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Abstract: The study of permutations that avoid a given pattern is among the main topics of
enumerative combinatorics. In this thesis, we show that many results of this study may be
extended to more general structures, such as ordered graphs, words over a linearly ordered
alphabet, or set partitions.

The main part of this thesis is related to Wilf equivalence, defined as follows: two permuta-
tions ¢ and 7 are Wilf equivalent if, for every n, the number of permutations of order n that
avoid o is the same as the number of permutations of order n that avoid 7. We may define
analogous equivalence relations on more general objects than permutations. In this thesis, we
investigate the Wilf-type equivalences of more general structures, such as matrices, diagrams,
multiset permutations, or set partitions. We present new examples of Wilf equivalent structures,
and we show that among multiset permutations and set partitions of small size there are no other
equivalent pairs.

To put these results in context, we briefly mention, at the end of this thesis, several related
topics of enumerative combinatorics, such as the research of growth rates of hereditary classes of
permutations and ordered graphs, or the research of atomic classes of relational structures.
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Introduction: Basic ordered structures

In this thesis, we use the term ‘ordered structure’ to refer to several types of combinatorial
objects that can be regarded as generalizations of permutations. We will be interested in
pattern avoidance of these structures, as an extension of the intensively studied concept
of pattern avoidance of permutations.

For the study of pattern-avoiding permutations, one of the central notions is the Wilf
equivalence. Two permutations o and 7 are said to be Wilf equivalent, if for every n the
number of permutations of order n that avoid 7 is the same as the number of permutations
of order n that avoid o.

Equivalence relations analogous to Wilf equivalence can be studied for any family
of combinatorial objects for which there is a well-defined concept of pattern avoidance.
These Wilf-type equivalences are the topic of this thesis.

In the research of Wilf equivalence (and its analogs for other types of structures) the
natural ultimate goal would be to find the complete classification of all the equivalent
pairs of objects. Unfortunately, this goal seems far out of reach, mostly because our
understanding of larger patterns is very limited. In this situation, it is natural to first focus
on the Wilf-type classification of small patterns, where we can use computer-generated
enumeration data to find all possible candidates for Wilf-type equivalence, and then try
to prove the equivalence of these candidates. Thus, a more realistic goal of the study
of pattern avoidance is the Wilf-classification of all the patterns that are within reach
of computerized enumeration, with emphasis put on criteria that can be generalized to
larger patterns as well.

In the study of pattern-avoiding permutations, this approach has provided the full
classification of permutation patterns of size at most seven, which appears to be the bound
of computerized enumeration. Many techniques and results developed in the course of this
classification are also applicable to larger patterns.

In this thesis, we apply a similar approach to other types of pattern-avoiding struc-
tures, most of which can be regarded as generalizations of permutations. Among other
results, we present the classification of words (which may also be regarded as multiset per-
mutations) of length at most six, and of set partitions of length at most seven. Most of
these results have been previously published as joint papers with several coauthors. Our
presentation in this thesis often closely follows the journal version, with one important
exception: in this thesis, we concentrate on the combinatorial arguments, and completely
ignore the accompanying computerized enumeration. The reader which is interested in
this aspect of the work may consult the original sources given in the references.

In the rest of this chapter, we give an overview of the main ordered structures, and
explain the relationships between them. The main part of the thesis starts after this
chapter. Since almost all the thesis is devoted to a very narrow topic of Wilf-type clas-
sifications, we have decided to add, after the main part of the thesis, a brief concluding
chapter which aims to provide an overview of alternative approaches to the enumeration
of pattern-avoiding classes.

For reader’s convenience, we summarized the notation we use in Appendix A.

7



Permutations

Permutations are the prototypical class of ordered structures. We define a permutation
of order n as a sequence w7y - - -, in which each number from the set [n] = {1,2,... n}
appears exactly once. We let §,, denote the set of all permutations of order n. An
involution is a permutation m = w7y - - - m, which satisfies the equivalence m; = j <=
m; = i for every 7,7 € [n].

Let 0 € §; and 7 € §,, be two permutations, with £ < n. We say that 7 contains o
if there are k indices i(1),4(2),...,i(k) with 1 <i(1) < i(2) < --- < i(k) < n, such that
o, < oy if and only if 7, < 7s), for any a,b € [k]. If 7 does not contain o, we say that
T avoids o.

We let §,,(0) denote the set of permutations of order n that avoid a permutation o.
More generally, if F is a set of permutations, then 8, (F) is the set of all the permutations
of order n that avoid all the elements of F.

By a result of Marcus and Tardos [50], it is known that for every permutation o, the
limit lim,, o {/|8,(0)| exists and is finite. This limit is known as the Stanley-Wilf limit
of o.

Although we chose to define a permutation as a sequence of integers, there are other
ways to represent a permutation, e.g., a permutation matrix, a permutation graph, or
a permutation matching. Each of these representations offers a natural way to embed
the containment order of permutations into the containment order of more general struc-
tures. In the remaining sections of this brief introductory chapter, we will introduce these
structures, and explain their relationship with permutations.

Words

Words over a linearly ordered alphabet [k] = {1,2,... k} are a natural encoding for
permutations of multisets with at most k distinct elements. Thus, the notion of pattern
avoidance of words is a natural extension of pattern avoidance of permutations. Let us
not define this notion formally.

Let A be an arbitrary set, called the alphabet. Let A™ be the set of all the sequences of
length n whose elements belong to A. Such sequences are called words of length n over A.
A subword of a word w is a (not necessarily contiguous) subsequence of the symbols of w.

In this thesis, we will assume that the alphabet is a subset of N, unless otherwise
noted. Words over the alphabet [k] will be called k-ary words. Thus, a permutation of
order n may be regarded as a special case of an n-ary word of length n.

Let v = vyvs - - - v, and w = wyws - - - w, be two words of length n over the alphabet N.
We say that v and w are order-isomorphic if for every pair of indices 4, j € [n] we have
the equivalence v; < v; <= w; < w;. Note that if v and w are order-isomorphic words,
then v; = v; if and only if w; = w;. We will say that a word w contains a copy of v, or
simply w contains v, if w has a subword which is order-isomorphic to v. If w does not
contain any copy of v, we say that w avoids v. We let A"(v) denote the set of words from
A™ that avoid v. It is clear that the containment relation of permutations defined in the
previous section is a special case of the containment relation of words.

We remark that our notion of containment of words is substantially based on the
fact the underlying alphabet is linearly ordered. We should mention that there are other
(perhaps more natural) notions of word-containment, which do not refer to any ordering
of the alphabet. In this thesis, we will not consider these alternative notions, since it
would make us drift too far away from our main topic. An interested reader may find
more information in the work of Klazar [42, 44].
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Let w be a word over the alphabet N, and assume that k is the largest integer that
appears as a symbol in w. The word w is called reduced if every symbol from the set [k]
appears in w at least once. It is easy to see that every word w over N that contains k
distinct symbols is order-isomorphic to a unique reduced word y, where y is a k-ary word,
which we will call the reduction of w. Of course, a word x contains a word w if and only if
x contains the reduction of w. Thus, when we study pattern-avoiding classes of words, we
may restrict our attention to the situation when the avoided pattern is a reduced word.

Matrices

Let X be a set of integers. We let X**¢ denote the set of matrices with k rows and ¢
columns, whose elements belong to X. We will always use the ‘cartesian’ numbering of
rows and columns, i.e., we will assume that columns are numbered from left to right, and
rows are numbered from bottom to top. An intersection of a row and a column will be
called a cell of the matrix. In a matrix M € N¥*¢_ we let M;; denote the cell in row ¢ and
column j. A 01-matriz is a matrix whose cells are equal to 0 or 1; in such case, we will
speak of 0-cells and 1-cells, respectively. A submatriz of a matriz M is obtained from M
by erasing some of its rows or columns.

Let P € N**f and M € N™ " be two matrices. We say that M contains a copy of P,
or briefly M contains P, if M has a submatrix M’ with k rows and ¢ columns, such that
for every i € [k] and j € [{] we have the inequality P;; < Mj;. In this thesis, we almost
always restrict ourselves to situations when the pattern P is a Ol-matrix.

A permutation matriz of order n is a 0l-matrix M with n rows and n columns, with
the property that every row and every column of M has exactly one 1-cell. We will assume
that a permutation matrix M of order n represents the permutation 7 = 7 ---7, € §,
defined by the relation 7; = ¢ if and only if M;; = 1. This correspondence provides a
bijection between the set §,, and the set of permutation matrices of order n. Note that
the symmetric permutation matrices correspond precisely to involutions.

If 0 and 7 are two permutations, and M, and M, their corresponding permutation
matrices, then it is not difficult to see that 7 contains ¢ if and only if M, contains M,,
which happens if and only if M, has M, as a submatrix. This shows that the containment
relation of permutations can be viewed as a special case of the containment relation of
matrices.

In fact, this reasoning may be extended to words over the alphabet N. Let w =
wiwsy - - -w, € N be a word, and let m € N be the largest symbol appearing in w. We
may represent w by a 0l-matrix M € {0, 1} where the j-th column of M has a 1-cell
in row w; and all the remaining cells in this column are equal to zero. Notice that if
w is in fact a permutation, then M is its corresponding permutation matrix. If z is a
reduced word and y an arbitrary word over N, then y contains z if and only if the matrix
representing y contains the matrix representing .

Fillings of diagrams

The notion of a matrix can be further generalized, by relaxing the assumption that all
the rows and all the columns have the same length. This idea leads to the concept of a
filling of a diagram. In full generality, a diagram is a finite set of cells in the plane, where
each cell is a square of unit size whose vertices have integer coordinates.

We will assume that the rows of the diagram are numbered from bottom to top, and
the columns are numbered from left to right. The numbering is fixed in such a way that



Figure 1: Examples of special types of diagrams. From left to right: a Ferrers shape, a
skew shape, a stack shape, and a moon shape.

the first numbered column contains the leftmost cell of the diagram and the last numbered
column contains its rightmost cell; the numbering of rows is fixed analogously. We say
that the i-th row of the diagram intersects the j-th column, if the diagram contains the
cell that belongs to the i-th row and j-th column. For a diagram D, we let r(D) and ¢(D)
denote, respectively, the number of rows and the number of columns of D.

For our purposes, we will mostly use four special types of diagrams: the Ferrers
diagrams, the skew diagrams, the stack diagrams and moon diagrams (see Fig. 1). A
Ferrers diagram (also known as a Ferrers shape) is a diagram satisfying the following
conditions:

e The rows of the diagram are contiguous and left-justified, i.e., if a row has exactly
k-cells, then these cells appear in the columns 1,2, ..., k.

e For every ¢ > 1, the length of row i is greater than or equal to the length of the
row ¢ + 1.

A skew diagram (or skew shape) is a diagram that can be obtained as a difference of
two Ferrers diagrams that share a common bottom-left corner. Formally, a skew shape
is a diagram with the property that the vertical coordinates of the bottom cells of its
columns form a nonincreasing sequence, and the vertical coordinates of the top cells of
its columns form a nonincreasing sequence as well.

A stack diagram (also known as a stack polyomino or stack shape) is a diagram with
the following properties:

e Each row is contiguous, i.e., if two cells in the same row belong to the diagram, then
all the cells between these two also belong to the diagram.

e If a column intersects row 4, then the column intersects all the rows 1,2,..., 4.

A stack polyomino can also be regarded as a diagram obtained by gluing a copy of a
Ferrers shape reflected along a vertical axis and glued to another (non-reflected) Ferrers
shape.

A moon diagram (or moon polyomino) is a diagram with the following properties:

e Both the rows and the columns of the diagram are contiguous.

e Each two rows are comparable, which means that the set of columns intersected by
a row 1 is either a subset or a superset of the set of columns intersected by a row
J. (Notice that this condition is equivalent to saying that each two columns are
comparable.)

Clearly, every Ferrers shape is also a stack polyomino and a skew shape, and every
stack shape is also a moon shape.

A filling of a diagram is a mapping which assigns to each cell of the diagram an
integer. A matrix may be viewed as a filling of a rectangular diagram. We will now define
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a containment relation of fillings which extends the containment of matrices defined in
the previous section. Let D be a filling of a diagram. Let P be another filling (‘P’ stands
for ‘pattern’), and let r = r(P) and ¢ = ¢(P). We say that D contains a copy of P if,
in the filling D, we may choose r row indices iy < i3 < --- < 1, and ¢ column indices
J1 < Jo < --- < j.such that the following conditions are satisfied:

e For every k € [r] and ¢ € [¢], the k-th row of P intersects the ¢-th column of P if
and only if, in the diagram D, the row 7, intersects the column j,. In other words,
the rows 41 < 19 < --- < 1, and the columns j; < js < --- < j. induce in D a
subdiagram with the same shape as P.

e If in the filling P, the k-th row intersects the ¢-th column, then the cell that
corresponds to this intersection is filled with a number that is less than or equal to
the number in the intersection of row 7; and column j, in D.

The transpose of a diagram F, denoted by F'T, is the diagram obtained by flipping F
along the main diagonal; in other words, F'* contains the cell (4, j) if and only if F' contains
the cell (j,7). The transpose of a filling is defined analogously. A diagram or a filling is
called symmetric if it is equal to its transpose. Note that while a symmetric diagram
may have a non-symmetric filling, any filling of a non-symmetric diagram is necessarily
non-symmetric.

Note that the transpose of a Ferrers shape is also a Ferrers shape, the transpose of a
skew shape is a skew shape, and the transpose of a moon shape is a moon shape.

Let us now define several special types of fillings, which will be later useful. A 01-filling
is a filling that only uses the numbers 0 and 1. A 01-filling is called semi-standard if each
column has exactly one 1-cell. A transversal (also called a standard filling) is a 01-filling
which contains exactly one 1-cell in every row as well as in every column. Notice that
transversals of rectangular shapes correspond exactly to permutation matrices. A zero
row (or zero column) is a row (or column) in a filling that only contains zeros. A filling
is called dense if it has no zero rows and no zero columns. A 01-filling is called sparse if
every row and every column contains at most one 1-cell. A 01-filling is called semi-sparse
if every column has at most one 1-cell.

In this thesis, we follow the convention that in figures of fillings or matrices, all the
zeros are omitted, i.e., the O-cells are represented as empty boxes. This makes the figures
less cluttered.

Ordered graphs

An ordered graph G = (V, E, <) is a graph with vertex set V' and edge set F, whose vertices
are linearly ordered by the relation <. An intuitive way to represent an ordered graph
is to draw its vertices as a sequence of points on a horizontal line, where the left-to-right
ordering of the points corresponds to the linear order <; the edges are then represented
as circular arcs connecting the corresponding pair of vertices (see Fig. 2 for an example).
Thus, we will often say, e.g., that a vertex v is to the left of a vertex w, which means
that v is smaller then w in the ordering <. Most of the time, we will work with ordered
graphs whose vertices are integers. In such situation, we always assume that the ordering
of vertices corresponds to the usual ordering of integers, and we write G = (V, F) instead
of G =(V,E,<).

We say that two ordered graphs G = (V, E, <) and H = (W, F, Q) are isomorphic if
there is a bijection ¢: V' — W, with the property that {u,v} is an edge of G if and only if
{6(u), p(v)} is an edge of H, and u < v if and only if ¢(u) < ¢(v). Since an isomorphism
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Figure 2: An example of an IM-free ordered graph with its adjacency filling. Note that
the empty boxes of the filling represent 0-cells.

of ordered graphs must preserve the order of the vertices, it follows that no two distinct
graphs on the same ordered vertex set can be isomorphic.

We say that an ordered graph G = (V| E, <) is a subgraph of H = (W, F, <) if V is
a subset of W, F is a subset of F, and the two ordering relations < and < agree on V.
Induced ordered subgraphs are defined analogously.

We say that a vertex v of an ordered graph is a left-vertex, or briefly L-vertex, if all
the neighbours of v are to the right of v. Similarly, a right-vertex, or R-vertex, is a vertex
that is to the right of all its neighbors. Thus, an isolated vertex is both an L-vertex
and an R-vertex. A middle-vertex, or M-vertex, is a vertex that is neither left nor right.
An ordered graph is called M-free if it has no M-vertex. It is called IM-free if it has no
M-vertex and no isolated vertex.

Let us now describe a bijection between IM-free ordered graphs and dense 01-fillings
of Ferrers shapes. Let G = (V, E, <) be an IM-free ordered graph with m L-vertices and
n R-vertices. Let ¢1 < {5 < --- < {,, be the sequence of its L-vertices, ordered from left
to right, and let vy > ro > --- > r, be its R-vertices, ordered from right to left. Let
D be a diagram with m columns and n rows, with the property that the i-th row and
j-th column intersect in D if and only if the vertex r; is to the right of the vertex ¢; (see
again Figure 2 for an example). Observe that the diagram D is a Ferrers diagram, and
the shape of D uniquely determines the linear order < of the vertices of G. We now fill
the diagram D with zeros and ones in such a way, that the cell in row ¢ and column j is a
1-cell if and only if the vertex r; is connected to the vertex ¢; by an edge of G. The filling
obtained by this procedure will be called the adjacency filling of the graph G.

It is not difficult to see that every dense 01-filling of a Ferrers shape is the adjacency
filling of a unique IM-free ordered graph (up to isomorphism). We thus have a bijection
between dense 01-fillings of Ferrers shapes and IM-free ordered graphs. Moreover, this
bijection preserves the containment relations defined on the two classes of objects. Indeed,
if G and H are two IM-free ordered graphs with adjacency fillings Fiz and Fp, it follows
easily from the definitions that G has a (not necessarily induced) subgraph isomorphic
to H if and only if the filling F; contains Fjy. This fact provides a connection between
pattern avoidance in fillings and pattern avoidance in graphs which we will often exploit
in this thesis.

Let us now mention several special classes of fillings, together with their corresponding
classes of graphs. First of all, notice that the transversals of Ferrers diagrams correspond
exactly to ordered graphs with all degrees equal to one (of course, any such graph is IM-
free). These graphs will be called ordered matchings. More specifically, the permutation
matrices, considered as adjacency fillings, correspond precisely to ordered matchings in
which every L-vertex is to the left of any R-vertex. Matchings with this property will
be called permutation matchings. The permutation matrix that represents a permutation
T = TyTe---T, is the adjacency filling of the ordered matching on the vertex set [2n],
where an L-vertex j € [n] is connected to the R-vertex 2n + 1 — 7;.

Another useful class of ordered graphs are the so-called sprinkler graphs, introduced
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(with a different terminology) by de Mier [20]. An ordered graph is called sprinkler graph
if it is M-free and each of its R-vertices has degree one. Thus, every connected component
of a sprinkler graph is a star, with the center of the star being the leftmost vertex of the
component. A dense filling of a Ferrers diagram is an adjacency filling of a sprinkler graph
if and only if it is a transpose of a semi-standard filling.

Apart from permutation matchings, there is another way to represent a permutation
by an ordered graph. Let 7 = 775 ---7, be a permutation of order n. Let us define an
ordered graph G on the vertex set [n] by the following rule: for every 7, j € [n], with ¢ < j,
the graph G contains the edge ij if and only if 7, > 7;. Those ordered graphs G that
represent a permutation in this way are called permutation graphs. Each permutation
graph represents a unique permutation. A permutation 7 contains a permutation o if
and only if the permutation graph representing 7 contains the graph representing ¢ as an
induced subgraph.

Set partitions

A set partition of order n is a collection of nonempty disjoint sets By, Bs, ..., By, called
blocks, whose union is the set [n]. We always order the blocks in the increasing order of
their minimal elements, i.e., we have min B; < min By < - -+ < min By.

There are several ways to encode a set partition, and several corresponding notions
of partition containment. Let us first mention an approach of Chen et al. [17, 18]. This
approach is based on the notion of direct successor. For two numbers ¢,j € [n| and a
partition IT = (B, ..., By) of order n, we say that j is a direct successor of i in II, if
t < j, ¢ and j belong to the same block of II, and no number that is larger than ¢ and
smaller than 7 belongs to the same block as i and j. Clearly every number that is not the
largest element of its block has a unique direct successor. We may represent a partition I1
of order n by an ordered graph on the vertex set [n], in which two vertices are connected
by an edge if and only if one of them is the direct successor of the other in II. The
ordered graph defined in this way is a vertex-disjoint union of monotone paths, where
each path corresponds to a block of the original partition. We will call this graph the
path-representation of II. Note that every ordered matching is a path representation of a
partition.

Another way to represent set partitions is to use sprinkler graphs, defined in the
previous section. Again, a partition IT = (By,..., Bg) of order n is represented by an
ordered graph, but this time two vertices ¢, j € [n] are connected by an edge if ¢ belongs
to the same block as 7 and ¢ is the smallest element of its block. Clearly, this yields
a sprinkler graph, which we will call the sprinkler representation of 1I. Every sprinkler
graph represents a unique set partition.

Another encoding of set partitions was considered by Sagan [58| and later by Jelinek
and Mansour [37]. This encoding is based on the concept of canonical sequence. Let
Il = (By,..., B) be a partition of [n| with k£ blocks. We will represent II by a k-ary word
T =mmy-- -7, € [k|", where m; = ¢ if and only if j € B;. The sequence 7 will be called
the canonical sequence of 1I. Note that 7 has the following two properties:

e Every number ¢ € [k] appears in 7 at least once (i.e., 7 is a reduced word).

e For every ¢ € [k — 1], the first occurrence of ¢ in 7 comes before the first occurrence
of i + 1.

Every sequence that satisfies, for some value of k, the two properties above is a canonical
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sequence of a unique set partition. The sequences of this form are also known as restricted-
growth functions.

The three representations of set partitions described above suggest (at least) three
different possibilities to define containment relation of set partitions. We may either view
the containment relation of partitions as a special case of the subgraph (or induced sub-
graph) relation of ordered graphs, or alternatively, we may define partition containment
as a special case of word containment, with a partition being represented by its canonical
sequence. In this thesis, we will mostly be interested in the last option. Thus, we say that
a partition IT contains a partition X if the canonical sequence of II contains a subsequence
order-isomorphic to the canonical sequence of . Let us point out the containment or-
der of partitions defined in this way generalizes the containment of permutations, in the
following sense: if 1 = mymy---m, € 8, and ¢ = 01090} € 8 are two permutations,
then 7 contains ¢ if and only if the canonical sequence 123 ---nmmy - - -, contains the
canonical sequence 123 ---koios - - - 0.

Summary

In Figure 3, we summarize the main classes of ordered structures defined so far, and
outline their relationships.

In the thesis, we will deal with several of these structures in greater detail, aiming
to find common features in the pattern avoidance behaviour of these classes. We will
be mostly interested in identities between the sizes of pattern-avoiding classes. To easily
describe such identities, we will use the following terminology: we will say that two objects
o and 7 are equirestrictive in a class of objects C, if for every n, the number of o-avoiding
objects of size n in C is the same as the number of T-avoiding objects of size n in C.
Similarly, we will say that o is more restrictive than 7 (in a class @) if, for every n, the
number of g-avoiding elements of size n in € does not exceed the number its 7-avoiding
elements.
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Figure 3: The ZOO of ordered structures. This figure presents an overview of the main
classes of ordered structures considered in this thesis. Arrows indicate that the objects
of the bottom class can be naturally represented by objects of the upper class, while
preserving the containment relation.
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Wilf-type classifications

16



As we announced in the introduction, this thesis is mostly devoted to the variations
on the theme of Wilf equivalence.

Recall that 8,(7) denotes the set of permutations of order n that avoid 7. Two
permutations o and 7 are called Wilf equivalent, denoted by o ~ 7, if for every n we have
the equality [S,(0)| = |S,.(7)|. Clearly, two Wilf equivalent permutations have the same
order. The equivalence classes of the Wilf equivalence are known as Wilf classes.

Naturally, the concept of Wilf equivalence can be easily extended to other ordered
structures. Thus, every class of ordered structures with a corresponding containment
relation gives rise to a Wilf-type equivalence relation.

A large part of the first three chapters is devoted to an overview of previous results
related to Wilf equivalence. We usually present these previous results without proof,
unless the method of the proof is necessary for the understanding of our own results
presented in the rest of the thesis.

Chapter 1 contains an overview of known results related to the Wilf-classification of
permutations. Apart from these results, mostly presented without proofs, we also state
and prove several lemmas that were proven in the context of Wilf-equivalence, but whose
ideas can easily be generalized to other ordered structures.

In the second chapter, we will investigate in greater detail the topic of diagonal patterns
in fillings of diagrams. We will be particularly interested in the theorems of Backelin, West
and Xin [6], of Krattenthaler [48|, and of Rubey [57]. These theorems will play a significant
part in the remaining chapters, since they have important consequences in the study of
ordered structures. Part of the second chapter is also devoted to the author’s own result
related to diagonal fillings, which does not seem to have as far-reaching consequences as
the above-mentioned theorems, but it deals with similar topic.

In Chapter 3, we will mention the topic Wilf order, which is a quasi-order relation <
defined on the set of permutations by writing o<7 if and only if |S,(0)| < |S,(7)| for
every n. The first part of this chapter is again devoted to the overview of previous results,
and in the second part, we explore a connection between Wilf order and fillings of skew
shapes, which yields a new family of Wilf-comparable permutations.

In the remaining chapters of the main part, we will study the Wilf-type classification
of involutions, words and set partitions. Most of the results presented in these chapters
have been published in a series of papers [22, 37, 38| as the joint work of the author with
Dukes, Mansour and Reifegerste.

We conclude this thesis by an overview of several promising alternative directions of
research related to the topic of hereditary permutation classes.
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Chapter 1

Wilf classes of permutations

1.1 Symmetries of permutations

Before we deal with the main results on Wilf equivalence, let us introduce some more ter-
minology. Let 7 = mymy - - -, € §, be a permutation. The reversal of 7 is a permutation
0 = 0109 - - - 0, obtained by writing m backwards, i.e., 0; = m,_;11. The inverse of a per-
mutation 7 is a permutation p = p1ps - - - p, defined by the equivalence p; = j <= m; =1,
for every 4,5 € [n]. We will denote the reversal of 7 by 7 and the inverse by 7—!. The
two operations can be easily visualised, when we represent the permutations by their per-
mutation matrices. The permutation matrix representing 7 is obtained from the matrix
representing 7 by reversing the order of columns, while the matrix representing 7! is the
transpose of the matrix representing .

If a permutation o can be obtained from a permutation 7w by a sequence of reversals
and inverses, we say that o is symmetric to w. The symmetry class of 7 is the set of all
the permutations that are symmetric to 7. The symmetry class may have up to eight
elements.

Permutation containment is preserved by both the reversal and the inverse, in the
following sense: a permutation 7 contains a permutation o if and only if T contains @,
which happens if and only if 77! contains o~!. It is thus clear that each permutation is
Wilf equivalent to its reversal and to its inverse, and in particular, every symmetry class
is a subset of the corresponding Wilf class.

1.2 Non-trivial Wilf equivalences

Results related to Wilf equivalence can be traced back to 1973, when Knuth [46, 47|
showed that for any permutation 7 of order three, the cardinality of 8,,(7) is equal to the
n-th Catalan number C,, = #1(2:) (sequence A000108 in OEIS [68]). In particular, all
the permutations of order three are Wilf equivalent. Note that the permutations of order
three fall into two symmetry classes ({123,321} and {132, 213,231, 312}), so this example
demonstrates that the symmetry classes are a strict refinement of Wilf classes.

Let us mention that the Wilf classification of patterns of size three was completed by
Simion and Schmidt [62], who determined the cardinality of §,,(F) for any set F C Ss.

To determine the Wilf classes of patterns of size four took a lot more effort. The 24
permutations of order four fall into seven symmetry classes, for which we may choose the
representatives 1234, 1243, 1324, 1342, 1432, 2143 and 2413 (see Fig. 1.1).

It has been determined that these seven patterns fall into the following three Wilf
classes:
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) 1 . 1 1 ) 1 ) 1 ) 1 ) 1
1 1 1 1 1 ! 1 1

1234 1243 1324 1342 1432 2143 2413

Figure 1.1: The seven pairwise non-symmetric permutations of order four, represented
as matrices. For clarity, we omit the 0-cells.

o 1324;
o 1342 X 2413;
o 1234 ~ 1243 X 1432 X 2143.

The first step towards this classification was made in 1994 by Stankova [63]|, who
showed that 1342 is Wilf equivalent with 2413. This seems to be a sporadic case of
equivalence —so far, no one has managed to interpret this result as a special case of a
more general identity. In contrast, the Wilf equivalence of the four patterns 1234, 1243,
1432, and 2143 follows from a more general result, which will be presented in the next
section.

1.3 The shape-Wilf equivalence

Apart from the sporadic pair 1342 ~ 2413, all known pairs of non-symmetric Wilf equiv-
alent permutations are described by two general results by Stankova and West [65], and
by Backelin, West and Xin [6]. Both these results are based on the concept of shape-Wilf
equivalence, which is an analogue of Wilf equivalence for transversals of Ferrers diagrams.
Recall that a 01-filling of a diagram is called transversal, if every row and every column
of the filling has exactly one 1-cell. Throughout the rest of this chapter, we assume that
every filling we mention is a filling of a Ferrers diagram, unless otherwise noted.

