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zAbstrakt: Po£ítání permuta
í, které neobsahují danou zakázanou podpermuta
i, pat°í mezi zá-kladní témata enumerativní kombinatoriky. V této prá
i ukáºeme, ºe mnohé výsledky tohotovýzkumu lze aplikovat i na obe
n¥j²í struktury, neº jsou permuta
e, nap°íklad na uspo°ádanégrafy, na slova nad uspo°ádanou abe
edou, nebo na mnoºinové rozklady.Hlavní £ást této prá
e souvisí s Wilfovou ekvivalen
í, de�novanou následovn¥: dv¥ permuta
e
σ a τ jsou Wilf-ekvivalentní, pokud pro kaºdé n platí, ºe po£et permuta
í °ádu n neobsahují
í
h
σ je stejný jako po£et permuta
í °ádu n neobsahují
í
h τ . Obdobn¥ lze de�novat ekvivalen
ena obe
n¥j²í
h objekte
h, neº jsou permuta
e. V této prá
i systemati
ky zkoumáme analogieWilfovy ekvivalen
e u obe
n¥j²í
h struktur, jako jsou nap°íklad mati
e, diagramy, permuta
emultimnoºin, nebo mnoºinové rozklady. Najdeme nové t°ídy Wilf-ekvivalentní
h objekt· a ov¥-°íme, ºe mezi permuta
emi multimnoºin a mezi rozklady malé délky ºádná dal²í Wilf-ekvivalentnídvoji
e neexistuje.Aby
hom za£lenili tyto výsledky do kontextu, tak v záv¥ru prá
e krát
e zmíníme n¥kolik sou-visejí
í
h témat enumerativní kombinatoriky, jako nap°íklad výzkum ry
hlosti r·stu d¥di£ný
ht°íd permuta
í a uspo°ádaný
h graf·, nebo výzkum atomi
ký
h t°íd rela£ní
h struktur.Klí£ová slova: Wilfova ekvivalen
e, mnoºinové rozklady, rela£ní strukturyTitle: Extremal and enumerative theory of ordered stru
turesAuthor: Vít JelínekDepartment: Department of Applied Mathemati
sSupervisor: do
. RNDr. Martin Klazar, Dr.Supervisor's e-mail address: klazar�kam.m�.
uni.
zAbstra
t: The study of permutations that avoid a given pattern is among the main topi
s ofenumerative 
ombinatori
s. In this thesis, we show that many results of this study may beextended to more general stru
tures, su
h as ordered graphs, words over a linearly orderedalphabet, or set partitions.The main part of this thesis is related to Wilf equivalen
e, de�ned as follows: two permuta-tions σ and τ are Wilf equivalent if, for every n, the number of permutations of order n thatavoid σ is the same as the number of permutations of order n that avoid τ . We may de�neanalogous equivalen
e relations on more general obje
ts than permutations. In this thesis, weinvestigate the Wilf-type equivalen
es of more general stru
tures, su
h as matri
es, diagrams,multiset permutations, or set partitions. We present new examples of Wilf equivalent stru
tures,and we show that among multiset permutations and set partitions of small size there are no otherequivalent pairs.To put these results in 
ontext, we brie�y mention, at the end of this thesis, several relatedtopi
s of enumerative 
ombinatori
s, su
h as the resear
h of growth rates of hereditary 
lasses ofpermutations and ordered graphs, or the resear
h of atomi
 
lasses of relational stru
tures.Keywords: Wilf equivalen
e, set partitions, relational stru
tures





Introdu
tion: Basi
 ordered stru
turesIn this thesis, we use the term `ordered stru
ture' to refer to several types of 
ombinatorialobje
ts that 
an be regarded as generalizations of permutations. We will be interested inpattern avoidan
e of these stru
tures, as an extension of the intensively studied 
on
eptof pattern avoidan
e of permutations.For the study of pattern-avoiding permutations, one of the 
entral notions is the Wilfequivalen
e. Two permutations σ and τ are said to be Wilf equivalent, if for every n thenumber of permutations of order n that avoid τ is the same as the number of permutationsof order n that avoid σ.Equivalen
e relations analogous to Wilf equivalen
e 
an be studied for any familyof 
ombinatorial obje
ts for whi
h there is a well-de�ned 
on
ept of pattern avoidan
e.These Wilf-type equivalen
es are the topi
 of this thesis.In the resear
h of Wilf equivalen
e (and its analogs for other types of stru
tures) thenatural ultimate goal would be to �nd the 
omplete 
lassi�
ation of all the equivalentpairs of obje
ts. Unfortunately, this goal seems far out of rea
h, mostly be
ause ourunderstanding of larger patterns is very limited. In this situation, it is natural to �rst fo
uson the Wilf-type 
lassi�
ation of small patterns, where we 
an use 
omputer-generatedenumeration data to �nd all possible 
andidates for Wilf-type equivalen
e, and then tryto prove the equivalen
e of these 
andidates. Thus, a more realisti
 goal of the studyof pattern avoidan
e is the Wilf-
lassi�
ation of all the patterns that are within rea
hof 
omputerized enumeration, with emphasis put on 
riteria that 
an be generalized tolarger patterns as well.In the study of pattern-avoiding permutations, this approa
h has provided the full
lassi�
ation of permutation patterns of size at most seven, whi
h appears to be the boundof 
omputerized enumeration. Many te
hniques and results developed in the 
ourse of this
lassi�
ation are also appli
able to larger patterns.In this thesis, we apply a similar approa
h to other types of pattern-avoiding stru
-tures, most of whi
h 
an be regarded as generalizations of permutations. Among otherresults, we present the 
lassi�
ation of words (whi
h may also be regarded as multiset per-mutations) of length at most six, and of set partitions of length at most seven. Most ofthese results have been previously published as joint papers with several 
oauthors. Ourpresentation in this thesis often 
losely follows the journal version, with one importantex
eption: in this thesis, we 
on
entrate on the 
ombinatorial arguments, and 
ompletelyignore the a

ompanying 
omputerized enumeration. The reader whi
h is interested inthis aspe
t of the work may 
onsult the original sour
es given in the referen
es.In the rest of this 
hapter, we give an overview of the main ordered stru
tures, andexplain the relationships between them. The main part of the thesis starts after this
hapter. Sin
e almost all the thesis is devoted to a very narrow topi
 of Wilf-type 
las-si�
ations, we have de
ided to add, after the main part of the thesis, a brief 
on
luding
hapter whi
h aims to provide an overview of alternative approa
hes to the enumerationof pattern-avoiding 
lasses.For reader's 
onvenien
e, we summarized the notation we use in Appendix A.7



PermutationsPermutations are the prototypi
al 
lass of ordered stru
tures. We de�ne a permutation πof order n as a sequen
e π1π2 · · ·πn in whi
h ea
h number from the set [n] = {1, 2, . . . , n}appears exa
tly on
e. We let Sn denote the set of all permutations of order n. Aninvolution is a permutation π = π1π2 · · ·πn whi
h satis�es the equivalen
e πi = j ⇐⇒
πj = i for every i, j ∈ [n].Let σ ∈ Sk and τ ∈ Sn be two permutations, with k ≤ n. We say that τ 
ontains σif there are k indi
es i(1), i(2), . . . , i(k) with 1 ≤ i(1) < i(2) < · · · < i(k) ≤ n, su
h that
σa < σb if and only if τi(a) < τi(b), for any a, b ∈ [k]. If τ does not 
ontain σ, we say that
τ avoids σ.We let Sn(σ) denote the set of permutations of order n that avoid a permutation σ.More generally, if F is a set of permutations, then Sn(F) is the set of all the permutationsof order n that avoid all the elements of F.By a result of Mar
us and Tardos [50℄, it is known that for every permutation σ, thelimit limn→∞

n

√
|Sn(σ)| exists and is �nite. This limit is known as the Stanley�Wilf limitof σ.Although we 
hose to de�ne a permutation as a sequen
e of integers, there are otherways to represent a permutation, e.g., a permutation matrix, a permutation graph, ora permutation mat
hing. Ea
h of these representations o�ers a natural way to embedthe 
ontainment order of permutations into the 
ontainment order of more general stru
-tures. In the remaining se
tions of this brief introdu
tory 
hapter, we will introdu
e thesestru
tures, and explain their relationship with permutations.WordsWords over a linearly ordered alphabet [k] = {1, 2, . . . , k} are a natural en
oding forpermutations of multisets with at most k distin
t elements. Thus, the notion of patternavoidan
e of words is a natural extension of pattern avoidan
e of permutations. Let usnot de�ne this notion formally.Let A be an arbitrary set, 
alled the alphabet. Let An be the set of all the sequen
es oflength n whose elements belong to A. Su
h sequen
es are 
alled words of length n over A.A subword of a word w is a (not ne
essarily 
ontiguous) subsequen
e of the symbols of w.In this thesis, we will assume that the alphabet is a subset of N, unless otherwisenoted. Words over the alphabet [k] will be 
alled k-ary words. Thus, a permutation oforder n may be regarded as a spe
ial 
ase of an n-ary word of length n.Let v = v1v2 · · · vn and w = w1w2 · · ·wn be two words of length n over the alphabet N.We say that v and w are order-isomorphi
 if for every pair of indi
es i, j ∈ [n] we havethe equivalen
e vi < vj ⇐⇒ wi < wj. Note that if v and w are order-isomorphi
 words,then vi = vj if and only if wi = wj . We will say that a word w 
ontains a 
opy of v, orsimply w 
ontains v, if w has a subword whi
h is order-isomorphi
 to v. If w does not
ontain any 
opy of v, we say that w avoids v. We let An(v) denote the set of words from

An that avoid v. It is 
lear that the 
ontainment relation of permutations de�ned in theprevious se
tion is a spe
ial 
ase of the 
ontainment relation of words.We remark that our notion of 
ontainment of words is substantially based on thefa
t the underlying alphabet is linearly ordered. We should mention that there are other(perhaps more natural) notions of word-
ontainment, whi
h do not refer to any orderingof the alphabet. In this thesis, we will not 
onsider these alternative notions, sin
e itwould make us drift too far away from our main topi
. An interested reader may �ndmore information in the work of Klazar [42, 44℄.8



Let w be a word over the alphabet N, and assume that k is the largest integer thatappears as a symbol in w. The word w is 
alled redu
ed if every symbol from the set [k]appears in w at least on
e. It is easy to see that every word w over N that 
ontains kdistin
t symbols is order-isomorphi
 to a unique redu
ed word y, where y is a k-ary word,whi
h we will 
all the redu
tion of w. Of 
ourse, a word x 
ontains a word w if and only if
x 
ontains the redu
tion of w. Thus, when we study pattern-avoiding 
lasses of words, wemay restri
t our attention to the situation when the avoided pattern is a redu
ed word.Matri
esLet X be a set of integers. We let Xk×ℓ denote the set of matri
es with k rows and ℓ
olumns, whose elements belong to X. We will always use the `
artesian' numbering ofrows and 
olumns, i.e., we will assume that 
olumns are numbered from left to right, androws are numbered from bottom to top. An interse
tion of a row and a 
olumn will be
alled a 
ell of the matrix. In a matrix M ∈ N

k×ℓ, we let Mij denote the 
ell in row i and
olumn j. A 01-matrix is a matrix whose 
ells are equal to 0 or 1; in su
h 
ase, we willspeak of 0-
ells and 1-
ells, respe
tively. A submatrix of a matrix M is obtained from Mby erasing some of its rows or 
olumns.Let P ∈ N
k×ℓ and M ∈ N

m×n be two matri
es. We say that M 
ontains a 
opy of P ,or brie�y M 
ontains P , if M has a submatrix M ′ with k rows and ℓ 
olumns, su
h thatfor every i ∈ [k] and j ∈ [ℓ] we have the inequality Pij ≤ M ′
ij. In this thesis, we almostalways restri
t ourselves to situations when the pattern P is a 01-matrix.A permutation matrix of order n is a 01-matrix M with n rows and n 
olumns, withthe property that every row and every 
olumn of M has exa
tly one 1-
ell. We will assumethat a permutation matrix M of order n represents the permutation τ = τ1 · · · τn ∈ Snde�ned by the relation τj = i if and only if Mij = 1. This 
orresponden
e provides abije
tion between the set Sn and the set of permutation matri
es of order n. Note thatthe symmetri
 permutation matri
es 
orrespond pre
isely to involutions.If σ and τ are two permutations, and Mσ and Mτ their 
orresponding permutationmatri
es, then it is not di�
ult to see that τ 
ontains σ if and only if Mτ 
ontains Mσ,whi
h happens if and only if Mτ has Mσ as a submatrix. This shows that the 
ontainmentrelation of permutations 
an be viewed as a spe
ial 
ase of the 
ontainment relation ofmatri
es.In fa
t, this reasoning may be extended to words over the alphabet N. Let w =

w1w2 · · ·wn ∈ N
n be a word, and let m ∈ N be the largest symbol appearing in w. Wemay represent w by a 01-matrix M ∈ {0, 1}m×n where the j-th 
olumn of M has a 1-
ellin row wj and all the remaining 
ells in this 
olumn are equal to zero. Noti
e that if

w is in fa
t a permutation, then M is its 
orresponding permutation matrix. If x is aredu
ed word and y an arbitrary word over N, then y 
ontains x if and only if the matrixrepresenting y 
ontains the matrix representing x.Fillings of diagramsThe notion of a matrix 
an be further generalized, by relaxing the assumption that allthe rows and all the 
olumns have the same length. This idea leads to the 
on
ept of a�lling of a diagram. In full generality, a diagram is a �nite set of 
ells in the plane, whereea
h 
ell is a square of unit size whose verti
es have integer 
oordinates.We will assume that the rows of the diagram are numbered from bottom to top, andthe 
olumns are numbered from left to right. The numbering is �xed in su
h a way that9



Figure 1: Examples of spe
ial types of diagrams. From left to right: a Ferrers shape, askew shape, a sta
k shape, and a moon shape.the �rst numbered 
olumn 
ontains the leftmost 
ell of the diagram and the last numbered
olumn 
ontains its rightmost 
ell; the numbering of rows is �xed analogously. We saythat the i-th row of the diagram interse
ts the j-th 
olumn, if the diagram 
ontains the
ell that belongs to the i-th row and j-th 
olumn. For a diagram D, we let r(D) and c(D)denote, respe
tively, the number of rows and the number of 
olumns of D.For our purposes, we will mostly use four spe
ial types of diagrams: the Ferrersdiagrams, the skew diagrams, the sta
k diagrams and moon diagrams (see Fig. 1). AFerrers diagram (also known as a Ferrers shape) is a diagram satisfying the following
onditions:
• The rows of the diagram are 
ontiguous and left-justi�ed, i.e., if a row has exa
tly

k-
ells, then these 
ells appear in the 
olumns 1, 2, . . . , k.
• For every i ≥ 1 , the length of row i is greater than or equal to the length of therow i + 1.A skew diagram (or skew shape) is a diagram that 
an be obtained as a di�eren
e oftwo Ferrers diagrams that share a 
ommon bottom-left 
orner. Formally, a skew shapeis a diagram with the property that the verti
al 
oordinates of the bottom 
ells of its
olumns form a nonin
reasing sequen
e, and the verti
al 
oordinates of the top 
ells ofits 
olumns form a nonin
reasing sequen
e as well.A sta
k diagram (also known as a sta
k polyomino or sta
k shape) is a diagram withthe following properties:
• Ea
h row is 
ontiguous, i.e., if two 
ells in the same row belong to the diagram, thenall the 
ells between these two also belong to the diagram.
• If a 
olumn interse
ts row i, then the 
olumn interse
ts all the rows 1, 2, . . . , i.A sta
k polyomino 
an also be regarded as a diagram obtained by gluing a 
opy of aFerrers shape re�e
ted along a verti
al axis and glued to another (non-re�e
ted) Ferrersshape.A moon diagram (or moon polyomino) is a diagram with the following properties:
• Both the rows and the 
olumns of the diagram are 
ontiguous.
• Ea
h two rows are 
omparable, whi
h means that the set of 
olumns interse
ted bya row i is either a subset or a superset of the set of 
olumns interse
ted by a row

j. (Noti
e that this 
ondition is equivalent to saying that ea
h two 
olumns are
omparable.)Clearly, every Ferrers shape is also a sta
k polyomino and a skew shape, and everysta
k shape is also a moon shape.A �lling of a diagram is a mapping whi
h assigns to ea
h 
ell of the diagram aninteger. A matrix may be viewed as a �lling of a re
tangular diagram. We will now de�ne10



a 
ontainment relation of �llings whi
h extends the 
ontainment of matri
es de�ned inthe previous se
tion. Let D be a �lling of a diagram. Let P be another �lling (`P ' standsfor `pattern'), and let r = r(P ) and c = c(P ). We say that D 
ontains a 
opy of P if,in the �lling D, we may 
hoose r row indi
es i1 < i2 < · · · < ir and c 
olumn indi
es
j1 < j2 < · · · < jc su
h that the following 
onditions are satis�ed:

• For every k ∈ [r] and ℓ ∈ [c], the k-th row of P interse
ts the ℓ-th 
olumn of P ifand only if, in the diagram D, the row ik interse
ts the 
olumn jℓ. In other words,the rows i1 < i2 < · · · < ir and the 
olumns j1 < j2 < · · · < jc indu
e in D asubdiagram with the same shape as P .
• If, in the �lling P , the k-th row interse
ts the ℓ-th 
olumn, then the 
ell that
orresponds to this interse
tion is �lled with a number that is less than or equal tothe number in the interse
tion of row ik and 
olumn jℓ in D.The transpose of a diagram F , denoted by FT, is the diagram obtained by �ipping Falong the main diagonal; in other words, FT 
ontains the 
ell (i, j) if and only if F 
ontainsthe 
ell (j, i). The transpose of a �lling is de�ned analogously. A diagram or a �lling is
alled symmetri
 if it is equal to its transpose. Note that while a symmetri
 diagrammay have a non-symmetri
 �lling, any �lling of a non-symmetri
 diagram is ne
essarilynon-symmetri
.Note that the transpose of a Ferrers shape is also a Ferrers shape, the transpose of askew shape is a skew shape, and the transpose of a moon shape is a moon shape.Let us now de�ne several spe
ial types of �llings, whi
h will be later useful. A 01-�llingis a �lling that only uses the numbers 0 and 1. A 01-�lling is 
alled semi-standard if ea
h
olumn has exa
tly one 1-
ell. A transversal (also 
alled a standard �lling) is a 01-�llingwhi
h 
ontains exa
tly one 1-
ell in every row as well as in every 
olumn. Noti
e thattransversals of re
tangular shapes 
orrespond exa
tly to permutation matri
es. A zerorow (or zero 
olumn) is a row (or 
olumn) in a �lling that only 
ontains zeros. A �llingis 
alled dense if it has no zero rows and no zero 
olumns. A 01-�lling is 
alled sparse ifevery row and every 
olumn 
ontains at most one 1-
ell. A 01-�lling is 
alled semi-sparseif every 
olumn has at most one 1-
ell.In this thesis, we follow the 
onvention that in �gures of �llings or matri
es, all thezeros are omitted, i.e., the 0-
ells are represented as empty boxes. This makes the �guresless 
luttered.Ordered graphsAn ordered graph G = (V, E,≺) is a graph with vertex set V and edge set E, whose verti
esare linearly ordered by the relation ≺. An intuitive way to represent an ordered graphis to draw its verti
es as a sequen
e of points on a horizontal line, where the left-to-rightordering of the points 
orresponds to the linear order ≺; the edges are then representedas 
ir
ular ar
s 
onne
ting the 
orresponding pair of verti
es (see Fig. 2 for an example).Thus, we will often say, e.g., that a vertex v is to the left of a vertex w, whi
h meansthat v is smaller then w in the ordering ≺. Most of the time, we will work with orderedgraphs whose verti
es are integers. In su
h situation, we always assume that the orderingof verti
es 
orresponds to the usual ordering of integers, and we write G = (V, E) insteadof G = (V, E, <).We say that two ordered graphs G = (V, E,≺) and H = (W, F, ⊳) are isomorphi
 ifthere is a bije
tion φ : V → W , with the property that {u, v} is an edge of G if and only if

{φ(u), φ(v)} is an edge of H , and u ≺ v if and only if φ(u) ⊳ φ(v). Sin
e an isomorphism11
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1Figure 2: An example of an IM-free ordered graph with its adja
en
y �lling. Note thatthe empty boxes of the �lling represent 0-
ells.of ordered graphs must preserve the order of the verti
es, it follows that no two distin
tgraphs on the same ordered vertex set 
an be isomorphi
.We say that an ordered graph G = (V, E,≺) is a subgraph of H = (W, F, ⊳) if V isa subset of W , E is a subset of F , and the two ordering relations ≺ and ⊳ agree on V .Indu
ed ordered subgraphs are de�ned analogously.We say that a vertex v of an ordered graph is a left-vertex, or brie�y L-vertex, if allthe neighbours of v are to the right of v. Similarly, a right-vertex, or R-vertex, is a vertexthat is to the right of all its neighbors. Thus, an isolated vertex is both an L-vertexand an R-vertex. A middle-vertex, or M-vertex, is a vertex that is neither left nor right.An ordered graph is 
alled M-free if it has no M-vertex. It is 
alled IM-free if it has noM-vertex and no isolated vertex.Let us now des
ribe a bije
tion between IM-free ordered graphs and dense 01-�llingsof Ferrers shapes. Let G = (V, E,≺) be an IM-free ordered graph with m L-verti
es and
n R-verti
es. Let ℓ1 ≺ ℓ2 ≺ · · · ≺ ℓm be the sequen
e of its L-verti
es, ordered from leftto right, and let r1 ≻ r2 ≻ · · · ≻ rn be its R-verti
es, ordered from right to left. Let
D be a diagram with m 
olumns and n rows, with the property that the i-th row and
j-th 
olumn interse
t in D if and only if the vertex ri is to the right of the vertex ℓj (seeagain Figure 2 for an example). Observe that the diagram D is a Ferrers diagram, andthe shape of D uniquely determines the linear order ≺ of the verti
es of G. We now �llthe diagram D with zeros and ones in su
h a way, that the 
ell in row i and 
olumn j is a1-
ell if and only if the vertex ri is 
onne
ted to the vertex ℓj by an edge of G. The �llingobtained by this pro
edure will be 
alled the adja
en
y �lling of the graph G.It is not di�
ult to see that every dense 01-�lling of a Ferrers shape is the adja
en
y�lling of a unique IM-free ordered graph (up to isomorphism). We thus have a bije
tionbetween dense 01-�llings of Ferrers shapes and IM-free ordered graphs. Moreover, thisbije
tion preserves the 
ontainment relations de�ned on the two 
lasses of obje
ts. Indeed,if G and H are two IM-free ordered graphs with adja
en
y �llings FG and FH , it followseasily from the de�nitions that G has a (not ne
essarily indu
ed) subgraph isomorphi
to H if and only if the �lling FG 
ontains FH . This fa
t provides a 
onne
tion betweenpattern avoidan
e in �llings and pattern avoidan
e in graphs whi
h we will often exploitin this thesis.Let us now mention several spe
ial 
lasses of �llings, together with their 
orresponding
lasses of graphs. First of all, noti
e that the transversals of Ferrers diagrams 
orrespondexa
tly to ordered graphs with all degrees equal to one (of 
ourse, any su
h graph is IM-free). These graphs will be 
alled ordered mat
hings. More spe
i�
ally, the permutationmatri
es, 
onsidered as adja
en
y �llings, 
orrespond pre
isely to ordered mat
hings inwhi
h every L-vertex is to the left of any R-vertex. Mat
hings with this property willbe 
alled permutation mat
hings. The permutation matrix that represents a permutation
τ = τ1τ2 · · · τn is the adja
en
y �lling of the ordered mat
hing on the vertex set [2n],where an L-vertex j ∈ [n] is 
onne
ted to the R-vertex 2n + 1 − τj .Another useful 
lass of ordered graphs are the so-
alled sprinkler graphs, introdu
ed12



(with a di�erent terminology) by de Mier [20℄. An ordered graph is 
alled sprinkler graphif it is M-free and ea
h of its R-verti
es has degree one. Thus, every 
onne
ted 
omponentof a sprinkler graph is a star, with the 
enter of the star being the leftmost vertex of the
omponent. A dense �lling of a Ferrers diagram is an adja
en
y �lling of a sprinkler graphif and only if it is a transpose of a semi-standard �lling.Apart from permutation mat
hings, there is another way to represent a permutationby an ordered graph. Let τ = τ1τ2 · · · τn be a permutation of order n. Let us de�ne anordered graph G on the vertex set [n] by the following rule: for every i, j ∈ [n], with i < j,the graph G 
ontains the edge ij if and only if τi > τj . Those ordered graphs G thatrepresent a permutation in this way are 
alled permutation graphs. Ea
h permutationgraph represents a unique permutation. A permutation τ 
ontains a permutation σ ifand only if the permutation graph representing τ 
ontains the graph representing σ as anindu
ed subgraph.Set partitionsA set partition of order n is a 
olle
tion of nonempty disjoint sets B1, B2, . . . , Bk, 
alledblo
ks, whose union is the set [n]. We always order the blo
ks in the in
reasing order oftheir minimal elements, i.e., we have min B1 < min B2 < · · · < min Bk.There are several ways to en
ode a set partition, and several 
orresponding notionsof partition 
ontainment. Let us �rst mention an approa
h of Chen et al. [17, 18℄. Thisapproa
h is based on the notion of dire
t su

essor. For two numbers i, j ∈ [n] and apartition Π = (B1, . . . , Bk) of order n, we say that j is a dire
t su

essor of i in Π, if
i < j, i and j belong to the same blo
k of Π, and no number that is larger than i andsmaller than j belongs to the same blo
k as i and j. Clearly every number that is not thelargest element of its blo
k has a unique dire
t su

essor. We may represent a partition Πof order n by an ordered graph on the vertex set [n], in whi
h two verti
es are 
onne
tedby an edge if and only if one of them is the dire
t su

essor of the other in Π. Theordered graph de�ned in this way is a vertex-disjoint union of monotone paths, whereea
h path 
orresponds to a blo
k of the original partition. We will 
all this graph thepath-representation of Π. Note that every ordered mat
hing is a path representation of apartition.Another way to represent set partitions is to use sprinkler graphs, de�ned in theprevious se
tion. Again, a partition Π = (B1, . . . , Bk) of order n is represented by anordered graph, but this time two verti
es i, j ∈ [n] are 
onne
ted by an edge if i belongsto the same blo
k as j and i is the smallest element of its blo
k. Clearly, this yieldsa sprinkler graph, whi
h we will 
all the sprinkler representation of Π. Every sprinklergraph represents a unique set partition.Another en
oding of set partitions was 
onsidered by Sagan [58℄ and later by Jelínekand Mansour [37℄. This en
oding is based on the 
on
ept of 
anoni
al sequen
e. Let
Π = (B1, . . . , Bk) be a partition of [n] with k blo
ks. We will represent Π by a k-ary word
π = π1π2 · · ·πn ∈ [k]n, where πj = i if and only if j ∈ Bi. The sequen
e π will be 
alledthe 
anoni
al sequen
e of Π. Note that π has the following two properties:

• Every number i ∈ [k] appears in π at least on
e (i.e., π is a redu
ed word).
• For every i ∈ [k − 1], the �rst o

urren
e of i in π 
omes before the �rst o

urren
eof i + 1.Every sequen
e that satis�es, for some value of k, the two properties above is a 
anoni
al13



sequen
e of a unique set partition. The sequen
es of this form are also known as restri
ted-growth fun
tions.The three representations of set partitions des
ribed above suggest (at least) threedi�erent possibilities to de�ne 
ontainment relation of set partitions. We may either viewthe 
ontainment relation of partitions as a spe
ial 
ase of the subgraph (or indu
ed sub-graph) relation of ordered graphs, or alternatively, we may de�ne partition 
ontainmentas a spe
ial 
ase of word 
ontainment, with a partition being represented by its 
anoni
alsequen
e. In this thesis, we will mostly be interested in the last option. Thus, we say thata partition Π 
ontains a partition Σ if the 
anoni
al sequen
e of Π 
ontains a subsequen
eorder-isomorphi
 to the 
anoni
al sequen
e of Σ. Let us point out the 
ontainment or-der of partitions de�ned in this way generalizes the 
ontainment of permutations, in thefollowing sense: if π = π1π2 · · ·πn ∈ Sn and σ = σ1σ2 · · ·σk ∈ Sk are two permutations,then π 
ontains σ if and only if the 
anoni
al sequen
e 123 · · ·nπ1π2 · · ·πn 
ontains the
anoni
al sequen
e 123 · · ·kσ1σ2 · · ·σk.SummaryIn Figure 3, we summarize the main 
lasses of ordered stru
tures de�ned so far, andoutline their relationships.In the thesis, we will deal with several of these stru
tures in greater detail, aimingto �nd 
ommon features in the pattern avoidan
e behaviour of these 
lasses. We willbe mostly interested in identities between the sizes of pattern-avoiding 
lasses. To easilydes
ribe su
h identities, we will use the following terminology: we will say that two obje
ts
σ and τ are equirestri
tive in a 
lass of obje
ts C, if for every n, the number of σ-avoidingobje
ts of size n in C is the same as the number of τ -avoiding obje
ts of size n in C.Similarly, we will say that σ is more restri
tive than τ (in a 
lass C) if, for every n, thenumber of σ-avoiding elements of size n in C does not ex
eed the number its τ -avoidingelements.

14
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IM-free ordered
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Figure 3: The ZOO of ordered stru
tures. This �gure presents an overview of the main
lasses of ordered stru
tures 
onsidered in this thesis. Arrows indi
ate that the obje
tsof the bottom 
lass 
an be naturally represented by obje
ts of the upper 
lass, whilepreserving the 
ontainment relation.
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As we announ
ed in the introdu
tion, this thesis is mostly devoted to the variationson the theme of Wilf equivalen
e.Re
all that Sn(τ) denotes the set of permutations of order n that avoid τ . Twopermutations σ and τ are 
alled Wilf equivalent , denoted by σ
w∼ τ , if for every n we havethe equality |Sn(σ)| = |Sn(τ)|. Clearly, two Wilf equivalent permutations have the sameorder. The equivalen
e 
lasses of the Wilf equivalen
e are known as Wilf 
lasses.Naturally, the 
on
ept of Wilf equivalen
e 
an be easily extended to other orderedstru
tures. Thus, every 
lass of ordered stru
tures with a 
orresponding 
ontainmentrelation gives rise to a Wilf-type equivalen
e relation.A large part of the �rst three 
hapters is devoted to an overview of previous resultsrelated to Wilf equivalen
e. We usually present these previous results without proof,unless the method of the proof is ne
essary for the understanding of our own resultspresented in the rest of the thesis.Chapter 1 
ontains an overview of known results related to the Wilf-
lassi�
ation ofpermutations. Apart from these results, mostly presented without proofs, we also stateand prove several lemmas that were proven in the 
ontext of Wilf-equivalen
e, but whoseideas 
an easily be generalized to other ordered stru
tures.In the se
ond 
hapter, we will investigate in greater detail the topi
 of diagonal patternsin �llings of diagrams. We will be parti
ularly interested in the theorems of Ba
kelin, Westand Xin [6℄, of Krattenthaler [48℄, and of Rubey [57℄. These theorems will play a signi�
antpart in the remaining 
hapters, sin
e they have important 
onsequen
es in the study ofordered stru
tures. Part of the se
ond 
hapter is also devoted to the author's own resultrelated to diagonal �llings, whi
h does not seem to have as far-rea
hing 
onsequen
es asthe above-mentioned theorems, but it deals with similar topi
.In Chapter 3, we will mention the topi
 Wilf order, whi
h is a quasi-order relation 4de�ned on the set of permutations by writing σ4τ if and only if |Sn(σ)| ≤ |Sn(τ)| forevery n. The �rst part of this 
hapter is again devoted to the overview of previous results,and in the se
ond part, we explore a 
onne
tion between Wilf order and �llings of skewshapes, whi
h yields a new family of Wilf-
omparable permutations.In the remaining 
hapters of the main part, we will study the Wilf-type 
lassi�
ationof involutions, words and set partitions. Most of the results presented in these 
haptershave been published in a series of papers [22, 37, 38℄ as the joint work of the author withDukes, Mansour and Reifegerste.We 
on
lude this thesis by an overview of several promising alternative dire
tions ofresear
h related to the topi
 of hereditary permutation 
lasses.

