) = n↑(~r) + n↓(~r), (63)

corresponding to opposite spin directions. These components are conventionally
referred to as the majority spin and the minority spin density, respectively (or
the spin-up and spin-down densities). The majority density would be, naturally,
the one that gives a greater number of electrons when integrated over the whole
space. The functional T0[n] in Eq. (50), representing the inner kinetic energy of
the non-interacting electron gas with density n, will be replaced by the kinetic
energy of a spin-polarized non-interacting electron gas, T0[n

↑, n↓]. Also the exchange-
correlation energy VXC will be treated as a functional of both n↑ and n↓. The
appropriate generalization of the LDA to spin-polarized system is called the ‘local
spin density approximation’ (LSDA). The expression for the exchange-correlation
functional within the LSDA obviously reads

V
(LSDA)
XC [n↑, n↓] =

∫
d3r εLSDA

(
n↑(~r), n↓(~r)

) (
n↑(~r) + n↓(~r)

)
, (64)

and similar spin-polarized extensions exist for the GGA. The corresponding exchange-
correlation potentials may now be expressed as

vXC [n↑] =
δVXC [n↑, n↓]

δn↑
, (65a)

vXC [n↓] =
δVXC [n↑, n↓]

δn↓
. (65b)

We then write down two sets of Kohn-Sham equations, one set for each spin com-
ponent: (

− h̄2

2me

∆ + v↑eff(~r)

)
ϕ↑i (~r) = E↑

i ϕ
↑
i (~r), (66a)

(
− h̄2

2me

∆ + v↓eff(~r)

)
ϕ↓i (~r) = E↓

i ϕ
↓
i (~r). (66b)

The spin-resolved densities are obtained as sums over the squares of absolute values
of the spin-resolved Kohn-Sham orbitals ϕ↑i and ϕ↓i ,

n↑(~r) =
N↑∑
i=1

∣∣∣ϕ↑i (~r)
∣∣∣
2

, (67a)
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n↓(~r) =
N↓∑
i=1

∣∣∣ϕ↓i (~r)
∣∣∣
2

. (67b)

The partial numbers of electrons, N↑ and N↓, that determine the upper bounds
of the sums in Eqs. (67) are chosen in such a way that N = N↑ + N↓ and there
exists one threshold energy EF , common to both the spin-up and the spin-down
subsystem, such that the summation is performed over all indices i for which the
respective eigenenergy E↑

i or E↓
i is lesser than or equal to EF and over no indices for

which the eigenenergy would be greater than EF . Obviously, the energy EF can be
regarded as the zero-temperature Fermi level (as long as the single-electron picture
may be considered a reasonable representation of the system, otherwise it does not
make much sense to use the term ‘Fermi level’ at all).

2.8 Linearized augmented plane wave method

If we were to handle the wave functions ϕi(~r), obtained by solving the Kohn-Sham
equations, with unlimited precision, we would have to be able to store and process
an infinite amount of information: The value of each wave function would have to
be specified at every spatial point. In reality, the wave functions will be typically
expressed as linear combinations of some basis functions {χi},

ϕi(~r) =
∑

j

cijχj(~r), (68)

where ci are complex coefficients, instead of specifying the value of ϕ(~r) for various
positions ~r directly. Nonetheless, the situation remains the same: An infinite set of
basis function would be needed to represent an arbitrary wave function. Obviously,
any practical calculation has to be limited to a finite subset of the complete basis set.
This is equivalent to cutting the infinite expansion Eq. (68) of the wave function after
a certain term. This truncation of the expansion necessarily introduces some error
into the description of the wave function. In other words, a finite basis set will always
be incomplete. If we could use complete basis sets to expand the wave functions,
every possible complete basis would do the job equally well. However, as we are
limited to finite and thus incomplete sets, the choice of a reasonable one turns out
to be critical for obtaining as good a representation of the wave functions as possible.
There are various numerical methods based on the Kohn-Sham scheme which differ
in the basis set they use to expand the wave functions, seeking a compromise between
economy and precision. A similar situation as with the wave functions occurs also
with the effective potential veff(~r). Again, the potential will be typically expressed
as a linear combination of some functions from a suitably chosen finite basis set.

The idea behind augmented plane wave methods (APW) is to separate the space
into two distinct regions: atomic spheres and the interstitial space. The atomic
spheres are spheres centered at the positions of atomic nuclei ~Rν , their radii ρν being
chosen so that the spheres would not overlap. The interstitial region is the remaining
space between atoms outside all atomic spheres. The effective potential inside the
atomic spheres is almost spherically symmetric but varies abruptly in the radial
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direction while the potential in the interstitial region lacks the spherical symmetry
but varies only mildly. The APW basis functions are adjusted to the typical forms
of the effective potential in the respective regions. Each basis function consists of a
plane wave in the interstitial region and of an augmentation part inside each atomic
sphere, the augmentation part being composed from spherical harmonics multiplied
by some radial factor. Let us denote the interstitial region by I, i.e.,

~r ∈ I ⇔ (∀ν) |~r − ~Rν | > ρν , (69)

and the interior of the νth atomic sphere by Sν , i.e.,

~r ∈ Sν ⇔ |~r − ~Rν | < ρν . (70)

Additionally, let us introduce spherical coordinates (rν , θν , φν) for each atomic sphere
Sν in such a way that

~r − ~Rν = (rν sin θν cosφν , rν sin θν sinφν , rν cos θν) . (71)

The formula for the APW basis functions can be written in the following way then:

χ~k(~r) =

{
ei~k·~r if ~r ∈ I,∑

lmA
~k,ν
lm uν,l(E, rν)Ylm(θν , ψν) if ~r ∈ Sν .

(72)

The coefficients A
~k,ν
lm , which appear in the above expression, are subject to the con-

straint that the augmentation parts of the basis functions matches continuously the
plane wave parts at the boundaries of the atomic spheres. The function uν,l(E, rν)
that determines the radial component of the basis function in the ν-th atomic sphere
is a solution of the radial Schrödinger equation for energy E,

[
− h̄2

2me

(
1

r

d2

dr2
r +

l(l + 1)

r2

)
+ vν(r)

]
uν,l(E, r) = Euν,l(E, r), (73)

the potential vν(r) being the spherical component of the effective potential inside
that atomic sphere.

The drawback of the basis defined by Eq. (72) is that the radial functions uνl,
which are needed to build the basis, depend on the energy E that should equal the
eigenenergy of the state whose wave function is to be expressed using that basis.
That means that we should have a special basis for each one-particle state and that
we would have to know the energy E so as to be able to create the basis before
actually solving the Kohn-Sham equation. Imagine, however, that we decompose
the energy-dependent radial functions into a Taylor series around a certain fixed
energy E0 and that we keep only the first two terms of the series, i.e., those which
are constant and linear in energy, respectively. We get

uν,l(E, r) ≈ uν,l(E0, r) + u̇ν,l(E0, r)(E − E0), (74)

where the dot above the radial function denotes the first derivative with respect to
energy,

u̇ν,l(E, r) =
duν,l(E, r)

dE
. (75)
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Now, the linearized augmented plane wave (LAPW) basis can be introduced [20] by
means of the following prescription:

χ~k(~r) =

{
ei~k·~r if ~r ∈ I,∑

lm

(
A

~k,ν
lm uν,l(E0, rν) +B

~k,ν
lm u̇ν,l(E0, rν)

)
Ylm(θν , ψν) if ~r ∈ Sν .

(76)

The coefficients A
~k,ν
lm and B

~k,ν
lm in Eq. (76) has to be chosen in accord with the

requirement that all the LAPW basis functions χ~k(~r) as well as their first derivatives
should be continuous at the boundaries of all atomic spheres. The incorporation of
the energy derivatives u̇ν,l into the expression for the basis functions χ~k allows the
wave functions ϕi to adjust their radial dependence inside the atomic spheres to
a form that corresponds—in the linear approximation given by Eq. (74)—to the
correct eigenenergy E = Ei (rather than to E0).

Another way to improve the APW basis set by utilizing the linearization of the
type Eq. (74) consists in supplementing the set of basis functions with so-called
local orbitals [21]. The resulting method (and the basis set) is usually referred to as
APW+lo. Apart from the usual APW basis functions, which are given by Eq. (72)
except that the radial parts are determined for a fixed energy E0 rather than by the
variable energy E, the APW+lo basis set contains one local orbital (at least, more
local orbitals are possible as we will see) for each atomic sphere. The local orbital
is given by

χ(lo)
ν (~r) =

∑

lm

(Aν
lmuν,l(E0, rν) +Bν

lmu̇ν,l(E0, rν))Ylm(θν , ψν) (77)

for ~r ∈ Sν and equals 0 outside the atomic sphere. The coefficients Aν
lm and Bν

lm are

such that the functions χ
(lo)
ν (~r) are continuous at the atomic sphere boundary, their

first derivative being possibly discontinuous there.

The augmented plane wave method and all its above discussed modifications
have been designed to deal with valence electrons of extended systems, most often
systems with some translational symmetry like crystals. The deeper lying electron
states which form atomic cores are better treated by methods that have been devel-
oped for isolated atoms. Therefore the fixed energy E0 that enters into the definition
of the LAPW and the APW+lo basis should be set to a value appropriate for the
description of the valence states. In practice, different values of E0 may be cho-
sen for different atoms in one and the same system and even for different angular
quantum numbers l for the same atom, according to the expected position of the
valence energy bands. In some instances, however, we may encounter electron states
at energy levels that may be classified as semi-core. These energy levels are situ-
ated below the ordinary valence levels and the electrons in the semi-core states are
accordingly more localized as compared to the valence electrons, yet they are not
localized enough to justify their inclusion among the core electrons. The semi-core
states must be handled by the (L)APW method along with the valence states. In
such a case, it is not possible any more to find one fixed energy E0 whose value
would be close enough to the energy of all single-electron states of interest, both the
semi-core and the valence. A possible resolution to the situation consists in taking
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an LAPW or APW+lo basis set adapted for the valence electrons and adding an-
other local orbitals to it. The new local orbitals should be defined with the help
of another fixed energy E ′

0, which is supposed to represent the semi-core levels well
enough and which, of course, differs from the energy E0 used for the valence states.
The additional local orbitals for an APW+lo basis are defined in the same way as
those given by Eq. (77) except that E0 is replaced by E ′

0. In the case of the LAPW
method, the additional local orbitals assume the form

χ(LO)
ν (~r) =

∑

lm

(A′νlmuν,l(E0, rν) + B′ν
lmuν,l(E

′
0, rν) + C ′νlmu̇ν,l(E

′
0, rν))Ylm(θν , ψν)

(78)
for ~r ∈ Sν and equal 0 otherwise, the coefficients A′νlm, B′ν

lm, and C ′νlm being chosen
so as to ensure continuity up to the first derivative at the atomic sphere boundary.

The APW+lo and LAPW methods may be combined into one by defining the
augmentation part of the basis functions according to the APW+lo prescription for
some atoms and angular quantum numbers and according to the LAPW prescription
for others. The APW+lo method typically requires less plane waves in the basis
set as compared to the LAPW method to achieve the same level of precision. On
the other hand, the APW+lo method enlarges the basis set by adding the local
orbitals. The combination of the two methods allows one to get the advantages of
both. The most important or most problematic atomic orbitals, which would impose
the severest requirement on the number of plane waves, can be treated using the
APW+lo method, thus sparing the number of plane waves, while the rest of the
orbitals can be treated by the LAPW method, thus sparing the local orbitals.

The APW-like methods may be used either in the ‘muffin-tin potential’ approx-
imation or as ‘full-potential’ methods. In the former case, the effective potential
veff(~r) is approximated by a constant in the interstitial region and by a spherically
symmetric function inside the atomic spheres. In the latter case, no arbitrary as-
sumption about the form of the effective potential is made. For those calculations
described in this thesis that have been carried out by means of the LAPW and
APW+lo method, the full-potential approach has always been used. In the full
potential (L)APW method, the potential is represented by a Fourier series (plane-
wave expansion) in the interstitial region and by an expansion into functions whose
angular dependence is described by spherical harmonics inside the atomic spheres.
Symmetry properties of the system under investigation may be exploited to simplify
the representation of the potential. The same holds for the representation of the
charge density. For more details on the LAPW and akin methods, see, e.g., the
textbooks [22] and [23].

2.9 Linear muffin-tin orbital method in atomic sphere ap-
proximation

The linear muffin-tin orbital method simplifies the form of the effective potential by
retaining only its spherically symmetric component inside each atomic (or ‘muffin-
tin’) sphere. The atomic sphere approximation (ASA) simplifies the situation further
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by a complete neglect of the interstitial region. The usual requirement that the
atomic spheres must not overlap is relaxed in the ASA. Instead, the radii of the
spheres are chosen so that the total volume obtained by summation over atomic
spheres would equal the volume of the whole system. The effective volume of the
interstitial space is thus reduced to zero. The muffin-tin orbital basis functions are
derived from functions χν,lm that solve the Schrödinger equation for the spherically
symmetric potential inside the atomic spheres:

χν,lm(E,~r) = uν,l(E, rν)Ylm(θν , φν) for ~r ∈ Sν , (79)

where uν,l(E, rν) are solutions of the radial Schrödinger equation, Eq. (73), like in
the case of the LAPW method. Outside the atomic spheres, the wave functions
are supposed to satisfy the Laplace equation. This corresponds to electrons having
zero kinetic energy. The neglect of the kinetic energy may seem to be a very crude
approximation; however, realistic values of the kinetic energy would be indeed rather
close to zero in the interstitial space, and since the interstitial space has effectively
zero volume anyway, the rough description of the wave function in this region does
not matter so much. There are two special forms of functions solving the Laplace
equation in the spherical coordinates (centered at ~Rν), namely

Jν,lm(~r) ∝ (rν)
lYlm(θν , φν) (80)

and

Kν,lm(~r) ∝ (rν)
−(l+1)Ylm(θν , φν). (81)

The first set of functions, Jν,lm(~r), consists of solutions regular at ~Rν (the origin
of the coordinate system), while the second set of functions, Kν,lm(~r), consists of
functions divergent at the origin but falling off towards infinity. The complete form
of the basis functions reads

χ̃ν,lm(E,~r) =

{
Nν,l(E)χν,lm(E,~r) + Pν,l(E) Jν,lm(~r) if ~r ∈ Sν ,
Kν,lm(~r) otherwise.

(82)

The function χν,lm that appears on the right-hand side of the above equation is
given by Eq. (79). The energy-dependent prefactors Nν,l(E) and Pν,l(E), called the
normalization function and the potential function, respectively, have to ensure that
both the basis function χ̃ν,lm and its first radial derivative are continuous at the
boundary of the atomic sphere.

The irregular solutions Kν,lm of the Laplace equation centered at ~Rν extend into
other atomic spheres centered at ~Rν′ (~Rν′ 6= ~Rν), where they may be expanded into
a linear combination of the regular solutions Jν′,l′m′ . The expansion, written as

Kν,lm(~r) = −
∑

l′m′
Sνlm; ν′l′m′ Jν′,l′m′(~r) for ~r ∈ Sν′ , ~Rν′ 6= ~Rν , (83)

serves as an implicit definition of the matrix elements Sνlm; ν′l′m′ . These elements—
the canonical structure constants, as they are called—depend on the type of the
crystal lattice only, rather than on any specifics of the effective potential. Consider
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now a one-electron wave function ϕi(~r), expressed as a linear combination of the
basis functions,

ϕi(~r) =
∑

ν,lm

cν,lm(Ei)χ̃ν,lm(Ei, ~r). (84)

Suppose further, that we decompose the basis functions χ̃ν,lm according to Eq. (82)
into terms containing the functions Jν,lm, Kν,lm or χν,lm. If we want to make the wave
function ϕi(~r) satisfy the Schrödinger equation in all atomic spheres simultaneously,
we have to require that the terms proportional to Jν,lm cancel with those proportional
to Kν′,lm inside each atomic sphere, leaving there only a linear combination of the
functions χν,lm alone. This requirement can be translated into a matrix equation,

∑

ν′ l′m′
cν′,l′m′(E) (δν′l′m′; νlmPν,l(E)− Sν′l′m′; νlm) = 0, (85)

which takes the place of the Schrödinger equation in the LMTO-ASA method.

Let us linearize the energy dependence of the basis functions in the spirit of
Eq. (74), as we have already done for the LAPW basis. The linearization results
into a special form of the potential function, which may be parameterized as

Pν,l(E) =
E − Cν,l

∆ν,l + γν,l(E − Cν,l)
. (86)

The potential parameters Cν,l, ∆ν,l and γν,l are often referred to as the center, width,
and distortion, respectively, of a supposed energy band with a χν,l-like character.
However, it should be emphasized that Cν,l, ∆ν,l, and γν,l describe the properties of
the spherical part of the effective potential rather than describing the distribution
of the energies E = Ei that solve Eq. (85). Therefore the terminology that seems
to relate the potential parameters to the properties of the band structure may be
somewhat confusing.

After substituting the right-hand side of Eq. (86) into Eq. (85), the LMTO-ASA
condition expressed by Eq. (85) can be rewritten so that it would pass into the
standard problem of finding eigenvalues and eigenvectors of a matrix which may
be interpreted as the Hamiltonian. Furthermore, there is a possibility to go over
to a tight-binding (TB) version of the LMTO method by performing a so-called
screening transformation of Eq. (85) and of the quantities involved therein (i.e.
Pν,l(E) and Sνlm; ν′l′m′). The resulting TB-LMTO formulae are better suited for a
numerical evaluation in comparison with their counterparts in the original LMTO
method. Namely, the screened structure constants decay faster than the unscreened
(canonical) ones as the distance |~Rν − ~Rν′| increases. The reader who would be
interested in these and other details related to the TB-LMTO ASA formalism and
its practical implementation may be referred, e.g, to [24].

2.10 Green’s function

The single-particle time-independent Green’s function of a quantum mechanical sys-
tem—further to be called simply the Green’s function—is defined as a z-dependent
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operator that satisfies the equation
(
z − Ĥ

)
Ĝ(z) = Î , (87)

where Ĥ is the single-particle Hamiltonian that characterizes the system of interest,
for example

Ĥ = − h̄2

2me

∆~r + veff(~r), (88)

Î stands for the identity operator, and z is a complex variable with the physical
dimension of energy. Alternatively, the Green’s function may be represented by a
function of two spatial positions, ~r and ~r ′, apart from being a function of the complex
variable z. After substituting the specific form of the Hamiltonian, Eq. (88), the
analogy of Eq. (87) in this representation reads

(
z +

h̄2

2me

∆~r − veff(~r)

)
G(~r, ~r ′; z) = δ(~r − ~r ′). (89)

The symbol δ on the right-hand side of Eq. (89) denotes the Dirac function. The
two representations may be considered equivalent, if we describe the action of an
operator in terms of convolution with an appropriate kernel function:

[
Ĝ(z)f

]
(~r) =

∫
G(~r, ~r ′; z) f(~r ′) d3r′. (90)

There is a close relationship between the Green’s function and the spectrum of
eigenstates belonging to the corresponding Hamiltonian. Owing to this relationship,
the local density of states—see Eq. (28)—can be expressed in terms of the Green’s
function as

ρ(~r, E) = − 1

π
lim

ε→0+
ImG(~r, ~r ;E + iε). (91)

Since the one-particle electron density, which is the central quantity in the DFT,
follows from the local density of states by integration over the energy E up to the
Fermi level EF , it is possible to base DFT calculations on the Green’s function
instead of working with the Kohn-Sham orbitals directly.

Let us now turn attention to the systems that involve some kind of translational
symmetry. The translational symmetry of the system is reflected in the properties
of its Green’s function, which has to satisfy the relation

G(~r, ~r ′; z) = G(~r + ~T ,~r ′+ ~T ; z), (92)

where Tν is any lattice vector, i.e., a vector such that every two atomic positions
~Rν and ~Rν + ~T are equivalent. A natural means of description for these systems
is provided by a Green’s function that depends on the Bloch wave vector ~k. The
~k-dependent Green’s function can be obtained from the so far considered Green’s
function G(~r, ~r ′; z) through the discrete Fourier transform,

G~k(~r, ~r
′; z) =

∑

~T

G(~r, ~r ′+ ~T ; z) ei~k·~T , (93)
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where the summation runs over all lattice vectors ~T . In analogy to the local density
of states, as expressed by Eq (91), we can define the Bloch spectral density (or ~k-
resolved local density of states), ρ~k(~r, E), with the help of the k-dependent Green’s
function:

ρ~k(~r, E) = − 1

π
lim

ε→0+
ImG~k(~r, ~r ;E + iε). (94)

The concept of various spectral densities defined with the help of the Green’s func-
tions can be further generalized by introducing a spectral density projected on an
arbitrary basis function or set of basis functions. As an example, we may consider
an lm-projected spectral density, defined in terms of the lm-resolved local orbitals
χν,lm(E,~r) of the LMTO method, or, more generally, in terms of any suitable com-
plete set of lm-resolved basis functions χj,lm(~r). The lm-projected (lm-resolved)
density of states is then given by the equation

ρlm(E) = − 1

π
lim

ε→0+
Im

∑
j

∫ ∫
χ∗j,lm(~r)G(~r, ~r ′;E + iε)χj,lm(~r ′) d3r d3r′. (95)

Similarly, a spectral density projected on a particular atomic sphere can be intro-
duced within the ASA approximation, or a spectral density that is simultaneously
projected on a particular atomic sphere and on the spherical harmonic of particular l
and m. The spectral density projected on one particular atomic sphere is equivalent
to the local density of states integrated over that atomic sphere.

2.11 Coherent potential approximation

Substitutional alloys or systems that contain such alloys as their part (the Invar
alloy, tungsten surface covered by a two-dimensional alloy composed from 3d tran-
sitional metals) will be of special interest in this theses. The substitutional disorder
introduces an element of randomness into the properties of these systems and re-
moves their transitional invariance. It would be obviously a vain effort to seek an
exact description of every possible arrangement of atoms in the alloy. Instead, it
appears more reasonable to look for some averaged characteristics of the random
system. An important example of such an averaged quantity is the average Green’s
function Ḡ(z),

Ḡ(z) =
∑

C

p(C)ĜC(z), (96)

The sum in the above definition includes all possible configurations of atoms in the
alloy, p(C) denotes the probability of realizing the configuration C, and ĜC is the
Green’s function associated with that particular configuration. The knowledge of
the configurationally averaged Green’s function allows one to find the average value
of an arbitrary one-electron observable quantity, which makes Ḡ(z) a particularly
useful characteristics. In contrast to Ḡ(z), the configurational average of, say, a
single-electron wave function turns out to be devoid of any physical significance.
The Green’s function formalism therefore provides an indispensable tool for handling
random systems like the substitutional alloys.
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Although a substitutional alloy itself lacks the translational symmetry, it is built
on a translationally symmetric crystal lattice. Even two different lattice sites which
are inequivalent in some particular configurations—because they are actually occu-
pied by different atoms—may be still equivalent in the statistical sense—meaning
that the probability of being occupied by a particular atom would be the same for
both sites. If the alloy retains the translational symmetry at least in this statis-
tical sense, the configurationally averaged Green’s function will reflect this fact by
conforming to Eq. (92). It is therefore meaningful to speak of, e.g, the ~k-resolved
density of states even in the case of the substitutional alloys, provided that the
Fourier transform of the averaged Green’s function Ḡ~k(~r, ~r

′; z) is used in the defini-
tion, Eq. (94).