For a Ferrers diagram F', let T denote the set of all the transversals of the shape F.
Let Tr(o) denote the set of the transversals of F' that avoid the pattern o. We say that
two transversals o and 7 are shape- Wilf equivalent, denoted by o~r, if for every Ferrers
diagram F', the set T (o) has the same cardinality as Tg(7).

A permutation, represented by its permutation matrix, is a transversal of a square
shape. With a slight abuse of terminology, we will omit the distinction between a permu-
tation and its permutation matrix, and we will say that two permutations are shape-Wilf
equivalent if their permutation matrices, treated as transversal fillings of a square shape,
are shape-Wilf equivalent. If there is no risk of confusion, we will freely switch between
the two possible representations of a permutation.

Observe that if two permutations are shape-Wilf equivalent, then they are also Wilf
equivalent. To see this, let F' denote the square diagram with n rows and n columns, and
assume that ¢ and 7 are shape-Wilf equivalent permutations. The shape-Wilf equivalence
implies the equality |Tr(0)| = |Tr(7)|. However, the o-avoiding transversals of F' are
precisely the permutation matrices representing the o-avoiding permutations of order n.
Thus, the equality |Tr(o)| = |Tr(7)| implies |S,,(¢)| = |8, (7)|. Since this argument works
for any n € N, we see that ¢ and 7 are indeed Wilf equivalent.

Unlike Wilf equivalence, the shape-Wilf equivalence is not necessarily preserved by
reversal or by inverse. In fact, among the three symmetric permutations 132, 312, and
213, no two are shape-Wilf equivalent.

Let us adopt the following intuitive notation: if A € N**" and B € N™*™ are two
square matrices, we let (4 5) denote the matrix with m + n rows and m + n columns,
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whose bottom-left corner contains a copy of A, its top-right corner contains a copy of
B, and the remaining cells are equal to zero. We are now ready to state the following
proposition, which is due to Backelin et al. [6]. Later on, slightly modified versions of this
proposition were applied in more general settings [19, 37].

Proposition 1 (Proposition 2.3 from Backelin et al. [6]). Let A and B be two shape- Wilf
equivalent permutations of order n, and let C' be an arbitrary permutation of order m.
Then the permutations (§) and ($§) are shape-Wilf equivalent (and hence also Wilf
equivalent).

Before we present the proof of this proposition, let us make several remarks related
to its statement. First of all, the assumption that A and B are shape-Wilf equivalent
is essential, and it is not enough to just assume that the two permutations are Wilf
equivalent. For example, consider A = 132, B = 123, and C' = 1: we know that A ~ B,
but the two permutations (4§ ) = 1324 and (% §) = 1234 are not even Wilf equivalent.
Let us also point out, that the two matrices (§§) and (%§) in the conclusion of the
proposition cannot be replaced by (24) and (2 5). For example, consider A = 213,
B =123, and C' = 1. Then A and B are shape-Wilf equivalent (as we will soon see), but
(&4)=1324 and (2 B) = 1234 are again not even Wilf equivalent.

Before proving Proposition 1, we first prove a simple lemma, which shows that a
bijection between pattern-avoiding transversals may be extended into a bijection between
pattern-avoiding sparse fillings. Recall that a 01-filling is sparse, if every row and every
column contains at most one 1-cell.

Lemma 2. Let A and B be shape-Wilf equivalent permutations. For any Ferrers shape
F, there is a bijection ¢ between the set of sparse A-avoiding 01-fillings of F' and the set
of sparse B-avoiding 01-fillings of F'. Moreover, ¢ preserves the position of zero rows and
zero columns.

Proof. Since AN B, there is an invertible mapping ¢, which transforms A-avoiding trans-
versals into B-avoiding transversals of the same shape. The basic idea of the proof is
straightforward: we simply extend ¢, to a bijection which operates on sparse fillings, by
ignoring the zero rows and columns, and applying ¢, on the nonzero rows and columns.

Let us now explain the argument more formally (see Figure 1.2). Let ® be an A-
avoiding sparse filling of a Ferrers shape F. By removing from & all the zero rows and
zero columns, we obtain an A-avoiding transversal &~ of a Ferrers subdiagram F~ of F.
Let W~ = ¢o(®~). By inserting into ¥~ the zero rows and zero columns whose positions
correspond to the position of the zero rows and columns of ®, we extend ¥~ into a sparse
B-avoiding filling ¥ of the shape F. It is easy to see that the transform ¢: ® — ¥ has
all the required properties. Note that the insertion of zero row or column cannot create
an occurrence of a forbidden pattern, because the patterns A and B themselves have no
zero row or column. 0

> > >

1 o 1

P O~ v 14

Figure 1.2: Illustration of Lemma 2: a shape-preserving bijection between transversals
can be extended into a shape-preserving bijection between sparse fillings.
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Let us now focus on the proof of Proposition 1. The main trick involved in the proof
is not too difficult, but it is extremely useful and will reappear in this thesis in several
different contexts. For this reason, we will now present the proof in full detail. We will
refer to the trick as the red-green argument.

Proof of Proposition 1. Choose A, B and C as in the statement of Proposition 1. By
assumption, A~ B. In particular, there is a bijection ¢ that maps A-avoiding transversals
to B-avoiding transversals, while preserving the underlying shape. Let us fix an arbi-

trary Ferrers shape F. Our aim is to describe a bijection that maps the (9§ )-avoiding

transversals of F' to the (% ¢')-avoiding transversals of F'.
Let (7, 7) denote the cell of F'in row ¢ and column j. We will say that a cell (¢, j') of
F' is top-right of a cell (i,j) if i > ¢ and j > j'. Note that for a fixed cell (i, j), the cells

that are top-right from (4, j) form a Ferrers subshape of F' (see Fig. 1.3).

(2,1

Figure 1.3: The cells that are north-east from the cell (i,j) are shaded. They form a
Ferrers subdiagram.

Let ® be an arbitrary (4 ¢ )-avoiding transversal of F. We will distinguish in ® two
types of cells: a cell (7, ) is green (with respect to the filling ®) if the subdiagram formed
by the cells that are top-right from (¢, ) contains the pattern C; otherwise, the cell (i, )
is red. Let &5 and ®; denote the subfillings of & formed by the green cells and the red
cells of @, respectively. Observe that ® is a sparse filling of a Ferrers diagram, while &5
is a sparse filling of a skew shape.

Let us now make several observations about the properties of this two-coloring. First
of all, we claim that if (7, 7) is a green cell, then the red filling ®z contains a copy of C
which is situated to the top-right of (i, 7). To see this, choose a copy C’ of the matrix C'
in @, such that C” is situated to the top-right of (4, ), and the bottom row of C” is as far
to the top as possible. We know that such a submatrix C” exists, otherwise (7, j) would
not be green. We claim that all the cells of C’ are red. For this, it is sufficient to show
that the bottom-left corner of C’ is red. However, if the bottom-left corner of C’ were
green, then ® would contain a copy of C' to the top-right of this corner, contradicting the
choice of C’. This shows that a cell of ® is green if and only if it has a red copy of C'
situated to its top-right.

Next, we observe that ®¢ avoids the matrix A. Indeed, if ®; contained A, then &
would contain (4 §), which would contradict our assumptions. By Lemma 2, there is
a shape-preserving bijection ¢ that transforms A-avoiding sparse fillings into B-avoiding
sparse fillings, while preserving the zero rows and columns. Let us replace the filling &«
by the filling ¢(P¢) inside the diagram F', while the filling &5 remains unchanged. Let W
be the resulting filling of F'. Let W be the subfilling of U obtained as the image of &4
by the bijection ¢.
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Let 7 be the transform ® — W described above. We claim that 7 is a bijection between
(9§ )-avoiding and ( % § )-avoiding fillings of the diagram F'. To see this, we need to check
that Wisa (3¢ )-avoiding transversal of F', and that the mapping ® — W can be inverted.
To see that W is a transversal, it suffices to recall that ¢ preserves the position of the zero
rows and zero columns in ®g. The zero rows (or columns) of & are exactly the rows (or
columns) that contain a red 1-cell in ®p.

Let us argue that U avoids (% §). For contradiction, assume that ¥ contains a copy
B’ of the matrix B, as well as a copy C" of the matrix C, and that C” is situated top-right
from B’. We know that W avoids B. Thus, at least one cell of B’ must be red. This
implies that all the cells of C' are red. This in turn means that all the cells that are
bottom-left from C’ must be green, which is impossible, because B’ has at least one red
cell.

It remains to show that 7 is invertible. Since we already know that the transformation
¢ of the green cells is invertible, it suffices to notice that the cells of the filling ¥y are
exactly the cells that are green with respect to the filling U. Earlier, we have pointed out
that a cell (4, ) is green with respect to ® if and only if there is a copy C” of the matrix C'
which is situated to the top-right of (i, j) and consists entirely of cells that are red with
respect to ®. Since this red copy of C' is not affected by the transform 7, we know that
such a cell (7,j) is also green with respect to W. By the same argument, we see that a
cell that is red with respect to ® is also red with respect to W. It is now clear that the
mapping 7 is invertible. O

Proposition 1 allows us to construct infinite families of Wilf equivalent permutations
from a single pair of shape-Wilf equivalent patterns. At first glance, it is not even clear
whether there are any distinct shape-Wilf equivalent patterns at all. So far, there are two
results involving shape-Wilf equivalence of permutation patterns. The first is the follow-
ing theorem of Stankova and West, which yields a single pair of shape-Wilf equivalent
permutations.

Theorem 3 (Stankova-West [65]). The two permutations 312 and 231 are shape- Wilf
equivalent.

There are nowadays two known proofs of Theorem 3. The original argument of
Stankova and West was based on an inductive construction of 312-avoiding transver-
sals. Another argument, due to Jelinek [34], shows that for every shape F' there is a
bijection between the set Tr(312) and the set Tp(X), where X is an infinite set of sym-
metric transversals of Ferrers shapes. Since the permutation matrix representing 231 is
the transpose of the matrix of 312, and all the elements of X are symmetric, it follows
that 312 and 231 are shape-Wilf equivalent. Both known proofs of Theorem 3 are rather
lengthy, and we omit them for the sake of brevity.

Unfortunately, Theorem 3 has no known generalization. Not only are we not able to
extend the theorem to provide more pairs of shape-Wilf equivalent patterns, but we are
also not aware of any result that would extend the equivalence of 312 and 231 to a more
general type of fillings other than transverals of Ferrers shapes.

The other known result on shape-Wilf equivalence is the following Theorem due to
Backelin, West and Xin.

Theorem 4 (Backelin-West—Xin [6]). For any k, the identity permutation 12---k is
shape- Wilf equivalent to the anti-identity permutation k(k —1)---1.

Unlike Theorem 3, Theorem 4 has several interesting generalizations which concern
more general fillings as well as more general diagrams. We will deal with these general-
izations in the next chapter.
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It has been verified by computer enumeration [6] that all the Wilf classes of permuta-
tions of order at most seven can be described by the results we mentioned in this chapter.
For larger patterns, computer enumeration quickly becomes infeasible, and a full Wilf clas-
sification seems out of reach. Likewise, apart from the work of Simion and Schmidt [62],
who have enumerated permutations avoiding an arbitrary set of patterns of size 3, there
is only limited understanding of permutations simultaneously avoiding multiple patterns.
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Chapter 2

Identities involving diagonal patterns

In this chapter, we will review several recent results that involve identities between fillings
of diagrams that avoid increasing chains of &k positive elements and those that avoid
decreasing chains of k positive elements. Results of this type seem to be a recurrent
topic in the study of pattern avoidance. They seem to point towards a more general
combinatorial phenomenon, which is not yet fully understood.

The main reason we devote a special chapter to this type of results is that they
seem to be a natural generalization of various identities obtained in the study of other
combinatorial structures, such as graphs [19, 20|, words [37], or set partitions [17, 18, 37|.
Indeed, many of the results mentioned in the later chapters of this thesis are based on the
identities between diagonal-avoiding fillings mentioned in this chapter.

In Section 2.1 of this chapter, we will present the most important previous results
related to diagonal-avoiding fillings. The theorems presented here do not convey the full
strength of the results obtained in this field of study. For instance, we do not deal with
simultaneous avoidance of increasing and decreasing chains in diagrams, since this would
require introducing new terminology that would not be useful in the rest of the thesis.
The interested reader may consult the papers of Krattenthaler [48], de Mier [19, 20] or
Rubey [57], from which these results originate.

In Section 2.2, the author will offer his own contribution to the topic of this chapter,
by proving an identity involving diagonal-free fillings of rectangular shapes.

2.1 Known results on diagonal patterns

Let I;, denote the identity matrix of order k, i.e., the matrix representing the permutation
12--- k. Let Ji be the anti-identity matrix, i.e., the matrix representing k(k—1)---1. As
we already stated in Theorem 4, the two matrices I, and J; are shape-Wilf equivalent.
We also mentioned that this equivalence can be generalized to more general fillings and
more general shapes. We will now present an overview of these generalizations.

The original proof Theorem 4, due to Backelin et al., was first published in 2001. The
proof was based on an elementary argument, providing an explicit bijection between I;-
avoiding and Ji-avoiding transversals. In 2004, Bousquet-Mélou and Steingrimsson [14]
have shown that the bijection of Backelin et al. maps symmetric fillings to symmetric
fillings, thus obtaining the following result (recall that a filling is symmetric, if it is equal
to its transpose).

Theorem 5 (Bousquet-Mélou—Steingrimsson [14]|). For any k € N and any symmetric
Ferrers shape F', the two patterns I, and Jy are equirestrictive in the class of the sym-
metric transversals of F'. In particular, the two patterns are equirestrictive in the class of
involutions.

24



Even before Theorem 5 was proved, Jaggard [32] has applied a modification of the
red-green argument of Proposition 1, to show that the theorem would imply the following
corollary.

Corollary 6. Let k and n be natural numbers, let A be any permutation matriz. The

number of involutions of order n that avoid (I(L ‘6‘) 15 the same as the number of those

that avoid (}]k ‘6‘).

In 2006, Krattenthaler [48] has shown a different way to obtain bijections between -
avoiding and Jy-avoiding fillings of a given shape. His approach is based on the theory of
growth diagrams, and seems even more powerful than the original approach of Backelin,
West and Xin. Here is a simplified version of one of Krattenthaler’s main results.

Theorem 7 (Krattenthaler [48]). Let k be an integer, let F' be a Ferrers shape. Let F be
the set of all the integer fillings of F'. There is a bijection k: F — F with the following
properties:

o A filling ® € F contains Iy, if and only if k(®) contains Jy.

o For any i, the sum of the elements of the i-th row of ® is equal to the sum of the
elements of the i-th row of k(®). Similarly, the sum of the elements of the i-th
column of ® is equal to the sum of the elements of the i-th column of k().

Note that unlike the previously mentioned results, Theorem 7 speaks of fillings by arbi-
trary integers, rather than 01-fillings. There can be no bijection satisfying the conditions
of Theorem 7 that would map 01-fillings to 01-fillings.

Again, as was pointed out by de Mier [19], we may apply a modification of the red-
green argument to obtain the following result.

Corollary 8. Let k be an integer, let A be a matriz, and let F' be a Ferrers shape. The
two matrices (}L ‘6‘) and (})k ‘6‘) are equirestrictive among the nonnegative fillings of F.
Furthermore, the bijection between the two pattern-avoiding classes preserves the sum of
the entries in each row and each column of the filling.

Rubey [57] has managed to generalize these results to fillings of moon diagrams. The
content of a diagram is the multiset of the lengths of its columns. Here are the results
obtained by Rubey:

Theorem 9 (Rubey [57]). Let k be an integer. Let M and M’ be two moon polyominoes
with the same content. There is a bijection between I-avoiding 01-fillings of M and Ij-
avoiding 01-fillings of M'. Furthermore, if M’ is obtained from M by a permutation of
its columns (i.e., without altering the vertical position of the columns) then the bijection
preserves the number of 1-cells in each row.

Notice that Theorem 9 implies that I and J, are equirestrictive in the set of 01-fillings
of a moon polyomino. This is because the Ji-avoiding fillings of a moon polyomino M
correspond to the [ -avoiding fillings of M’, where M’ is the mirror image of M. By
Theorem 9, the I-avoiding fillings of M’ are then in bijection with the [ -avoiding fillings
of M.

For fillings by arbitrary nonnegative integers, Rubey obtains an analogous result:

Theorem 10 (Rubey [57]). Let k be an integer. Let M and M’ be two moon polyominoes
with the same content. There is a bijection between Ii-avoiding nonnegative fillings of M
and I-avoiding nonnegative fillings of M'. Furthermore, if M' is obtained from M by
a permutation of its columns, then the bijection preserves the sum of the entries in each
row.
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2.2 Constrained rectangular fillings

In this section, we take the opportunity to present the author’s own contribution to the
rich family of identities involving I- and Ji-avoiding fillings. The contents of this section
are based on our contribution presented at FPSAC 2007 [35].

We will consider pattern avoidance in rectangular tables with prescribed row- and
column-sums. Let us start with basic definitions. A constrained table of shape r X s
is an empty table with r rows and s columns, together with two sequences of nonneg-
ative integers: the row constraints (xi,...,x,), and the column constraints (y1,...,ys),

satisfying
2= Uy
i=1 j=1

A filling of the constrained table is a nonnegative integer matrix M = (M;;) with r rows
and s columns, such that the sum of the entries in the i-th row is equal to z;, and the
sum of the entries in the j-th column is equal to y;, formally:

Vi € [T]I ZMZ] =T
j=1

Viels]: Y M=y
=1

For two sequences = = (x1,...,x,) and y = (y1,...,¥ys) of nonnegative integers, we
let T[xz x y] denote the constrained table with row-constraints = and column-constraints
y, and we let f(x X y) denote the total number of fillings of T'[x X y]. The unordered
multiset {x1,Z2,..., %, Y1,Y2,...,ys} will be called the scoreline of the table T[x x y].
For a sequence © = (z1,...,,) and a permutation w € S, we write 7m(x) for the sequence
(Tr(1)s Ta(2)s -+ s Ta(r))-

Note that if 7" is a table of shape r x r with all the row- and column constraints equal
to 1, then the fillings of T" are exactly the permutation matrices of order . Furthermore,
if P is itself a permutation matrix of a permutation m € .S,,, then the P-avoiding fillings of
T are precisely the permutation matrices corresponding to the m-avoiding permutations.
Thus, the concept of pattern avoidance in rectangular fillings is a generalization of pattern
avoidance in permutations.

Notice that for any permutation 7 of appropriate order, we have the identity f(xxy) =
f(m(z) x y). This is because every filling M of T[x x y] can be transformed into a
filling of T'[w(x) x y] by permuting the rows of M according to the permutation 7. Of
course, this simple bijection in general does not preserve pattern avoidance. However,
if P is a permutation matrix of order at most three, not only do we have the identity
flz x y; P) = f(n(x) x p(y); P) for any 7 and p, but in fact, we can prove a stronger
identity, stated in the following theorem, which is the main result of this section.

Theorem 11 (J. [35]). Let T'[z X y] be a constrained table, let P be a permutation matriz
of order at most three. Then f(x xy; P) is uniquely determined by the scoreline of T'[x X y|
and the order of P.

For example, consider the two tables T'=T[(2,2) x (1,1,1,1)] and 77 = T[(2,1,1) X
(2,1,1)]. Both these tables have the same scoreline {2,2,1,1,1,1}. Theorem 11 implies
that they must have the same number of P-avoiding fillings for any permutation matrix
P of order at most three. Indeed, if P has order two, then both tables admit exactly one
P-avoiding filling, and if P has order three, then all the six fillings of T are P-avoiding,
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Figure 2.1: The corner flip operation.

and 7" also has six P-avoiding fillings (as well as one filling containing P). This example
also shows that Theorem 11 cannot be extended to permutation patterns of order greater
than three, since all the six possible fillings of 7" as well as all the seven possible fillings
of T clearly avoid any pattern larger than three.

Before we present the proof of Theorem 11, we collect some simple observations that
deal with permutation patterns of order at most two. We then show that previous results
on fillings of Ferrers shapes imply that f(x x y; P) = f(z x y; Q) for any two permu-
tation matrices P, () of order three. These arguments show that it is sufficient to prove
Theorem 11 for the case when P = Js.

Next, we will use the RSK algorithm together with basic results on Young tableaux
to prove that if P = J; for some k, then f(x x y; P) = f(n(y) X p(y); P), where 7 and p
are arbitrary permutations of appropriate order.

As the last step of the proof, we introduce an operation called corner flip, defined as
follows: let T'[x x y| be a constrained table of shape r x s. Assume that for some t < r

and u < s we have
t U
E Ti = E Yj-
i=1 j=1

A corner flip is an operation that transforms the table T[z x y| into a table T[z" X /]
of shape (t +s —u) X (u +r —t), where 2/ = (1,22, ..., T4, Yus1, Yus2, - - -, Ys) and ¢y’ =
(Y1,Y2, - -+, Yu, Tes1, Teao, - - -, ) (see Fig. 2.1).

We will show that corner flips preserve the number of Js-avoiding fillings. It is easy
to see that any two tables with the same scoreline can be transformed to each other by
a sequence of row permutations, column permutations and corner flips. Combining these
facts, we obtain the proof of Theorem 11.

After we prove Theorem 11, we will present some remarks on the connection between
the fillings of rectangular shapes, the pattern avoidance in permutations, and other related
concepts.

Let us first deal with the values of f(x x y; P) when P is a permutation matrix of
order at most two. In the trivial case when P has order one, we see that f(z x y; P) =0
unless all the components of z and y are zero, in which case f(x x y; P) = 1. Let us now
turn to the slightly less trivial case of permutation matrices of order two:

Lemma 12. If P = I, or P = Jy, and if T = T[z x y| is any constrained table, then
flz xy; P)=1.

Proof. 1t suffices to prove the lemma for P = Jy, the other case is analogous. Let x =
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(x1,...,2,) and y = (y1,...,ys). We proceed by induction on r +s. If r =1 or s = 1,
the claim is clear.

Otherwise, let & = min{z,,y,}. Observe that if M = (M;;) is a Jy-avoiding filling of
T|x x y|, then M,y = k, otherwise both the last row and the last column of M would
contain a positive entry other than M,,, and these two entries would form the forbidden
pattern P. Assume now that k = x, (the case k = y, is symmetric). For any Js-avoiding
filling M of T, the last row of M is equal to (0,...,0,k). Furthermore, the remaining
rows of M form a Jy-avoiding filling of 7" = T'[(z1, ..., z—1) X (y1,...,Ys—1,Ys — k)]. By
the induction hypothesis, there is exactly one Js-avoiding filling of 7", and adding a row
(0,...,0,k) to the top of this filling produces a J-avoiding filling of T. a

It remains to prove Theorem 11 for permutation patterns of order three. Using Corol-
lary 8, we may easily conclude that f(x x y; P) = f(x x y; Q) for any two patterns P, Q
of order three.

Lemma 13. For any constrained rectangular table T'[x X y|] and any two permutation
matrices P,Q of order three, we have f(x X y; P) = f(z X y; Q).

Proof. For P, () chosen among I3, J3 and (})2 101 ), the claim is a special case of Corollary 8.
For the other cases, we can easily establish the required identity by exploiting the symme-

tries of the rectangle; take, e.g., P = (102 101) and () = (})2 101): let us write x = (x4, ..., ;)
and let us define T = (z,, z,_1,...,21). Clearly,

flaxy; P)=f@xy;Q) =@ xy;ls) = flaxy; Js) = f(z x y; Q).
The remaining cases are settled similarly. O

As the next step towards the proof of Theorem 11, we prove the following result:

Proposition 14. Let T[z x y] be a constrained table of shape r x s. For every w € S,
and p € Sy, and for every positive integer n, we have f(x X y;J,) = f(w(x) X p(y); Jn)-

Of course, in the statement of the proposition, we could have used any other pattern

Iy
0

Proposition 14 is an easy consequence of known results on Young tableaux and the
Robinson—Schensted-Knuth (or RSK) algorithm. We will now state the necessary results
without proof; a useful presentation of several variants of the RSK algorithm and their
relation to pattern avoidance in fillings can be found in Krattenthaler’s paper [48]. The
proofs of the basic properties of Young tableaux and the RSK correspondence can be
found in textbooks of combinatorics, such as [27] or [66].

We first state the necessary definitions:

A partition (also known as integer partition, not to be confused with set partitions
defined earlier) of size n and length r is a nonincreasing sequence A\; > Ay > --- > A, of
r positive integers whose sum is n.

A Young tableau, or more verbosely, a column-strict semi-standard Young tableau, is
a filling of a Ferrers shape such that the elements of every row form a weakly increasing
sequence and the elements of every column form a strictly increasing sequence. If P is
a Young tableau with r rows, and the ¢-th row of P has length \;, then the sequence
A= (Ag,..., ) is a partition, which we will simply call the shape of P.

The content of a Young tableau P is a sequence p = (p1,...,p;) where p; is the
number of cells of P that contain the number 7. The number of Young tableaux of shape
A and content p is known as the Kostka number, denoted K .

The proof of the following standard fact can be found e.g. in [27]:

of the form <;)k ) instead of .J,,. Our choice of J,, is purely a matter of convenience.
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Fact 15. Let X\ be a partition of n and let p = (p1,..., 1) be a sequence of nonneg-
ative numbers whose sum is n, let m be a permutation of order k. For i/ = w(u) =
(Hr(1ys - - -5 Mn(k)), we have the identity Ky, = K.

Let g, be a bijection that transforms a Young tableau P of content p to a Young
tableau g, (P) of the same shape and of content m(pu).

We now summarize the properties of the RSK algorithm which we will use in our
proof:

Fact 16. The RSK algorithm provides a bijection between fillings of T'|x X y] and ordered
pairs of Young tableauzr (P, Q) such that P and Q) have the same shape, P has content x
and () has content y. Furthermore, the filling avoids J, if and only if P and ) have less
than n rows.

These facts immediately imply Proposition 14:

Proof of Proposition 14. Let x,y,m, p be as in Proposition 14. The J,-avoiding fillings
of T[x x y| are mapped by the RSK algorithm to pairs of Young tableaux (P, Q) of the
same shape A with at most n — 1 rows, where the content of P is x and the content of
@ is y. This pair may be transformed into a pair of tableaux (g-(P), g,(Q)) of shape A
and content 7(x) and p(y). By the RSK algorithm, such pairs correspond to J,-avoiding
fillings of T[r(z) x p(y)]. O

We remark that the bijection established above does not, in general, preserve the
multiset of the entries used in the corresponding fillings. In particular, it does not send 01-
fillings onto 01-fillings. This cannot be avoided because, for example, T[(2,1,1) x (2,1, 1)]
has no Jy-avoiding 01-filling, while 7°[(1,2, 1) x (2,1, 1)] has one such filling.

The last ingredient of our proof is the operation called corner flip, illustrated on
Fig. 2.1. Let us fix v = (v1,...,2,) and y = (y1,...,ys) such that Y0, x; = Y77, y;.
Let us also fix ¢ < r and v < s such that 2221 T; = Z;‘:lyj. Recall that a corner
flip is an operation that transforms a table T'[x x y] into a table T'[z’ x ], where 2’ =

(T1, T2y -y Ty Yur1s Yuroy - - Ys) and ¥ = (Y1, Y2, - -+ Yu, Tea1, Tevo, - - -, T ). We prove the
following proposition:

Proposition 17. With the notation as above, f(x x y; J3) = f(z' x y'; J3).

We introduce the following terminology: let M be a matrix with at least ¢ rows and
at least u columns. The south-west corner of M, denoted by Mgy, is the submatrix
of M formed by the intersection of the first ¢ rows with the first u columns. Similarly,
My, denotes the south-east corner of M, which is the intersection of the first ¢ rows of
M with the columns of index greater than u. The north-east and north-west corners
of M are defined analogously. Thus, a matrix M of shape r x s can be expressed as
M = (3w 2 )-

Notice that if M is a filling of T'[x x y|, then the sum of the entries of Mgy is equal to
the sum of the entries of Myw (recall that we assume that the first ¢ rows have the same
sum as the first u columns). The rows of M with indices 1,...,t are called the southern
rows, the rows with indices greater than ¢t are the northern rows, and similarly for the
eastern and western columns.

Let (X,Y) be a pair of matrices. We say that a matrix M completes X and Y inside
Tlx x y] if M is a Js-avoiding filling of T'[x X y|] with Msw = X and Myxg = Y. The
following two lemmas immediately imply Proposition 17.

Lemma 18. For any pair of matrices (X,Y'), there is at most one M that completes
(X,Y) inside Tz x y].
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Lemma 19. A pair of matrices (X,Y) can be completed inside T[x X y| if and only if the
pair (X, Y'T) can be completed inside T|x' x y'], where YT denotes the transpose of Y.