17



Chapter 1Wilf 
lasses of permutations
1.1 Symmetries of permutationsBefore we deal with the main results on Wilf equivalen
e, let us introdu
e some more ter-minology. Let π = π1π2 · · ·πn ∈ Sn be a permutation. The reversal of π is a permutation
σ = σ1σ2 · · ·σn obtained by writing π ba
kwards, i.e., σi = πn−i+1. The inverse of a per-mutation π is a permutation ρ = ρ1ρ2 · · · ρn de�ned by the equivalen
e ρi = j ⇐⇒ πj = i,for every i, j ∈ [n]. We will denote the reversal of π by π and the inverse by π−1. Thetwo operations 
an be easily visualised, when we represent the permutations by their per-mutation matri
es. The permutation matrix representing π is obtained from the matrixrepresenting π by reversing the order of 
olumns, while the matrix representing π−1 is thetranspose of the matrix representing π.If a permutation σ 
an be obtained from a permutation π by a sequen
e of reversalsand inverses, we say that σ is symmetri
 to π. The symmetry 
lass of π is the set of allthe permutations that are symmetri
 to π. The symmetry 
lass may have up to eightelements.Permutation 
ontainment is preserved by both the reversal and the inverse, in thefollowing sense: a permutation π 
ontains a permutation σ if and only if π 
ontains σ,whi
h happens if and only if π−1 
ontains σ−1. It is thus 
lear that ea
h permutation isWilf equivalent to its reversal and to its inverse, and in parti
ular, every symmetry 
lassis a subset of the 
orresponding Wilf 
lass.1.2 Non-trivial Wilf equivalen
esResults related to Wilf equivalen
e 
an be tra
ed ba
k to 1973, when Knuth [46, 47℄showed that for any permutation τ of order three, the 
ardinality of Sn(τ) is equal to the
n-th Catalan number Cn = 1

n+1

(
2n
n

) (sequen
e A000108 in OEIS [68℄). In parti
ular, allthe permutations of order three are Wilf equivalent. Note that the permutations of orderthree fall into two symmetry 
lasses ({123, 321} and {132, 213, 231, 312}), so this exampledemonstrates that the symmetry 
lasses are a stri
t re�nement of Wilf 
lasses.Let us mention that the Wilf 
lassi�
ation of patterns of size three was 
ompleted bySimion and S
hmidt [62℄, who determined the 
ardinality of Sn(F) for any set F ⊆ S3.To determine the Wilf 
lasses of patterns of size four took a lot more e�ort. The 24permutations of order four fall into seven symmetry 
lasses, for whi
h we may 
hoose therepresentatives 1234, 1243, 1324, 1342, 1432, 2143 and 2413 (see Fig. 1.1).It has been determined that these seven patterns fall into the following three Wilf
lasses: 18
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1234 1243 1324 1342 1432 2143 2413Figure 1.1: The seven pairwise non-symmetri
 permutations of order four, representedas matri
es. For 
larity, we omit the 0-
ells.
• 1324;
• 1342

w∼ 2413;
• 1234

w∼ 1243
w∼ 1432

w∼ 2143.The �rst step towards this 
lassi�
ation was made in 1994 by Stankova [63℄, whoshowed that 1342 is Wilf equivalent with 2413. This seems to be a sporadi
 
ase ofequivalen
e�so far, no one has managed to interpret this result as a spe
ial 
ase of amore general identity. In 
ontrast, the Wilf equivalen
e of the four patterns 1234, 1243,
1432, and 2143 follows from a more general result, whi
h will be presented in the nextse
tion.1.3 The shape-Wilf equivalen
eApart from the sporadi
 pair 1342

w∼ 2413, all known pairs of non-symmetri
 Wilf equiv-alent permutations are des
ribed by two general results by Stankova and West [65℄, andby Ba
kelin, West and Xin [6℄. Both these results are based on the 
on
ept of shape-Wilfequivalen
e, whi
h is an analogue of Wilf equivalen
e for transversals of Ferrers diagrams.Re
all that a 01-�lling of a diagram is 
alled transversal, if every row and every 
olumnof the �lling has exa
tly one 1-
ell. Throughout the rest of this 
hapter, we assume thatevery �lling we mention is a �lling of a Ferrers diagram, unless otherwise noted.For a Ferrers diagram F , let TF denote the set of all the transversals of the shape F .Let TF (σ) denote the set of the transversals of F that avoid the pattern σ. We say thattwo transversals σ and τ are shape-Wilf equivalent , denoted by σ
xw∼τ , if for every Ferrersdiagram F , the set TF (σ) has the same 
ardinality as TF (τ).A permutation, represented by its permutation matrix, is a transversal of a squareshape. With a slight abuse of terminology, we will omit the distin
tion between a permu-tation and its permutation matrix, and we will say that two permutations are shape-Wilfequivalent if their permutation matri
es, treated as transversal �llings of a square shape,are shape-Wilf equivalent. If there is no risk of 
onfusion, we will freely swit
h betweenthe two possible representations of a permutation.Observe that if two permutations are shape-Wilf equivalent, then they are also Wilfequivalent. To see this, let F denote the square diagram with n rows and n 
olumns, andassume that σ and τ are shape-Wilf equivalent permutations. The shape-Wilf equivalen
eimplies the equality |TF (σ)| = |TF (τ)|. However, the σ-avoiding transversals of F arepre
isely the permutation matri
es representing the σ-avoiding permutations of order n.Thus, the equality |TF (σ)| = |TF (τ)| implies |Sn(σ)| = |Sn(τ)|. Sin
e this argument worksfor any n ∈ N, we see that σ and τ are indeed Wilf equivalent.Unlike Wilf equivalen
e, the shape-Wilf equivalen
e is not ne
essarily preserved byreversal or by inverse. In fa
t, among the three symmetri
 permutations 132, 312, and

213, no two are shape-Wilf equivalent.Let us adopt the following intuitive notation: if A ∈ N
n×n and B ∈ N

m×m are twosquare matri
es, we let ( 0 B
A 0 ) denote the matrix with m + n rows and m + n 
olumns,19



whose bottom-left 
orner 
ontains a 
opy of A, its top-right 
orner 
ontains a 
opy of
B, and the remaining 
ells are equal to zero. We are now ready to state the followingproposition, whi
h is due to Ba
kelin et al. [6℄. Later on, slightly modi�ed versions of thisproposition were applied in more general settings [19, 37℄.Proposition 1 (Proposition 2.3 from Ba
kelin et al. [6℄). Let A and B be two shape-Wilfequivalent permutations of order n, and let C be an arbitrary permutation of order m.Then the permutations ( 0 C

A 0 ) and ( 0 C
B 0 ) are shape-Wilf equivalent (and hen
e also Wilfequivalent).Before we present the proof of this proposition, let us make several remarks relatedto its statement. First of all, the assumption that A and B are shape-Wilf equivalentis essential, and it is not enough to just assume that the two permutations are Wilfequivalent. For example, 
onsider A = 132, B = 123, and C = 1: we know that A

w∼ B,but the two permutations ( 0 C
A 0 ) = 1324 and ( 0 C

B 0 ) = 1234 are not even Wilf equivalent.Let us also point out, that the two matri
es ( 0 C
A 0 ) and ( 0 C

B 0 ) in the 
on
lusion of theproposition 
annot be repla
ed by ( 0 A
C 0 ) and ( 0 B

C 0 ). For example, 
onsider A = 213,
B = 123, and C = 1. Then A and B are shape-Wilf equivalent (as we will soon see), but
( 0 A

C 0 ) = 1324 and ( 0 B
C 0 ) = 1234 are again not even Wilf equivalent.Before proving Proposition 1, we �rst prove a simple lemma, whi
h shows that abije
tion between pattern-avoiding transversals may be extended into a bije
tion betweenpattern-avoiding sparse �llings. Re
all that a 01-�lling is sparse, if every row and every
olumn 
ontains at most one 1-
ell.Lemma 2. Let A and B be shape-Wilf equivalent permutations. For any Ferrers shape

F , there is a bije
tion φ between the set of sparse A-avoiding 01-�llings of F and the setof sparse B-avoiding 01-�llings of F . Moreover, φ preserves the position of zero rows andzero 
olumns.Proof. Sin
e A
xw∼B, there is an invertible mapping φ0 whi
h transforms A-avoiding trans-versals into B-avoiding transversals of the same shape. The basi
 idea of the proof isstraightforward: we simply extend φ0 to a bije
tion whi
h operates on sparse �llings, byignoring the zero rows and 
olumns, and applying φ0 on the nonzero rows and 
olumns.Let us now explain the argument more formally (see Figure 1.2). Let Φ be an A-avoiding sparse �lling of a Ferrers shape F . By removing from Φ all the zero rows andzero 
olumns, we obtain an A-avoiding transversal Φ− of a Ferrers subdiagram F− of F .Let Ψ− = φ0(Φ
−). By inserting into Ψ− the zero rows and zero 
olumns whose positions
orrespond to the position of the zero rows and 
olumns of Φ, we extend Ψ− into a sparse

B-avoiding �lling Ψ of the shape F . It is easy to see that the transform φ : Φ 7→ Ψ hasall the required properties. Note that the insertion of zero row or 
olumn 
annot 
reatean o

urren
e of a forbidden pattern, be
ause the patterns A and B themselves have nozero row or 
olumn.
1
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Φ Φ
−

Ψ
−

ΨFigure 1.2: Illustration of Lemma 2: a shape-preserving bije
tion between transversals
an be extended into a shape-preserving bije
tion between sparse �llings.20



Let us now fo
us on the proof of Proposition 1. The main tri
k involved in the proofis not too di�
ult, but it is extremely useful and will reappear in this thesis in severaldi�erent 
ontexts. For this reason, we will now present the proof in full detail. We willrefer to the tri
k as the red-green argument.Proof of Proposition 1. Choose A, B and C as in the statement of Proposition 1. Byassumption, A
xw∼B. In parti
ular, there is a bije
tion φ that maps A-avoiding transversalsto B-avoiding transversals, while preserving the underlying shape. Let us �x an arbi-trary Ferrers shape F . Our aim is to des
ribe a bije
tion that maps the ( 0 C

A 0 )-avoidingtransversals of F to the ( 0 C
B 0 )-avoiding transversals of F .Let (i, j) denote the 
ell of F in row i and 
olumn j. We will say that a 
ell (i′, j′) of

F is top-right of a 
ell (i, j) if i > i′ and j > j′. Note that for a �xed 
ell (i, j), the 
ellsthat are top-right from (i, j) form a Ferrers subshape of F (see Fig. 1.3).
(2,1)Figure 1.3: The 
ells that are north-east from the 
ell (i, j) are shaded. They form aFerrers subdiagram.Let Φ be an arbitrary ( 0 C

A 0 )-avoiding transversal of F . We will distinguish in Φ twotypes of 
ells: a 
ell (i, j) is green (with respe
t to the �lling Φ) if the subdiagram formedby the 
ells that are top-right from (i, j) 
ontains the pattern C; otherwise, the 
ell (i, j)is red. Let ΦG and ΦR denote the sub�llings of Φ formed by the green 
ells and the red
ells of Φ, respe
tively. Observe that ΦG is a sparse �lling of a Ferrers diagram, while ΦRis a sparse �lling of a skew shape.Let us now make several observations about the properties of this two-
oloring. Firstof all, we 
laim that if (i, j) is a green 
ell, then the red �lling ΦR 
ontains a 
opy of Cwhi
h is situated to the top-right of (i, j). To see this, 
hoose a 
opy C ′ of the matrix Cin Φ, su
h that C ′ is situated to the top-right of (i, j), and the bottom row of C ′ is as farto the top as possible. We know that su
h a submatrix C ′ exists, otherwise (i, j) wouldnot be green. We 
laim that all the 
ells of C ′ are red. For this, it is su�
ient to showthat the bottom-left 
orner of C ′ is red. However, if the bottom-left 
orner of C ′ weregreen, then Φ would 
ontain a 
opy of C to the top-right of this 
orner, 
ontradi
ting the
hoi
e of C ′. This shows that a 
ell of Φ is green if and only if it has a red 
opy of Csituated to its top-right.Next, we observe that ΦG avoids the matrix A. Indeed, if ΦG 
ontained A, then Φwould 
ontain ( 0 C
A 0 ), whi
h would 
ontradi
t our assumptions. By Lemma 2, there isa shape-preserving bije
tion φ that transforms A-avoiding sparse �llings into B-avoidingsparse �llings, while preserving the zero rows and 
olumns. Let us repla
e the �lling ΦGby the �lling φ(ΦG) inside the diagram F , while the �lling ΦR remains un
hanged. Let Ψbe the resulting �lling of F . Let ΨG be the sub�lling of Ψ obtained as the image of ΦGby the bije
tion φ. 21



Let τ be the transform Φ 7→ Ψ des
ribed above. We 
laim that τ is a bije
tion between
( 0 C

A 0 )-avoiding and ( 0 C
B 0 )-avoiding �llings of the diagram F . To see this, we need to 
he
kthat Ψ is a ( 0 C

B 0 )-avoiding transversal of F , and that the mapping Φ 7→ Ψ 
an be inverted.To see that Ψ is a transversal, it su�
es to re
all that φ preserves the position of the zerorows and zero 
olumns in ΦG. The zero rows (or 
olumns) of ΦG are exa
tly the rows (or
olumns) that 
ontain a red 1-
ell in ΦR.Let us argue that Ψ avoids ( 0 C
B 0 ). For 
ontradi
tion, assume that Ψ 
ontains a 
opy

B′ of the matrix B, as well as a 
opy C ′ of the matrix C, and that C ′ is situated top-rightfrom B′. We know that ΨG avoids B. Thus, at least one 
ell of B′ must be red. Thisimplies that all the 
ells of C ′ are red. This in turn means that all the 
ells that arebottom-left from C ′ must be green, whi
h is impossible, be
ause B′ has at least one red
ell.It remains to show that τ is invertible. Sin
e we already know that the transformation
φ of the green 
ells is invertible, it su�
es to noti
e that the 
ells of the �lling ΨG areexa
tly the 
ells that are green with respe
t to the �lling Ψ. Earlier, we have pointed outthat a 
ell (i, j) is green with respe
t to Φ if and only if there is a 
opy C ′ of the matrix Cwhi
h is situated to the top-right of (i, j) and 
onsists entirely of 
ells that are red withrespe
t to Φ. Sin
e this red 
opy of C is not a�e
ted by the transform τ , we know thatsu
h a 
ell (i, j) is also green with respe
t to Ψ. By the same argument, we see that a
ell that is red with respe
t to Φ is also red with respe
t to Ψ. It is now 
lear that themapping τ is invertible.Proposition 1 allows us to 
onstru
t in�nite families of Wilf equivalent permutationsfrom a single pair of shape-Wilf equivalent patterns. At �rst glan
e, it is not even 
learwhether there are any distin
t shape-Wilf equivalent patterns at all. So far, there are tworesults involving shape-Wilf equivalen
e of permutation patterns. The �rst is the follow-ing theorem of Stankova and West, whi
h yields a single pair of shape-Wilf equivalentpermutations.Theorem 3 (Stankova�West [65℄). The two permutations 312 and 231 are shape-Wilfequivalent.There are nowadays two known proofs of Theorem 3. The original argument ofStankova and West was based on an indu
tive 
onstru
tion of 312-avoiding transver-sals. Another argument, due to Jelínek [34℄, shows that for every shape F there is abije
tion between the set TF (312) and the set TF (X), where X is an in�nite set of sym-metri
 transversals of Ferrers shapes. Sin
e the permutation matrix representing 231 isthe transpose of the matrix of 312, and all the elements of X are symmetri
, it followsthat 312 and 231 are shape-Wilf equivalent. Both known proofs of Theorem 3 are ratherlengthy, and we omit them for the sake of brevity.Unfortunately, Theorem 3 has no known generalization. Not only are we not able toextend the theorem to provide more pairs of shape-Wilf equivalent patterns, but we arealso not aware of any result that would extend the equivalen
e of 312 and 231 to a moregeneral type of �llings other than transverals of Ferrers shapes.The other known result on shape-Wilf equivalen
e is the following Theorem due toBa
kelin, West and Xin.Theorem 4 (Ba
kelin�West�Xin [6℄). For any k, the identity permutation 12 · · ·k isshape-Wilf equivalent to the anti-identity permutation k(k − 1) · · · 1.Unlike Theorem 3, Theorem 4 has several interesting generalizations whi
h 
on
ernmore general �llings as well as more general diagrams. We will deal with these general-izations in the next 
hapter. 22



It has been veri�ed by 
omputer enumeration [6℄ that all the Wilf 
lasses of permuta-tions of order at most seven 
an be des
ribed by the results we mentioned in this 
hapter.For larger patterns, 
omputer enumeration qui
kly be
omes infeasible, and a full Wilf 
las-si�
ation seems out of rea
h. Likewise, apart from the work of Simion and S
hmidt [62℄,who have enumerated permutations avoiding an arbitrary set of patterns of size 3, thereis only limited understanding of permutations simultaneously avoiding multiple patterns.
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Chapter 2Identities involving diagonal patternsIn this 
hapter, we will review several re
ent results that involve identities between �llingsof diagrams that avoid in
reasing 
hains of k positive elements and those that avoidde
reasing 
hains of k positive elements. Results of this type seem to be a re
urrenttopi
 in the study of pattern avoidan
e. They seem to point towards a more general
ombinatorial phenomenon, whi
h is not yet fully understood.The main reason we devote a spe
ial 
hapter to this type of results is that theyseem to be a natural generalization of various identities obtained in the study of other
ombinatorial stru
tures, su
h as graphs [19, 20℄, words [37℄, or set partitions [17, 18, 37℄.Indeed, many of the results mentioned in the later 
hapters of this thesis are based on theidentities between diagonal-avoiding �llings mentioned in this 
hapter.In Se
tion 2.1 of this 
hapter, we will present the most important previous resultsrelated to diagonal-avoiding �llings. The theorems presented here do not 
onvey the fullstrength of the results obtained in this �eld of study. For instan
e, we do not deal withsimultaneous avoidan
e of in
reasing and de
reasing 
hains in diagrams, sin
e this wouldrequire introdu
ing new terminology that would not be useful in the rest of the thesis.The interested reader may 
onsult the papers of Krattenthaler [48℄, de Mier [19, 20℄ orRubey [57℄, from whi
h these results originate.In Se
tion 2.2, the author will o�er his own 
ontribution to the topi
 of this 
hapter,by proving an identity involving diagonal-free �llings of re
tangular shapes.2.1 Known results on diagonal patternsLet Ik denote the identity matrix of order k, i.e., the matrix representing the permutation
12 · · ·k. Let Jk be the anti-identity matrix, i.e., the matrix representing k(k−1) · · ·1. Aswe already stated in Theorem 4, the two matri
es Ik and Jk are shape-Wilf equivalent.We also mentioned that this equivalen
e 
an be generalized to more general �llings andmore general shapes. We will now present an overview of these generalizations.The original proof Theorem 4, due to Ba
kelin et al., was �rst published in 2001. Theproof was based on an elementary argument, providing an expli
it bije
tion between Ik-avoiding and Jk-avoiding transversals. In 2004, Bousquet-Mélou and Steingrímsson [14℄have shown that the bije
tion of Ba
kelin et al. maps symmetri
 �llings to symmetri
�llings, thus obtaining the following result (re
all that a �lling is symmetri
, if it is equalto its transpose).Theorem 5 (Bousquet-Mélou�Steingrímsson [14℄). For any k ∈ N and any symmetri
Ferrers shape F , the two patterns Ik and Jk are equirestri
tive in the 
lass of the sym-metri
 transversals of F . In parti
ular, the two patterns are equirestri
tive in the 
lass ofinvolutions. 24



Even before Theorem 5 was proved, Jaggard [32℄ has applied a modi�
ation of thered-green argument of Proposition 1, to show that the theorem would imply the following
orollary.Corollary 6. Let k and n be natural numbers, let A be any permutation matrix. Thenumber of involutions of order n that avoid ( 0 A
Ik 0

) is the same as the number of thosethat avoid ( 0 A
Jk 0

).In 2006, Krattenthaler [48℄ has shown a di�erent way to obtain bije
tions between Ik-avoiding and Jk-avoiding �llings of a given shape. His approa
h is based on the theory ofgrowth diagrams, and seems even more powerful than the original approa
h of Ba
kelin,West and Xin. Here is a simpli�ed version of one of Krattenthaler's main results.Theorem 7 (Krattenthaler [48℄). Let k be an integer, let F be a Ferrers shape. Let F bethe set of all the integer �llings of F . There is a bije
tion κ : F → F with the followingproperties:
• A �lling Φ ∈ F 
ontains Ik if and only if κ(Φ) 
ontains Jk.
• For any i, the sum of the elements of the i-th row of Φ is equal to the sum of theelements of the i-th row of κ(Φ). Similarly, the sum of the elements of the i-th
olumn of Φ is equal to the sum of the elements of the i-th 
olumn of κ(Φ).Note that unlike the previously mentioned results, Theorem 7 speaks of �llings by arbi-trary integers, rather than 01-�llings. There 
an be no bije
tion satisfying the 
onditionsof Theorem 7 that would map 01-�llings to 01-�llings.Again, as was pointed out by de Mier [19℄, we may apply a modi�
ation of the red-green argument to obtain the following result.Corollary 8. Let k be an integer, let A be a matrix, and let F be a Ferrers shape. Thetwo matri
es ( 0 A

Ik 0

) and ( 0 A
Jk 0

) are equirestri
tive among the nonnegative �llings of F .Furthermore, the bije
tion between the two pattern-avoiding 
lasses preserves the sum ofthe entries in ea
h row and ea
h 
olumn of the �lling.Rubey [57℄ has managed to generalize these results to �llings of moon diagrams. The
ontent of a diagram is the multiset of the lengths of its 
olumns. Here are the resultsobtained by Rubey:Theorem 9 (Rubey [57℄). Let k be an integer. Let M and M ′ be two moon polyominoeswith the same 
ontent. There is a bije
tion between Ik-avoiding 01-�llings of M and Ik-avoiding 01-�llings of M ′. Furthermore, if M ′ is obtained from M by a permutation ofits 
olumns (i.e., without altering the verti
al position of the 
olumns) then the bije
tionpreserves the number of 1-
ells in ea
h row.Noti
e that Theorem 9 implies that Ik and Jk are equirestri
tive in the set of 01-�llingsof a moon polyomino. This is be
ause the Jk-avoiding �llings of a moon polyomino M
orrespond to the Ik-avoiding �llings of M ′, where M ′ is the mirror image of M . ByTheorem 9, the Ik-avoiding �llings of M ′ are then in bije
tion with the Ik-avoiding �llingsof M .For �llings by arbitrary nonnegative integers, Rubey obtains an analogous result:Theorem 10 (Rubey [57℄). Let k be an integer. Let M and M ′ be two moon polyominoeswith the same 
ontent. There is a bije
tion between Ik-avoiding nonnegative �llings of Mand Ik-avoiding nonnegative �llings of M ′. Furthermore, if M ′ is obtained from M bya permutation of its 
olumns, then the bije
tion preserves the sum of the entries in ea
hrow. 25



2.2 Constrained re
tangular �llingsIn this se
tion, we take the opportunity to present the author's own 
ontribution to theri
h family of identities involving Ik- and Jk-avoiding �llings. The 
ontents of this se
tionare based on our 
ontribution presented at FPSAC 2007 [35℄.We will 
onsider pattern avoidan
e in re
tangular tables with pres
ribed row- and
olumn-sums. Let us start with basi
 de�nitions. A 
onstrained table of shape r × sis an empty table with r rows and s 
olumns, together with two sequen
es of nonneg-ative integers: the row 
onstraints (x1, . . . , xr), and the 
olumn 
onstraints (y1, . . . , ys),satisfying
r∑

i=1

xi =

s∑

j=1

yj.A �lling of the 
onstrained table is a nonnegative integer matrix M = (Mij) with r rowsand s 
olumns, su
h that the sum of the entries in the i-th row is equal to xi, and thesum of the entries in the j-th 
olumn is equal to yj, formally:
∀i ∈ [r] :

s∑

j=1

Mij = xi

∀j ∈ [s] :

r∑

i=1

Mij = yj.For two sequen
es x = (x1, . . . , xr) and y = (y1, . . . , ys) of nonnegative integers, welet T [x × y] denote the 
onstrained table with row-
onstraints x and 
olumn-
onstraints
y, and we let f(x × y) denote the total number of �llings of T [x × y]. The unorderedmultiset {x1, x2, . . . , xr, y1, y2, . . . , ys} will be 
alled the s
oreline of the table T [x × y].For a sequen
e x = (x1, . . . , xr) and a permutation π ∈ Sr we write π(x) for the sequen
e
(xπ(1), xπ(2), . . . , xπ(r)).Note that if T is a table of shape r× r with all the row- and 
olumn 
onstraints equalto 1, then the �llings of T are exa
tly the permutation matri
es of order r. Furthermore,if P is itself a permutation matrix of a permutation π ∈ Sn, then the P -avoiding �llings of
T are pre
isely the permutation matri
es 
orresponding to the π-avoiding permutations.Thus, the 
on
ept of pattern avoidan
e in re
tangular �llings is a generalization of patternavoidan
e in permutations.Noti
e that for any permutation π of appropriate order, we have the identity f(x×y) =
f(π(x) × y). This is be
ause every �lling M of T [x × y] 
an be transformed into a�lling of T [π(x) × y] by permuting the rows of M a

ording to the permutation π. Of
ourse, this simple bije
tion in general does not preserve pattern avoidan
e. However,if P is a permutation matrix of order at most three, not only do we have the identity
f(x × y; P ) = f(π(x) × ρ(y); P ) for any π and ρ, but in fa
t, we 
an prove a strongeridentity, stated in the following theorem, whi
h is the main result of this se
tion.Theorem 11 (J. [35℄). Let T [x× y] be a 
onstrained table, let P be a permutation matrixof order at most three. Then f(x×y; P ) is uniquely determined by the s
oreline of T [x×y]and the order of P .For example, 
onsider the two tables T = T [(2, 2) × (1, 1, 1, 1)] and T ′ = T [(2, 1, 1) ×
(2, 1, 1)]. Both these tables have the same s
oreline {2, 2, 1, 1, 1, 1}. Theorem 11 impliesthat they must have the same number of P -avoiding �llings for any permutation matrix
P of order at most three. Indeed, if P has order two, then both tables admit exa
tly one
P -avoiding �lling, and if P has order three, then all the six �llings of T are P -avoiding,26
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Figure 2.1: The 
orner �ip operation.and T ′ also has six P -avoiding �llings (as well as one �lling 
ontaining P ). This examplealso shows that Theorem 11 
annot be extended to permutation patterns of order greaterthan three, sin
e all the six possible �llings of T as well as all the seven possible �llingsof T ′ 
learly avoid any pattern larger than three.Before we present the proof of Theorem 11, we 
olle
t some simple observations thatdeal with permutation patterns of order at most two. We then show that previous resultson �llings of Ferrers shapes imply that f(x × y; P ) = f(x × y; Q) for any two permu-tation matri
es P, Q of order three. These arguments show that it is su�
ient to proveTheorem 11 for the 
ase when P = J3.Next, we will use the RSK algorithm together with basi
 results on Young tableauxto prove that if P = Jk for some k, then f(x × y; P ) = f(π(y) × ρ(y); P ), where π and ρare arbitrary permutations of appropriate order.As the last step of the proof, we introdu
e an operation 
alled 
orner �ip, de�ned asfollows: let T [x × y] be a 
onstrained table of shape r × s. Assume that for some t ≤ rand u ≤ s we have
t∑

i=1

xi =
u∑

j=1

yj.A 
orner �ip is an operation that transforms the table T [x × y] into a table T [x′ × y′]of shape (t + s − u) × (u + r − t), where x′ = (x1, x2, . . . , xt, yu+1, yu+2, . . . , ys) and y′ =
(y1, y2, . . . , yu, xt+1, xt+2, . . . , xr) (see Fig. 2.1).We will show that 
orner �ips preserve the number of J3-avoiding �llings. It is easyto see that any two tables with the same s
oreline 
an be transformed to ea
h other bya sequen
e of row permutations, 
olumn permutations and 
orner �ips. Combining thesefa
ts, we obtain the proof of Theorem 11.After we prove Theorem 11, we will present some remarks on the 
onne
tion betweenthe �llings of re
tangular shapes, the pattern avoidan
e in permutations, and other related
on
epts.Let us �rst deal with the values of f(x × y; P ) when P is a permutation matrix oforder at most two. In the trivial 
ase when P has order one, we see that f(x× y; P ) = 0unless all the 
omponents of x and y are zero, in whi
h 
ase f(x× y; P ) = 1. Let us nowturn to the slightly less trivial 
ase of permutation matri
es of order two:Lemma 12. If P = I2 or P = J2, and if T = T [x × y] is any 
onstrained table, then
f(x × y; P ) = 1.Proof. It su�
es to prove the lemma for P = J2, the other 
ase is analogous. Let x =27



(x1, . . . , xr) and y = (y1, . . . , ys). We pro
eed by indu
tion on r + s. If r = 1 or s = 1,the 
laim is 
lear.Otherwise, let k = min{xr, ys}. Observe that if M = (Mij) is a J2-avoiding �lling of
T [x × y], then Mrs = k, otherwise both the last row and the last 
olumn of M would
ontain a positive entry other than Mrs, and these two entries would form the forbiddenpattern P . Assume now that k = xr (the 
ase k = ys is symmetri
). For any J2-avoiding�lling M of T , the last row of M is equal to (0, . . . , 0, k). Furthermore, the remainingrows of M form a J2-avoiding �lling of T ′ = T [(x1, . . . , xr−1) × (y1, . . . , ys−1, ys − k)]. Bythe indu
tion hypothesis, there is exa
tly one J2-avoiding �lling of T ′, and adding a row
(0, . . . , 0, k) to the top of this �lling produ
es a J2-avoiding �lling of T .It remains to prove Theorem 11 for permutation patterns of order three. Using Corol-lary 8, we may easily 
on
lude that f(x × y; P ) = f(x × y; Q) for any two patterns P, Qof order three.Lemma 13. For any 
onstrained re
tangular table T [x × y] and any two permutationmatri
es P, Q of order three, we have f(x × y; P ) = f(x × y; Q).Proof. For P, Q 
hosen among I3, J3 and ( 0 I1

J2 0

), the 
laim is a spe
ial 
ase of Corollary 8.For the other 
ases, we 
an easily establish the required identity by exploiting the symme-tries of the re
tangle; take, e.g., P =
(

I2 0
0 I1

) and Q =
(

0 I1
J2 0

): let us write x = (x1, . . . , xr)and let us de�ne x = (xr, xr−1, . . . , x1). Clearly,
f(x × y; P ) = f(x × y; Q) = f(x × y; I3) = f(x × y; J3) = f(x × y; Q).The remaining 
ases are settled similarly.As the next step towards the proof of Theorem 11, we prove the following result:Proposition 14. Let T [x × y] be a 
onstrained table of shape r × s. For every π ∈ Srand ρ ∈ Ss, and for every positive integer n, we have f(x × y; Jn) = f(π(x) × ρ(y); Jn).Of 
ourse, in the statement of the proposition, we 
ould have used any other patternof the form (

0 In−k

Jk 0

) instead of Jn. Our 
hoi
e of Jn is purely a matter of 
onvenien
e.Proposition 14 is an easy 
onsequen
e of known results on Young tableaux and theRobinson�S
hensted�Knuth (or RSK) algorithm. We will now state the ne
essary resultswithout proof; a useful presentation of several variants of the RSK algorithm and theirrelation to pattern avoidan
e in �llings 
an be found in Krattenthaler's paper [48℄. Theproofs of the basi
 properties of Young tableaux and the RSK 
orresponden
e 
an befound in textbooks of 
ombinatori
s, su
h as [27℄ or [66℄.We �rst state the ne
essary de�nitions:A partition (also known as integer partition, not to be 
onfused with set partitionsde�ned earlier) of size n and length r is a nonin
reasing sequen
e λ1 ≥ λ2 ≥ · · · ≥ λr of
r positive integers whose sum is n.A Young tableau, or more verbosely, a 
olumn-stri
t semi-standard Young tableau, isa �lling of a Ferrers shape su
h that the elements of every row form a weakly in
reasingsequen
e and the elements of every 
olumn form a stri
tly in
reasing sequen
e. If P isa Young tableau with r rows, and the i-th row of P has length λi, then the sequen
e
λ = (λ1, . . . , λr) is a partition, whi
h we will simply 
all the shape of P .The 
ontent of a Young tableau P is a sequen
e µ = (µ1, . . . , µk) where µi is thenumber of 
ells of P that 
ontain the number i. The number of Young tableaux of shape
λ and 
ontent µ is known as the Kostka number, denoted Kλ,µ.The proof of the following standard fa
t 
an be found e.g. in [27℄:28



Fa
t 15. Let λ be a partition of n and let µ = (µ1, . . . , µk) be a sequen
e of nonneg-ative numbers whose sum is n, let π be a permutation of order k. For µ′ = π(µ) =
(µπ(1), . . . , µπ(k)), we have the identity Kλµ = Kλµ′.Let gπ be a bije
tion that transforms a Young tableau P of 
ontent µ to a Youngtableau gπ(P ) of the same shape and of 
ontent π(µ).We now summarize the properties of the RSK algorithm whi
h we will use in ourproof:Fa
t 16. The RSK algorithm provides a bije
tion between �llings of T [x× y] and orderedpairs of Young tableaux (P, Q) su
h that P and Q have the same shape, P has 
ontent xand Q has 
ontent y. Furthermore, the �lling avoids Jn if and only if P and Q have lessthan n rows.These fa
ts immediately imply Proposition 14:Proof of Proposition 14. Let x, y, π, ρ be as in Proposition 14. The Jn-avoiding �llingsof T [x × y] are mapped by the RSK algorithm to pairs of Young tableaux (P, Q) of thesame shape λ with at most n − 1 rows, where the 
ontent of P is x and the 
ontent of
Q is y. This pair may be transformed into a pair of tableaux (gπ(P ), gρ(Q)) of shape λand 
ontent π(x) and ρ(y). By the RSK algorithm, su
h pairs 
orrespond to Jn-avoiding�llings of T [π(x) × ρ(y)].We remark that the bije
tion established above does not, in general, preserve themultiset of the entries used in the 
orresponding �llings. In parti
ular, it does not send 01-�llings onto 01-�llings. This 
annot be avoided be
ause, for example, T [(2, 1, 1)×(2, 1, 1)]has no J2-avoiding 01-�lling, while T [(1, 2, 1) × (2, 1, 1)] has one su
h �lling.The last ingredient of our proof is the operation 
alled 
orner �ip, illustrated onFig. 2.1. Let us �x x = (x1, . . . , xr) and y = (y1, . . . , ys) su
h that ∑r

i=1 xi =
∑s

j=1 yj.Let us also �x t ≤ r and u ≤ s su
h that ∑t
i=1 xi =

∑u
j=1 yj. Re
all that a 
orner�ip is an operation that transforms a table T [x × y] into a table T [x′ × y′], where x′ =