We may write a formal expression for the averaged Green’s function in analogy
to Eq. (89) if we replace the actual effective potential veff by a suitable operator
Σ̂(z). Then we get

∫
d3r′′

[
δ(~r − ~r ′′)

(
z +

h̄2

2me

∆~r ′′

)
− Σ(~r, ~r ′′; z)

]
G(~r ′′, ~r ′; z) = δ(~r − ~r ′). (97)

The above equation, Eq. (97), can be considered an implicit definition of the operator
Σ̂(z), conventionally called ‘the self-energy’. The self-energy represents an effective
potential of a fictional non-random system that would have the same Green’s func-
tion as is the configurationally averaged Green’s function of the alloy. We can assume
this fictional system, as characterized by Σ̂ and Ḡ(z), to be an unperturbed system,
while the difference V̂C − Σ̂(z) between the actual effective potential of a particular
configuration and the self-energy represents a perturbation. This approach leads to
the Dyson equation for the perturbed Green’s function,

ĜC(z) = Ḡ(z) + ĜC(z)
(
V̂C − Σ̂(z)

)
Ḡ(z). (98)

The perturbed Green’s function is nothing else but the actual configuration-dependent
Green’s function of the alloy. If we introduce a configuration-dependent scattering
operator T̂C(z) as

T̂C(z) =
[
Î −

(
V̂C − Σ̂(z)

)
Ḡ(z)

]−1 (
V̂C − Σ̂(z)

)
, (99)

we are able to restate Eq. (98) in the form

ĜC(z) = Ḡ(z) + Ḡ(z) T̂C(z) Ḡ(z), (100)

and by averaging both sides of Eq. (100) over all possible configurations, we even-
tually obtain (for all z) ∑

C

p(C) T̂C(z) = 0. (101)

The last condition imposed on the scattering operators is exact. The coherent poten-
tial approximation (CPA) [25] relies on the assumption that the scattering matrix
and the self-energy can be decomposed into a sum of localized single-site contribu-
tions,

T̂C(z) =
∑

ν

t̂ν(C; z) (102)
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and
Σ̂(z) =

∑
ν

P̂ν(z), (103)

respectively, and that the local scattering operators t̂ν(z) depend exclusively on

which atom resides at the atomic position ~Rν , no matter what the configuration
of atoms at the other sites may be. The site-localized contribution to the self-
energy, P̂ν(z), is referred to as the coherent potential function, hence the name of the
approximation. The local scattering operator at a particular site can be expressed in
terms of a site-localized perturbation, which is identified with the difference between
the coherent potential function and the effective potential induced by the actual
atom that occupies the site. We thus finally obtain the CPA condition for each
atomic site ~Rν in the form

∑
X

cν(X)
[
Î −

(
vX − P̂ν(z)

)
Ḡ(z)

]−1 (
vX − P̂ν(z)

)
= 0, (104)

where X stands for the various types of atoms that may occupy the position ~Rν , the
coefficient cν(X) represents the probability that the position ~Rν will be occupied
by atom X, and vX is the (effective) potential induced by the presence of atom X
in that position. The coefficients cν(X) are obviously proportional to the respec-
tive concentrations of constituting elements in the alloy. An electronic structure
calculation carried out for a substitutional alloy in the CPA thus amounts to find-
ing self-consistent solutions for the configurationally averaged Green’s function Ḡ(z)
and the coherent potential fuctions P̂ν(z) so that they would conform to Eq. (98),
Eq. (103), and Eq. (104) simultaneously. The formulas of the CPA can be trans-
lated into the language of the LMTO-ASA method without difficulty. The CPA is
actually available within the LMTO software that has been applied for the purposes
of this theses. The LMTO-ASA method has to be expressed in terms of the Green’s
functions so that the CPA approach would be applicable within that method. The
re-formulation of the LMTO-ASA method into the Green’s function language is
outlined in the following section.

2.12 Surface Green’s functions in the TB-LMTO method

The LMTO method in the atomic sphere approximation can be re-formulated in
terms of the Green’s function. The Green’s function formulation turns the method
into a particularly useful tool for studying disordered systems like alloys (with the
help of the CPA) and also for studying surfaces and interfaces (with the help of the
surface Green’s function method , which is going to be described in this section). The
Green’s function connecting ~r ∈ Sν with ~r ′ ∈ Sν′ can be expanded for the purpose
of the LMTO-ASA method in the following way:

G(~r, ~r ′; z) = −δνν ′
∑

lm

χν,lm(z;~r<)χ′ν,lm(z;~r>) +

+
∑

lm,l′m′
χν,lm(z;~r)Gνlm;ν′l′m′(z)χν′,l′m′(z;~r ′). (105)
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In the above prescription for the LMTO-ASA Green’s function, χν,lm(z; r) and
χ′ν,lm(z; r) are, respectively, the regular and the irregular solution of the Schrödinger
equation for the spherically symmetric potential inside the atomic sphere Sν , the an-
gular dependence of which is characterized by the quantum numbers l and m; ~r< de-
notes that one of the vectors ~r and ~r ′ that points to a position closer to the center of
Sν , and ~r> denotes the vector that points to a position farther from the center of Sν .
Each regular solution χν,lm(z;~r) is normalized to unit norm,

∫ |χν,lm(z;~r)|2d3r = 1,
provided that the integral is performed over the respective atomic sphere. The ir-
regular solutions are chosen in such a way that their values and their first spatial
derivatives in the radial direction smoothly match the corresponding first energy
derivative χ̇ν,lm(z;~r) ≡ dχν,lm(z;~r)/dz of the regular solution on the boundary of
the respective atomic sphere.

Furthermore, the physical Green’s function matrix Gνlm;ν′l′m′(z) can be expressed
in terms of the auxiliary Green’s function matrix gνlm,ν′l′m′(z);

Gνlm;ν′l′m′(z) = λνl(z)δνν′δll′δmm′ + µνl(z)gνlm;ν′l′m′(z)µν′l′(z), (106)

where the quantities λνl and µνl are fully determined by the respective potential
function Pνl(z) (see section 2.9) and its derivatives with respect to z. The matrix
g(z) with elements gνlm;ν′l′m′(z) (where the indices ν, l, m identify the row and the
indices ν ′, l′, m′ identify the column) is called auxiliary Green’s function matrix.
This auxiliary Green’s function matrix can be calculated by performing the matrix
inversion,

g(z) = (P (z)− S)−1 . (107)

In the above matrix equation, P (z) denotes a diagonal matrix with elements
Pνlm;ν′l′m′(z) = Pνl(z)δνν′δll′δmm′ and S denotes the matrix of the canonical structure
constants Sνlm;ν′l′m′ .

The so-called screening transformation allows one to transform the canonical
quantities (like the structure constants, potential functions, auxiliary Green’s func-
tion matrices, and the parameters λ and µ), which appear in Eq. (106) and Eq. (107),
into their screened counterparts. The advantage of this transformation is that suit-
ably screened structure constants are substantially different from zero only for a
limited site-to-site distance, i.e. only for ν and ν ′ for which |~Rν − ~Rν′| is small
enough. The screening transformation thus brings us to the tight-binding version
of the LMTO method (TB-LMTO). The form of Eqs. (106) and (107) remains un-
changed if all the canonical quantities in these equations are systematically replaced
by the screened ones. The physical Green’s function matrix is invariant with respect
to the screening transformation.

The short-range character of the screened structure constants, which incorporate
all the inter-site interactions in the TB-LMTO equations, plays a crucial role in es-
tablishing so-called principal layers and, consequently, in the successful application
of the surface Green’s function formalism. The surface Green’s functions will allow
us to cope with layered systems, surfaces, interfaces, and, in general, with any infi-
nite or semi-infinite systems that lack the translational symmetry in one direction.
Here, we are particularly interested in surfaces. Crystal surfaces possess a transla-
tional symmetry in the directions along the surface; even surfaces of substitutional
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alloys exhibit at least a translational symmetry of their configurationally averaged
Green’s function Ḡ(~r, ~r ′; z) and the corresponding averaged auxiliary Green’s func-
tion matrix ḡνlm;ν′l′m′(z). However, their is no translational symmetry (spatial pe-
riodicity) in the direction perpendicular to the surface. We can thus perform the
Fourier transformation of the Green’s functions in the directions parallel to the sur-
face plane. The Fourier transformation leaves us with ~k‖-dependent Green’s function
matrices Gνlm;ν′l′m′(~k‖, z), whose indices ν and ν ′ are limited to inequivalent sites
in one surface unit cell. Since the surface unit cell is nevertheless infinite in the
direction perpendicular to the surface, the ~k‖-dependent Green’s function matrices
still have to be infinite. The infinite range of the matrix indices prevents a direct
numerical implementation of the matrix inversion indicated in Eq. (107).

The division of the system into principal layers and the use of the surface Green’s
function formalism offers a solution to the above discussed obstacle. Each princi-
pal layer consists of one or several atomic layers. The number of atomic layers in
one principal layer is determined by the requirement that the screened structure
constants Sνlm;ν′l′m′ connecting different sites ν and ν ′ can be non-negligible only
for sites within one principal layer or in two directly neighboring principal layers.
Let us re-label the elements of the fundamental matrices that enter the TB-LMTO
formulas as gpνlm;p′ν′lm(z), Ppνlm;p′ν′lm(z), Spνlm;p′ν′lm, etc., where the indices p and
p′ refer to a specific principal layer while the site indices ν and ν ′ are now restricted
to sites within the given principal layer. Further, let gp,p′(~k‖, z), Pp,p′(~k‖, z), and
Sp,p′(~k‖) denote sub-matrices with elements gpνlm;p′ν′lm(~k‖, z), Ppνlm;p′ν′lm(~k‖, z), and
Spνlm;p′ν′lm(~k‖), respectively, in which ν, l, and m are considered to be the row in-
dices, ν ′, l′, and m′ are considered to be the column indices, ν and ν ′ are confined
to non-equivalent sites within one principal layer, and the principal-layer indices p
and p′ refer to different sub-matrices. These sub-matrices are finite. The sub-matrix
gp,p of the auxiliary Green’s function matrix can be evaluated with the help of the
so-called surface Green’s functions (or surface Green’s function matrices here) G>

p+1

and G<
p−1, associated with the neighboring principal layers. The dependence of the

Green’s functions on z and ~k‖ is omitted here for the sake of brevity. The equation
that relates gp,p to the surface Green’s functions in TB-LMTO reads

gp,p =
(
Pp,p − Sp,p − Sp,p+1G

>
p+1Sp+1,p − Sp,p−1G

<
p−1Sp−1,p

)−1
. (108)

The surface Green’s functions (matrices) can be in principle found by using the
recursive relations

G>
p =

(
Pp,p − Sp,p − Sp,p+1G

>
p+1Sp+1,p

)−1
, (109a)

and
G<

p =
(
Pp,p − Sp,p − Sp,p−1G

<
p−1Sp−1,p

)−1
. (109b)

2.13 Surface magnetic anisotropy

When we handle a spin-polarized system within the LSDA (as briefly described in
chapter 2.7), we do not consider any connection between the orientation of the spin
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magnetic moments and a specific direction in the Euclidean space. The labels ‘up’
and ‘down’, chosen for the majority and minority spin orientation, respectively, are
utterly arbitrary. In reality, however, there is typically a preferred direction in which
the magnetic moments tend to align themselves. The two main mechanisms that
determine this preferred direction—called the ‘easy magnetization axis’—are the
spin-orbit coupling and the dipole-dipole magnetic interaction. Let us first turn our
attention to the spin-orbit coupling. The formulas concerning this effect that will
be presented here are mostly taken from [26], sometimes with an altered notation.

The spin-orbit coupling (spin-orbit interaction) is a relativistic effect. In order
to account for it, we have to replace the Schrödinger equation, Eq. (56), with the
Dirac equation,

(−ih̄c~α · ∇+mec
2β + v(~r)

)
ψ = (mec

2 + E)ψ, (110)

where ~α is a three-component vector, whose components are constant 4×4 matrices,
β is another constant 4 × 4 matrix, and ψ is, accordingly, a 4-component wave
function. The prescription for the constant matrix factors reads

~α =

(
0 ~σ
~σ 0

)
, (111)

where the 2× 2 blocks ~σ are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

and

β =

(
I 0
0 −I

)
,

where

I =

(
1 0
0 1

)
.

The energy E in Eq. (110) is an excess energy over the rest energy mec
2 of the

electron and stands for one of the single-particle energies Ei of the Kohn-Sham
equation. The 4-component wave function ψ, which may be expanded as

ψ =




ψ+↑

ψ+↓

ψ−↑

ψ−↓


 , (112)

replaces the Kohn-Sham orbitals of the spin-polarized DFT. The contribution of
one particular one-electron wave function ψ to the spin-resolved electron density is
simply

n↑ =
∣∣ψ+↑∣∣2 +

∣∣ψ−↑
∣∣2 , (113a)

n↓ =
∣∣ψ+↓∣∣2 +

∣∣ψ−↓∣∣2 . (113b)

In the above employed representation, the ‘up’ and ‘down’ spins were defined with
respect to a magnetization axis that was parallel to the z direction. So as to orient
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the referential magnetization axis in some other direction, the vector of matrices ~α
has to be rotated accordingly. The choice of the particular representation does not
matter too much when solving the Dirac equation itself, because one can always
easily transform from one representation into another. However, the orientation of
the magnetization axis becomes important in a DFT calculation, in which the four-
component wave function ψ serves to construct the spin-polarized electron densities,
as prescribed by Eqs. (113). Unless the actual magnetization axis is a priori known,
the calculation has to be performed for several different orientations of the axis so as
to find out the one that renders the lowest total energy for the investigated system.

Separating the ‘large’ components ψ+↑ and ψ+↓ of the wave function in Eq. (110)
yields

~σ · ∇
(
− h̄2

2me

)(
1 +

E − v(~r)

2mec2

)−1

~σ · ∇ψ+ = (E − v(~r))ψ+, (114)

where

ψ+ =

(
ψ+↑

ψ+↓

)
.

After using the approximations

(
1 +

E − v

2mec2

)−1

≈ 1− E − v

2mec2
(115)

and
E − v

2mec2
ψ+ ≈ − h̄2

4m2
ec

2
∆ψ+ (116)

(where ∆ = ∇2 is the Laplace operator), we get

− h̄2

2me

{
∆ψ+ +

1

2mec2

[
h̄2

2me

∆2ψ+ +
1

2mec2
(∇v) · (∇ψ+

)
+

+
i

2mec2
(
~σ · [(∇v)×∇ψ+

])]
+ v(~r)ψ+

}
= Eψ+. (117)

The terms in the big square brackets on the left-hand side of Eq. (117) represent
the relativistic corrections to the Schrödinger equation. The relativistic corrections
are usually important near the atomic nuclei only, because only there the electrons
have enough kinetic energy to approach the relativistic regime. The effective po-
tential v(~r) around the nuclei tends to be almost spherically symmetric. Exploiting
the spherical symmetry of the potential allows us to rewrite the last term of the
relativistic correction as

− ih̄2

4m2
ec

2

(
~σ · [(∇v)×∇ψ+

]) −→ 1

2m2
ec

2r

(
dv

dr

) (
~s · ~L

)
ψ+, (118)

where

~s =
h̄

2
~σ (119)

is the spin moment operator and

~L = −ih̄~r ×∇ (120)

42



is the orbital moment operator.

If the relativistic corrections have to be taken into account, the effective DFT
potential veff(~r) is substituted for v(~r) into Eq. (117). This equation assumes the role
of the Kohn-Sham equation. As soon as Eq. (117) for the ‘large’ part of the electron
wave function is solved, the ‘small’ components ψ−↑ and ψ−↓ can be also easily
found from the Dirac equation, Eq. (110). Then the spin-resolved electron densities
can be calculated according to Eq. (113) and summed over all one-electron states
below the Fermi level. Because of the spin-orbit coupling, however, the electron spin
is no more a good quantum number; Eq. (117) cannot be solved for the ‘up’ and
‘down’ spin components separately. Therefore the basis set needed to set up and
solve the eigenvalue problem would have to contain twice as much basis functions
so as to cover both spin components at once. In order to keep the number of
the basis functions in the LAPW/APW+lo computational scheme at a reasonable
level, the second variational treatment may be used to carry out the relativistically-
corrected calculation. The second-variational treatment is based upon the scalar
relativistic approximation. This approximation consists in omitting the spin-orbit
term in Eq. (117). As a first step of the second-variational scheme, the eigenfunctions
in the scalar relativistic approximation are found. This scalar relativistic wave
functions are then used as basis functions in the second step, which already takes into
account all relativistic corrections including the spin-orbit coupling. The effective
Hamiltonian of the second step is simplified by the fact that except for the spin-orbit
part the Hamiltonian is already diagonal in the basis of the scalar relativistic wave
functions. On the one hand, one cannot avoid doubling the basis set in the second
step of the second-variational treatment because both spin components have to be
included. On the other hand, the basis set needs contain significantly fewer scalar
relativistic wave functions than how many augmented plane waves or other simple
basis functions it would have to contain if the scalar relativistic wave functions were
not used. Let me finally mention another point regarding calculations based on the
linearized augmented plane waves, like LAPW and APW+lo: The augmentation
parts of the basis functions have to be determined before the eigenvalue problem is
solved. This is also done by applying the scalar relativistic approximation and using
the symmetric part of the effective potential inside the atomic spheres.

The spin-orbit interaction that couples the electron spin to the spatial part of
the electron wave function is one source of the magnetic anisotropy. The next to
be mentioned here is the magnetic dipole-dipole interaction. Imagine a sample of
an investigated material as a collection of magnetic point dipoles, each associated
with one atom of the sample. The replacement of the atomic moments with point
dipoles is a reasonable approximation, considering that a prevailing portion of the
total magnetic moment is localized near the atomic nuclei. The contribution of the
magnetic dipole-dipole interaction to the total energy amounts to

Edd =
α

2

NA∑

i,j=1
(i 6=j)


~µi · ~µj

|~Rij|3
−

3
(
~µi · ~Rij

)(
~µj · ~Rij

)

|~Rij|5


 , (121)

where the summation indices i and j go over all atoms with a non-zero magnetic
moment, ~µi is the magnetic moment associated with the i-th atom, and the vector
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~Rij describes the position of the atomic nucleus denoted by index i with respect

to the atomic nucleus denoted by index j, ~Rij = ~Ri − ~Rj. If the magnitudes of
the magnetic moments are expressed as multiples of the Bohr magneton µB, the
coefficient α in Eq. (121) is

α =
µ0µ

2
B

4π
≈ 8.60× 10−54 Jm3 ≈ 5.37× 10−8 eV(nm)3, (122)

µ0 being the vacuum permeability. Naturally, the energy Edd given by the sum on
the right-hand side of Eq. (121) is, up to some higher-order corrections, directly pro-
portional to the number of atoms NA in the sample of a ferromagnetic material (or
to the volume of the sample), so the contribution to the total energy per one atom
(or per unit volume) is independent from the actual size of the sample provided that
the sample is large enough. However, the sum over either of the two indices i and
j in Eq. (121) is only conditionally convergent if the volume of a three-dimensional
system is sent to infinity. As a consequence, Edd per atom depends not only on the
atomic structure but also on the macroscopic shape of the sample (or on the shape of
magnetic domains if the sample is divided into more such domains). This contribu-
tion to the magnetic anisotropy is referred to as the ‘shape anisotropy’ . Fortunatelly,
the sum is absolutely convergent for two-dimensional systems like surfaces, in which
we will be interested. The dependence of the anisotropy on the shape of the sample
thus disappears. Let us assume that all magnetic atoms on the surface are equiv-
alent and that they are arranged on a square lattice with a lattice parameter a‖.
Let us further consider a ferromagnetic system. The local magnetic moments of the
surface atoms then all have the same magnitude and the same direction, ~µi = ~µ.
We may expect the magnetic moments to be oriented either in the surface plane
or perpendicular to it. The difference in energy per surface atom between the two
orientations of the magnetic moments then amounts to

E‖ − E⊥ = −3αµ2

2a3
‖

∑
nx,ny

n2
x(

n2
x + n2

y

)5/2
(123)

due to the dipole-dipole interaction. The summation indices nx and ny in Eq. (123)
play the role of atomic coordinates on the surface. They go through all integers up
to ∞ and down to −∞ except for the case nx = ny = 0.

The contributions from the spin-orbit coupling and the dipole-dipole interaction
have to be put together in order to determine the magnetization direction that leads
to the lowest total energy. One thus eventually arrives at the easy magnetization
axis, which represents the direction of spontaneous magnetization in the ground
state of the studied system.
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3 Fe64Ni36 (Invar) surface (001)

Invar, an alloy of about 65 atomic percent iron and 35 at.% nickel, is well known
for exhibiting nearly zero thermal expansion in a wide range of temperatures. This
feature makes Invar a technologically important material, which can be used for con-
structing precise devices that are supposed to retain stable parameters independent
from temperature changes. Invar was discovered by C. E. Guillaume in 1897 and its
importance for precision measurements in physics was acknowledged by awarding
the Nobel Prize to the discoverer in 1920. The unusual thermal behavior of this
material is a consequence of two opposing tendencies that govern the temperature
dependence of the specific volume of the alloy and that nearly compensate each
other. One the one hand, there is the usual thermal expansion due to the lattice
anharmonicity, on the other hand, there is also a tendency to contraction of the vol-
ume with increasing temperature. The latter tendency is closely related to complex
magnetic properties of the FeNi alloys.

The traditional explanation of the anomalous thermal expansion is that there
exist two different magnetic states—usually referred to as a low-moment state and
a high-moment state—of the alloy in the vicinity of the Invar composition [27]. The
high-moment state, which is stable at lower temperatures, is characterized by a
smaller volume per atom as compared to the low-moment state, which occurs at
higher temperatures. A thermally induced transition from the high-moment to the
low-moment state then leads to the so called Invar effect, i.e. to the negative thermal
expansion. There are still some disputed ditails concerning the two magnetic states
and the transition between them or even doubts about the existence of a sharp
transition between two distinguishable magnetic states [28, 29]. It is, however, not
the aim of this thesis to deal with the unresolved questions of the Invar effect or
with the complexities of the magnetic order in this alloy. We will focus here on the
surface properties of the Fe64Ni36 alloy and, in particular, on the interpretation of
an STM experiment on the surface of this technologically important material.

The atoms that form the Fe64Ni36 alloy are arranged on a face centered cubic
(fcc) lattice. Any lattice site may be, in principle, randomly occupied by either
an iron or a nickel atom. The chemical disorder removes the symmetries of the
fcc lattice. However, there can be still found some degree of short range order
(see, e.g., [29]) in the composition of the alloy. At zero temperature, the alloy is
essentially ferromagnetic with possible small non-collinearity or even a small fraction
of antiferromagnetically aligned local spin moments due to locally iron-enriched
areas, in which a tendency to the antiferromagnetic state known from pure fcc iron
can be expected.