By these lemmas, there is a bijection ¢ that maps a Js-avoiding filling M of T'[x x y]
to the Js-avoiding filling ¢(M) = M’ of Tz’ x '] uniquely determined by the condition
My = Mgsw and M}y = M. The existence of such a bijection implies Proposition 17.
[t remains to prove the two lemmas.

Proof of Lemma 18. Tt is enough to prove that if M is a J3-avoiding filling of T'[x X y] then
both Myw and Msg avoid J,. By Lemma 12, a Js-avoiding matrix is uniquely determined
by its row sums and column sums; in particular, Msg and Myw are determined by z, y
and the two matrices X = Mgw and Y = MyE.

Assume that M is a Js-avoiding filling of T'[x X y] and Myw contains J;. Since the sum
of entries of Myw is equal to the sum of the entries of Mgy, we know that Mgy contains
at least one positive entry. This positive entry and the occurrence of J; inside Myw form
the forbidden pattern .J3, which is a contradiction, showing that Myw avoids J;. By the
same argument, we obtain that Mgg avoids Jy as well. O

Before we present the proof of Lemma 19, we state and prove a lemma that charac-
terizes the pairs (X,Y’) that can be completed inside T[z X y]. We will say that a pair of
matrices (X,Y) is plausible for Tz x yl, if X and Y both avoid J3, X has shape t x u,
Y has shape (r —t) X (s — u), and the row sums and column sums of the matrix ( { ¥)
do not exceed the corresponding constraints  and y.

Lemma 20. Let (X,Y) be a pair of matrices, let My = ($Y). Let T; be the sum of
the i-th row of My and y; the sum of its j-th column. We say that the i-th row (or j-th
column) is saturated if x; = T; (or y; = y;). The pair (X,Y) can be completed inside
T|x x y] if and only if the following conditions are satisfied:

(a) (X,Y) is plausible.

(b) Z)sz (zi—2;) = Z;:qul(yj_gj) (which is equivalent to Z?:l(yj_ﬂj) = Z::tJrl (zi—
x;).

(¢) Let ig be the largest index of a southern row of My such that for every i < ig, the
i-th row is saturated (in other words, ig is the first unsaturated row, oris =1t if all
southern rows are saturated, see Figure 2.2). Similarly, let jy be the largest index
of a western column such that for every j < jw, the j-th column is saturated. The
submatriz of My induced by the rows {is + 1,...,t} and columns {jw + 1,...,u}
has all entries equal to 0.

(d) With is and jw as above, the submatriz of My induced by the rows {1,...,is} and
columns {jw+1,...,u} avoids Jy. The submatriz induced by the rows {ig+1,...,t}
and columns {1,..., jw} avoids Jy as well.

(e) Let iy be the smallest row-index of a northern row such that for every i > iy, the
i-th row is saturated. Similarly, let jg be the smallest column index of an eastern
column such that for every j > jg, the j-th column is saturated. The submatriz of
My induced by the rows {t+1,...,ix — 1} and columns {u+1,...,jg — 1} has all
entries equal to 0.

(f) With iy and jg as above, the submatriz of My induced by the rows {t+1,... iy—1}
and columns {jg,...,s} avoids Jy. The submatriz induced by the rows {in,...,7}
and columns {u+1,...,jg — 1} avoids Jo as well.
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Mgy Msg

Jw u

Figure 2.2: Illustration of the four conditions (c), (d), (e) and (f) from Lemma 20.
The dark gray rectangles correspond to the submatrices with all entries equal to zero by
conditions (¢) and (e). The light gray rectangles correspond to submatrices avoiding Js

by conditions (d) and (f).

Proof. We first show that the conditions are necessary. This is obvious in the case of (a)
and (b). Assume that M completes X and Y in T[x X y]. Assume, for contradiction,
that condition (c) does not hold. Then M has a positive entry M,; > 0 with ig < i <1
and jy < j < u. Since ig is smaller than ¢, it is unsaturated, otherwise we would get a
contradiction with ig’s maximality. Thus, M has at least one positive entry in row ig and
an eastern column. Similarly, M has a positive entry in column jy, and a northern row.
These three positive entries form the forbidden pattern J;.

Assume now, that condition (d) fails. If the submatrix induced by the rows 1,..., g
and columns {jw + 1,...,u} contains J,, it means that jy < u and jy is unsaturated.
Hence, M contains a positive entry in column jy, and a northern row, creating the for-
bidden J3. By an analogous argument, there is no J; in the submatrix formed by rows
{is+1,...,t} and columns {1,..., jw}.

The arguments for the necessity of (e) and (f) are symmetric to the arguments given
for the necessity of (c) and (d), respectively.

It remains to show that the conditions (a) to (f) are sufficient. Assume that X and
Y satisfy these conditions. Fix Jy-avoiding matrices Mgy and Myw in such a way that
M = (Myw A/};E) is a filling of T'[x x y| (we do not know yet that M avoids J;). By
condition (b) and by Lemma 12, we know that such Myg and Mgw exist and are uniquely
determined. By the proof of Lemma 18, we know that M is the only candidate for a
completion of (X,Y") inside T'[x X y].

It remains to show that M avoids J;. For contradiction, assume that M contains
Js. Fix three positive cells in M forming J;. Assume that these cells appear in rows
11 < 13 < i3 and columns j; > js > j3. At most one of the three cells is in Myw and at
most one is in Msg, because these two corners avoid .Jo by construction. It follows that
the cell (is, jo) is either inside X or inside Y. Assume that it is inside X (the other case
is symmetric). Thus, we have iy < ¢ and j, < u. However, it is not possible to have the
complete copy of J3 inside X (because (X,Y’) is plausible and thus X avoids J3), so we
may assume, losing no generality, that the nonzero cell (i1, 71) is in Mgg. It follows that
71 1s not saturated, which means that 1 < 71 < is.
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If the 1-cell (i3, j3) is in Myw, we similarly obtain ji < j3 < js contradicting condition
(¢). On the other hand, if this cell is inside X, then we have a contradiction with condition
(c) or (d). O

With the characterization of the matrix pairs (X,Y’) that can be completed inside
T|x x y], the proof of Lemma 19 is easy:

Proof of Lemma 19. 1t suffices to check that a pair (X,Y) satisfies the conditions of
Lemma 20 with respect to T'[z x y] if and only if the pair (X, Y1) satisfies these conditions
with respect to T2’ x ¢/]. This is obvious for conditions (a) and (b). For the remain-
ing four conditions, we may observe that a saturated southern row or western column of
(¢¥) remains saturated in (% Y). Similarly, a saturated northern row of index ¢ +

X 0

. . .. T .
in (%) corresponds to a saturated eastern column of index u + 4 in (%Y ) and vice

versa. Combining this with the observation that transposition preserves copies of .Jy, we

see that the last four conditions of Lemma 20 are unaffected by the transition from ( { ¥')

to (9Y") and from Tz x y] to T'[z' x /. O

Let us now assemble these pieces into the proof of Theorem 11.

Proof of Theorem 11. We have observed earlier that the result is easy for matrices of
order at most two (see Lemma 12 and the preceding discussion). Thanks to Lemma 13,
we only need to prove the theorem for a single permutation matrix P of order three. Our
matrix of choice is J5. By Propositions 14 and 17, all we have to do is notice that for any
two tables T' = T'[x x y] and T" = T'[x’ x 3| with the same scoreline, we may transform 7’
into 7" by a sequence of permutations and corner flips, which is indeed easily seen. O

We conclude this section with some remarks and examples that put fillings of rectan-
gular shapes into a broader context of pattern avoidance in fillings.

Let us only consider patterns that are permutation matrices, and let us make no
distinction between a permutation and its matrix.

Recall that two permutations 7, o are Wilf equivalent (denoted by 7 ~ o) if they are
equirestrictive in the set of all permutations. In the notation of rectangle fillings, this
may be written as f(1" x 1™;7) = f(1™ x 1*;0), where 1" is the sequence of n ones.

Allowing arbitrary constraints, we write 7 & o if for every constrained table T'[z X ]
we have f(z x y;7) = f(x X y;0) (the letter ‘g’ stands for ‘general’ fillings, as opposed to
the transversal fillings considered in Wilf and shape-Wilf equivalences).

As we have already seen, the integer fillings of rectangular shapes naturally generalize
to integer fillings of Ferrers shapes. Let T)\[z X y] denote the Ferrers diagram of shape
A with row constraints x and column constraints y. Let f\(z X y;7) be the number of
fillings of T\[z X y] that avoid a pattern 7. Finally, let us write 7 < o if the identity
il x y;7) = falz X y;0) holds for any constrained Ferrers shape Th[x x y|. The
equivalence ~ is to the shape-Wilf equivalence =, what & is to the Wilf equivalence ~.

In general, < is different from ~; for example, for A = (4,4, 4,3) we have

18 = f1((1,1,2,1) x (2,1,1,1); (§ 2)) # A((1,1,2,1) x (2,1,1,1); (8 ) =17,

LW Lg . LW
even though (101 102) ~ (102 101) Thus, ~ is a proper refinement of ~.

As we have seen, all the permutations of order three are 2-equivalent, which shows
that & is different from = and ~. To see that & is also different from ~, consider the
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following two patterns:

1 1

Clearly P ~ P, since P is symmetric to P; on the other hand, for z = (1,1,1,2,1) we
have _
165 = f (z x z; P) # f (z x a; P) = 166,

which shows that P and P are not “-equivalent. This example can also be interpreted
as f(x x x; P) # f(T x x; P), where T is the sequence x written backwards. This shows
that Proposition 14 does not generalize to all forbidden patterns.

We may apply the red-green argument to obtain further examples of £-equivalent

patterns. In general, it is not true that A & A’ implies (4 B) & (%) (compare the

example P above with I;). On the other hand, using Corollary 8, a single pair of -

equivalent patterns can be turned into a family of ~-equivalent patterns, by a red-green

argument similar to Proposition 1. In particular, if A & A’ and B & B’ then (,9; Tg)) L

— g -—
(X, %'), where B and B’ are the matrices obtained from B and B’ by the rotation of
180 degrees (similar arguments can be made for other symmetries of the square). For

instance, we may conclude that I, & (})2 ‘{)2).

It is not known whether there are any examples of £_equivalent or even ~-equivalent
patterns, apart from those that can be deduced from the equivalence of I and .J; using
obvious symmetries and the red-green argument outlined above.
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Chapter 3

Wilf order

Currently, it seems difficult to proceed with the task of Wilf classification of permutations.
The Wilf equivalences of small patterns are well understood, while for larger patterns, it
is difficult to use computer-assisted enumeration to generate new conjectures. In this
situation, the topic of Wilf order starts receiving more attention as a promising tool to
gain more insight into Wilf classification of permutations.

For two permutations ¢ and 7, let us write o<7 if ¢ is more restrictive than 7 in
the class of permutations, i.e., the number of o-avoiding permutations of a given order is
smaller than or equal to the number of T-avoiding permutations. The relation < defines
a quasi-order of permutations.

Analogously, we may define the shape-Wilf order, denoted by <, where o<7 means
that for every Ferrers shape F', the number of o-avoiding transversals of F' does not exceed
the number of its 7-avoiding transversals.

In this chapter, we will often deal with shapes and their fillings. It is thus convenient
to keep the convention that a permutation is represented by a permutation matrix, and
to ignore the distinction between a permutation and its matrix.

Let diag(A;, A, ..., Ax) denote the block-diagonal matrix whose blocks are the ma-
trices Ay, ..., Ag, in left-to-right order. Formally, we may define diag(A;, Ay, ..., Ay)
inductively, by saying that diag(A;) = A;, while for & > 1, we have

diag(Al, AQ, c. ?Ak) — < 0 diag(Ag,ng,...,Ak)) '

Ay

Note that a block-diagonal matrix whose every block is a permutation matrix is itself
a permutation matrix. A block-diagonal permutation whose every block is a diagonal
matrix (i.e., either [ or J; for some k) is known as layered permutation.

Similarly to Wilf equivalence, new results involving the Wilf order may be deduced
from results involving the shape-Wilf order. Indeed, all the known results on Wilf order
are corollaries to the following proposition.

Proposition 21. Let A, B and C be three permutations. If ASB then (§6)<(59¢),

and hence also (4 §)=<(%9).

The proof of this proposition is based on a red-green argument completely analogous
to the proof of Proposition 1, and we omit it.

In the rest of this chapter we review the known results on shape-Wilf order, and then
present, several conjectures related to the Wilf and shape-Wilf order relations.
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3.1 Shape-Wilf order of small patterns

Since the two permutations in 8, are shape-Wilf equivalent, the first non-trivial results
related to the shape-Wilf order involve patterns of size three. As we have seen, 83 is
partitioned into three shape-Wilf classes:

e 31270231,
o 123721370321,
o 132.

The first result involving the shape-Wilf order has been obtained by the author [34].
It deals with the first two of the three shape-Wilf classes above. A different proof of
the same result has been also obtained by Stankova [64]. The statement of the result is
simple:

Theorem 22 (J. [34]). 231=<123.

The other known result on shape-Wilf order, which finishes the classification of pat-
terns of size three, is due to Stankova [64], and its statement is equally simple:

Theorem 23 (Stankova [64]). 123<132.

Stankova has pointed out that the shape-Wilf ordering of patterns of size three, to-
gether with Proposition 21, makes it possible to deduce the Wilf ordering of all the
permutations in 8. Recall that 84 has three Wilf classes, which may represented by the
patterns 2314, 1234, and 1324. From Proposition 21 and Theorems 22 and 23, we obtain
the chain

2314=<1234<1324.

3.2 Skew order

Recall that a skew shape is a shape obtained as the difference of two Ferrers shapes sharing
a common bottom-left corner. It turns out that pattern avoidance among transversals of
skew shapes has interesting consequences for shape-Wilf order and hence also for the Wilf
order.

For a pair o, 7 of permutations, let us write ai<k7', if for every skew shape S the number
of o-avoiding transversals of S does not exceed the number of its T7-avoiding transversals.
The relation i%k will be called the skew order. Every Ferrers shape is a skew shape, which
means that Ui%kT implies o=T.

At this point, the reader might wonder why we have not yet introduced the ‘skew
equivalence’, as the natural refinement of the shape-Wilf equivalence. The reason is, that
we are not aware of any pair of distinct patterns that would be equirestrictive with respect
to transversals of skew shapes.

Let us present several new definitions related to skew shapes. Recall that r(.S) and
¢(S) denote respectively the number of rows and columns of a diagram S. We say that
a skew shape S is proper if r(S) = ¢(S), and moreover, every row and every column of
S contains at least one cell of S. A proper skew shape S is called permissible if it has
at least one transversal. The following simple observation characterizes the permissible
skew shapes.
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Observation 24. A proper skew shape S with n rows is permissible if and only if for
every i € [n] the shape S contains the cell in row i and column n — i+ 1.

Proof. If S contains all the cells {(i,n —i+ 1), € [n]}, then the filling which assigns the
value 1 to these cells and the value 0 to all the other cells is a transversal, hence S is
permissible.

Assume now that for some ¢ € [n| the cell (i,n —i+ 1) does not belong to S. Without
loss of generality, assume that the cell (i,n — i + 1) is to the left of all the cells of S in

row i. The definition of skew shape then implies that all the cells in rows 1,2,...,7 are
strictly to the right of the column n — ¢+ 1. Thus, the bottom ¢ rows of S intersect at
most ¢ — 1 columns of S, which implies that S has no transversal. 0

Our motivation for the study of the skew order is based on the following proposition,
which allows us to construct a family of <-comparable patterns from a single pair of

k
S4—(30rnp3urable patterns.

Proposition 25. Let A, B and C be three permutations. If Ai-jB, then (24) i%k (25,

and hence also (4 2)=< (% 8).

Proof. The proof is very similar to the proof of Proposition 1, and uses an analogous
reg-green argument. Instead of repeating the whole proof again, we content ourselves
with sketching the main points.

Let S be a skew shape. Our aim is to present an injective mapping that transforms a
(& 4)-avoiding transversal of S into a (& & )-avoiding transversal of S. Let ® be a (2 §)-
avoiding transversal of S. We color the cells of ® red and green: a cell (7, j) is green with
respect to @ if the subfilling of ® to the bottom-left of (7, j) (i.e., the subfilling formed by
the intersection of the bottommost i — 1 rows with the leftmost j — 1 columns) contains
the pattern C. A cell is red if it is not green.

Let ®; be the subfilling of ® formed by the green cells. Clearly, ® is a sparse A-

avoiding skew filling. Since A%kB, we know that there is an injective mapping ¢q that
transforms A-avoiding skew transversals into B-avoiding skew transversals of the same
shape. By an argument analogous to Lemma 2, we may extend ¢, into a shape-preserving
mapping ¢ that transforms A-avoiding sparse skew fillings injectively into B-avoiding
sparse fillings. Furthermore, ¢ preserves the zero rows and zero columns of the filling.
We apply the mapping ¢ to the filling &, transforming it into a B-avoiding filling ¥,
while all the red cells of ® remain unchanged. We thus obtain a ( 2 & )-avoiding transversal
U of the shape S. As in the proof of Proposition 1, we again see that a cell (4, 7) is red
with respect to the filling ® if and only if it is red with respect to W. This implies that

the transformation we described here is indeed an injection. O

. k

To make Proposition 25 useful, we need to find some S4—(30rnp3urable patterns. The

most natural candidates are the diagonal patterns I,, and .J,. After extensive computer
enumeration, we are confident enough to make the following conjecture.

Conjecture 26. For every k € N, the following holds:

1. 1.2,

2. For any permutation C, we have (g Ié“) < (g {)k )
3. For any two permutations C and D, we have diag(C, I, D)<diag(C, Ji, D).

4. If A is a layered permutation of order k, then I, A.
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Figure 3.1: The pattern P used in the proof of Theorem 28.

The four statements of this conjecture are listed in the order of decreasing strength,
i.e., each statement is a consequence of the previous one. Indeed, the second statement
follows from the first by Proposition 25, the third from the second by Proposition 21,
while the fourth follows from the third by a simple observation.

With regards to the fourth claim of Conjecture 26, it is noteworthy that Bona [13| has
proved the following asymptotic version of the claim.

Theorem 27 (Bona [13]). If A is a layered permutation of order k, then the Stanley— Wilf
limit of A is greater than or equal to the Stanley—Wilf limit of Ij.

Let us mention that the Stanley—Wilf limit of I is equal to (k—1)2. In fact, Regev [55]
has found an explicit formula for the number of [ -avoiding permutations of order n.

We have so far been unable to prove Conjecture 26 in full generality. We are only able
to verify the conjecture for the smallest nontrivial case, i.e., k = 2.

Theorem 28. Ig%ng. In particular, for any permutation C we have (g 102 ) < (g ‘{)2 ), and

for any pair of permutations C' and D we have diag(C, I, D) < diag(C, J3, D).

Notice that even this simplest case of Conjecture 26 stated in Theorem 28 is already
more general than Theorem 23.

To prove Theorem 28, we first show that every permissible skew shape has exactly
one [r-avoiding transversal. To complete the proof, it then suffices to show that every
permissible skew shape has at least one Js-avoiding transversal. We will in fact prove
a stronger statement, by showing that every permissible skew shape has exactly one
transversal that simultaneously avoids J; and the skew pattern P in Figure 3.1. Since the
number of {.J5, P}-avoiding transversals cannot be greater than the number of Js-avoiding
transversals, the proof of Theorem 28 will follow easily.

Lemma 29. Every permissible skew shape has exactly one I>-avoiding transversal.

Proof. Recall from Observation 24 that every permissible skew shape S with n rows admits
the ‘antidiagonal’ transversal, whose 1-cells are exactly the cells of the form (i,n —i+ 1),
for i € [n]. Clearly, this transversal avoids .

We claim that any other transversal of S contains I5. To see this, represent a transver-
sal of S by a permutation 7 = 775 - - - 7, where 7; is the index of the column containing the
1-cell in row ¢. If the transversal is different from the antidiagonal transversal described
above, then 7 is different from the anti-identity permutation J,,. Thus, 7 must contain 12
as a subpermutation, and consequently, the transversal must contain 5. O

Let us now concentrate on the pattern J,. Note that a skew shape may admit more
than one Jy-avoiding transversal. For example, the pattern P from Figure 3.1, as well as
its transpose PT are two Jy-avoiding transversals of the same shape.

As we said above, our aim is to prove that every permissible skew shape has exactly
one transversal that avoids both J, and P. We will again represent a transversal of a
shape S by the permutation 7, defined as in the proof of the previous lemma.
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To compare two transversals of a given shape, we will use the standard notion of
lexicographic ordering: for two different sequences of integers 7 = 775 ---7, and o =
0109 -+ 0,, We say that 7 is lexicographically smaller than o if 7, < o;, where 7 is the
smallest index where the two sequences differ.

Notice that the unique Ir-avoiding transversal of a given skew shape S (which is repre-
sented by the anti-identity permutation) is the lexicographically largest of all transversals
of S. For the unique {J, P}-avoiding transversal, we have the opposite characterisation.

Lemma 30. Let S be a permissible skew shape. Let T be the lexicographically smallest
transversal of S. Then T 1s the unique transversal of S that avoids both patterns Jo and P.

Proof. Let 7 = 175 --- 7, be the lexicographically smallest transversal of a skew shape S.
Let us first prove that 7 avoids both forbidden patterns. Notice that neither of the two
forbidden patterns is itself the lexicographically smallest transversal of its underlying
shape. Thus, if 7 contains a copy of J; or P, we may modify the filling of the subshape
that contains this copy by replacing the forbidden pattern with a lexicographically smaller
transversal of the same shape. This modification transforms 7 into a lexicographically
smaller transversal, contradicting its minimality.

Assume now, for the sake of contradiction, that ¢ = o104 - - - 0, is a transversal that is
different from 7 and also avoids J, and P. Let us refer to the 1-cells of 7 as 7-cells, while
the 1-cells of o will be called o-cells. Let ¢ be the smallest index where ¢ and 7 differ
(see Fig. 3.2). By the minimality of 7, we have 7; < ;. Let j be the index of the highest
row that intersects the column ;. Let k be the row-index of the o-cell that appears in
column 7; (i.e., k satisfies the equality o}, = 7;).

The index k£ cannot be smaller than ¢, since the o-cells below row 7 coincide with the
7-cells. We also know that k # ¢ since 7; # ;. This leaves us with £ > 4. If £ < j, then
the two rows ¢ and k and the two columns o and o; induce a copy of J; in o.

Assume now that k£ > j. Let us say that a cell is high if its row index is greater than j,
and a cell is low otherwise. Clearly, there are exactly j low o-cells and j low 7-cells. In
column oy, there is a low 7-cell in row ¢ together with a high o-cell in row k. Since the
number of low o-cells equals the number of low 7-cells, there must also be a column that
contains a low o-cell and a high 7-cell. Let ¢ be such a column, and let ¢ be the row index
of the o-cell in column c. Note that ¢ < o;, otherwise ¢ would not contain any high cells.
If the column c intersects row i, then the two rows ¢ and ¢ with the two columns ¢ and
o; induce a copy of Js in ¢. On the other hand, if the column ¢ does not intersect row ¢,
this means that ¢ < 7; = oy, and the three rows i, £, k together with the columns c, oy, o;
induce in o a copy of P.

In any case, we get a contradiction. O

As we already explained, Theorem 28 is a direct consequence of the two lemmas above.
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Figure 3.2: Illustration of the proof of Lemma 30.
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Chapter 4

Involutions

Let us now turn our attention to the topic of pattern avoidance in involutions. Recall
that an involution is a permutation whose matrix is symmetric. Let J,, denote the set of
involutions of order n, and let J,,(c) be the set of the involutions of order n that avoid o.
For two permutation patterns o and 7, we write ot if the two patterns are equirestrictive
in the set of involutions, i.e., if |J,(¢)| = |J,.(7)| for each n. We will call the relation L
the I-Wilf equivalence.

Note that a permutation is not necessarily I-Wilf equivalent to its reversal. However, it
is clear that a permutation is I-Wilf equivalent to its inverse, as well as to the permutation
obtained by reflecting the permutation matrix along the decreasing diagonal.

Pattern avoidance of involutions was already studied by Simion and Schmidt [62], who
classified patterns of size three with respect to I-Wilf equivalence. They have shown that
for any pattern 7 € {123,213,132,321}, there are exactly (LnT;QJ) T-avoiding involutions
of order n, while for 7 € {231,312}, there are 2"~! such T-avoiding involutions.

From known symmetries of the RSK algorithm (which may be found, e.g., in Fulton’s

book [27]), it is easy to see that Ikri»(]k. for any k, where I, and J; denote the identity and
the anti-identity matrix of order k.

Guibert [29] has shown that 341244321 and 21431243, He conjectured that both
2143 and 1432 are actually I-Wilf equivalent to 4321 (and hence also to 1234). The first
part of this conjecture was proved by Guibert, Pergola and Pinzani [30], who proved the

equivalence 1234~2143.
Jaggard [32]| generalized these results by proving that for any permutation X, we have

Furthermore, Jaggard made the following conjectures:

L (7%) A (7 %) for any k > 1 and any permutation matrix X,

2. 1234545312,

3. 123456~456123~564312.
The first of these conjectures was settled by Bousquet-Mélou and Steingrimsson [14],

whose result was presented here as Corollary 6 in Chapter 2. From this corollary, it is
possible to deduce the following equivalence, valid for any permutation matrix X and any

two integers k,[ > O:
< Il > I < Jl )
X |~ X :
I T
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Figure 4.1: An example of an F'--shape. The shaded cells are the corners.

The other two conjectures of Jaggard are both consequences of a more general result
proved by Dukes, Jelinek, Mansour and Reifegerste [22]. The proof of this result is the
main topic of this chapter.

The proof we present here is taken from the above-mentioned paper of Dukes et al. [22].
Let us remark that the paper in fact considers a more general setting of signed permuta-
tions, which may be represented by matrices with entries 0, 1 and —1, with the property
that each row and each column has exactly one nonzero entry. In this thesis, we will re-
strict ourselves to the less general setting of ordinary permutations, to avoid unnecessary
technical complications.

We also point out that, independently of Dukes et al. [22]|, Jaggard and Marincel [33]
have proved that for every k > 5, the permutation J, is [-Wilf equivalent to (k — 1)k(k —
2)(k — 3)---4312. The proof of Jaggard and Marincel uses a different method than the
proof of Dukes et al. that we will show in this thesis.

The proof we are about to present is based on previously known results on shape-Wilf
equivalence, combined with a suitably adapted version of the red-green argument. For
technical reasons, apart from using usual Ferrers diagrams (which are bottom-left aligned
shapes), we will also need to refer to the bottom-right aligned corner shapes, i.e., the
shapes obtained from Ferrers diagrams by reflection along a vertical axis. We will call
these shapes the F--shapes. We will write ¢ ~ 7 if o and 7 are equirestrictive with
respect to transversals of F--shapes. Of course, o ~ 7 is merely a shorthand for saying
that the reversal of o is shape-Wilf equivalent to the reversal of .

Here are the results we are about to prove.

Theorem 31 (Dukes, J., Mansour, Reifegerste [22]). If A and B are ~-equivalent ma-
trices and X s any permutation matriz then the following equivalences hold:

AT BT
X7 I X7
P% ~ P% (4.1)
A B
AT BT
X7 X7
1 A 1 (4.2)
X X
A B

As we already mentioned, the proof of Theorem 31 uses a suitably adapted version of
the red-green argument. Before we state argument precisely, let us make the following
definition: a cell of an F'--shape is called a corner if it is the leftmost cell of its row and
also the topmost cell of its column. See Figure 4.1 for an example.
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Proposition 32. Let F' be an F--shape, and let A, B,C' be permutations, such that A
and B are ~-equivalent. We set

X=(G4) andY = (G 3).

There is a bijection between X -avoiding and Y -avoiding sparse fillings of F'. This bijection
preserves the number of nonzero entries in each row and column. In particular, X and
Y are ~-equivalent. Furthermore, if C is nonempty, the bijection preserves the filling in
the corners of F.

The proof of Proposition 32 is analogous to the proof of Proposition 1, and we omit it.

Note that Proposition 32 yields some information even when C'is the empty matrix.
In such situation, the proposition shows that a bijection between pattern-avoiding trans-
versals can be extended to a bijection between pattern-avoiding sparse fillings, by simply
ignoring the rows and columns with no nonzero entries.

We will now show how the results on shape Wilf equivalence may be applied to obtain
new classes of I-Wilf equivalent patterns. Let us first give the necessary definitions. For
an n X n matrix M, let M~ denote the subfilling of M formed by the cells of M which are
strictly below the main diagonal, and let M denote the subfilling formed by the cells on
the main diagonal and below it. See Figure 4.2 for an example. Note that both M~ and
M, are fillings of F'--shapes, and if M is a permutation matrix, then the two fillings are
sparse.