(x1, x2, . . . , xt, yu+1, yu+2, . . . , ys) and y′ = (y1, y2, . . . , yu, xt+1, xt+2, . . . , xr). We prove thefollowing proposition:Proposition 17. With the notation as above, f(x × y; J3) = f(x′ × y′; J3).We introdu
e the following terminology: let M be a matrix with at least t rows andat least u 
olumns. The south-west 
orner of M , denoted by MSW, is the submatrixof M formed by the interse
tion of the �rst t rows with the �rst u 
olumns. Similarly,
MSE denotes the south-east 
orner of M , whi
h is the interse
tion of the �rst t rows of
M with the 
olumns of index greater than u. The north-east and north-west 
ornersof M are de�ned analogously. Thus, a matrix M of shape r × s 
an be expressed as
M =

(
MNW MNE
MSW MSE ).Noti
e that if M is a �lling of T [x× y], then the sum of the entries of MSE is equal tothe sum of the entries of MNW (re
all that we assume that the �rst t rows have the samesum as the �rst u 
olumns). The rows of M with indi
es 1, . . . , t are 
alled the southernrows, the rows with indi
es greater than t are the northern rows, and similarly for theeastern and western 
olumns.Let (X, Y ) be a pair of matri
es. We say that a matrix M 
ompletes X and Y inside

T [x × y] if M is a J3-avoiding �lling of T [x × y] with MSW = X and MNE = Y . Thefollowing two lemmas immediately imply Proposition 17.Lemma 18. For any pair of matri
es (X, Y ), there is at most one M that 
ompletes
(X, Y ) inside T [x × y]. 29



Lemma 19. A pair of matri
es (X, Y ) 
an be 
ompleted inside T [x× y] if and only if thepair (X, Y T) 
an be 
ompleted inside T [x′ × y′], where Y T denotes the transpose of Y .By these lemmas, there is a bije
tion φ that maps a J3-avoiding �lling M of T [x × y]to the J3-avoiding �lling φ(M) = M ′ of T [x′ × y′] uniquely determined by the 
ondition
M ′SW = MSW and M ′NE = MTNE. The existen
e of su
h a bije
tion implies Proposition 17.It remains to prove the two lemmas.Proof of Lemma 18. It is enough to prove that if M is a J3-avoiding �lling of T [x×y] thenboth MNW and MSE avoid J2. By Lemma 12, a J2-avoiding matrix is uniquely determinedby its row sums and 
olumn sums; in parti
ular, MSE and MNW are determined by x, yand the two matri
es X = MSW and Y = MNE.Assume that M is a J3-avoiding �lling of T [x×y] and MNW 
ontains J2. Sin
e the sumof entries of MNW is equal to the sum of the entries of MSE, we know that MSE 
ontainsat least one positive entry. This positive entry and the o

urren
e of J2 inside MNW formthe forbidden pattern J3, whi
h is a 
ontradi
tion, showing that MNW avoids J2. By thesame argument, we obtain that MSE avoids J2 as well.Before we present the proof of Lemma 19, we state and prove a lemma that 
hara
-terizes the pairs (X, Y ) that 
an be 
ompleted inside T [x× y]. We will say that a pair ofmatri
es (X, Y ) is plausible for T [x × y], if X and Y both avoid J3, X has shape t × u,
Y has shape (r − t) × (s − u), and the row sums and 
olumn sums of the matrix ( 0 Y

X 0 )do not ex
eed the 
orresponding 
onstraints x and y.Lemma 20. Let (X, Y ) be a pair of matri
es, let M0 = ( 0 Y
X 0 ). Let xi be the sum ofthe i-th row of M0 and yj the sum of its j-th 
olumn. We say that the i-th row (or j-th
olumn) is saturated if xi = xi (or yj = yj). The pair (X, Y ) 
an be 
ompleted inside

T [x × y] if and only if the following 
onditions are satis�ed:(a) (X, Y ) is plausible.(b) ∑t
i=1(xi−x̄i) =

∑s
j=u+1(yj−ȳj) (whi
h is equivalent to∑u

j=1(yj−ȳj) =
∑r

i=t+1(xi−
x̄i).)(
) Let iS be the largest index of a southern row of M0 su
h that for every i < iS, the
i-th row is saturated (in other words, iS is the �rst unsaturated row, or iS = t if allsouthern rows are saturated, see Figure 2.2). Similarly, let jW be the largest indexof a western 
olumn su
h that for every j < jW , the j-th 
olumn is saturated. Thesubmatrix of M0 indu
ed by the rows {iS + 1, . . . , t} and 
olumns {jW + 1, . . . , u}has all entries equal to 0.(d) With iS and jW as above, the submatrix of M0 indu
ed by the rows {1, . . . , iS} and
olumns {jW +1, . . . , u} avoids J2. The submatrix indu
ed by the rows {iS +1, . . . , t}and 
olumns {1, . . . , jW} avoids J2 as well.(e) Let iN be the smallest row-index of a northern row su
h that for every i > iN , the
i-th row is saturated. Similarly, let jE be the smallest 
olumn index of an eastern
olumn su
h that for every j > jE, the j-th 
olumn is saturated. The submatrix of
M0 indu
ed by the rows {t + 1, . . . , iN − 1} and 
olumns {u + 1, . . . , jE − 1} has allentries equal to 0.(f) With iN and jE as above, the submatrix of M0 indu
ed by the rows {t+1, . . . , iN −1}and 
olumns {jE , . . . , s} avoids J2. The submatrix indu
ed by the rows {iN , . . . , r}and 
olumns {u + 1, . . . , jE − 1} avoids J2 as well.30
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Figure 2.2: Illustration of the four 
onditions (
), (d), (e) and (f) from Lemma 20.The dark gray re
tangles 
orrespond to the submatri
es with all entries equal to zero by
onditions (
) and (e). The light gray re
tangles 
orrespond to submatri
es avoiding J2by 
onditions (d) and (f).Proof. We �rst show that the 
onditions are ne
essary. This is obvious in the 
ase of (a)and (b). Assume that M 
ompletes X and Y in T [x × y]. Assume, for 
ontradi
tion,that 
ondition (
) does not hold. Then M has a positive entry Mij > 0 with iS < i ≤ tand jW < j ≤ u. Sin
e iS is smaller than t, it is unsaturated, otherwise we would get a
ontradi
tion with iS's maximality. Thus, M has at least one positive entry in row iS andan eastern 
olumn. Similarly, M has a positive entry in 
olumn jW and a northern row.These three positive entries form the forbidden pattern J3.Assume now, that 
ondition (d) fails. If the submatrix indu
ed by the rows 1, . . . , iSand 
olumns {jW + 1, . . . , u} 
ontains J2, it means that jW < u and jW is unsaturated.Hen
e, M 
ontains a positive entry in 
olumn jW and a northern row, 
reating the for-bidden J3. By an analogous argument, there is no J2 in the submatrix formed by rows
{iS + 1, . . . , t} and 
olumns {1, . . . , jW}.The arguments for the ne
essity of (e) and (f) are symmetri
 to the arguments givenfor the ne
essity of (
) and (d), respe
tively.It remains to show that the 
onditions (a) to (f) are su�
ient. Assume that X and
Y satisfy these 
onditions. Fix J2-avoiding matri
es MSE and MNW in su
h a way that
M =

(
MNW Y

X MSE ) is a �lling of T [x × y] (we do not know yet that M avoids J3). By
ondition (b) and by Lemma 12, we know that su
h MNE and MSW exist and are uniquelydetermined. By the proof of Lemma 18, we know that M is the only 
andidate for a
ompletion of (X, Y ) inside T [x × y].It remains to show that M avoids J3. For 
ontradi
tion, assume that M 
ontains
J3. Fix three positive 
ells in M forming J3. Assume that these 
ells appear in rows
i1 < i2 < i3 and 
olumns j1 > j2 > j3. At most one of the three 
ells is in MNW and atmost one is in MSE, be
ause these two 
orners avoid J2 by 
onstru
tion. It follows thatthe 
ell (i2, j2) is either inside X or inside Y . Assume that it is inside X (the other 
aseis symmetri
). Thus, we have i2 ≤ t and j2 ≤ u. However, it is not possible to have the
omplete 
opy of J3 inside X (be
ause (X, Y ) is plausible and thus X avoids J3), so wemay assume, losing no generality, that the nonzero 
ell (i1, j1) is in MSE. It follows that
i1 is not saturated, whi
h means that iS ≤ i1 < i2.31



If the 1-
ell (i3, j3) is in MNW, we similarly obtain jW ≤ j3 < j2 
ontradi
ting 
ondition(
). On the other hand, if this 
ell is inside X, then we have a 
ontradi
tion with 
ondition(
) or (d).With the 
hara
terization of the matrix pairs (X, Y ) that 
an be 
ompleted inside
T [x × y], the proof of Lemma 19 is easy:Proof of Lemma 19. It su�
es to 
he
k that a pair (X, Y ) satis�es the 
onditions ofLemma 20 with respe
t to T [x×y] if and only if the pair (X, Y T) satis�es these 
onditionswith respe
t to T [x′ × y′]. This is obvious for 
onditions (a) and (b). For the remain-ing four 
onditions, we may observe that a saturated southern row or western 
olumn of
( 0 Y

X 0 ) remains saturated in ( 0 Y T
X 0

). Similarly, a saturated northern row of index t + iin ( 0 Y
X 0 ) 
orresponds to a saturated eastern 
olumn of index u + i in ( 0 Y T

X 0

) and vi
eversa. Combining this with the observation that transposition preserves 
opies of J2, wesee that the last four 
onditions of Lemma 20 are una�e
ted by the transition from ( 0 Y
X 0 )to ( 0 Y T

X 0

) and from T [x × y] to T [x′ × y′].Let us now assemble these pie
es into the proof of Theorem 11.Proof of Theorem 11. We have observed earlier that the result is easy for matri
es oforder at most two (see Lemma 12 and the pre
eding dis
ussion). Thanks to Lemma 13,we only need to prove the theorem for a single permutation matrix P of order three. Ourmatrix of 
hoi
e is J3. By Propositions 14 and 17, all we have to do is noti
e that for anytwo tables T = T [x× y] and T ′ = T [x′ × y′] with the same s
oreline, we may transform Tinto T ′ by a sequen
e of permutations and 
orner �ips, whi
h is indeed easily seen.We 
on
lude this se
tion with some remarks and examples that put �llings of re
tan-gular shapes into a broader 
ontext of pattern avoidan
e in �llings.Let us only 
onsider patterns that are permutation matri
es, and let us make nodistin
tion between a permutation and its matrix.Re
all that two permutations π, σ are Wilf equivalent (denoted by π
w∼ σ) if they areequirestri
tive in the set of all permutations. In the notation of re
tangle �llings, thismay be written as f(1n × 1n; π) = f(1n × 1n; σ), where 1n is the sequen
e of n ones.Allowing arbitrary 
onstraints, we write π

g∼ σ if for every 
onstrained table T [x × y]we have f(x× y; π) = f(x× y; σ) (the letter `g' stands for `general' �llings, as opposed tothe transversal �llings 
onsidered in Wilf and shape-Wilf equivalen
es).As we have already seen, the integer �llings of re
tangular shapes naturally generalizeto integer �llings of Ferrers shapes. Let Tλ[x × y] denote the Ferrers diagram of shape
λ with row 
onstraints x and 
olumn 
onstraints y. Let fλ(x × y; π) be the number of�llings of Tλ[x × y] that avoid a pattern π. Finally, let us write π

xg∼ σ if the identity
fλ(x × y; π) = fλ(x × y; σ) holds for any 
onstrained Ferrers shape Tλ[x × y]. Theequivalen
e xg∼ is to the shape-Wilf equivalen
e xw∼, what g∼ is to the Wilf equivalen
e w∼.In general, xg∼ is di�erent from xw∼; for example, for λ = (4, 4, 4, 3) we have

18 = fλ((1, 1, 2, 1)× (2, 1, 1, 1);
(

I1 0
0 I2

)
) 6= fλ((1, 1, 2, 1)× (2, 1, 1, 1);

(
I2 0
0 I1

)
) = 17,even though ( I1 0

0 I2

)
xw∼ ( I2 0

0 I1

). Thus, xg∼ is a proper re�nement of xw∼.As we have seen, all the permutations of order three are g∼-equivalent, whi
h showsthat g∼ is di�erent from xw∼ and xg∼. To see that g∼ is also di�erent from w∼, 
onsider the32



following two patterns:
P =




1
1

1
1


 and P =




1
1

1
1


 .Clearly P

w∼ P , sin
e P is symmetri
 to P ; on the other hand, for x = (1, 1, 1, 2, 1) wehave
165 = f (x × x; P ) 6= f

(
x × x; P

)
= 166,whi
h shows that P and P are not g∼-equivalent. This example 
an also be interpretedas f(x × x; P ) 6= f(x × x; P ), where x is the sequen
e x written ba
kwards. This showsthat Proposition 14 does not generalize to all forbidden patterns.We may apply the red-green argument to obtain further examples of g∼-equivalentpatterns. In general, it is not true that A

g∼ A′ implies ( 0 B
A 0 )

g∼ ( 0 B
A′ 0 ) (
ompare theexample P above with I4). On the other hand, using Corollary 8, a single pair of xg∼-equivalent patterns 
an be turned into a family of g∼-equivalent patterns, by a red-greenargument similar to Proposition 1. In parti
ular, if A

xg∼ A′ and B
xg∼ B′ then ( 0

−→
B

A 0

) g∼(
0

−→
B ′

A′ 0

), where −→
B and −→

B ′ are the matri
es obtained from B and B′ by the rotation of180 degrees (similar arguments 
an be made for other symmetries of the square). Forinstan
e, we may 
on
lude that I4
g∼ ( 0 J2

J2 0

).It is not known whether there are any examples of g∼-equivalent or even xg∼-equivalentpatterns, apart from those that 
an be dedu
ed from the equivalen
e of Ik and Jk usingobvious symmetries and the red-green argument outlined above.
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Chapter 3Wilf orderCurrently, it seems di�
ult to pro
eed with the task of Wilf 
lassi�
ation of permutations.The Wilf equivalen
es of small patterns are well understood, while for larger patterns, itis di�
ult to use 
omputer-assisted enumeration to generate new 
onje
tures. In thissituation, the topi
 of Wilf order starts re
eiving more attention as a promising tool togain more insight into Wilf 
lassi�
ation of permutations.For two permutations σ and τ , let us write σ4τ if σ is more restri
tive than τ inthe 
lass of permutations, i.e., the number of σ-avoiding permutations of a given order issmaller than or equal to the number of τ -avoiding permutations. The relation 4 de�nesa quasi-order of permutations.Analogously, we may de�ne the shape-Wilf order, denoted by x

4, where σ
x

4τ meansthat for every Ferrers shape F , the number of σ-avoiding transversals of F does not ex
eedthe number of its τ -avoiding transversals.In this 
hapter, we will often deal with shapes and their �llings. It is thus 
onvenientto keep the 
onvention that a permutation is represented by a permutation matrix, andto ignore the distin
tion between a permutation and its matrix.Let diag(A1, A2, . . . , Ak) denote the blo
k-diagonal matrix whose blo
ks are the ma-tri
es A1, . . . , Ak, in left-to-right order. Formally, we may de�ne diag(A1, A2, . . . , Ak)indu
tively, by saying that diag(A1) = A1, while for k > 1, we havediag(A1, A2, . . . , Ak) =
(

0 diag(A2,A3,...,Ak)
A1 0

)
.Note that a blo
k-diagonal matrix whose every blo
k is a permutation matrix is itselfa permutation matrix. A blo
k-diagonal permutation whose every blo
k is a diagonalmatrix (i.e., either Ik or Jk for some k) is known as layered permutation.Similarly to Wilf equivalen
e, new results involving the Wilf order may be dedu
edfrom results involving the shape-Wilf order. Indeed, all the known results on Wilf orderare 
orollaries to the following proposition.Proposition 21. Let A, B and C be three permutations. If A

x

4B then ( 0 C
A 0 )

x

4 ( 0 C
B 0 ),and hen
e also ( 0 C

A 0 ) 4 ( 0 C
B 0 ).The proof of this proposition is based on a red-green argument 
ompletely analogousto the proof of Proposition 1, and we omit it.In the rest of this 
hapter we review the known results on shape-Wilf order, and thenpresent several 
onje
tures related to the Wilf and shape-Wilf order relations.34



3.1 Shape-Wilf order of small patternsSin
e the two permutations in S2 are shape-Wilf equivalent, the �rst non-trivial resultsrelated to the shape-Wilf order involve patterns of size three. As we have seen, S3 ispartitioned into three shape-Wilf 
lasses:
• 312

xw∼231,
• 123

xw∼213
xw∼321,

• 132.The �rst result involving the shape-Wilf order has been obtained by the author [34℄.It deals with the �rst two of the three shape-Wilf 
lasses above. A di�erent proof ofthe same result has been also obtained by Stankova [64℄. The statement of the result issimple:Theorem 22 (J. [34℄). 231
x

4123.The other known result on shape-Wilf order, whi
h �nishes the 
lassi�
ation of pat-terns of size three, is due to Stankova [64℄, and its statement is equally simple:Theorem 23 (Stankova [64℄). 123
x

4132.Stankova has pointed out that the shape-Wilf ordering of patterns of size three, to-gether with Proposition 21, makes it possible to dedu
e the Wilf ordering of all thepermutations in S4. Re
all that S4 has three Wilf 
lasses, whi
h may represented by thepatterns 2314, 1234, and 1324. From Proposition 21 and Theorems 22 and 23, we obtainthe 
hain
23144123441324.3.2 Skew orderRe
all that a skew shape is a shape obtained as the di�eren
e of two Ferrers shapes sharinga 
ommon bottom-left 
orner. It turns out that pattern avoidan
e among transversals ofskew shapes has interesting 
onsequen
es for shape-Wilf order and hen
e also for the Wilforder.For a pair σ, τ of permutations, let us write σ

sk
4τ , if for every skew shape S the numberof σ-avoiding transversals of S does not ex
eed the number of its τ -avoiding transversals.The relation sk

4 will be 
alled the skew order. Every Ferrers shape is a skew shape, whi
hmeans that σ
sk
4τ implies σ

x

4τ .At this point, the reader might wonder why we have not yet introdu
ed the `skewequivalen
e', as the natural re�nement of the shape-Wilf equivalen
e. The reason is, thatwe are not aware of any pair of distin
t patterns that would be equirestri
tive with respe
tto transversals of skew shapes.Let us present several new de�nitions related to skew shapes. Re
all that r(S) and
c(S) denote respe
tively the number of rows and 
olumns of a diagram S. We say thata skew shape S is proper if r(S) = c(S), and moreover, every row and every 
olumn of
S 
ontains at least one 
ell of S. A proper skew shape S is 
alled permissible if it hasat least one transversal. The following simple observation 
hara
terizes the permissibleskew shapes. 35



Observation 24. A proper skew shape S with n rows is permissible if and only if forevery i ∈ [n] the shape S 
ontains the 
ell in row i and 
olumn n − i + 1.Proof. If S 
ontains all the 
ells {(i, n− i + 1), i ∈ [n]}, then the �lling whi
h assigns thevalue 1 to these 
ells and the value 0 to all the other 
ells is a transversal, hen
e S ispermissible.Assume now that for some i ∈ [n] the 
ell (i, n− i+1) does not belong to S. Withoutloss of generality, assume that the 
ell (i, n − i + 1) is to the left of all the 
ells of S inrow i. The de�nition of skew shape then implies that all the 
ells in rows 1, 2, . . . , i arestri
tly to the right of the 
olumn n − i + 1. Thus, the bottom i rows of S interse
t atmost i − 1 
olumns of S, whi
h implies that S has no transversal.Our motivation for the study of the skew order is based on the following proposition,whi
h allows us to 
onstru
t a family of x

4-
omparable patterns from a single pair ofsk
4-
omparable patterns.Proposition 25. Let A, B and C be three permutations. If A

sk
4B, then ( 0 A

C 0 )
sk
4 ( 0 B

C 0 ),and hen
e also ( 0 A
C 0 )

x

4 ( 0 B
C 0 ).Proof. The proof is very similar to the proof of Proposition 1, and uses an analogousreg-green argument. Instead of repeating the whole proof again, we 
ontent ourselveswith sket
hing the main points.Let S be a skew shape. Our aim is to present an inje
tive mapping that transforms a

( 0 A
C 0 )-avoiding transversal of S into a ( 0 B

C 0 )-avoiding transversal of S. Let Φ be a ( 0 A
C 0 )-avoiding transversal of S. We 
olor the 
ells of Φ red and green: a 
ell (i, j) is green withrespe
t to Φ if the sub�lling of Φ to the bottom-left of (i, j) (i.e., the sub�lling formed bythe interse
tion of the bottommost i − 1 rows with the leftmost j − 1 
olumns) 
ontainsthe pattern C. A 
ell is red if it is not green.Let ΦG be the sub�lling of Φ formed by the green 
ells. Clearly, ΦG is a sparse A-avoiding skew �lling. Sin
e A

sk
4B, we know that there is an inje
tive mapping φ0 thattransforms A-avoiding skew transversals into B-avoiding skew transversals of the sameshape. By an argument analogous to Lemma 2, we may extend φ0 into a shape-preservingmapping φ that transforms A-avoiding sparse skew �llings inje
tively into B-avoidingsparse �llings. Furthermore, φ preserves the zero rows and zero 
olumns of the �lling.We apply the mapping φ to the �lling ΦG, transforming it into a B-avoiding �lling ΨG,while all the red 
ells of Φ remain un
hanged. We thus obtain a ( 0 B

C 0 )-avoiding transversal
Ψ of the shape S. As in the proof of Proposition 1, we again see that a 
ell (i, j) is redwith respe
t to the �lling Φ if and only if it is red with respe
t to Ψ. This implies thatthe transformation we des
ribed here is indeed an inje
tion.To make Proposition 25 useful, we need to �nd some sk

4-
omparable patterns. Themost natural 
andidates are the diagonal patterns In and Jn. After extensive 
omputerenumeration, we are 
on�dent enough to make the following 
onje
ture.Conje
ture 26. For every k ∈ N, the following holds:1. Ik
sk
4Jk.2. For any permutation C, we have ( 0 Ik

C 0

)
x

4
(

0 Jk

C 0

).3. For any two permutations C and D, we have diag(C, Ik, D)4diag(C, Jk, D).4. If A is a layered permutation of order k, then Ik4A.36



1

1

1Figure 3.1: The pattern P used in the proof of Theorem 28.The four statements of this 
onje
ture are listed in the order of de
reasing strength,i.e., ea
h statement is a 
onsequen
e of the previous one. Indeed, the se
ond statementfollows from the �rst by Proposition 25, the third from the se
ond by Proposition 21,while the fourth follows from the third by a simple observation.With regards to the fourth 
laim of Conje
ture 26, it is noteworthy that Bóna [13℄ hasproved the following asymptoti
 version of the 
laim.Theorem 27 (Bóna [13℄). If A is a layered permutation of order k, then the Stanley�Wilflimit of A is greater than or equal to the Stanley�Wilf limit of Ik.Let us mention that the Stanley�Wilf limit of Ik is equal to (k−1)2. In fa
t, Regev [55℄has found an expli
it formula for the number of Ik-avoiding permutations of order n.We have so far been unable to prove Conje
ture 26 in full generality. We are only ableto verify the 
onje
ture for the smallest nontrivial 
ase, i.e., k = 2.Theorem 28. I2
sk
4J2. In parti
ular, for any permutation C we have ( 0 I2

C 0

)
x

4
(

0 J2

C 0

), andfor any pair of permutations C and D we have diag(C, I2, D) 4 diag(C, J2, D).Noti
e that even this simplest 
ase of Conje
ture 26 stated in Theorem 28 is alreadymore general than Theorem 23.To prove Theorem 28, we �rst show that every permissible skew shape has exa
tlyone I2-avoiding transversal. To 
omplete the proof, it then su�
es to show that everypermissible skew shape has at least one J2-avoiding transversal. We will in fa
t provea stronger statement, by showing that every permissible skew shape has exa
tly onetransversal that simultaneously avoids J2 and the skew pattern P in Figure 3.1. Sin
e thenumber of {J2, P}-avoiding transversals 
annot be greater than the number of J2-avoidingtransversals, the proof of Theorem 28 will follow easily.Lemma 29. Every permissible skew shape has exa
tly one I2-avoiding transversal.Proof. Re
all from Observation 24 that every permissible skew shape S with n rows admitsthe `antidiagonal' transversal, whose 1-
ells are exa
tly the 
ells of the form (i, n− i + 1),for i ∈ [n]. Clearly, this transversal avoids I2.We 
laim that any other transversal of S 
ontains I2. To see this, represent a transver-sal of S by a permutation τ = τ1τ2 · · · τn where τi is the index of the 
olumn 
ontaining the1-
ell in row i. If the transversal is di�erent from the antidiagonal transversal des
ribedabove, then τ is di�erent from the anti-identity permutation Jn. Thus, τ must 
ontain 12as a subpermutation, and 
onsequently, the transversal must 
ontain I2.Let us now 
on
entrate on the pattern J2. Note that a skew shape may admit morethan one J2-avoiding transversal. For example, the pattern P from Figure 3.1, as well asits transpose PT are two J2-avoiding transversals of the same shape.As we said above, our aim is to prove that every permissible skew shape has exa
tlyone transversal that avoids both J2 and P . We will again represent a transversal of ashape S by the permutation τ , de�ned as in the proof of the previous lemma.37



To 
ompare two transversals of a given shape, we will use the standard notion oflexi
ographi
 ordering: for two di�erent sequen
es of integers τ = τ1τ2 · · · τn and σ =
σ1σ2 · · ·σn, we say that τ is lexi
ographi
ally smaller than σ if τi < σi, where i is thesmallest index where the two sequen
es di�er.Noti
e that the unique I2-avoiding transversal of a given skew shape S (whi
h is repre-sented by the anti-identity permutation) is the lexi
ographi
ally largest of all transversalsof S. For the unique {J2, P}-avoiding transversal, we have the opposite 
hara
terisation.Lemma 30. Let S be a permissible skew shape. Let τ be the lexi
ographi
ally smallesttransversal of S. Then τ is the unique transversal of S that avoids both patterns J2 and P .Proof. Let τ = τ1τ2 · · · τn be the lexi
ographi
ally smallest transversal of a skew shape S.Let us �rst prove that τ avoids both forbidden patterns. Noti
e that neither of the twoforbidden patterns is itself the lexi
ographi
ally smallest transversal of its underlyingshape. Thus, if τ 
ontains a 
opy of J2 or P , we may modify the �lling of the subshapethat 
ontains this 
opy by repla
ing the forbidden pattern with a lexi
ographi
ally smallertransversal of the same shape. This modi�
ation transforms τ into a lexi
ographi
allysmaller transversal, 
ontradi
ting its minimality.Assume now, for the sake of 
ontradi
tion, that σ = σ1σ2 · · ·σn is a transversal that isdi�erent from τ and also avoids J2 and P . Let us refer to the 1-
ells of τ as τ -
ells, whilethe 1-
ells of σ will be 
alled σ-
ells. Let i be the smallest index where σ and τ di�er(see Fig. 3.2). By the minimality of τ , we have τi < σi. Let j be the index of the highestrow that interse
ts the 
olumn σi. Let k be the row-index of the σ-
ell that appears in
olumn τi (i.e., k satis�es the equality σk = τi).The index k 
annot be smaller than i, sin
e the σ-
ells below row i 
oin
ide with the
τ -
ells. We also know that k 6= i sin
e τi 6= σi. This leaves us with k > i. If k ≤ j, thenthe two rows i and k and the two 
olumns σk and σi indu
e a 
opy of J2 in σ.Assume now that k > j. Let us say that a 
ell is high if its row index is greater than j,and a 
ell is low otherwise. Clearly, there are exa
tly j low σ-
ells and j low τ -
ells. In
olumn σk, there is a low τ -
ell in row i together with a high σ-
ell in row k. Sin
e thenumber of low σ-
ells equals the number of low τ -
ells, there must also be a 
olumn that
ontains a low σ-
ell and a high τ -
ell. Let c be su
h a 
olumn, and let ℓ be the row indexof the σ-
ell in 
olumn c. Note that c < σi, otherwise c would not 
ontain any high 
ells.If the 
olumn c interse
ts row i, then the two rows i and ℓ with the two 
olumns c and
σi indu
e a 
opy of J2 in σ. On the other hand, if the 
olumn c does not interse
t row i,this means that c < τi = σk, and the three rows i, ℓ, k together with the 
olumns c, σk, σiindu
e in σ a 
opy of P .In any 
ase, we get a 
ontradi
tion.As we already explained, Theorem 28 is a dire
t 
onsequen
e of the two lemmas above.
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Chapter 4InvolutionsLet us now turn our attention to the topi
 of pattern avoidan
e in involutions. Re
allthat an involution is a permutation whose matrix is symmetri
. Let In denote the set ofinvolutions of order n, and let In(σ) be the set of the involutions of order n that avoid σ.For two permutation patterns σ and τ , we write σ
I∼τ if the two patterns are equirestri
tivein the set of involutions, i.e., if |In(σ)| = |In(τ)| for ea
h n. We will 
all the relation I∼the I-Wilf equivalen
e.Note that a permutation is not ne
essarily I-Wilf equivalent to its reversal. However, itis 
lear that a permutation is I-Wilf equivalent to its inverse, as well as to the permutationobtained by re�e
ting the permutation matrix along the de
reasing diagonal.Pattern avoidan
e of involutions was already studied by Simion and S
hmidt [62℄, who
lassi�ed patterns of size three with respe
t to I-Wilf equivalen
e. They have shown thatfor any pattern τ ∈ {123, 213, 132, 321}, there are exa
tly ( n

⌊n/2⌋

)
τ -avoiding involutionsof order n, while for τ ∈ {231, 312}, there are 2n−1 su
h τ -avoiding involutions.From known symmetries of the RSK algorithm (whi
h may be found, e.g., in Fulton'sbook [27℄), it is easy to see that Ik

I∼Jk for any k, where Ik and Jk denote the identity andthe anti-identity matrix of order k.Guibert [29℄ has shown that 3412
I∼4321 and 2143

I∼1243. He 
onje
tured that both
2143 and 1432 are a
tually I-Wilf equivalent to 4321 (and hen
e also to 1234). The �rstpart of this 
onje
ture was proved by Guibert, Pergola and Pinzani [30℄, who proved theequivalen
e 1234

I∼2143.Jaggard [32℄ generalized these results by proving that for any permutation X, we have(
0 X
I2 0

) I∼ ( 0 X
J2 0

) and ( 0 X
I3 0

) I∼ ( 0 X
J3 0

).Furthermore, Jaggard made the following 
onje
tures:1. ( 0 X
Ik 0

) I∼ ( 0 X
Jk 0

) for any k ≥ 1 and any permutation matrix X,2. 12345
I∼45312,3. 123456
I∼456123

I∼564312.The �rst of these 
onje
tures was settled by Bousquet-Mélou and Steingrímsson [14℄,whose result was presented here as Corollary 6 in Chapter 2. From this 
orollary, it ispossible to dedu
e the following equivalen
e, valid for any permutation matrix X and anytwo integers k, l ≥ 0: (
Il

X
Ik

) I∼( Jl

X
Jk

)
.40



Figure 4.1: An example of an Fy-shape. The shaded 
ells are the 
orners.The other two 
onje
tures of Jaggard are both 
onsequen
es of a more general resultproved by Dukes, Jelínek, Mansour and Reifegerste [22℄. The proof of this result is themain topi
 of this 
hapter.The proof we present here is taken from the above-mentioned paper of Dukes et al. [22℄.Let us remark that the paper in fa
t 
onsiders a more general setting of signed permuta-tions, whi
h may be represented by matri
es with entries 0, 1 and −1, with the propertythat ea
h row and ea
h 
olumn has exa
tly one nonzero entry. In this thesis, we will re-stri
t ourselves to the less general setting of ordinary permutations, to avoid unne
essaryte
hni
al 
ompli
ations.We also point out that, independently of Dukes et al. [22℄, Jaggard and Marin
el [33℄have proved that for every k ≥ 5, the permutation Jk is I-Wilf equivalent to (k − 1)k(k −
2)(k − 3) · · ·4312. The proof of Jaggard and Marin
el uses a di�erent method than theproof of Dukes et al. that we will show in this thesis.The proof we are about to present is based on previously known results on shape-Wilfequivalen
e, 
ombined with a suitably adapted version of the red-green argument. Forte
hni
al reasons, apart from using usual Ferrers diagrams (whi
h are bottom-left alignedshapes), we will also need to refer to the bottom-right aligned 
orner shapes, i.e., theshapes obtained from Ferrers diagrams by re�e
tion along a verti
al axis. We will 
allthese shapes the Fy-shapes. We will write σ

yw∼ τ if σ and τ are equirestri
tive withrespe
t to transversals of Fy-shapes. Of 
ourse, σ
yw∼ τ is merely a shorthand for sayingthat the reversal of σ is shape-Wilf equivalent to the reversal of τ .Here are the results we are about to prove.Theorem 31 (Dukes, J., Mansour, Reifegerste [22℄). If A and B are yw∼-equivalent ma-tri
es and X is any permutation matrix then the following equivalen
es hold:




AT
XT

X
A




I∼BT
XT

X
B


 (4.1)




AT
XT

1
X

A




I∼BT
XT

1
X

B




(4.2)As we already mentioned, the proof of Theorem 31 uses a suitably adapted version ofthe red-green argument. Before we state argument pre
isely, let us make the followingde�nition: a 
ell of an Fy-shape is 
alled a 
orner if it is the leftmost 
ell of its row andalso the topmost 
ell of its 
olumn. See Figure 4.1 for an example.41



Proposition 32. Let F be an Fy-shape, and let A, B, C be permutations, su
h that Aand B are yw∼-equivalent. We set
X = ( C 0

0 A ) and Y = ( C 0
0 B ) .There is a bije
tion between X-avoiding and Y -avoiding sparse �llings of F . This bije
tionpreserves the number of nonzero entries in ea
h row and 
olumn. In parti
ular, X and

Y are yw∼-equivalent. Furthermore, if C is nonempty, the bije
tion preserves the �lling inthe 
orners of F .The proof of Proposition 32 is analogous to the proof of Proposition 1, and we omit it.Note that Proposition 32 yields some information even when C is the empty matrix.In su
h situation, the proposition shows that a bije
tion between pattern-avoiding trans-versals 
an be extended to a bije
tion between pattern-avoiding sparse �llings, by simplyignoring the rows and 
olumns with no nonzero entries.We will now show how the results on shape Wilf equivalen
e may be applied to obtainnew 
lasses of I-Wilf equivalent patterns. Let us �rst give the ne
essary de�nitions. Foran n×n matrix M , let M− denote the sub�lling of M formed by the 
ells of M whi
h arestri
tly below the main diagonal, and let M−
0 denote the sub�lling formed by the 
ells onthe main diagonal and below it. See Figure 4.2 for an example. Note that both M− and

M−
0 are �llings of Fy-shapes, and if M is a permutation matrix, then the two �llings aresparse.