It is in general more difficult to achieve atomic resolution with STM on metal-
lic surfaces in comparison with the imaging of semiconductor surfaces or surfaces
covered by some non-metallic adsorbate. The delocalization of conductive electrons
in metals leads to a smooth electron density not only in the bulk but also above
the metallic surfaces, resulting into a rather low contrast in STM images. In spite
of the relative difficulty of the task, individual atoms on metal surfaces has been
successfully imaged in many cases, including the close-packed surfaces—e.g. the gold
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(111) surface [30] became the first such surface for which the atomic resolution was
achieved. Surfaces of various alloys have been imaged by STM too and chemical
resolution at atomic level has been achieved in some cases like for PtNi(111) [31],
PtRh(100) [32], and PtCo(100) [33], i.e., atoms of different elements were distin-
guished from each other on these surfaces. When investigating disordered structures
like alloys, the STM as a local-probe method is an especially valuable tool. It enables
one to study phenomena like short-range ordering, clustering, surface segregation,
etc., in a real-space picture. So as to utilize the information offered by the STM
experiments, it is, however, always necessary to begin with the most basic analysis
that consists in identifying the patterns observed in images (and spectra) with real
objects on the surface. Such questions have to be answered as: Do apparent eleva-
tions observed in the image correspond to real atoms (normal contrast) or do they
rather correspond to interatomic positions while the atoms themselves are imaged
as depressions (reversed contrast)? Can we distinguish atoms of different elements
on the surface, and if so, which type of atom seen in the picture should we attribute
to which element? Is a certain observed feature directly related to the composition
of the topmost atomic layer and to the arrangement of atoms therein or does the
feature rather originate from the properties of the sub-surface atomic layer or layers?
A theoretical study of the imaged system can help us to solve many questions like
those above.

The following sections of this chapter are devoted to the theoretical analysis
of an experimental study that has been carried out at the Institut für Allgemeine
Physik of the Vienna University of Technology. The study involved an investigation
of the Fe64Ni36 (001) alloy surface using the techniques of the STM and scanning
tunneling spectroscopy (STS). In Section 3.1, I will sketch the main achievements of
the experimentalists regarding the Fe64Ni36(001) surface. In the next two Sections,
I will discuss ab-initio calculations that aim to explore the same surface from a
theoretical point of view. In Section 3.2, I will deal with the problems concerning
the geometry and atomic structure of the surface: relaxation, buckling, and nickel
segregation on the surface. In Section 3.3, I will focus on the electronic structure
and its relation to the tunneling spectra.

3.1 Experiment

This section is intended to present some basic information about the experimental
work on which my theoretical analysis is going to be based, concentrating on the
main results of the STM/STS experiments. Further details, especially those con-
cerning the surface preparation and the experimental setup and conditions, may be
found in our joint publication [34] with the Viennese experimentalists. The subject
of the investigation was the (001) surface of a chemically disordered Fe64Ni36 alloy
with a face-centered cubic (fcc) crystal lattice (the Invar alloy). The experiments
were done at low temperatures, either at 80 K or at 5 K. Clean and atomically flat
surfaces were prepared by Ar+ sputtering and subsequent annealing. Atomically
resolved STM images of the surface were obtained in the constant current regime.
One such image is shown in Fig. 1(a). The tunneling voltage was set to −2 mV and
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Figure 1: (a) STM image of the Fe64Ni36(001) surface [34]. The three details high-
light a c(2× 2)-ordered area (unit cell marked by a square) and both a short Ni-rich
and a short Fe-rich anti-phase domain boundary. (b) Image profile along the white
line marked in (a). The dashed average curve indicates a long-wavelength buckling
on the nanometer scale in contrast to the short-wavelength buckling distinguishing
Fe and Ni atoms. (c) Map of automatically detected Fe atom locations (corruga-
tion maxima) in the STM image, omitting the Ni atoms, with each of the Fe atoms
assigned to one of the two c(2× 2) anti-phase sublattices (open and full circles).
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the tunneling current was maintained at 8 nA. The tunneling voltage is convention-
ally defined as the voltage bias of the sample with respect to the tip, so negative
tunneling voltage means a negatively charged sample and a positively charged tip.

Apparent elevations of the surface are represented by lighter shades and appar-
ent depressions by darker shades in the image. The round-shaped lighter spots on
the darker background presumably mark the positions of surface atoms. The ar-
rangement of the spots forms a roughly periodic square lattice, although disturbed
by local defects like vacancies, in agreement with what can be expected for atoms
on the (001) surface of a face-centered crystal. The spacing of the supposed atoms
agrees with the value of lattice parameter of the Invar alloy and akin iron–nickel
alloys, which is known from experiments to be a ≈ 0.36 nm (see, e.g., [35] or [36]).
The spots exhibit a noticeable dispersion of their apparent height, thus reflecting the
partially disordered character of the alloy and its surface. We expect to observe two
different types of spots, which could be identified with the iron and the nickel atoms,
respectively. It is not obvious at first sight if the the spots that we see in the image
can be sorted into two groups in a unique way. The expected chemical contrast is
obscured by other sources of contrast, which probably stem from the composition
variations in the sub-surface region. Nevertheless, after a high-pass filter was applied
to the image so that the variations of apparent height on a nanometer and larger
scale be quenched and only the most localized contributions to the contrast remain,
the experimentalists were able to distinguish two separate peaks in the histogram
of apparent heights. The two peaks in the histogram corresponded to two different
types of atoms. The experimentalists then tried to change the composition of the
surface by additional deposition of iron and found that the more protruding atoms
(lighter spots) are those of Fe and the lower atoms (darker spots) are those of Ni.
Most of the surface turns out to be covered by small domains of a c(2 × 2)−FeNi
structure, a checkerboard pattern formed by alternating Fe and Ni atoms. Neighbor-
ing domains are characterized by mutually interchanged Fe and Ni sublattices within
the c(2× 2) two-dimensional lattice. The prevailing type of the so-called anti-phase
boundary between two such domains is the Fe-rich one, but Ni-rich boundaries are
also present. Examples of the ordered structure and of both kinds of anti-phase
domain boundaries are highlighted in Fig. 1(a). Based on the analysis of the STM
images, the overall composition of the surface layer was estimated to 59% ± 2% of
atoms being iron and the complementary part (i.e. 41%±2% of surface atoms) being
nickel [34].

Tunneling spectra, i.e. the curves that describe the voltage dependence of the
tunneling current, were measured for voltages spanning from −1 V to +1 V. The
first derivative of the spectra was calculated numerically afterwards. The height
of the tip above the surface during the spectroscopic measurement was set so that
a tunneling current of 1 nA flowed at the voltage of −1 V. Therefore a constant
current image at 1 nA and −1 V could be recorded simultaneously with the spectra.
The constant current image is shown in Fig. 2(a). Current maps for a given voltage,
such as the one displayed in Fig. 2(b), can be extracted from the spectroscopic
data in a straightforward way. Unfortunately, the experimentalists were not able
to obtain both an atomically resolved image and tunneling spectra for one and the
same surface area. Examples of the spectra, presented as a voltage dependence of
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Figure 2: (a) Constant current image of the Fe64Ni36(001) surface at the tempera-
ture of 5 K, tunneling current 1 nA, and sample voltage −1 V. (b) Corresponding
current map at −0.4 V, showing the intensity of the spectroscopic feature discussed
in the text (shaded area in the 5 K spectrum to the right). (c) Differential conduc-
tance spectra at 5 K corresponding to the images on the left and other differential
conductance spectra obtained at 80 K on of a separately prepared sample. Shown are
spectra from surface points where the prominence of the conductance peak reaches
its extremum, maximum for A and minimum for B. The small peak at −0.1 V in
the 80 K spectra (arrow) originates from a tip-related state. The contour lines in
(a) and (b) encompass the fraction of the surface that displays spectra more similar
to A than to B. The figure was taken from [34].

the differential conductance, are given in Fig. 2(c). The most conspicuous feature of
the spectra is a peak of the differential conductance at about −0.35 V. The curves
shown in Fig. 2(c) are averages of spectra acquired in several tens of individual
positions, chosen so that the peak in question would be either as much pronounced
as possible or as small as possible. Obviously, the peak is present in virtually all
spectra, no matter at which position on the surface the particular spectrum was
obtained, but the size of the peak varies considerably among spectra from different
parts of the surface.
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3.2 Surface geometry

3.2.1 Methods and models

First, let me focus on the atomic structure of the surface, including the question of
prevailing chemical composition of the surface and the surface corrugation at the
atomic scale. All these subjects are closely related to the topography observed in
the STM experiment. The equilibrium positions of the iron and nickel atoms in the
surface and sub-surface layers were estimated via ab initio calculations for several
models of the surface. The models were chosen to represent various parts of the
surface that differ from each other by their local composition; the diversity of the
models thus reflected the partially random arrangement of Fe and Ni atoms in the
alloy and on its surface. Comparison of calculated total energies between the various
models can help us to estimate the relative stability of different surface structures.
The calculated total energies and especially the calculated atomic forces—the quan-
tities which are needed when performing the relaxation of the surface structure into
the energetically optimal equilibrium geometry—are sensitive to the faithful repre-
sentation of the effective potential and electron density. So as to avoid imposing
arbitrary restrictions on the shape of the effective potential and on the electron-
density distribution, a full-potential linearized-plane-wave method (FP-LAPW) was
applied to the solution of the problem. The program package WIEN2k [37], which
implements the FP-LAPW method within the DFT framework, was used to carry
out the calculations.

The FP-LAPW method implemented in WIEN2k allows one to deal with periodic
structures only. The surface was thus replaced by a slab consisting of 9 atomic layers
each. The slab was always symmetric with respect to the plane of the middle atomic
layer. Periodically repeating slabs were separated from each other by empty spaces
representing the vacuum above the surface. The empty spaces separating the slabs
were roughly as thick as the slabs themselves (1.44 nm) to ensure that the slabs are
properly isolated from each other. The surface unit cell defined by the periodicity
in directions parallel to the surface plane always contained two atoms per atomic
layer. The atoms were arranged in positions corresponding to the fcc lattice of the
Invar alloy. The in-plane lattice parameter a‖ that defined the size of the surface
unit cell was set to a‖ = 0.360 nm. This value had been determined theoretically
as the bulk lattice parameter of the ordered Fe3Ni alloy; total energy minimization
with respect to the lattice parameter had been performed for the Fe3Ni structure
using the GGA [38] exchange-correlation potential. The in-plane lattice parameter
thus obtained was in reasonable accord with the experimental lattice parameter
aexp = 0.358 nm of the Fe64Ni36 alloy [35].

The seven models that have been explored are shown in Fig. 3. The models
of the alloy structure are all based on the Fe3Ni structure, while only the chemical
composition and atomic arrangement in few topmost surface atomic layers vary from
model to model. The ordered Fe3Ni alloy was adopted as a suitable model substrate
because its chemical composition and lattice parameter are similar to those of the
Invar alloy, but unlike Invar, the Fe3Ni has a periodic structure, as demanded by
the numerical method in use. Fig. 3 also illustrates (taking model I as an example)
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Figure 3: Layer-by-layer structure of the seven models employed to represent the
(001) surface of the FeNi alloy. The light red circles represent iron atoms, the dark
blue circles represent nickel atoms. The notation used to describe the geometry of
the surface is shown for model I.
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the notation that is going to be used in describing the calculated geometry of the
surface structure. In brief, the inter-layer distance between the layers number i and
j (counted from the surface) is denoted as dij while the ‘buckling’ of the i-th atomic
layer, i.e. the height difference between the two inequivalent atomic positions in
that layer, is denoted as δi. If an atomic layer is buckled, some care has to be taken
to define the position of the layer for the purpose of measuring dij unambiguously.
Here, the position of an atomic layer is to be defined as the arithmetic means of the
vertical positions of both inequivalent atoms in the layer.

The surface Brillouin zone was sampled by a mesh consisting of 20 × 20 Bloch
wave vectors (~k-points). The exchange-correlation potential was approximated ac-
cording to the Perdew, Burke, and Ernzerhof [38] GGA prescription. However, using
the LDA (namely that of Vosko, Wilk, and Nusair) for the exchange-correlation po-
tential would not substantially change the findings which are going to be presented
here [34]. The number of the augmented plane waves in the basis set is given by
the upper cutoff Kmax = 68.7 nm−1 = 3.64 a.u.−1 (1 a.u. being equal to the Bohr
radius) for the wave vectors. This maximal wave vector corresponds to the maxi-
mal kinetic energy of 13.2 Ry. The plane wave expansion of the effective potential
and charge density outside the atomic spheres (in the interstitial and in the vac-
uum region, which are treated on the same footing by WIEN2k) was limited by
the upper bound Gmax = 265 nm−1 = 14 a.u.−1. The calculations were carried out
as spin-polarized; the ferromagnetic order was assumed.3 The basis functions and
the effective potential inside the atomic spheres were expanded into spherical har-
monics up to the angular quantum number lmax = 10, but only spherical harmonics
for l ≤ 4 in the expansion of the wave functions were employed to calculate the
(comparatively small) non-spherical parts of the effective potential. The radii of the
atomic spheres were set to 2.2 a.u., which equals 0.116 nm. With this atomic sphere
radii, the space left between the most closly neighboring atomic spheres in the bulk
Fe3Ni amounted to 8.5 % of the distance between the centers of these spheres. The
1s, 2s, 2p, and 3s electron states were treated as the atomic core, which means
that no energy dispersion over the Brillouin zone (no band structure) was consid-
ered for them. Further, the 3p and 4s states were treated as semi-core levels: The
~k-dependent energy dispersion was taken into account for the energy levels of these
semi-core states just as for the valence states and special local orbitals were added
to the set of basis functions so that the basis set was capable of representing the
semi-core states adequately. Finally, the remaining electron states corresponding to
higher-lying energy levels were the valence electron states, which were represented
by the LAPW/APW+lo basis set along with the semi-core states but without any

3The possibility that a local antiferromagnetic order or disordered local magnetic moments may
occur on the alloy surface was checked for several models of the surface. So as to speed up the
calculations, the TB-LMTO method was used for this purpose instead of the FP-LAPW method,
because these calculations did not require so much precision as compared to, e.g., the calculations
of the surface buckling. It turned out that flipping the local (atomic) magnetic moments from
the ferromagnetic into the c(2 × 2) antiferromagnetic order or introducing the disorder into the
local moments (the disorder could be adequately treated within the TB-LMTO by means of the
CPA but not in the FP-LAPW calculations) increased the total energy of the system; the order of
magnitude of this energy cost was found to be 0.1 eV per surface unit cell. The assumption of the
ferromagnetic order is thus justified.
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additional local orbitals needed. The APW+lo scheme was used to define the aug-
mentation part of basis wave functions inside the atomic spheres for l ≤ 2 while the
LAPW scheme was used for the same purpose for l > 2. All these parameters that
describe the construction of the basis set inside the atomic spheres applied equally
to both Fe and Ni atoms.

The method of damped Newtonian dynamics was employed to perform the re-
laxation of the structures representing the alloy surface and thus to arrive at zero-
temperature equilibrium atomic positions. The in-plane lattice parameter a‖ was
fixed to the above quoted value 0.360 nm. The positions of the three central atomic
layers in the slab (i.e. the 4th, 5th, and 6th atomic layer) were also kept fixed. The
distance between the forth and fifth atomic layer (and by symmetry also that be-
tween the fifth and the sixth) was set to d0 = a‖/2 = 0.180 nm. The structures were
considered to be fully relaxed if the force that acted upon any of the atoms within
the particular structure except the fixed ones was smaller than 0.1 eV/nm. For the
details of the method of calculating the atomic forces see [23].

In the preceding calculation of the bulk Fe3Ni structure that was aimed at deter-
mining a‖, the three-dimensional Brillouin zone was sampled by a mesh containing

20 × 20 × 20 ~k-points. Other parameters of the calculation concerning the bulk
Fe3Ni, like the plane wave cutoff Kmax for the plane wave basis set or the cutoff
Gmax for the plane wave expansion of the effective potential and charge density,
were the same as the corresponding parameters of the slab calculations.

3.2.2 Results and discussion

The models of the alloy structure presented in Fig. 3 are summarized again in Tab. 1.
In addition, the dependence of the calculated total energy on atomic arrangement
is shown for the respective relaxed structures in the table. When models with the
same overall stoichiometry are compared in terms of total energy, the models that
involve the c(2 × 2)−FeNi structure in the top surface layer come out as the most
favorable. Interchanging a Ni atom on the surface with a sub-surface Fe atom to
form a purely Fe surface layer (I→III, II→III, or VI→VII) invariably increases the
total energy. Interchanging a surface Fe atom with a sub-surface Ni atom to form a
purely Ni surface layer from the c(2× 2)−FeNi surface (VI→V) increases the total
energy too, even though by a smaller energy than in the previously mentioned cases
of pure-iron surface formation. This is in accord with the experimental observation
that locally ordered c(2 × 2)−FeNi areas are the prevailing structure on the (001)
surface of the Fe64Ni36 alloy.

Tab. 2 contains a detailed description of the calculated relaxed geometry of all
the model structures. The deviations of the interlayer distances from the ideal
unrelaxed fcc structure are given in terms of a percentage of the ideal interlayer
distance d0 = a‖/2 = 0.180 nm. In the same way—as a percentage of d0—the
buckling of the first three surface layers is tabulated. The largest surface buckling,
which amounts to 0.0135 nm in terms of an absolute height difference, has been found
for model II. Note that if the top surface layer contains both Fe and Ni atoms, the
Fe atoms always stick out of the surface and the Ni atoms sink down towards the
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model # composition Etot [meV]
I FeNi/FeFe/FeNi/FeFe/FeNi/... 0
II FeNi/FeFe/NiFe/FeFe/FeNi/... +13
III FeFe/FeNi/FeNi/FeFe/FeNi/... +39
IV FeNi/FeNi/FeFe/NiFe/FeFe/... —
V NiNi/FeFe/FeNi/FeFe/FeNi/... +27
VI FeNi/FeNi/FeNi/FeFe/FeNi/... 0
VII FeFe/NiNi/FeNi/FeFe/FeNi/... +127

Table 1: Chemical composition of first five atomic layers from the surface is indicated
for each model. The composition of the rest of the layers (from the sixth to the ninth)
is determined by symmetry. The order of atoms in a particular layer (FeNi vs. NiFe)
generally matters. For example, models I and II differ only by whether an Fe atom
in the third layer is positioned directly below another Fe atom in the first layer (this
is so in model I) or whether it is below an Ni atoms in the first layer (model II).
Furthermore, a comparison of calculated total energies per surface atom is made.
The shown numerical values of the total energy are differences of the total energy
of the particular system from the total energy of a reference system with the same
composition stoichiometry. The systems I (for the slab composition of Fe13Ni5) and
VI (for Fe11Ni7) were chosen as the reference.

model # δ1/d0 ∆d12/d0 δ2/d0 ∆d23/d0 δ3/d0 ∆d34/d0

I +3.3% −1.0 % 0 +1.4 % −1.0 % +1.2 %
II +7.5% 0.0 % 0 +2.6 % −0.1 % +1.9 %
III −4.1 % +1.4 % +0.3 % −2.3 % −0.4 % +2.3 %
IV +2.8% −4.5 % +0.9 % +2.6 % +1.5 % +1.5 %
V 0.0 % −6.0 % 0 +2.8 % −0.9 % +1.5 %
VI +2.6% −3.9 % +0.5 % −1.4 % +0.2 % +2.5 %
VII +2.2 % −2.1 % 0 −2.6 % +0.3 % +2.7 %

Table 2: Atomic layer buckling (δ1 to δ3) and the changes of the inter-layer dis-
tances (∆d12 to ∆d34) with respect to the calculated Fe3Ni(001) interlayer distance,
d0=0.180 nm, are listed here for the various models of the FeNi(001) surface in the
form of the corresponding percentage of d0. If the tabulated buckling reads “ 0”, the
buckling is exactly zero due to the symmetry of the respective model, while “ 0.0 %”
means that the buckling was calculated to be zero within the precision indicated. The
sign of the buckling is chosen so that the buckling of a given atomic layer is positive
if the atom that goes first in the formula for that layer in Tab. 1 is shifted up-
wards (towards the surface) and the atom that goes second in the formula is shifted
downwards (towards the substrate).
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bulk, which is indicated by a positive sign of δ1 in the first column of Tab. 2 (see
the entries printed in bold). However, the amount of buckling that takes place in
the top surface layer depends substantially on the chemical composition of the sub-
surface layers, as demonstrated by the differences found between the models I, II,
IV, and VI. Comparison of model I with model II reveals that even the structure of
the third atomic layer has an important influence on the buckling in the topmost
atomic layer. Furthermore, the surface areas in which one element (Fe or Ni) locally
prevails may exhibit a notable buckling on the atomic scale too, as demonstrated
by models III and VII. The interlayer distances also differ from model to model by
several per cent of d0, so the positions of atomic layers are different as well. The
fact that the position of the top atomic layer differs between various models of the
alloy structure suggests that the surface buckling also occurs on a larger scale than
just between the nearest atomic neighbors, because the vertical atomic positions on
the real disordered surface must then differ among places that locally correspond to
different ordered models. The chemically insensitive contributions to the buckling
interfere with the chemical contrast between Fe and Ni and blur this contrast. All
these findings agree well with the topography of the STM images, in which the Fe
atoms appear as more protruding from the surface than the Ni atoms while the
apparent height of atoms belonging to the same element varies considerably too,
making it difficult but still possible to distinguish the Fe atoms from the Ni atoms.
The height variances observed by the STM are thus not only apparent but they
generally correspond to real vertical differences in atomic positions on the surface.
Finally, I shall note that part of the results presented here has been also published
in [39]; however, the notation for the models does not completely agree, model III
of the paper [39] is model IV here.

Surprisingly, while the observed contrast between the Fe and Ni atoms on the
Invar (001) surface agrees with what could be expected from the calculated surface
buckling, it is at variance with the picture based on the Tersoff-Hamann theory of
STM imaging. So as to obtain the theoretical prediction in the spirit of Tersoff and
Hamann, one should compare the local density of states (LDOS) at the Fermi level
in vacuum above the surface iron atoms with the corresponding LDOS above the
surface nickel atoms. The comparison should be made between points in the same
height above the surface, i.e., one compares points that are located on one and the
same plane parallel to the surface. It will be argued in the next section that any
feasible slab thickness is insufficient for a faithful modeling of the vacuum density
of electron states related to the STM images and spectra. However, calculations
performed on four different slabs consisting of 25 atomic layers indicate that the
LDOS at the Fermi level is higher above the Ni atoms than above the Fe atoms.
The LDOS was evaluated 0.3 nm above the top surface atomic layer. The structure
of the 25-layer slabs was derived from models I, II, IV, and VI. These are the model
structures that contain both Fe and Ni atoms in the topmost surface layer. The
positions of atoms in the four outermost atomic layers on both sides of the slab were
taken from the previously performed surface relaxation of the respective models.
The remaining central part of the 25-layer slabs was an ideal Fe3Ni structure that
consisted of alternating Fe and c(2 × 2)−FeNi layers. The contrast found for the
vacuum Fermi-level LDOS thus seems to be the inverse of the STM contrast that
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was seen in the experiment. A calculation for an ideally smooth surface, which was
represented by a 25-layer slab based on the model I without the surface buckling
and relaxation, showed that the inverse contrast in the Fermi-level LDOS existed
above the smooth surface too and that the Fermi-level LDOS above the Ni atoms
was even more enhanced there. The surface buckling that involves shifting the Fe
atoms upwards from the surface acts against this kind of contrast, enhancing the
LDOS above Fe atoms, although it does not suffice to change the contrast so that it
would correspond to the STM images. The simple Tersoff–Hamann theory thus fails
to explain the appearance of the STM images as they have been found in the ex-
periment. The experimental contrast is obviously related to the chemically sensitive
surface buckling but does not directly correspond to the DFT-calculated equilibrium
electronic structure of the alloy surface. The effect of the surface buckling must be
enhanced by some effects which were not taken into account in my calculations and
which are most probably related to the interaction between the surface and the tip
of the microscope.