Figure 4.2: The fillings M~ and M, .

The rows and columns of M~ and M will have their numbering inherited from the
matrix M. In particular, this means that the leftmost column of M~ does not contain any
cell at all, while the only cell in the second column of M~ will be referred to as cell (1, 2).

Analogously, we define M™ to be the filled shape corresponding to the entries strictly
above the main diagonal of M.

Clearly, a symmetric matrix M is completely determined by M. Observe that a
symmetric 01-matrix M is an involution if and only if, for every ¢ = 1,...,n, the filling
M has exactly one 1-cell in the union of all cells of the i-th row and i-th column.

The filling M~ does not determine a symmetric matrix M uniquely, since it does not
carry any information about the diagonal cells. However, if we further assume that M
is an involution, then it is again easy to see that M is determined by M ~. Note that in
such case, the filling M~ has the property that the union of ¢-th row and ¢-th column has
at most one 1-cell. Conversely, it is not difficult to see that a filling M~ that satisfies the
property above identifies a unique involution M.

For a permutation P, let P’ denote the involution (POT 1%). We are now ready to state
and prove the first part of our first result on I-Wilf equivalence, which corresponds to the
equation (4.1) of Theorem 31.
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Proposition 33. If A and B are two ~-equivalent permutation matrices, then Alp,
Moreover, the bijection between J,,(A’) and J,(B’) preserves fized points.

Proof. Let M € J, be an involution. We claim that M avoids A’ if and only if M~
avoids A. To see this, notice that any occurrence of A" in M can be restricted either
to an occurrence of A in M~ or an occurrence of AT in M*. However, since M is the
transpose of M ~, we know that M+ contains AT if and only if M~ contains A. It follows
that if M contains A’ then M~ contains A. The converse is even easier to see.

Let us choose M € J,,(A’). Since M~ is a sparse A-avoiding filling, we may apply the
bijection from Proposition 32 to M ~, to obtain a B-avoiding sparse filling ¥ of the same
shape.

The new filling ¥ has a nonzero entry in a row i (or column i) whenever M~ has a
nonzero entry in the same row (or column, respectively). In particular, the filling ¥ has
the property that the union of the i-th row and i-th column has at most one 1-cell. This
implies that ¥ = N~ for an involution N € I,,.

Furthermore, the fixed points of N are in the same position as the fixed points of
M, because the position of the fixed points is determined by the zero rows and columns,
which are preserved by the bijection from Proposition 32.

Clearly, since N~ avoids B, we know that B avoids B’. Each step of this construction
can be inverted which proves the bijectivity. The bijection preserves fixed points by
construction. O

By a similar reasoning, we obtain an analogous result for patterns of odd size. For a
permutation M, let M"” denote the involution

(MT 0 0 )
010 |,
00 M
and let M* denote the permutation (J J; ).

We are now ready to state a proposition which proves the equation (4.2) from Theo-
rem 31.

Proposition 34. If A and B are ~-equivalent, then A"Lpr, Moreover, the bijection
between I,,(A”) and I,(B") preserves fized points.

Proof. By an argument analogous to the proof of Proposition 33, we may observe that
an involution M avoids A” if and only if M avoids the pattern A*. By Proposition 32,
the two patterns A* and B* are ~-equivalent and furthermore, the bijection realizing
this equivalence preserves the filling of the corners of the shape. Note the corners of M,
correspond exactly to the diagonal cells of the original permutation matrix M.

Now we consider M, for an involution M € I,,(A”). The bijection of Proposition 32
maps M, to a B*-avoiding filling ¥. Since the bijection preserves the number of nonzero
entries in each row and each column of M, and since it also preserves the entries on the
intersection of i-th row and i-th column (these are precisely the corners), we know that
the bijection preserves, for each i, the number of nonzero entries in the union of the i-th
row and i-th column. In particular, the filling U has exactly one nonzero entry in the
union of i¢-th row and i-th column, which guarantees that there is a unique involution N
satisfying N, = V. Since ¥ avoids B*, we know that N avoids B”.

Because the bijection preserves the entries in the diagonal cells (i,7), i = 1,...,n,
the permutations M and N have the same fixed points. This provides the required
bijection. O

The proof of the main result now follows easily from the previous propositions.
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Proof of Theorem 31. Let A and B be ~-equivalent patterns. Let C' be an arbitrary
pattern. By Proposition 32, the patterns (§ Q) and (§ %) are X-equivalent as well.
By applying Propositions 33 and 34 to these two patterns, we obtain directly the two
equations of Theorem 31. O

By recalling that the two diagonal patterns I, and J; are shape-Wilf equivalent, and
hence also ~-equivalent, we may now easily see that the two remaining conjectures of
Jaggard were correct.

Corollary 35. We have 5432145312 and 654321456123564312.

Let us mention that a computer enumeration performed by Mansour [22| has verified
that among permutations of order at most 7, there are no pairs of I-Wilf equivalent
patterns, apart from those that are covered by presently known results.
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Chapter 5
Words

In this chapter, we will investigate a very natural generalization of the concept of permu-
tation, namely the k-ary words, also referred to as multiset permutations.

The results presented in this sections are based on a forthcoming article by Jelinek
and Mansour [38|. These results extend previous work of Burstein [15], who described
the equivalence classes of k-ary words of length at most 3, and of Savage and Wilf [60],
who dealt with integer compositions (as well as words) avoiding patterns of length at
most 3. We will present several new bijective arguments that extend these results to
larger patterns.

5.1 Basic terminology

Let us first recall the terminology and notation related to pattern avoidance of k-ary
words.

Let [k] = {1,2,...,k} be a linearly ordered alphabet of k letters. We let [k]" denote
the set of words of length n over this alphabet.

Consider two words, o € [k]” and 7 € [(]™. Assume additionally that 7 contains all
letters 1 through ¢—a word with this property is called reduced. We say that o contains
an occurrence of 7, or simply that o contains 7, if o has a subsequence order-isomorphic
to 7, i.e., if there exist 1 <i; < ... < 1,, < n such that, for any two indices 1 < a,b < m,
0;, < 0y, if and only if 7, < 7. If o contains no occurrences of 7, we say that o avoids 7.

In this chapter, the term pattern will refer to an arbitrary reduced word. For a pattern
7, let [k]"(7) denote the set of k-ary words of length n which avoid the pattern 7. We say
that two patterns 7 and 7 are word-equivalent (or, more briefly, w-equivalent), if for all
values of k and n, we have the identity |[k]"(7)| = |[k]™(7")].

There are two operations on words which trivially preserve the w-equivalence, called
the reversal and the complement. The reversal of a word 7 € [k]™, denoted by 7, is
obtained by writing the letters of 7 in the reverse order, i.e., the ¢-th letter of 7 is equal
to the (m — i+ 1)-th letter of 7. The complement of a word 7, denoted by 7€, is obtained
by turning 7 “upside-down”, i.e., a letter j is replaced by the letter £ —j 41, where £ is the
largest letter of 7. For example, 1232 = 2321, 1232€ = 3212, and 1232C = 1232° = 2123.

Several authors have previously considered pattern avoidance in words [1, 4, 15, 16, 56].
In 1998, Burstein [15] proved that 123 and 132 are w-equivalent. In 2002, Burstein and
Mansour [16] proved the w-equivalence of 121 and 112. By these two results we obtain
that there are three w-equivalence classes of word patterns of length three:

o 111,

o 112,121,122,211,212, 221,
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e 123,132,213,231,312,321.

5.2 Compositions

A composition 0 = o109+ -0,, of n € N is an ordered collection of one or more positive
integers whose sum is n. The numbers oy, ..., 0, are called parts of the composition. We
let C,, denote set of all compositions of n. A composition may thus be regarded as a k-ary
word.

We again say that the composition o € C, contains a pattern 7 € [(]°, if ¢ contains
a subsequence order-isomorphic to 7. Let C,(7) denote the set of all the compositions in
G, that avoid 7. We say that two patterns 7 and 7’ are c-equivalent, if for all values of
n, we have |C,(7)| = |C,(7")|. It is easy to see that every pattern is c-equivalent to its
reversal. However, a pattern does not need to be c-equivalent to its complement.

Savage and Wilf [60] considered pattern avoidance in compositions for a single pattern
T € 83 (recall that 83 is the set of the permutations on three letters), and showed that
the number of compositions of n avoiding 7 € 83 is independent of 7, that is, the three
patterns 123, 213 and 132 are all c-equivalent. Recently, Heubach, Mansour and Munagi
[26] showed that 112 is c-equivalent to 121, and 122 is c-equivalent to 212. These two
results complete the classification of patterns of length three in compositions, and show
they form exactly four c-equivalence classes:

123,213,132, 231, 312, 321,

112,121,211,

122,212,221,

o 111.

5.3 Strong equivalence of words

We now introduce an equivalence relation on words, which refines both the w-equivalence
and the c-equivalence. For a word o of length n, the content of o is the unordered multiset
of the n letters appearing in o. In particular, two words have the same content, if one
can be obtained from the other by a suitable rearrangement of letters.

We say that two patterns 7, 7" are strongly equivalent, denoted by T , if for every
k,n there is a bijection f between [k|"(7) and [k]"(7') with the property that for every
o € [k]"(7), the word f(o) has the same content as o. Clearly, if two patterns are
strongly equivalent, then they are also w-equivalent and c-equivalent. Each pattern is
strongly equivalent to its reversal, and if two patterns 7 and o are strongly equivalent,
then their complements 7¢ and o© are strongly equivalent as well. Strong equivalence
has already been considered (under different terminology) by Savage and Wilf [60], who
proved that all permutation patterns of length 3 are strongly equivalent.

5.4 Semi-standard fillings of Ferrers shapes

Several families of strongly equivalent words may be deduced from known results on filings
of diagrams.

To establish the link between words and fillings, we will represent k-ary words of length
n as 0l-matrices with k£ rows and n columns and exactly one 1-cell in each column. For a
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word o of length n over the alphabet [k], we let M (o, k) be the k x n matrix with a 1-cell
in row ¢ and column j if and only the j-th letter of o is equal to i.

With this representation, we may use known bijections on fillings of diagrams to obtain
directly new equivalences among words. Recall that a semi-standard filling of a Ferrers
shape is a 01-filling in which every column has exactly one 1-cell. We will say that two
matrices M and M’ are Ferrers equivalent, denoted by M ~ M, if for every Ferrers shape
F the number of M-avoiding semi-standard fillings is equal to the number of M’-avoiding
semi-standard fillings. We say that M and M’ are strongly Ferrers equivalent if for every
Ferrers shape F' there is a bijection between M-avoiding and M’-avoiding semi-standard
fillings of F' that preserves the number of 1-cells in each row.

The following lemma allows us to translate results about fillings of Ferrers shapes into
results about words. The lemma is based on the red-green argument that we have already
encountered several times.

For a word p € [(|* and an integer k, we let p + k denote the word obtained by
increasing each letter of p by k.

Lemma 36. Let 7 and 7' be two patterns with k letters, let p be a pattern with ¢ letters.
If M(7,k) and M (7', k) are strongly Ferrers equivalent matrices then the two (k+()-letter
patterns T(p+ k) and 7' (p + k) are strongly equivalent words. (Here T(p + k) denotes the
concatenation of T and p + k.)

Proof. Let us write 0 = 7(p+ k) and o' = 7/(p+ k). For a given m and n, choose a word
x € [m]|"(o), and let M = M(z, m) be its corresponding matrix. Note that M avoids the
matrix M (o, k + ¢).

Color the cells of M red and green, where a cell ¢ is green if and only if the submatrix
of M strictly to the right and strictly to the top of ¢ contains M (p, £), otherwise the cell
is red. Note that the green cells form a Ferrers diagram and that the nonzero columns of
this diagram induce an M (7, k)-avoiding semi-standard filling. Using the strong Ferrers
equivalence of M (7, k) and M (7', k), we may transform this filling into a M (7', k)-avoiding
filling. This operation transforms M into a matrix M’ representing a ¢’-avoiding word z’
with the same content as z.

To see that this operation can be inverted, observe that the operation has only modified
the filling of the green cells of M. Observe also that for every green cell ¢ of M, there is a
copy of M(p, ) strictly to the right and strictly above ¢ which only consists of red cells.
Thus the red cells of M coincide with the red cells of M’.

We thus have a bijection showing that oo, O

By Theorem 7, we know that the matrices I and J; are strongly Ferrers equivalent.
Applying Lemma 36, we thus obtain the following result.

Theorem 37 (J., Mansour [38|). For any pattern p and any integer k € N, the word
12---k(p+ k) is strongly equivalent to k(k —1)---1(p+ k).

5.5 Patterns equivalent to 12*

From now on, we will often use the shorthand notation n* to denote the word consisting
of the symbol n repeated k times.

In this section, we will deal with a family of patterns that are strongly equivalent to
the pattern 12¥. Our aim is to prove the following result.

Theorem 38 (J., Mansour [38|). For any two integers i and j the matriz M(2127,2) is
strongly Ferrers equivalent to M (12777 2).
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In view of Lemma 36, the theorem directly yields the following result.

Corollary 39. For any pattern p, the words 21123(p + 2) and 12777 (p + 2) are strongly
equivalent.

Rather than proving Theorem 38 directly, we shall prove a more refined result, which
will become useful later. To state the refinement, we need additional terminology.

First of all, we will now work in the more general setting of stack shapes, instead
of the Ferrers shapes considered above. The notions of Ferrers equivalence and strong
Ferrers equivalence can be naturally extended to semi-standard fillings of stack shapes:

we will say that two matrices M and M’ are stack equivalent, denoted by M o~ M, if
they are equirestrictive with respect to semi-standard fillings of every stack polyomino.
We will say that they are strongly stack equivalent if they are stack equivalent and the
corresponding bijection preserves the number of 1-cells in each row.

Let ® be a filling of a stack polyomino and let ¢ > 1 be an integer. A sequence
C1,C2, ..., ¢ of 1-cells in @ is called a decreasing chain (or increasing chain) if for every
i € [t — 1] the column containing ¢; is to the left of the column containing ¢;;; and the
row containing ¢; is above the row of ¢;;1 (or below the row of ¢;,1, respectively).

A filling is t-falling (or t-rising) if it has at least ¢ rows, and in its bottom ¢ rows,
the leftmost 1-cells of the nonzero rows form a decreasing chain (or increasing chain,
respectively).

In the rest of this section, we let S denote the sequence 2127, where p, ¢ are nonneg-
ative integers.

Here is the promised refinement of Theorem 38.

Lemma 40. For every p,q > 0, the matrix M(qu,Q) 15 strongly stack equivalent to the
matriz M(SOP’L‘I,Q). Furthermore, if p > 1, then for every stack polyomino P, there is a
bijection f between the M(SF,2)-avoiding and M(SP*? 2)-avoiding semi-standard fillings
of P with the following properties.

o The bijection f preserves the number of 1-cells in every row.
e Both f and f~! map t-falling fillings to t-falling fillings, for every t > 1.

Proof. Let M = M(SP,2) and M' = M(S§",2), for some p,q > 0. Let P be a stack
polyomino. We will proceed by induction over the number of rows of P. If P has only one
row, then a constant mapping is the required bijection. Assume now that P has r > 2
rows, and assume that we are presented with a semi-standard filling ® of P. Let P~ be the
diagram obtained from P by erasing the r-th row as well as every column that contains
a 1-cell of ® in the r-th row. The filling ® induces in P~ a semi-standard filling ®~.

We claim that for every p,q > 0, the filling ® avoids M if and only if the following
two conditions are satisfied.

(a) The filling ®~ avoids M.

(b) If the r-th row of ® contains m 1-cells in columns ¢; < ¢3 < -+ < ¢, and if
m > p+ q, then for every ¢ such that p < ¢ < m — ¢, the column c¢; is either the
rightmost column of the r-th row of I, or it is directly adjacent to the column ¢;, 1,
i.e., ¢; +1 =1 (see Figure 5.1).

Clearly, the two conditions are necessary. We now show that they are sufficient. The
first condition guarantees that ® does not contain any copy of M that would be confined
to the first » — 1 rows. The second condition guarantees that ® has no copy of M that
would intersect the r-th row.
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Figure 5.1: Illustration of condition (b) in the proof of Lemma 40.

We now define recursively the required bijection between M-avoiding and M’-avoiding
fillings. Let ® be an M-avoiding filling of P, let ®~ and c¢y,..., ¢, be as above. By the
induction hypothesis, we already have a bijection between M-avoiding and M’-avoiding
fillings of the shape P~. This bijection maps ®~ to a filling U~ of P~. Let U be the
filling of P that has the same values as ® in the r-th row, and the columns not containing
a 1-cell in the r-th row are filled according to ¥~. Note that ¥ contains no copy of M’ in
its first » — 1 rows and it contains no copy of M that would intersect the r-th row.

If ¥ has fewer than p + ¢ 1-cells in the r-th row, we define f(®) = WU, otherwise
we modify ¥ in the following way. For every ¢+ = 1,...,q, we consider the columns
with indices strictly between c¢,—q4; and ¢,—gyir1 (if ¢ = ¢, we take all columns to the
right of ¢, that intersect the last row). We remove these columns from ¥ and re-insert
them between the columns ¢,;;_1 and c,4;. Note that these transformations preserve the
relative left-to-right order of all the columns that do not contain a 1-cell in their r-th
row. In particular, the resulting filling still has no copy of M’ in the first » — 1 rows. By
construction, the filling also satisfies condition (b) for the values p’ = p+ ¢ and ¢ = 0
used instead of the original p and ¢. Hence, it is a M’-avoiding filling. This construction
provides a bijection f between M-avoiding and M’-avoiding fillings.

It is clear that f preserves the number of 1-cells in each row. It remains to check that
if p > 1, then f preserves the t-falling property. Let us fix ¢, and let » be the number
of rows of P. If r < ¢ then no filling of P is t-falling. If » = ¢, then & is ¢-falling if and
only if &~ is (¢ — 1)-falling and the r-th row is either empty or has a 1-cell in the leftmost
column of P. These conditions are preserved by f and f~!, provided p > 1. Finally, if
r > t, then ® is ¢-falling if and only if &~ is ¢-falling. We now obtain the required result
from the induction hypothesis and from the fact that the relative position of the 1-cells
of the first » — 1 rows does not change when we transform ¥ into f(®). O

Lemma 40 immediately implies Theorem 38, which in turn implies Corollary 39.

5.6 Patterns equivalent to 1232*

Corollary 39 shows that all the words of length k£ that have a single symbol ‘1’ and £ — 1
symbols ‘2" are strongly equivalent. In other words, any pattern that can be obtained
from 12*~! by rearranging its symbols is strongly equivalent to it. We will now show
that a similar property also holds for the pattern 12¥723. This time, the proof is quite
different, and does not use the notion of fillings.
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Theorem 41 (J., Mansour [38|). Let k > 3 be an integer. All the patterns of length k
that consist of a single symbol ‘1°, a single symbol ‘3" and k — 2 symbols ‘2’ are strongly
equivalent.

Proof. Let k be fixed. Let 7(7, j) denote the word of length k& whose i-th symbol is ‘1°; the
j-th symbol is ‘3’ and the remaining symbols are equal to ‘2’. Our aim is to show that
all the patterns in the set {7(i,7),i # 7,1 <i,j < k} are strongly equivalent. Since each
word is strongly equivalent to its reversal, we only need to deal with the words 7(i, j)
with ¢ < j. From Corollary 39, we deduce that the words {7(i,k),i =1,...,k—1} are all
strongly equivalent, and hence the words {7(1,7),j =2, ..., k} are all strongly equivalent
as well.

To prove the theorem, it thus suffices to show that for every ¢ < j < k, the word
7(i,7) is strongly equivalent to the word 7(i + 1,j + 1). Let m be an integer. We will
say that a word o contains 7(i,7) at level m if there is a pair of symbols ¢, h such that
¢ < m < h, and such that the word o contains a subword over the alphabet {¢,m, h}
which is order-isomorphic to 7(i, 7). For example, the word 132342 contains the pattern
1223 at level 3 (due to the subword 1334), while it avoids 1223 at level 2 (since it does
not contain the subword ¢22h for any values of ¢ < 2 < h).

Assume now that we are given a fixed pair of indices ¢, 7, with ¢ < 7 < k, and we
want to provide a content-preserving bijection between 7(i, j)-avoiding and 7(i+1, j +1)-
avoiding words of length n. We will say that a word o is an m-hybrid if for every m < m,
the word o avoids 7(i,j) at level m, while for every m > m, o avoids 7(i + 1,5 + 1) at
level m.

We will present, for any m > 1, a content-preserving bijection between m-hybrids and
(m+ 1)-hybrids. By composing these bijections, we obtain the required bijection between
7(i, j)-avoiding and 7(i 4+ 1, j + 1)-avoiding words.

Let m > 1 be fixed. Let o be an arbitrary word. A letter of o is called low if it is
smaller than m, and a letter is called high if it is greater than m. A low cluster of o is
a maximal block of consecutive low symbols of o. A high cluster is defined analogously.
Thus, every symbol of ¢ different from m belongs to a unique cluster. The landscape of
o is a word over the alphabet {L, m, H} obtained by replacing every low cluster of o by a
single symbol L, and every high cluster of ¢ by a single symbol H. For example, if m = 3,
the landscape of the word 133212443 is the word L33LH3.

Note that o contains 7(i,j) at level m if and only if the landscape of ¢ contains the
subsequence m!~!Lm? = " THm*F7.

We will now describe the bijection between m-hybrids and (m + 1)-hybrids. Let o be
an m-hybrid word, let X be its landscape. We split X into three parts X = Pm.S, where
P is the prefix of X formed by all the symbols of X that appear before the first occurrence
of m in X, and S is the suffix of all the symbols that appear after the first occurrence
of m. Let us define a word X’ by X’ = SmP. Note that X’ contains a subsequence
m~Lm/ 7 '"Hm*7 if and only if X contains a subsequence m!Lm?~*"THm*7~!, Thus,
since X is a landscape of a word that avoids 7(i + 1,5 + 1) at level m, we know that any
word with landscape X’ must avoid 7(z, j) at level m.

Let us define a word ¢’ by the following three rules.

1. The word ¢’ has landscape X’.

2. For any p, the p-th low cluster of ¢’ consists of the same sequence of symbols as the
p-th low cluster of o.

3. For any ¢, the g-th high cluster of ¢’ consists of the same sequence of symbols as
the g-th high cluster of o.
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Clearly, there is a unique word o’ satisfying these properties. Note that the subse-
quence of all the low symbols of ¢ is the same as the subsequence of all the low symbols of
o', and these sequences are partitioned into low clusters in the same way. An analogous
property holds for the high symbols too.

We claim that ¢’ is an (m + 1)-hybrid. We have already pointed out that ¢’ avoids
7(i,7) at level m. Let us now argue that o’ avoids 7(i,j) at level m, for every m < m.
For contradiction, assume that ¢’ contains a subsequence T = W' Ym/ "~ 'hm*~J, for
some ¢ < m < h. If h < m, then all the symbols of T" are low, and since o has the
same subsequence of low symbols as ¢/, we know that ¢ also contains T" as a subsequence,
contradicting the assumption that o is an m-hybrid.

Assume now that h > m. Let x and y be the two symbols adjacent to h in the sequence
T (note that h is not the last symbol of T, so x and y are well defined). Both x and y are
low, and they belong to distinct low clusters of ¢/, because the symbol h is not low. Since
the low symbols of ¢ are the same as the low symbols of ¢/, and they are partitioned into
clusters in the same way, we know that o contains a subsequence ' 'm’~"~1h'mF =7,
where 1’ is a non-low symbol. This shows that o contains 7(i,j) at level T, which is
impossible, because ¢ is an m-hybrid.

By an analogous argument, we may show that ¢’ avoids 7(i + 1,j + 1) at any level
m > m. We conclude that the mapping described above transforms an m-hybrid o into
an (m + 1)-hybrid o’. It is clear that the mapping is reversible and provides the required
bijection between m-hybrids and (m -+ 1)-hybrids. O

By computer enumeration [38], it has been verified that all the w-equivalence classes
of patterns of length at most six and all the c-equivalence classes of patterns of length at
most five can be described using the criteria given in this chapter.
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Chapter 6

Partitions

In this final chapter of the main part of the thesis, we will deal with pattern avoidance
of set partitions. Let us first recall the main notions related to this topic. A partition of
size n is a collection By, Bo, ..., By of nonempty disjoint sets, called blocks, whose union
is the set [n] = {1,2,...,n}. We will assume that By, B, ..., By are listed in increasing
order of their minimum elements, that is, min By < min By < --- < min By.

There are several possibilities to represent a set partition. For our purposes, we chose
to represent a partition of size n by its canonical sequence, which is an integer sequence
T = mmy-- -7, such that m; = k if and only if © € By. For instance, 1231242 is the
canonical sequence of the partition of {1,2,...,7} with the four blocks {1,4}, {2,5,7},
{3} and {6}.

Note that a sequence 7 over the alphabet [d] represents a partition with d blocks if
and only if it has the following properties.

e Each number from the set [d] appears at least once in 7.

e For each 7,7 such that 1 < ¢ < j < d, the first occurrence of ¢ precedes the first
occurrence of j.

We remark that sequences satisfying these properties are also known as restricted growth
functions. The idea of representing a set partition by a restricted growth function was
first suggested by Hutchinson [31], as a basis for an efficient algorithm to generate all set
partitions. The algorithmic aspects of restricted growth functions were later investigated
by Williamson [72], and by Savage [59]. Simion |61, Section 3.4] mentions the connection
between restricted growth functions and various combinatorial statistics of set partitions.
Milne [51, 52, 53| and Wachs [71] used restricted growth functions as a tool in the study
of combinatorial identities.

Throughout this chapter, we will identify a set partition with its corresponding canon-
ical sequence. In this representation, the containment relation of set partitions can be
regarded as a special case of the containment relation of k-ary words, which we considered
in Chapter 5.

Let P, denote the set of all the partitions of [n], let P,(c) denote the set of all
partitions of [n] that avoid o, and let p, and p,(o) denote the cardinality of P, and
Pn(0), respectively. We say that two partitions o and o’ are equivalent, denoted by
o~ o, if p,(0) = p,(c’) for each n.

The concept of pattern avoidance based on restricted growth functions has been intro-
duced by Sagan [58|, who considered, among other topics, the enumeration of partitions
avoiding patterns of size three. In this thesis, we extend this study to larger patterns.
In particular, we will present recent results of Jelinek and Mansour [37], which yield new
families of equivalent partition patterns. By computer enumeration, it has been verified
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that the criteria described here cover all the equivalence classes of patterns of size n < 7.
As usual, we omit the enumeration data in this thesis; however, they are available in the
original paper [37| and references therein.

Let us remark, that there are several alternative ways to define containment for set
partitions. For instance, Chen et al. [17, 18| have used the path-representation of set
partitions. In this setting, they have obtained, among other results, an identity between
k-noncrossing and k-nonnesting partitions. It was later pointed out by Krattenthaler [48]
that this identity is a consequence of more general identities between diagonal-avoiding
fillings of diagrams.

Other possible representations of set partitions have been considered by Klazar [42, 44|,
and by Goyt [28]. However, we are not aware of any attempt at systematic Wilf-type
classification in these settings.

6.1 Basic facts and previous results

Let us first introduce several notational conventions that will be applied throughout the
rest of this thesis. For a finite sequence S = s;sy---5s, and an integer k, we let S + k
denote the sequence (s; + k)(sz + k) --- (s, + k). For a symbol £ and an integer d, the
constant sequence (k,k, ... k) of length d is denoted by k?. To prevent confusion, we
will use capital letters S, T ... to denote arbitrary sequences of positive integers, and we
will use lowercase greek symbols (7,0, 7,...) to denote canonical sequences representing
partitions.

Occasionally, it will be convenient to represent an infinite sequence (a,)%, by its
exponential generating function (or EGF for short), which is the formal power series
F(z) = 3,50 %%, We will deal with the generating functions of the sequences of the
form (p,(7)),o, Where 7 is a given pattern. We simply call such a generating function
the EGF of the pattern 7.

Let us summarize previous results relevant to our topic. Let exp(z) = >~ % and

exp_,(z) = Zﬁ;é fL—T,L We first state two simple propositions, which already appear in

Sagan’s paper on pattern-avoiding partitions [58].

Proposition 42. A partition avoids the pattern 1% if and only if each of its blocks has
size less than k. The EGF of the pattern 1% is equal to

exp(exp(x) —1). (6.1)

Proposition 43. A partition avoids the pattern 12---k if and only if it has fewer than
k blocks. The corresponding EGF s equal to

exp . (exp(z) — 1). (6.2)

We omit the proofs of these two propositions. Let us just remark that the formulas
given above are obtained by standard manipulation of EGFs. A common generalization
of these formulas can be found, e.g., in Flajolet and Sedgewick’s book |24, Proposition
I1.2].