1

1

1

1

1

1

11

M M
−

M
−

0Figure 4.2: The �llings M− and M−
0 .The rows and 
olumns of M− and M−

0 will have their numbering inherited from thematrix M . In parti
ular, this means that the leftmost 
olumn of M− does not 
ontain any
ell at all, while the only 
ell in the se
ond 
olumn of M− will be referred to as 
ell (1, 2).Analogously, we de�ne M+ to be the �lled shape 
orresponding to the entries stri
tlyabove the main diagonal of M .Clearly, a symmetri
 matrix M is 
ompletely determined by M−
0 . Observe that asymmetri
 01-matrix M is an involution if and only if, for every i = 1, . . . , n, the �lling

M−
0 has exa
tly one 1-
ell in the union of all 
ells of the i-th row and i-th 
olumn.The �lling M− does not determine a symmetri
 matrix M uniquely, sin
e it does not
arry any information about the diagonal 
ells. However, if we further assume that Mis an involution, then it is again easy to see that M is determined by M−. Note that insu
h 
ase, the �lling M− has the property that the union of i-th row and i-th 
olumn hasat most one 1-
ell. Conversely, it is not di�
ult to see that a �lling M− that satis�es theproperty above identi�es a unique involution M .For a permutation P , let P ′ denote the involution ( PT 0

0 P

). We are now ready to stateand prove the �rst part of our �rst result on I-Wilf equivalen
e, whi
h 
orresponds to theequation (4.1) of Theorem 31. 42



Proposition 33. If A and B are two yw∼-equivalent permutation matri
es, then A′ I∼B′.Moreover, the bije
tion between In(A′) and In(B′) preserves �xed points.Proof. Let M ∈ In be an involution. We 
laim that M avoids A′ if and only if M−avoids A. To see this, noti
e that any o

urren
e of A′ in M 
an be restri
ted eitherto an o

urren
e of A in M− or an o

urren
e of AT in M+. However, sin
e M+ is thetranspose of M−, we know that M+ 
ontains AT if and only if M− 
ontains A. It followsthat if M 
ontains A′ then M− 
ontains A. The 
onverse is even easier to see.Let us 
hoose M ∈ In(A′). Sin
e M− is a sparse A-avoiding �lling, we may apply thebije
tion from Proposition 32 to M−, to obtain a B-avoiding sparse �lling Ψ of the sameshape.The new �lling Ψ has a nonzero entry in a row i (or 
olumn i) whenever M− has anonzero entry in the same row (or 
olumn, respe
tively). In parti
ular, the �lling Ψ hasthe property that the union of the i-th row and i-th 
olumn has at most one 1-
ell. Thisimplies that Ψ = N− for an involution N ∈ In.Furthermore, the �xed points of N are in the same position as the �xed points of
M , be
ause the position of the �xed points is determined by the zero rows and 
olumns,whi
h are preserved by the bije
tion from Proposition 32.Clearly, sin
e N− avoids B, we know that B avoids B′. Ea
h step of this 
onstru
tion
an be inverted whi
h proves the bije
tivity. The bije
tion preserves �xed points by
onstru
tion.By a similar reasoning, we obtain an analogous result for patterns of odd size. For apermutation M , let M ′′ denote the involution

(
MT 0 0
0 1 0
0 0 M

)
,and let M∗ denote the permutation ( 1 0

0 M ).We are now ready to state a proposition whi
h proves the equation (4.2) from Theo-rem 31.Proposition 34. If A and B are yw∼-equivalent, then A′′ I∼B′′. Moreover, the bije
tionbetween In(A′′) and In(B′′) preserves �xed points.Proof. By an argument analogous to the proof of Proposition 33, we may observe thatan involution M avoids A′′ if and only if M−
0 avoids the pattern A∗. By Proposition 32,the two patterns A∗ and B∗ are yw∼-equivalent and furthermore, the bije
tion realizingthis equivalen
e preserves the �lling of the 
orners of the shape. Note the 
orners of M−

0
orrespond exa
tly to the diagonal 
ells of the original permutation matrix M .Now we 
onsider M−
0 for an involution M ∈ In(A′′). The bije
tion of Proposition 32maps M−

0 to a B∗-avoiding �lling Ψ. Sin
e the bije
tion preserves the number of nonzeroentries in ea
h row and ea
h 
olumn of M−
0 , and sin
e it also preserves the entries on theinterse
tion of i-th row and i-th 
olumn (these are pre
isely the 
orners), we know thatthe bije
tion preserves, for ea
h i, the number of nonzero entries in the union of the i-throw and i-th 
olumn. In parti
ular, the �lling Ψ has exa
tly one nonzero entry in theunion of i-th row and i-th 
olumn, whi
h guarantees that there is a unique involution Nsatisfying N−

0 = Ψ. Sin
e Ψ avoids B∗, we know that N avoids B′′.Be
ause the bije
tion preserves the entries in the diagonal 
ells (i, i), i = 1, . . . , n,the permutations M and N have the same �xed points. This provides the requiredbije
tion.The proof of the main result now follows easily from the previous propositions.43



Proof of Theorem 31. Let A and B be yw∼-equivalent patterns. Let C be an arbitrarypattern. By Proposition 32, the patterns ( C 0
0 A ) and ( C 0

0 B ) are yw∼-equivalent as well.By applying Propositions 33 and 34 to these two patterns, we obtain dire
tly the twoequations of Theorem 31.By re
alling that the two diagonal patterns Ik and Jk are shape-Wilf equivalent, andhen
e also yw∼-equivalent, we may now easily see that the two remaining 
onje
tures ofJaggard were 
orre
t.Corollary 35. We have 54321
I∼45312 and 654321

I∼456123
I∼564312.Let us mention that a 
omputer enumeration performed by Mansour [22℄ has veri�edthat among permutations of order at most 7, there are no pairs of I-Wilf equivalentpatterns, apart from those that are 
overed by presently known results.
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Chapter 5WordsIn this 
hapter, we will investigate a very natural generalization of the 
on
ept of permu-tation, namely the k-ary words, also referred to as multiset permutations.The results presented in this se
tions are based on a forth
oming arti
le by Jelínekand Mansour [38℄. These results extend previous work of Burstein [15℄, who des
ribedthe equivalen
e 
lasses of k-ary words of length at most 3, and of Savage and Wilf [60℄,who dealt with integer 
ompositions (as well as words) avoiding patterns of length atmost 3. We will present several new bije
tive arguments that extend these results tolarger patterns.5.1 Basi
 terminologyLet us �rst re
all the terminology and notation related to pattern avoidan
e of k-arywords.Let [k] = {1, 2, . . . , k} be a linearly ordered alphabet of k letters. We let [k]n denotethe set of words of length n over this alphabet.Consider two words, σ ∈ [k]n and τ ∈ [ℓ]m. Assume additionally that τ 
ontains allletters 1 through ℓ�a word with this property is 
alled redu
ed. We say that σ 
ontainsan o

urren
e of τ , or simply that σ 
ontains τ , if σ has a subsequen
e order-isomorphi
to τ , i.e., if there exist 1 ≤ i1 < . . . < im ≤ n su
h that, for any two indi
es 1 ≤ a, b ≤ m,
σia < σib if and only if τa < τb. If σ 
ontains no o

urren
es of τ , we say that σ avoids τ .In this 
hapter, the term pattern will refer to an arbitrary redu
ed word. For a pattern
τ , let [k]n(τ) denote the set of k-ary words of length n whi
h avoid the pattern τ . We saythat two patterns τ and τ ′ are word-equivalent (or, more brie�y, w-equivalent), if for allvalues of k and n, we have the identity |[k]n(τ)| = |[k]n(τ ′)|.There are two operations on words whi
h trivially preserve the w-equivalen
e, 
alledthe reversal and the 
omplement. The reversal of a word τ ∈ [k]m, denoted by τ , isobtained by writing the letters of τ in the reverse order, i.e., the i-th letter of τ is equalto the (m− i+1)-th letter of τ . The 
omplement of a word τ , denoted by τC, is obtainedby turning τ �upside-down�, i.e., a letter j is repla
ed by the letter ℓ−j +1, where ℓ is thelargest letter of τ . For example, 1232 = 2321, 1232C = 3212, and 1232C = 1232

C
= 2123.Several authors have previously 
onsidered pattern avoidan
e in words [1, 4, 15, 16, 56℄.In 1998, Burstein [15℄ proved that 123 and 132 are w-equivalent. In 2002, Burstein andMansour [16℄ proved the w-equivalen
e of 121 and 112. By these two results we obtainthat there are three w-equivalen
e 
lasses of word patterns of length three:

• 111,
• 112, 121, 122, 211, 212, 221, 45



• 123, 132, 213, 231, 312, 321.5.2 CompositionsA 
omposition σ = σ1σ2 · · ·σm of n ∈ N is an ordered 
olle
tion of one or more positiveintegers whose sum is n. The numbers σ1, . . . , σm are 
alled parts of the 
omposition. Welet Cn denote set of all 
ompositions of n. A 
omposition may thus be regarded as a k-aryword.We again say that the 
omposition σ ∈ Cn 
ontains a pattern τ ∈ [ℓ]s, if σ 
ontainsa subsequen
e order-isomorphi
 to τ . Let Cn(τ) denote the set of all the 
ompositions in
Cn that avoid τ . We say that two patterns τ and τ ′ are 
-equivalent, if for all values of
n, we have |Cn(τ)| = |Cn(τ

′)|. It is easy to see that every pattern is 
-equivalent to itsreversal. However, a pattern does not need to be 
-equivalent to its 
omplement.Savage and Wilf [60℄ 
onsidered pattern avoidan
e in 
ompositions for a single pattern
τ ∈ S3 (re
all that S3 is the set of the permutations on three letters), and showed thatthe number of 
ompositions of n avoiding τ ∈ S3 is independent of τ , that is, the threepatterns 123, 213 and 132 are all 
-equivalent. Re
ently, Heuba
h, Mansour and Munagi[26℄ showed that 112 is 
-equivalent to 121, and 122 is 
-equivalent to 212. These tworesults 
omplete the 
lassi�
ation of patterns of length three in 
ompositions, and showthey form exa
tly four 
-equivalen
e 
lasses:

• 123, 213, 132, 231, 312, 321,
• 112, 121, 211,
• 122, 212, 221,
• 111.5.3 Strong equivalen
e of wordsWe now introdu
e an equivalen
e relation on words, whi
h re�nes both the w-equivalen
eand the 
-equivalen
e. For a word σ of length n, the 
ontent of σ is the unordered multisetof the n letters appearing in σ. In parti
ular, two words have the same 
ontent, if one
an be obtained from the other by a suitable rearrangement of letters.We say that two patterns τ, τ ′ are strongly equivalent, denoted by τ

!∼τ ′, if for every
k, n there is a bije
tion f between [k]n(τ) and [k]n(τ ′) with the property that for every
σ ∈ [k]n(τ), the word f(σ) has the same 
ontent as σ. Clearly, if two patterns arestrongly equivalent, then they are also w-equivalent and 
-equivalent. Ea
h pattern isstrongly equivalent to its reversal, and if two patterns τ and σ are strongly equivalent,then their 
omplements τC and σC are strongly equivalent as well. Strong equivalen
ehas already been 
onsidered (under di�erent terminology) by Savage and Wilf [60℄, whoproved that all permutation patterns of length 3 are strongly equivalent.5.4 Semi-standard �llings of Ferrers shapesSeveral families of strongly equivalent words may be dedu
ed from known results on �lingsof diagrams.To establish the link between words and �llings, we will represent k-ary words of length
n as 01-matri
es with k rows and n 
olumns and exa
tly one 1-
ell in ea
h 
olumn. For a46



word σ of length n over the alphabet [k], we let M(σ, k) be the k×n matrix with a 1-
ellin row i and 
olumn j if and only the j-th letter of σ is equal to i.With this representation, we may use known bije
tions on �llings of diagrams to obtaindire
tly new equivalen
es among words. Re
all that a semi-standard �lling of a Ferrersshape is a 01-�lling in whi
h every 
olumn has exa
tly one 1-
ell. We will say that twomatri
es M and M ′ are Ferrers equivalent, denoted by M
xs∼ M ′, if for every Ferrers shape

F the number of M-avoiding semi-standard �llings is equal to the number of M ′-avoidingsemi-standard �llings. We say that M and M ′ are strongly Ferrers equivalent if for everyFerrers shape F there is a bije
tion between M-avoiding and M ′-avoiding semi-standard�llings of F that preserves the number of 1-
ells in ea
h row.The following lemma allows us to translate results about �llings of Ferrers shapes intoresults about words. The lemma is based on the red-green argument that we have alreadyen
ountered several times.For a word ρ ∈ [ℓ]n and an integer k, we let ρ + k denote the word obtained byin
reasing ea
h letter of ρ by k.Lemma 36. Let τ and τ ′ be two patterns with k letters, let ρ be a pattern with ℓ letters.If M(τ, k) and M(τ ′, k) are strongly Ferrers equivalent matri
es then the two (k+ℓ)-letterpatterns τ(ρ + k) and τ ′(ρ + k) are strongly equivalent words. (Here τ(ρ + k) denotes the
on
atenation of τ and ρ + k.)Proof. Let us write σ = τ(ρ + k) and σ′ = τ ′(ρ + k). For a given m and n, 
hoose a word
x ∈ [m]n(σ), and let M = M(x, m) be its 
orresponding matrix. Note that M avoids thematrix M(σ, k + ℓ).Color the 
ells of M red and green, where a 
ell c is green if and only if the submatrixof M stri
tly to the right and stri
tly to the top of c 
ontains M(ρ, ℓ), otherwise the 
ellis red. Note that the green 
ells form a Ferrers diagram and that the nonzero 
olumns ofthis diagram indu
e an M(τ, k)-avoiding semi-standard �lling. Using the strong Ferrersequivalen
e of M(τ, k) and M(τ ′, k), we may transform this �lling into a M(τ ′, k)-avoiding�lling. This operation transforms M into a matrix M ′ representing a σ′-avoiding word x′with the same 
ontent as x.To see that this operation 
an be inverted, observe that the operation has only modi�edthe �lling of the green 
ells of M . Observe also that for every green 
ell c of M , there is a
opy of M(ρ, ℓ) stri
tly to the right and stri
tly above c whi
h only 
onsists of red 
ells.Thus the red 
ells of M 
oin
ide with the red 
ells of M ′.We thus have a bije
tion showing that σ

!∼σ′.By Theorem 7, we know that the matri
es Ik and Jk are strongly Ferrers equivalent.Applying Lemma 36, we thus obtain the following result.Theorem 37 (J., Mansour [38℄). For any pattern ρ and any integer k ∈ N, the word
12 · · ·k(ρ + k) is strongly equivalent to k(k − 1) · · · 1(ρ + k).5.5 Patterns equivalent to 12kFrom now on, we will often use the shorthand notation nk to denote the word 
onsistingof the symbol n repeated k times.In this se
tion, we will deal with a family of patterns that are strongly equivalent tothe pattern 12k. Our aim is to prove the following result.Theorem 38 (J., Mansour [38℄). For any two integers i and j the matrix M(2i12j, 2) isstrongly Ferrers equivalent to M(12i+j , 2). 47



In view of Lemma 36, the theorem dire
tly yields the following result.Corollary 39. For any pattern ρ, the words 2i12j(ρ + 2) and 12i+j(ρ + 2) are stronglyequivalent.Rather than proving Theorem 38 dire
tly, we shall prove a more re�ned result, whi
hwill be
ome useful later. To state the re�nement, we need additional terminology.First of all, we will now work in the more general setting of sta
k shapes, insteadof the Ferrers shapes 
onsidered above. The notions of Ferrers equivalen
e and strongFerrers equivalen
e 
an be naturally extended to semi-standard �llings of sta
k shapes:we will say that two matri
es M and M ′ are sta
k equivalent, denoted by M
△s∼ M ′, ifthey are equirestri
tive with respe
t to semi-standard �llings of every sta
k polyomino.We will say that they are strongly sta
k equivalent if they are sta
k equivalent and the
orresponding bije
tion preserves the number of 1-
ells in ea
h row.Let Φ be a �lling of a sta
k polyomino and let t ≥ 1 be an integer. A sequen
e

c1, c2, . . . , ct of 1-
ells in Φ is 
alled a de
reasing 
hain (or in
reasing 
hain) if for every
i ∈ [t − 1] the 
olumn 
ontaining ci is to the left of the 
olumn 
ontaining ci+1 and therow 
ontaining ci is above the row of ci+1 (or below the row of ci+1, respe
tively).A �lling is t-falling (or t-rising) if it has at least t rows, and in its bottom t rows,the leftmost 1-
ells of the nonzero rows form a de
reasing 
hain (or in
reasing 
hain,respe
tively).In the rest of this se
tion, we let S p

q denote the sequen
e 2p12q, where p, q are nonneg-ative integers.Here is the promised re�nement of Theorem 38.Lemma 40. For every p, q ≥ 0, the matrix M(S p
q , 2) is strongly sta
k equivalent to thematrix M(S p+q

0 , 2). Furthermore, if p ≥ 1, then for every sta
k polyomino P , there is abije
tion f between the M(S p
q , 2)-avoiding and M(S p+q

0 , 2)-avoiding semi-standard �llingsof P with the following properties.
• The bije
tion f preserves the number of 1-
ells in every row.
• Both f and f−1 map t-falling �llings to t-falling �llings, for every t ≥ 1.Proof. Let M = M(S p

q , 2) and M ′ = M(S p+q
0 , 2), for some p, q ≥ 0. Let P be a sta
kpolyomino. We will pro
eed by indu
tion over the number of rows of P . If P has only onerow, then a 
onstant mapping is the required bije
tion. Assume now that P has r ≥ 2rows, and assume that we are presented with a semi-standard �lling Φ of P . Let P− be thediagram obtained from P by erasing the r-th row as well as every 
olumn that 
ontainsa 1-
ell of Φ in the r-th row. The �lling Φ indu
es in P− a semi-standard �lling Φ−.We 
laim that for every p, q ≥ 0, the �lling Φ avoids M if and only if the followingtwo 
onditions are satis�ed.(a) The �lling Φ− avoids M .(b) If the r-th row of Φ 
ontains m 1-
ells in 
olumns c1 < c2 < · · · < cm and if

m ≥ p + q, then for every i su
h that p ≤ i ≤ m − q, the 
olumn ci is either therightmost 
olumn of the r-th row of Π, or it is dire
tly adja
ent to the 
olumn ci+1,i.e., ci + 1 = ci+1 (see Figure 5.1).Clearly, the two 
onditions are ne
essary. We now show that they are su�
ient. The�rst 
ondition guarantees that Φ does not 
ontain any 
opy of M that would be 
on�nedto the �rst r − 1 rows. The se
ond 
ondition guarantees that Φ has no 
opy of M thatwould interse
t the r-th row. 48
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Figure 5.1: Illustration of 
ondition (b) in the proof of Lemma 40.We now de�ne re
ursively the required bije
tion between M-avoiding and M ′-avoiding�llings. Let Φ be an M-avoiding �lling of P , let Φ− and c1, . . . , cm be as above. By theindu
tion hypothesis, we already have a bije
tion between M-avoiding and M ′-avoiding�llings of the shape P−. This bije
tion maps Φ− to a �lling Ψ− of P−. Let Ψ be the�lling of P that has the same values as Φ in the r-th row, and the 
olumns not 
ontaininga 1-
ell in the r-th row are �lled a

ording to Ψ−. Note that Ψ 
ontains no 
opy of M ′ inits �rst r − 1 rows and it 
ontains no 
opy of M that would interse
t the r-th row.If Ψ has fewer than p + q 1-
ells in the r-th row, we de�ne f(Φ) = Ψ, otherwisewe modify Ψ in the following way. For every i = 1, . . . , q, we 
onsider the 
olumnswith indi
es stri
tly between cm−q+i and cm−q+i+1 (if i = q, we take all 
olumns to theright of cm that interse
t the last row). We remove these 
olumns from Ψ and re-insertthem between the 
olumns cp+i−1 and cp+i. Note that these transformations preserve therelative left-to-right order of all the 
olumns that do not 
ontain a 1-
ell in their r-throw. In parti
ular, the resulting �lling still has no 
opy of M ′ in the �rst r − 1 rows. By
onstru
tion, the �lling also satis�es 
ondition (b) for the values p′ = p + q and q′ = 0used instead of the original p and q. Hen
e, it is a M ′-avoiding �lling. This 
onstru
tionprovides a bije
tion f between M-avoiding and M ′-avoiding �llings.It is 
lear that f preserves the number of 1-
ells in ea
h row. It remains to 
he
k thatif p ≥ 1, then f preserves the t-falling property. Let us �x t, and let r be the numberof rows of P . If r < t then no �lling of P is t-falling. If r = t, then Φ is t-falling if andonly if Φ− is (t− 1)-falling and the r-th row is either empty or has a 1-
ell in the leftmost
olumn of P . These 
onditions are preserved by f and f−1, provided p ≥ 1. Finally, if
r > t, then Φ is t-falling if and only if Φ− is t-falling. We now obtain the required resultfrom the indu
tion hypothesis and from the fa
t that the relative position of the 1-
ellsof the �rst r − 1 rows does not 
hange when we transform Ψ into f(Φ).Lemma 40 immediately implies Theorem 38, whi
h in turn implies Corollary 39.5.6 Patterns equivalent to 1232kCorollary 39 shows that all the words of length k that have a single symbol `1' and k − 1symbols `2' are strongly equivalent. In other words, any pattern that 
an be obtainedfrom 12k−1 by rearranging its symbols is strongly equivalent to it. We will now showthat a similar property also holds for the pattern 12k−23. This time, the proof is quitedi�erent, and does not use the notion of �llings.49



Theorem 41 (J., Mansour [38℄). Let k ≥ 3 be an integer. All the patterns of length kthat 
onsist of a single symbol `1', a single symbol `3' and k − 2 symbols `2' are stronglyequivalent.Proof. Let k be �xed. Let τ(i, j) denote the word of length k whose i-th symbol is `1', the
j-th symbol is `3' and the remaining symbols are equal to `2'. Our aim is to show thatall the patterns in the set {τ(i, j), i 6= j, 1 ≤ i, j ≤ k} are strongly equivalent. Sin
e ea
hword is strongly equivalent to its reversal, we only need to deal with the words τ(i, j)with i < j. From Corollary 39, we dedu
e that the words {τ(i, k), i = 1, . . . , k−1} are allstrongly equivalent, and hen
e the words {τ(1, j), j = 2, . . . , k} are all strongly equivalentas well.To prove the theorem, it thus su�
es to show that for every i < j < k, the word
τ(i, j) is strongly equivalent to the word τ(i + 1, j + 1). Let m be an integer. We willsay that a word σ 
ontains τ(i, j) at level m if there is a pair of symbols ℓ, h su
h that
ℓ < m < h, and su
h that the word σ 
ontains a subword over the alphabet {ℓ, m, h}whi
h is order-isomorphi
 to τ(i, j). For example, the word 132342 
ontains the pattern
1223 at level 3 (due to the subword 1334), while it avoids 1223 at level 2 (sin
e it doesnot 
ontain the subword ℓ22h for any values of ℓ < 2 < h).Assume now that we are given a �xed pair of indi
es i, j, with i < j < k, and wewant to provide a 
ontent-preserving bije
tion between τ(i, j)-avoiding and τ(i+1, j +1)-avoiding words of length n. We will say that a word σ is an m-hybrid if for every m < m,the word σ avoids τ(i, j) at level m, while for every m̃ ≥ m, σ avoids τ(i + 1, j + 1) atlevel m̃.We will present, for any m ≥ 1, a 
ontent-preserving bije
tion between m-hybrids and
(m+1)-hybrids. By 
omposing these bije
tions, we obtain the required bije
tion between
τ(i, j)-avoiding and τ(i + 1, j + 1)-avoiding words.Let m ≥ 1 be �xed. Let σ be an arbitrary word. A letter of σ is 
alled low if it issmaller than m, and a letter is 
alled high if it is greater than m. A low 
luster of σ isa maximal blo
k of 
onse
utive low symbols of σ. A high 
luster is de�ned analogously.Thus, every symbol of σ di�erent from m belongs to a unique 
luster. The lands
ape of
σ is a word over the alphabet {L, m,H} obtained by repla
ing every low 
luster of σ by asingle symbol L, and every high 
luster of σ by a single symbol H. For example, if m = 3,the lands
ape of the word 133212443 is the word L33LH3.Note that σ 
ontains τ(i, j) at level m if and only if the lands
ape of σ 
ontains thesubsequen
e mi−1Lmj−i−1Hmk−j.We will now des
ribe the bije
tion between m-hybrids and (m + 1)-hybrids. Let σ bean m-hybrid word, let X be its lands
ape. We split X into three parts X = PmS, where
P is the pre�x of X formed by all the symbols of X that appear before the �rst o

urren
eof m in X, and S is the su�x of all the symbols that appear after the �rst o

urren
eof m. Let us de�ne a word X ′ by X ′ = SmP . Note that X ′ 
ontains a subsequen
e
mi−1Lmj−i−1Hmk−j if and only if X 
ontains a subsequen
e miLmj−i−1Hmk−j−1. Thus,sin
e X is a lands
ape of a word that avoids τ(i + 1, j + 1) at level m, we know that anyword with lands
ape X ′ must avoid τ(i, j) at level m.Let us de�ne a word σ′ by the following three rules.1. The word σ′ has lands
ape X ′.2. For any p, the p-th low 
luster of σ′ 
onsists of the same sequen
e of symbols as the

p-th low 
luster of σ.3. For any q, the q-th high 
luster of σ′ 
onsists of the same sequen
e of symbols asthe q-th high 
luster of σ. 50



Clearly, there is a unique word σ′ satisfying these properties. Note that the subse-quen
e of all the low symbols of σ is the same as the subsequen
e of all the low symbols of
σ′, and these sequen
es are partitioned into low 
lusters in the same way. An analogousproperty holds for the high symbols too.We 
laim that σ′ is an (m + 1)-hybrid. We have already pointed out that σ′ avoids
τ(i, j) at level m. Let us now argue that σ′ avoids τ(i, j) at level m, for every m < m.For 
ontradi
tion, assume that σ′ 
ontains a subsequen
e T = mi−1ℓmj−i−1hmk−j, forsome ℓ < m < h. If h < m, then all the symbols of T are low, and sin
e σ has thesame subsequen
e of low symbols as σ′, we know that σ also 
ontains T as a subsequen
e,
ontradi
ting the assumption that σ is an m-hybrid.Assume now that h ≥ m. Let x and y be the two symbols adja
ent to h in the sequen
e
T (note that h is not the last symbol of T , so x and y are well de�ned). Both x and y arelow, and they belong to distin
t low 
lusters of σ′, be
ause the symbol h is not low. Sin
ethe low symbols of σ are the same as the low symbols of σ′, and they are partitioned into
lusters in the same way, we know that σ 
ontains a subsequen
e mi−1ℓmj−i−1h′mk−j,where h′ is a non-low symbol. This shows that σ 
ontains τ(i, j) at level m, whi
h isimpossible, be
ause σ is an m-hybrid.By an analogous argument, we may show that σ′ avoids τ(i + 1, j + 1) at any level
m̃ > m. We 
on
lude that the mapping des
ribed above transforms an m-hybrid σ intoan (m + 1)-hybrid σ′. It is 
lear that the mapping is reversible and provides the requiredbije
tion between m-hybrids and (m + 1)-hybrids.By 
omputer enumeration [38℄, it has been veri�ed that all the w-equivalen
e 
lassesof patterns of length at most six and all the 
-equivalen
e 
lasses of patterns of length atmost �ve 
an be des
ribed using the 
riteria given in this 
hapter.
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Chapter 6PartitionsIn this �nal 
hapter of the main part of the thesis, we will deal with pattern avoidan
eof set partitions. Let us �rst re
all the main notions related to this topi
. A partition ofsize n is a 
olle
tion B1, B2, . . . , Bd of nonempty disjoint sets, 
alled blo
ks, whose unionis the set [n] = {1, 2, . . . , n}. We will assume that B1, B2, . . . , Bd are listed in in
reasingorder of their minimum elements, that is, min B1 < min B2 < · · · < min Bd.There are several possibilities to represent a set partition. For our purposes, we 
hoseto represent a partition of size n by its 
anoni
al sequen
e, whi
h is an integer sequen
e
π = π1π2 · · ·πn su
h that πi = k if and only if i ∈ Bk. For instan
e, 1231242 is the
anoni
al sequen
e of the partition of {1, 2, . . . , 7} with the four blo
ks {1, 4}, {2, 5, 7},
{3} and {6}.Note that a sequen
e π over the alphabet [d] represents a partition with d blo
ks ifand only if it has the following properties.