3.3 Electronic spectra

3.3.1 Methods and models

According to the Tersoff-Hamann model, the peak of the differential tunneling con-
ductance observed on the alloy surface at the voltage of ≈ −0.3 V should correspond
to a peak that is reached by the local density of states above the surface at ≈ 0.3 eV
below the Fermi level. A peak in the LDOS in vacuum above a surface usually
originates from surface states or resonances, i.e. from electron states localized in the
surface atomic layer or in several atomic layers near the surface. Thus the feature
found in the tunneling spectra at −0.35 V indicates the presence of such a surface
state or resonance. Although the Tersoff-Hamann model is an oversimplified de-
scription of the actual STM/STS experiment, because the electronic structure of
the probing tip and the interaction between the tip and the surface can significantly
influence the tunneling spectra, a distinct peak of the local density of electron states
in vacuum above the surface may still play a decisive role in the formation of the
tunneling spectra. A direct correspondence between a surface state/resonance and
a peak in tunneling conductance has been previously reported, e.g., for the Fe(001)
and Cr(001) surfaces [40]. It is therefore worthwhile to analyse the structure of
electron states near the surface of the alloy in the vicinity of the Fermi level and es-
pecially the local density of states in vacuum above the surface to see how it relates
to the observed tunneling spectra.

Unfortunately, the calculations in the slab geometry described in the previous
section, which were performed to find the equilibrium atomic positions on the sur-
face, are not suitable for the purpose of analysing the spectroscopy. The slab ef-
fectively behaves as a potential well in the direction perpendicular to the surface
and the electron states in the slab thus become quantized. The effect of such a
quantization is demonstrated in Fig. 4. The ~k‖-resolved local density of states (or

Bloch spectral function, BSF) localized at ~k‖ = Γ̄ ≡ 0 in the reciprocal space and in
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vacuum 0.18 nm above the surface in real space is depicted in this figure for three
different models, all of which represent a pure Fe surface layer on a homogeneous
Fe64Ni36 substrate. First, it is a genuinely semi-infinite Fe/Fe64Ni36 system with
only one surface facing the vacuum on one side and attached to an infinite bulk of
the Fe64Ni36 on the other side; second, a 30-layer slab (two pure Fe atomic layers on
both surfaces, 28 atomic layers of Fe64Ni36 in between, and vacuum bordering the
slab on both sides); and, third, a 10-layer slab (two Fe layers, eight Fe64Ni36 layers,
and again vacuum on both sides). The oscillation of the spectral function due to the
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Figure 4: Bloch spectral function at ~k‖ = (0, 0), i.e. at the central point Γ̄ of
the surface Brillouin zone, projected onto a sphere in vacuum 0.18 nm above the
Fe/Fe0.64Ni0.36 surface. The surface was represented (a) by a truly semi-infinite sys-
tem, (b) by a slab that consisted of 30 atomic layers of the material, and (c) by a
slab that consisted of 10 atomic layers of the material. The projected Bloch spectral
density above the semi-infinite system from the top panel is also indicated by a dotted
line in the other two panels for easier comparison.

confining boundaries—even in the slab that was 30 atomic layers thick—is clearly
visible. A potential surface resonance that may appear in the semi-infinite case be-
comes lost amidst this oscillation if the calculation is performed in a slab geometry.
Having slabs much thicker than 30 atomic layers in the FP-LAPW calculations is not
tractable because of the demands on both time and computer memory. While one
would expect the LDOS, which can be expressed as the integral of the site-projected
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Bloch spectral functions over the whole surface Brillouin zone, to be considerably
smoother inside the material than a single BSF (like the one for ~k‖ = Γ̄) because the
oscillations of BSF from different parts of the surface Brillouin zone may partially
compensate, the situation is different in vacuum above the surface. Typically, only
wave functions from a small part of the Brillouin zone penetrate into the vacuum
significantly. Consequently, the oscillation of the ~k‖-resolved spectral function from

the most contributing ~k‖ point prevails and it shows in the resulting local density of
states in the vacuum.

The Bloch spectral functions in Fig. 4 were calculated by the linear muffin-
tin orbital method in the atomic sphere approximation (LMTO-ASA) using the
coherent potential approximation (CPA) to represent the homogeneous alloy. The
main advantage of the LMTO-ASA method is its ability to treat the surface as
a semi-infinite system within the formalism of surface Green’s functions, together
with its ability to deal with the substitutional disorder in the alloy by means of the
CPA. In the LMTO-ASA method, the whole space occupied by the model systems
is divided into atomic spheres, including the vacuum, which formally consists of
atomic spheres with zero atomic number. Therefore expressing the BSF projected
onto an atomic sphere was a natural way to obtain a real-space local characteristics
of the electronic structure. The site-projected BSFs shown in Fig. 4 were evaluated
in an atomic sphere of the first vacuum layer adjacent to the topmost surface atomic
layer; the above mentioned distance of 0.18 nm is the distance between the planes
going, respectively, through the center of the first vacuum layer and through the
center of the top surface atomic layer.

Spin-polarized scalar-relativistic calculations using the LDA of Vosko, Wilk, and
Nusair [41] for the exchange-correlation potential were performed to obtain Fig. 4
and also in all the further discussed cases in which the LMTO-ASA method was em-
ployed to analyze the electronic structure of the Invar surface. The surface Brillouin
zone was sampled by 15× 15 ~k-points. The number of ~k-points that was needed for
the LMTO-ASA calculation was smaller as compared to the FP-LAPW calculation
described in the previous section. The reason is that no calculation of atomic forces
was undertaken with the LMTO-ASA method. The spd basis was used, i.e., the ba-
sis contained orbital wave functions with angular quantum numbers l ≤ 2 (as both
Fe and Ni are 3d metals). An optimized screening transformation was applied on the
structure constants and the Green’s functions [24]. Owing to the screening trans-
formation, the structure constants that coupled atomic layers more distant than the
next-nearest neighbors were negligible and principal layers consisting of only two
atomic layers each therefore could be used to evaluate the surface Green’s functions.
No surface buckling or surface layer relaxation was considered in the LMTO-ASA
calculations; the atomic spheres were placed on an ideal fcc lattice. The previ-
ous FP-LAPW calculations indicated that the density of states is not substantially
affected by small changes of the surface geometry.4 The atomic sphere radius of

4Of course, the FP-LAPW results for the vacuum LDOS are spoiled by the above discussed
quantization effects, but it still makes sense to compare the LDOS that was calculated for the
relaxed geometry with that calculated for the ideal geometry to see how the relaxation changes
the LDOS.
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r = 0.140 nm was used for the purpose of the ASA. This radius corresponds to the
experimental lattice parameter of the fcc Invar lattice aexp = 0.358 nm.

Apart from the above discussed cases in panels (b) and (c) of Fig. 4, which
were only intended to illustrate the importance of proper boundary conditions, all
other models of the surface that were handled with the LMTO-ASA method had
the form of a semi-infinite system bordered by a vacuum region on one side only.
These models consisted of 10 layers of the atomic spheres for which the electron
density and effective potential were determined in a self-consistent way. Three of
the layers represented the vacuum above the surface and the other seven represented
the atomic layers of the alloy near the surface including the topmost surface layer.
The boundary conditions for such a slab of 10 atomic layers were defined by attaching
it to a semi-infinite vacuum region on the side of the 3 vacuum layers and to a semi-
infinite region of a homogeneous Fe64Ni36 alloy on the other side. The semi-infinite
vacuum region was characterized by a flat effective potential. The work function
that set the level of the vacuum potential was calculated self-consistently along with
the effective potential in the atomic spheres of the 10-layer slab, thus taking into
account the surface dipole barrier. The effective potential for the atomic spheres in
an infinite Fe64Ni36 bulk had been calculated in advance and was used to define the
surface Green’s function of the semi-infinite Fe64Ni36 region.

The local densities of states and Bloch spectral functions (BSF; see section 2.10
for definition) were explored for several models of the surface. All the models were
based on the Fe64Ni36 homogeneous alloy. Only the composition of the top atomic
layer or the two topmost atomic layers on the surface varied among the models.
The differences in the model surface composition were introduced so as to mimic
local deviations from the average surface composition; this deviations arise on the
real alloy surface due to the partially random arrangement of atoms. Furthermore,
even the average composition of the alloy near the surface differs from the bulk
composition, e.g. due to preferential segregation of one element on the surface or
due to the formation of surface structures like the partially ordered c(2 × 2)−FeNi
structure that has been discussed in the previous section. In the following, I will use
the notation FexNi1−x/Fe0.64Ni0.36 and FexNi1−x/FeyNi1−y/Fe0.64Ni0.36 to describe
the composition of the model structures. The subscripts denote the relative content
of the respective element in the respective atomic layer and, at the same time, they
can also be interpreted as the probability that a given atomic site in the respective
layer be occupied by the particular element. Unless indicated otherwise, all sites
in one atomic layer are considered equivalent, in the sense that the probability of
being occupied by an atom of a particular element (Fe or Ni) is the same for all
sites in the layer. Such models can be treated as periodic structures within the
CPA; more precisely, they are characterized by configurationally averaged Green’s
functions which are periodic in the two dimensions parallel to the surface. The
surface unit cell of these structures contains one atom per atomic layer.

3.3.2 Results and discussion

Figures 5–8 show (in the panels on the left-hand side) the local density of electronic
states around the Fermi level as found above the model surfaces of various composi-
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Figure 5: Densities of states projected onto a sphere 0.54 nm above the alloy surface
(panels to the left) and Bloch spectral functions at the center of the surface Brillouin

zone (~k‖ = Γ̄) in the same location above the surface (panels to the right) for the
following models of the surface: (a) Fe/Fe0.64Ni0.36, (b) Fe0.875Ni0.125/Fe0.64Ni0.36,
and (c) Fe0.75Ni0.25/Fe0.64Ni0.36. Full lines represent the total (all-spin) densities
and spectral functions whereas dotted lines represent the corresponding spin-resolved
components; the minority-spin components are flipped over the horizontal axes into
the negative half-plane.
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Figure 6: Projected densities of states (left) and the Bloch spectral functions at ~k‖ =
Γ̄ (right) in vacuum 0.54 nm above the alloy surface (just as in Fig. 5) for the follow-
ing models of the surface: (a) Fe0.625Ni0.375/Fe0.64Ni0.36, (b) Fe0.5Ni0.5/Fe0.64Ni0.36,
and (c) Fe0.375Ni0.625/Fe0.64Ni0.36.
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Figure 7: Projected densities of states (left) and the Bloch spectral functions at
~k‖ = Γ̄ (right) in vacuum 0.54 nm above the alloy surface (just as in Figs. 5
and 6) for the following models of the surface: (a) Fe0.25Ni0.75/Fe0.64Ni0.36,
(b) Fe0.125Ni0.875/Fe0.64Ni0.36, and (c) Ni/Fe0.64Ni0.36.
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Figure 8: Total (all-spin) projected densities of states (panels to the left) and the

Bloch spectral functions at ~k‖ = Γ̄ (panels to the right) in vacuum 0.54 nm above
a surface covered with a pure iron layer are shown here for the following models of
the surface: Fe/Fe/Fe0.64Ni0.36 (full red line), Fe/Fe0.5Ni0.5/Fe0.64Ni0.36 (dash-dotted
light blue line), and Fe/Ni/Fe0.64Ni0.36 (dashed green line).

tion. More precisely, the plotted quantity (PDOS) is the density of states projected
onto a sphere in the third layer (counted from the surface) of empty atomic spheres
representing the vacuum; this third vacuum layer is centered 0.54 nm above the
surface of the alloy. The projected density of states equals the integral of the LDOS
over the respective atomic sphere and thus is—up to a factor equal to the volume of
the atomic spheres—a good representation of the LDOS at a point near the center
of the sphere. The projected densities of states were decomposed into the majority-
spin and the minority-spin components; this spin-resolved components are presented
in each panel of Figs. 5–7 along with their sum that gives the total PDOS.

The right-hand side panels of Figs. 5–8 show the BSF projected onto the third
vacuum layer for ~k‖ = Γ̄ ≡ 0 and for the same composition of the surface layers
for which the projected density of states is shown in the corresponding panels to
the left. Again, the majority-spin and the minority-spin components of the Bloch
spectral functions are shown along with the total (all-spin) BSFs in Figs. 5–7. As
it will be discussed below, the principal contribution to the feature that we expect
to find in the vacuum LDOS 0.35 eV below the Fermi level comes from the center
of the surface Brillouin zone and its close neighborhood. Indeed, a peak at about
−0.3 eV is visible in the minority-spin PDOS above iron-rich surfaces (Fig. 5) and
this peak is even sharper in the corresponding Bloch spectral functions at ~k‖ = 0.
The peak, however, disappears as the content of Fe in the top surface layer becomes
smaller than 75%. Instead, another peak of the BSF at ~k‖ = Γ̄ develops at about
0.9 eV below the Fermi level for Ni content above 25% in the topmost atomic layer
and this peak also becomes apparent in the vacuum-projected densities of states
as the nickel content in the top layer approaches 100%. The PDOS and the BSF
at ~k‖ = Γ̄ of the majority spin channel are rather featureless in the energy region
for which the densities of states and spectral functions are plotted. The shapes of
the total projected DOS and the corresponding BSF (at ~k‖ = Γ̄) are thus primarily
controlled by the minority-spin component.
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Fig. 8 illustrates the effect that the sub-surface composition can have on the
PDOS and BSF above the surface. The models presented in this figure all involve
a pure iron layer that covers the alloy surfaces. The vacuum electronic-structure
feature ≈ 0.3 eV below the Fermi level is especially distinct above such surfaces.
The composition of the sub-surface layer varies from pure iron to pure nickel in
these models. We see that the peak in both the PDOS and the BSF (at ~k‖ = Γ̄)
appears for any sub-surface composition, only the width of the peak varies and its
position on the energy scale slightly shifts as the sub-surface composition changes.
The influence of deeper atomic layers is expected to be even smaller.

The three panels on the left-hand side of Fig. 9 demonstrate that the peak in the
minority-spin Bloch spectral function at ~k‖ = Γ̄ and 0.3 eV bellow the Fermi level
is indeed a feature localized on the surface and penetrating into the empty space
above it. Nevertheless, we can also see that the BSF for ~k‖ = Γ̄ ≡ 0 at the energy
of the surface peak does not fall completely to zero even deep in the bulk material.
There are evidently some bulk states at the same energy for ~k = (0, 0, kz) (which

are the ~k-points that project onto ~k‖ = 0), so strictly speaking the peak corresponds
to a surface resonance rather than a genuine surface state, since there is a possible
hybridization among the surface resonance and the bulk states.

Due to the tetragonal symmetry of the underlying crystal lattice, the spectral
functions at Γ̄ can be decomposed into parts that correspond to different irreducible
representations of the C4v symmetry group. Fig. 9 shows that the surface resonance
originates from orbitals that are invariant under any nπ/2 rotation around the four-
fold axes perpendicular to the surface (as well as under a reflection with respect to
one of the four vertical mirror planes). Such orbitals and the wave functions com-
posed of them transform according to the trivial representation of the symmetry
group that is conventionally denoted as A1 [42] (or ∆1, as in, e.g., [43]). Namely,
the orbitals that exhibit this symmetry are s, pz, and dz2−r2/3 (for the last, a short-
ened notation dz2 can be used); this notation assumes that the z-axis is oriented
perpendicular to the surface and thus along the four-fold rotation axis. The sym-
metric wave functions at ~k‖ = Γ̄ that belong to the A1 representation penetrate into
the vacuum more easily than any wave functions that correspond to the same energy
but to a different representation of the symmetry group. To see why it should be
so, consider an expansion of the wave functions into plane waves along the surface.
If we assume, for simplicity, that the electrons in the free space above the surface
possess a constant potential energy Φ, a one-electron wave function in this vacuum
region can be written as

ψ~k‖
(~r) =

∑

~K‖

a ~K‖
exp

{
i(~k‖ + ~K‖) · ~r −

(√
2me(Φ− E)

h̄2 + (~k‖ + ~K‖)2

)
z

}
, (124)

where E is the one-electron energy corresponding to the wave function, me is the
mass of the electron, and z is the component of ~r in the direction perpendicular to
the surface. The summation index ~K‖ runs over all points of the two-dimensional re-
ciprocal lattice, while ~k‖ is a wave vector from within the first surface Brillouin zone.
The decay is controlled by the terms under the square-root sign. The slowest decay
is achieved if ~k‖ = 0 and ~K‖ = 0. The first condition simply means that the wave
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Figure 9: Panels on the left: Spin-resolved Bloch spectral function (BSF) at the

center of the Brillouin zone (~k‖ = Γ̄) located (a) in the first vacuum layer 0.18 nm
above the Fe/Fe0.64Ni0.36 surface, (b) on the iron surface layer, and (c) deep in
the Fe0.64Ni0.36 alloy bulk. Majority-spin components are plotted in the upper (pos-
itive) half-planes, minority-spin components are flipped into the lower (negative)
half-planes. The solid lines represent the complete spin-resolved BSFs, which in-
clude all orbital components, while crosses denote the sum of components projected
onto the orbitals s, pz and dz2. Panel on the right: Part of the surface-projected
band structure of the Fe0.64Ni0.36 system represented by a series of the minority-spin
Bloch spectral functions in vacuum 0.18 nm (dotted line) and 0.54 nm (solid line)

above the surface from ~k‖ = Γ̄ ≡ (0, 0) to ~k‖ = X̄ ≡ (1, 0)/(
√

2a0), where a0 is
the fcc lattice constant of the substrate and the axes of the coordinate system are
aligned with the tetragonal lattice of the surface. Curves belonging to different ~k‖
are shifted with respect to each other vertically so as to make them distinguishable.
The two sets of curves that correspond to the two different heights above the surface
are scaled differently so as to compensate for the decay of the BSF magnitude when
going away from the surface.

65



function belongs to the point Γ̄, the central point of the Brillouin zone. If ~k‖ = 0,
however, then the coefficient a ~K‖

in front of the term with ~K‖ = 0 may be non-zero
only in the expansion of a wave function that belongs to the A1 representation. The
transformation properties of wave functions in other irreducible representations of
the symmetry group would be violated by the presence of the term with ~K‖ = 0.

The expected prevalence of electron states of the A1 type in the vacuum region
is in accord with what has been actually found about the character of the BSFs in
Fig. 9. The A1 component is just a minor part of the BSF at ~k‖ = Γ̄ deep in the
bulk for energies around the Fermi level—see panel (c) in the left-hand column of

Fig. 9—but it becomes the only noteworthy component of the BSF at ~k‖ = Γ̄ in the
vacuum for the same energies—panel (a) in the same column. The panel (b), which

shows the BSF again for ~k‖ = Γ̄ but in the top surface layer, reveals the presence
of several surface resonances; apart from the resonance in the minority-spin channel
0.3 eV below the Fermi level, there is another minority-spin resonance about 1.1 eV
below the Fermi level and a majority-spin resonance 0.8 eV below the Fermi level.
However, only the resonance at 0.3 eV below the Fermi level originates from the A1-
type electron states and only this one extends substantially above the surface. Since
the valence electron states in both iron and nickel have a predominantly d-orbital
character, we may characterize this surface resonance as being dz2-like. Similar elec-
tron states near the center of the Brillouin zone with a prevailing dz2-like component
have been previously demonstrated to cause peaks in differential tunneling conduc-
tance (measured in the STS) on the clean Fe(001) and Cr(001) surfaces [40] and at
atoms of various 3d metals incorporated as impurities into the Fe(001) surface [43].

The panel on the right-hand side of Fig. 9 shows a series of the minority-spin
components of BSFs in vacuum above the surface for various Bloch vectors ~k‖ in
the surface Brillouin zone. This kind of graph is analogous to a vacuum-projected
electron band structure of an ordered periodic system, as it also illustrates the en-
ergy dispersion of the electron states in the Brillouin zone. We see that the surface
resonance is significant only in the close vicinity of Γ̄. The position of the peak ex-
hibits a notable dispersion in energy together with a broadening of the peak and a
reduction of its height as going away from the center of the Brillouin zone. There are
also other features in the BSF, apart from the peak at ~k‖ = Γ̄ and about −0.3 eV,
which appear at different energies and in various parts of the surface Brillouin zone
if one looks into the vacuum close enough to the surface, but these other features
quickly decay with increasing distance from the surface, as the comparison between
the dotted and the solid curves on the right-hand panel of Fig. 9 makes clear. The
large energy dispersion in the vicinity of Γ̄, however, causes a significant broadening
of the peak in the vacuum-projected DOS at −0.3 eV with respect to the corre-
sponding sharp peak in the BSF right at ~k‖ = 0 (cf. Fig. 5, the left-hand side and
the right-hand side panel, respectively). In spite of the broadening effect of the
large dispersion around Γ̄, which affects the peak in the LDOS (or projected DOS)
above the surface, the experiment still yields a clearly distinguishable peak in the
differential conductance at −0.35 V. This observation suggests that interaction with
the tip of the STM, which was completely disregarded in the simple consideration
based on the LDOS, enhances the relative contribution of the electronic states at
k‖ = 0 to the tunneling current at the expense of the contributions from the other
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parts of the surface Brillouin zone.
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Figure 10: Projected density of states 0.54 nm above the c(2 × 2) ordered
FeNi/Fe0.64Ni0.36 surface (solid line) in comparison with the analogous projected
DOS above a disordered surface with the same chemical composition, p(1 × 1)
Fe0.5Ni0.5/Fe0.64Ni0.36 (dotted line).

Based on the results of the calculations, one would expect the feature in tun-
neling conductance at −0.35 V to occur locally above iron-rich areas of the surface.
The STS, nonetheless, shows the presence of this feature all over the alloy surface,
although it is more pronounced at some locations than at others. One may ask
how much the assumption of a complete chemical disorder on the surface affects the
theoretical results—especially since we know from the corroborative evidence of the
STM images and total energy calculations that a c(2× 2) pattern of alternating Fe
and Ni atoms tends to form on the surface. In order to check the importance of the
local ordering, the LDOS should be calculated above an ordered surface of the alloy
and compared with a corresponding LDOS above a completely disordered surfaces
with the same layer-by-layer chemical composition. A disordered Fe0.64Ni0.36 sub-
strate covered with one atomic layer of an ordered c(2×2)−FeNi structure has been
chosen as an example of the ordered surface. The projected DOS above this surface
is to be compared with the projected DOS above the Fe0.64Ni0.36 substrate covered
with one atomic layer of a completely disordered Fe0.5Ni0.5 surface alloy. The com-
parison is made in Fig. 10. Obviously, the surface ordering does not introduce any
new feature into the vacuum LDOS (or PDOS) at energies around 0.3 eV below the
Fermi level. The conclusions drawn from Figs. 5–7 can be thus generalized to the
case of surfaces with a partial chemical order. The formation of the experimentally
detected surface resonance even above surface areas with an approximately equal
content of iron and nickel in the topmost layer must be caused by some other reason
than the partial ordering, probably again by an enhancement of the resonance by
an interaction with the tip.