The enumeration of partitions with fewer than k blocks is closely related to the Stirling
numbers of the second kind S(n, m), defined as the number of partitions of [n] with exactly
m blocks (see sequence A008277 in the OEIS [68]).

Sagan 58] has described and enumerated the pattern-avoiding classes P, (m) for the
five patterns 7 of length three. We summarize the relevant results in Table 6.1. We again
omit the proofs.
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T ‘ Pn(T)
111 sequence A000085 in [68]
112, 121, 122, 123 | 27

Table 6.1: Number of partitions in P, (7), where 7 € P3).

6.2 General classes of equivalent patterns

Most of our results on ~-equivalent partitions yield infinite families of ~-equivalent pairs
of patterns. We thus begin by presenting these ‘general’ results and then, in Sections 6.5
and 6.6, we deal with two ‘sporadic’ cases of equivalent pairs, which are necessary to
complete our classification of small patterns.

Pattern-avoiding fillings of diagrams. Since pattern avoidance in partitions is just
a special case of pattern avoidance in words, it should be no surprise that many of our
results may be reduced to results on pattern-avoiding fillings of shapes. Let us thus begin
by explaining the relationship between fillings and canonical sequences.

Recall that an F'--shape is a bottom-right aligned reflected copy of a Ferrers shape.
We will say that two 0l-matrices M and M’ are F--equivalent, denoted by M ~ M’ if
they are equirestrictive with respect to semi-standard fillings of F'--shapes. Let us also
recall that r(F) and ¢(F') denote, respectively, the number of rows and columns of a
diagram F'.

Since our next arguments mostly deal with semi-standard fillings, we will drop the
adjective ‘semi-standard’ and simply use the term ‘filling’, when there is no risk of ambi-
guity.

The following argument, which is similar to Lemma 2, explains the close link between
semi-standard fillings and semi-sparse fillings. We state it here as a remark, so that we
may refer to it later. The proof is essentially the same as the proof of Lemma 2, and we
only sketch it here.

Remark 44. Let M and M’ be two F'--equivalent 01-matrices with a 1-cell in every column,
and let f be a bijection between M-avoiding and M’-avoiding semi-standard fillings of
F--shapes. There is a natural way to extend f into a bijection between M-avoiding and
M'-avoiding sparse fillings of F'--shapes. Assume that ® is a sparse M-avoiding filling
of an F--shape F. The non-zero columns of ® form a semi-standard filling of a (not
necessarily contiguous) subdiagram of F'. We apply f to this subfilling to transform &
into a sparse M’-avoiding filling of F.

A completely analogous argument can be made for stack polyominoes instead of F--
shapes.

Let S = 5182+ - - s, be a sequence of positive integers, and let k > max{s;: i € [m]} be
an integer. Recall that M (S, k) denotes the 01-matrix with & rows and m columns which
has a 1-cell in row 7 and column j if and only if s; = <.

We now describe the correspondence between partitions and fillings of F'--shapes
(recall that 7 + k denotes the sequence obtained from 7 by adding k to every element).
Although the correspondence is based on a routine red-green argument, there are several
technical difficulties that need to be addressed. For this reason, we state the following
lemma with full proof.

Lemma 45. Let S and S’ be two nonempty sequences over the alphabet [k|, let T be an
arbitrary partition. If M(S,k) is F-=-equivalent to M(S', k) then the partition pattern
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o=12---k(t + k)S is ~-equivalent to o' = 12--- k(T + k)S".

Proof. Let 7 be a partition of [n] with m blocks. Let M denote the matrix M (m, m). Fix
a partition 7 with ¢ blocks, and let 7" denote the matrix M (7, ). We will color the cells of
M red and green. If 7 is nonempty, then the cell in row ¢ and column j is colored green if
and only if the submatrix of M induced by the rows ¢+ 1,...,m and columns 1,...,7—1
contains T'. If 7 is empty, then the cell in row ¢ and column j is green if and only if row
i has at least one 1-cell strictly to the left of column j. A cell is red if it is not green.

Note that the green cells form an F--shape, and the entries of the matrix M form
a semi-sparse filling @ of this shape. Also, note that the leftmost 1-cell of each row is
always red, and any 0-cell of the same row to the left of the leftmost 1-cell is red too.

It is not difficult to see that the partition 7 avoids o if and only if the filling &4 of
the ‘green’ diagram avoids M (S, k), and = avoids ¢’ if and only if &g avoids M (S, k).
Since M (S, k) & M(S', k), there is a bijection f that maps M (S, k)-avoiding fillings of
an F--shape onto M (S, k)-avoiding fillings of the same shape. By Remark 44, f can
be extended to semi-sparse fillings. Using this extension of f, we construct the following
bijection between P, (o) and P, (0’): for a partition 7 € P,(o) with m blocks, we take
M and @4 as above. By assumption, ®g is M (S, k)-avoiding. Using the bijection f and
Remark 44, we transform ®¢ into an M (S’, k)-avoiding semi-sparse filling f(®q) = Vg,
while the filling of the red cells of M remains the same. We thus obtain a new matrix M’.

Note that if we color the cells of M’ red and green using the criterion described in
the first paragraph of this proof, then each cell of M’ will receive the same color as the
corresponding cell of M, even though the occurrences of 7" in M’ need not correspond
exactly to the occurrences of T"in M. Indeed, if 7 is nonempty, then for each green cell g
of M, there is an occurrence of 7" to the left and above g consisting entirely of red cells.
This occurrence is contained in M’ as well, which guarantees that the cell g remains green
in M’. A similar argument can be made if 7 is empty.

By construction, M’ has exactly one 1-cell in each column, hence there is a sequence 7’
over the alphabet [m] such that M" = M(7’, m). We claim that 7’ is a canonical sequence
of a partition. To see this, note that for every i € [m], the leftmost 1-cell of M in row i is
red and the preceding 0-cells in row ¢ are red too. It follows that the leftmost 1-cell of row
i in M is also the leftmost 1-cell of row 7 in M’. Thus, the first occurrence of the symbol
i in 7 appears at the same place as the first occurrence of 7 in 7/, hence 7’ is indeed a
canonical sequence. The green cells of M’ avoid M (S’, k), so ' avoids o’. Obviously, the
transform 7 — 7’ is invertible and provides a bijection between P, (o) and P,(c"). O

In general, the relation 12... kS ~ 12... kS’ does not imply that M (S, k) and M (S5, k)
are F--equivalent. In Section 6.6, we will prove that 12112 ~ 12212, even though
M (112, 2) is not F--equivalent to M (212, 2).

On the other hand, the relation 12... kS ~ 12... kS’ allows us to establish a somewhat
weaker equivalence between pattern-avoiding fillings, using the following lemma.

Lemma 46. Let S be a nonempty sequence over the alphabet [k, and let 7 = 12---kS.
For every n and m, there is a bijection f that maps the set of T-avoiding partitions of
[n] with m blocks onto the set of all the M(S,k)-avoiding semi-standard fillings ® of
F--shapes with n — m columns and at most m rows.

Proof. Let m be a T-avoiding partition of [n] with m blocks. Let M = M (mw,m), and let
us consider the same red and green coloring of M as in the proof of Lemma 45, i.e., the
green cells of a row ¢ are precisely the cells that are strictly to the right of the leftmost
1-cell in row 1.
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Note that M has exactly m red 1-cells, and each 1-cell is red if and only if it is the
leftmost 1-cell of its row. Note also that if ¢; is the column containing the red 1-cell in
row ¢, then either ¢; is the rightmost column of M, or column ¢; + 1 is the leftmost column
of M with exactly ¢ green cells.

Let & be the filling formed by the green cells. As was pointed out in the previous
proof, the filling ® is a semi-sparse M (S, k)-avoiding filling of an F'--shape. Note that
for each + = 1,...,m — 1, the filling ®; has exactly one zero column of height i, and this
column, which corresponds to ¢;;1, is the rightmost of all the columns of ®; with height
at most 1.

Let ® be the subfilling of ®¢ induced by all the nonzero columns of ®¢. Observe
that @ is a semi-standard M (S, k)-avoiding filling of an F'--shape with exactly n —m
columns and at most m rows; we thus define f(7) = &.

Let us now show that the mapping f defined above can be inverted. Let ¥ be an
M(S, k)-avoiding filling of an F'--shape with n — m columns and at most m rows. We
insert m — 1 zero columns cs, c3, ..., ¢, into the filling ¥ as follows: each column ¢; has
height i —1, and it is inserted immediately after the rightmost column of WU {¢y, ..., ¢;1}
that has height at most + — 1. Note that the filling obtained by this operation corresponds
to the green cells of the original matrix M. Let us call this semi-sparse filling Wg.

We now add a new 1-cell on top of each zero column of Vs, and we add a new 1-cell
in front of the bottom row, to obtain a semi-standard filling of a diagram with n columns
and m rows. The diagram can be completed into a matrix M = M (mx, m), where 7 is
easily seen to be a canonical sequence of a 7-avoiding partition. O

Lemma 45 provides a tool to deal with partition patterns of the form 12---k(r +
k)S where S is a sequence over [k] and 7 is a partition. We now describe a similar
correspondence between partitions and fillings of stack polyominoes, which will be useful
for dealing with patterns of the form 12---kS(7 + k). We use a similar argument as in
the proof of Lemma 45.

Lemma 47. If 7 is a partition, and S and S’ are two nonempty sequences over the
alphabet [k] such that M(S, k) ~ M(S', k), then the partition o = 12---kS(T + k) is
equivalent to the partition o' = 12---kS'(1 + k).

Proof. Fix a partition 7 with ¢ blocks. Let 7 be any partition of [n] with m blocks, let
M = M(m,m). We will color the cells of M red and green. A cell of M in row i and
column 7 is green, if it satisfies the following conditions.

(a) The submatrix of M formed by the intersection of the top m — i rows and the
rightmost n — j columns contains M(7,t).

(b) The matrix M has at least one 1-cell in row i appearing strictly to the left of
column 3.

A cell is red if it is not green. Note that the green cells form a stack polyomino and the
matrix M induces a semi-sparse filling @4 of this polyomino.

As in Lemma 45, it is easy to verify that the partition 7 avoids the pattern o if and
only if the filling ®¢ avoids M (S, k), and 7 avoids ¢’ if and only if & avoids M (S’, k).

The rest of the argument is analogous to the proof of Lemma 45. Assume that M (S, k)
and M (S, k) are stack equivalent via a bijection f. By Remark 44, we extend f to a
bijection between M (S, k)-avoiding and M (S’ k)-avoiding semi-sparse fillings of a given
stack polyomino. Consider a partition 7 € P, (o) with m blocks, and define M and ®¢
as above. Apply f to the filling ®¢ to obtain an M (S’ k)-avoiding filling W; the filling
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of the red cells of M remains the same. This yields a matrix M’ and a sequence ' such
that M’ = M(n’, k). We may easily check that the green cells of M’ are the same as the
green cells of M. By rule (b) above, the leftmost 1-cell of each row of M is unaffected by
this transform. It follows that the first occurrence of 7 in 7’ is at the same place as the
first occurrence of ¢ in 7, and in particular, 7’ is a partition. By the observation of the
previous paragraph, 7" avoids ¢’ and the transform 7 +— 7’ is a bijection from P,(c) to

Pn(c’). O

The following simple result about pattern avoidance in fillings will turn out to be
useful in the analysis of pattern avoidance in partitions.

Proposition 48. If S is a nonempty sequence over the alphabet [k — 1], then M(S, k)
is stack equivalent to M (S + 1,k). If S and S’ are two sequences over [k — 1] such that

M(S, k—1) 2 M(S', k—1) then M(S, k) 2 M(S', k), and if M(S,k — 1)~ M(S', k—1)
then M(S, k) ~ M(S', k).

Proof. To prove the first part, let us define M = M(S, k), M~ = M(S,k — 1), and
M' = M(S +1,k). Notice that a filling ® of a stack polyomino P avoids M if and only if
the filling obtained by erasing the topmost cell of every column of ¢ avoids M ~. Similarly,
® avoids M’, if and only if the filling obtained by erasing the bottom row of ® avoids
M~. We will now describe a bijection between M-avoiding and M’-avoiding fillings. Fix
an M-avoiding filling ®. In every column of this filling, move the topmost element into
the bottom row, and move every other element into the row directly above it. This yields
an M’'-avoiding filling. The second claim of the theorem is proved analogously. O

Note that a sequence S over the alphabet [k — 1] does not necessarily contain all the
symbols {1,...,k — 1}. In particular, every sequence over [k — 2] is also a sequence over
[k — 1]. Thus, if S is a sequence over [k — 2], we may use Proposition 48 to deduce
M(S, k) = M(S +1,k) = M(S +2,k).

For convenience, we translate the first part of Proposition 48 into the language of
pattern-avoiding partitions, using Lemma 45 and Lemma 47. We omit the straightforward
proof.

Corollary 49. If S is a nonempty sequence over [k — 1] and 7 is an arbitrary partition,
then

12 k(r+k)S ~ 12+ k(r+k)(S+1) and 12+ - kS(r+k) ~ 12+ - k(S+ 1) (7 + k). O

We now state another result related to pattern avoidance in F--shapes, which has
important consequences for our study of partitions. Recall that for two matrices A and
B, let (4 %) denote the matrix with r(A) + r(B) rows and ¢(A4) + ¢(B) columns with a
copy of A in the top left corner and a copy of B in the bottom right corner.

The following lemma is analogous to Proposition 1. We omit the straightforward proof.

Lemma 50. If A and A’ are two F--equivalent matrices, and if B is an arbitrary matriz,
then (£3) 2 (5 9).

With the help of Lemma 50, we may easily prove the following proposition.

Proposition 51. Let s; > s9 > -+ > s, and ty >ty > - -+ > t,, be two strictly decreasing

sequences over the alphabet [k], let rq, ..., r,, be positive integers. Define weakly decreasing
sequences S = sy'sh? -+ stm and T = t7't5? - - -t'm. We have M (S, k) X M(T, k), and in

particular, if T an arbitrary partition, then 12--- k(7 + k)S =~ 12---k(r + k)T
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Proof. We proceed by induction over minimum j such that s; = ¢; for each + < m—j. For
J =0, we have S = T" and the result is clear. If 7 > 0, assume without loss of generality
that s,,—j11 — tm—j+1 = d > 0. Consider the sequence ¢} > t5 > --- >t/ such that t; = ¢,
for every i < m — j and t; =t; + d for every i > m — j.

The sequence (t;)", is strictly decreasing, and its first m — j + 1 terms are equal
to the corresponding term of (s;)™,. Define 7" = (¢})"(t,)™---(t,,)"™. By induction,
M(S, k) = M(T',k). To prove that M(T, k) <~ M(T', k), first write T = TyT}, where Ty
is the prefix of T" containing all the symbols of T" greater than ¢,,_;4; and 77 is the suffix
of the remaining symbols. Notice that 7" = Ty(T} + d). We may write M (T, k) = (5 9)
and M(T", k) = (8 3), where A = M(Ty,tmm—j — 1) and A" = M(Ty + d,t,,—; — 1). By
Proposition 48, A & A’ and by Lemma 50, M(T, k) = M(T",k), as claimed. The last
claim of the proposition follows from Lemma 45. 0

Notice that Proposition 51 implies that for any m € N and any decreasing sequence
m > a; > as > -+ > a > 1, the partition 12 - - - mayas - - - a, is equivalent to 12 - - - mk(k—
1)---1. In particular, there is a set of (at least) () equivalent patterns of size m + k.
By choosing k = |m/2], we obtain an exponentially large class of equivalent patterns. In
the whole realm of pattern avoidance of ordered structures, we are not aware of any other
exponentially large Wilf-type equivalence class.

Non-crossing and non-nesting partitions. The main application of the framework
we have developed above is the identity between non-crossing and non-nesting partitions.
This identity is a natural consequence of the often-used identity between [i-avoiding and
Jr-avoiding fillings.

We define non-crossing and non-nesting partitions in the following way.

Definition 52. A partition is k-noncrossing if it avoids the pattern 12---k12---k, and
it is k-nonnesting if it avoids the pattern 12---kk(k —1)---1.

Let us point out that there are several different concepts of ‘crossings’ and ‘nestings’
of set partitions used in the literature: for example, Klazar [42] has considered two blocks
X, Y of a partition to be crossing (or nesting) if there are four elements z; < y; < x5 < s
(or x1 < y1 < Y2 < T, respectively) such that x1, 29 € X and y1, 9. € Y, and similarly for
k-crossings and k-nestings. Unlike our approach, Klazar’s definition makes no assumption
about the relative order of the minimal elements of X and Y, which allows more gen-
eral configurations to be considered as crossing or nesting. Thus, Klazar’s k-noncrossing
and k-nonnesting partitions are a proper subset of our k-noncrossing and k-nonnesting
partitions, (except for 2-noncrossing partitions where the two concepts coincide).

Another approach to crossings in partitions has been studied by Chen et al. [17, 18|.
This approach uses the path-representation of a partition, where a partition of [n] with
blocks By, Bs, ..., By is represented by a graph on the vertex set [n], with a,b € [n]
connected by an edge if they belong to the same block and there is no other element of
this block between them. In this terminology, a partition is k-crossing (or k-nesting) if
the representing graph contains k edges which are pairwise crossing (or nesting), where
two edges e; = {a < b} and ey = {a’ < V'} are crossing (or nesting) if a < o’ <b < b (or
a < a < b <b, respectively). Let us call such partitions graph-k-crossing and graph-k-
nesting, to avoid confusion with our own terminology of Definition 52. It is not difficult
to see that a partition is graph-2-noncrossing if and only if it is 2-noncrossing, but for
nestings and for k-crossings with k£ > 2, the two concepts are incomparable. For instance
the partition 12121 is graph-2-nonnesting but it contains 1221, while 12112 is graph-2-
nesting and avoids 1221. Similarly, 1213123 has no graph-3-crossing and contains 123123,
while 1232132 has a graph-3-crossing and avoids 123123 (see Fig. 6.1).
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Figure 6.1: Comparison of path-representation and canonical function of a partition.

Chen et al. [18] have shown that the number of graph-k-noncrossing and graph-k-
nonnesting partitions of [n| is equal. Below, we prove that the same is also true for
k-noncrossing and k-nonnesting partitions. It is interesting to note that the proofs of
both these results are based on a reduction to theorems on pattern avoidance in the
fillings of Ferrers diagrams, in particular Theorem 7 of Krattenthaler (this is only implicit
in [18], a direct construction is given by Krattenthaler [48]), although the constructions
employed in the proofs of these results are different.

From Theorem 7, we may easily deduce that I, ~ J,. Furthermore, Theorem 9 of

Rubey implies that I 0 Ji. This is not quite as straightforward, since Rubey’s theorem
deals with integer fillings of moon polyominoes with prescribed row-sums. However, since
a transposed copy of a stack polyomino is a special case of a moon polyomino, Rubey’s
general result applies to fillings of stack polyominoes with prescribed column-sums as well.
In particular, it yields a bijection between [ -avoiding and Ji-avoiding semi-standard
fillings of an arbitrary stack polyomino. Combining these results with Lemma 47, we
obtain the following result.

Theorem 53 (J., Mansour [37]). Let 7 be a partition and let k be an integer. We have
the following identities:

12-- k(r+ k)12 k=12 - k(t+ k)k(k—1)---21
and
12 k12 k(t+ k) =12 kk(k— 1) -+ - 21(7 + k).

In particular, the number of non-crossing partitions of size n is equal to the number of
non-nesting partitions of size n.

The patterns 12---k(k+1)12---k and 12---k12---k(k+1). There is one more result
on pattern-avoiding partitions which can be proved using the identities between diagonal-
avoiding polyomino fillings — it is the equivalence of the pattern 12---k(k+1)12-- -k and
the pattern 12---k12---k(k+1). This time, however, the reduction is more involved than
the routine arguments we used to prove the identity between non-crossing and non-nesting
partitions. Before we prove this identity, we need some preparation.

Let P be a stack polyomino. Recall that the content of P is the multiset of column-
heights of P. We will represent the content by the sequence of the column heights of P
listed in nondecreasing order.

The key ingredient of our proof is the following result of Rubey [57].

Theorem 54 (Rubey [57|, adapted). Let P and P’ be two stack polyominoes with the
same content, and let k > 1 be an integer. There is a bijection between the Iy-avoiding
semi-standard fillings of P and the Iy-avoiding semi-standard fillings of P'.

The theorem above is essentially a special case of Proposition 5.3 from Rubey’s pa-
per [57]. The only complication is that Rubey’s proposition deals with arbitrary non-
negative integer fillings, rather than semi-standard fillings. However, as was pointed out
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in the last paragraph of Section 4 in [57], it is easy to see that Rubey’s bijection maps
semi-standard fillings to semi-standard fillings.
Let us now analyze in more detail the partitions avoiding 12---k(k + 1)12--- k.

Definition 55. Let 7 = m;---m, be a partition. We say that an element 7; is left-
dominating if m; > m; for each j < 7. We say that a left-dominating element ; left-
dominates an element w;, if m; > m;, ¢ < j, and 7; is the rightmost left-dominating
element with these two properties. Clearly, if 7; not left-dominating, then it is left-
dominated by a unique left-dominating element. On the other hand, a left-dominating
element is not left-dominated by any other element. If an element is not left-dominating,
we call it simply left-dominated.

The left shadow of 7 is the sequence 7 obtained by replacing each left-dominated ele-
ment by the symbol ‘x’. We will say that a non-star symbol ¢ left-dominates an occurrence
of a star, if 7 is the rightmost non-star to the left of the star.

For example, if 7 = 123232144, the left shadow of 7 is the sequence T = 123%3*%44. In
7, the leftmost occurrence of ‘3’ left-dominates a single star, while the second occurrence
of ‘3’ left-dominates two stars.

It is not difficult to see that a sequence T over the alphabet {1,2,...,m,x} is a left
shadow of a partition with m blocks if and only if it satisfies the following conditions.

e The non-star symbols of 7 form a non-decreasing sequence.
e Each of the symbols 1,2,...,m appears at least once.

e No occurrence of the symbol 1 may left-dominate an occurrence of *. Any other
non-star symbol may left-dominate any number of stars, and each star is dominated
by a non-star.

Any sequence that satisfies these three conditions will be called a left-shadow sequence.
Note that a left-shadow sequence is uniquely determined by the multiplicities of its non-
star symbols and by the number of stars dominated by each non-star.

Definition 56. Let m = 7y - - - m, be a partition, let & = ®(7) be the semi-standard filling
of an F--shape defined by the following conditions.

1. The columns of ® correspond to the left-dominated elements of w. The i-th col-
umn of ® has height j if the i-th left-dominated element of 7 is dominated by an
occurrence of j + 1.

2. The i-th column of ® has a 1-cell in row j if the i-th left-dominated element of 7 is
equal to j.

Note that the shape of the underlying diagram of ®(7) is determined by the left shadow
of m. More precisely, the number of columns of height A in ® is equal to the number of
stars in the left shadow which are dominated by an occurrence of A + 1. It is easy to see
that the left shadow 7 and the filling ®(7) together uniquely determine the partition .
In fact, for every semi-standard filling ® with the same shape as ®(7), there is a (unique)
partition 7" with the same left-shadow as 7, and with ®(7') = @'.

The following observation is a straightforward application of the terminology intro-
duced above. We omit its proof.

Observation 57. A partition © avoids the pattern 12---k(k + 1)12---k if and only if
the filling ® () avoids Ij. O
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We now focus on the partitions that avoid the pattern 12---k12---k(k + 1).

Definition 58. Let m = 7 ---m, be a partition. We say that an element m; is right-
dominating if either m; > m; for each j > 7 or m; > m; for each j < 4. If m; is not
right-dominating, we say that it is right-dominated. We say that m; right-dominates m; if
m; is the leftmost right-dominating element appearing to the right of m;, and =; itself is
not right-dominating.

The right shadow 7 of a partition 7 is obtained by replacing each right-dominated
element of m by a star.

For example, the right shadow of the partition m = 12213423312 is the sequence
12 % %34 x 33 % 2. A sequence T over the alphabet {1,2, ... ,m,«} is the right shadow of a
partition with m blocks if and only if it satisfies the following conditions.

e The non-star symbols of 7 form a sequence (1,2,...,m,s1,5s,...,s,) where the
sequence siSp - - - Sp 1S nonincreasing.

e No occurrence of the symbol 1 may right-dominate an occurrence of *. Any other
non-star symbol may right-dominate any number of stars, and each star is right-
dominated by a non-star.

Any sequence that satisfies these two conditions will be called a right-shadow sequence. A
right-shadow sequence is uniquely determined by the multiplicities of its non-star symbols
and by the number of stars right-dominated by each non-star.

Definition 59. Let @ = 7y ---m, be a partition. Let W = W(7) be the semi-standard
filling of a stack polyomino defined by the following conditions.

1. The columns of ¥ correspond to the right-dominated elements of 7. The i-th column
of U has height j if the i-th right-dominated element of 7 is dominated by an
occurrence of j + 1.

2. The i-th column of W has a 1-cell in row j if the i-th right-dominated element of 7
is equal to j.

Let S be the underlying diagram of W(7). Notice that S is uniquely determined by
the right shadow 7 of the partition 7, although there may be different right shadows cor-
responding to the same shape S. The sequence 7 and the filling U(7) together determine
the partition 7. For a fixed 7, the mapping = — W(7) gives a bijection between partitions
with right shadow 7 and fillings of S.

The proof of the following observation is again straightforward and we omit it.

Observation 60. A partition m avoids the pattern 12---k12---k(k 4+ 1) if and only if
the filling W(m) avoids Ij. O

We are now ready to prove the main result of this section.

Theorem 61 (J., Mansour [37]). For any k > 1, the patterns 12---k(k + 1)12---k and
12---k12---k(k + 1) are =-equivalent.

Proof. We will describe a bijection between the two pattern-avoiding classes. Let m be a
partition with m blocks that avoids 12---k(k 4+ 1)12---k. Let T be its left shadow, and
let ®(7) be the filling from Definition 56. Let F" denote the underlying shape of ®(7). By
Observation 57, ®(m) avoids .

Let ¢ be the right-shadow sequence determined by the following two conditions.
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1. For each symbol i € [m], the number of occurrences of i in 7 is equal to the number
of its occurrences in o.

2. For any ¢ and 7, the number of stars left-dominated by the j-th occurrence of 7 in
7 is equal to the number of stars right-dominated by the j-th occurrence of ¢ in &.

Note that these conditions determine ¢ uniquely. As an example, consider the left-shadow
sequence ™ = 123 * 3 x x44%. In o, the non-star elements form the subsequence 123443.
The first occurrence of 3 in 7 left-dominates a single star, the second occurrence of 3
left-dominates two stars, and the second occurrence of 4 left-dominates one star. Hence,
o is the sequence 12 x 34 x 4 x *3.

Next, let S be the stack polyomino whose columns correspond to the stars of o, where
the i-th column has height h if the i-th star of ¢ is right-dominated by h + 1. In the
example above, if ¢ = 12 % 34 x 4 % %3, then S has four columns of heights (2, 3,2, 2).
Clearly, S has the same content as F'. By Theorem 54, there is a bijection f between the
Ir-avoiding fillings of F' and the Ii-avoiding fillings of S. This bijection transforms & ()
into a filling ¥ of S. Define a partition ¢ by replacing the i-th star in ¢ by the row-index
of the 1-cell in the i-th column of W. By construction, o is a partition with right shadow
o, and V(o) = W. By Observation 60, o avoids 12---k12---k(k + 1).

This transformation, which is easily seen to be invertible, provides the required bijec-
tion. This completes the proof. O

Patterns of the form 1(7 +1). We will now establish a general relationship between
the partitions that avoid a pattern 7 and the partitions that avoid the pattern 1(7 + 1).
The key result is the following theorem.

Theorem 62 (J., Mansour [37|). Let 7 be an arbitrary pattern, and let F(x) be its
corresponding EGF. Let 0 = 1(1 + 1), and let G(x) be its EGF. For every n > 1, the

following holds:
(" )nio (6.3)

n—

pn(0) = Z i

In terms of generating functions, this is equivalent to
G(z)=1 +/ F(t)e'dt. (6.4)
0

Proof. Fix o and 7 as in the statement of the theorem. Let 7w be an arbitrary partition,
and let 7~ denote the partition obtained from 7 by erasing every occurrence of the symbol
1, and decreasing every other symbol by 1; in other words, 7~ represents the partition
obtained by removing the first block from the partition w. Clearly, a partition 7 avoids
o if and only if 7~ avoids 7. Thus, for every c-avoiding partition 7 € P, (o) there is a
unique 7-avoiding partition p € U} P;(7) satisfying 7~ = p. On the other hand, for
a fixed p € P;(7), there are (";') partitions 7 € P,(0) such that 7~ = p. This gives
equation (6.3).