• Ea
h number from the set [d] appears at least on
e in π.
• For ea
h i, j su
h that 1 ≤ i < j ≤ d, the �rst o

urren
e of i pre
edes the �rsto

urren
e of j.We remark that sequen
es satisfying these properties are also known as restri
ted growthfun
tions. The idea of representing a set partition by a restri
ted growth fun
tion was�rst suggested by Hut
hinson [31℄, as a basis for an e�
ient algorithm to generate all setpartitions. The algorithmi
 aspe
ts of restri
ted growth fun
tions were later investigatedby Williamson [72℄, and by Savage [59℄. Simion [61, Se
tion 3.4℄ mentions the 
onne
tionbetween restri
ted growth fun
tions and various 
ombinatorial statisti
s of set partitions.Milne [51, 52, 53℄ and Wa
hs [71℄ used restri
ted growth fun
tions as a tool in the studyof 
ombinatorial identities.Throughout this 
hapter, we will identify a set partition with its 
orresponding 
anon-i
al sequen
e. In this representation, the 
ontainment relation of set partitions 
an beregarded as a spe
ial 
ase of the 
ontainment relation of k-ary words, whi
h we 
onsideredin Chapter 5.Let Pn denote the set of all the partitions of [n], let Pn(σ) denote the set of allpartitions of [n] that avoid σ, and let pn and pn(σ) denote the 
ardinality of Pn and

Pn(σ), respe
tively. We say that two partitions σ and σ′ are equivalent, denoted by
σ ≈ σ′, if pn(σ) = pn(σ′) for ea
h n.The 
on
ept of pattern avoidan
e based on restri
ted growth fun
tions has been intro-du
ed by Sagan [58℄, who 
onsidered, among other topi
s, the enumeration of partitionsavoiding patterns of size three. In this thesis, we extend this study to larger patterns.In parti
ular, we will present re
ent results of Jelínek and Mansour [37℄, whi
h yield newfamilies of equivalent partition patterns. By 
omputer enumeration, it has been veri�ed52



that the 
riteria des
ribed here 
over all the equivalen
e 
lasses of patterns of size n ≤ 7.As usual, we omit the enumeration data in this thesis; however, they are available in theoriginal paper [37℄ and referen
es therein.Let us remark, that there are several alternative ways to de�ne 
ontainment for setpartitions. For instan
e, Chen et al. [17, 18℄ have used the path-representation of setpartitions. In this setting, they have obtained, among other results, an identity between
k-non
rossing and k-nonnesting partitions. It was later pointed out by Krattenthaler [48℄that this identity is a 
onsequen
e of more general identities between diagonal-avoiding�llings of diagrams.Other possible representations of set partitions have been 
onsidered by Klazar [42, 44℄,and by Goyt [28℄. However, we are not aware of any attempt at systemati
 Wilf-type
lassi�
ation in these settings.6.1 Basi
 fa
ts and previous resultsLet us �rst introdu
e several notational 
onventions that will be applied throughout therest of this thesis. For a �nite sequen
e S = s1s2 · · · sp and an integer k, we let S + kdenote the sequen
e (s1 + k)(s2 + k) · · · (sp + k). For a symbol k and an integer d, the
onstant sequen
e (k, k, . . . , k) of length d is denoted by kd. To prevent 
onfusion, wewill use 
apital letters S, T, . . . to denote arbitrary sequen
es of positive integers, and wewill use lower
ase greek symbols (π, σ, τ, . . . ) to denote 
anoni
al sequen
es representingpartitions.O

asionally, it will be 
onvenient to represent an in�nite sequen
e (an)∞n=0 by itsexponential generating fun
tion (or EGF for short), whi
h is the formal power series
F (x) =

∑
n≥0

anxn

n!
. We will deal with the generating fun
tions of the sequen
es of theform (pn(π))n≥0, where π is a given pattern. We simply 
all su
h a generating fun
tionthe EGF of the pattern π.Let us summarize previous results relevant to our topi
. Let exp(x) =

∑
n≥0

xn

n!
and

exp<k(x) =
∑k−1

n=0
xn

n!
. We �rst state two simple propositions, whi
h already appear inSagan's paper on pattern-avoiding partitions [58℄.Proposition 42. A partition avoids the pattern 1k if and only if ea
h of its blo
ks hassize less than k. The EGF of the pattern 1k is equal to

exp(exp<k(x) − 1). (6.1)Proposition 43. A partition avoids the pattern 12 · · ·k if and only if it has fewer than
k blo
ks. The 
orresponding EGF is equal to

exp<k(exp(x) − 1). (6.2)We omit the proofs of these two propositions. Let us just remark that the formulasgiven above are obtained by standard manipulation of EGFs. A 
ommon generalizationof these formulas 
an be found, e.g., in Flajolet and Sedgewi
k's book [24, PropositionII.2℄.The enumeration of partitions with fewer than k blo
ks is 
losely related to the Stirlingnumbers of the se
ond kind S(n, m), de�ned as the number of partitions of [n] with exa
tly
m blo
ks (see sequen
e A008277 in the OEIS [68℄).Sagan [58℄ has des
ribed and enumerated the pattern-avoiding 
lasses Pn(π) for the�ve patterns π of length three. We summarize the relevant results in Table 6.1. We againomit the proofs. 53



τ pn(τ)

111 sequen
e A000085 in [68℄
112, 121, 122, 123 2n−1Table 6.1: Number of partitions in Pn(τ), where τ ∈ P3).6.2 General 
lasses of equivalent patternsMost of our results on ≈-equivalent partitions yield in�nite families of ≈-equivalent pairsof patterns. We thus begin by presenting these `general' results and then, in Se
tions 6.5and 6.6, we deal with two `sporadi
' 
ases of equivalent pairs, whi
h are ne
essary to
omplete our 
lassi�
ation of small patterns.Pattern-avoiding �llings of diagrams. Sin
e pattern avoidan
e in partitions is justa spe
ial 
ase of pattern avoidan
e in words, it should be no surprise that many of ourresults may be redu
ed to results on pattern-avoiding �llings of shapes. Let us thus beginby explaining the relationship between �llings and 
anoni
al sequen
es.Re
all that an Fy-shape is a bottom-right aligned re�e
ted 
opy of a Ferrers shape.We will say that two 01-matri
es M and M ′ are Fy-equivalent, denoted by M

ys∼ M ′, ifthey are equirestri
tive with respe
t to semi-standard �llings of Fy-shapes. Let us alsore
all that r(F ) and c(F ) denote, respe
tively, the number of rows and 
olumns of adiagram F .Sin
e our next arguments mostly deal with semi-standard �llings, we will drop theadje
tive `semi-standard' and simply use the term `�lling', when there is no risk of ambi-guity.The following argument, whi
h is similar to Lemma 2, explains the 
lose link betweensemi-standard �llings and semi-sparse �llings. We state it here as a remark, so that wemay refer to it later. The proof is essentially the same as the proof of Lemma 2, and weonly sket
h it here.Remark 44. Let M and M ′ be two Fy-equivalent 01-matri
es with a 1-
ell in every 
olumn,and let f be a bije
tion between M-avoiding and M ′-avoiding semi-standard �llings of
Fy-shapes. There is a natural way to extend f into a bije
tion between M-avoiding and
M ′-avoiding sparse �llings of Fy-shapes. Assume that Φ is a sparse M-avoiding �llingof an Fy-shape F . The non-zero 
olumns of Φ form a semi-standard �lling of a (notne
essarily 
ontiguous) subdiagram of F . We apply f to this sub�lling to transform Φinto a sparse M ′-avoiding �lling of F .A 
ompletely analogous argument 
an be made for sta
k polyominoes instead of Fy-shapes.Let S = s1s2 · · · sm be a sequen
e of positive integers, and let k ≥ max{si : i ∈ [m]} bean integer. Re
all that M(S, k) denotes the 01-matrix with k rows and m 
olumns whi
hhas a 1-
ell in row i and 
olumn j if and only if sj = i.We now des
ribe the 
orresponden
e between partitions and �llings of Fy-shapes(re
all that τ + k denotes the sequen
e obtained from τ by adding k to every element).Although the 
orresponden
e is based on a routine red-green argument, there are severalte
hni
al di�
ulties that need to be addressed. For this reason, we state the followinglemma with full proof.Lemma 45. Let S and S ′ be two nonempty sequen
es over the alphabet [k], let τ be anarbitrary partition. If M(S, k) is Fy-equivalent to M(S ′, k) then the partition pattern54



σ = 12 · · ·k(τ + k)S is ≈-equivalent to σ′ = 12 · · ·k(τ + k)S ′.Proof. Let π be a partition of [n] with m blo
ks. Let M denote the matrix M(π, m). Fixa partition τ with t blo
ks, and let T denote the matrix M(τ, t). We will 
olor the 
ells of
M red and green. If τ is nonempty, then the 
ell in row i and 
olumn j is 
olored green ifand only if the submatrix of M indu
ed by the rows i+1, . . . , m and 
olumns 1, . . . , j−1
ontains T . If τ is empty, then the 
ell in row i and 
olumn j is green if and only if row
i has at least one 1-
ell stri
tly to the left of 
olumn j. A 
ell is red if it is not green.Note that the green 
ells form an Fy-shape, and the entries of the matrix M forma semi-sparse �lling ΦG of this shape. Also, note that the leftmost 1-
ell of ea
h row isalways red, and any 0-
ell of the same row to the left of the leftmost 1-
ell is red too.It is not di�
ult to see that the partition π avoids σ if and only if the �lling ΦG ofthe `green' diagram avoids M(S, k), and π avoids σ′ if and only if ΦG avoids M(S ′, k).Sin
e M(S, k)

ys∼ M(S ′, k), there is a bije
tion f that maps M(S, k)-avoiding �llings ofan Fy-shape onto M(S ′, k)-avoiding �llings of the same shape. By Remark 44, f 
anbe extended to semi-sparse �llings. Using this extension of f , we 
onstru
t the followingbije
tion between Pn(σ) and Pn(σ′): for a partition π ∈ Pn(σ) with m blo
ks, we take
M and ΦG as above. By assumption, ΦG is M(S, k)-avoiding. Using the bije
tion f andRemark 44, we transform ΦG into an M(S ′, k)-avoiding semi-sparse �lling f(ΦG) = ΨG,while the �lling of the red 
ells of M remains the same. We thus obtain a new matrix M ′.Note that if we 
olor the 
ells of M ′ red and green using the 
riterion des
ribed inthe �rst paragraph of this proof, then ea
h 
ell of M ′ will re
eive the same 
olor as the
orresponding 
ell of M , even though the o

urren
es of T in M ′ need not 
orrespondexa
tly to the o

urren
es of T in M . Indeed, if τ is nonempty, then for ea
h green 
ell gof M , there is an o

urren
e of T to the left and above g 
onsisting entirely of red 
ells.This o

urren
e is 
ontained in M ′ as well, whi
h guarantees that the 
ell g remains greenin M ′. A similar argument 
an be made if τ is empty.By 
onstru
tion, M ′ has exa
tly one 1-
ell in ea
h 
olumn, hen
e there is a sequen
e π′over the alphabet [m] su
h that M ′ = M(π′, m). We 
laim that π′ is a 
anoni
al sequen
eof a partition. To see this, note that for every i ∈ [m], the leftmost 1-
ell of M in row i isred and the pre
eding 0-
ells in row i are red too. It follows that the leftmost 1-
ell of row
i in M is also the leftmost 1-
ell of row i in M ′. Thus, the �rst o

urren
e of the symbol
i in π appears at the same pla
e as the �rst o

urren
e of i in π′, hen
e π′ is indeed a
anoni
al sequen
e. The green 
ells of M ′ avoid M(S ′, k), so π′ avoids σ′. Obviously, thetransform π 7→ π′ is invertible and provides a bije
tion between Pn(σ) and Pn(σ′).In general, the relation 12 . . . kS ≈ 12 . . . kS ′ does not imply that M(S, k) and M(S ′, k)are Fy-equivalent. In Se
tion 6.6, we will prove that 12112 ≈ 12212, even though
M(112, 2) is not Fy-equivalent to M(212, 2).On the other hand, the relation 12 . . . kS ≈ 12 . . . kS ′ allows us to establish a somewhatweaker equivalen
e between pattern-avoiding �llings, using the following lemma.Lemma 46. Let S be a nonempty sequen
e over the alphabet [k], and let τ = 12 · · ·kS.For every n and m, there is a bije
tion f that maps the set of τ -avoiding partitions of
[n] with m blo
ks onto the set of all the M(S, k)-avoiding semi-standard �llings Φ of
Fy-shapes with n − m 
olumns and at most m rows.Proof. Let π be a τ -avoiding partition of [n] with m blo
ks. Let M = M(π, m), and letus 
onsider the same red and green 
oloring of M as in the proof of Lemma 45, i.e., thegreen 
ells of a row i are pre
isely the 
ells that are stri
tly to the right of the leftmost1-
ell in row i. 55



Note that M has exa
tly m red 1-
ells, and ea
h 1-
ell is red if and only if it is theleftmost 1-
ell of its row. Note also that if ci is the 
olumn 
ontaining the red 1-
ell inrow i, then either ci is the rightmost 
olumn of M , or 
olumn ci +1 is the leftmost 
olumnof M with exa
tly i green 
ells.Let ΦG be the �lling formed by the green 
ells. As was pointed out in the previousproof, the �lling ΦG is a semi-sparse M(S, k)-avoiding �lling of an Fy-shape. Note thatfor ea
h i = 1, . . . , m− 1, the �lling ΦG has exa
tly one zero 
olumn of height i, and this
olumn, whi
h 
orresponds to ci+1, is the rightmost of all the 
olumns of ΦG with heightat most i.Let Φ−
G be the sub�lling of ΦG indu
ed by all the nonzero 
olumns of ΦG. Observethat Φ−

G is a semi-standard M(S, k)-avoiding �lling of an Fy-shape with exa
tly n − m
olumns and at most m rows; we thus de�ne f(π) = Φ−
G.Let us now show that the mapping f de�ned above 
an be inverted. Let Ψ be an

M(S, k)-avoiding �lling of an Fy-shape with n − m 
olumns and at most m rows. Weinsert m − 1 zero 
olumns c2, c3, . . . , cm into the �lling Ψ as follows: ea
h 
olumn ci hasheight i−1, and it is inserted immediately after the rightmost 
olumn of Ψ∪{c2, . . . , ci−1}that has height at most i−1. Note that the �lling obtained by this operation 
orrespondsto the green 
ells of the original matrix M . Let us 
all this semi-sparse �lling ΨG.We now add a new 1-
ell on top of ea
h zero 
olumn of ΨG, and we add a new 1-
ellin front of the bottom row, to obtain a semi-standard �lling of a diagram with n 
olumnsand m rows. The diagram 
an be 
ompleted into a matrix M = M(π, m), where π iseasily seen to be a 
anoni
al sequen
e of a τ -avoiding partition.Lemma 45 provides a tool to deal with partition patterns of the form 12 · · ·k(τ +
k)S where S is a sequen
e over [k] and τ is a partition. We now des
ribe a similar
orresponden
e between partitions and �llings of sta
k polyominoes, whi
h will be usefulfor dealing with patterns of the form 12 · · ·kS(τ + k). We use a similar argument as inthe proof of Lemma 45.Lemma 47. If τ is a partition, and S and S ′ are two nonempty sequen
es over thealphabet [k] su
h that M(S, k)

△s∼ M(S ′, k), then the partition σ = 12 · · ·kS(τ + k) isequivalent to the partition σ′ = 12 · · ·kS ′(τ + k).Proof. Fix a partition τ with t blo
ks. Let π be any partition of [n] with m blo
ks, let
M = M(π, m). We will 
olor the 
ells of M red and green. A 
ell of M in row i and
olumn j is green, if it satis�es the following 
onditions.(a) The submatrix of M formed by the interse
tion of the top m − i rows and therightmost n − j 
olumns 
ontains M(τ, t).(b) The matrix M has at least one 1-
ell in row i appearing stri
tly to the left of
olumn j.A 
ell is red if it is not green. Note that the green 
ells form a sta
k polyomino and thematrix M indu
es a semi-sparse �lling ΦG of this polyomino.As in Lemma 45, it is easy to verify that the partition π avoids the pattern σ if andonly if the �lling ΦG avoids M(S, k), and π avoids σ′ if and only if ΦG avoids M(S ′, k).The rest of the argument is analogous to the proof of Lemma 45. Assume that M(S, k)and M(S ′, k) are sta
k equivalent via a bije
tion f . By Remark 44, we extend f to abije
tion between M(S, k)-avoiding and M(S ′, k)-avoiding semi-sparse �llings of a givensta
k polyomino. Consider a partition π ∈ Pn(σ) with m blo
ks, and de�ne M and ΦGas above. Apply f to the �lling ΦG to obtain an M(S ′, k)-avoiding �lling ΨG; the �lling56



of the red 
ells of M remains the same. This yields a matrix M ′ and a sequen
e π′ su
hthat M ′ = M(π′, k). We may easily 
he
k that the green 
ells of M ′ are the same as thegreen 
ells of M . By rule (b) above, the leftmost 1-
ell of ea
h row of M is una�e
ted bythis transform. It follows that the �rst o

urren
e of i in π′ is at the same pla
e as the�rst o

urren
e of i in π, and in parti
ular, π′ is a partition. By the observation of theprevious paragraph, π′ avoids σ′ and the transform π 7→ π′ is a bije
tion from Pn(σ) to
Pn(σ

′).The following simple result about pattern avoidan
e in �llings will turn out to beuseful in the analysis of pattern avoidan
e in partitions.Proposition 48. If S is a nonempty sequen
e over the alphabet [k − 1], then M(S, k)is sta
k equivalent to M(S + 1, k). If S and S ′ are two sequen
es over [k − 1] su
h that
M(S, k − 1)

ys∼ M(S ′, k − 1) then M(S, k)
ys∼ M(S ′, k), and if M(S, k − 1)

△s∼ M(S ′, k − 1)then M(S, k)
△s∼ M(S ′, k).Proof. To prove the �rst part, let us de�ne M = M(S, k), M− = M(S, k − 1), and

M ′ = M(S + 1, k). Noti
e that a �lling Φ of a sta
k polyomino P avoids M if and only ifthe �lling obtained by erasing the topmost 
ell of every 
olumn of Φ avoids M−. Similarly,
Φ avoids M ′, if and only if the �lling obtained by erasing the bottom row of Φ avoids
M−. We will now des
ribe a bije
tion between M-avoiding and M ′-avoiding �llings. Fixan M-avoiding �lling Φ. In every 
olumn of this �lling, move the topmost element intothe bottom row, and move every other element into the row dire
tly above it. This yieldsan M ′-avoiding �lling. The se
ond 
laim of the theorem is proved analogously.Note that a sequen
e S over the alphabet [k − 1] does not ne
essarily 
ontain all thesymbols {1, . . . , k − 1}. In parti
ular, every sequen
e over [k − 2] is also a sequen
e over
[k − 1]. Thus, if S is a sequen
e over [k − 2], we may use Proposition 48 to dedu
e
M(S, k)

△s∼ M(S + 1, k)
△s∼ M(S + 2, k).For 
onvenien
e, we translate the �rst part of Proposition 48 into the language ofpattern-avoiding partitions, using Lemma 45 and Lemma 47. We omit the straightforwardproof.Corollary 49. If S is a nonempty sequen
e over [k − 1] and τ is an arbitrary partition,then

12 · · ·k(τ +k)S ≈ 12 · · ·k(τ +k)(S +1) and 12 · · ·kS(τ +k) ≈ 12 · · ·k(S +1)(τ +k).We now state another result related to pattern avoidan
e in Fy-shapes, whi
h hasimportant 
onsequen
es for our study of partitions. Re
all that for two matri
es A and
B, let ( A 0

0 B ) denote the matrix with r(A) + r(B) rows and c(A) + c(B) 
olumns with a
opy of A in the top left 
orner and a 
opy of B in the bottom right 
orner.The following lemma is analogous to Proposition 1. We omit the straightforward proof.Lemma 50. If A and A′ are two Fy-equivalent matri
es, and if B is an arbitrary matrix,then ( B 0
0 A )

ys∼ ( B 0
0 A′ ).With the help of Lemma 50, we may easily prove the following proposition.Proposition 51. Let s1 > s2 > · · · > sm and t1 > t2 > · · · > tm be two stri
tly de
reasingsequen
es over the alphabet [k], let r1, . . . , rm be positive integers. De�ne weakly de
reasingsequen
es S = sr1

1 sr2

2 · · · srm

m and T = tr1

1 tr2

2 · · · trm

m . We have M(S, k)
ys∼ M(T, k), and inparti
ular, if τ an arbitrary partition, then 12 · · ·k(τ + k)S ≈ 12 · · ·k(τ + k)T .57



Proof. We pro
eed by indu
tion over minimum j su
h that si = ti for ea
h i ≤ m−j. For
j = 0, we have S = T and the result is 
lear. If j > 0, assume without loss of generalitythat sm−j+1 − tm−j+1 = d > 0. Consider the sequen
e t′1 > t′2 > · · · > t′m su
h that t′i = tifor every i ≤ m − j and t′i = ti + d for every i > m − j.The sequen
e (t′i)

m
i=1 is stri
tly de
reasing, and its �rst m − j + 1 terms are equalto the 
orresponding term of (si)

m
i=1. De�ne T ′ = (t′1)

r1(t′2)
r2 · · · (t′m)rm. By indu
tion,

M(S, k)
ys∼ M(T ′, k). To prove that M(T, k)

ys∼ M(T ′, k), �rst write T = T0T1, where T0is the pre�x of T 
ontaining all the symbols of T greater than tm−j+1 and T1 is the su�xof the remaining symbols. Noti
e that T ′ = T0(T1 + d). We may write M(T, k) = ( B 0
0 A )and M(T ′, k) = ( B 0

0 A′ ), where A = M(T1, tm−j − 1) and A′ = M(T1 + d, tm−j − 1). ByProposition 48, A
ys∼ A′, and by Lemma 50, M(T, k)

ys∼ M(T ′, k), as 
laimed. The last
laim of the proposition follows from Lemma 45.Noti
e that Proposition 51 implies that for any m ∈ N and any de
reasing sequen
e
m ≥ a1 > a2 > · · · > ak ≥ 1, the partition 12 · · ·ma1a2 · · ·ak is equivalent to 12 · · ·mk(k−
1) · · · 1. In parti
ular, there is a set of (at least) (m

k

) equivalent patterns of size m + k.By 
hoosing k = ⌊m/2⌋, we obtain an exponentially large 
lass of equivalent patterns. Inthe whole realm of pattern avoidan
e of ordered stru
tures, we are not aware of any otherexponentially large Wilf-type equivalen
e 
lass.Non-
rossing and non-nesting partitions. The main appli
ation of the frameworkwe have developed above is the identity between non-
rossing and non-nesting partitions.This identity is a natural 
onsequen
e of the often-used identity between Ik-avoiding and
Jk-avoiding �llings.We de�ne non-
rossing and non-nesting partitions in the following way.De�nition 52. A partition is k-non
rossing if it avoids the pattern 12 · · ·k12 · · ·k, andit is k-nonnesting if it avoids the pattern 12 · · ·kk(k − 1) · · ·1.Let us point out that there are several di�erent 
on
epts of `
rossings' and `nestings'of set partitions used in the literature: for example, Klazar [42℄ has 
onsidered two blo
ks
X, Y of a partition to be 
rossing (or nesting) if there are four elements x1 < y1 < x2 < y2(or x1 < y1 < y2 < x2, respe
tively) su
h that x1, x2 ∈ X and y1, y2 ∈ Y , and similarly for
k-
rossings and k-nestings. Unlike our approa
h, Klazar's de�nition makes no assumptionabout the relative order of the minimal elements of X and Y , whi
h allows more gen-eral 
on�gurations to be 
onsidered as 
rossing or nesting. Thus, Klazar's k-non
rossingand k-nonnesting partitions are a proper subset of our k-non
rossing and k-nonnestingpartitions, (ex
ept for 2-non
rossing partitions where the two 
on
epts 
oin
ide).Another approa
h to 
rossings in partitions has been studied by Chen et al. [17, 18℄.This approa
h uses the path-representation of a partition, where a partition of [n] withblo
ks B1, B2, . . . , Bk is represented by a graph on the vertex set [n], with a, b ∈ [n]
onne
ted by an edge if they belong to the same blo
k and there is no other element ofthis blo
k between them. In this terminology, a partition is k-
rossing (or k-nesting) ifthe representing graph 
ontains k edges whi
h are pairwise 
rossing (or nesting), wheretwo edges e1 = {a < b} and e2 = {a′ < b′} are 
rossing (or nesting) if a < a′ < b < b′ (or
a < a′ < b′ < b, respe
tively). Let us 
all su
h partitions graph-k-
rossing and graph-k-nesting, to avoid 
onfusion with our own terminology of De�nition 52. It is not di�
ultto see that a partition is graph-2-non
rossing if and only if it is 2-non
rossing, but fornestings and for k-
rossings with k > 2, the two 
on
epts are in
omparable. For instan
ethe partition 12121 is graph-2-nonnesting but it 
ontains 1221, while 12112 is graph-2-nesting and avoids 1221. Similarly, 1213123 has no graph-3-
rossing and 
ontains 123123,while 1232132 has a graph-3-
rossing and avoids 123123 (see Fig. 6.1).58



12121 12112 1213123 1232132Figure 6.1: Comparison of path-representation and 
anoni
al fun
tion of a partition.Chen et al. [18℄ have shown that the number of graph-k-non
rossing and graph-k-nonnesting partitions of [n] is equal. Below, we prove that the same is also true for
k-non
rossing and k-nonnesting partitions. It is interesting to note that the proofs ofboth these results are based on a redu
tion to theorems on pattern avoidan
e in the�llings of Ferrers diagrams, in parti
ular Theorem 7 of Krattenthaler (this is only impli
itin [18℄, a dire
t 
onstru
tion is given by Krattenthaler [48℄), although the 
onstru
tionsemployed in the proofs of these results are di�erent.From Theorem 7, we may easily dedu
e that Ik

ys∼ Jk. Furthermore, Theorem 9 ofRubey implies that Ik
△s∼ Jk. This is not quite as straightforward, sin
e Rubey's theoremdeals with integer �llings of moon polyominoes with pres
ribed row-sums. However, sin
ea transposed 
opy of a sta
k polyomino is a spe
ial 
ase of a moon polyomino, Rubey'sgeneral result applies to �llings of sta
k polyominoes with pres
ribed 
olumn-sums as well.In parti
ular, it yields a bije
tion between Ik-avoiding and Jk-avoiding semi-standard�llings of an arbitrary sta
k polyomino. Combining these results with Lemma 47, weobtain the following result.Theorem 53 (J., Mansour [37℄). Let τ be a partition and let k be an integer. We havethe following identities:

12 · · ·k(τ + k)12 · · ·k ≈ 12 · · ·k(τ + k)k(k − 1) · · ·21and
12 · · ·k12 · · · k(τ + k) ≈ 12 · · ·kk(k − 1) · · ·21(τ + k).In parti
ular, the number of non-
rossing partitions of size n is equal to the number ofnon-nesting partitions of size n.The patterns 12 · · ·k(k+1)12 · · ·k and 12 · · ·k12 · · ·k(k+1). There is one more resulton pattern-avoiding partitions whi
h 
an be proved using the identities between diagonal-avoiding polyomino �llings� it is the equivalen
e of the pattern 12 · · ·k(k+1)12 · · ·k andthe pattern 12 · · ·k12 · · ·k(k+1). This time, however, the redu
tion is more involved thanthe routine arguments we used to prove the identity between non-
rossing and non-nestingpartitions. Before we prove this identity, we need some preparation.Let P be a sta
k polyomino. Re
all that the 
ontent of P is the multiset of 
olumn-heights of P . We will represent the 
ontent by the sequen
e of the 
olumn heights of Plisted in nonde
reasing order.The key ingredient of our proof is the following result of Rubey [57℄.Theorem 54 (Rubey [57℄, adapted). Let P and P ′ be two sta
k polyominoes with thesame 
ontent, and let k ≥ 1 be an integer. There is a bije
tion between the Ik-avoidingsemi-standard �llings of P and the Ik-avoiding semi-standard �llings of P ′.The theorem above is essentially a spe
ial 
ase of Proposition 5.3 from Rubey's pa-per [57℄. The only 
ompli
ation is that Rubey's proposition deals with arbitrary non-negative integer �llings, rather than semi-standard �llings. However, as was pointed out59



in the last paragraph of Se
tion 4 in [57℄, it is easy to see that Rubey's bije
tion mapssemi-standard �llings to semi-standard �llings.Let us now analyze in more detail the partitions avoiding 12 · · ·k(k + 1)12 · · ·k.De�nition 55. Let π = π1 · · ·πn be a partition. We say that an element πi is left-dominating if πi ≥ πj for ea
h j < i. We say that a left-dominating element πi left-dominates an element πj , if πi > πj , i < j, and πi is the rightmost left-dominatingelement with these two properties. Clearly, if πj not left-dominating, then it is left-dominated by a unique left-dominating element. On the other hand, a left-dominatingelement is not left-dominated by any other element. If an element is not left-dominating,we 
all it simply left-dominated.The left shadow of π is the sequen
e π obtained by repla
ing ea
h left-dominated ele-ment by the symbol `∗'. We will say that a non-star symbol i left-dominates an o

urren
eof a star, if i is the rightmost non-star to the left of the star.For example, if π = 123232144, the left shadow of π is the sequen
e π = 123∗3∗∗44. In
π, the leftmost o

urren
e of `3' left-dominates a single star, while the se
ond o

urren
eof `3' left-dominates two stars.It is not di�
ult to see that a sequen
e π over the alphabet {1, 2, . . . , m, ∗} is a leftshadow of a partition with m blo
ks if and only if it satis�es the following 
onditions.

• The non-star symbols of π form a non-de
reasing sequen
e.
• Ea
h of the symbols 1, 2, . . . , m appears at least on
e.
• No o

urren
e of the symbol 1 may left-dominate an o

urren
e of ∗. Any othernon-star symbol may left-dominate any number of stars, and ea
h star is dominatedby a non-star.Any sequen
e that satis�es these three 
onditions will be 
alled a left-shadow sequen
e.Note that a left-shadow sequen
e is uniquely determined by the multipli
ities of its non-star symbols and by the number of stars dominated by ea
h non-star.De�nition 56. Let π = π1 · · ·πn be a partition, let Φ = Φ(π) be the semi-standard �llingof an Fy-shape de�ned by the following 
onditions.1. The 
olumns of Φ 
orrespond to the left-dominated elements of π. The i-th 
ol-umn of Φ has height j if the i-th left-dominated element of π is dominated by ano

urren
e of j + 1.2. The i-th 
olumn of Φ has a 1-
ell in row j if the i-th left-dominated element of π isequal to j.Note that the shape of the underlying diagram of Φ(π) is determined by the left shadowof π. More pre
isely, the number of 
olumns of height h in Φ is equal to the number ofstars in the left shadow whi
h are dominated by an o

urren
e of h + 1. It is easy to seethat the left shadow π and the �lling Φ(π) together uniquely determine the partition π.In fa
t, for every semi-standard �lling Φ′ with the same shape as Φ(π), there is a (unique)partition π′ with the same left-shadow as π, and with Φ(π′) = Φ′.The following observation is a straightforward appli
ation of the terminology intro-du
ed above. We omit its proof.Observation 57. A partition π avoids the pattern 12 · · ·k(k + 1)12 · · ·k if and only ifthe �lling Φ(π) avoids Ik. 60



We now fo
us on the partitions that avoid the pattern 12 · · ·k12 · · ·k(k + 1).De�nition 58. Let π = π1 · · ·πn be a partition. We say that an element πi is right-dominating if either πi ≥ πj for ea
h j > i or πi > πj for ea
h j < i. If πi is notright-dominating, we say that it is right-dominated. We say that πi right-dominates πj if
πi is the leftmost right-dominating element appearing to the right of πj , and πj itself isnot right-dominating.The right shadow π̃ of a partition π is obtained by repla
ing ea
h right-dominatedelement of π by a star.For example, the right shadow of the partition π = 12213423312 is the sequen
e
12 ∗ ∗34 ∗ 33 ∗ 2. A sequen
e π̃ over the alphabet {1, 2, . . . , m, ∗} is the right shadow of apartition with m blo
ks if and only if it satis�es the following 
onditions.

• The non-star symbols of π̃ form a sequen
e (1, 2, . . . , m, s1, s2, . . . , sp) where thesequen
e s1s2 · · · sp is nonin
reasing.
• No o

urren
e of the symbol 1 may right-dominate an o

urren
e of ∗. Any othernon-star symbol may right-dominate any number of stars, and ea
h star is right-dominated by a non-star.Any sequen
e that satis�es these two 
onditions will be 
alled a right-shadow sequen
e. Aright-shadow sequen
e is uniquely determined by the multipli
ities of its non-star symbolsand by the number of stars right-dominated by ea
h non-star.De�nition 59. Let π = π1 · · ·πn be a partition. Let Ψ = Ψ(π) be the semi-standard�lling of a sta
k polyomino de�ned by the following 
onditions.1. The 
olumns of Ψ 
orrespond to the right-dominated elements of π. The i-th 
olumnof Ψ has height j if the i-th right-dominated element of π is dominated by ano

urren
e of j + 1.2. The i-th 
olumn of Ψ has a 1-
ell in row j if the i-th right-dominated element of πis equal to j.Let S be the underlying diagram of Ψ(π). Noti
e that S is uniquely determined bythe right shadow π̃ of the partition π, although there may be di�erent right shadows 
or-responding to the same shape S. The sequen
e π̃ and the �lling Ψ(π) together determinethe partition π. For a �xed π̃, the mapping π 7→ Ψ(π) gives a bije
tion between partitionswith right shadow π̃ and �llings of S.The proof of the following observation is again straightforward and we omit it.Observation 60. A partition π avoids the pattern 12 · · ·k12 · · ·k(k + 1) if and only ifthe �lling Ψ(π) avoids Ik.We are now ready to prove the main result of this se
tion.Theorem 61 (J., Mansour [37℄). For any k ≥ 1, the patterns 12 · · ·k(k + 1)12 · · ·k and

12 · · ·k12 · · ·k(k + 1) are ≈-equivalent.Proof. We will des
ribe a bije
tion between the two pattern-avoiding 
lasses. Let π be apartition with m blo
ks that avoids 12 · · ·k(k + 1)12 · · ·k. Let π be its left shadow, andlet Φ(π) be the �lling from De�nition 56. Let F denote the underlying shape of Φ(π). ByObservation 57, Φ(π) avoids Ik.Let σ̃ be the right-shadow sequen
e determined by the following two 
onditions.61



1. For ea
h symbol i ∈ [m], the number of o

urren
es of i in π is equal to the numberof its o

urren
es in σ̃.2. For any i and j, the number of stars left-dominated by the j-th o

urren
e of i in
π is equal to the number of stars right-dominated by the j-th o

urren
e of i in σ̃.Note that these 
onditions determine σ̃ uniquely. As an example, 
onsider the left-shadowsequen
e π = 123 ∗ 3 ∗ ∗44∗. In σ̃, the non-star elements form the subsequen
e 123443.The �rst o

urren
e of 3 in π left-dominates a single star, the se
ond o

urren
e of 3left-dominates two stars, and the se
ond o

urren
e of 4 left-dominates one star. Hen
e,

σ̃ is the sequen
e 12 ∗ 34 ∗ 4 ∗ ∗3.Next, let S be the sta
k polyomino whose 
olumns 
orrespond to the stars of σ̃, wherethe i-th 
olumn has height h if the i-th star of σ̃ is right-dominated by h + 1. In theexample above, if σ̃ = 12 ∗ 34 ∗ 4 ∗ ∗3, then S has four 
olumns of heights (2, 3, 2, 2).Clearly, S has the same 
ontent as F . By Theorem 54, there is a bije
tion f between the
Ik-avoiding �llings of F and the Ik-avoiding �llings of S. This bije
tion transforms Φ(π)into a �lling Ψ of S. De�ne a partition σ by repla
ing the i-th star in σ̃ by the row-indexof the 1-
ell in the i-th 
olumn of Ψ. By 
onstru
tion, σ is a partition with right shadow
σ̃, and Ψ(σ) = Ψ. By Observation 60, σ avoids 12 · · ·k12 · · ·k(k + 1).This transformation, whi
h is easily seen to be invertible, provides the required bije
-tion. This 
ompletes the proof.Patterns of the form 1(τ + 1). We will now establish a general relationship betweenthe partitions that avoid a pattern τ and the partitions that avoid the pattern 1(τ + 1).The key result is the following theorem.Theorem 62 (J., Mansour [37℄). Let τ be an arbitrary pattern, and let F (x) be its
orresponding EGF. Let σ = 1(τ + 1), and let G(x) be its EGF. For every n ≥ 1, thefollowing holds:

pn(σ) =

n−1∑

i=0

(
n − 1

i

)
pi(τ). (6.3)In terms of generating fun
tions, this is equivalent to

G(x) = 1 +

∫ x

0

F (t)etdt. (6.4)Proof. Fix σ and τ as in the statement of the theorem. Let π be an arbitrary partition,and let π− denote the partition obtained from π by erasing every o

urren
e of the symbol1, and de
reasing every other symbol by 1; in other words, π− represents the partitionobtained by removing the �rst blo
k from the partition π. Clearly, a partition π avoids
σ if and only if π− avoids τ . Thus, for every σ-avoiding partition π ∈ Pn(σ) there is aunique τ -avoiding partition ρ ∈ ∪n−1

i=0 Pi(τ) satisfying π− = ρ. On the other hand, fora �xed ρ ∈ Pi(τ), there are (n−1
i

) partitions π ∈ Pn(σ) su
h that π− = ρ. This givesequation (6.3).To get equation (6.4), we multiply both sides of (6.3) by xn

n!
and sum for all n ≥ 1.This yields 62



G(x) − 1 =
∑

n≥1

xn

n!

n−1∑

i=0

(
n − 1

i

)
pi(τ) =

∫ x

0

∑

n≥1

tn−1

(n − 1)!

n−1∑

i=0

(
n − 1

i

)
pi(τ)dt

=

∫ x

0

∑

n≥0

tn

n!

n∑

i=0

(
n

i

)
pi(τ)dt =

∫ x

0

∑

n≥0

n∑

i=0

ti

i!
pi(τ)

tn−i

(n − i)!
dt

=

∫ x

0

(
∑

i≥0

ti

i!
pi(τ)

)(
∑

k≥0

tk

k!