3.4 Summary of results for the Fe0.64Ni0.36 (001) surface

The low-bias STM images taken on the (001) oriented surface of the fcc substitu-
tional Fe0.64Ni0.36 alloy (Invar) allow the experimentalists to identify the Fe and Ni
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atoms on the surface. The images reveal a slight enrichment of the top surface atomic
layer by Ni atoms (≈ 41 % of Ni atoms on the surface as compared to the 36 % in
the bulk) and a formation of c(2× 2) FeNi patches on the surfaces separated mainly
by Fe-rich boundaries. The Fe atoms appear as brighter spots (higher-reaching pro-
trusions) in the STM images in comparison with the less bright (less protruding) Ni
atoms. This observation is in accord with the buckling of the (001) surface that has
been calculated for several models of an FeNi alloy. The calculated atomic positions
on the surface were always such that the Fe atoms were positioned higher (farther
from the substrate) than the Ni atoms. Moreover, the buckling of the surface layer
also turns out to be influenced by the composition of the sub-surface layers, which
explains the additional modulation of the apparent height in the STM images that
obscures the Fe vs. Ni chemical contrast. The prevalence of the c(2×2)−FeNi areas
on the surface is consistent with what can be expected from comparing the various
surface models in terms of the calculated total energy.

The electronic structure calculations show that the peak in the differential tun-
neling conductance that has been found by the STS at the voltage bias of about
−0.35 V can be explained by a surface resonance at the corresponding energy below
the Fermi level. The resonance has been found to arise on iron-rich surfaces of the
FeNi alloy at the center of the surface Brillouin zone and in its close vicinity. The
electron states that compose the surface resonance have a predominantly dz2-orbital
character. Its reciprocal-space location and its dz2 character allow the surface res-
onance to protrude far into the vacuum potential barrier above the surface. The
height of the tunneling-conductance peak and its sharpness greatly varies among
different regions of the surface. The results of the electronic structure calculation
suggest that the parts of the surface above which the STS detects the strongest
peak are the areas where the content of Fe atoms locally exceeds the average iron
content on the surface. However, the origin of the tunneling-conductance peak in
areas with approximately equal content of Fe and Ni, in which the peak is weaker
but still discernable, remains unclear. Its explanation would require a much more
detailed treatment, one which would have to take into full account the probing tip
of the STM and its interaction with the surface. Such a treatment would not be
limited to describing the ground state of the tip-sample system but it would rather
handle the out-of-equilibrium state brought about by the flowing electric current.
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4 Layers of 3d transition metals on the tungsten

(001) surface

Spin-polarized scanning tunneling microscope (to be abbreviated SP-STM, see e.g.
[4] for a review of this experimental method) enlarges the range of potential appli-
cations of the STM by allowing us to study the magnetic structure of surfaces at
the atomic level. The sensitivity of the SP-STM to local magnetization makes it a
precious tool for exploring complex or disordered surface magnetic structures, which
would be difficult to probe with other, less localized experimental methods (based
on, e.g., X-ray magnetic dichroism, magneto-optical Kerr effect, neutron scattering,
etc.). An example of a magnetic structure successfully determined by the SP-STM
is the c(2 × 2) antiferromagnetic structure of one atomic layer of iron on the (001)
tungsten surface [44]. Although this particular surface structure is neither disordered
nor very complex, its magnetic properties are still difficult to probe with non-local
experimental methods because of its zero total magnetization. While previous ex-
periments indicated that the Fe monolayer on W(001) possessed no macroscopic
magnetization (see references in [44]), the question whether the iron layer was truly
non-magnetic (with no magnetic moments even at the atomic level) or antiferromag-
netic or whether it had perhaps an even more complicated magnetic structure (spin
spirals, for example) had not been settled until the application of the SP-STM. The
SP-STM clearly showed the checkerboard pattern arising from the c(2× 2) period-
icity of the antiferromagnetic structure. The magnetic origin of the c(2× 2) pattern
was confirmed by a contrast inversion which occurred when switching the magneti-
zation of the tip into the opposite direction. Moreover, it could be also established
that the magnetization of the surface in question was out of plane (perpendicular
to the surface) rather than in plane, since the magnetization of the tip had to be
perpendicular to the surface plane so as to observe the checkerboard pattern. The
experimentally observed antiferromagnetic ground state is in accord with the results
of ab-initio calculations [44, 45]. The successful study of Fe/W(001) initiated a the-
oretical analysis of other 3d transition metals in a monoatomic layer on the (001)
tungsten surface [46]. This analysis provided quite surprising conclusions regarding
the magnetic order of the investigated monolayers. Like the iron monolayer, also the
cobalt monolayer was predicted to be c(2 × 2) antiferromagnetic, nickel monolayer
was shown to be non-magnetic, while the monolayers of vanadium, chromium, and
manganese were found to be ferromagnetic. Such a trend along the row of the 3d el-
ements is almost exactly the opposite of what is known from the corresponding bulk
materials or from monolayers on some other substrates. Bulk iron and cobalt (and
nickel too) are ferromagnets while chromium and manganese assume more complex
magnetic structures akin to antiferromagnetism (see [47] and references therein for
the magnetic properties of Cr and [48, 49] for Mn). Vanadium is paramagnetic as
a bulk material, although its clean (001) surface may be ferromagnetic—the issue
regarding the vanadium surface is still controversial [50, 51]. Furthermore, V, Cr,
and Mn monolayers are c(2 × 2) antiferromagnets and Fe and Co monolayers are
ferromagnets on, e.g., Pd(001) or Ag (001) surfaces [52, 53]. Fe is known to be fer-
romagnetic even in a monolayer on a crystallographically different tungsten surface,
W(110) [54], while a monolayer of Mn on W(110) tends to an antiferromagnetic mag-
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netic order [55]; the latter fact has been also revealed by the SP-STM. Similarly, a
Cr monoatomic layer on the W(110) has been found to display a p(2×1) (row-wise)
antiferromagnetic order [56]. The Mn/W(110) monolayer actually exhibits a more
complex magnetic order than the simple c(2× 2) antiferromagnetic pattern. It has
been shown recently [57] that the local magnetic moments of Mn atoms on W(110)
are arranged in spin spirals, in which neighboring Mn atoms bear nearly but not
exactly opposite magnetic moments. The possibility that such complex magnetic
structures occur on the W(001) cannot be excluded either, and indeed, spin spirals
in Mn/W(001) have been also reported [58].

The magnetic properties of the 3d transition metals on the (001) tungsten surface
get even more complicated if some disorder is introduced into the overlayers. This
can be done by mixing more 3d elements on the surface, thus forming a two dimen-
sional alloy. In thinner than monolayer films, a surface site may be either empty or
occupied by an atom of the 3d adsorbate, which also contributes to the disorder if
the vacancies and adsorbate atoms are distributed in a random way. In both cases,
new phenomena can potentially arise, not only due to the disorder but also due
to the mere presence of more than one element (in the two-dimensional alloys) or
due to the the presence of vacancies and a reduced number of the nearest neigh-
bors surrounding a typical surface atom (in the submonolayer films). A local-probe
method like the SP-STM would be an outstanding tool to study such disordered
overlayers. However, the interpretation of the SP-STM scans also becomes more
difficult as compared to those obtained for the chemically pure complete monolay-
ers, because the magnetic sources of contrast become entangled with the chemical
and geometrical ones. A theoretical survey of the disordered surface structures that
would reveal what effects can be expected on such surfaces is therefore desirable, as
it will be useful for the interpretation of future experimental studies. In the subse-
quent parts of this thesis, I will proceed to carry out a theoretical study on model
systems representing two-dimensional alloys as well as incomplete overlayers on the
W(001) surface [59, 60, 61]. I will mainly focus on the zero-temperature magnetic
properties of these systems.

4.1 Binary surface alloys

4.1.1 Methods and notation

The goal of this section is to explore the magnetic properties of chemically disordered
monoatomic layers on the W(001) substrate that consist of two different 3d metals.
Special attention will be devoted to the overlayers that are composed of two metals
one of which alone would form a ferromagnetic monoatomic layer on the surface while
the other one would be antiferromagnetic in a chemically pure monoatomic layer.
The impact of alloying is expected to be especially interesting in the case of such
layers because of the competing tendencies to different types of magnetic ordering.

In the subsequent calculations, I will assume that the atoms of the two elements
are distributed in a completely random way amongst the available surface sites.
The probability for an atom of a particular element to occupy a particular site will
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Figure 11: One unit cell of the structure under investigation, as it was represented
in the LMTO-ASA calculations. White spheres represent part of the semi-infinite
vacuum region with the free-space effective potential, gray spheres represent the vac-
uum near the surface (where the electrons leaking out from the surface modify the
effective potential), red spheres represent the atoms of 3d transition elements which
form the monoatomic overlayer, blue spheres stand for tungsten atoms in the surface
region, and cyan spheres represent tungsten atoms in the semi-infinite region with
the bulk effective potential. The labels in the picture denote individual atomic layers;
the principle layers are numbered while atomic layers within one principle layer are
distinguished by letters.

be independent from the atoms occupying the neighboring sites. Furthermore, the
same occupational probabilities will be assumed for every surface site. Each of the
investigated surface layers thus represents a homogeneous two-dimensional binary
alloy. Pseudomorphic growth on the (001) surface of the body centered cubic (bcc)
tungsten crystal is assumed, so the ‘surface sites’ will always be fourfold hollow
positions on the W(001) surface. The fourfold hollow position was indeed shown
to be the preferred adsorption position for Fe on W(001) [62] and it is expected to
be the preferred one for the other elements too. The chemically disordered surface
layers that conform to the above assumptions are represented within the CPA (see
Section 2.11) by a p(1× 1) periodic structure, which contains only one surface atom
in the two-dimensional unit cell. The actual structure of the surface films may
approach our models with total chemical disorder more or less, depending on the
details of how the films would be prepared (the deposition rate and temperature,
subsequent annealing and/or quenching, etc.).
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A computer code based on the LMTO-ASA method and on the CPA approx-
imation was used as the primary tool for the theoretical investigation of the two-
dimensional binary alloys on the W(001) surface. The surface Green’s function
formalism (SGF) implemented in this code (see [24]) allows for smooth matching of
the surface region to the bulk. The self-consistent electronic structure of the bulk
material has to be provided by an independent calculation. In our case, the bulk
material is the bcc crystalline tungsten. The atomic-sphere radius rW = 0.1558 nm
was used for tungsten, corresponding to the value of the bulk lattice parameter
aW = 0.3165 nm known from experiment [63]. The surface region was modelled by
4 atomic layers of tungsten, one atomic layer with variable composition standing for
the overlayer, and three layers of empty atomic spheres that represented the vacuum
above the surface (see Fig. 11, layers 1a–4b). The boundary conditions reflected the
fact that the surface region was attached to a semi-infinite region of the bulk tung-
sten on one side and to a semi-infinite vacuum region on the other side. The atomic
spheres in the surface region were arranged in such a way that they formed an ideal
continuation of the bcc lattice of the bulk tungsten. A possible influence of the
surface relaxation on the magnetic properties will be discussed later.

The off-diagonal elements of the TB-LMTO effective Hamiltonian matrix are
negligible if they connect two distant atomic layers. The criterion that decides which
off-diagonal elements are taken into account and which are not is specified within
the SGF formalism by means of so called principal layers. Only matrix elements
within one principal layer and elements connecting two directly neighboring principal
layers are considered non-zero. Throughout the calculations discussed here, principal
layers that consisted of two atomic layers each were used. This implied that off-
diagonal elements between the nearest and second-nearest atomic layers were always
included while off-diagonal elements between atomic layers beyond the third-nearest
neighbors were always omitted. According to [24] (chapter 3.2), the off-diagonal
elements beyond second-nearest atomic neighbors are negligible in the tight-binding
calculations. For the division of the structural model into principal layers, refer to
Fig. 11.

The reciprocal space was sampled by 15×15 ~k-points (Bloch vectors) in the
surface (two-dimensional) Brillouin zone. This sampling corresponds to 36 points in
the irreducible wedge of the two-dimensional Brillouin zone (the wedge being 1/8 of
the whole Brillouin zone), which is the same number as used in [46]. The basis was
composed from muffin-tin orbitals with angular quantum number l ≤ 2, or, in other
words, the spd basis was used. The LSDA exchange-correlation potential in the
parameterization of Vosko, Wilk, and Nusair [41] was employed in the calculations
performed by the LMTO-ASA method. The DFT self-consistent cycle had always
been converged so that the calculated total energy would change by less than 10−6 Ry
(≈ 10−5 eV) in further iterations.

The calculations were performed for several representative magnetic configura-
tions of the two-dimensional surface alloys. The representative configurations were
chosen so that the p(1 × 1) surface unit cell were preserved in the spin-polarized
CPA calculations. Note that the c(2 × 2) antiferromagnetic order does not belong
to such magnetic configurations. A spin-polarized calculation consists in consid-
ering the energy functional of the DFT as a functional of two separate densities,
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those of the ‘spin-up’ and the ‘spin-down’ electrons. Accordingly, the axial vectors
representing local magnetic moments of individual atoms are allowed to orient in
only two different mutually opposite directions. The models of the magnetic binary
alloys that conform to the so-far imposed restrictions can be described in a formal
way as a four-component homogeneous alloy: each of the two elements contained in
the alloy is represented by two components that differ in the direction of their local
magnetic moments. The chemical and magnetic composition of such alloys is given
by the general formula

X↑
αX↓

βY↑
γY

↓
δ , (125)

where the symbols X and Y represent two (3d-transition) elements, the superscripts
↑ and ↓ distinguish the two opposite orientations of the local magnetic moments,
and α, β, γ, and δ are real numbers that denote the proportion of the respective
kinds of atoms (the atomic fraction) on the surface. At the same time, α, β, γ, and
δ also express the probability that a particular surface site would be occupied by an
atom of the respective element with the respective orientation of magnetic moment.
Since there is only one surface atomic site per surface unit cell, all the surface sites
are equivalent in the statistical sense, or, in other words, the same probabilities
apply for an arbitrary surface site. In the following, I shall relabel the probabilities
(or atomic fractions) in an intuitive way:

x↑ ≡ α, (126a)

x↓ ≡ β, (126b)

y↑ ≡ γ, (126c)

y↓ ≡ δ. (126d)

Furthermore, x = x↑ + x↓ will denote the relative amount of all atoms of element
X, and, similarly, y = y↑ + y↓ will denote the relative amount of element Y. The
condition

x+ y = 1 (127)

has to be fulfilled, so as to ensure that all surface sites are occupied by an atom
and the binary alloy thus forms a complete monolayer on the surface. The cases of
incomplete coverage will be treated in the next section.

Let me now introduce a few magnetic states of the surface alloy to which spe-
cial attention is going to be devoted. All of them can be represented by the above
given formula (125). First, it is the ferromagnetic state (FM), in which the mag-
netic moments of all atoms point in the same direction. The general formula for a
ferromagnetic surface film will be X↑

xY
↑
1−x. Another notable magnetic state is that

of disordered local moments (DLM), which is characterized by randomly oriented
local moments with a uniform probability distribution over all possible directions in
space. Although the DLM state may seem to fall out of reach of the simple spin-
polarized calculations, because it involves all possible orientations of local magnetic
moments rather than magnetic moments aligned with a preferred magnetization
axis, it can be proven [64] that as long as the CPA description is concerned, the
DLM state is equivalent to a random two-component mixture of 50% atoms with
an ‘upward’ orientation of their magnetic moments and another 50% atoms with
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the opposite (‘downward’) orientation of magnetic moments. We thus arrive at the
formula X↑

x/2X
↓
x/2Y

↑
(1−x)/2Y

↓
(1−x)/2 for a binary alloy in the DLM state.

The DLM state described by the last formula somewhat resembles the antifer-
romagnetic state. Just as in the antiferromagnetic state, there are local magnetic
moments of opposite orientations and both of these orientations of the magnetic
moments occur for exactly half of the atoms, resulting in zero total magnetization.
However, while the antiferromagnetic state is ordered, the DLM state is a disordered
one, lacking not only the long-range but even any short-range order. In spite of this
important difference, we may still expect that whenever the antiferromagnetic state
is favored over the ferromagnetic one (i.e., when the former possess lower total en-
ergy than the latter), the DLM state will be most probably also favored over the
ferromagnetic state, although typically not over the antiferromagnetic state. The
reason for this is that the mutual orientation of local magnetic moments at near-
est neighboring atoms usually decides about total energy differences between the
various magnetic states: either parallel or antiparallel alignment of neighboring lo-
cal moments turns out to be preferable. If the antiparallel alignment (as in the
antiferromagnetic state) bears lower energy than the parallel alignment (present in
the ferromagnetic state), the DLM state in which pairs of nearest neighbors with
both parallel and antiparallel mutual alignment can be found will be something in
between from the point of view of the total energy: favored over the ferromagnetic
state but less preferable than the antiferromagnetic state. As far as we avoid in-
vestigating the antiferromagnetic states, the preference for a DLM state is a good
indication that in fact an antiferromagnetic state would be preferred, possibly being
the ground state.

The next special magnetic state to be treated here is the ‘antiparallel arrange-
ment of (the local magnetic) moments’ (APM). In contrast to the DLM or FM state,
this state is defined specifically for the binary alloys and it would make no sense
to introduce it for a system with only one chemical component. The formula that
defines the APM state reads X↑

xY
↓
1−x. Just like the DLM is a disordered analogy to

the antiferromagnetic state, the APM can be viewed as a disordered analogy to an
ordered ferrimagnetic state. A ferrimagnetic state is characterized by two classes of
lattice sites that possess local magnetic moments of different magnitudes and possi-
bly also of opposite orientations. In the APM state, all lattice sites are statistically
equivalent, but there are atoms of two different elements. The equivalence of the
lattice sites in the APM state stems from the fact that any site may be occupied by
an atom of either element and the probabilities of being occupied by a given kind
of atom are the same for all sites. The atoms of the two elements, however, carry
magnetic moments that have generally different magnitudes and that are aligned
in mutually opposite directions. A tendency towards the APM state indicates that
the local magnetic moment of each atom tends to align parallel to local moments
of neighboring atoms of the same element, but antiparallel to the local moments of
atoms of the other element.

Finally, I will adopt the notation DLM(X)+FM(Y) to refer to the states that
are described by the formula X↑

x/2X
↓
x/2Y

↑
1−x. Recall that the binary surface systems

in which we are primarily interested are composed of one component (say, Y) that
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abbreviation formula pX pY
FM X↑

xY
↑
1−x +1 +1

DLM X↑
x/2X

↓
x/2Y

↑
(1−x)/2Y

↓
(1−x)/2 0 0

APM X↑
xY

↓
1−x +1 −1

DLM(X)+FM(Y) X↑
x/2X

↓
x/2Y

↑
1−x 0 +1

Table 3: Summary of the notation for several special magnetic states of the two-
dimensional binary alloys. The alloys are composed of two 3d transition metals,
denoted here as X and Y, deposited on the W(001) surface. The up- or down-
pointing arrows label components with different orientation of the atomic magnetic
moments. The quantities in the last two columns, pX and pY , describe the degree of
‘polarization’ with respect to the orientation of local magnetic moments.

exhibits a ferromagnetic coupling between its atoms and of another component (com-
ponent X) that exhibits an antiferromagnetic coupling. For this kind of alloys, the
magnetic state DLM(X)+FM(Y) lets each component retain its ‘natural’ magnetic
state, at least within the limits imposed by our restriction to the p(1 × 1) surface
unit cell, which forces us to replace the antiferromagnetic state with the DLM one.
If the interaction between atoms of different elements (i.e. between X and Y) were
negligible, the DLM(X)+FM(Y) magnetic state could be expected to be close to
the ground state. There is, however, no reason why the assumption of negligible
interaction between X and Y should hold in general. Therefore the actual ground
state may considerably differ from the DLM(X)+FM(Y) model configuration.

The notation for all the above discussed special magnetic states is summed up
in Tab. 3. The last two columns of the table describe the magnetic states in terms
of the quantities defined as

pX =
x↑ − x↓

x↑ + x↓
, (128a)

pY =
y↑ − y↓

y↑ + y↓
. (128b)

We can interpret these quantities as a degree of ‘polarization’ of magnetic moments
found for atoms of the respective elements: pX = 0 means randomly oriented mag-
netic moments of atoms X while pX = 1 means that all magnetic moments of atoms
X are aligned in one direction. The sign of either pX or pY can be chosen arbitrarily,
it only matters whether the signs of pX and pY are the same or the opposite.

4.1.2 Results for the special magnetic states

The results of total energy calculations for varying composition of the surface layer
and for different magnetic states are summarized in Figs. 12 and 13. The total
energies of distinct magnetic states for one given chemical composition are plotted
as differences from the energy of the corresponding DLM state, which thus serves
as a zero-energy level. Each panel in the two figures covers one particular system
of two 3d transition metals on the tungsten surface. The composition of the surface
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Figure 12: Differences between the total energies of various magnetic states as a
function of the surface composition are shown here for the following surface binary
alloys: (a) iron with vanadium, (b) cobalt with vanadium, (c) iron with chromium,
(d) cobalt with chromium, (e) iron with manganese, and (f) cobalt with manganese.
The total energy of the DLM state is used as the zero energy level in all cases. The
abbreviations used to label the magnetic states are explained in the text.
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Figure 13: Differences between the total energies of various magnetic states as a
function of the surface composition are shown here for the following surface binary
alloys: (a) vanadium with chromium, (b) vanadium with manganese, (c) chromium
with manganese, and (d) iron with cobalt.

alloy changes along the horizontal axis, beginning with a pure monolayer of the first
component on the left and ending with a pure monolayer of the second element on the
the right. The magnetic states are distinguished from each other by different shapes
and colors of the symbols. When a symbol for a particular magnetic state is missing
at some composition of the alloy, the self-consistent DFT solution corresponding
to that particular magnetic state and composition has not been found. The non-
existent solutions and solutions with very high total energy are of little interest
here anyway. Our analysis should rather focus on magnetic configurations that have
comparatively low total energy and hence a good chance to be close to the ground
state.

Let me begin the discussion with the alloys composed of one element that tends
to ferromagnetic coupling between its atoms (V, Cr, or Mn) and one that tends
to antiferromagnetic coupling (Fe or Co). The results for such surface alloys are
shown in Fig. 12. First, note the leftmost and rightmost points of the graphs, which
represent the total energy of various magnetic states of chemically pure monoatomic
layers. As could be expected based on the findings of Ferriani et al. [46], the FM
state turns out to be that with the lowest total energy for the V, Cr, and Mn
monolayers, while the DLM state assumes the lowest energy (among the magnetic
states considered here) in the case of the Fe and Co monolayers. Actually, I have
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also recalculated the total energies of the pure Fe and pure Co monolayers in the
ordered c(2 × 2) antiferromagnetic state, using the TB-LMTO ASA method. My
calculation has confirmed that the antiferromagnetic states have lower energy than
both the FM and the DLM states. In the case of the Fe monolayer, I have found
the total energy of the c(2× 2) antiferromagnetic state to be lower than the energy
of the DLM state by 135 meV per Fe atom. The difference between the FM state of
the iron monolayer and the antiferromagnetic one then amounts to 279 meV per Fe
atom. In the case of the Co monolayer, I have found the c(2× 2) antiferromagnetic
state to have lower total energy than the DLM state by 49 meV per Co atom. The
difference between the FM state of the cobalt monolayer and its antiferromagnetic
state is then 87 meV per Co atom. For comparison, Ferriani et al. found the energy
of the (c2× 2) antiferromagnetic state of Fe monolayer to be about 150 meV per Fe
atom below the ferromagnetic state and the energy of the (c2×2) antiferromagnetic
state of Co monolayer to be about 60 meV per Co atom below the ferromagnetic
state. Considering that my computational method (TB-LMTO) was substantially
different from the method used by Ferriani et al. (FP-LAPW with surface relaxation
taken into account), the agreement of our results is reasonable.