To get equation (6.4), we multiply both sides of (6.3) by “”fl—? and sum for all n > 1.
This yields
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n>1 1=0 n>1
_/x ﬁi(”)p.(ﬂdt—/ Ziﬁp() LAY
0 >0 : i—0 \! Z 0 n>0 i=0 A (n 1)
_ [ r t* dt = ’ F(t)etd
0 \i>0 k>0 0
which is equivalent to equation (6.4). O

The following result is an immediate consequence of Theorem 62.

Corollary 63. If 7 ~ 7’ then 1(T + 1) = 1(7' 4+ 1), and more generally, 12--- k(1 + k) =
12 k(7" + k). In particular, since 123 ~ 122 ~ 112 ~ 121, we see that for every
m > 2 the patterns 12--- (m—1)m(m+1), 12---(m—1)mm, 12--- (m—1)(m—1)m and
12---(m — 1)m(m — 1) are equivalent. Conversely, if 1(t +1) = 1(7' + 1), then 7 =~ 7'.

Proof. To prove the last claim, notice that equation (6.3) can be inverted to obtain
n—1 n—1
st = X0 (" (o)
i=0

The other claims follow directly from Theorem 62. U

6.3 Patterns equivalent to 12---m(m + 1)

The partitions that avoid 12---m(m + 1), or equivalently, the partitions with at most
m blocks, are a very natural pattern-avoiding class of partitions. Their number may be
expressed by p,(12---(m+1)) = >, S(n,i), where S(n, ) is the Stirling number of the
second kind, which is equal to the number of partitions of [n] with exactly ¢ blocks.

As an application of the previous results, we will now present two classes of patterns
that are equivalent to the pattern 12--- (m+1). From this result, we obtain an alternative
combinatorial interpretation of the Stirling numbers S(n, ).

Our result is summarized in the following theorem.

Theorem 64 (J., Mansour [37]). For every m > 2, the following patterns are equivalent:
(a) 12---(m — 1)m(m + 1),
(b) 12---(m — 1)md, where d is any number from the set [m],
(c) 12---(m — 1)dm, where d is any number from the set [m — 1].
Proof. From Corollary 63, we get the equivalences
12.--mm+1)=12---(m—1)mm~12---(m —1)(m — 1)m.
The equivalences
12---(m—=1)mm=12---(m—1)md and 12---(m — 1)(m — 1)m ~ 12---(m — 1)dm

are obtained by a repeated application of Corollary 49. 0
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6.4 Binary patterns

Let us now focus on the avoidance of binary patterns, i.e., the patterns that only contain
the symbols 1 and 2.

We will first consider the forbidden patterns of the form 1¥21¢. We have already seen
that 112 ~ 121. The following theorem offers a generalization.

Theorem 65 (J., Mansour [37|). For any three integers j, k,m satisfying 1 < j, k < m,
the pattern 1721™77 is equivalent to the pattern 1%217mF.

Proof. 1t is sufficient to prove that the equivalence 1721™77 ~ 1™2 holds for every m
and j. We will use Lemma 40 from page 48 to provide a bijection between P, (1721™7)
and P,(1™2). Fix 7 € P,(1721™77), and assume that 7 has b blocks. Represent 7 by a
matrix M = M(7,b). Since T was a canonical sequence, the leftmost 1-cells of the b rows
of M form an increasing chain.

Let us turn the matrix M upside down, to obtain a matrix M. Clearly, M avoids
M(2712™77.2). Also, M is b-falling. We can treat M as a b-falling filling of a stack
polyomlno and apply Lemma 40 to transform it into a b- falhng M(2™1, 2)-avoiding filling

M. Turning M upside down again, we obtain a semi-standard b-raising matrix M’, which
corresponds to a 1"2-avoiding partition.
This transformation is the required bijection. O

Using our results on fillings, we can add another pattern to the equivalence class
covered by Theorem 65.

Theorem 66 (J., Mansour [37]). For every m > 1, the pattern 12™ is equivalent to the
pattern 1211,

Proof. This is just Corollary 49 with £ =2 and S = 11 O
Corollary 67. Let m be a positive integer, let 7 be any pattern from the set

T ={1721""%. 1 <k <m}u{12"}.
The EGF F(x) of a pattern 7 € T is given by

m—1 ,;
x tZ

F(x) :1+/ exp <t+Zﬁ> dt
0 i=1

Proof. Theorems 65 and 66 show that all the patterns from the set T are equivalent,
so we will compute the EGF of 7 = 12™. The formula for F(z) follows directly from
equation (6.1) on page 53 and Theorem 62. O

We now turn to another type of binary patterns, namely the patterns of the form
12F12m=F with 1 < k < m. In the rest of this section, S} denotes the sequence 27127 and

§5 denotes the sequence 17219, where p, ¢ are nonnegative integers. Our first aim is to
show that for fixed m and arbitrary k € [m], all the pattern of the form 12¥12™~* belong
to the same ~-equivalence class. In fact, we are able to prove a more general result.

Theorem 68 (J., Mansour [37]). For any partition 7, for any k > 2, and for any p,q > 0,
we have the following equivalences:

12 k(T + k)SP m~ 12+ k(T + k) S
and

2. kSP(T+ k)~ 12+ kS§(T + k).
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Proof. By Lemma 40, the two matrices M(SP,2) and M(SF", 2) are stack equivalent, and

hence also F'--equivalent. By Proposition 48, this implies that M (S}, k) = M(SP™ k)
for any £ > 2. Lemma 45 then gives the first equivalence, and Lemma 47 gives the
second. 0

Next, we present two theorems that make use of the full strength of Lemma 40,
including the preservation of the ¢-falling property. Recall that Sf = 1P219.

Theorem 69 (J., Mansour [37]). Let 7 be any partition with k blocks, let p > 1 and
q > 0. The pattern o = T(gf + k) is equivalent to o' = T(§§+q + k).

Proof. Let m be a partition of [n| with m blocks, let M = M (w,m). We color the cells of
M red and green, where a cell in row ¢ and column j is green if and only if the submatrix
of M formed by the intersection of the first + — 1 rows and j — 1 columns of M contains
M(7,k). It is not difficult to see that for each green cell (7, ) there is an occurrence of
M (7, k) which appears in the first i — 1 rows and the first j—1 columns and which consists
entirely of red cells. Thus, for any matrix M’ obtained from M by modifying the filling
of M’s green cells, a cell is green with respect to M’ if and only if it is green with respect
to M.

Let G be the diagram formed by the green cells of M, and let & be the filling of G
by the values from M. Note that G is an upside-down copy of an F'--shape. It is easy to
see that the partition 7 avoids o if and only if ® avoids M(F;), 2), and 7 avoids o’ if and
only if ® avoids M (S}, 2).

Let us now assume that 7 is o-avoiding. We now describe a procedure to transform
7 into a o’-avoiding partition 7' (see Figure 6.2). We first turn the filling ® and the
diagram G upside down, which transforms G into an F--shape G, and it also transforms
the M(gqp, 2)-avoiding filling ® into an M(SP,2)-avoiding filling ® of G. Then we apply
the bijection f of Lemma 40 to ®, ignoring the zero columns. We thus obtain a filling ¥ =
£(®) which avoids M (S, 2). We turn this filling upside down, obtaining a M (5S¢, 2)-
avoiding filling ¥ of G. We then fill the green cells of M with the values of ¥ while the
filling of the red cells remains the same. We thus obtain a matrix M’. The matrix M’
has exactly one 1-cell in each column, so there is a sequence 7’ over the alphabet [m] such
that M" = M (7', m).

By construction, the sequence 7’ has no subsequence order-isomorphic to o’. We now
need to show that 7’ is a restricted-growth sequence. For this, we will use the preservation
of the t-falling property. Let ¢; be the leftmost 1-cell of the i-th row of M, let ¢, be the
leftmost 1-cell of the i-th row of M’. We know that the cells ¢y, . .., ¢, form an increasing
chain, because 7w was a restricted-growth sequence. We want to show that the cells
cyy ..., ¢ form an increasing chain as well.

Let s be the largest index such that the cell ¢4 is red in M. We set s = 0 if no such
cell exists. Note that the cells ¢y, ..., cs are red and the cells csyq, ..., c,, are green in M.
We have ¢; = ¢ for every ¢ < s. If s > 0, we also see that all the green 1-cells of M are
in the columns to the right of ¢;. This means that even in the matrix M’ all the green
1-cells are to the right of c,, because the zero columns of ® must remain zero in . In

particular, all the cells ¢, ,,..., ¢, appear to the right of ¢,.

rm
It remains to show that ¢, ..., ], form an increasing chain. We know that the cells
Cst1, - - -5 Cm form an increasing chain in M and in ®. When G is turned upside down, this
chain becomes a decreasing chain ¢,;71,..., G, in ®. This chain shows that ® is (m — s)-
falling. By Lemma 40, ¥ must be (m — s)-falling as well, hence it contains a decreasing

chain ¢ ,...,c], in its bottom m — s rows. This decreasing chain corresponds to an
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Figure 6.2: Illustration of the proof of Theorem 69.
increasing chain ¢ ,...,c, in M’, showing that 7’ is a restricted-growth function, as
claimed.
It is obvious that the above construction can be reversed, which shows that it is indeed
a bijection between P, (o) and P, (o). O

The following result is proved by a similar approach, but the argument is slightly more
technical.

Theorem 70 (J., Mansour [37]). Let T be an arbitrary sequence over the alphabet [k|, let
p>1andq > 0. The partition o =12 - -k(gf—i-k)T is equivalent to o' =12 - - -k(§§+q+
k)T.

Proof. Let 7 be a partition of [n] with m blocks, let M = M (w,m). As in the previous
proof, we color the cells of M red and green. A cell in row 7 and column j will be green if
the submatrix of M formed by rows 1,...,i—1 and columns j+1,...,n contains M (T k).

Let G be the diagram formed by the green cells and & its filling inherited from M.
Let r be the number of rows of G. The partition 7 contains o if and only if ® contains
M(gf, 2). Note that the diagram G is an upside-down copy of a Ferrers shape.

We apply the same construction as in the previous proof. Let ® be the upside down
copy of ®. The filling ® is r-falling and it avoids M(S},2). We apply the mapping f
from Lemma 40 to transform ® into an r-falling semi-sparse filling W. We then turn ¥
upside down again and reinsert it into the green cells of the original matrix. This yields
a matrix M’ with exactly one 1-cell in each column. Hence, there exists a sequence ',
such that M’ = M (n’,m). The sequence 7’ has no subsequence order-isomorphic to o’.

We need to prove that 7’ is a restricted-growth sequence. Let ¢; be the leftmost 1-cell
in row ¢ of M and let ¢} be the leftmost 1-cell in row ¢ of M’. To prove that 7 is a
partition, we want to show that ¢/, ..., ¢, form an increasing chain in M.

Let us fix two row indices i < j. We claim that ¢} is left of ¢;. If both ¢; and ¢ are
green, then the claim follows from the preservation of the r-falling property. If both ¢; and
c; are red, then ¢; = ¢; and ¢; = ¢;. The claim then follows from the fact that ¢y, ..., cp,
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is an increasing chain. If ¢} is red and c] is green, the claim holds as well, because ¢; = ¢},
and all the green cells below row j must appear to the left of the column of ¢;.

Finally, assume that ¢} is green and ¢} is red. We have ¢; = ¢;. All the 1-cells of ®
that are to the left of ¢; are also below row 7. Let x be the number of such 1-cells. Then
x is equal to the number of nonzero columns of ® that are to the left of ¢;. Since the
number of these nonzero columns is preserved by the mapping f, we see that U also has
x 1-cells left of ¢;. Since f preserves the number of 1-cells in each row, both ® and ¥
have exactly = 1-cells below row 7. All the 1-cells of ¥ below row ¢ must appear to the
left of ¢;, and since there are only x 1-cells of ¥ to the left of ¢;, they must all appear
below row i. Hence, all the green 1-cells above row i (including the cell c;) appear to the
right of ¢;. O

Patterns equivalent to 12¥13. We will now focus on the following sets of patterns:

S5 = {12P7112932": p,q,r > 0,p+ g+ 1 =t}
Y, = {12°7132912": p,q,r > 0,p+q+ 1 =t}
=3 U,

Our aim is to show that all the patterns in 3; are equivalent. Throughout this section, we
will assume that ¢ is arbitrary but fixed. We will write X+, ¥~ and ¥ instead of 3,7, 2,
and X, if there is no risk of ambiguity.

The approach we will use is similar to the idea we employed to prove Theorem 41, but
with considerably more technical details to take care of.

We will use the following definition.

Definition 71. Let o be a pattern over the alphabet {1,2, 3}, let 7 be a partition with
m blocks, and let £ < m be an integer. We say that m contains o at level k, if there are
symbols ¢, h € [m] such that ¢ < k < h, and the partition 7 contains a subsequence S
made of the symbols {¢, k, h} which is order-isomorphic to o.

For example, the partition m = 1231323142221 contains 0 = 121223 at level 3, because
7 contains the subsequence 131334, but 7 avoids o at level 2, because 7 has no subsequence
of the form ¢2¢22h with ¢ < 2 < h.

Our plan is to show, for suitable pairs 0,0’ € X, that for every k there is a bijection
fr that maps the partitions avoiding o at level k£ to the partitions avoiding o’ at level k,
while preserving o’-avoidance at all levels j < k and preserving o-avoidance at all levels
j > k+1. Composing the maps fj for k = 2,...,n—1, we will obtain a bijection between
Pn(o) and P, (o).

To formalize this idea we will need more definitions.

Definition 72. Consider a partition 7, and fix a level £ > 2. A symbol of 7 is called k-low
if it is smaller than k and k-high if it is greater than k. A k-low cluster (or k-high cluster)
is a maximal consecutive sequence of k-low symbols (or k-high symbols, respectively) in 7.
The k-landscape of 7 is a word over the alphabet {L, k, H} obtained from 7 by replacing
each k-low cluster with a single symbol L and each k-high cluster with a single symbol H.

A word W over the alphabet {L, k, H} is called a k-landscape word if it satisfies the
following conditions.

e The first symbol of W is L, the second symbol of W is k.

e No two symbols L are consecutive in W, no two symbols H are consecutive in W.
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Clearly, the landscape of a partition is a landscape word.
Two k-landscape words W and W' are said to be compatible, if each of the three
symbols {L, k£, H} has the same number of occurrences in W as in W".

We will often drop the prefix k from these terms, if the value of k£ is clear from the
context.

To give an example, consider m = 1231323142221: it has five 3-low clusters, namely
12, 1, 2, 1 and 2221, it has one 3-high cluster 4, and its 3-landscape is L3L3L3LHL.

If W and W’ are two compatible k-landscape words, we have a natural bijection
between partitions with landscape W and partitions with landscape W’'. If 7 has landscape
W, we map 7 to the partition 7’ of landscape W’ which has the same k-low clusters and
k-high clusters as 7, and moreover, the k-low clusters appear in the same order in 7 as in
7', and also the k-high clusters appear in the same order in 7 as in «’. It is not difficult to
check that these rules define a unique sequence 7’ and this sequence is indeed a partition.
This provides a bijection between partitions of landscape W and partitions of landscape
W’ which will be called the k-shuffle from W to W’'.

The key property of shuffles is established by the next lemma.

Lemma 73. Let W and W’ be two compatible k-landscape words. Let m be a partition
with k-landscape W and let " be the partition obtained from w by the shuffle from W to
W'. Let o be a pattern from 3, and let j be an integer. The following holds.

1. If o does not end with the symbol 1 and j > k, then 7' contains o at level j if and
only if ™ contains o at level 7.

2. If o does not end with the symbol 3 and j < k, then 7' contains o at level j if and
only if ™ contains o at level 7.

Proof. We begin with the first claim of the lemma. Let o = 12P7132912" be an arbitrary
pattern from X~ (the case o € X7 is analogous). By assumption, we have r > 0. Assume
that 7 contains o at a level j > k. In particular, 7 has a subsequence S = £jPT1hjil;",
with ¢ < j < h.

If £ < ¢, then all the symbols of S are k-high. Since the shuffle preserves the relative
order of high symbols, 7’ contains the subsequence S as well.

If £ > /¢, then the shuffle preserves the relative order of the symbols 5 and h, which are
all high. Let z and y be the two symbols of S directly adjacent to the second occurrence
of ¢ in S (if ¢ > 0, both these symbols are equal to j, otherwise one of them is h and
the other j). The two symbols are both high, but they must appear in different k-high
clusters. After the shuffle, the two symbols x and y will again be in different clusters,
separated by a non-high symbol ¢ < k, and since the first occurrence of ¢’ in 7’ precedes
any occurrence of j, the partition 7’ will contain a subsequence ¢ jP+'hje¢'5" which is
order-isomorphic to o.

We see that the shuffle preserves the occurrence of o at level j. Since the inverse of
the shuffle from W to W’ is the shuffle from W’ to W, we see that the inverse of a shuffle
preserves the occurrence of o at level j as well.

The second claim of the lemma is proved by a similar argument. Assume that =
contains ¢ at a level j < k. Thus, 7 contains a subsequence S over the alphabet {{ < j <
h}, which is order-isomorphic to . If h < k, then the symbols of S are low and hence
preserved by the shuffle. If A > k, let x and y be the two symbols of S adjacent to the
symbol of h. Recall that ¢ does not end with the symbol 3, so z and y are both well
defined. The symbols x and y must appear in two distinct low clusters. After the shuffle
is performed there will be a non-low symbol A’ between = and y. Hence, 7’ will contain a
subsequence order isomorphic to o. O
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We will use shuffles as basic building blocks for our bijections. The first example is
the following lemma.

Lemma 74. For every p,q,r > 0, the pattern o = 12PT112932" is equivalent to the pattern
o' = 12P+132912".

Proof. Let us fix p,q,7 > 0 with t = p+ ¢ + r. For a given k, a partition 7 of [n] is
called a k-hybrid if m avoids o’ at every level j < k and 7w avoids o at every level j > k.
We will show that for every k € {2,...,n — 1} there is a bijection f; between k-hybrids
and (k + 1)-hybrids. Since 2-hybrids are precisely the o-avoiding partitions of [n| and
n-hybrids are precisely the o’-avoiding partitions of [n], this gives the required result.

Let us fix k. Note that a partition 7 contains o at level k if and only if its k-landscape
W contains a subsequence kPHLEIHE". Similarly, 7 contains o’ at level k if and only if
W contains a subsequence kPTTHEILE".

Let m be a k-hybrid with landscape W. If 7 has fewer than ¢t + 1 occurrences of k,
then it is also a (k + 1)-hybrid and we put fi(7) = 7. Otherwise, we write W = XY Z,
where X is the shortest prefix of W that has p+ 1 symbols k and Z is the shortest suffix
of W that has r symbols k. By assumption, X and Z do not overlap (although they may
be adjacent if ¢ = 0). Let Y be the word obtained by reversing the order of the letters of
Y, and let us define W’ = XY Z. Note that W’ is a landscape word compatible with W,
and that W avoids kP LEYHE" if and only if W’ avoids kPT'HE?LE". We apply to 7 the
shuffle from W to W’ which transforms it into a partition 7’ = fi (7).

Lemma 73 implies that 7’ is a (k + 1)-hybrid. Hence, f is the required bijection. [

Another result in the same spirit is the following lemma.

Lemma 75. For every p,q,r > 0, the pattern o = 12P7212932" is equivalent to the pattern
o' = 12p+112432r+1

Proof. We follow a similar argument as in the proof of Lemma 74. As before, a k-hybrid
is a partition that avoids ¢’ at every level j < k and that avoids o at every level 7 > k.
We will present a bijection f; between k-hybrids and (k + 1)-hybrids. Note that 7 avoids
o at level k if and only if its landscape W avoids kPT2LEYHE".

Fix a k-hybrid 7 with landscape W. If 7 has fewer than p+ 2+ ¢+ r occurrences of k,
then it is also a (k + 1)-hybrid and we define fi(7) = 7; otherwise, we write W = XSY Z
where X is the shortest prefix of W that has p+1 occurrences of k, Z is the shortest suffix
with 7 occurrences of k, S is the subword that starts just after the (p + 1)-th occurrence
of k and ends immediately after the (p + 2)-th occurrence of k. We define W/ = XY SZ,
where S is the reversal of S.

Note that in the definition of W', we need to take W’ = XY SZ instead of the seemingly
more natural definition W = XY SZ. This is because in general, the string XY SZ need
not be a landscape word, since it may contain two consecutive occurrences of either L
or H. Our definition guarantees that W' is a correct landscape word, and that W’ avoids
kP LETHE ™ if and only if W avoids kPT?LAYHE" (which is if and only if Y avoids L&?H).

The rest of the argument is the same as in the previous lemma. O

We may now state and prove the main result of this paragraph.
Theorem 76 (J., Mansour [37]). For every t, the patterns in the set ¥, are equivalent.

Proof. By Theorem 68, we already know that for any p,q > 0, the pattern 12711293 is
equivalent to the pattern 12779113, This, together with the two previous lemmas gives
the required result. O
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More ‘landscape’ patterns. We will show that with a little bit of additional effort,
the previous arguments involving landscapes can be adapted to prove, for every p,q > 0,
the following equivalences:

o 123274129 ~ 1232P4291
o 123271429 ~ 12312P421
o 123P+11439 ~ 12371134
o 123P114139 ~ 12343P13¢

Throughout this paragraph, we will say that 7 is a 1-2-/ pattern if 7 has the form
1235 where S is a sequence that satisfies these two conditions:

e S has exactly one occurrence of the symbol ‘1’, exactly one occurrence of the symbol
‘4’ and all its remaining symbols are equal to ‘2’.

e Neither the first nor the last symbol of S is equal to ‘4.

Similarly, a 1-3-4 pattern is a pattern of the form 1235 where S satisfies these two con-
ditions:

e S has one occurrence of ‘1’ and one occurrence of ‘4’, and all its remaining symbols
are equal to ‘3.

e The last symbol of S not equal to ‘1’.

We decided to exclude the patterns of the form 123271294, 12342P129 and 123374391
from the set of 1-2-4 and 1-3-4 patterns defined above, because some of the arguments we
will need in the following discussion (namely in Lemma 77) would become more compli-
cated if these special types of patterns were allowed. We need not be too concerned about
this constraint, because we have already dealt with the patterns of the three excluded
types in Theorem 68 and Theorem 70. From Theorem 68, we obtain the equivalences
1232P1294 =~ 1232PT914 and 12342P129 ~ 12342P*41, while from Theorem 70, we obtain
123374391 ~ 1233°*4]1.

For our arguments, we need to extend some of the terminology of the previous section
to cover the new family of patterns. Let 7 be a 1-2-4 pattern, k£ be a natural number,
and 7 be a partition. We say that m contains 7 at level k, if m has a subsequence T
order-isomorphic to 7 such that the occurrences of the symbol ‘2’ in 7 correspond to the
occurrences of the symbol k in T". Similarly, if 7 is a 1-3-4 pattern, we say that a partition
7w contains T at level k if m has a subsequence T order-isomorphic to 7 with the symbol &
in T' corresponding to the symbol ‘3" in 7.

Our aim is to prove an analogue of Lemma 73 for 1-2-4 and 1-3-4 patterns. Un-
fortunately, general k-shuffles may behave badly with respect to the avoidance of these
patterns. However, we will define special types of k-shuffles that have the properties we
need. We first introduce some new definitions.

Let W be a k-landscape word. We say that two occurrences of the symbol H in W are
separated if there is at least one occurrence of L between them. Similarly, two symbols
L are separated if there is at least one H between them. As an example, consider the
k-landscape word W = LkLkHEKEKHLEH. In W, neither the first two occurrences of L nor
the first two occurrences of H are separated, while the second and third occurrence of
H, as well as the second and third occurrence of L are separated. We also say that two
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clusters of a partition are separated if the corresponding symbols of the landscape word
are separated.

Let W and W’ be two k-landscape words. We say that W and W’ are H-compatible if
they are compatible, and for any i, j, the i-th and j-th occurrence of H in W are separated
if and only if the i-th and j-th occurrence of H in W' are separated. An L-compatible
pair of words is defined analogously.

For example, the two compatible words W = LEHkKKHL and W' = LEHELHE are L-
compatible (since the two occurrences of L are separated in both words) but they are not
H-compatible (the two symbols H are not separated in W but they are separated in W).

The following lemma explains the relevance of these concepts.

Lemma 77. Let k be an integer. The following holds.

(1) Let W and W' be two L-compatible k-landscape words, and let T be a 1-2-4 pattern.
Let 7 be an arbitrary partition, and let ©' be the partition obtained from mw by the
k-shuffle from W to W'. For every j < k, m contains 7 at level j if and only if
7w’ contains T at level j. Moreover, if the last symbol of T is equal to 2, then the
previous equivalence also holds for every j > k.

(2) Let W and W' be two H-compatible k-landscape words, and let T be a 1-3-4 pattern.
Let  be an arbitrary partition, and let ' be the partition obtained from w by the
k-shuffle from W to W'. For every j > k, ™ contains 7 at level j if and only if
7' contains T at level j. Moreover, if the last symbol of T is equal to 3, then the
previous equivalence also holds for every j < k.

Proof. We first prove (1). Assume that 7 contains a 1-2-4 pattern 7 at level j. If j > k,
we may use the same argument as in the proof of the first part of Lemma 73 to see that
the occurrence of 7 is preserved by the shuffle as long as 7 does not end with a 1.

Assume now that j < k. Let us write 7 = 1232P42912" (the case when 7 has the form
1232P12942" is analogous). Note that our definition of 1-2-4 pattern implies that p # 0.

By assumption, 7 contains a subsequence 1" order-isomorphic to 7, with the symbol
2 of 7 corresponding to the symbol 7 in 7. We label from left-to-right the 1 +p +q+r
occurrences of j in T by jo, 1, , Jptq+r- Let @ < b < ¢ denote the symbols of T' that
correspond respectively to the symbols 1,3 and 4 in 7; we label the two occurrences of a
in T' by ap and a;. With this notation, we may write 7" as follows:

T = agjobj1 - JpClp+1 " * Jprq@iprqtl " Jptqir:

We distinguish several cases, based on the relative order of b, c and k. If ¢ < k, then all
the symbols of T" are k-low and their relative position is preserved by the shuffle, which
means that T is also a subsequence of 7’.

If ¢ > k and b < k, then the symbols a < j < b are k-low. Let x and y be the two
symbols adjacent to ¢ in T'. Typically x = j, and y = j,11, unless ¢ is zero, in which
case y = a;. Recall that ¢ cannot directly follow b and it cannot be the last element of
T by the definition of 1-2-4 pattern. The elements z and y are low and they appear in
two distinct low clusters. After the shuffle, the occurrences of a,b and 7 in T have the
same relative order, and the elements x and y still belong to different clusters. Thus, 7’
contains a symbol greater than b between x and y. This shows that 7’ has a subsequence
order-isomorphic to 7.

It remains to consider the most complicated case, when ¢ > k£ and b > k. This is
when we first use the L-compatibility assumption. Let z and y be again the two symbols
adjacent to ¢ in T'. By the definition of 1-2-4 patterns, x and y are both k-low. Since b is
not k-low and c is high, the partition 7 has the following properties.
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1. The symbol j; does not belong to the leftmost low cluster.
2. The two symbols z and y belong to two separated low clusters.

The two properties are preserved by the shuffle. In particular, in 7/, the symbol j;
does not belong to the leftmost low cluster, which means that there is at least one non-low
symbol appearing in 7’ before j;. Since 7’ is a partition in its canonical sequential form,
this implies that all the symbols 1,2,--- , k appear in 7’ in this order before j;. Let a’, j’
and k' denote respectively the leftmost occurrences of a,j and k in /. We also know,
from the L-compatibility of W and W’ that in 7’ the two symbols  and y appear in
distinct and separated low clusters. In particular, 7’ contains a k-high symbol ¢’ between
x and y. Putting it all together, we see that n’ contains the subsequence

, / ., , . . , . . . .
T =ajk'ji-JpClpt1 " Iprq@ilprqr1 " Jptatrs

which is order isomorphic to 7.

Thus, 7 contains a 1-2-4 pattern 7 at level j, if and only if 7’ contains 7 at level j.
This completes the proof of (1).

Claim (2) is proved by a similar argument. Let 7 be a 1-3-4 pattern of the form

12371113243" (the case when 7 = 123P7143713" is analogous and easier). Assume that 7
contains 7 at level j, represented by a sequence T of the form

T = aogbjoji =+ Jp@iJp+1 -+ Jp+qClp+a+1 """ Jpta+r

witha <b<j<ec.

If j < k, we apply the same argument as in the proof of the second claim of Lemma 73
to prove that if 7 does not end with 4, then the occurrence of 7 is preserved by the shuffle.

Next, we assume that 7 > k and we distinguish several cases based on the relative
order of a,b and k.

If @ > k, then all the symbols of T" are k-high and their order is preserved by the
shuffle.

If a <k,and b > k, we let z and y denote the two symbols adjacent to a; in T, and
we observe that 7’ has a non-high element o’ between x and y. The first occurrence of
a’ in @' must appear to the left of any k-high symbol, hence 7’ contains a subsequence
a'bj?*ta’j9cj" order-isomorphic to 7.