)dt =

∫ x

0

F (t)etdt,whi
h is equivalent to equation (6.4).The following result is an immediate 
onsequen
e of Theorem 62.Corollary 63. If τ ≈ τ ′ then 1(τ + 1) ≈ 1(τ ′ + 1), and more generally, 12 · · ·k(τ + k) ≈
12 · · ·k(τ ′ + k). In parti
ular, sin
e 123 ≈ 122 ≈ 112 ≈ 121, we see that for every
m ≥ 2 the patterns 12 · · · (m−1)m(m+1), 12 · · · (m−1)mm, 12 · · · (m−1)(m−1)m and
12 · · · (m − 1)m(m − 1) are equivalent. Conversely, if 1(τ + 1) ≈ 1(τ ′ + 1), then τ ≈ τ ′.Proof. To prove the last 
laim, noti
e that equation (6.3) 
an be inverted to obtain

pn−1(τ) =

n−1∑

i=0

(−1)i

(
n − 1

i

)
pn−i(σ).The other 
laims follow dire
tly from Theorem 62.6.3 Patterns equivalent to 12 · · ·m(m + 1)The partitions that avoid 12 · · ·m(m + 1), or equivalently, the partitions with at most

m blo
ks, are a very natural pattern-avoiding 
lass of partitions. Their number may beexpressed by pn(12 · · · (m+1)) =
∑m

i=0 S(n, i), where S(n, i) is the Stirling number of these
ond kind, whi
h is equal to the number of partitions of [n] with exa
tly i blo
ks.As an appli
ation of the previous results, we will now present two 
lasses of patternsthat are equivalent to the pattern 12 · · · (m+1). From this result, we obtain an alternative
ombinatorial interpretation of the Stirling numbers S(n, i).Our result is summarized in the following theorem.Theorem 64 (J., Mansour [37℄). For every m ≥ 2, the following patterns are equivalent:(a) 12 · · · (m − 1)m(m + 1),(b) 12 · · · (m − 1)md, where d is any number from the set [m],(
) 12 · · · (m − 1)dm, where d is any number from the set [m − 1].Proof. From Corollary 63, we get the equivalen
es
12 · · ·m(m + 1) ≈ 12 · · · (m − 1)mm ≈ 12 · · · (m − 1)(m − 1)m.The equivalen
es

12 · · · (m − 1)mm ≈ 12 · · · (m − 1)md and 12 · · · (m − 1)(m − 1)m ≈ 12 · · · (m − 1)dmare obtained by a repeated appli
ation of Corollary 49.63



6.4 Binary patternsLet us now fo
us on the avoidan
e of binary patterns, i.e., the patterns that only 
ontainthe symbols 1 and 2.We will �rst 
onsider the forbidden patterns of the form 1k21ℓ. We have already seenthat 112 ∼ 121. The following theorem o�ers a generalization.Theorem 65 (J., Mansour [37℄). For any three integers j, k, m satisfying 1 ≤ j, k ≤ m,the pattern 1j21m−j is equivalent to the pattern 1k21m−k.Proof. It is su�
ient to prove that the equivalen
e 1j21m−j ≈ 1m2 holds for every mand j. We will use Lemma 40 from page 48 to provide a bije
tion between Pn(1
j21m−j)and Pn(1m2). Fix τ ∈ Pn(1j21m−j), and assume that τ has b blo
ks. Represent τ by amatrix M = M(τ, b). Sin
e τ was a 
anoni
al sequen
e, the leftmost 1-
ells of the b rowsof M form an in
reasing 
hain.Let us turn the matrix M upside down, to obtain a matrix M . Clearly, M avoids

M(2j12m−j , 2). Also, M is b-falling. We 
an treat M as a b-falling �lling of a sta
kpolyomino, and apply Lemma 40 to transform it into a b-falling M(2m1, 2)-avoiding �lling
M

′. Turning M
′ upside down again, we obtain a semi-standard b-raising matrix M ′, whi
h
orresponds to a 1m2-avoiding partition.This transformation is the required bije
tion.Using our results on �llings, we 
an add another pattern to the equivalen
e 
lass
overed by Theorem 65.Theorem 66 (J., Mansour [37℄). For every m ≥ 1, the pattern 12m is equivalent to thepattern 121m−1.Proof. This is just Corollary 49 with k = 2 and S = 1m−1.Corollary 67. Let m be a positive integer, let τ be any pattern from the set

T = {1k21m−k : 1 ≤ k ≤ m} ∪ {12m}.The EGF F (x) of a pattern τ ∈ T is given by
F (x) = 1 +

∫ x

0

exp

(
t +

m−1∑

i=1

ti

i!

) dt.Proof. Theorems 65 and 66 show that all the patterns from the set T are equivalent,so we will 
ompute the EGF of τ = 12m. The formula for F (x) follows dire
tly fromequation (6.1) on page 53 and Theorem 62.We now turn to another type of binary patterns, namely the patterns of the form
12k12m−k with 1 ≤ k ≤ m. In the rest of this se
tion, S p

q denotes the sequen
e 2p12q and
S

p

q denotes the sequen
e 1p21q, where p, q are nonnegative integers. Our �rst aim is toshow that for �xed m and arbitrary k ∈ [m], all the pattern of the form 12k12m−k belongto the same ≈-equivalen
e 
lass. In fa
t, we are able to prove a more general result.Theorem 68 (J., Mansour [37℄). For any partition τ , for any k ≥ 2, and for any p, q ≥ 0,we have the following equivalen
es:
12 · · ·k(τ + k)S p

q ≈ 12 · · ·k(τ + k)S p+q
0and

12 · · ·kS p
q (τ + k) ≈ 12 · · ·kS p+q

0 (τ + k).64



Proof. By Lemma 40, the two matri
es M(S p
q , 2) and M(S p+q

0 , 2) are sta
k equivalent, andhen
e also Fy-equivalent. By Proposition 48, this implies that M(S p
q , k)

△s∼ M(S p+q
0 , k)for any k ≥ 2. Lemma 45 then gives the �rst equivalen
e, and Lemma 47 gives these
ond.Next, we present two theorems that make use of the full strength of Lemma 40,in
luding the preservation of the t-falling property. Re
all that S

p

q = 1p21q.Theorem 69 (J., Mansour [37℄). Let τ be any partition with k blo
ks, let p ≥ 1 and
q ≥ 0. The pattern σ = τ(S

p

q + k) is equivalent to σ′ = τ(S
p+q

0 + k).Proof. Let π be a partition of [n] with m blo
ks, let M = M(π, m). We 
olor the 
ells of
M red and green, where a 
ell in row i and 
olumn j is green if and only if the submatrixof M formed by the interse
tion of the �rst i − 1 rows and j − 1 
olumns of M 
ontains
M(τ, k). It is not di�
ult to see that for ea
h green 
ell (i, j) there is an o

urren
e of
M(τ, k) whi
h appears in the �rst i−1 rows and the �rst j−1 
olumns and whi
h 
onsistsentirely of red 
ells. Thus, for any matrix M ′ obtained from M by modifying the �llingof M 's green 
ells, a 
ell is green with respe
t to M ′ if and only if it is green with respe
tto M .Let G be the diagram formed by the green 
ells of M , and let Φ be the �lling of Gby the values from M . Note that G is an upside-down 
opy of an Fy-shape. It is easy tosee that the partition π avoids σ if and only if Φ avoids M(S

p

q , 2), and π avoids σ′ if andonly if Φ avoids M(S
p+q

0 , 2).Let us now assume that π is σ-avoiding. We now des
ribe a pro
edure to transform
π into a σ′-avoiding partition π′ (see Figure 6.2). We �rst turn the �lling Φ and thediagram G upside down, whi
h transforms G into an Fy-shape G, and it also transformsthe M(S

p

q , 2)-avoiding �lling Φ into an M(S p
q , 2)-avoiding �lling Φ of G. Then we applythe bije
tion f of Lemma 40 to Φ, ignoring the zero 
olumns. We thus obtain a �lling Ψ =

f(Φ) whi
h avoids M(S p+q
0 , 2). We turn this �lling upside down, obtaining a M(S

p+q

0 , 2)-avoiding �lling Ψ of G. We then �ll the green 
ells of M with the values of Ψ while the�lling of the red 
ells remains the same. We thus obtain a matrix M ′. The matrix M ′has exa
tly one 1-
ell in ea
h 
olumn, so there is a sequen
e π′ over the alphabet [m] su
hthat M ′ = M(π′, m).By 
onstru
tion, the sequen
e π′ has no subsequen
e order-isomorphi
 to σ′. We nowneed to show that π′ is a restri
ted-growth sequen
e. For this, we will use the preservationof the t-falling property. Let ci be the leftmost 1-
ell of the i-th row of M , let c′i be theleftmost 1-
ell of the i-th row of M ′. We know that the 
ells c1, . . . , cm form an in
reasing
hain, be
ause π was a restri
ted-growth sequen
e. We want to show that the 
ells
c′1, . . . , c

′
m form an in
reasing 
hain as well.Let s be the largest index su
h that the 
ell cs is red in M . We set s = 0 if no su
h
ell exists. Note that the 
ells c1, . . . , cs are red and the 
ells cs+1, . . . , cm are green in M .We have ci = c′i for every i ≤ s. If s > 0, we also see that all the green 1-
ells of M arein the 
olumns to the right of cs. This means that even in the matrix M ′ all the green1-
ells are to the right of cs, be
ause the zero 
olumns of Φ must remain zero in Ψ. Inparti
ular, all the 
ells c′s+1, . . . , c

′
m appear to the right of c′s.It remains to show that c′s+1, . . . , c

′
m form an in
reasing 
hain. We know that the 
ells

cs+1, . . . , cm form an in
reasing 
hain in M and in Φ. When G is turned upside down, this
hain be
omes a de
reasing 
hain cs+1, . . . , cm in Φ. This 
hain shows that Φ is (m − s)-falling. By Lemma 40, Ψ must be (m − s)-falling as well, hen
e it 
ontains a de
reasing
hain c′s+1, . . . , c
′
m in its bottom m − s rows. This de
reasing 
hain 
orresponds to an65
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Figure 6.2: Illustration of the proof of Theorem 69.in
reasing 
hain c′s+1, . . . , c
′
m in M ′, showing that π′ is a restri
ted-growth fun
tion, as
laimed.It is obvious that the above 
onstru
tion 
an be reversed, whi
h shows that it is indeeda bije
tion between Pn(σ) and Pn(σ′).The following result is proved by a similar approa
h, but the argument is slightly morete
hni
al.Theorem 70 (J., Mansour [37℄). Let T be an arbitrary sequen
e over the alphabet [k], let

p ≥ 1 and q ≥ 0. The partition σ = 12 · · ·k(S
p

q +k)T is equivalent to σ′ = 12 · · ·k(S
p+q

0 +
k)T .Proof. Let π be a partition of [n] with m blo
ks, let M = M(π, m). As in the previousproof, we 
olor the 
ells of M red and green. A 
ell in row i and 
olumn j will be green ifthe submatrix of M formed by rows 1, . . . , i−1 and 
olumns j+1, . . . , n 
ontains M(T, k).Let G be the diagram formed by the green 
ells and Φ its �lling inherited from M .Let r be the number of rows of G. The partition π 
ontains σ if and only if Φ 
ontains
M(S

p

q , 2). Note that the diagram G is an upside-down 
opy of a Ferrers shape.We apply the same 
onstru
tion as in the previous proof. Let Φ be the upside down
opy of Φ. The �lling Φ is r-falling and it avoids M(S p
q , 2). We apply the mapping ffrom Lemma 40 to transform Φ into an r-falling semi-sparse �lling Ψ. We then turn Ψupside down again and reinsert it into the green 
ells of the original matrix. This yieldsa matrix M ′ with exa
tly one 1-
ell in ea
h 
olumn. Hen
e, there exists a sequen
e π′,su
h that M ′ = M(π′, m). The sequen
e π′ has no subsequen
e order-isomorphi
 to σ′.We need to prove that π′ is a restri
ted-growth sequen
e. Let ci be the leftmost 1-
ellin row i of M and let c′i be the leftmost 1-
ell in row i of M ′. To prove that π′ is apartition, we want to show that c′1, . . . , c

′
m form an in
reasing 
hain in M ′.Let us �x two row indi
es i < j. We 
laim that c′i is left of c′j . If both c′i and c′j aregreen, then the 
laim follows from the preservation of the r-falling property. If both c′i and

c′j are red, then c′i = ci and c′j = cj . The 
laim then follows from the fa
t that c1, . . . , cm66



is an in
reasing 
hain. If c′j is red and c′i is green, the 
laim holds as well, be
ause cj = c′j,and all the green 
ells below row j must appear to the left of the 
olumn of cj.Finally, assume that c′j is green and c′i is red. We have c′i = ci. All the 1-
ells of Φthat are to the left of ci are also below row i. Let x be the number of su
h 1-
ells. Then
x is equal to the number of nonzero 
olumns of Φ that are to the left of ci. Sin
e thenumber of these nonzero 
olumns is preserved by the mapping f , we see that Ψ also has
x 1-
ells left of ci. Sin
e f preserves the number of 1-
ells in ea
h row, both Φ and Ψhave exa
tly x 1-
ells below row i. All the 1-
ells of Ψ below row i must appear to theleft of ci, and sin
e there are only x 1-
ells of Ψ to the left of ci, they must all appearbelow row i. Hen
e, all the green 1-
ells above row i (in
luding the 
ell c′j) appear to theright of ci.Patterns equivalent to 12k13. We will now fo
us on the following sets of patterns:

Σ+
t = {12p+112q32r : p, q, r ≥ 0, p + q + r = t}

Σ−
t = {12p+132q12r : p, q, r ≥ 0, p + q + r = t}

Σt = Σ+
t ∪ Σ−

tOur aim is to show that all the patterns in Σt are equivalent. Throughout this se
tion, wewill assume that t is arbitrary but �xed. We will write Σ+, Σ− and Σ instead of Σ+
t , Σ−

tand Σt, if there is no risk of ambiguity.The approa
h we will use is similar to the idea we employed to prove Theorem 41, butwith 
onsiderably more te
hni
al details to take 
are of.We will use the following de�nition.De�nition 71. Let σ be a pattern over the alphabet {1, 2, 3}, let π be a partition with
m blo
ks, and let k ≤ m be an integer. We say that π 
ontains σ at level k, if there aresymbols ℓ, h ∈ [m] su
h that ℓ < k < h, and the partition π 
ontains a subsequen
e Smade of the symbols {ℓ, k, h} whi
h is order-isomorphi
 to σ.For example, the partition π = 1231323142221 
ontains σ = 121223 at level 3, be
ause
π 
ontains the subsequen
e 131334, but π avoids σ at level 2, be
ause π has no subsequen
eof the form ℓ2ℓ22h with ℓ < 2 < h.Our plan is to show, for suitable pairs σ, σ′ ∈ Σ, that for every k there is a bije
tion
fk that maps the partitions avoiding σ at level k to the partitions avoiding σ′ at level k,while preserving σ′-avoidan
e at all levels j < k and preserving σ-avoidan
e at all levels
j > k +1. Composing the maps fk for k = 2, . . . , n−1, we will obtain a bije
tion between
Pn(σ) and Pn(σ′).To formalize this idea we will need more de�nitions.De�nition 72. Consider a partition π, and �x a level k ≥ 2. A symbol of π is 
alled k-lowif it is smaller than k and k-high if it is greater than k. A k-low 
luster (or k-high 
luster)is a maximal 
onse
utive sequen
e of k-low symbols (or k-high symbols, respe
tively) in π.The k-lands
ape of π is a word over the alphabet {L, k,H} obtained from π by repla
ingea
h k-low 
luster with a single symbol L and ea
h k-high 
luster with a single symbol H.A word W over the alphabet {L, k,H} is 
alled a k-lands
ape word if it satis�es thefollowing 
onditions.

• The �rst symbol of W is L, the se
ond symbol of W is k.
• No two symbols L are 
onse
utive in W , no two symbols H are 
onse
utive in W .67



Clearly, the lands
ape of a partition is a lands
ape word.Two k-lands
ape words W and W ′ are said to be 
ompatible, if ea
h of the threesymbols {L, k,H} has the same number of o

urren
es in W as in W ′.We will often drop the pre�x k from these terms, if the value of k is 
lear from the
ontext.To give an example, 
onsider π = 1231323142221: it has �ve 3-low 
lusters, namely
12, 1, 2, 1 and 2221, it has one 3-high 
luster 4, and its 3-lands
ape is L3L3L3LHL.If W and W ′ are two 
ompatible k-lands
ape words, we have a natural bije
tionbetween partitions with lands
ape W and partitions with lands
ape W ′. If π has lands
ape
W , we map π to the partition π′ of lands
ape W ′ whi
h has the same k-low 
lusters and
k-high 
lusters as π, and moreover, the k-low 
lusters appear in the same order in π as in
π′, and also the k-high 
lusters appear in the same order in π as in π′. It is not di�
ult to
he
k that these rules de�ne a unique sequen
e π′ and this sequen
e is indeed a partition.This provides a bije
tion between partitions of lands
ape W and partitions of lands
ape
W ′ whi
h will be 
alled the k-shu�e from W to W ′.The key property of shu�es is established by the next lemma.Lemma 73. Let W and W ′ be two 
ompatible k-lands
ape words. Let π be a partitionwith k-lands
ape W and let π′ be the partition obtained from π by the shu�e from W to
W ′. Let σ be a pattern from Σ, and let j be an integer. The following holds.1. If σ does not end with the symbol 1 and j > k, then π′ 
ontains σ at level j if andonly if π 
ontains σ at level j.2. If σ does not end with the symbol 3 and j < k, then π′ 
ontains σ at level j if andonly if π 
ontains σ at level j.Proof. We begin with the �rst 
laim of the lemma. Let σ = 12p+132q12r be an arbitrarypattern from Σ− (the 
ase σ ∈ Σ+ is analogous). By assumption, we have r > 0. Assumethat π 
ontains σ at a level j > k. In parti
ular, π has a subsequen
e S = ℓjp+1hjqℓjr,with ℓ < j < h.If k < ℓ, then all the symbols of S are k-high. Sin
e the shu�e preserves the relativeorder of high symbols, π′ 
ontains the subsequen
e S as well.If k ≥ ℓ, then the shu�e preserves the relative order of the symbols j and h, whi
h areall high. Let x and y be the two symbols of S dire
tly adja
ent to the se
ond o

urren
eof ℓ in S (if q > 0, both these symbols are equal to j, otherwise one of them is h andthe other j). The two symbols are both high, but they must appear in di�erent k-high
lusters. After the shu�e, the two symbols x and y will again be in di�erent 
lusters,separated by a non-high symbol ℓ′ ≤ k, and sin
e the �rst o

urren
e of ℓ′ in π′ pre
edesany o

urren
e of j, the partition π′ will 
ontain a subsequen
e ℓ′jp+1hjqℓ′jr, whi
h isorder-isomorphi
 to σ.We see that the shu�e preserves the o

urren
e of σ at level j. Sin
e the inverse ofthe shu�e from W to W ′ is the shu�e from W ′ to W , we see that the inverse of a shu�epreserves the o

urren
e of σ at level j as well.The se
ond 
laim of the lemma is proved by a similar argument. Assume that π
ontains σ at a level j < k. Thus, π 
ontains a subsequen
e S over the alphabet {ℓ < j <
h}, whi
h is order-isomorphi
 to σ. If h < k, then the symbols of S are low and hen
epreserved by the shu�e. If h ≥ k, let x and y be the two symbols of S adja
ent to thesymbol of h. Re
all that σ does not end with the symbol 3, so x and y are both wellde�ned. The symbols x and y must appear in two distin
t low 
lusters. After the shu�eis performed there will be a non-low symbol h′ between x and y. Hen
e, π′ will 
ontain asubsequen
e order isomorphi
 to σ. 68



We will use shu�es as basi
 building blo
ks for our bije
tions. The �rst example isthe following lemma.Lemma 74. For every p, q, r ≥ 0, the pattern σ = 12p+112q32r is equivalent to the pattern
σ′ = 12p+132q12r.Proof. Let us �x p, q, r ≥ 0 with t = p + q + r. For a given k, a partition π of [n] is
alled a k-hybrid if π avoids σ′ at every level j < k and π avoids σ at every level j ≥ k.We will show that for every k ∈ {2, . . . , n − 1} there is a bije
tion fk between k-hybridsand (k + 1)-hybrids. Sin
e 2-hybrids are pre
isely the σ-avoiding partitions of [n] and
n-hybrids are pre
isely the σ′-avoiding partitions of [n], this gives the required result.Let us �x k. Note that a partition π 
ontains σ at level k if and only if its k-lands
ape
W 
ontains a subsequen
e kp+1LkqHkr. Similarly, π 
ontains σ′ at level k if and only if
W 
ontains a subsequen
e kp+1HkqLkr.Let π be a k-hybrid with lands
ape W . If π has fewer than t + 1 o

urren
es of k,then it is also a (k + 1)-hybrid and we put fk(π) = π. Otherwise, we write W = XY Z,where X is the shortest pre�x of W that has p + 1 symbols k and Z is the shortest su�xof W that has r symbols k. By assumption, X and Z do not overlap (although they maybe adja
ent if q = 0). Let Y be the word obtained by reversing the order of the letters of
Y , and let us de�ne W ′ = XY Z. Note that W ′ is a lands
ape word 
ompatible with W ,and that W avoids kp+1LkqHkr if and only if W ′ avoids kp+1HkqLkr. We apply to π theshu�e from W to W ′ whi
h transforms it into a partition π′ = fk(π).Lemma 73 implies that π′ is a (k + 1)-hybrid. Hen
e, fk is the required bije
tion.Another result in the same spirit is the following lemma.Lemma 75. For every p, q, r ≥ 0, the pattern σ = 12p+212q32r is equivalent to the pattern
σ′ = 12p+112q32r+1.Proof. We follow a similar argument as in the proof of Lemma 74. As before, a k-hybridis a partition that avoids σ′ at every level j < k and that avoids σ at every level j ≥ k.We will present a bije
tion fk between k-hybrids and (k + 1)-hybrids. Note that π avoids
σ at level k if and only if its lands
ape W avoids kp+2LkqHkr.Fix a k-hybrid π with lands
ape W . If π has fewer than p+2+ q + r o

urren
es of k,then it is also a (k + 1)-hybrid and we de�ne fk(π) = π; otherwise, we write W = XSY Zwhere X is the shortest pre�x of W that has p+1 o

urren
es of k, Z is the shortest su�xwith r o

urren
es of k, S is the subword that starts just after the (p + 1)-th o

urren
eof k and ends immediately after the (p + 2)-th o

urren
e of k. We de�ne W ′ = XY SZ,where S is the reversal of S.Note that in the de�nition ofW ′, we need to take W ′ = XY SZ instead of the seeminglymore natural de�nition W = XY SZ. This is be
ause in general, the string XY SZ neednot be a lands
ape word, sin
e it may 
ontain two 
onse
utive o

urren
es of either Lor H. Our de�nition guarantees that W ′ is a 
orre
t lands
ape word, and that W ′ avoids
kp+1LkqHkr+1 if and only if W avoids kp+2LkqHkr (whi
h is if and only if Y avoids LkqH).The rest of the argument is the same as in the previous lemma.We may now state and prove the main result of this paragraph.Theorem 76 (J., Mansour [37℄). For every t, the patterns in the set Σt are equivalent.Proof. By Theorem 68, we already know that for any p, q ≥ 0, the pattern 12p+112q3 isequivalent to the pattern 12p+q+113. This, together with the two previous lemmas givesthe required result. 69



More `lands
ape' patterns. We will show that with a little bit of additional e�ort,the previous arguments involving lands
apes 
an be adapted to prove, for every p, q ≥ 0,the following equivalen
es:
• 1232p412q ≈ 1232p42q1

• 1232p142q ≈ 12312p42q

• 123p+1143q ≈ 123p+113q4

• 123p+1413q ≈ 12343p13qThroughout this paragraph, we will say that τ is a 1-2-4 pattern if τ has the form
123S where S is a sequen
e that satis�es these two 
onditions:

• S has exa
tly one o

urren
e of the symbol `1', exa
tly one o

urren
e of the symbol`4', and all its remaining symbols are equal to `2'.
• Neither the �rst nor the last symbol of S is equal to `4'.Similarly, a 1-3-4 pattern is a pattern of the form 123S where S satis�es these two 
on-ditions:
• S has one o

urren
e of `1' and one o

urren
e of `4', and all its remaining symbolsare equal to `3'.
• The last symbol of S not equal to `1'.We de
ided to ex
lude the patterns of the form 1232p12q4, 12342p12q and 1233p43q1from the set of 1-2-4 and 1-3-4 patterns de�ned above, be
ause some of the arguments wewill need in the following dis
ussion (namely in Lemma 77) would be
ome more 
ompli-
ated if these spe
ial types of patterns were allowed. We need not be too 
on
erned aboutthis 
onstraint, be
ause we have already dealt with the patterns of the three ex
ludedtypes in Theorem 68 and Theorem 70. From Theorem 68, we obtain the equivalen
es

1232p12q4 ≈ 1232p+q14 and 12342p12q ≈ 12342p+q1, while from Theorem 70, we obtain
1233p43q1 ≈ 1233p+q41.For our arguments, we need to extend some of the terminology of the previous se
tionto 
over the new family of patterns. Let τ be a 1-2-4 pattern, k be a natural number,and π be a partition. We say that π 
ontains τ at level k, if π has a subsequen
e Torder-isomorphi
 to τ su
h that the o

urren
es of the symbol `2' in τ 
orrespond to theo

urren
es of the symbol k in T . Similarly, if τ is a 1-3-4 pattern, we say that a partition
π 
ontains τ at level k if π has a subsequen
e T order-isomorphi
 to τ with the symbol kin T 
orresponding to the symbol `3' in τ .Our aim is to prove an analogue of Lemma 73 for 1-2-4 and 1-3-4 patterns. Un-fortunately, general k-shu�es may behave badly with respe
t to the avoidan
e of thesepatterns. However, we will de�ne spe
ial types of k-shu�es that have the properties weneed. We �rst introdu
e some new de�nitions.Let W be a k-lands
ape word. We say that two o

urren
es of the symbol H in W areseparated if there is at least one o

urren
e of L between them. Similarly, two symbolsL are separated if there is at least one H between them. As an example, 
onsider the
k-lands
ape word W = LkLkHkkHLkH. In W , neither the �rst two o

urren
es of L northe �rst two o

urren
es of H are separated, while the se
ond and third o

urren
e ofH, as well as the se
ond and third o

urren
e of L are separated. We also say that two70




lusters of a partition are separated if the 
orresponding symbols of the lands
ape wordare separated.Let W and W ′ be two k-lands
ape words. We say that W and W ′ are H-
ompatible ifthey are 
ompatible, and for any i, j, the i-th and j-th o

urren
e of H in W are separatedif and only if the i-th and j-th o

urren
e of H in W ′ are separated. An L-
ompatiblepair of words is de�ned analogously.For example, the two 
ompatible words W = LkHkkHL and W ′ = LkHkLHk are L-
ompatible (sin
e the two o

urren
es of L are separated in both words) but they are notH-
ompatible (the two symbols H are not separated in W but they are separated in W ′).The following lemma explains the relevan
e of these 
on
epts.Lemma 77. Let k be an integer. The following holds.(1) Let W and W ′ be two L-
ompatible k-lands
ape words, and let τ be a 1-2-4 pattern.Let π be an arbitrary partition, and let π′ be the partition obtained from π by the
k-shu�e from W to W ′. For every j < k, π 
ontains τ at level j if and only if
π′ 
ontains τ at level j. Moreover, if the last symbol of τ is equal to 2, then theprevious equivalen
e also holds for every j > k.(2) Let W and W ′ be two H-
ompatible k-lands
ape words, and let τ be a 1-3-4 pattern.Let π be an arbitrary partition, and let π′ be the partition obtained from π by the
k-shu�e from W to W ′. For every j > k, π 
ontains τ at level j if and only if
π′ 
ontains τ at level j. Moreover, if the last symbol of τ is equal to 3, then theprevious equivalen
e also holds for every j < k.Proof. We �rst prove (1). Assume that π 
ontains a 1-2-4 pattern τ at level j. If j > k,we may use the same argument as in the proof of the �rst part of Lemma 73 to see thatthe o

urren
e of τ is preserved by the shu�e as long as τ does not end with a 1.Assume now that j < k. Let us write τ = 1232p42q12r (the 
ase when τ has the form

1232p12q42r is analogous). Note that our de�nition of 1-2-4 pattern implies that p 6= 0.By assumption, π 
ontains a subsequen
e T order-isomorphi
 to τ , with the symbol2 of τ 
orresponding to the symbol j in T . We label from left-to-right the 1 + p + q + ro

urren
es of j in T by j0, j1, · · · , jp+q+r. Let a < b < c denote the symbols of T that
orrespond respe
tively to the symbols 1, 3 and 4 in τ ; we label the two o

urren
es of ain T by a0 and a1. With this notation, we may write T as follows:
T = a0j0bj1 · · · jpcjp+1 · · · jp+qa1jp+q+1 · · · jp+q+r.We distinguish several 
ases, based on the relative order of b, c and k. If c < k, then allthe symbols of T are k-low and their relative position is preserved by the shu�e, whi
hmeans that T is also a subsequen
e of π′.If c ≥ k and b < k, then the symbols a < j < b are k-low. Let x and y be the twosymbols adja
ent to c in T . Typi
ally x = jp and y = jp+1, unless q is zero, in whi
h
ase y = a1. Re
all that c 
annot dire
tly follow b and it 
annot be the last element of

T by the de�nition of 1-2-4 pattern. The elements x and y are low and they appear intwo distin
t low 
lusters. After the shu�e, the o

urren
es of a, b and j in T have thesame relative order, and the elements x and y still belong to di�erent 
lusters. Thus, π′
ontains a symbol greater than b between x and y. This shows that π′ has a subsequen
eorder-isomorphi
 to τ .It remains to 
onsider the most 
ompli
ated 
ase, when c > k and b ≥ k. This iswhen we �rst use the L-
ompatibility assumption. Let x and y be again the two symbolsadja
ent to c in T . By the de�nition of 1-2-4 patterns, x and y are both k-low. Sin
e b isnot k-low and c is high, the partition π has the following properties.71



1. The symbol j1 does not belong to the leftmost low 
luster.2. The two symbols x and y belong to two separated low 
lusters.The two properties are preserved by the shu�e. In parti
ular, in π′, the symbol j1does not belong to the leftmost low 
luster, whi
h means that there is at least one non-lowsymbol appearing in π′ before j1. Sin
e π′ is a partition in its 
anoni
al sequential form,this implies that all the symbols 1, 2, · · · , k appear in π′ in this order before j1. Let a′, j′and k′ denote respe
tively the leftmost o

urren
es of a, j and k in π′. We also know,from the L-
ompatibility of W and W ′, that in π′ the two symbols x and y appear indistin
t and separated low 
lusters. In parti
ular, π′ 
ontains a k-high symbol c′ between
x and y. Putting it all together, we see that π′ 
ontains the subsequen
e

T ′ = a′j′k′j1 · · · jpc
′jp+1 · · · jp+qa1jp+q+1 · · · jp+q+r,whi
h is order isomorphi
 to τ .Thus, π 
ontains a 1-2-4 pattern τ at level j, if and only if π′ 
ontains τ at level j.This 
ompletes the proof of (1).Claim (2) is proved by a similar argument. Let τ be a 1-3-4 pattern of the form