Although those magnetic states that can be meaningfully defined only for a
two-component surface alloy, like APM and DLM(X)+FM(Y), can be studied the-
oretically even near the limits of a chemically pure overlayer, the component whose
content in the surface alloy almost vanishes does not substantially influence the total
energy of the system. Therefore the energy of the APM state coincides with the en-
ergy of the FM state at both limits of the composition range, just as it can be seen
in the corresponding figures. Similarly, the energy of the DLM(X)+FM(Y) state
also approaches the energy of the FM state for an almost pure overlayer composed
mainly of the element X, while it approaches the energy of the DLM state for an
almost pure overlayer composed mainly of Y.

Now, we turn our attention to the cases of intermediate composition, in which
a non-zero amount of both components is present in the surface alloy. Notice that
for most pairs of elements XY, there exists certain composition range in which
DLM(X)+FM(Y) possesses lower total energy than all the other plotted special
magnetic states. The DLM(X)+FM(Y) mostly remains the preferred magnetic state
as long as the alloy is rich in the X component. Here, the component X may
be either Fe or Co, while Y may be Cr or Mn. The alloys containing vanadium
behave differently to some extent and they will be discussed later. The observed
preference for the DLM(X)+FM(Y) state can be understood in the following way:
The antiferromagnetic coupling between atoms of component X prevails in the X-
rich overlayers over other tendencies . Since the antiferromagnetic state of the
binary systems has not been considered, the tendency to the antiparallel alignment
of magnetic moments is best satisfied in the DLM state. Therefore the component
X assumes the DLM state. The local magnetic moments at atoms of the other
component, Y, may be pushed to assume some particular orientation with respect to
the local magnetic moments of X. Nevertheless, since the local magnetic moments of
X are disordered, there is no particular orientation the magnetic moments of Y could
be forced to reach by the interaction with X. The ferromagnetic coupling among the
atoms of Y thus becomes decisive. The result is—at least in our restricted space of
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magnetic configurations—the DLM(X)+FM(Y) magnetic state.

The balance of the interactions changes as the content of element X decreases
and the content of Y increases. On the one hand, the component Y retains the
parallel alignment of its local magnetic moments. In fact, the tendency to the
parallel alignment among the local magnetic moments of Y becomes even stronger
with a larger amount of Y. On the other hand, the quest for the antiferromagnetic
configuration inherent in the component X may be overridden by the tendency of
its local magnetic moments to achieve some definite orientation with respect to the
local magnetic moments of Y. As a consequence, the APM state assumes lower total
energy than the DLM(X)+FM(Y) state (for all but one combination of elements
considered, namely for FeCr, FeMn, CoV, CoCr, and CoMn) if the content of V,
Cr, or Mn is sufficiently high. What a sufficiently high content of the element X is,
depends crucially on the relative strength of the various types of magnetic coupling
present in the alloy. The only exception from the above described behavior is the
FeV overlayer, for which the favored magnetic state is the DLM(Fe)+FM(V) almost
up to the limit of pure vanadium layer. A certain preference for the FM state over the
APM states suggests a weak tendency to parallel rather than antiparallel alignment
of the local magnetic moments between a vanadium and an iron atom. For extremely
vanadium-rich layers (over 96 % vanadium, i.e. below 4% iron), the energy of the
FM state is even slightly lower than the energy of the DLM(Fe)+FM(V) state.

The properties of surface alloys containing vanadium deviate from the pattern
observed in the other alloys. This difference concerns iron-rich FeV and cobalt-rich
CoV overlayers. Fig. 12(a) shows the DLM(Fe)+FM(V) and DLM states of FeV as
degenerate states if the Fe content is higher than about 70%. Similarly, Fig. 12(b)
shows the DLM(Co)+FM(V) and DLM states of CoV as degenerate for the Co
content over about 55%. Such a depiction may seem to indicate that there exist
two distinct states with the same total energy in the above mentioned composition
ranges of the FeV and CoV surface alloys. However, there is in fact only one magnetic
state that is characterized by randomly oriented local moments (DLM) at cobalt or
iron atoms and zero magnetic moment at vanadium atoms—see also Figs. 14(a,b)
and 15(a,b). Such a magnetic state may be denoted as ‘DLM(Fe)+NM(V)’ or
‘DLM(Co)+NM(V)’, respectively, the letters NM standing for ‘non-magnetic’. Since
the vanadium atoms lack a magnetic moment, we cannot distinguish V↑ from V↓

as we did in Tab. 3. Looking at it from another point, we may separate the non-
magnetic vanadium atoms into the V↑ and V↓ groups in an arbitrary way. Hence,
the DLM(X)+NM(Y) state can be viewed as if it simultaneously complied with
two formulas of Tab. 3, the one for the DLM state as well as the one for the
DLM(X)+FM(Y) state. That is why I have chosen to represent the DLM+NM
state as the degenerate DLM and DLM+FM states. For the CoV alloy, the genuine
DLM(Co)+FM(V) never becomes the lowest energy state. The DLM+NM state is
the favored one for both the iron-rich FeV and cobalt-rich CoV surface alloys. In
the case of the FeV alloy, the DLM(Fe)+FM(V) is still the preferred magnetic state
in a limited composition range, but it is so for the vanadium-rich layers rather than
for the iron-rich ones.

Let me continue the discussion with the systems shown in Fig. 13, namely the
VCr, VMn, CrMn, and FeCo surface alloys. These overlayers are composed of

79



elements that either both display ferromagnetic coupling or that both display anti-
ferromagnetic coupling between local magnetic moments of atoms of one particular
element. The DLM+FM states have not been considered for these alloys, although
a self-consistent DFT solution for a DLM+FM state may exist. The VCr, VMn,
and CrMn layers remain ferromagnetic at any ratio of their two constituting ele-
ments. In contrast, we may spot the tendency of any two atoms in the FeCo surface
alloy (be it two Fe or two Co atoms or one Fe with one Co atom) to align their
local magnetic moments in a mutually antiparallel way. As a result of this antiferro-
magnetic coupling, the DLM state is favored over the other special magnetic states
at the Fe-rich as well as at the Co-rich end of the composition range. Just in the
intermediate case, in which the content of Fe and Co in the layer is approximately
the same, the APM state prevails, having even lower total energy than the DLM
state. The observation that the APM state is preferred to the DLM one around
the half-to-half composition of the FeCo surface alloy indicates that the coupling
of local magnetic moments between one Fe and one Co atom is stronger than the
similar coupling between either two Fe or between two Co atoms.

Figs. 14 and 15 illustrate how much the magnitude of an atomic magnetic mo-
ment depends on the composition of the surface alloy in which the atom that bears
the magnetic moment in question is present. In other words, the figures show how
sensitive the magnitude of the magnetic moment of an atom is to the environment of
that atom. The magnetic moments are calculated as the difference between the two
spin-polarized electron densities integrated over the atomic sphere in the LMTO-
ASA method. In the figures, I have chosen to show the magnetic moments pertaining
to the DLM state because a self-consistent DFT solution that corresponds to the
DLM state can be found for any composition of the surface alloy, thus allowing the
comparison of the moments among different compositions. Moreover, the behavior
displayed in the DLM states includes the noteworthy cases in which the sponta-
neous magnetization at vanadium atoms completely disappears. I have used the
same range of values on the vertical axes in all panels in Figs. 14 and 15, so that the
values of the magnetic moments could be easily compared between different graphs.
The magnetic moments especially of the manganese and iron atoms but also of the
cobalt and chromium atoms have a rather rigid magnitude, insensitive to the chem-
ical composition of their environment. The magnetic moments of vanadium atoms
behave differently; they are very sensitive to the chemical environment and, as men-
tioned above, they may be even quenched to zero under certain circumstances. This
happens when the vanadium atom is surrounded by atoms of a different element
with disordered local moments. While the graphs demonstrate the sensitivity (or
insensitivity) of the atomic moments to the chemical composition of the environ-
ment, Tab. 4 shows their sensitivity to the magnetic state of the overlayer, i.e. to the
orientation of the magnetic moments of surrounding atoms. The conclusions that
can be drawn from the table are similar to those drawn from the graphs in Fig. 14
and Fig. 15. Again, manganese atoms turn out to possess the most rigid magnetic
moment while the vanadium atoms have the most volatile magnetic moment. The
almost invariant atomic magnetic moments found for the 3d transition metals from
Cr to Co in the two-dimensional alloys on W(001) resemble the behavior of FeCo al-
loyed monolayers on the Cu(001) substrate studied by Turek et al. [65]. The atomic
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Figure 14: Local magnetic moments at atoms of an overlayer in the DLM state
as a function of the overlayer composition. Different symbols refer to atoms of
different elements. The overlayer for which the values of magnetic moments are
plotted consists of (a) iron (diagonal crosses) with vanadium (circles), (b) cobalt
(diamonds) with vanadium, (c) iron with chromium (upright crosses), (d) cobalt
with chromium, (e) iron with manganese (asterisks), and (f) cobalt with manganese,
respectively.
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Figure 15: Local magnetic moments at atoms of an overlayer in the DLM state as a
function of the overlayer composition. Different symbols refer to atoms of different
elements, like in Fig. 14. The overlayer for which the values of magnetic moments
are plotted consists of (a) vanadium with chromium, (b) vanadium with manganese,
(c) chromium with manganese, and (d) iron with cobalt, respectively.

magnetic moments in the FeCo monolayers on Cu(001) exhibit only small changes
with chemical composition too, in contrast to Fe-rich bulk (three-dimensional) FeCo
alloys, where the magnetic moments of Fe atoms vary considerably with the Co con-
tent, leading to a non-monotonous dependence of saturation magnetization on alloy
composition in the bulk case [66]. Another paper by Turek et al. [67], which deals
with the surface magnetism of the FeCo and FeV alloys, also reports a behavior of
the magnetic moments associated with the surface atoms that is similar to what I
have found for the surface alloys on W(001): again, comparatively rigid values of
magnetic moments for the Fe and Co atoms on the one hand and rather volatile
magnetic moments of V atoms on the other hand.

4.1.3 More general magnetic states and a model description

So far, I have only dealt with a few selected magnetic states (FM, DLM, APM,
DLM+FM). Let me now consider the most general magnetic states described by the
formula (125). Such states (in which all four components are present in a non-zero
amount) may be viewed as approximate representations of generalized (‘uncompen-
sated’) DLM states, in which the local magnetic moments are still oriented randomly
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element FM DLM change by
V 1.58 1.01 −36.1%
Cr 2.95 2.83 −4.1%
Mn 3.53 3.49 −1.1%
Fe 2.51 2.80 +11.6%
Co 1.18 1.45 +22.9%

Table 4: Local magnetics moments (in Bohr magnetons) at atoms in a pure mono-
layer of a 3d transition element on the W(001) surface. Values for the DLM and FM
magnetic states are given for comparison. The last column gives the relative change
of the magnetic moment when going from the ferromagnetic to the DLM state.

as in the ordinary DLM state, but with a distribution biased towards some predomi-
nant direction. As the number of possible magnetic configurations taken into account
grows considerably now, it is desirable to provide the discussion of interactions be-
tween the atomic magnetic moments with a more formal basis. I will assume that
the energy of the various magnetic states can be, at least approximately, described
by the classical Heisenberg model,

E = E0 +
1

2

∑
Xi,Xj

Aij cos θij +
∑
Xi,Yj

Bij cos θij +
1

2

∑
Yi,Yj

Cij cos θij, (129)

where E0 is the part of the total energy that is independent from the mutual orien-
tation of local magnetic moments, the indices i and j denote individual atomic sites
on the W(001) surface, the first sum runs over all pairs of sites such that both sites
in that pair are occupied by the element X, the second sum runs over all pairs of
sites such that the first site i is occupied by the element X and the site j is occupied
by the element Y, and, finally, the third sum runs over all pairs of sites in which
both sites are occupied by the element Y; θij is the angle between the directions in
which the magnetic moments of atoms at sites i and j are oriented. Furthermore,
the angles θij will be allowed to assume only two possible values, ±π, corresponding
to the ‘up’ and ‘down’ orientations of the locally prevailing spin. We thus arrive at
a model akin to the Ising one. The coefficients Aij, Bij, and Cij then represent half
of the energy increase that would arise from flipping the magnetic moments of the
two atoms at sites i and j from mutually parallel into mutually opposite orienta-
tion. The factors 1/2 in front of the summation signs remove a double-counting of
atomic pairs. Instances in which i = j are to be excluded from the summation, or,
alternatively, we may put Aii = Bii = Cii = 0.

We can further make use of the previously introduced assumption that there is
no correlation between different sites with respect to the probability that the sites
are occupied by some particular type of atom. Because of this assumption, the
statistical properties of any site are fully defined by the occupation probabilities
x↑, x↓, y↑, and y↓ (see Eqs. 126). Then, after averaging Eq. (129) over all possible
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configurations, we obtain

E = E0(x, y) +
∑

i 6=j

[
1
2
Aij

(
x↑ix

↑
j − x↑ix

↓
j − x↓ix

↑
j + x↓ix

↓
j

)
+

+Bij

(
x↑i y

↑
j − x↑i y

↓
j − x↓i y

↑
j + x↓i y

↓
j

)
+

+ 1
2
Cij

(
y↑i y

↑
j − y↑i y

↓
j − y↓i y

↑
j + y↓i y

↓
j

)]
.

(130)

Now, the energies E and E0 stand for the configuration-averaged values of the
corresponding energies that occurred in Eq. (129). If the occupation probabilities
are the same for all sites, as I have assumed so far, the above formula simplifies to

E = E0(x, y) +1
2
JXX

((
x↑

)2 − 2x↑x↓ +
(
x↓

)2
)

+

+JXY

(
x↑y↑ − x↑y↓ − x↓y↑ + x↓y↓

)
+

+1
2
JY Y

((
y↑

)2 − 2y↑y↓ +
(
y↓

)2
)
,

(131)

where
JXX =

∑

i6=j

Aij, (132a)

JXY =
∑

i6=j

Bij, (132b)

JY Y =
∑

i 6=j

Cij. (132c)

Making use of the notation introduced by Eqs. (128) and Eqs. (132) and consid-
ering that according to Eq. (127) y = 1− x, we may rewrite Eq. (131) as

∆E =
1

2

[
JXXx

2p2
X + 2JXY x(1− x)pXpY + JY Y (1− x)2p2

Y

]
, (133)

where ∆E = E−E0(x, y). Since the right-hand side of Eq. (133) is zero in the DLM
state, E0 is the total energy of the DLM state and ∆E is the difference between the
actual total energy and that of the DLM state, just like in Figs. 12 and 13.

Before I apply the above formalism to the magnetic states with arbitrary pX

and pY , let us see how well it describes the special states considered previously. As
far as the surface alloys containing vanadium are concerned, our model that has
lead to Eq. (133) necessarily fails. The model requires that the magnitudes of mag-
netic moments of individual atoms are not sensitive to the chemical and magnetic
properties of the other atoms, only the orientation of the moments is influenced
by interaction with the environment. This is not true for vanadium—the magnetic
moment of vanadium atoms was found to change dramatically depending on the en-
vironment in which the vanadium atoms were situated. The parameters JXX , JY Y ,
and JXY that appear on the right-hand side of Eq. (133) are presumably dependent
on the magnitude of local magnetic moments. Therefore these parameters cannot
be expected to remain even approximately constant if one of the elements involved
in the surface alloy is vanadium. Indeed, Eq. (133) predicts a quadratic dependence
of ∆E on the alloy composition while the dependence of ∆E on the composition
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Figure 16: Total energy differences ∆E of various magnetic states with respect to
the DLM state that have been calculated from Eq. (133) are compared to the corre-
sponding energy differences previously obtained from DFT calculations. Individual
symbols denote the DFT results—these symbols form the same graphs as in the cor-
responding panels of Fig. 12 and Fig. 13—while lines represent the values derived
from our Ising-like model, i.e. from Eq. (133). The values of the parameters JXX ,
JXY , JY Y that were substituted into the right-hand side of Eq. (133) are listed in
Tab. 5.
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JXX , JY Y JXY

JCrMn= −0.229 eV
JCrCr = −0.292 eV JFeCr = +0.058 eV
JMnMn= −0.105 eV JFeMn = +0.115 eV
JFeFe = +0.290 eV JCoCr = +0.103 eV
JCoCo = +0.076 eV JCoMn= +0.156 eV

JFeCo = +0.195 eV

Table 5: Estimated values of the parameters JXX , JY Y , and JXY that describe the
interaction between local magnetic moments of two atoms in the surface alloy. The
values were chosen so that the DFT results for the total energy be exactly reproduced
for all chemically pure monolayers in both the FM and the DLM state and also for
the Fe0.5Cr 0.5, Co0.5Cr 0.5, Fe0.5Mn0.5, Co0.5Mn0.5, and Fe0.5Co0.5 surface alloys in
the APM state and for Cr 0.5Mn0.5 in the FM state.

plotted in the respective graphs of Fig. 12 and Fig. 13 for vanadium alloys obvi-
ously cannot be approximated by any quadratic function. Nevertheless, our model
may still represent reasonably well magnetic properties of the other surface alloys,
those which contain elements characterized by more rigid magnetic moments than
vanadium has, i.e. the alloys composed of Cr, Mn, Fe, and Co.

So let us compare the prediction of Eq. (133) concerning ∆E as a function of x
for the FexCr1−x, CoxCr1−x, FexMn1−x, CoxMn1−x, CrxMn1−x, and FexCo1−x alloys
with the corresponding results of DFT calculations presented in Figs. 12 and 13. The
comparison is shown in Figs. 16. To draw the curves corresponding to Eq. (133),
the parameters JXX , JY Y , and JXY for all relevant elements X and Y had to be
determined. The values of the parameters should be chosen so that they render, in
some sense, the best fit of the expression on the right-hand side of Eq. (133) to the
results found by the DFT calculations. However, the purpose I had in mind when
I introduced the Ising-like model, which lead to Eq. (133), was just that it should
help to reveal some overall trends, not that it should provide a precise quantitative
description. There is therefore no need to invent some sophisticated way to find
the best possible fit. Instead, I have determined the values of JXX , JY Y , and JXY

by simply imposing the requirement that the value of ∆E derived from the model
must exactly agree with the value comming from the DFT calculations in several
selected cases. These cases were the following: First, it was the FM state of each
chemically pure overlayer, i.e. of pure Cr, Mn, Fe, and Co layer. Next, it was either
the FM or the APM state of a binary alloy that contained an equal amount of both
its components. The FM state was chosen for Cr0.5Mn0.5 and the APM state was
chosen for all the others, i.e. for Fe0.5Cr0.5, Co0.5Cr0.5, Fe0.5Mn0.5, Co0.5Mn0.5, and
Fe0.5Co0.5, thus taking always that one of the two states, FM or APM, which had
lower energy and which should be therefore closer to the ground state. The energies
of the DLM states were always used as the zero level. The values of the parameters
JXX , JY Y , and JXY thus obtained are listed in Tab. 5.

Having tested the analytical model description in the case of the special magnetic
states, we eventually get to the partially polarized (uncompensated DLM) magnetic
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composition model prediction DFT results
XxY1−x pX pY pX pY

Fe0.25Cr0.75 −0.60 +1.00 −0.5 +1.0
Fe0.50Cr0.50 −0.20 +1.00 −0.2 +1.0
Fe0.75Cr0.25 −0.07 +1.00 −0.1 +1.0
Co0.25Cr0.75 −1.00 +1.00 −1.0 +1.0
Co0.50Cr0.50 −1.00 +1.00 −1.0 +1.0
Co0.75Cr0.25 −0.45 +1.00 −0.5 +1.0
Fe0.25Mn0.75 −1.00 +1.00 −0.1 +1.0
Fe0.50Mn0.50 −0.40 +1.00 −0.5 +1.0
Fe0.75Mn0.25 −0.13 +1.00 −0.2 +1.0
Co0.25Mn0.75 −1.00 +1.00 −1.0 +1.0
Co0.50Mn0.50 −1.00 +1.00 −1.0 +1.0
Co0.75Mn0.25 −0.68 +1.00 −0.6 +1.0

Table 6: The general partially polarized (uncompensated DLM) magnetic states with
the lowest energy have been determined for several overlayers of different compo-
sition. The minimal-energy states are characterized by the parameters pX and pY

defined by Eqs. (128). The values of pX and pY that were determined by minimizing
the right-hand side of Eq. (133) under the constraints 0 ≤ pX ≤ 1 and 0 ≤ pY ≤ 1
are compared to those obtained independently from the DFT calculations.

states, which are characterized by arbitrary values of pX and pY ranging from −1
to 1. A comparison between the Ising-like model, expressed by Eq. (133), and the
DFT results is made in Tab. 6. The magnetic states in which the surface system
reaches its minimal energy were independently determined using both approaches.
The values of pX and pY that were found by minimizing the analytical expression for
∆E, as given by the right-hand side of Eq. (133), differed from the corresponding
values determined by direct DFT calculations by 0.1 at most. Again, the values of
JXX , JXY , and JY Y listed in Tab. 5 were substituted into Eq. (133) for the purpose
of this comparison. Just a few (namely 12, as the reader sees in Tab. 6) surface
alloys of various composition were selected to perform the comparison. The reason
is that carrying out the corresponding DFT calculations was rather demanding.
The magnetic states considered here form a two-dimensional continuum that can be
parameterized with pX and pY . The continuum of the magnetic states was sampled
by changing the parameters from −1.0 to 1.0 with the step of 0.1. Such a sampling
adds up to 21 × 21 = 441 magnetic configurations for any particular composition
of the surface alloy; this number can be reduced down to 221 if the symmetry with
respect to the simultaneous sign change of pX and pY is taken into account. The
alloys selected for the test are those in which one of the components tends to the
ferromagnetic and the other one to the antiferromagnetic coupling and in which both
components have rather rigid magnitudes of their respective magnetic moments.
This criteria limit the combination of the chemical elements in the overlayer to
FeCr, FeMn, CoCr, and CoMn. Three cases of different composition have been
explored for each pair of elements, namely X0.25Y0.75, X0.50Y0.50, and X0.75Y0.25.
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Actually, the uncompensated DLM states have been explored in the case of
chemically pure overlayers too. The task was much less demanding with the pure
overlayers since the energy depended on one polarization parameter p only. These
calculations lead to the expected result that either the FM (for V, Cr, and Mn) or
the DLM (for Fe and Co) state of the chemically pure layers possess the lowest total
energy of all the investigated magnetic states.

The surface alloys containing vanadium, however, do not conform to Eq. (133),
because of the already discussed sensitivity of vanadium magnetic moments to the
chemical and magnetic properties of the atomic neighborhood. Due to this sensitiv-
ity, there are many partially polarized magnetic states for which no DFT solution
can be found. That is why the surface alloys containing vanadium are not included
in Tab. 6. Moreover, among those magnetic states of FeV and CoV that can be han-
dled with a DFT calculation, one of the formerly considered special states always
turns out to be the state with the lowest energy. The lowest-energy state of an FeV
or a CoV alloy is thus always either the DLM+FM or APM state or the DLM+NM
state, just as suggested by the panels Fig. 12(a) and Fig. 12(b).