If a <k and b <k, we define z and y as in the previous paragraph. This time, z and
y belong to two separated high clusters, so 7’ has a k-low element a’ between x and vy,
and in particular, 7’ contains the subsequence a’kj?™'a’jcj". O

With the help of Lemma 77, we may prove all the equivalence relations announced at
the beginning of this paragraph. We split the proofs into four lemmas and then summarize
the results in a theorem.

Lemma 78. Let p,q > 1. The pattern 7 = 1232P4127 is equivalent to 7" = 1232P4291.

Proof. For an integer k we say that a partition 7 is a k-hybrid if = avoids 7 at level j for
every j < k and it avoids 7 at level j for every 5 > k. To prove the claim, it is enough to
establish a bijection f; between k-hybrids and (k + 1)-hybrids.

We say that a k-high cluster of 7 is extra-high if it contains a symbol greater than £+1.
We claim that 7 contains 7 at level £ if and only if by scanning the k-landscape W of 7
from left to right we may find (not necessarily consecutively) the leftmost high cluster,
followed by p occurrences of the symbol k, followed by an extra-high cluster, followed by
a low cluster, followed by ¢ occurrences of k. To see this, it suffices to notice that the
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leftmost high cluster contains the symbol k& 4 1, and to the left of this cluster we may
always find all the symbols 12-- -k in increasing order.

By a similar argument, we see that 7 contains 7" at level k if and only if it contains, left-
to-right, the leftmost high-cluster, p occurrences of k, an extra-high cluster, ¢ occurrences
of k and a low cluster.

Now assume that 7 is a k-hybrid partition. Let H' be the leftmost extra-high cluster of
7 such that between H' and the leftmost high cluster of 7 there are at least p occurrences
of k. If no such cluster exists, or if 7 has fewer than ¢ symbols equal to k to the right of
H', then 7 avoids both 7 and 7" at level k, and we define fi,(7) = 7.

Otherwise, let W be the k-landscape of w. We will decompose W as

W = XH'Y k,S1ky155 - - - k1S,

where H' represents the extra-high cluster defined above, and k; represents the i-th symbol
k in m, counted from the right. The symbols X,Y and Si,..., 5, above refer to the
corresponding subwords of W appearing between these symbols.

By construction, none of the S;’s contains the symbol k, so each of them is an alter-
nating sequence over the alphabet {L,H}, possibly empty. Since 7 avoids 7 at level k,
the subword Y does not contain the symbol L.

We decompose S into two parts S = H*S] in the following way: if the first letter of
Sy is H, then we put H* = H and S is equal to S; with the first letter removed. If S;
does not start with H, then H* is the empty string and S| = 5;.

Now, we define the word W' by

W, - XH/Sl_kjSQk’QSgk’:g et k’q_lsqk’qH*Y

It is not difficult to check that W’ is a landscape word (note that neither Y nor S| can
start with the symbol H), and that W’ is L-compatible with 1 (recall that Y contains
no L).

Let 7’ be the partition obtained from 7 by the shuffle from W to W’'. Note that the
prefix of 7 through the cluster H' is not affected by the shuffle, because the words W
and W’ share the same prefix up to the symbol H'. In particular, the shuffle preserves
the property that H' is the leftmost extra-high cluster with at least p symbols & between
H' and the leftmost high cluster of #/. It is routine to check that 7’ avoids 7" at level
k. By Lemma 77, 7’ is a (k + 1)-hybrid partition. It is easy to see that for any given
(k + 1)-hybrid partition 7/, we may uniquely invert the procedure above and obtain a
k-hybrid partition 7.

Defining fi(m) = 7/, we obtain the required bijection between k-hybrids and (k + 1)-
hybrids. U

The proofs of the following three lemmas follow the same basic argument as the proof
of Lemma 78 above. The only difference is in the decompositions of the corresponding
landscape words W and W’. We omit the common parts of the arguments and concentrate
on pointing out the differences.

Lemma 79. Let p,q > 1. The pattern T = 1232P1427 is equivalent to 7" = 12312P421.

Proof. A partition 7 contains 7 at level k if and only if it contains, from left to right, the
leftmost high cluster, p copies of k, a low cluster, an extra-high cluster, and ¢ copies of k.
Similar characterization applies to 7.

Let H; denote the leftmost high cluster of 7, let H' denote the rightmost extra-high
cluster of 7 that has the property that there are at least ¢ occurrences of k to the right
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of H'. If H does not exist, or if there are fewer than p occurrences of k& between H; and
H', then 7 contains neither 7 nor 7" at level k and we put fi(7) = 7. Otherwise, let W
be the landscape of m, and let us write

W == XH151k152k2 e SpkaH,Z,

where none of the S; contains k, and Y avoids L. Define S and H* by writing S, = S, H*
where S does not end with the letter H and H* is equal either to H or to the empty
string, depending on whether S, ends with H or not.

Now we write

W/ - XHl?le*SleSQ R ]CpSp_H/Z,
where Y is the reversal of Y. The rest of the proof is analogous to Lemma 78. O
We now apply the same arguments to 1-3-4 patterns.

Lemma 80. For any p > 0 and ¢ > 1, the pattern 7 = 123P11394 is equivalent to the
pattern 71 = 123P11434,

Proof. As usual, a k-hybrid is a partition that avoids 7 at every level j > k and that
avoids 77 at every level below k.

Let us say that a k-cluster of a partition 7 is extra-low if it contains a symbol smaller
than k£ — 1. A partition contains 7 at level k if and only if it has p + 1 occurrences of k
followed by an extra-low cluster, followed ¢ occurrences of k, followed by a high cluster.
Similarly, a partition contains 7" at level k if and only if it has p + 1 copies of &, followed
by an extra-low cluster, followed by a high cluster, followed by ¢ copies of k.

Assume 7 is a k-hybrid partition. Let L' denote the leftmost extra-low cluster of 7
that has at least p + 1 copies of k to its left. If L’ does not exist, or if it has fewer than ¢
copies of k to its right, we put fi(m) = m. Otherwise, we decompose the landscape word
W of 7 as

W = XL'S1k1Soks - - Sy_1ky—15.k,Y,

where the S; do not contain k. By assumption, Y avoids H. Next, we write Y = L*Y ™
where L* is an empty string or a single symbol L, and Y~ does not start with L. We
define W’ by

W' = XLU'Y "k L*S1ka - - - Sy—1kySy.

The words W and W’ are H-compatible. We define the bijection between k-hybrids and
(k + 1)-hybrids in the usual way. O

Lemma 81. For every p > 0 and ¢ > 1, the pattern T = 1237714139 is equivalent to the
pattern 71 = 123437131,

Proof. As before, take 7 to be a k-hybrid partition. Let L’ be the rightmost extra-low
cluster that has at least g copies of k to its right. If L’ has at least p + 1 copies of k to its
left, we decompose the landscape W of 7 as

W = LklsleSQ R kpSpkaYL'Z.
Next, we write S, = 5, L* with the usual meaning and define
W/ - Lle*?kgslngSQ e SpflkarlSpiL,Z.
The rest is the same as before. O

We now summarize our results.
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Theorem 82 (J., Mansour [37]). For every p,q > 0, we have the following equivalences:
1. 1232P4129 =~ 1232P4291
2. 123271429 ~ 123127424
3. 123P+114379 ~ 123r+11394
4. 123PT1413% ~ 12343713¢

Proof. If p and ¢ are both positive, the results follow directly from the four preceding
lemmas.

If p = 0, the second and the fourth claim are trivial, the first one is a special case of
Theorem 68, and the third is covered by Lemma 80.

If ¢ = 0, the first and the third claim are trivial, the second is a special case of
Theorem 68, and the fourth follows from Theorem 70. O

6.5 Sporadic equivalences

The results that we have presented so far have always yielded infinite families of equiva-
lent pairs of patterns. However, the computer enumeration of small patterns undertaken
by Jelinek and Mansour [37| has revealed two likely pairs of equivalent patterns which are
not covered by any of the previous general classes. The two equivalences suggested by
the enumerative data are 1123 ~ 1212 and 12112 ~ 12212. To complete the classification
of small partition patterns, we will show that the two pairs of patterns are indeed equiv-
alent. We are not able to generalize any of these equivalences to a more general family of
equivalent patterns. For this reason, we call them the ‘sporadic’ pairs.

Enumeration of 1123-avoiding partitions. Let us first deal with the equivalence
1212 ~ 1123. Unlike in the previous arguments, we do not present a direct bijection
between pattern-avoiding classes. Instead, we prove that p,(1123) is equal to the n-th
Catalan number, i.e., p,(1123) = #1 (2:) Since it is well known, at least since 1970’s [49],
that noncrossing partitions are enumerated by the Catalan numbers, this will yield the
desired equivalence.

We achieve our goal by proving that p,(1123) is equal to the number of Dyck paths of
semilength n. A Dyck path of semilength n is a nonnegative path on the two-dimensional
integer lattice from (0, 0) to (2n,0) composed of up-steps connecting (z,y) to (r+1,y+1)
and down-steps connecting (x,y) to (x + 1,y — 1). It is well known that these paths
are enumerated by Catalan numbers (for a survey of the many combinatorial structures
enumerated by the Catalan numbers, see the Catalan Addendum of Stanley [67]).

Let D(n, k) be the set of Dyck paths of semilength n whose last up-step is followed by
exactly k down-steps. Let d(n, k) be the cardinality of D(n, k). Additional combinatorial
interpretations of d(n, k) can be found in the OEIS [68, sequence A033184].

Lemma 83. The numbers d(n, k) are determined by the following set of recurrences:

d(l, 1) =

din,k)=0 if k<1l or k>n
n—1

d(n, k) = Z din—1,7) for n>2n>k>1. (6.7)
j=k—1

75



Proof. Only the third recurrence is nontrivial. We prove it by presenting a bijection
between D(n, k) and the disjoint union U;:liq D(n —1,7). Assume that k& and n are
fixed, with n > 2 and k& < n. Take a Dyck path P € D(n, k). By erasing the last up-step
and the last down-step of D, we get a Dyck path P’ € D(n — 1,j), where j > k — 1.
Conversely, given a Dyck path P’ € D(n —1,7) with j > k — 1, we insert a down-step at
the end of D’, and then insert an up-step into the resulting path immediately before its
last k down-steps. This inverts the mapping above. O

We now focus on 1123-avoiding partitions. First of all, we will present a correspon-
dence between 1123-avoiding partitions and 123-avoiding words. A 123-avoiding word is
a sequence si, So, . . ., S¢ of positive integers, such that there are no three indices 1 < j < k
that would satisfy s; < s; < s;. We define the rank of a word to be equal to £ +m — 1,
where ¢ is the length of the word and m = max{s;,i = 1,...,/¢} is the largest symbol of
the word.

For example, there are five 123-avoiding words of rank 3: 111, 12, 21, 22, and 3. There
are fourteen 123-avoiding words of rank 4: 1111, 112, 121, 122, 211, 212, 221, 222, 13, 23,
31, 32, 33, and 4.

Claim 84. A 1123-avoiding partition 7 of [n] with m blocks has the following form:
7=123---(m—2)(m—1)S (6.8)

where S is a 123-avoiding word of rank n, with mazimum element m. Conversely, If
S 1s any 123-avoiding word of rank n with mazrimum element m then m defined by the
formula (6.8) is a canonical sequence of a 1123-avoiding partition of [n].

In particular, the number of 123-avoiding words of rank n with last element k is equal
to the number of 1123-avoiding partitions of size n with last element k.

Proof. Let m = m - - - m, be a 1123-avoiding partition with m blocks, with m,, = k. Observe
that for every ¢ € [m — 1], the symbol 7; is equal to 4, otherwise m would contain the
forbidden pattern. It follows that 7 can be decomposed as m = 123 ---(m — 2)(m — 1)S,
where the word S has length { = n — m + 1 and maximum element equal to m. In
particular, S has rank n and its last element is equal to k.

We now check that S is 123-avoiding. If S contained a subsequence zyz for xr <y < z
then the original partition would contain a subsequence xxyz, which is forbidden. It
follows that S obtained from a 1123-avoiding partition 7 has all the required properties.

Conversely, if S is a 123-avoiding sequence of rank n and maximum element m, then
it is routine to verify that 7 = 12---(m — 1) is a 1123-avoiding partition of size n with
m blocks. Clearly, the last element of 7 is equal to the last element of S. O

Let T'(n, k) be the set of 123-avoiding words of rank n with last element equal to k.
Let t(n, k) be the cardinality of T'(n, k). By the previous claim, t(n, k) is also equal to the
number of 1123-avoiding partitions of size n with last element equal to k. To show that
1123-avoiding partitions of size n have the same enumeration as Dyck paths of semilength
n, it suffices to show that d(n, k) = t(n, k) for each n, k. To show this, we will prove that
t(n, k) is determined by the same set of recurrences as d(n, k) .

Claim 85. The numbers t(n, k) satisfy the following set of recurrences:

t(1,1)=1 (6.9)

tn,k)=0 if k<1l or k>n (6.10)
n—1

t(n, k) = t(n—1,i) for n>2n>k>1 (6.11)
i=k—1

76



Proof. Only the recurrence (6.11) is nontrivial. Let us fix n > 2 and k£ < n. To prove the
recurrence, we need a bijection from T'(n, k) to U\ T(n — 1,i).

Let us first consider the case £ = 1. A word S € T'(n,1) can be transformed into
a word S’ € Uy T(n — 1,4), by simply erasing the last element of S. This provides a
bijection between T'(n,1) and U}~ T'(n — 1,4).

In the rest of the proof, we deal with the case k > 1. Let S € T'(n, k) be a 123-avoiding
word of length ¢. The word S can be uniquely expressed as S = Sy1°k, where S is the
(possibly empty) longest proper prefix of S whose last element is different from 1. If .Sy
is nonempty, let j be the last element of Sj.

Let us decompose T'(n, k) into a disjoint union of two sets 7} and 75 defined by

Ty ={S e€T(nk): Spis nonempty, and j > k}
Ty ={S €T (n,k): Syisempty, or j < k}.

Note that if S belongs to 75 and Sy is nonempty, then all the elements of Sy are greater
than or equal to j. Indeed, if Sy contained an element ¢ smaller than 7, then S would
contain a subsequence ijk, which would create a copy of 123 in S.

Let S” be a word from U;.‘:_,iflT(n — 1,7). S’ may be uniquely expressed as S’ =
So(k — 1), where ¢ > 0 and S is the (possibly empty) longest prefix of S” whose last
element is different from k& — 1. Note that if the last element of S’ is greater than k& — 1
then S’ = S(. If S is nonempty, let j' be the last element of Sj.

We decompose U;.:,iflT(n —1,7) into a disjoint union of two sets 7] and Ty, where

T, ={S" €U T(n—1,49): S} is nonempty, and j' > k}
Ty={S" eu=l T(n—1,i): S} is empty, or j/ <k —1}.

Since j’ is never equal to k — 1, the two sets 7] and T3 form a disjoint partition of
Ul T(n —1,i). Note that Ty is in fact a subset of T'(n — 1,k — 1).

To prove the claim, it suffices to give a bijection f; between 7} and 77, and a bijection
f2 between T3 and 7.

We first construct f;. Choose S € T} and write S = Sy1°k as above. Let j be the last
element of Sy. Define S’ = f,(S) = So(k — 1)°. Let us check that S’ belongs to T}. Tt is
easy to see that S’ avoids 123. The length of S’ is one less than the length of S, and the
maximum of S’ is equal to the maximum of S, hence S’ has rank n — 1. We know that
j > k. In particular j # k — 1, and hence Sy is the longest prefix of S” whose last element
is different from k& — 1. This shows that S’ € TJ.

It is routine to check that f; can be inverted.

Let us now construct fo. Choose S € T, and write S = Sy1°k as above. If S is
nonempty, let 7 be the last element of Sy. Recall that no element of Sy is smaller than
J, and that j, if defined, is greater than 1 by definition of Sy. In particular, Sy — 1 is a
(possibly empty) sequence of positive numbers. Define S’ = fo(S) = (Sp — 1)(k — 1)L
The length of S’ is equal to the length of S, and the maximum of S’ is one less than the
maximum of S, hence S” has rank n — 1. It may be routinely checked that S’ avoids 123.
Note that the last element of Sy — 1 is smaller than k£ — 1, and hence S’ belongs to T5.

The inverse of f, is easy to obtain. Choose S’ € Ty, with S" = Sj(k — 1)°, where S} is
the longest prefix of S’ not ending with £ —1. As we pointed out earlier, S’ must end with
the symbol k — 1, hence b > 1. Define S = (Sy + 1)1°7!k. It may be routinely checked
that S belongs to T5. O

The following results are direct consequences of Claim 84 and Claim 85. We omit their
proofs.
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Theorem 86 (J., Mansour [37]). The number of 1123-avoiding matchings of size n with
last element equal to k is equal to the number of Dyck paths of semilength n whose last
up-step is followed by k down-steps. 0]

Corollary 87. The number of 1123-avoiding matchings of size n is C,, = L(2”) In
particular, 1123 is ~-equivalent to 1212 and to 1221. 0]

From Theorem 86 we may derive the closed-form expression for t(n,k). Since the
number of Dyck paths that end with an up-step followed by k£ down-steps is equal to
the number of non-negative lattice paths from (0,0) to (2n — k — 1,k — 1), we may
apply standard arguments for the enumeration of non-negative lattice paths to obtain the

formula L /9 L1
t(n,k):—<n_ a )
n n—1

We omit the details of the argument.

Classification of patterns of size 4. Theorem 86 and the general results presented in
the previous sections allow us to fully classify patterns of length four by their equivalence
classes (see Table 6.2).

T ‘ pn(T)

1213,1223,1231,1232,1233, 1234 | [68, Sequence A007051] (see Equation (6.2))
1123,1212,1221 - (®") [68, Sequence A000108] (see Theorem 86)
1122 1,1,2,5, 14,42, 133,441, . ..

1112,1121,1211, 1222 [68, Sequence A005425] (see Corollary 67)

1111 [68, Sequence A001680] (see Equation (6.1))

Table 6.2: The numbers p,(7) for 7 € Py.

6.6 The pattern 12112

For a full characterization of the equivalence of patterns up to size seven, we need to
consider one more sporadic case, namely the pattern 12112. Our aim is to show that
this pattern is equivalent to the three patterns 12221, 12212, and 12122. The latter three
patterns are all equivalent by Theorem 68. It is thus sufficient to show that 12112 ~ 12212.

We remark that the proof involving the pattern 12112 does not use the notion of F--
equivalence. In fact, the matrix M (112, 2) is not F'“-equivalent to the three F'--equivalent
matrices M (221,2), M (212,2) and M (122, 2).

The basic idea. The bijection between P,(12112) and P,,(12212), which we are about
to construct, is probably the most complicated construction of this thesis. Before we deal
with the technical details, we first introduce the basic terminology and notation that we
will use throughout the proof, and then outline the key idea of the bijection.

Let S = s189---s, be a word of length n over the alphabet [m], such that every
symbol of [m] appears in S at least once. For i € [m] let f; and ¢; denote the index of
the first and the last symbol of S that is equal to i. Formally, f; = min{j: s; = i} and
l; =max{j: s; =1}.

Definition 88. For k € [m|, we say that the word S is a k-semicanonical sequence
(k-sequence for short), if S has the following properties.
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e [or every ¢ and j such that 1 <¢ <k and 7 < j, we have f; < f;.
e [or every ¢ and j such that k <1i < j <m, we have {; < ;.

Note that m-semicanonical sequences are precisely the canonical sequences of parti-
tions of [n] with m blocks (i.e., the sequences satisfying f; < f; 11 for i € [m—1]), while the
I-semicanonical sequences are precisely the sequences satisfying ¢; < ¢;,; for i € [m — 1].

Note that for every fixed k& € [m] and a fixed partition m = 7y - - - m, with m blocks,
there is exactly one k-sequence S = s;---s, with the property s; = s; <= m = m;.
To construct such a k-sequence for a given partition 7, we consider the m blocks of the
partition, and arrange them into a sequence By, Bs, ..., B,, by the following rules.

e The first £ — 1 blocks By,..., Bx_1 are ordered in the increasing order of their
minimum elements, in the same way as in the usual canonical representation that
we have used so far. The minimum elements of these k£ — 1 blocks are smaller than
the minimum elements of the remaining blocks.

e The blocks By, Bii1,- .., By are ordered in the increasing order of their maximum
elements.
A partition of [n] with m blocks By, Bs,. .., By, ordered by the previous two rules can

then be represented by a k-sequence s;ss - - - s, where s; = j if ¢ € B;.

In particular, assuming n and m are fixed, the number of k-sequences is independent
of k, and each partition of [n] with m blocks is represented by a unique k-sequence. To
prove the equivalence 12112 =~ 12212, we will exploit a remarkable property of the pattern
12112, described by the following key lemma.

Lemma 89 (Key Lemma). For every fized n and m, the number of 12112-avoiding k-
sequences is independent of k. Thus, for every k € [m], the number of 12112-avoiding
k-sequences of length n with m symbols is equal to the number of 12112-avoiding partitions
of n with m blocks.

Before we prove Lemma 89, let us explain how it implies 12112 ~ 12212.

Theorem 90 (J., Mansour [37|). The pattern 12112 is equivalent to 12212. In fact, for
every m and n, there is a bijection between 12112-avoiding partitions of [n] with m blocks
and 12212-avoiding partitions of [n] with m blocks.

Proof. Fix m and n. We know that the 12112-avoiding partitions of [n] with m blocks
are precisely the m-semicanonical sequences over [m] of length n, and by Lemma 89,
these sequences are in bijection with 1-semicanonical 12112-avoiding sequences of the
same length and alphabet. It remains to provide a bijection between the 12112-avoiding
1-sequences and the 12212-avoiding partitions.

Take a 1-semicanonical 12112-avoiding sequence S with m symbols and length n, re-
verse the order of letters in S, and then replace each symbol ¢ of the reverted sequence
by the symbol m — i+ 1 (intuitively, we take the sequence S, represented by the matrix
M (S, m), and rotate it by 180 degrees). It is easy to check that this transform is an invo-
lution which maps 12112-avoiding 1-sequences onto 12212-avoiding m-sequences, which
are precisely the 12212-avoiding partitions of [n] with m blocks. O

It now remains to prove Lemma 89. For the rest of the proof, unless otherwise noted,
we will assume that m and n are fixed, and that each sequence we consider has length n
and m distinct symbols.
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In the following arguments, it is often convenient to represent a sequence S = sy - - - s,
by the matrix M (S, m). Recall that M (S, m) is the 01-matrix with m rows and n columns,
with a 1-cell in row ¢ and column j if and only if s; = ¢. A matrix representing a k-sequence
will be called k-semicanonical matriz (or just k-matrix), and a matrix representing a
12112-avoiding sequence will be simply called 12112-avoiding matriz. In accordance with
earlier terminology, we will use the term semi-sparse matriz for a 01-matrix with at most
one 1-cell in each column, and we will use the term semi-standard matriz for a 01-matrix
with exactly one 1-cell in each column. For a 0l-matrix M, we let f;(M) and ¢;(M)
denote the column-index of the first and the last 1-cell in the i-th row of M. We will
write f; and ¢; instead of f;(M) and ¢;(M) if there is no risk of confusion.

Before we formulate the proof of Lemma 89, let us present a brief sketch of the main
idea. We will first build a bijection that transforms a (k + 1)-matrix M into a k-matrix,
ignoring 12112-avoidance for a while. Let the last 1-cell in row k of M be in column c,
let us call the row k the key row of M. If the last 1-cell in row k + 1 appears to the right
of column ¢, then M is already a k-matrix and we are done. On the other hand, if row
k + 1 has no 1-cell to the right of ¢, we swap the key row k£ with the row k + 1, to obtain
a new matrix M’ whose key row is now the row k + 1. We again check whether the row
directly above the key row has a 1-cell to the right of column ¢, and if not, we swap the
rows k+ 1 and k + 2.

We repeat this procedure until we reach the situation when the key row is either the
topmost row of the matrix, or the row above the key row has a 1-cell to the right of
column c. This procedure transforms the original k£ + 1 matrix into a k-matrix. Also, the
procedure is invertible (note that the first 1-cell of the key row is always to the left of any
other 1-cell in the rows k,k+ 1,...,m).

Unfortunately, this simplistic approach does not preserve 12112-avoidance. However,
we will present an algorithm which follows the same basic structure as the procedure
above, but instead of merely swapping the key row with the row above it, it performs a
more complicated step, which preserves 12112-avoidance of the matrix. The description
of this step is the main ingredient of our proof.

To formalize our argument, we need to introduce more definitions. Let M be a 01-
matrix with exactly one 1-cell in each column and at least one 1-cell in each row, and
let us write f; = fi;(M) and ¢; = ¢;(M). Let k,p and ¢ be three row-indices of M, with
k <p <q. We will say that M is a (k, p, q)-matriz, if M satisfies the following conditions.

e The matrix obtained from M by erasing row p is a k-semicanonical matrix with
m — 1 rows.

e For each i < k, we have f; < f,. For every j > k, j # p, we have f, < f;.

e The number ¢ is determined by the relation ¢ = max{j: ¢; < ¢,}. Thus, the first
condition implies that ¢; < ¢, for every j € {k,k+1,...,q}.

In a (k, p, ¢)-matrix, row p will be called the key row.

Intuitively, a (k, p, ¢)-matrix is an intermediate stage of the above-described procedure
which transforms a (k + 1)-matrix into a k-matrix by moving the key row towards the
top. The number p is the index of the key row in a given step of the procedure, while
the number ¢ is the topmost row that needs to be swapped with the key row to produce
the required k-matrix. In particular, a matrix M is (k + 1)-semicanonical if and only if
it is a (k, k, ¢)-matrix for some value of ¢, and M is k-semicanonical if and only if it is a
(k, q, ¢)-matrix for some q.
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As an example, consider the sequence S = 1331232431 with n = 10 and m = 4. This
sequence corresponds to the following matrix M = M(S,4).

0000000100 0110010010
M- 0110010010 M- 0000000100
0000101000 0000101000
1001000001 1001000001

The matrix M is a (2,3, 4)-matrix. If we exchange the third row (which acts as the key
row) with the fourth row, we obtain a (2,4, 4)-matrix M’ representing the 2-sequence
S’ = 1441242341. The matrix M’ can also be regarded as a (1,1, 4)-matrix, with the key
row at the bottom.

Observe that the following lemma implies Lemma 89.

Lemma 91. For arbitrary k < p < q, there is a bijection ¢ between 12112-avoiding
(k, p, q)-matrices and 12112-avoiding (k,p + 1, q¢)-matrices.

Thus, all we need to do to prove the Key Lemma, and hence also Theorem 90, is to
prove Lemma 91.

Before we construct the bijection ¢, we need to prove several basic properties of the
12112-avoiding (k, p, ¢)-matrices.

Tools of the proof. Let us introduce some more terminology. If = € [m] is a row of
a matrix M, then an x-column is a column of M that has a 1-cell in row z. Similarly,
if X C [m] is a set of rows of M, we will say that a column j is an X -column if j has a
1-cell in a row belonging to X.

If x,y is a pair of rows of M with x <y, we will say that M contains 12112 in (x,y)
if the submatrix of M induced by the pair of rows x,y contains 12112. If X and Y are
two sets of rows, we will say that M contains 12112 in (X,Y") if there is an x € X and
y € Y such that < y and M contains 12112 in (z,y).

Throughout this paragraph, we will assume that k, p, ¢ are fixed, and that £ < p < gq.

We now state a pair of simple but useful observations. Their proofs are straightforward,
and we omit them.

Observation 92. Let M be a semi-sparse 01-matriz, and let x < y be two rows of M,
such that f, < f,. The matriz M avoids 12112 in (z,y) if and only if M has at most
one x-column s satisfying f, < s < {,. If such a unique column s exists, we will say that
s separates row y. The y-columns that are to the left of the separating column s will be
called front y-columns (with respect to row ) and their 1-cells will be called front 1-cells.
Similarly, the y-columns to the right of s will be called rear y-columns and their 1-cells
are rear 1-cells. If there is no such separating column, then we will assume that all the
y-columns and their 1-cells are front. O

Observation 93. Let M be a semi-sparse 01-matriz, and let x < y be a pair of rows such
that £, < {,. Lett be the number of 1-cells in row x, and let ¢; be the i-th x-column, i.e.,
fo=c <cy <---<c¢ =L, The matriz M avoids 12112 in (x,y), if and only if every
y-column appears either to the left of column ¢y, or between the columns c¢;_1 and ¢, or
to the right of column c,. These three types of y-columns (and their 1-cells) will be called
left, middle, and right y-columns (or 1-cells) with respect to row z. O

The following lemma provides a criterion for avoidance of the pattern 12112, which
will be useful later in the proof.
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Lemma 94. Let M be a 12112-avoiding (k, p, q)-matriz, and let j be a row of M with
k< j<p. Let M' be a semi-sparse 01-matriz of the same size as M, with the property
that for every i & {j,7+1,...,q}, the i-th row of M is equal to the i-th row of M'. If M’
has a copy of the pattern 12112 in a pair of rows x < y, then j < x < q.