123p+113q43r (the 
ase when τ = 123p+143q13r is analogous and easier). Assume that π
ontains τ at level j, represented by a sequen
e T of the form
T = a0bj0j1 · · · jpa1jp+1 · · · jp+qcjp+q+1 · · · jp+q+r,with a < b < j < c.If j < k, we apply the same argument as in the proof of the se
ond 
laim of Lemma 73to prove that if τ does not end with 4, then the o

urren
e of τ is preserved by the shu�e.Next, we assume that j > k and we distinguish several 
ases based on the relativeorder of a, b and k.If a > k, then all the symbols of T are k-high and their order is preserved by theshu�e.If a ≤ k, and b > k, we let x and y denote the two symbols adja
ent to a1 in T , andwe observe that π′ has a non-high element a′ between x and y. The �rst o

urren
e of

a′ in π′ must appear to the left of any k-high symbol, hen
e π′ 
ontains a subsequen
e
a′bjp+1a′jqcjr order-isomorphi
 to τ .If a < k and b ≤ k, we de�ne x and y as in the previous paragraph. This time, x and
y belong to two separated high 
lusters, so π′ has a k-low element a′ between x and y,and in parti
ular, π′ 
ontains the subsequen
e a′kjp+1a′jqcjr.With the help of Lemma 77, we may prove all the equivalen
e relations announ
ed atthe beginning of this paragraph. We split the proofs into four lemmas and then summarizethe results in a theorem.Lemma 78. Let p, q ≥ 1. The pattern τ = 1232p412q is equivalent to τ ′ = 1232p42q1.Proof. For an integer k we say that a partition π is a k-hybrid if π avoids τ ′ at level j forevery j < k and it avoids τ at level j for every j ≥ k. To prove the 
laim, it is enough toestablish a bije
tion fk between k-hybrids and (k + 1)-hybrids.We say that a k-high 
luster of π is extra-high if it 
ontains a symbol greater than k+1.We 
laim that π 
ontains τ at level k if and only if by s
anning the k-lands
ape W of πfrom left to right we may �nd (not ne
essarily 
onse
utively) the leftmost high 
luster,followed by p o

urren
es of the symbol k, followed by an extra-high 
luster, followed bya low 
luster, followed by q o

urren
es of k. To see this, it su�
es to noti
e that the72



leftmost high 
luster 
ontains the symbol k + 1, and to the left of this 
luster we mayalways �nd all the symbols 12 · · ·k in in
reasing order.By a similar argument, we see that π 
ontains τ ′ at level k if and only if it 
ontains, left-to-right, the leftmost high-
luster, p o

urren
es of k, an extra-high 
luster, q o

urren
esof k and a low 
luster.Now assume that π is a k-hybrid partition. Let H′ be the leftmost extra-high 
luster of
π su
h that between H′ and the leftmost high 
luster of π there are at least p o

urren
esof k. If no su
h 
luster exists, or if π has fewer than q symbols equal to k to the right ofH′, then π avoids both τ and τ ′ at level k, and we de�ne fk(π) = π.Otherwise, let W be the k-lands
ape of π. We will de
ompose W as

W = XH′Y kqS1kq−1S2 · · · k1Sq,where H′ represents the extra-high 
luster de�ned above, and ki represents the i-th symbol
k in π, 
ounted from the right. The symbols X, Y and S1, . . . , Sq above refer to the
orresponding subwords of W appearing between these symbols.By 
onstru
tion, none of the Si's 
ontains the symbol k, so ea
h of them is an alter-nating sequen
e over the alphabet {L,H}, possibly empty. Sin
e π avoids τ at level k,the subword Y does not 
ontain the symbol L.We de
ompose S1 into two parts S1 = H∗S−

1 in the following way: if the �rst letter of
S1 is H, then we put H∗ = H and S−

1 is equal to S1 with the �rst letter removed. If S1does not start with H, then H∗ is the empty string and S−
1 = S1.Now, we de�ne the word W ′ by

W ′ = XH′S−
1 k1S2k2S3k3 · · · kq−1SqkqH

∗Y.It is not di�
ult to 
he
k that W ′ is a lands
ape word (note that neither Y nor S−
1 
anstart with the symbol H), and that W ′ is L-
ompatible with W (re
all that Y 
ontainsno L).Let π′ be the partition obtained from π by the shu�e from W to W ′. Note that thepre�x of π through the 
luster H′ is not a�e
ted by the shu�e, be
ause the words Wand W ′ share the same pre�x up to the symbol H′. In parti
ular, the shu�e preservesthe property that H′ is the leftmost extra-high 
luster with at least p symbols k betweenH′ and the leftmost high 
luster of π′. It is routine to 
he
k that π′ avoids τ ′ at level

k. By Lemma 77, π′ is a (k + 1)-hybrid partition. It is easy to see that for any given
(k + 1)-hybrid partition π′, we may uniquely invert the pro
edure above and obtain a
k-hybrid partition π.De�ning fk(π) = π′, we obtain the required bije
tion between k-hybrids and (k + 1)-hybrids.The proofs of the following three lemmas follow the same basi
 argument as the proofof Lemma 78 above. The only di�eren
e is in the de
ompositions of the 
orrespondinglands
ape words W and W ′. We omit the 
ommon parts of the arguments and 
on
entrateon pointing out the di�eren
es.Lemma 79. Let p, q ≥ 1. The pattern τ = 1232p142q is equivalent to τ ′ = 12312p42q.Proof. A partition π 
ontains τ at level k if and only if it 
ontains, from left to right, theleftmost high 
luster, p 
opies of k, a low 
luster, an extra-high 
luster, and q 
opies of k.Similar 
hara
terization applies to τ ′.Let H1 denote the leftmost high 
luster of π, let H′ denote the rightmost extra-high
luster of π that has the property that there are at least q o

urren
es of k to the right73



of H′. If H′ does not exist, or if there are fewer than p o

urren
es of k between H1 andH′, then π 
ontains neither τ nor τ ′ at level k and we put fk(π) = π. Otherwise, let Wbe the lands
ape of π, and let us write
W = XH1S1k1S2k2 · · ·SpkpYH′Z,where none of the Si 
ontains k, and Y avoids L. De�ne S−

p and H∗ by writing Sp = S−
p H∗where S−

p does not end with the letter H and H∗ is equal either to H or to the emptystring, depending on whether Sp ends with H or not.Now we write
W ′ = XH1Y k1H

∗S1k2S2 · · · kpS
−
p H′Z,where Y is the reversal of Y . The rest of the proof is analogous to Lemma 78.We now apply the same arguments to 1-3-4 patterns.Lemma 80. For any p ≥ 0 and q ≥ 1, the pattern τ = 123p+113q4 is equivalent to thepattern τ ′ = 123p+1143q.Proof. As usual, a k-hybrid is a partition that avoids τ at every level j ≥ k and thatavoids τ ′ at every level below k.Let us say that a k-
luster of a partition π is extra-low if it 
ontains a symbol smallerthan k − 1. A partition 
ontains τ at level k if and only if it has p + 1 o

urren
es of kfollowed by an extra-low 
luster, followed q o

urren
es of k, followed by a high 
luster.Similarly, a partition 
ontains τ ′ at level k if and only if it has p + 1 
opies of k, followedby an extra-low 
luster, followed by a high 
luster, followed by q 
opies of k.Assume π is a k-hybrid partition. Let L′ denote the leftmost extra-low 
luster of πthat has at least p + 1 
opies of k to its left. If L′ does not exist, or if it has fewer than q
opies of k to its right, we put fk(π) = π. Otherwise, we de
ompose the lands
ape word

W of π as
W = XL′S1k1S2k2 · · ·Sq−1kq−1SqkqY,where the Si do not 
ontain k. By assumption, Y avoids H. Next, we write Y = L∗Y −where L∗ is an empty string or a single symbol L, and Y − does not start with L. Wede�ne W ′ by
W ′ = XL′Y −k1L

∗S1k2 · · ·Sq−1kqSq.The words W and W ′ are H-
ompatible. We de�ne the bije
tion between k-hybrids and
(k + 1)-hybrids in the usual way.Lemma 81. For every p ≥ 0 and q ≥ 1, the pattern τ = 123p+1413q is equivalent to thepattern τ ′ = 12343p13q.Proof. As before, take π to be a k-hybrid partition. Let L′ be the rightmost extra-low
luster that has at least q 
opies of k to its right. If L′ has at least p + 1 
opies of k to itsleft, we de
ompose the lands
ape W of π as

W = Lk1S1k2S2 · · · kpSpkp+1Y L′Z.Next, we write Sp = S−
p L∗ with the usual meaning and de�ne
W ′ = Lk1L

∗Y k2S1k3S2 · · ·Sp−1kp+1S
−
p L′Z.The rest is the same as before.We now summarize our results. 74



Theorem 82 (J., Mansour [37℄). For every p, q ≥ 0, we have the following equivalen
es:1. 1232p412q ≈ 1232p42q12. 1232p142q ≈ 12312p42q3. 123p+1143q ≈ 123p+113q44. 123p+1413q ≈ 12343p13qProof. If p and q are both positive, the results follow dire
tly from the four pre
edinglemmas.If p = 0, the se
ond and the fourth 
laim are trivial, the �rst one is a spe
ial 
ase ofTheorem 68, and the third is 
overed by Lemma 80.If q = 0, the �rst and the third 
laim are trivial, the se
ond is a spe
ial 
ase ofTheorem 68, and the fourth follows from Theorem 70.6.5 Sporadi
 equivalen
esThe results that we have presented so far have always yielded in�nite families of equiva-lent pairs of patterns. However, the 
omputer enumeration of small patterns undertakenby Jelínek and Mansour [37℄ has revealed two likely pairs of equivalent patterns whi
h arenot 
overed by any of the previous general 
lasses. The two equivalen
es suggested bythe enumerative data are 1123 ≈ 1212 and 12112 ≈ 12212. To 
omplete the 
lassi�
ationof small partition patterns, we will show that the two pairs of patterns are indeed equiv-alent. We are not able to generalize any of these equivalen
es to a more general family ofequivalent patterns. For this reason, we 
all them the `sporadi
' pairs.Enumeration of 1123-avoiding partitions. Let us �rst deal with the equivalen
e
1212 ≈ 1123. Unlike in the previous arguments, we do not present a dire
t bije
tionbetween pattern-avoiding 
lasses. Instead, we prove that pn(1123) is equal to the n-thCatalan number, i.e., pn(1123) = 1

n+1

(
2n
n

). Sin
e it is well known, at least sin
e 1970's [49℄,that non
rossing partitions are enumerated by the Catalan numbers, this will yield thedesired equivalen
e.We a
hieve our goal by proving that pn(1123) is equal to the number of Dy
k paths ofsemilength n. A Dy
k path of semilength n is a nonnegative path on the two-dimensionalinteger latti
e from (0, 0) to (2n, 0) 
omposed of up-steps 
onne
ting (x, y) to (x+1, y+1)and down-steps 
onne
ting (x, y) to (x + 1, y − 1). It is well known that these pathsare enumerated by Catalan numbers (for a survey of the many 
ombinatorial stru
turesenumerated by the Catalan numbers, see the Catalan Addendum of Stanley [67℄).Let D(n, k) be the set of Dy
k paths of semilength n whose last up-step is followed byexa
tly k down-steps. Let d(n, k) be the 
ardinality of D(n, k). Additional 
ombinatorialinterpretations of d(n, k) 
an be found in the OEIS [68, sequen
e A033184℄.Lemma 83. The numbers d(n, k) are determined by the following set of re
urren
es:
d(1, 1) = 1 (6.5)
d(n, k) = 0 if k < 1 or k > n (6.6)
d(n, k) =

n−1∑

j=k−1

d(n − 1, j) for n ≥ 2, n ≥ k ≥ 1. (6.7)75



Proof. Only the third re
urren
e is nontrivial. We prove it by presenting a bije
tionbetween D(n, k) and the disjoint union ⋃n−1
j=k−1 D(n − 1, j). Assume that k and n are�xed, with n ≥ 2 and k ≤ n. Take a Dy
k path P ∈ D(n, k). By erasing the last up-stepand the last down-step of D, we get a Dy
k path P ′ ∈ D(n − 1, j), where j ≥ k − 1.Conversely, given a Dy
k path P ′ ∈ D(n − 1, j) with j ≥ k − 1, we insert a down-step atthe end of D′, and then insert an up-step into the resulting path immediately before itslast k down-steps. This inverts the mapping above.We now fo
us on 1123-avoiding partitions. First of all, we will present a 
orrespon-den
e between 1123-avoiding partitions and 123-avoiding words. A 123-avoiding word isa sequen
e s1, s2, . . . , sℓ of positive integers, su
h that there are no three indi
es i < j < kthat would satisfy si < sj < sk. We de�ne the rank of a word to be equal to ℓ + m − 1,where ℓ is the length of the word and m = max{si, i = 1, . . . , ℓ} is the largest symbol ofthe word.For example, there are �ve 123-avoiding words of rank 3: 111, 12, 21, 22, and 3. Thereare fourteen 123-avoiding words of rank 4: 1111, 112, 121, 122, 211, 212, 221, 222, 13, 23,31, 32, 33, and 4.Claim 84. A 1123-avoiding partition π of [n] with m blo
ks has the following form:

π = 123 · · · (m − 2)(m − 1)S (6.8)where S is a 123-avoiding word of rank n, with maximum element m. Conversely, If
S is any 123-avoiding word of rank n with maximum element m then π de�ned by theformula (6.8) is a 
anoni
al sequen
e of a 1123-avoiding partition of [n].In parti
ular, the number of 123-avoiding words of rank n with last element k is equalto the number of 1123-avoiding partitions of size n with last element k.Proof. Let π = π1 · · ·πn be a 1123-avoiding partition with m blo
ks, with πn = k. Observethat for every i ∈ [m − 1], the symbol πi is equal to i, otherwise π would 
ontain theforbidden pattern. It follows that π 
an be de
omposed as π = 123 · · · (m − 2)(m − 1)S,where the word S has length ℓ = n − m + 1 and maximum element equal to m. Inparti
ular, S has rank n and its last element is equal to k.We now 
he
k that S is 123-avoiding. If S 
ontained a subsequen
e xyz for x < y < zthen the original partition would 
ontain a subsequen
e xxyz, whi
h is forbidden. Itfollows that S obtained from a 1123-avoiding partition π has all the required properties.Conversely, if S is a 123-avoiding sequen
e of rank n and maximum element m, thenit is routine to verify that π = 12 · · · (m − 1)S is a 1123-avoiding partition of size n with
m blo
ks. Clearly, the last element of π is equal to the last element of S.Let T (n, k) be the set of 123-avoiding words of rank n with last element equal to k.Let t(n, k) be the 
ardinality of T (n, k). By the previous 
laim, t(n, k) is also equal to thenumber of 1123-avoiding partitions of size n with last element equal to k. To show that1123-avoiding partitions of size n have the same enumeration as Dy
k paths of semilength
n, it su�
es to show that d(n, k) = t(n, k) for ea
h n, k. To show this, we will prove that
t(n, k) is determined by the same set of re
urren
es as d(n, k) .Claim 85. The numbers t(n, k) satisfy the following set of re
urren
es:

t(1, 1) = 1 (6.9)
t(n, k) = 0 if k < 1 or k > n (6.10)
t(n, k) =

n−1∑

i=k−1

t(n − 1, i) for n ≥ 2, n ≥ k ≥ 1 (6.11)76



Proof. Only the re
urren
e (6.11) is nontrivial. Let us �x n ≥ 2 and k ≤ n. To prove there
urren
e, we need a bije
tion from T (n, k) to ∪n−1
i=k−1T (n − 1, i).Let us �rst 
onsider the 
ase k = 1. A word S ∈ T (n, 1) 
an be transformed intoa word S ′ ∈ ∪n−1

i=0 T (n − 1, i), by simply erasing the last element of S. This provides abije
tion between T (n, 1) and ∪n−1
i=0 T (n − 1, i).In the rest of the proof, we deal with the 
ase k > 1. Let S ∈ T (n, k) be a 123-avoidingword of length ℓ. The word S 
an be uniquely expressed as S = S01

bk, where S0 is the(possibly empty) longest proper pre�x of S whose last element is di�erent from 1. If S0is nonempty, let j be the last element of S0.Let us de
ompose T (n, k) into a disjoint union of two sets T1 and T2 de�ned by
T1 = {S ∈ T (n, k) : S0 is nonempty, and j ≥ k}
T2 = {S ∈ T (n, k) : S0 is empty, or j < k}.Note that if S belongs to T2 and S0 is nonempty, then all the elements of S0 are greaterthan or equal to j. Indeed, if S0 
ontained an element i smaller than j, then S would
ontain a subsequen
e ijk, whi
h would 
reate a 
opy of 123 in S.Let S ′ be a word from ∪n−1

j=k−1T (n − 1, j). S ′ may be uniquely expressed as S ′ =
S ′

0(k − 1)c, where c ≥ 0 and S ′
0 is the (possibly empty) longest pre�x of S ′ whose lastelement is di�erent from k − 1. Note that if the last element of S ′ is greater than k − 1then S ′ = S ′

0. If S ′
0 is nonempty, let j′ be the last element of S ′

0.We de
ompose ∪n−1
j=k−1T (n − 1, j) into a disjoint union of two sets T ′

1 and T ′
2, where

T ′
1 = {S ′ ∈ ∪n−1

i=k−1T (n − 1, i) : S ′
0 is nonempty, and j′ ≥ k}

T ′
2 = {S ′ ∈ ∪n−1

i=k−1T (n − 1, i) : S ′
0 is empty, or j′ < k − 1}.Sin
e j′ is never equal to k − 1, the two sets T ′

1 and T ′
2 form a disjoint partition of

∪n−1
i=k−1T (n − 1, i). Note that T ′

2 is in fa
t a subset of T (n − 1, k − 1).To prove the 
laim, it su�
es to give a bije
tion f1 between T1 and T ′
1, and a bije
tion

f2 between T2 and T ′
2.We �rst 
onstru
t f1. Choose S ∈ T1 and write S = S01

bk as above. Let j be the lastelement of S0. De�ne S ′ = f1(S) = S0(k − 1)b. Let us 
he
k that S ′ belongs to T ′
1. It iseasy to see that S ′ avoids 123. The length of S ′ is one less than the length of S, and themaximum of S ′ is equal to the maximum of S, hen
e S ′ has rank n − 1. We know that

j ≥ k. In parti
ular j 6= k− 1, and hen
e S0 is the longest pre�x of S ′ whose last elementis di�erent from k − 1. This shows that S ′ ∈ T ′
1.It is routine to 
he
k that f1 
an be inverted.Let us now 
onstru
t f2. Choose S ∈ T2, and write S = S01

bk as above. If S0 isnonempty, let j be the last element of S0. Re
all that no element of S0 is smaller than
j, and that j, if de�ned, is greater than 1 by de�nition of S0. In parti
ular, S0 − 1 is a(possibly empty) sequen
e of positive numbers. De�ne S ′ = f2(S) = (S0 − 1)(k − 1)b+1.The length of S ′ is equal to the length of S, and the maximum of S ′ is one less than themaximum of S, hen
e S ′ has rank n− 1. It may be routinely 
he
ked that S ′ avoids 123.Note that the last element of S0 − 1 is smaller than k − 1, and hen
e S ′ belongs to T ′

2.The inverse of f2 is easy to obtain. Choose S ′ ∈ T ′
2, with S ′ = S ′

0(k − 1)b, where S ′
0 isthe longest pre�x of S ′ not ending with k−1. As we pointed out earlier, S ′ must end withthe symbol k − 1, hen
e b ≥ 1. De�ne S = (S0 + 1)1b−1k. It may be routinely 
he
kedthat S belongs to T2.The following results are dire
t 
onsequen
es of Claim 84 and Claim 85. We omit theirproofs. 77



Theorem 86 (J., Mansour [37℄). The number of 1123-avoiding mat
hings of size n withlast element equal to k is equal to the number of Dy
k paths of semilength n whose lastup-step is followed by k down-steps.Corollary 87. The number of 1123-avoiding mat
hings of size n is Cn = 1
n+1

(
2n
n

). Inparti
ular, 1123 is ≈-equivalent to 1212 and to 1221.From Theorem 86 we may derive the 
losed-form expression for t(n, k). Sin
e thenumber of Dy
k paths that end with an up-step followed by k down-steps is equal tothe number of non-negative latti
e paths from (0, 0) to (2n − k − 1, k − 1), we mayapply standard arguments for the enumeration of non-negative latti
e paths to obtain theformula
t(n, k) =

k

n

(
2n − k − 1

n − 1

)
.We omit the details of the argument.Classi�
ation of patterns of size 4. Theorem 86 and the general results presented inthe previous se
tions allow us to fully 
lassify patterns of length four by their equivalen
e
lasses (see Table 6.2).

τ pn(τ)

1213, 1223, 1231, 1232, 1233, 1234 [68, Sequen
e A007051℄ (see Equation (6.2))
1123, 1212, 1221 1

n+1

(
2n
n

) [68, Sequen
e A000108℄ (see Theorem 86)
1122 1, 1, 2, 5, 14, 42, 133, 441, . . .
1112, 1121, 1211, 1222 [68, Sequen
e A005425℄ (see Corollary 67)
1111 [68, Sequen
e A001680℄ (see Equation (6.1))Table 6.2: The numbers pn(τ) for τ ∈ P4.6.6 The pattern 12112For a full 
hara
terization of the equivalen
e of patterns up to size seven, we need to
onsider one more sporadi
 
ase, namely the pattern 12112. Our aim is to show thatthis pattern is equivalent to the three patterns 12221, 12212, and 12122. The latter threepatterns are all equivalent by Theorem 68. It is thus su�
ient to show that 12112 ≈ 12212.We remark that the proof involving the pattern 12112 does not use the notion of Fy-equivalen
e. In fa
t, the matrix M(112, 2) is not Fy-equivalent to the three Fy-equivalentmatri
es M(221, 2), M(212, 2) and M(122, 2).The basi
 idea. The bije
tion between Pn(12112) and Pn(12212), whi
h we are aboutto 
onstru
t, is probably the most 
ompli
ated 
onstru
tion of this thesis. Before we dealwith the te
hni
al details, we �rst introdu
e the basi
 terminology and notation that wewill use throughout the proof, and then outline the key idea of the bije
tion.Let S = s1s2 · · · sn be a word of length n over the alphabet [m], su
h that everysymbol of [m] appears in S at least on
e. For i ∈ [m] let fi and ℓi denote the index ofthe �rst and the last symbol of S that is equal to i. Formally, fi = min{j : sj = i} and

ℓi = max{j : sj = i}.De�nition 88. For k ∈ [m], we say that the word S is a k-semi
anoni
al sequen
e(k-sequen
e for short), if S has the following properties.78



• For every i and j su
h that 1 ≤ i < k and i < j, we have fi < fj .
• For every i and j su
h that k ≤ i < j ≤ m, we have ℓi < ℓj.Note that m-semi
anoni
al sequen
es are pre
isely the 
anoni
al sequen
es of parti-tions of [n] with m blo
ks (i.e., the sequen
es satisfying fi < fi+1 for i ∈ [m−1]), while the

1-semi
anoni
al sequen
es are pre
isely the sequen
es satisfying ℓi < ℓi+1 for i ∈ [m − 1].Note that for every �xed k ∈ [m] and a �xed partition π = π1 · · ·πn with m blo
ks,there is exa
tly one k-sequen
e S = s1 · · · sn with the property si = sj ⇐⇒ πi = πj .To 
onstru
t su
h a k-sequen
e for a given partition π, we 
onsider the m blo
ks of thepartition, and arrange them into a sequen
e B1, B2, . . . , Bm by the following rules.
• The �rst k − 1 blo
ks B1, . . . , Bk−1 are ordered in the in
reasing order of theirminimum elements, in the same way as in the usual 
anoni
al representation thatwe have used so far. The minimum elements of these k − 1 blo
ks are smaller thanthe minimum elements of the remaining blo
ks.
• The blo
ks Bk, Bk+1, . . . , Bm are ordered in the in
reasing order of their maximumelements.A partition of [n] with m blo
ks B1, B2, . . . , Bm ordered by the previous two rules 
anthen be represented by a k-sequen
e s1s2 · · · sn where si = j if i ∈ Bj.In parti
ular, assuming n and m are �xed, the number of k-sequen
es is independentof k, and ea
h partition of [n] with m blo
ks is represented by a unique k-sequen
e. Toprove the equivalen
e 12112 ≈ 12212, we will exploit a remarkable property of the pattern

12112, des
ribed by the following key lemma.Lemma 89 (Key Lemma). For every �xed n and m, the number of 12112-avoiding k-sequen
es is independent of k. Thus, for every k ∈ [m], the number of 12112-avoiding
k-sequen
es of length n with m symbols is equal to the number of 12112-avoiding partitionsof n with m blo
ks.Before we prove Lemma 89, let us explain how it implies 12112 ≈ 12212.Theorem 90 (J., Mansour [37℄). The pattern 12112 is equivalent to 12212. In fa
t, forevery m and n, there is a bije
tion between 12112-avoiding partitions of [n] with m blo
ksand 12212-avoiding partitions of [n] with m blo
ks.Proof. Fix m and n. We know that the 12112-avoiding partitions of [n] with m blo
ksare pre
isely the m-semi
anoni
al sequen
es over [m] of length n, and by Lemma 89,these sequen
es are in bije
tion with 1-semi
anoni
al 12112-avoiding sequen
es of thesame length and alphabet. It remains to provide a bije
tion between the 12112-avoiding1-sequen
es and the 12212-avoiding partitions.Take a 1-semi
anoni
al 12112-avoiding sequen
e S with m symbols and length n, re-verse the order of letters in S, and then repla
e ea
h symbol i of the reverted sequen
eby the symbol m − i + 1 (intuitively, we take the sequen
e S, represented by the matrix
M(S, m), and rotate it by 180 degrees). It is easy to 
he
k that this transform is an invo-lution whi
h maps 12112-avoiding 1-sequen
es onto 12212-avoiding m-sequen
es, whi
hare pre
isely the 12212-avoiding partitions of [n] with m blo
ks.It now remains to prove Lemma 89. For the rest of the proof, unless otherwise noted,we will assume that m and n are �xed, and that ea
h sequen
e we 
onsider has length nand m distin
t symbols. 79



In the following arguments, it is often 
onvenient to represent a sequen
e S = s1 · · · snby the matrix M(S, m). Re
all that M(S, m) is the 01-matrix with m rows and n 
olumns,with a 1-
ell in row i and 
olumn j if and only if sj = i. A matrix representing a k-sequen
ewill be 
alled k-semi
anoni
al matrix (or just k-matrix), and a matrix representing a
12112-avoiding sequen
e will be simply 
alled 12112-avoiding matrix. In a

ordan
e withearlier terminology, we will use the term semi-sparse matrix for a 01-matrix with at mostone 1-
ell in ea
h 
olumn, and we will use the term semi-standard matrix for a 01-matrixwith exa
tly one 1-
ell in ea
h 
olumn. For a 01-matrix M , we let fi(M) and ℓi(M)denote the 
olumn-index of the �rst and the last 1-
ell in the i-th row of M . We willwrite fi and ℓi instead of fi(M) and ℓi(M) if there is no risk of 
onfusion.Before we formulate the proof of Lemma 89, let us present a brief sket
h of the mainidea. We will �rst build a bije
tion that transforms a (k + 1)-matrix M into a k-matrix,ignoring 12112-avoidan
e for a while. Let the last 1-
ell in row k of M be in 
olumn c,let us 
all the row k the key row of M . If the last 1-
ell in row k + 1 appears to the rightof 
olumn c, then M is already a k-matrix and we are done. On the other hand, if row
k + 1 has no 1-
ell to the right of c, we swap the key row k with the row k + 1, to obtaina new matrix M ′ whose key row is now the row k + 1. We again 
he
k whether the rowdire
tly above the key row has a 1-
ell to the right of 
olumn c, and if not, we swap therows k + 1 and k + 2.We repeat this pro
edure until we rea
h the situation when the key row is either thetopmost row of the matrix, or the row above the key row has a 1-
ell to the right of
olumn c. This pro
edure transforms the original k + 1 matrix into a k-matrix. Also, thepro
edure is invertible (note that the �rst 1-
ell of the key row is always to the left of anyother 1-
ell in the rows k, k + 1, . . . , m).Unfortunately, this simplisti
 approa
h does not preserve 12112-avoidan
e. However,we will present an algorithm whi
h follows the same basi
 stru
ture as the pro
edureabove, but instead of merely swapping the key row with the row above it, it performs amore 
ompli
ated step, whi
h preserves 12112-avoidan
e of the matrix. The des
riptionof this step is the main ingredient of our proof.To formalize our argument, we need to introdu
e more de�nitions. Let M be a 01-matrix with exa
tly one 1-
ell in ea
h 
olumn and at least one 1-
ell in ea
h row, andlet us write fi = fi(M) and ℓi = ℓi(M). Let k, p and q be three row-indi
es of M , with
k ≤ p ≤ q. We will say that M is a (k, p, q)-matrix, if M satis�es the following 
onditions.

• The matrix obtained from M by erasing row p is a k-semi
anoni
al matrix with
m − 1 rows.

• For ea
h i < k, we have fi < fp. For every j ≥ k, j 6= p, we have fp < fj .
• The number q is determined by the relation q = max{j : ℓj ≤ ℓp}. Thus, the �rst
ondition implies that ℓj ≤ ℓp for every j ∈ {k, k + 1, . . . , q}.In a (k, p, q)-matrix, row p will be 
alled the key row.Intuitively, a (k, p, q)-matrix is an intermediate stage of the above-des
ribed pro
edurewhi
h transforms a (k + 1)-matrix into a k-matrix by moving the key row towards thetop. The number p is the index of the key row in a given step of the pro
edure, whilethe number q is the topmost row that needs to be swapped with the key row to produ
ethe required k-matrix. In parti
ular, a matrix M is (k + 1)-semi
anoni
al if and only ifit is a (k, k, q)-matrix for some value of q, and M is k-semi
anoni
al if and only if it is a

(k, q, q)-matrix for some q. 80



As an example, 
onsider the sequen
e S = 1331232431 with n = 10 and m = 4. Thissequen
e 
orresponds to the following matrix M = M(S, 4).
M =




0000000100
0110010010
0000101000
1001000001


 M ′ =




0110010010
0000000100
0000101000
1001000001


The matrix M is a (2, 3, 4)-matrix. If we ex
hange the third row (whi
h a
ts as the keyrow) with the fourth row, we obtain a (2, 4, 4)-matrix M ′ representing the 2-sequen
e

S ′ = 1441242341. The matrix M ′ 
an also be regarded as a (1, 1, 4)-matrix, with the keyrow at the bottom.Observe that the following lemma implies Lemma 89.Lemma 91. For arbitrary k ≤ p < q, there is a bije
tion φ between 12112-avoiding
(k, p, q)-matri
es and 12112-avoiding (k, p + 1, q)-matri
es.Thus, all we need to do to prove the Key Lemma, and hen
e also Theorem 90, is toprove Lemma 91.Before we 
onstru
t the bije
tion φ, we need to prove several basi
 properties of the
12112-avoiding (k, p, q)-matri
es.Tools of the proof. Let us introdu
e some more terminology. If x ∈ [m] is a row ofa matrix M , then an x-
olumn is a 
olumn of M that has a 1-
ell in row x. Similarly,if X ⊆ [m] is a set of rows of M , we will say that a 
olumn j is an X-
olumn if j has a1-
ell in a row belonging to X.If x, y is a pair of rows of M with x < y, we will say that M 
ontains 12112 in (x, y)if the submatrix of M indu
ed by the pair of rows x, y 
ontains 12112. If X and Y aretwo sets of rows, we will say that M 
ontains 12112 in (X, Y ) if there is an x ∈ X and
y ∈ Y su
h that x < y and M 
ontains 12112 in (x, y).Throughout this paragraph, we will assume that k, p, q are �xed, and that k ≤ p < q.We now state a pair of simple but useful observations. Their proofs are straightforward,and we omit them.Observation 92. Let M be a semi-sparse 01-matrix, and let x < y be two rows of M ,su
h that fx < fy. The matrix M avoids 12112 in (x, y) if and only if M has at mostone x-
olumn s satisfying fy < s < ℓy. If su
h a unique 
olumn s exists, we will say that
s separates row y. The y-
olumns that are to the left of the separating 
olumn s will be
alled front y-
olumns (with respe
t to row x) and their 1-
ells will be 
alled front 1-
ells.Similarly, the y-
olumns to the right of s will be 
alled rear y-
olumns and their 1-
ellsare rear 1-
ells. If there is no su
h separating 
olumn, then we will assume that all the
y-
olumns and their 1-
ells are front.Observation 93. Let M be a semi-sparse 01-matrix, and let x < y be a pair of rows su
hthat ℓx < ℓy. Let t be the number of 1-
ells in row x, and let ci be the i-th x-
olumn, i.e.,
fx = c1 < c2 < · · · < ct = ℓx. The matrix M avoids 12112 in (x, y), if and only if every
y-
olumn appears either to the left of 
olumn c1, or between the 
olumns ct−1 and ct, orto the right of 
olumn ct. These three types of y-
olumns (and their 1-
ells) will be 
alledleft, middle, and right y-
olumns (or 1-
ells) with respe
t to row x.The following lemma provides a 
riterion for avoidan
e of the pattern 12112, whi
hwill be useful later in the proof. 81



Lemma 94. Let M be a 12112-avoiding (k, p, q)-matrix, and let j be a row of M with
k ≤ j ≤ p. Let M ′ be a semi-sparse 01-matrix of the same size as M , with the propertythat for every i 6∈ {j, j +1, . . . , q}, the i-th row of M is equal to the i-th row of M ′. If M ′has a 
opy of the pattern 12112 in a pair of rows x < y, then j ≤ x ≤ q.Proof. Let M and M ′ be as above. We will 
all the rows {j, j + 1, . . . , q} mutable, andthe remaining rows will be 
alled 
onstant.Assume that M ′ has a 
opy of 12112 in the rows x < y. Clearly, at least one of thetwo rows x, y must be mutable, and in parti
ular, we must have x ≤ q. The lemma 
laimsthat x must be mutable. For 
ontradi
tion, assume that x < j. This implies that y ismutable. We distinguish two possibilities; either x < k or k ≤ x < j.Assume that x < k. From the de�nition of the (k, p, q)-matrix, we obtain that all the
olumns of M to the left of fp(M) and to the right of ℓp(M) 
ontain a 1-
ell in one ofthe 
onstant rows. Sin
e M ′ is semi-sparse, we 
on
lude that in M ′, all the 1-
ells in themutable rows 
an only appear in the 
olumns i su
h that fp(M) ≤ i ≤ ℓp(M).Now, we apply Observation 92 to the rows x and p in the matrix M , and 
on
ludethat M (and hen
e also M ′) has at most one x-
olumn s su
h that fp(M) ≤ s ≤ ℓp(M).Therefore M ′ also has at most one x-
olumn between fy(M