The magnetic configurations explored in this thesis were mainly limited to those
that could be described within the CPA using a p(1 × 1) surface unit cell. The
lowest energy states found here are therefore not necessarily the real ground state
that would realize in nature. However, the calculations, although carried out in
a limited space of magnetic configuration, reveal important characteristics of the
magnetic interactions that take place in the surface alloys. The characteristics found
in this way (expressed, e.g., by the coefficients JXY , JXY , JY Y ) can be later inserted
into models of more complicated magnetic structures that would be too difficult to
treat with first-principles calculations. The rather good agreement between the DFT
results and the prediction of our Ising-like model for the overlayers containing Fe,
Cr, Mn and Co suggests that such models based on pair-wise magnetic interaction
would be indeed useful to study some more complicated magnetic structures in these
systems.

4.2 Incomplete coverage of the tungsten surface

4.2.1 Disordered submonolayer films

Apart from the possibility of treating binary alloys, the LMTO-ASA method com-
bined with the CPA also provide means of treating disordered layers of a sub-
monoatomic thickness. An incomplete (sub-monoatomic) overlayer can be repre-
sented by a two-dimensional surface alloy, one of whose components consists of
empty atomic spheres (like those representing the vacuum above the surface). This
possibility will be used to explore the magnetic properties of incomplete overlayers
formed of a 3d transition metal on the W(001) surface. The clean W(001) surface
is known to undergo a reconstruction into a c(2 × 2) surface structure at low tem-
peratures [68, 70], but Spǐsák and Hafner [62] have shown that this reconstruction
disappears when iron is adsorbed on the surface. Even at very low coverage, the re-
constructed tungsten surface reverts locally to an almost unreconstructed structure
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under individual iron atoms. I will assume that a similar de-reconstruction takes
place after adsorption of other 3d metals as well. The absence of surface reconstruc-
tion allows me to retain the idealized surface structure depicted in Fig. 11, which
was adopted in the previous calculations for surface binary alloys. Furthermore, it
will be assumed that all available surface sites have the same probability of being
occupied by an adsorbed atom of the 3d transition element in question. Then the
probability that a surface site is occupied by an adsorbed atom may be interpreted as
fractional coverage of the surface by the overlayer. This occupational probability or
the surface coverage will be denoted by the symbol θ in the following. To sum up, the
incomplete overlayer will be formally described as a two-dimensional homogeneous
binary alloy, just like those in the previous section, but the second component of
the alloys will always be the vacuum. Admittedly, real incomplete overlayers (which
may be encountered, e.g., during the deposition of the monolayers) can be expected
to display a more complex structure due to the formation of islands, clusters, ordered
phase domains etc. However, I will focus on the general trends resulting from the
lowered surface coverage and reduced average number of atomic neighbors surround-
ing a typical surface atom rather than exploring the effects of the the actual surface
structure. In fact, we will see that the most prominent phenomenon exhibited by
the incomplete overlayers, namely the reduction of the magnetic moment predicted
for some of the 3d transition elements at low coverages, is primarily determined by
the overall coverage while it is less dependent on the detailed structure of the surface
layer.

Figs. 17 and 18 show how the properties of the partially covered surface depend
on the coverage θ. Fig. 17 shows differences between the respective total energies of
the ferromagnetic, DLM, and non-magnetic5 (NM) states. The energies presented in
Fig. 17 are expressed as the amount of energy per occupied surface site, that means
per one adatom, rather than as the amount of energy per any surface site. The total
energy per one (any) surface site has to be divided by θ to obtain the total energy per
one adatom. The latter representation of total energies allows one to see the energy
differences between different magnetic configurations clearly even if the coverage is
very low. In contrast, the differences of the energy per one surface site inevitably
tend to zero when going to very low coverages, because the clean tungsten surface
is non-magnetic. The energy of the non-magnetic state is chosen as a zero energy
level here. In the previous section, which dealt with the full monoatomic layers of
binary alloys on the tungsten surface, the non-magnetic states were not discussed at
all. The reason for their omission was that their energy considerably exceeded the
energies of all the various magnetic states. The NM state of the complete overlayers
was thus highly unfavorable in terms of total energy. However, this is no longer
true as we start looking at the partially covered surfaces. Fig. 17 reveals that the
non-magnetic state turns out to be the preferred one for vanadium, chromium and
manganese films at low coverage, namely for coverage below θ ≈ 0.65 for V, below
θ ≈ 0.50 for Cr, and below θ ≈ 0.10 for Mn. Correspondingly, the magnetic moments

5What I mean by the ‘non-magnetic’ state here is a state in which the local magnetic moments
of all atoms are zero. This state is sometimes referred to as ‘paramagnetic’, however, the DLM
state may be considered paramagnetic as well, so I will stick to the term ‘non-magnetic’ to avoid
ambiguity.
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Figure 17: Total energies of the ferromagnetic (FM, denoted by red upright crosses)
and DLM (denoted by green diagonal crosses) states of (a) vanadium, (b) chromium,
(c) manganese, (d) iron, and (e) cobalt layers on the W(001) surface as a function
of surface coverage θ. The energies are rendered as differences from the energy of
the corresponding non-magnetic state, which thus serves as the zero energy level.
The total energies are represented by their values per one adatom, i.e., per occupied
surface site.
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Figure 18: Local magnetic moments at atoms of the incomplete overlayers in the
FM (upright crosses) and DLM (diagonal crosses) states as a function of the surface
coverage.
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of adsorbate atoms—i.e. of V, Cr, Mn, Fe, and Co (shown in Fig. 18)—decrease with
decreasing coverage. This trend is especially pronounced in the cases of vanadium
and chromium, for which no DFT solution with non-zero magnetic moments exists
at all if the coverage is too low. Interestingly, the changes of the atomic magnetic
moments exhibited by manganese are substantially smaller in comparison to the
changes observed for vanadium and chromium, and magnetic solutions exist for the
manganese overlayer at arbitrarily low coverage, although the non-magnetic state is
the one with the lowest energy for very thin manganese layers.

The non-magnetic ground state of vanadium, chromium and manganese sub-
monolayer films may seem surprising. The magnetic moments of atoms adsorbed on
surfaces are usually enhanced in comparison with the magnetic moments of the same
atoms in bulk materials [69]. The enhancement is due to the reduced coordination
number (the number of nearest neighbors) of surface atoms with respect to the bulk
atoms. Therefore it seems reasonable to expect even more enhancement of the mag-
netic moments with further reduction of the average coordination number at lower
than monoatomic coverage. However, this is apparently not what the self-consistent
DFT calculations predict for V, Cr, and Mn on W(001). The argument that links
the tendency to spontaneous generation of magnetic moments with the coordina-
tion number is too simplistic to hold generally. There are two basic assumptions on
which this argument relies. The first assumption is that the tendency to sponta-
neous magnetization or the absence thereof is decided by the Stoner criterion [71].
In brief, the Stoner criterion says that the ferromagnetic state of a given system
will be preferred if the density of states at the Fermi level is sufficiently high for the
corresponding non-magnetic system, namely

I · n(EF ) > 1 (134)

where n(EF ) is the density of states at the Fermi energy and the exchange-correlation
integral or so called Stoner parameter I plays the role of a proportionality constant
that relates the splitting of energy bands caused by the spin-dependent part of the
exchange-correlation potential to the magnetic moment of atoms. The density of
states has to be replaced by the local (surface-projected) density of states when
applying the criterion on a two-dimensional system (surface). Considering that the
d-electrons of the 3d transition metals are especially relevant to the magnetism of the
surface systems investigated in this thesis, the Stoner parameter can be estimated
from the calculated magnetic moment per adatom and from the splitting observed
at these adatoms between the centers of the 3d electron bands pertaining to different
spin orientations:

I =
∆εd
µ
, (135)

where µ is the magnetic moment of an atom of a 3d transition metal expressed in
the Bohr magnetons and ∆εd is the 3d-band splitting. The band splitting can be
easily extracted from the results of the LMTO calculation as ∆εd = C↑3d−C↓3d, since
the parameters C, which denote the centers of the respective spin-resolved energy
bands, appear directly in the linearization formula of the LMTO method, Eq. 86.
Let us focus on the DFT calculations carried out for the ferromagnetic state of the
overlayers, so as to arrive at an estimate for the Stoner parameter. The numerical
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Figure 19: Non-magnetic density of states around the Fermi level projected onto
the adatoms is shown for (a) vanadium, (b) chromium, (c) manganese, (d) iron,
and (e) cobalt overlayers on W(001), each for three different levels of coverage: full
monolayer (θ = 1.0, full red line), half a monolayer (θ = 0.5, dashed green line),
and the limit of zero coverage, i.e. a single isolated adatom (θ = 0.0, dash-dotted
light blue line). The double horizontal lines denote the threshold density of states
pertaining to the the Stoner criterion (upper and lower estimate of the reciprocal
Stoner parameter I−1).
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values of the Stoner parameter I we thus obtain ranges from 0.81 eV to 0.91 eV
(cf. the values of I found for bulk materials in [72]). This value is not particularly
sensitive to the level of coverage or to the chemical nature of the adatoms, indicating
that I is indeed a well-defined parameter. Of course, if the Stoner criterion indicates
that ferromagnetism is preferred over the non-magnetic state, it does not mean that
the ferromagnetic state must be the ground state, since other magnetic states (like
DLM, antiferromagnetism, etc.) cannot be excluded. Note, however, that the energy
of the non-magnetic state often differs from the energies of all the various magnetic
states with non-zero local magnetic moments much more than the energies of these
magnetic states differ from each other. Consequently, the satisfied Stoner criterion
may be still taken as an indication that some state characterized by non-zero local
magnetic moments is indeed the ground state, although it is not necessarily the
ferromagnetic one. The second assumption on which the supposed relation between
the coordination number and magnetism relies is that the width of the electron bands
increases with increasing coordination number of atoms constituting the system;
hence a reduction of the density of states with increasing coordination number. The
other way round, the density of states increases when the coordination number is
reduced, making the ferromagnetic state more favorable.

Fig. 19 shows that the simplistic consideration regarding the link between the
coordination number of surface atoms and their magnetic moments fails on the
grounds of both its fundamental assumptions. Neither does the fulfillment of the
Stoner criterion guarantee that the system will be magnetic, as demonstrated by
the case of very thin manganese overlayers—see panel (c) of Fig. 19—nor does the
(surface-projected) density of electron states at the Fermi level necessarily increase
with the reduction of the coordination number—in fact, the opposite is true for
most cases shown in Fig. 19. The Stoner criterion may be a good indication of
ferromagnetism in simple bulk materials; however, a simple generalization of such a
rule of thumb is not possible for the more complex surface systems. The ab-initio
DFT treatment is thus absolutely indispensable so as to arrive at any meaningful
predictions regarding the magnetic properties of these surface systems.

4.2.2 Ordered half-a-monolayer-thick Cr film

In order to make the conclusion about the non-magnetic ground state of ultra-thin
films on W(001) more reliable, a calculation for one selected system, namely Cr
on W(001) at 50% coverage, has been carried out using the FP-(L)APW method
in the implementation of the WIEN2k computer code [37]. The calculation was
aimed at finding the dependence of the total energy on the magnetic moment in a
ferromagnetic state of the system. So as to explore this dependence, a constraint was
imposed on the total spin moment6 during the DFT calculation. The search for the
electron distribution that minimized the energy functional was thus restricted by the
condition that the number of the spin-up and the number of the spin-down electrons
differed by a predetermined value. The calculation with a fixed spin moment was

6The orbital magnetic moment was always zero because the spin-orbit coupling was not con-
sidered.
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Figure 20: On the left: Top view of the 0.5 monolayer of chromium arranged on
the tungsten (001) substrate in the form of the c(2× 2) superstructure. Red spheres
represent the Cr atoms, blue spheres the W atoms. On the right: Total energy of
the c(2× 2)–Cr/W(001) system as a function of the total magnetic moment per one
Cr atom. The energy of the non-magnetic system is chosen as the zero energy level.

repeated for several different magnitudes of the magnetic moment. The comparison
of total energies found for different magnetic moments allows us to check whether the
functional for the total energy is really minimal for the zero magnetic moment. This
is an advantage over the previous calculations, which could not definitely exclude
the possibility that the energy minimum at the zero magnetic moment was just a
local minimum that had been accidently reached by the iterative DFT calculation
instead of being the genuine ground state.

Since the WIEN2k code can only deal with periodic structures, the calculation
was performed on a repeated slab and the chromium atoms on the tungsten surface
were assumed to form a c(2 × 2) regular pattern (see the left panel of Fig. 20).
The slab consisted of 9 atomic layers of the bcc tungsten and the c(2 × 2)–Cr su-
perstructure on both its surfaces. About 1 nm wide empty space was left between
the neighboring slabs to ensure that the slabs do not influence each other. The
spacing between the tungsten atomic layers in the slab was kept at its bulk value
while the distance between the chromium overlayer and the underlying tungsten
layer was reduced by 14.4 %, i.e. to 85.6 % of the tungsten interlayer distance. This
position of the Cr overlayer on the tungsten substrate was taken from [46], although
it had been determined there for a full monoatomic layer of chromium rather than
for one half of a monolayer. The surface Brillouin zone was sampled by 15×15
~k-points, which resulted in having 36 ~k-points in the irreducible wedge of the Bril-
louin zone. The size of the (L)APW basis set was limited by the plane wave cutoff
Kmax = 60.1 nm−1 = 3.18 a.u.−1, corresponding to the maximal kinetic energy of
10.1 Ry. The augmentation part of the plane waves was constructed according to the
APW+lo scheme for l ≤ 2 (corresponding to the s, p, and d orbitals) in the atomic
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spheres of Cr and for l ≤ 3 (corresponding to the s, p, d, and f orbitals) in the
atomic spheres of W. The LAPW scheme was applied to all higher angular numbers
l. Spherical harmonics up to l = 10 were considered. The 3p electronic states of Cr
atoms and 5p and 4f states of W atoms were treated as semi-core states, while all the
lower lying states were treated as parts of the atomic core. The GGA representation
of the exchange-correlation potential due to Perdew, Burke, and Ernzerhof [38] was
employed. The self-consistency of the DFT solution was considered to be reached
when the ‘distance’7 between electron-density distributions in two consecutive it-
erations was less than 10−4 electrons per unit cell. The total energy per unit cell
differed by about 1 meV or less between two consecutive iterations upon satisfying
the condition for a self-consistent electron distribution. The preset value of the mag-
netic moment per surface unit cell was maintained throughout the iterations of the
DFT calculation by adjusting the Fermi level for spin-up electrons and spin-down
electons independently.

The dependence of the total energy per surface unit cell on the total magnetic
moment per one Cr adatom (which equals half the magnetic moment per one surface
unit cell) is shown in the right panel of Fig. 20 for the investigated system c(2 ×
2)−Cr/W(001). As expected, we find that the non-magnetic state is the one with the
lowest energy. The ordered c(2× 2) surface structure of the Cr adatoms is of course
a different system from the completely disordered chromium overlayers which were
investigated using the LMTO-ASA method. Since the non-magnetic state turns out
to be the ground state of the c(2× 2)−Cr overlayer as well as of the disordered Cr
overlayers thinner than 0.5 monolayer, we may conclude that the chromium-covered
W(001) surface is non-magnetic at a sufficiently low coverage regardless of the details
of how the Cr atoms are arranged on the surface.

Now, let me return to the question of surface relaxation of the c(2×2) chromium
layer on W(001). The distance between the chromium overlayer and the underly-
ing tungsten substrate was set to a value that had been actually found for a Cr
monolayer rather than half a monolayer. The fixed-spin calculations were too time
consuming to search for the equilibrium positions of the Cr atoms in these calcula-
tions. The calculated force that acted on the Cr atoms in the non-magnetic state
had a magnitude of 47.3 eV/nm (i.e. 7.57×10−9 N) and was directed towards the
tungsten substrate, so the Cr overlayer would tend to relax inwards with respect
to the position in which it was fixed. It will be shown in the next section of this
thesis (chapter 4.3) that the magnetic moments of the 3d transition metals adsorbed
on the W(001) surface invariably decrease as the adsorbate atoms come closer to
the substrate. We can thus reasonably expect that the inward relaxation does not
change the non-magnetic ground state.

4.3 Effects of surface layer relaxation

Because of the surface relaxation, the distances between atomic layers near the sur-
face differ from the interlayer spacing inside the bulk. The effects originating from

7The distance between two different electron distributions is defined here as the Euclidean
distance between the said distributions viewed as multi-component vectors, each vector component
standing for the electron density at one particular point of the physical three-dimensional space.
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Figure 21: Differences between the total energies of various magnetic states as a func-
tion of surface coverage. Results for the relaxed submonolayer films of (a) vanadium,
(b) chromium, (c) manganese, and (d) iron are presented here. The corresponding
graphs obtained for the unrelaxed systems at submonolayer coverage, which can be
seen in Fig. 17 are shown here for comparison as black dotted curves.

the surface layer relaxation have been neglected so far. All calculations regarding
the disordered surfaces that have been discussed until now involved an ideal surface
structure, in which not only the distance between neighboring tungsten layers near
the surface but also the distance between the overlayer and the tungsten substrate
equaled the interlayer distance in bulk tungsten, i.e. half of the bcc tungsten lattice
parameter. However, the calculations carried out by Ferriani et al. [46] for the pure
(one-component) 3d metal layers on W(001) reveal that an appreciable inward relax-
ation occurs for these overlayers. The inward relaxation amounts to 8.4%, 14.4%,
4.7%, 13.7%, and 22.1% of the ideal W(001) interlayer spacing for V, Cr, Mn, Fe,
and Co monolayers, respectively. Ferriani et al. did not publish the equilibrium
distances between the underlying tungsten layers. In order to assess how important
is the relaxation of these tungsten layers beneath the adsorbate, I have repeated the
geometry optimization for the complete chemically pure monolayers on the W(001)
surface using VASP (Vienna Ab-initio Simulation Package), software based on the
projector augmented wave method (PAW) [73, 74]. For the purpose of these calcu-
lations, the systems of interest were represented by 11-layer symmetric slabs which
consisted of 9 tungsten atomic layers and the monoatomic overlayer on both sides.
The calculations have shown that the tungsten layers are shifted only slightly from
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Figure 22: Local magnetic moments at atoms of the 3d transition elements for the
systems in the DLM state as a function of surface coverage. Results for the relaxed
submonolayer films of (a) vanadium, (b) chromium, (c) manganese, and (d) iron
are presented here. The corresponding graphs obtained for the unrelaxed systems at
submonolayer coverage, which can be seen in Fig. 18, are shown here for comparison
as black dotted curves.

the ideal positions, by less than 2% in the case of the top tungsten layer and by
less than 1 % in the case of the deeper tungsten layers. Consequently, the ideal bcc
bulk structure is a good approximation for the actual tungsten structure even near
the surface. The only important change of the surface geometry is thus due to the
relaxation of the topmost atomic layer, which consists of the adsorbed 3d transition
metals.

The LMTO-ASA method is not suitable for performing a structure optimization,
so I was not able to determine the relaxed structure of the disordered surfaces (the
two-dimensional alloys and the incomplete films). I have to content myself with
a mere estimate of the effects brought about by the surface relaxation. To carry
out this estimate, some of the earlier calculations were repeated with an arbitrarily
reduced distance between the overlayer and the top tungsten layer. The ideal bcc
structure of the tungsten substrate was preserved. The arrangement of the empty
atomic spheres that represented the vacuum above the surface was kept unchanged
too. As the distance between the adsorbate layer and the topmost tungsten layer
was altered, the radii of the atomic spheres adjacent to the surface had to be mod-
ified accordingly. The determination of the new radii relied upon the concept of
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Figure 23: Differences between the total energies of various magnetic states (left
panel, symbols) and the local magnetic moments at Fe (red diagonal crosses) and
Mn (purple asterisks) atoms in the DLM state (right panel) for the relaxed FeMn
overlayers. The corresponding graphs obtained for the unrelaxed FeMn layers, which
can be seen in Fig. 12(e) and Fig. 14(e), are shown here for comparison as black
dotted curves.

unrelaxed relaxed
JMnMn= −0.105 eV JMnMn= −0.081 eV
JFeMn = +0.115 eV JFeMn = +0.144 eV
JFeFe = +0.290 eV JFeFe = +0.302 eV

Table 7: The parameters JXX , JY Y , and JXY , which characterize the effect of inter-
action between the adatoms on the mutual orientation of their magnetic moments.
Comparison between the values found for the unrelaxed and for the relaxed case is
made here for the FeMn overlayer. The method how the relaxation was taken into
account is described in the text. The values of the parameters were determined in
the same way as those in Tab. 5.

Wigner-Seitz cells. A Wigner-Seitz cell is a locus of points that are closer to a par-
ticular lattice point than to any other lattice point (the centers of atomic spheres
assumed the role of the lattice points here). The radii of the atomic spheres were
set so that each atomic sphere would have the same volume as the corresponding
Wigner-Seitz cell. As far as the chemically pure films were concerned, I adopted
the relaxation of the overlayer position found by Ferriani et al. and used it even at
submonolayer coverage. Apart from the chemically pure overlayers, the effects of
the inward relaxation is also shown for the FeMn overlayer, which represents here
the monoatomic layers of the binary alloys. Again, the inward relaxation of 13.7%
was assumed at the pure Fe end of the composition range and the inward relaxation
of 4.7% at the pure Mn end. In between, the model relaxation of the FeMn layer
scaled linearly with the composition.

The magnetic properties of systems with the inwards-shifted adsorbate layer are
compared to those of the original systems having an ideal unrelaxed geometry. The
comparison can be seen in Fig. 21 and Fig. 22 for the incomplete overlayers and
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in Fig. 23 and Tab. 7 for the FeMn surface alloy. Fig. 22 and the right panel of
Fig. 23 clearly demonstrate that the magnetic moments of the surface atoms are
systematically diminished by the inward relaxation. Alongside with the decrease of
magnetic moments in the magnetic states, the non-magnetic state becomes more
favorable in terms of total energy as compared to the unrelaxed case (see Fig. 21).
Nevertheless, the main trends that can be spotted in the magnetic properties as they
change with the chemical composition—like, e.g., the FM versus DLM preference—
remain essentially unchanged by the surface relaxation. For instance, if we compare
the relaxed and unrelaxed overlayers of the FeMn two-dimensional alloy in terms
of the parameters JXY introduced by Eqs. (132)—their numerical values are listed
in Tab. 7—we find out that the surface relaxation changes the numerical value
of the parameters (quite notably) but does not change their sign. The tendency
of local magnetic moments to parallel or antiparallel alignment may thus become
stronger or weaker after the relaxation is taken into account, but it remains the
same in the qualitative sense. The Co films (or surface alloys containing cobalt)
are a noteworthy exception to this observation. The cobalt atoms approach the
tungsten surface closer than atoms of the other 3d transition elements discussed
in this thesis: the Co monolayer was found to relax inwards by 22% on W(001).
As a consequence of the large inward relaxation, the TB-LMTO calculation for the
relaxed systems containing cobalt always lead to a non-magnetic solution. However,
such a large structural change as the 22 % surface relaxation of the Co layer on
W(001) cannot be adequately handled within the TB-LMTO ASA method. The
magnetic properties of the Co overlayers are very sensitive to the actual surface
geometry and no definite prediction about these properties can be made until the
surface geometry is precisely and reliably known. In contrast to the surface layers
with cobalt, the magnetic properties of overlayers containing only Fe and Mn are
influenced by the surface relaxation only little. The V and Cr atoms display a more
pronounced reduction of their magnetic moments with the relaxation than Fe or Mn
atoms do, but otherwise their behavior is also not fundamentally changed.

4.4 Magnetic anisotropy of the monolayers on W(001)

The sensitivity of the SP-STM to the local magnetic moments depends on the orien-
tation of the magnetic moments with respect to the magnetization of the scanning
probe. Owing to this fact, the SP-STM can help us determine the direction in
which the magnetic moments of surface atoms are oriented. The orientation of the
magnetic moments on the surface with respect to the surface plane is driven by the
magnetic anisotropy energy (MAE). The MAE is also important from another point
of view. According to the Mermin-Wagner theorem [75], ferromagnetism cannot oc-
cur in two-dimensional systems (including magnetic surfaces) that can be described
by an isotropic Heisenberg model, except for the absolute zero temperature. This
theorem conveys the importace of the surface magnetic anisotropy in the formation
of ferromagnetic surfaces at finite temperatures. Knowing the value of the MAE is
an essential prerequisite for an estimate of the Curie temperature of a ferromagnetic
surface system.
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I have calculated the MAE for the ferromagnetic monolayers of V, Cr and Mn on
the W(001) surface. The magnetic anisotropy of the antiferromagnetic Fe/W(001)
has been already determined by Kubetzka et al. [44]. They found that the preferred
orientation of magnetic moments for Fe on W(001) is perpendicular to the surface
plane. The magnetic anisotropy of the antiferromagnetic Co monolayer on W(001)
would be difficult to evaluate reliably because of the large inward relaxation of the
cobalt layer combined with a considerable dependence of its magnetic properties on
this relaxation.

In order to find the MAE, calculations that account for the spin-orbit coupling
have to be performed. The spin-orbit coupling and related effects are particularly
sensitive to the shape of electron wave functions and to the energies of the single-
electron states. Full-potential linearized augmented plane wave (FP-LAPW) calcu-
lations were performed so as to meet the requirement for a faithful representation
of the electron density and single-electron wave functions. The WIEN2k [37] soft-
ware package, which implements the FP-LAPW method, was employed to carry
out these calculations. All three systems for which the MAE was calculated were
represented by a symmetric repeated slab consisting of 11 atomic layers, 9 of which
were tungsten layers and the other two represented the adsorbed 3d transition metal
(V, Cr, or Mn), one atomic layer of the adsorbate being on each side of the slab.
The distances between atomic layers in the slab were determined beforehand by
an atomic force minimization without the spin-orbit coupling. The determination
of the surface geometry was done by VASP (Vienna Ab-initio Simulation Package)
using the projector augmented wave method [73, 74] with the GGA representation
of the exchange-correlation potential.

The spin-orbit interaction was included in the FP-LAPW calculations by means
of the second variational method. For each of the three chemically different systems,
the total energy was calculated for two different orientations of the magnetization
axis, one along the (001) crystallographic direction, i.e. perpendicular to the W(001)
surface, and the other along the (100) direction, i.e. in the plane of the W(001) sur-
face. The MAE per unit cell is then calculated as the difference of these two total
energies. The unit cell contained two surface atoms (one for each side of the slab),
so the MAE per surface atom is half of this difference. The GGA in the parameter-
ization of Perdew, Burke, and Ernzerhof [38] was used as an approximation to the
exchange-correlation potential. The set of basis functions consisted of augmented
plane waves up to Kmax = 78.8 nm−1 = 4.17 a.u.−1, which corresponded to the
maximal kinetic energy of 17.4 Ry. Spherical harmonics up to lmax = 10 were in-
cluded in the expansion of the augmentation parts of the basis functions around the
atomic positions. Spherical harmonics up to l = 4 were considered in the determi-
nation of the non-spherical part of the effective potential inside the atomic spheres
and spherical harmonics up to the same maximal angular quantum number (l=4)
were also included in the calculation of the spin-orbit interaction. Scalar-relativistic
eigenfunctions corresponding to eigenenergies up to 48 eV (3.5 Ry) above the Fermi
level were determined and this eigenfunctions served as a new basis in the second
variational step. The surface Brillouin zone was sampled by 60× 60 ~k-points. This
sampling amounted to 465 ~k-points in the irreducible wedge of the Brillouin zone
in the case of the perpendicular orientation of the magnetization axis and to 900
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~k-points in the case of the in-plane orientation of the magnetization axis. In the
latter case, the symmetry of the system was reduced with respect to the former case,
hence the different irreducible wedges. The high numbers of the ~k-points and the
basis functions as compared to the former calculations without spin-orbit coupling
were necessary to achieve reasonably converged results. The augmentation part
of the plane wave basis functions inside the atomic spheres representing tungsten
atoms was constructed according to the APW+lo scheme for the angular quantum
numbers l ≤ 3 and according to the LAPW scheme for higher l. The augmentation
part inside the atomic spheres representing the adsorbed atoms of the 3d transition
metals was set according to the APW+lo scheme for l ≤ 2 and according to the
LAPW scheme otherwise. The 3p electronic states of the 3d metals and the 5p and
4f electronic states of the tungsten atoms were treated as semi-core states, which
meant that they were represented by a combination of the same basis functions as
the valence states and that the set of the basis functions was enhanced by corre-
sponding local orbitals so as to be able to represent these semi-core states properly.
The radii of the atomic spheres were all set to 0.127 nm (2.4 a.u.), irrespective of
the chemical nature of the particular atom. The radius of 0.127 nm is 93% of the
radius at which the atomic spheres of neighboring tungsten atoms arranged on the
bcc lattice would touch each other.

The ab-initio calculations within the method implemented in WIEN2k do not
account for a dipole-dipole interaction amongst the magnetic moments of individual
atoms, so this interaction has to be included by a separate consideration. The part
of the MAE that is contributed by the dipole-dipole interaction can be found with
the help of Eq. (123). So as to find the numerical value of the anisotropy energy, one
has to evaluate the sum on the right-hand side of that equation. The summation
may be performed numerically provided that the sum is restricted to a very large
but finite number of terms around the origin (i.e. around nx=0, ny=0). However,
the sum converges very slowly with an increasing number of terms included in it.
It is therfore preferable not to omit the terms corresponding to the infinite number
of distant dipoles completely. Instead, the discrete terms beyond certain distance
from the origin should be replaced with an integral, as if there was continuously
distributed magnetization replacing the point dipoles:

∑
nx,ny

n2
x(

n2
x + n2

y

)5/2
−→

∫
x2

(x2 + y2)5/2
dx dy

for large enough nx (nx = x; |x| > a) or large enough ny (ny = y; |y| > b). The
division of the surface plane to the respective areas of summation and integration is
sketched in Fig. 24. The integral over an area outside a rectangle that has a side of
length a parallel with the x axis and a side of length b parallel with the y axis can
be evaluated analytically; the result is

∫

A

x2

(x2 + y2)5/2
dx dy =

4 (2b2 + a2)

3ab
√
a2 + b2

; A ≡ {[x, y]; (|x| > a) ∨ (|y| > b)} (136)

The terms from within the rectangle have to be summed one by one numerically
and added to the value of the integral to obtain an approximation for the infinite

102



Figure 24: The division of the infinite area over which the contributions from the
magnetic dipoles have to be added together. A numeric summation of discrete terms
is performed inside the rectangle with sides of lengths a and b. In contrast, an
integration of a smooth function corresponding to a constant magnetization density
is performed over the cross-hatched area outside the rectangle. The contributions
from the two regions are then added to obtain the final result. The precision of the
resulting approximation improves quite fast as a→∞, b→∞.

sum. I have calculated the estimate of the infinite sum for several different values
of a (with b = a) to check the convergence of the result. Finally, I have obtained

3

2

∑
nx,ny

n2
x(

n2
x + n2

y

)5/2
= 6.7752 . . . (137)

for a = b > 25.

Substituting the numerical values from Eq. (122) and Eq. (137) together with
a‖ = aW = 0.3165 nm into Eq. (123), one finally obtains

(E‖ − E⊥) = −0.0115 meV × (µ/µB)2 (138)

per adatom for that part of the magnetic anisotropy in the overlayer on W(001)
that is contributed by the dipole-dipole interaction. The above formula takes into
account only spin moments associated with atoms of the 3d transition element on
top of the W(001) surface. The orbital-moment contribution to the total magnetic
moments of atoms is neglected and so are the induced magnetic moments at the
tungsten atoms.

The magnetic moments of the atoms in the three different ferromagnetic overlay-
ers, vanadium, chromium, and manganese on W(001), are listed in Tab. 8 along with
the MAE resulting from the magnetic dipole-dipole interaction and the MAE result-
ing from the spin-orbit coupling. The magnetic moments in the table were obtained
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adatom µ/µB (E‖ − E⊥)dd (E‖ − E⊥)SO

V 1.40 −0.022 meV −2.0 meV
Cr 2.48 −0.071 meV +2.7 meV
Mn 3.31 −0.126 meV +5.2 meV

Table 8: Spin-related magnetic moments of adatoms, the contribution of the dipole-
dipole interaction to the magnetic anisotropy energy per surface atom, and the con-
tribution of the spin-orbit interaction to the magnetic anisotropy energy per surface
atom for the ferromagnetic monolayers on W(001).

atom K2 [meV] K4⊥ [meV] K4‖ [meV]
Mn +0.07 +0.00 +0.00
W(I) +3.65 +0.00 −0.05
W(I-1) +1.69 −0.12 +0.01

Table 9: Atom-specific contributions to the constants that describe the magnetocrys-
talline anisotropy of the Mn/W(001) system in accord with Eq. (139). Shown are
the contribution from the overlayer Mn atoms, tungsten atoms in the top (interface)
substrate layer W(I) and tungsten atoms in the next (the nearest sub-interface) sub-
strate layer W(I-1) [76].

as a difference between the spin-up and spin-down electron density integrated over
the atomic sphere of one atom in the overlayer. Although the magnetic moments
were calculated self-consistently with the spin-orbit interaction switched on, their
numerical values do not significantly depend on the orientation of the spin quanti-
zation axis, so our model for the dipole-dipole coupling can be used. Evidently, the
anisotropy energy originating from the dipole-dipole interaction is negligible by com-
parison with the anisotropy energy resulting from the spin-orbit interaction. The
part of the MAE that originates from the dipole-dipole interaction thus needed to
be estimated for the sole purpose of demonstrating that this part of the anisotropy
energy is small enough to be neglected. The magnetic anisotropy energy originating
from the spin-orbit interaction is approximately equal to the total MAE and the
values in the last column of Tab. 8 are therefore printed in bold. From the values of
the MAE shown in the last column of Tab. 8, we see that the magnetic moments of
the vanadium atoms on W(001) tend to be aligned along the surface plane while the
magnetic moments of chromium and manganese atoms tend to orient themselves
perpendicular to the surface plane.

The notably large magnetocrystalline anisotropy of the Mn/W(001) overlayer,
which has been obtained as one of the results of this thesis, has stimulated fur-
ther investigation of this system [76]. So as to better understand the origin of the
magnetocrystalline anisotropy, contributions of the spin-orbit coupling at individual
atoms to the MAE were calculated. The use of the torque method [77, 78] have
allowed us to make such a decomposition of the total MAE into the atom-specific
components. The magnetocrystalline anisotropy can be, in general, characterized
as a dependence of the total energy of the system on the direction of its magneti-
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atom M
‖
S/µB M⊥

S /µB M
‖
L/µB M⊥

L /µB

Mn 3.174 3.176 0.073 0.087
W(I) −0.342 −0.343 −0.011 −0.055
W(I-1) 0.073 0.072 −0.009 −0.013

Table 10: Spin (MS) and orbital (ML) magnetic moments of Mn atoms in the
overlayer, tungsten atoms in the top (interface) substrate layer W(I), and tungsten
atoms in the next (the nearest sub-interface) substrate layer W(I-1). Values of the
magnetic moments for both the parallel (‖) and perpendicular (⊥) orientation of
these moments with respect to the surface plane are listed [76].

zation. The direction-dependent part of the total energy per surface atom is, up to
the fourth order, given by

∆E(θ, φ) = K2 sin2(θ) +K4⊥ sin4(θ) +K4‖ sin4(θ) cos(4φ), (139)

where the polar angle θ is an angle between the magnetization (or, equivalently, the
magnetic moments) and the normal to the surface plane. Tab. 9 presents the de-
composition of the anisotropy constants that appear in Eq. (139) into contributions
associated with individual atoms. As could be expected, the magnetocrystalline
anisotropy is dominated by the uniaxial part that is represented by K2, while the
higher order terms of the anisotropy play only a minor role. Obviously, the largest
contribution to the uniaxial anisotropy comes from the interface layer of the W
substrate while the contribution from the Mn overlayer is rather small.

Spin and orbital magnetic moments of individual atoms in the Mn/W(001) sur-
face system are shown in Tab. 10. Once again, we see that the spin magnetic
moments do not depend very much on the direction of the magnetization axis, in
contrast to the orbital moments, which are, however, substantially smaller. While
the Mn atoms carry most of the magnetization associated with the Mn/W(001) sys-
tem, there are also considerable induced magnetic moments at atoms of the tungsten
interface layer. It is argued in [76] that the main contribution to the MAE of the 3d
transition metals (like Mn) on the substrate of a 5d transition metal (like W) can
be expressed as

E5d
MA = −k5d

2 χ
2
∑
ij

J i
3d−5dJ

j
3d−5dM

3d
i M3d

j , (140)

where k5d
2 is the normalized uniaxial anisotropy constant of the substrate atoms, χ is

the local spin susceptibility of the substrate atoms, M3d
i are the magnetic moments

of the spontaneously magnetized overlayer atoms, and
∑

i J
i
3d−5dM

3d
i expresses the

exchange splitting that is induced in the interface atomic layer of the substrate by
the magnetic overlayer. Therefore the large magnetocrystalline anisotropy energy
of the Mn/W(001) surface is caused by the combined effects of a strong spin-orbit
coupling at W atoms, large magnetic moments of the Mn overlayer atoms and a
strong exchange coupling between the Mn atoms and the W atoms in the interface
layer.

The Curie temperature TC of the ferromagnetic Mn/W(001) system was esti-
mated in [76] using the random phase approximation [79], which leads to the rela-
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tion [80]

1

kBTC

=
6

M

1

N

BZ∑

~q

1

E(~q)
, (141)

where the sum over the reciprocal vectors ~q samples the two-dimensional Brillouin
zone and where

E(~q) =
4

M

∑

j 6=0

J0j[1− exp(i~q · ~R0j)] + ∆. (142)

In the above formulae, M is the magnetic moment per surface atom in Bohr mag-
netons, ~R0j are positions of surface atoms with respect to one specific surface (Mn)
atom that has been chosen as the origin, Jij are the exchange parameters (exchange
coupling constants) between surface atoms, and ∆ is the total uniaxial MAE per
surface atom (including the contribution from the dipole-dipole interaction). The
sum over j on the right-hand side of Eq. (142) was limited to the nearest and second
nearest neighbors and the values of J01 = 22.78 meV and J02 = −7.11 meV were
substituted for the exchange parameters in Eq. (142). The exponenetial functions
in Eq. (142) were expanded into polynomials up to the second order in |~q|. Based
on the above data and approximations, the Curie temperature of the Mn/W(001)
overlayer was estimated to be 655 K, a value well above the room temperature.

4.5 Summary of results for the 3d metals on W(001)

The theoretical study that deals with the two-dimensional binary alloys of magnetic
3d transition metals placed as monoatomic layers on the tungsten (001) surface has
revealed the main tendencies that drive the orientation of local magnetic moments
in these alloys. Apart from the already known magnetic interaction between atoms
belonging to the same chemical element, namely the ferromagnetic interaction in
vanadium, chromium, and manganese overlayers and the antiferromagnetic inter-
action in iron and cobalt overlayers, the following tendencies have been found to
prevail in the magnetic interaction between atoms of different elements: the ten-
dency to ferromagnetic ordering for any combination of vanadium, chromium, and
manganese (VCr, VMn, CrMn) and also a weak tendency to ferromagnetic order-
ing between V and Fe, and the tendency to antiferromagnetic ordering not only
between Fe and Co atoms, but also for FeCr, FeMn, CoCr, CoMn, and for CoV
too. These sometimes contrary tendencies exhibited by the magnetic moments in
the overlayers presumably lead to complex magnetic structures, which pose new
challenges for the spin-polarized scanning tunneling microscopy. Moreover, while
the magnetic moments of vanadium atoms tend to align in the plane of the sur-
face, the magnetic moments of Cr, Mn, and Fe tend to be oriented perpendicular
to the surface. Such differences in the character of the surface magnetocrystalline
anisotropy further enhance the complexity of the magnetic properties expected for
the vanadium-containing alloys on W(001), probably resulting into non-collinear
magnetic structures (which has been also observed for a pure manganese overlayer
on the same tungten surface anyway [58]). The magnetic moments of atoms from Cr
to Co are rather robust in their magnitudes; these magnetic moments do not change
much with changing chemical composition of the environment surrounding the atom.
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The magnetic interactions in the surface alloys consisting of these elements can be
effectively described by a classical Heisenberg model. The more itinerant magnetism
of vanadium leads to a more complex behavior of its atomic moments. The magnetic
moments of vanadium atoms are much more sensitive to their atomic neighborhood
than the magnetic moments of the other elements (Cr, Mn, Fe, and Co) and the
surface alloys that contain vanadium therefore defies the simplified description along
the lines of the Ising or Heisenberg models.

The investigation of submonoatomic films of the 3d metals on the W(001) sur-
face has shown a trend towards decreasing magnetic moments of individual atoms
(especially of V, Cr, and Mn, but to a smaller extent also of Fe and Co) with de-
creasing thickness of the films, hence with decreasing average number of nearest
atomic neighbors. For vanadium and chromium and (perhaps) also for manganese,
the magnetic moment completely disappears if the coverage of the W(001) surface
by these elements is low enough. Advances in the field of the scanning tunneling
microscopy make it possible to probe magnetic properties of even single atoms on
solid surfaces; this was first achieved indirectly using spin-averaged STS—see for
example [81] or [82]—and lately also with the spin-polarized STM/STS [83]. Future
experiments using the SP-STM will thus hopefully confirm the lack of spontaneous
magnetization in incomplete vanadium or chromium layers sparsely covering the
W(001) surface.
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5 Summary

Two types of solid surface systems—first, the (001) surface of the fcc Invar alloy
(Fe0.64Ni0.36) and, second, the bcc tungsten (001) surfaces covered with complete or
incomplete monoatomic layers of various 3d transition metals (V, Cr, Mn, Fe, or Co)
or with binary two-dimensional alloys of these metals—have been analyzed theoret-
ically in terms of their geometrical, electronic, and magnetic structure, mainly with
the aim of assisting the interpretation of experimental data like atomically resolved
STM images and STS spectra.

1. It was found that the top atomic layer of the Fe0.64Ni0.36 alloy (001) surface
is buckled with Fe pushed outwards and Ni inwards. The buckling height in
the top layer, reaching up to 0.135 Å, depends on the type of atoms in sub-
surface layers. The STM image of the (001) Invar surface reflects essentially
the surface topography. The brighter spots (larger tunneling current) can be
associated with Fe atoms, the darker spots with Ni atoms. The observed
brighter and darker areas superimposed on the atomic contrast are related to
regions of different local chemical composition in the sub-surface.

The correctness of the chemical identity ascribed to the atoms in the images
has been also corroborated by the finding that the c(2 × 2)−FeNi checker-
board pattern of alternating Fe and Ni atoms, which has been identified as the
prevailing structure in the experimental images, is indeed an especially stable
structure in terms of its total energy.

A surface resonance at about −0.3 eV bellow Fermi level on iron-rich alloy
surfaces has been identified as the cause of the peak of the differential tunneling
conductance that can be observed in the STS. The sensitivity of this peak
to the chemical composition of the surface offers a possibility to distinguish
between iron-enriched and iron-depleted surface areas.

2. The study of the magnetic ordering exhibited by the 3d bi-metallic alloy mono-
layers on the W(001) substrate has shown that the two constituent elements
tend to orient their local magnetic moments antiparallel to each other in the
FeMn, FeCr, CoMn, CoCr, and CoV alloys, while Fe and V have a weak
tendency to align their moments parallel to each other. Due to incompati-
ble tendencies of magnetic moment alignment, an uncompensated DLM phase
becomes the state with minimal total energy for some of the surface alloys,
indicating a complex behavior with possible non-collinear magnetic ground
state of these alloys.

Magnetic moments of Cr, Mn, and Fe atoms keep almost constant magni-
tudes, irrespective of the chemical composition of their neighborhood, while
the magnetic moments of vanadium atoms are considerably sensitive to the
local environment. Magnetic moments of Co atoms are either reduced or even
completely suppressed by a large inward relaxation of the these atoms on the
W(001) surface.
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The interaction between magnetic moments of atoms of the 3d elements on
the W(001) substrate has been characterized in terms of a prevailing ferromag-
netic or antiferromagnetic tendency. The tendency to ferromagnetic (V, Cr,
Mn) vs. antiferromagnetic (Fe, Co) order in these layers differs significantly
from the situation on many other substrates, e.g. on W(110) [54, 55, 56, 57],
Ag(001) [53], or Pd(001) [52]. The magnetic moments associated with the
atoms of the 3d transition elements, especially V and Cr, also largely depend
on the degree of coverage of the tungsten surface by these elements when they
form an incomplete overlayer on the W(001) substrate.

3. The surface magnetocrystalline anisotropy that governs the orientation of the
magnetic moments associated with the overlayer atoms on the W(001) sub-
strate has been evaluated for the 3d metallic overlayers. In-plane (along-the-
surface) alignment of the surface magnetic moments is favored by the surface
anisotropy for V/W(001) and out-of-plane (normal-to-the-surface) alignment
is favored for Cr/W(001) and Mn/W(001). A particularly large magnetocrys-
talline anisotropy energy (MAE)—over 5 eV per manganese atom—has been
found for the Mn/W(001) monolayer.

My study of the Invar surface has explained the sources of contrast in STM
images of this surface and the relation of the STS to the local surface composition,
thus laying the basis for further research of the technologically important Fe-Ni alloys
using the STM technique. Tungsten surfaces are often used as model substrates to
study magnetic nanostructures grown on non-magnetic substrates (see e.g. [54, 55,
56, 57, 58]). The large MAE of the Mn films on this W(001) substrate shows that
it is worthwhile to further explore the magnetic surface structures that combine the
3d and 5d transition metals: structures with such a large MAE may find practical
applications, e.g., in information storage devices [76].
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[60] M. Ondráček, J. Kudrnovský, and F. Máca, Surf. Sci. 601, 4261–4264 (2007).
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[76] A.B. Shick, F. Máca, M. Ondráček, O.N. Mryasov, and T. Jungwirth, Phys.
Rev. B 78, 054413 (2008).

[77] J.B. Staunton, Ψk-network Highlight 82 (August 2007).

[78] X. Wang, R. Wu, D.-S. Wang, and A.J. Freeman, Phys. Rev. B 54, 61–64
(1996).

[79] S.V. Tyablikov, Methods of Quantum Theory of Magnetism, Plenum Press, New
York, 1967.
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