′) and ℓy(M
′). By Observa-tion 92, this shows that x 
annot form the pattern 12112 with any of the mutable rows yof M ′.Assume now that k ≤ x < j. As before, we have y ∈ {j, . . . , q}. Let c1 < c2 < · · · < ctbe the x-
olumns of M (and hen
e of M ′ as well, sin
e x is 
onstant). For any mutablerow i, we have ℓx(M) < ℓi(M) by the de�nition of (k, p, q)-matrix. By Observation 93, allof the i-
olumns of M appear either to the left of c1 or to the right of ct−1. In parti
ular,all the 1-
ells between the 
olumns c1 and ct−1 belong to the 
onstant rows. This impliesthat M ′ 
an have no o

urren
e of 12112 in the two rows x < y.We will now des
ribe a simple operation, 
alled pseudoswap, on 12112-avoiding pairsof rows.Assume that M is a semi-sparse matrix with a pair of adja
ent rows x and y = x + 1that avoids 12112 in (x, y). Assume furthermore that fx < fy ≤ ℓy < ℓx. The pseudoswapof the two rows is performed as follows.Easy 
ase. If the row y is not separated by an x-
olumn (in the sense of Observation 92),or if M has at most one rear y-
olumn with respe
t to row x, the pseudoswap isperformed by simply swapping the two rows of M .Hard 
ase. Assume M has an x-
olumn s separating y, and that it has r > 1 rear

y-
olumns c1 < c2 < · · · < cr (see Figure 6.3). In this 
ase, the pseudoswappreserves the position of all the 1-
ells in 
olumns c1, . . . , cr−1 (i.e., the 1-
ells inthese 
olumns remain in row y), and all the other 1-
ells in rows x, y are movedfrom x to y and vi
e versa. Note that after the pseudoswap is performed, the
olumns s < c1 < c2 < · · · < cr−1 all 
ontain a 1-
ell in row y, and these r 1-
ells arepre
isely the middle 1-
ells of y with respe
t to x (in the sense of Observation 93).Let M ′ be the matrix obtained from M by the pseudoswap. It 
an be routinely
he
ked that M ′ avoids 12112 in (x, y). Let us write f ′
i for fi(M

′) and ℓ′i for ℓi(M
′).Clearly, f ′

x = fy and f ′
y = fx, and also ℓ′x = ℓy and ℓ′y = ℓx. Also, if row y of M has r ≥ 0rear 
ells with respe
t to row x, then in M ′, row y has r middle 
ells with respe
t to x.It is not di�
ult to see that the pseudoswap 
an be inverted. Let M ′ be a sparse matrixavoiding 12112 in two adja
ent rows x < y, su
h that f ′

y < f ′
x ≤ ℓ′x < ℓ′y. If M ′ has fewerthan two middle y-
olumns, we invert the easy 
ase of the pseudoswap by ex
hanging the82
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Figure 6.3: The illustration of the hard 
ase of the pseudoswap operation.two rows. On the other hand, if M ′ has r > 1 middle y-
olumns m1 < · · · < mr, weinvert the hard 
ase by preserving the position of the 1-
ells in 
olumns m2, m3, . . . , mrand inverting all the other {x, y}-
olumns.We will be mostly interested in the situation when the pseudoswap is applied to thepair of rows (p, p + 1) in a (k, p, q)-matrix with p < q. It is not hard to see that thisoperation yields a (k, p+1, q)-matrix. Unfortunately, under some 
ir
umstan
es, the hard
ase of the pseudoswap may 
reate a 
opy of the pattern 12112 in the remaining rows ofthe matrix. Thus, the pseudoswap alone is not su�
ient to provide the required bije
tionbetween 12112-avoiding (k, p, q)-matri
es and 12112-avoiding (k, p + 1, q)-matri
es.Let us now look in more detail at the hard 
ase of the pseudoswap. Re
all that if Xand Y are two sets of rows of M , we say that M avoids 12112 in (X, Y ), if there is no
x ∈ X and y ∈ Y su
h that x < y and the two rows x, y 
ontain a 
opy of 12112.The following lemma is illustrated in Figure 6.4.Lemma 95. (a) Let M be a (k, p, q)-matrix that avoids 12112 in (p, p+1). Let fp(M) =

b1 < b2 < · · · < bt = ℓp(M) be the p-
olumns of M . Assume that the row p + 1 isseparated by the 
olumn bi, and that it has r ≥ 2 rear 1-
ells. Let c1 < c2 < · · · < csbe the front (p + 1)-
olumns and let d1 < d2 < · · · < dr be the rear (p + 1)-
olumns.By Observation 92, we have the inequalities
b1 < · · · < bi−1 < c1 < · · · < cs < bi < d1 < · · · < dr < bi+1 < · · · < bt.Let X = {p, p + 1} and let Y be the set of all the rows above p + 1 that 
ontain atleast one 1-
ell to the left of the 
olumn dr−1; formally,

Y = {y > p + 1: fy(M) < dr−1}.The matrix M avoids 12112 in (X, Y ) if and only if ea
h Y -
olumn y satis�es oneof the following three inequalities:1. bi−1 < y < c1 = fp+12. dr−1 < y < dr3. dr < y < bi+1The rows in Y are pre
isely the rows above p+1 that are separated by the p-
olumn bi.(b) Let M ′ be a (k, p + 1, q)-matrix that avoids 12112 in (p, p + 1). Let α1 < · · · <
αu < β1 < · · · < βr < γ1 < · · · < γv be the (p + 1)-
olumns of M ′, where the αi, βiand γi denote respe
tively the left, middle and right (p + 1)-
olumns with respe
t torow p. Assume that there are at least two middle 1-
ells. Let δ1 < · · · < δw be the
p-
olumns of M ′. By Observation 93, we have the inequalities

α1 < · · · < αu < δ1 < · · · < δw−1 < β1 < · · · < βr < δw < γ1 < · · · < γv.83



Let X = {p, p + 1} and let Y ′ be the set of all the rows above p + 1 that 
ontain atleast one 1-
ell to the left of 
olumn βr. The matrix M ′ avoids 12112 in (X, Y ′) ifand only if ea
h Y ′-
olumn y satis�es one of the following three inequalities:1. βr−1 < y < βr2. βr < y < δw3. δw < y < γ1The rows in Y ′ are pre
isely the rows above p + 1 that are separated by the (p + 1)-
olumn βr.
p

p + 1

Y

{

p

p + 1

Y ′

{

b1 bi−2 bi−1 c1 c2 cs bi d1 dr−2 dr−1 dr bi+1 bi+2 bt· · · · · · · · · · · ·

α1 αu−1 αu· · · δ1 δ2 δw−1 δw· · · β1 β2 βr−1 βr γ1 γ2 γv
· · · · · ·Figure 6.4: Illustration of Lemma 95: part (a) is above, part (b) below. The bla
k dots
orrespond to 1-
ells in rows p and p + 1, and the grey re
tangles 
orrespond to possiblepositions of the 1-
ells in the rows of Y or Y ′.Proof. Let us 
onsider part (a). Fix a row y ∈ Y . By the de�nition of a (k, p, q)-matrix,we have dr < ℓy. By Observation 93, we see that M avoids 12112 in (p + 1, y) if and onlyif every y-
olumn j satis�es either j < c1 = fp+1, dr−1 < j < dr, or j > dr. The �rst

y-
olumn satis�es fy < dr−1 by the de�nition of Y , and hen
e fy < c1 = fp+1 < bi. Sin
e
ℓy > ℓp+1 = dr > bi, we see that if the pair of rows (p + 1, y) avoids 12112, then y isseparated by bi and the two rows (p, y) avoid 12112 if and only if bi−1 < fy < ℓy < bi+1.This proves part (a) of the lemma.The proof of part (b) is analogous and we omit it.The bije
tion. We are now ready to present the bije
tion φ, promised in Lemma 91.Let M be a 12112-avoiding (k, p, q)-matrix with p < q, and let us write fi and ℓi for fi(M)and ℓi(M). By the de�nition of (k, p, q)-matrix and by the assumption p < q, we knowthat fp < fp+1 ≤ ℓp+1 < ℓp, so we may perform the pseudoswap of the rows p and p + 1in M . Let M ′ be the m×n matrix obtained from M by this pseudoswap. Let f ′

i = fi(M
′)and ℓ′i = ℓi(M

′). Note that f ′
i = fi and ℓ′i = ℓi for every i 6∈ {p, p + 1}.We already know that M ′ is a (k, p + 1, q)-matrix. We now distinguish two 
ases,depending on whether the pseudoswap we performed was easy or hard.Easy 
ase. If the row p + 1 of M has at most one rear 1-
ell with respe
t to row p,then M ′ is 12112-avoiding, and we may de�ne φ(M) = M ′. Indeed, from the de�nition ofthe pseudoswap we know that M ′ 
annot 
ontain a 
opy of 12112 in the rows (p, p + 1),84



and sin
e we are performing the easy 
ase of the pseudoswap, we 
annot 
reate any new
opy of the forbidden pattern that would interse
t the remaining m − 2 rows.Hard 
ase. Assume that the row p+1 of M has r > 1 rear 1-
ells. Let b1 < · · · < bt,
c1 < · · · < cs, d1 < d2 < · · · < dr, and Y have the same meaning as in part (a) ofLemma 95. Let Y1, Y2 and Y3 denote, respe
tively, the Y -
olumns that lie between bi−1and c1, between dr−1 and dr, and between dr and bi+1.The bije
tion φ is now 
onstru
ted in two steps. In the �rst step, we perform thepseudoswap of the rows p and p + 1. Let M ′ be the result of this �rst step. Let us nowapply the notation of part (b) of Lemma 95 to the matrix M ′ (see Figure 6.4). Note that
dr−1 = βr, and hen
e Y = Y ′. Part (b) of Lemma 95 requires that all the Y ′-
olumns ofa 12112-avoiding (k, p + 1, q)-matrix fall into one of the three groups:

• 
olumns between δw < y < γ1. In M ′, we have δw = dr and γ1 = bi+1, so these
olumns are pre
isely the 
olumns in Y3.
• 
olumns between βr < y < δw. In M ′, these are pre
isely the 
olumns in Y2.
• 
olumns between βr−1 < y < βr. In M ′, there are no Y -
olumns in this range.On the other hand, if Y1 is nonempty, then these 
olumns violate the inequalities of part

(b) in Lemma 95, showing that M ′ is not 12112-avoiding. To 
orre
t this, we apply these
ond step of the bije
tion φ. Consider the submatrix of M ′ indu
ed by the 
olumns Y1and the 
olumns Z = {δ1 < · · · < δw−1 < β1 < · · · < βr−1}. Note that the 
olumns Y1are to the left of any 
olumn of Z. Now we rearrange the 
olumns inside this submatrix,so that all the 
olumns in Y1 appear after the 
olumns in Z, keeping the relative orderof the 
olumns in Y1, as well as those in Z. This transforms M ′ into a matrix M ′′. Wede�ne φ(M) = M ′′.Sin
e M ′′ is 
learly a (k, p + 1, q)-matrix, it remains to 
he
k that M ′′ avoids 12112.Let x < y be a pair of rows of M ′′. We want to 
he
k that M ′′ avoids 12112 in these tworows. Let us 
onsider the following 
ases separately.The 
ase x < p. The rows below row p are una�e
ted by φ. The rows above row qare preserved as well, be
ause any row z ∈ Y must satisfy ℓz < bi+1 ≤ ℓp, so no row above
q belongs to Y . Thus, we may apply Lemma 94, to see that M ′′ avoids 12112 in the rows
(x, y).The 
ase x = p, y = p + 1. The properties of pseudoswap guarantee that M ′′ avoids
12112 in these two rows.The 
ase x ∈ X = {p, p + 1} and y ∈ Y ′. By 
onstru
tion, M ′′ satis�es theinequalities of part (b) of Lemma 95, and thus it avoids 12112 in (X, Y ).The 
ase x ∈ X = {p, p + 1}, y 6∈ Y ′ and y > p + 1. By the de�nition of Y ′, wehave fy(M

′′) = fy(M) > dr−1 = βr. In any 
olumn to the right of βr the mapping φ a
tsby ex
hanging the rows p and p + 1. It is easy to 
he
k that this a
tion 
annot 
reate a
opy of 12112 in (x, y) (note that in any of the three matri
es M , M ′ and M ′′, both therows p and p + 1 have a 1-
ell to the left of βr ).The 
ase y > x > p + 1. The submatrix of M ′′ indu
ed by the rows above p + 1only di�ers from the 
orresponding submatrix of M by the position of the zero 
olumns.Thus, it 
annot 
ontain any 
opy of 12112.This shows that φ(M) is indeed a 12112-avoiding (k, p + 1, q)-matrix.It is routine to 
he
k that the mapping φ 
an be inverted, and by a 
ase analysis similarto the arguments above, it turns out that the inverse of φ preseves 12112-avoidan
e. Thisshows that φ is indeed the required bije
tion.This 
ompletes the proof of Lemma 91, from whi
h, and as we explained before,Lemma 89 and Theorem 90 follow dire
tly.85
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G1

la lb rx ry rz

G2Figure 6.5: The ordered graphs G1 and G2 
orresponding to the �lling patterns M(2, 112)and M(2, 212).Consequen
es. Theorem 90 has several 
onsequen
es for pattern-avoiding �llings of
Fy-shapes and for pattern-avoiding ordered graphs.By Lemma 46, there is a bije
tion between 12112-avoiding partitions of [n] with mblo
ks and M(2, 112)-avoiding semi-standard �llings of Fy-shapes with n − m 
olumnsand at most m rows. Similarly, there is an analogous bije
tion between 12212-avoidingpartitions and M(2, 212)-avoiding �llings of Fy-shapes. Thus, we obtain the followingdire
t 
onsequen
e of Theorem 90.Corollary 96. For every r and c, there is a bije
tion between the M(2, 112)-avoidingsemi-standard �llings of all the Fy-shapes with r rows and c 
olumns and the M(2, 212)-avoiding semi-standard �llings of all the Fy-shapes with r rows and c 
olumns.It would be tempting to assume that for a given Fy-shape F , the M(2, 112)-avoidingsemi-standard �llings of F are in bije
tion with the M(2, 212)-avoiding semi-standard�llings of F , i.e., that the two matri
es M(2, 112) and M(2, 212) are Fy-equivalent. How-ever, as we already mentioned in the introdu
tion of Se
tion 6.6, this is not the 
ase.For instan
e, the Fy-shape F with �ve 
olumns of height 4 and one 
olumn of height2 has 866 M(2, 112)-avoiding �llings but only 865 M(2, 212)-avoiding �llings. Thus, thebije
tion of Corollary 96 in general 
annot preserve the shape of the underlying diagram.In the introdu
tion of this thesis, we des
ribed a one-to-one 
orresponden
e betweendense �llings of Ferrers shapes and IM-free ordered graph. By applying the same idea,we may obtain a one-to-one 
orresponden
e between semi-standard �llings of Fy-shapesand sprinkler graphs. For 
onvenien
e, let us des
ribe the 
orresponden
e here.Re
all that a sprinkler graph is an ordered graph, in whi
h every vertex has eitherexa
tly one neighbor to its left, or an arbitrary number (possibly zero) of neighbors to itsright.Every semi-standard �lling Φ of an Fy-shape with c 
olumns and r rows 
an berepresented by an ordered graph with c + r linearly ordered verti
es. The graph has twokinds of verti
es: the right verti
es r1, . . . , rc, whi
h have degree one, and are to the rightof their neighbors, and the left verti
es ℓ1, . . . , ℓr, whi
h may have arbitrary degree oneand are to the left of all their neighbors.The i-th 
olumn of Φ is asso
iated with the i-th right vertex ri, and the j-th row of
Φ is asso
iated with the j-th left vertex ℓj. All the verti
es are linearly ordered by a left-to-right relation < with the properties r1 < · · · < rc, ℓ1 < ℓ2 < · · · < ℓr, and furthermore,
ℓj < ri if and only if row j interse
ts 
olumn i inside Φ. A 1-
ell in row j and 
olumn
i 
orresponds to an edge between ℓj and ri. Note that if ℓj and ri are 
onne
ted by anedge, then ℓj < ri.In this representation, the semi-standard �llings of Fy-shapes 
orrespond pre
isely tothe sprinkler graphs. The M(112, 2) avoiding �llings of F 
orrespond pre
isely to orderedgraphs whi
h avoid a subgraph G1 with �ve verti
es ℓa < ℓb < rx < ry < rz and three86



edges ℓarx, ℓary, and ℓbrz. Similarly, the �llings avoiding M(212, 2) 
orrespond to graphsavoiding the subgraph G2 with verti
es ℓa < ℓb < rx < ry < rz and edges ℓary, ℓbrx, and
ℓbrz (see Figure 6.5).Theorem 90 then immediately yields the following result.Corollary 97. There is a bije
tion between G1-avoiding sprinkler graphs and G2-avoidingsprinkler graphs that preserves the number of left verti
es and right verti
es.Whether this result 
an be extended to more general types of graphs or more generalpairs of patterns is an open problem.
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Con
lusion: Beyond Wilf-type
lassi�
ationsWilf-type 
lassi�
ation has been one of the main topi
s of the study of pattern-avoidingordered stru
tures. However, it would be unwise to over-emphasize its importan
e andignore alternative approa
hes. In fa
t, it seems that lately these alternative approa
hesare gaining in
reasing amount of attention.For this reason, we will devote the 
on
luding 
hapter of this thesis to a brief overviewof several promising approa
hes whi
h are 
urrently being a
tively pursued, and are likelyto bring new results in near future.Hereditary 
lassesThroughout this thesis, we have mostly 
onsidered 
lasses of stru
tures that avoided asingle forbidden pattern. This makes good sense in the 
ontext of Wilf-type 
lassi�
a-tion, but it appears to be a somewhat arti�
ial restri
tion on
e we begin to study other
ombinatorial aspe
ts. It often turns out that a more natural 
on
ept is the 
on
ept ofhereditary 
lasses. A 
lass C of permutations is 
alled hereditary, if for every τ ∈ C,the 
lass C 
ontains all subpermutations of τ . A hereditary 
lass is proper if it does not
ontain all permutations.Of 
ourse, we may analogously de�ne hereditary 
lasses of other stru
tures than per-mutations. The notion of hereditary 
lass makes sense for any family of stru
tures orderedby a 
ontainment relation.Re
all that Sn is the set of all the permutations of order n, and Sn(T ) is the set ofpermutations of order n that avoid all the patterns from the set T . Let us write
S =

∞⋃

n=1

Sn and S(T ) =
∞⋃

n=1

Sn(T ).For any set of patterns T , the 
lass S(T ) is 
learly hereditary. Conversely, any hereditary
lass C ⊆ S 
an be expressed as C = S(T ), where T is the (possibly in�nite) set of minimalpermutations that do not belong to C. The set T is 
alled the basis of C. For a hereditary
lass C, we let Cn denote the set C ∩ Sn. The fun
tion n 7→ |Cn| is known as the speed ofthe 
lass C.Growth RatesThe most natural task in the study of pattern avoidan
e is to determine how manypermutations of a given order a pattern-avoiding 
lass C 
ontains.One of the most signi�
ant a
hievements in this line of resear
h is the following resultdue to Mar
us and Tardos [50℄. 88



Theorem 98 (Mar
us�Tardos Theorem (formerly Stanley�Wilf Conje
ture)). For a pro-per hereditary 
lass of permutations C there is a 
onstant c su
h that |Cn| ≤ cn.By Theorem 98, we may de�ne, for a proper hereditary 
lass C, its upper growth rategr(C) as lim supn→∞
n

√
|Cn|, and its lower growth rate gr(C) as lim infn→∞

n

√
|Cn|. If theupper and lower growth rates are the same, we speak simply of the growth rate gr(C).Arratia [5℄ has shown, by a superadditivity argument, that if the basis of C 
onsistsof a single element τ , then gr(C) = gr(C); in su
h 
ase, the growth rate is often referredto as the Stanley�Wilf limit of τ . It is an open question whether the growth rate existsfor any hereditary 
lass C of permutations.There are several results related to the evaluation of the Stanley�Wilf limits of aspe
i�
 pattern. We have already mentioned that Regev [55℄ gave an asymptoti
 formulafor the number of Ik-avoiding permutation, whi
h implies that the Stanley�Wilf limit of

S(Ik) is equal to (k − 1)2.In 1997, Bóna [11℄ has found a formula for |Sn(1342)|, and showed that the Stanley�Wilf limit of 1342 is equal to 8. In 2005, Bóna [13℄ has shown that the Stanley�Wilf limitof 12453 is equal to 9 + 4
√

2. This was the �rst example of a pattern whose Stanley�Wilflimit is not an integer. It is 
onje
tured [70℄ that the growth rate of a �nitely-basedpermutation 
lass is either an integer or an algebrai
 irrational.In general, the problem of �nding the Stanley�Wilf limit of a given pattern seemsrather di�
ult. For instan
e, the Stanley�Wilf limit of 1324 is still not known. The bestknown lower bound is due to Albert et al. [2℄ who showed that gr(S(1324)) ≥ 9.35. Thisresult shows that the Stanley�Wilf limit of 1324 is the largest among the permutations oforder four.A related question is to estimate the largest and the smallest Stanley�Wilf limit of apattern τ ∈ Sk, as a fun
tion of k. The proof of the Mar
us�Tardos theorem gives anupper bound whi
h is superexponential in terms of k, but this is believed to be far fromoptimal. The largest known Stanley�Wilf limit is due to Bóna [12℄, who 
onstru
ted, forany k, a pattern of size 3k+1 whose Stanley�Wilf limit is equal to k2gr(S(1324)). For theminimum possible Stanley�Wilf limit, an argument of Valtr [39℄ shows that any patternof size k has the Stanley�Wilf limit at least (1 + o(1))(k − 1)2/e3. The smallest knownStanley�Wilf limit was again obtained by Bóna [12℄, whose method yields a pattern oflength 3k + 1 and Stanley�Wilf limit 8k2.Speeds of hereditary 
lassesRe
ently, several resear
hers have 
onsidered the question of determining general 
riteriafor the fun
tions that 
an be obtained as speeds of hereditary 
lasses.For hereditary permutation 
lasses, the papers by Kaiser and Klazar [39℄, Albert andLinton [3℄ and Vatter [69℄ have the yielded the following results:
• If the speed of a hereditary 
lass C is asymptoti
ally smaller than (1 + ǫ)n for every

ǫ > 0, then the speed is eventually equal to a polynomial [39℄.
• If the growth rate of a hereditary permutation 
lass is less than 2, then the growthrate is equal to the positive root of 1 + x + x2 + · · · + xk−1 − xk, for some integer

k [39℄.
• There is a 
onstant κ ≈ 2.20557 (the unique positive root of 1 + 2x2 − x3) su
hthat there are only 
ountably many hereditary 
lasses of growth rate smaller than

κ, while there are un
ountably many 
lasses of growth rate κ [43, 70℄.89



• There is a 
onstant λ ≈ 2.48187 (the unique real root of x5 − 2x4 − 2x2 − 2x − 1)su
h that for every real number c ≥ λ there is a hereditary permutation 
lass ofgrowth rate c [3, 69℄.Noti
e that these results yield a di
hotomy between hereditary 
lasses of polynomialspeed and hereditary 
lasses of exponential speed. For growth rates up to κ, there isstill a dis
rete hierar
hy of possible speeds. However, after a 
ertain threshold, there areno more gaps between the possible growth rates, and any growth rate is allowed. This
an
els any hope of a `ni
e' hierar
hy of all the permutation growth rates. For this reason,it has been suggested to study more restri
ted 
lasses of permutations, e.g., the hereditary
lasses with �nite base. So far, however, we are not aware of any substantial result in thisrestri
ted setting.Ordered graphsThe results on the speeds of permutation 
lasses 
an be, to a great extent, generalized tohereditary properties of ordered graphs. A property of graphs is a 
lass of graphs that is
losed under isomorphism. A property of ordered graph is hereditary if it is 
losed undertaking indu
ed ordered subgraphs. For a property C of ordered graphs, let Cn be thenumber of graphs from C on the vertex set [n]. The speed of a property C is the fun
tion
n 7→ |Cn|. Note that no two distin
t ordered graphs on the vertex set [n] are isomorphi
,so the speed in fa
t 
ounts the number of isomorphism 
lasses of order n in C.Sin
e a permutation τ ∈ Sn 
an be represented by its permutation graph Gτ , whi
his an ordered graph on the vertex set [n], and sin
e any indu
ed subgraph of Gτ is (upto isomorphism) a permutation graph that represents a subpermutation of τ , we seethat a hereditary 
lass C of permutations 
an be represented by a hereditary property
GC = {Gτ : τ ∈ C}, whi
h has the same speed as C. This means that the possiblespeeds of hereditary properties of ordered graphs are a superset of the possible speeds ofhereditary permutation 
lasses.The study of possible speeds of hereditary properties of ordered graphs was initiatedby Balogh, Bollobás and Morris. They were motivated by results on permutation speedsmentioned above, as well as previous results on speeds of 
lasses of (unordered) labelledgraphs, obtained (among others) by Balogh, Bollobás and Weinrei
h [8, 9℄.In the setting of ordered graphs, Balogh, Bollobás and Morris have obtained the fol-lowing result.Theorem 99 (Balogh et al. [7℄). Let C be a hereditary property of ordered graphs, andlet f(n) = |Cn| be the speed of C. One of the following 
onditions holds:

• There are 
onstants n0 and K su
h that f(n) = K for every n ≥ n0.
• There are integers n0, k ≥ 1, a0, . . . , ak su
h that for every n ≥ n0, we have f(n) =∑k

i=0 ai

(
n
i

).
• There is an integer k ≥ 2 and a polynomial p, su
h that F

(k)
n ≤ f(n) ≤ p(n)F

(k)
n .Here F

(k)
n are the k-Fibona

i numbers, de�ned by the re
urren
e F

(k)
n =

∑k
i=1 F

(k)
n−ifor n ≥ 1, with the initial 
onditions F

(k)
0 = 1, and F

(k)
n = 0 for n < 0.

• The inequality f(n) ≥ 2n−1 holds for every n ∈ N.We remark that for any k, the growth rate of the k-Fibona

i sequen
e limn→∞
n

√
F

(k)
nis the positive root of 1 + x + x2 + · · ·+ xk−1 − xk, and is stri
tly smaller than 2.90



Atomi
 and mole
ular relational stru
turesThe attempts to generalize hereditary permutation 
lasses need not stop with orderedgraphs. A promising approa
h to the understanding of ordered stru
tures is based on thetheory of hereditary and atomi
 
lasses of relational stru
tures.Sin
e we have not mentioned relational stru
tures before, let us brie�y introdu
e thene
essary terminology. Let Σ = (a(1), a(2), . . . , a(k)) be a �nite sequen
e of positiveintegers and let V be a (possibly in�nite) set. A relational stru
ture with signature Σ onthe vertex set V is a (k + 1)-tuple R = (V, E1, . . . , Ek), where Ei ⊆ V a(i). The sets Eiare 
alled the relations of R and the integer a(i) is 
alled the arity of Ei. The size of thevertex set V is referred to as the order of R.A relational stru
ture whose all relations have arity 2 is 
alled binary relational stru
-ture.Let R = (V, E1, . . . , Ek) and R′ = (W, F1, . . . , Fk) be two relational stru
tures of thesame signature. We say that R and R′ are isomorphi
, if there is a bije
tion φ : V → Wsu
h that for every i and every a(i)-tuple (v1, . . . , va(i)) ∈ V a(i) we have the equivalen
e
(v1, . . . , va(i)) ∈ Ei ⇐⇒ (φ(v1), . . . , φ(va(i))) ∈ Fi. We say that R′ is a substru
ture of Rif W ⊂ V and for every i, Fi = Ei ∩W (ai). We say that R 
ontains R′ if R′ is isomorphi
to a substru
ture of R. For a relational stru
ture R, the age of R is the set of all the�nite relational stru
tures that are 
ontained in R.A property of relational stru
tures is a 
lass of �nite relational stru
tures of the samesignature that is 
losed under isomorphism. A property is hereditary, if it 
losed undertaking substru
tures. A property is atomi
 if it is equal to the age of a single (possiblyin�nite) relational stru
ture. If a property is the union of �nitely many atomi
 properties,we 
all it mole
ular.Atomi
 
lasses have been introdu
ed by Fraïssé [25℄, who has also shown that a hered-itary property C of relational stru
tures is atomi
 if and only if ea
h two elements R and
S of C are jointly embeddable, whi
h means that there is an element T ∈ C that 
ontainsboth R and S. Another equivalent de�nition of an atomi
 property states that a heredi-tary property C is atomi
 if and only if it 
annot be expressed as the union of two properhereditary properties di�erent from C.For mole
ular properties, we are able to give a similar 
hara
terization in terms ofjoint embeddability [36℄. For an integer k, a hereditary property C 
annot be expressedas the union of k atomi
 properties if and only if it 
ontains a set of k + 1 stru
tures, notwo of whi
h are jointly embeddable in C. A property is not mole
ular, if and only if it
ontains an in�nite su
h subset.The speed of a hereditary 
lass C is the fun
tion that assigns to an integer n thenumber of nonisomorphi
 stru
tures of order n in C.Relational stru
tures are very general 
on
ept; in parti
ular, hereditary 
lasses ofrelational stru
tures generalize hereditary 
lasses of ordered graphs, hereditary 
lasses ofset partitions (with various 
ontainment relations), as well as many other stru
tures. Itthus makes good sense to study their possible speeds.The resear
h related to relational stru
tures seems to have pro
eeded independentlyof the resear
h of the resear
h of hereditary 
lasses of permutations and graphs. In fa
t,in the 
ontext of relational stru
tures, people have more often 
onsidered the speeds ofatomi
 
lasses, rather than general hereditary 
lasses. We are not aware of any resultsthat would deal with the full generality of hereditary properties of relational stru
tures.Nevertheless, several results on the speeds of atomi
 
lasses of relational stru
turesexist [54℄, and they appear similar to the results related to speeds of hereditary 
lasses ofmore spe
i�
 obje
ts. Thus, it seems plausible that there might be a 
ommon generaliza-91



tion of these lines of resear
h.It is also remarkable that the 
lasses of ordered graphs or speed smaller than 2n thato

ur in the 
lassi�
ation of Theorem 99, as well as the permutation 
lasses of growth ratesmaller than the 
ountability threshold κ, are in fa
t mole
ular 
lasses of stru
tures. Thissuggests that the speeds of mole
ular 
lasses of stru
tures might be easier to handle andtheir growth rates might be more 
onstrained than the growth rates of general hereditary
lasses.Further readingObviously, we only provided a sket
hy and in
omplete overview of topi
s related to hered-itary 
lasses of permutations and other stru
tures. For the bene�t of an interested reader,we provide several referen
es to more thorough surveys of these topi
s.The survey of Kitaev and Mansour [40℄ deals mostly with the topi
 of pattern avoidan
ein permutations and words. It also deals with several alternative notions of patternavoidan
e in permutations.A more general (and also more re
ent) survey by Klazar [45℄ deals, among other topi
s,with growth rates of hereditary properties. Another survey, by Bollobás [10℄, is ex
lu-sively devoted to growth rates of hereditary and monotone properties of 
ombinatorialstru
tures.The survey of Pouzet [54℄ deals with atomi
 
lasses of relational stru
tures, in
ludingan overview of the main algebrai
 and order-theoreti
 tools used in their study.A
knowledgementI am grateful to Martin Klazar for his patient and inspiring guidan
e and a lot of valuableadvi
e throughout my PhD study and during my work on this thesis.
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Appendix ANotationThe following table summarizes the main notation used in this thesis. The numbers inbra
kets indi
ate the page where the 
orresponding notion is de�ned.
N the set of positive integers {1, 2, . . .}
Z the set of integers
[n] the set {1, 2, . . . , n}
Sn the set of permutations of order n
Sn(σ) the set permutations of order n avoiding the pattern σ
In the set of involutions of order n
In(σ) the set of involutions of order n avoiding the pattern σ
An the set of words of length n over the alphabet A
An(w) the set of words of length n over the alphabet A avoiding the pattern w
FT the transpose of F
Pn the set of partitions of [n]
Pn(σ) the set of partitions of [n] that avoid σ
pn(σ) the 
ardinality of Pn(σ)
τC the 
omplement of a word τ (45)w∼ the Wilf equivalen
e (17)
4 the Wilf order (34)
xw∼ the shape-Wilf equivalen
e (19)
x

4 the shape-Wilf order (34)sk
4 the skew order (35)I∼ the I-Wilf equivalen
e (40)!∼ the strong equivalen
e of words (46)g∼ equivalen
e with respe
t to general �llings of re
tangles (32)
xg∼ equivalen
e with respe
t to general �llings of Ferrers shapes (32)
xs∼ Ferrers equivalen
e (47)
△s∼ sta
k equivalen
e (48)
≈ equivalen
e of partitions (52)
yw∼ equivalen
e with respe
t to transversals of Fy-shapes (41)
ys∼ Fy-equivalen
e (54)
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