Proof. Let M and M’ be as above. We will call the rows {j,j + 1,...,q} mutable, and
the remaining rows will be called constant.

Assume that M’ has a copy of 12112 in the rows z < y. Clearly, at least one of the
two rows z, y must be mutable, and in particular, we must have z < ¢. The lemma claims
that x must be mutable. For contradiction, assume that x < j. This implies that y is
mutable. We distinguish two possibilities; either z < k or k < x < j.

Assume that x < k. From the definition of the (k, p, ¢)-matrix, we obtain that all the
columns of M to the left of f,(M) and to the right of ¢,(M) contain a 1-cell in one of
the constant rows. Since M’ is semi-sparse, we conclude that in M’, all the 1-cells in the
mutable rows can only appear in the columns ¢ such that f,(M) < i < £,(M).

Now, we apply Observation 92 to the rows x and p in the matrix M, and conclude
that M (and hence also M’) has at most one z-column s such that f,(M) < s < {,(M).
Therefore M’ also has at most one z-column between f,(M’) and ¢,(M’). By Observa-
tion 92, this shows that x cannot form the pattern 12112 with any of the mutable rows y
of M.

Assume now that k < x < j. As before, we have y € {j,...,q}. Let c; <o < -+ < ¢4
be the z-columns of M (and hence of M’ as well, since x is constant). For any mutable
row i, we have £, (M) < ¢;(M) by the definition of (k, p, ¢)-matrix. By Observation 93, all
of the i-columns of M appear either to the left of ¢; or to the right of ¢, ;. In particular,
all the 1-cells between the columns ¢; and ¢;_; belong to the constant rows. This implies
that M’ can have no occurrence of 12112 in the two rows = < . O

We will now describe a simple operation, called pseudoswap, on 12112-avoiding pairs
of rows.

Assume that M is a semi-sparse matrix with a pair of adjacent rows x and y = x + 1
that avoids 12112 in (x,y). Assume furthermore that f, < f, < ¢, < ¢,. The pseudoswap
of the two rows is performed as follows.

Easy case. If the row y is not separated by an xz-column (in the sense of Observation 92),
or if M has at most one rear y-column with respect to row x, the pseudoswap is
performed by simply swapping the two rows of M.

Hard case. Assume M has an z-column s separating y, and that it has » > 1 rear
y-columns ¢; < ¢y < -+ < ¢ (see Figure 6.3). In this case, the pseudoswap
preserves the position of all the 1-cells in columns ¢1, ... ¢, (i.e., the 1-cells in
these columns remain in row y), and all the other 1-cells in rows z,y are moved
from x to y and vice versa. Note that after the pseudoswap is performed, the
columns s < ¢; < ¢y < -+ < ¢,_1 all contain a 1-cell in row gy, and these r 1-cells are
precisely the middle 1-cells of y with respect to x (in the sense of Observation 93).

Let M’ be the matrix obtained from M by the pseudoswap. It can be routinely
checked that M’ avoids 12112 in (z,y). Let us write f/ for f;(M') and ¢} for ¢;(M’).
Clearly, f, = f, and f, = f,, and also {, = {,, and |, = {,. Also, if row y of M has r >0
rear cells with respect to row x, then in M’, row y has r middle cells with respect to x.

It is not difficult to see that the pseudoswap can be inverted. Let M’ be a sparse matrix
avoiding 12112 in two adjacent rows x <y, such that f; < f; < <. If M’ has fewer
than two middle y-columns, we invert the easy case of the pseudoswap by exchanging the
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Figure 6.3: The illustration of the hard case of the pseudoswap operation.

two rows. On the other hand, if M’ has r > 1 middle y-columns m; < --- < m,, we
invert the hard case by preserving the position of the 1-cells in columns mso, mgs, ..., m,
and inverting all the other {z,y}-columns.

We will be mostly interested in the situation when the pseudoswap is applied to the
pair of rows (p,p + 1) in a (k,p,q)-matrix with p < ¢. It is not hard to see that this
operation yields a (k, p+ 1, ¢)-matrix. Unfortunately, under some circumstances, the hard
case of the pseudoswap may create a copy of the pattern 12112 in the remaining rows of
the matrix. Thus, the pseudoswap alone is not sufficient to provide the required bijection
between 12112-avoiding (k, p, ¢)-matrices and 12112-avoiding (k, p + 1, ¢)-matrices.

Let us now look in more detail at the hard case of the pseudoswap. Recall that if X
and Y are two sets of rows of M, we say that M avoids 12112 in (X,Y), if there is no
x € X and y € Y such that x < y and the two rows z,y contain a copy of 12112.

The following lemma is illustrated in Figure 6.4.

Lemma 95. (a) Let M be a (k,p, q)-matriz that avoids 12112 in (p, p+1). Let f,(M) =
by < by <--- < by =L,(M) be the p-columns of M. Assume that the row p + 1 is
separated by the column b;, and that it has r > 2 rear 1-cells. Let ¢y < co < -+ < ¢
be the front (p + 1)-columns and let dy < dy < --- < d, be the rear (p + 1)-columns.
By Observation 92, we have the inequalities

by < - <b 1< < <cs<b<dy<--<d. <by1 <---<Uby.

Let X = {p,p+ 1} and let Y be the set of all the rows above p + 1 that contain at
least one 1-cell to the left of the column d,._; formally,

Y={y>p+1: f,(M)<d_1}.

The matriz M avoids 12112 in (X,Y) if and only if each Y -column y satisfies one
of the following three inequalities:

1. by <y<c = fp
2. d,_1 <y <d,
3. dr<y<bi+1

The rows in'Y are precisely the rows above p+1 that are separated by the p-column b;.

(b) Let M’ be a (k,p+ 1,q)-matriz that avoids 12112 in (p,p +1). Let oy < -+ <
ay <1 << Br<m << bethe (p+ 1)-columns of M', where the «;, 3;
and y; denote respectively the left, middle and right (p + 1)-columns with respect to
row p. Assume that there are at least two middle 1-cells. Let 6, < --- < d,, be the
p-columns of M'. By Observation 93, we have the inequalities

] < < <0 < <Oy 1 <P < KB < Oy <y < < Y

83




Let X = {p,p+ 1} and let Y’ be the set of all the rows above p+ 1 that contain at
least one 1-cell to the left of column (.. The matriz M’ avoids 12112 in (X,Y") if
and only if each Y'-column y satisfies one of the following three inequalities:

1. 57"—1 <y<ﬁr

2. Br <y < 0y
3. 0 <y <m
The rows in'Y' are precisely the rows above p + 1 that are separated by the (p+ 1)-
column (,.
p+1 o o - ° ® - ° ° °
P @ o o ° e o - °

by bi—z i1 c1 Cy oo Cs b dy - di—g dioy dp bigr bigo by

Q1 -0 Oy—1 Qg 51 52 611)71 ﬁl 52 57"—1 67“ 511} a! Y2 o Yo

Figure 6.4: Illustration of Lemma 95: part (a) is above, part (b) below. The black dots
correspond to 1-cells in rows p and p + 1, and the grey rectangles correspond to possible
positions of the 1-cells in the rows of Y or Y.

Proof. Let us consider part (a). Fix a row y € Y. By the definition of a (k, p, ¢)-matrix,
we have d, < {,. By Observation 93, we see that M avoids 12112 in (p+ 1,y) if and only
if every y-column j satisfies either j < ¢; = fp41, droy < j < d,, or j > d,. The first
y-column satisfies f, < d,_; by the definition of Y, and hence f, < c¢; = f,41 < ;. Since
by > U471 = d, > b;, we see that if the pair of rows (p + 1,y) avoids 12112, then y is
separated by b; and the two rows (p,y) avoid 12112 if and only if b, < f, < £, < b;41.
This proves part (a) of the lemma.

The proof of part (b) is analogous and we omit it. O

The bijection. We are now ready to present the bijection ¢, promised in Lemma 91.
Let M be a 12112-avoiding (k, p, ¢)-matrix with p < ¢, and let us write f; and ¢; for f;(M)
and ¢;(M). By the definition of (k,p, ¢)-matrix and by the assumption p < ¢, we know
that f, < fp41 < €p11 < £y, so we may perform the pseudoswap of the rows p and p + 1
in M. Let M’ be the m x n matrix obtained from M by this pseudoswap. Let f/ = f;(M’)
and ¢; = (;(M'"). Note that f/ = f; and ¢, = ¢; for every i & {p,p+ 1}.

We already know that M’ is a (k,p + 1,¢)-matrix. We now distinguish two cases,
depending on whether the pseudoswap we performed was easy or hard.

Easy case. If the row p+ 1 of M has at most one rear 1-cell with respect to row p,
then M’ is 12112-avoiding, and we may define ¢(M) = M’. Indeed, from the definition of
the pseudoswap we know that M’ cannot contain a copy of 12112 in the rows (p,p + 1),
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and since we are performing the easy case of the pseudoswap, we cannot create any new
copy of the forbidden pattern that would intersect the remaining m — 2 rows.

Hard case. Assume that the row p+ 1 of M has r > 1 rear 1-cells. Let b; < --- < by,
g < - < gy dy < dy < --- < d,, and Y have the same meaning as in part (a) of
Lemma 95. Let Y7, Y5 and Y3 denote, respectively, the Y-columns that lie between b;
and c;, between d,_; and d,, and between d, and b;1.

The bijection ¢ is now constructed in two steps. In the first step, we perform the
pseudoswap of the rows p and p + 1. Let M’ be the result of this first step. Let us now
apply the notation of part (b) of Lemma 95 to the matrix M’ (see Figure 6.4). Note that
d,_1 = [, and hence Y = Y’. Part (b) of Lemma 95 requires that all the Y’-columns of
a 12112-avoiding (k,p + 1, ¢)-matrix fall into one of the three groups:

e columns between §, < y < 71. In M’, we have §,, = d, and v; = b;;1, so these
columns are precisely the columns in Y3.

e columns between (3, < y < d,. In M’, these are precisely the columns in Y5.
e columns between (3,1 <y < (.. In M’, there are no Y-columns in this range.

On the other hand, if Y; is nonempty, then these columns violate the inequalities of part
(b) in Lemma 95, showing that M’ is not 12112-avoiding. To correct this, we apply the
second step of the bijection ¢. Consider the submatrix of M’ induced by the columns Y;
and the columns Z = {6; < -+ < dp_1 < 1 < -+ < B,_1}. Note that the columns Y;
are to the left of any column of Z. Now we rearrange the columns inside this submatrix,
so that all the columns in Y] appear after the columns in Z, keeping the relative order
of the columns in Yj, as well as those in Z. This transforms M’ into a matrix M"”. We
define ¢(M) = M".

Since M" is clearly a (k,p + 1, ¢)-matrix, it remains to check that M"” avoids 12112.
Let x < y be a pair of rows of M"”. We want to check that M" avoids 12112 in these two
rows. Let us consider the following cases separately.

The case = < p. The rows below row p are unaffected by ¢. The rows above row g
are preserved as well, because any row z € Y must satisfy ¢, < b;;1 < £, so no row above
q belongs to Y. Thus, we may apply Lemma 94, to see that M" avoids 12112 in the rows
(@,9).

The case © = p,y = p+ 1. The properties of pseudoswap guarantee that M" avoids
12112 in these two rows.

The case © € X = {p,p+ 1} and y € Y'. By construction, M" satisfies the
inequalities of part (b) of Lemma 95, and thus it avoids 12112 in (X, Y).

The case x € X = {p,p+ 1}, y € Y and y > p+ 1. By the definition of Y’, we
have f,(M") = f,(M) > d,_; = (.. In any column to the right of (3, the mapping ¢ acts
by exchanging the rows p and p 4+ 1. It is easy to check that this action cannot create a
copy of 12112 in (z,y) (note that in any of the three matrices M, M’ and M", both the
rows p and p + 1 have a 1-cell to the left of 3, ).

The case y > v > p + 1. The submatrix of M” induced by the rows above p + 1
only differs from the corresponding submatrix of M by the position of the zero columns.
Thus, it cannot contain any copy of 12112.

This shows that ¢(M) is indeed a 12112-avoiding (k, p + 1, ¢)-matrix.

It is routine to check that the mapping ¢ can be inverted, and by a case analysis similar
to the arguments above, it turns out that the inverse of ¢ preseves 12112-avoidance. This
shows that ¢ is indeed the required bijection.

This completes the proof of Lemma 91, from which, and as we explained before,
Lemma 89 and Theorem 90 follow directly.
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Figure 6.5: The ordered graphs GG; and G5 corresponding to the filling patterns M (2,112)
and M (2,212).

Consequences. Theorem 90 has several consequences for pattern-avoiding fillings of
F--shapes and for pattern-avoiding ordered graphs.

By Lemma 46, there is a bijection between 12112-avoiding partitions of [n] with m
blocks and M (2, 112)-avoiding semi-standard fillings of F--shapes with n — m columns
and at most m rows. Similarly, there is an analogous bijection between 12212-avoiding
partitions and M (2, 212)-avoiding fillings of F--shapes. Thus, we obtain the following
direct consequence of Theorem 90.

Corollary 96. For every r and ¢, there is a bijection between the M (2,112)-avoiding
semi-standard fillings of all the F--shapes with r rows and ¢ columns and the M(2,212)-
avoiding semi-standard fillings of all the F--shapes with r rows and ¢ columns.

It would be tempting to assume that for a given F--shape F', the M (2,112)-avoiding
semi-standard fillings of F' are in bijection with the M(2,212)-avoiding semi-standard
fillings of F, i.e., that the two matrices M (2,112) and M(2,212) are F--equivalent. How-
ever, as we already mentioned in the introduction of Section 6.6, this is not the case.
For instance, the F--shape F' with five columns of height 4 and one column of height
2 has 866 M (2, 112)-avoiding fillings but only 865 M (2, 212)-avoiding fillings. Thus, the
bijection of Corollary 96 in general cannot preserve the shape of the underlying diagram.

In the introduction of this thesis, we described a one-to-one correspondence between
dense fillings of Ferrers shapes and IM-free ordered graph. By applying the same idea,
we may obtain a one-to-one correspondence between semi-standard fillings of F'--shapes
and sprinkler graphs. For convenience, let us describe the correspondence here.

Recall that a sprinkler graph is an ordered graph, in which every vertex has either
exactly one neighbor to its left, or an arbitrary number (possibly zero) of neighbors to its
right.

Every semi-standard filling ® of an F--shape with ¢ columns and r rows can be
represented by an ordered graph with ¢ + r linearly ordered vertices. The graph has two
kinds of vertices: the right vertices ry, ..., r., which have degree one, and are to the right
of their neighbors, and the left vertices (1, ..., {., which may have arbitrary degree one
and are to the left of all their neighbors.

The i-th column of ® is associated with the ¢-th right vertex r;, and the j-th row of
® is associated with the j-th left vertex ¢;. All the vertices are linearly ordered by a left-
to-right relation < with the properties ry < --- <1, {1 < ly < --- < {,, and furthermore,
¢; < r; if and only if row j intersects column ¢ inside ®. A 1-cell in row j and column
¢ corresponds to an edge between ¢; and r;. Note that if /; and r; are connected by an
edge, then ¢; < ;.

In this representation, the semi-standard fillings of F'--shapes correspond precisely to
the sprinkler graphs. The M (112, 2) avoiding fillings of F' correspond precisely to ordered
graphs which avoid a subgraph G with five vertices ¢, < ¢, < r, < r, < r, and three
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edges o1y, o1y, and £yr,. Similarly, the fillings avoiding M (212, 2) correspond to graphs
avoiding the subgraph Gy with vertices ¢, < ¢, < r, < r, < r, and edges {,r,, {}r,, and
lyr, (see Figure 6.5).

Theorem 90 then immediately yields the following result.

Corollary 97. There is a bijection between G1-avoiding sprinkler graphs and Go-avoiding
sprinkler graphs that preserves the number of left vertices and right vertices.

Whether this result can be extended to more general types of graphs or more general
pairs of patterns is an open problem.
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Conclusion: Beyond Wilf-type
classifications

Wilf-type classification has been one of the main topics of the study of pattern-avoiding
ordered structures. However, it would be unwise to over-emphasize its importance and
ignore alternative approaches. In fact, it seems that lately these alternative approaches
are gaining increasing amount of attention.

For this reason, we will devote the concluding chapter of this thesis to a brief overview
of several promising approaches which are currently being actively pursued, and are likely
to bring new results in near future.

Hereditary classes

Throughout this thesis, we have mostly considered classes of structures that avoided a
single forbidden pattern. This makes good sense in the context of Wilf-type classifica-
tion, but it appears to be a somewhat artificial restriction once we begin to study other
combinatorial aspects. It often turns out that a more natural concept is the concept of
hereditary classes. A class € of permutations is called hereditary, if for every 7 € C,
the class C contains all subpermutations of 7. A hereditary class is proper if it does not
contain all permutations.

Of course, we may analogously define hereditary classes of other structures than per-
mutations. The notion of hereditary class makes sense for any family of structures ordered
by a containment relation.

Recall that 8, is the set of all the permutations of order n, and §,(7) is the set of
permutations of order n that avoid all the patterns from the set T. Let us write

$=[J8, and  S(T)=[]S8.(T).

For any set of patterns T, the class 8(T) is clearly hereditary. Conversely, any hereditary
class € C 8 can be expressed as € = §(7'), where T is the (possibly infinite) set of minimal
permutations that do not belong to €. The set T is called the basis of C. For a hereditary
class C, we let C, denote the set €N §,. The function n +— |C,| is known as the speed of
the class C.

Growth Rates

The most natural task in the study of pattern avoidance is to determine how many
permutations of a given order a pattern-avoiding class € contains.

One of the most significant achievements in this line of research is the following result
due to Marcus and Tardos [50].
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Theorem 98 (Marcus—Tardos Theorem (formerly Stanley—Wilf Conjecture)). For a pro-
per hereditary class of permutations C there is a constant ¢ such that |C,| < ™.

By Theorem 98, we may define, for a proper hereditary class C, its upper growth rate
gr(C) as limsup,, .. ¥/|C.|, and its lower growth rate gr(C) as liminf, . {/|C,|. If the
upper and lower growth rates are the same, we speak simply of the growth rate gr(C).

Arratia [5] has shown, by a superadditivity argument, that if the basis of € consists
of a single element 7, then gr(C) = gr(€); in such case, the growth rate is often referred
to as the Stanley-Wilf limit of 7. It is an open question whether the growth rate exists
for any hereditary class € of permutations.

There are several results related to the evaluation of the Stanley-Wilf limits of a
specific pattern. We have already mentioned that Regev [55| gave an asymptotic formula
for the number of I -avoiding permutation, which implies that the Stanley—Wilf limit of
8(I}) is equal to (k — 1)

In 1997, Bona [11] has found a formula for |S,(1342)|, and showed that the Stanley—
Wilf limit of 1342 is equal to 8. In 2005, Béna [13] has shown that the Stanley—Wilf limit
of 12453 is equal to 9 + 4v/2. This was the first example of a pattern whose Stanley-Wilf
limit is not an integer. It is conjectured |70| that the growth rate of a finitely-based
permutation class is either an integer or an algebraic irrational.

In general, the problem of finding the Stanley-Wilf limit of a given pattern seems
rather difficult. For instance, the Stanley-Wilf limit of 1324 is still not known. The best
known lower bound is due to Albert et al. [2] who showed that gr(8(1324)) > 9.35. This
result shows that the Stanley-Wilf limit of 1324 is the largest among the permutations of
order four.

A related question is to estimate the largest and the smallest Stanley—Wilf limit of a
pattern 7 € 8, as a function of k. The proof of the Marcus—Tardos theorem gives an
upper bound which is superexponential in terms of k, but this is believed to be far from
optimal. The largest known Stanley—Wilf limit is due to Bona [12|, who constructed, for
any k, a pattern of size 3k + 1 whose Stanley-Wilf limit is equal to k%gr(8(1324)). For the
minimum possible Stanley—Wilf limit, an argument of Valtr [39] shows that any pattern
of size k has the Stanley-Wilf limit at least (1 + o(1))(k — 1)?/e®. The smallest known
Stanley—Wilf limit was again obtained by Bona [12], whose method yields a pattern of
length 3% + 1 and Stanley—Wilf limit 8&2.

Speeds of hereditary classes

Recently, several researchers have considered the question of determining general criteria
for the functions that can be obtained as speeds of hereditary classes.

For hereditary permutation classes, the papers by Kaiser and Klazar [39], Albert and
Linton [3| and Vatter [69] have the yielded the following results:

e If the speed of a hereditary class C is asymptotically smaller than (1 + €)" for every
€ > 0, then the speed is eventually equal to a polynomial [39].

e If the growth rate of a hereditary permutation class is less than 2, then the growth
rate is equal to the positive root of 1 + x + 22 + -+ + 2! — 2%, for some integer
k [39].

e There is a constant xk &~ 2.20557 (the unique positive root of 1 + 2z? — z*) such
that there are only countably many hereditary classes of growth rate smaller than
k, while there are uncountably many classes of growth rate s [43, 70].
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e There is a constant A &~ 2.48187 (the unique real root of z° — 2z% — 22% — 2z — 1)
such that for every real number ¢ > X there is a hereditary permutation class of
growth rate ¢ |3, 69].

Notice that these results yield a dichotomy between hereditary classes of polynomial
speed and hereditary classes of exponential speed. For growth rates up to s, there is
still a discrete hierarchy of possible speeds. However, after a certain threshold, there are
no more gaps between the possible growth rates, and any growth rate is allowed. This
cancels any hope of a ‘nice’ hierarchy of all the permutation growth rates. For this reason,
it has been suggested to study more restricted classes of permutations, e.g., the hereditary
classes with finite base. So far, however, we are not aware of any substantial result in this
restricted setting.

Ordered graphs

The results on the speeds of permutation classes can be, to a great extent, generalized to
hereditary properties of ordered graphs. A property of graphs is a class of graphs that is
closed under isomorphism. A property of ordered graph is hereditary if it is closed under
taking induced ordered subgraphs. For a property € of ordered graphs, let C, be the
number of graphs from € on the vertex set [n]. The speed of a property C is the function
n — |C,|. Note that no two distinct ordered graphs on the vertex set [n] are isomorphic,
so the speed in fact counts the number of isomorphism classes of order n in C.

Since a permutation 7 € §, can be represented by its permutation graph G, which
is an ordered graph on the vertex set [n], and since any induced subgraph of G is (up
to isomorphism) a permutation graph that represents a subpermutation of 7, we see
that a hereditary class € of permutations can be represented by a hereditary property
Ge = {G,: 7 € C}, which has the same speed as C. This means that the possible
speeds of hereditary properties of ordered graphs are a superset of the possible speeds of
hereditary permutation classes.

The study of possible speeds of hereditary properties of ordered graphs was initiated
by Balogh, Bollobas and Morris. They were motivated by results on permutation speeds
mentioned above, as well as previous results on speeds of classes of (unordered) labelled
graphs, obtained (among others) by Balogh, Bollobas and Weinreich [8, 9].

In the setting of ordered graphs, Balogh, Bollobas and Morris have obtained the fol-
lowing result.

Theorem 99 (Balogh et al. [7]). Let C be a hereditary property of ordered graphs, and
let f(n) = |C,| be the speed of C. One of the following conditions holds:

e There are constants ng and K such that f(n) = K for every n > ny.

e There are integers ng,k > 1, aq, ..., a, such that for every n > ngy, we have f(n) =

Zf:o @ (?) :

e There is an integer k > 2 and a polynomial p, such that Y < f(n) < p(n)Fygk).
Here F\" are the k-Fibonacci numbers, defined by the recurrence FF = Zle Félz
for n > 1, with the initial conditions Fék) =1, and F,,Sk) =0 forn <0.

o The inequality f(n) > 2""! holds for every n € N.

We remark that for any k, the growth rate of the k-Fibonacci sequence lim,,_; \/ ol
is the positive root of 1 +z + 22 + -+ + 2! — 2% and is strictly smaller than 2.

90



Atomic and molecular relational structures

The attempts to generalize hereditary permutation classes need not stop with ordered
graphs. A promising approach to the understanding of ordered structures is based on the
theory of hereditary and atomic classes of relational structures.

Since we have not mentioned relational structures before, let us briefly introduce the
necessary terminology. Let ¥ = (a(1),a(2),...,a(k)) be a finite sequence of positive
integers and let V' be a (possibly infinite) set. A relational structure with signature ¥ on
the vertex set V is a (k + 1)-tuple R = (V, Ey, ..., E}), where E; C Vi) The sets E,
are called the relations of R and the integer a(i) is called the arity of E;. The size of the
vertex set V' is referred to as the order of R.

A relational structure whose all relations have arity 2 is called binary relational struc-
ture.

Let R = (V,Ey,...,Ex) and R = (W, F,..., F}) be two relational structures of the
same signature. We say that R and R’ are isomorphic, if there is a bijection ¢: V — W
such that for every i and every a(i)-tuple (vy,...,v.u) € VU we have the equivalence
(U1, .-, Vas)) € By <= (¢(v1),...,0(va@i))) € F;. We say that R’ is a substructure of R
if W c V and for every i, F; = E; "W (%) We say that R contains R’ if R is isomorphic
to a substructure of R. For a relational structure R, the age of R is the set of all the
finite relational structures that are contained in R.

A property of relational structures is a class of finite relational structures of the same
signature that is closed under isomorphism. A property is hereditary, if it closed under
taking substructures. A property is atomic if it is equal to the age of a single (possibly
infinite) relational structure. If a property is the union of finitely many atomic properties,
we call it molecular.

Atomic classes have been introduced by Fraissé [25], who has also shown that a hered-
itary property € of relational structures is atomic if and only if each two elements R and
S of € are jointly embeddable, which means that there is an element 7" € C that contains
both R and S. Another equivalent definition of an atomic property states that a heredi-
tary property € is atomic if and only if it cannot be expressed as the union of two proper
hereditary properties different from C.

For molecular properties, we are able to give a similar characterization in terms of
joint embeddability [36]. For an integer k, a hereditary property € cannot be expressed
as the union of k£ atomic properties if and only if it contains a set of k£ + 1 structures, no
two of which are jointly embeddable in C. A property is not molecular, if and only if it
contains an infinite such subset.

The speed of a hereditary class € is the function that assigns to an integer n the
number of nonisomorphic structures of order n in C.

Relational structures are very general concept; in particular, hereditary classes of
relational structures generalize hereditary classes of ordered graphs, hereditary classes of
set partitions (with various containment relations), as well as many other structures. It
thus makes good sense to study their possible speeds.

The research related to relational structures seems to have proceeded independently
of the research of the research of hereditary classes of permutations and graphs. In fact,
in the context of relational structures, people have more often considered the speeds of
atomic classes, rather than general hereditary classes. We are not aware of any results
that would deal with the full generality of hereditary properties of relational structures.

Nevertheless, several results on the speeds of atomic classes of relational structures
exist [54], and they appear similar to the results related to speeds of hereditary classes of
more specific objects. Thus, it seems plausible that there might be a common generaliza-
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tion of these lines of research.

It is also remarkable that the classes of ordered graphs or speed smaller than 2" that
occur in the classification of Theorem 99, as well as the permutation classes of growth rate
smaller than the countability threshold x, are in fact molecular classes of structures. This
suggests that the speeds of molecular classes of structures might be easier to handle and
their growth rates might be more constrained than the growth rates of general hereditary
classes.

Further reading

Obviously, we only provided a sketchy and incomplete overview of topics related to hered-
itary classes of permutations and other structures. For the benefit of an interested reader,
we provide several references to more thorough surveys of these topics.

The survey of Kitaev and Mansour [40| deals mostly with the topic of pattern avoidance
in permutations and words. It also deals with several alternative notions of pattern
avoidance in permutations.

A more general (and also more recent) survey by Klazar [45] deals, among other topics,
with growth rates of hereditary properties. Another survey, by Bollobas [10], is exclu-
sively devoted to growth rates of hereditary and monotone properties of combinatorial
structures.

The survey of Pouzet [54] deals with atomic classes of relational structures, including
an overview of the main algebraic and order-theoretic tools used in their study.
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Appendix A

Notation

The following table summarizes the main notation used in this thesis. The numbers in
brackets indicate the page where the corresponding notion is defined.

N the set of positive integers {1,2,...}

) the set of integers

[n] the set {1,2,...,n}

Sn the set of permutations of order n

8.(0)  the set permutations of order n avoiding the pattern o
Jn the set of involutions of order n

Jn(o)  the set of involutions of order n avoiding the pattern o
A" the set of words of length n over the alphabet A

A™(w) the set of words of length n over the alphabet A avoiding the pattern w
FT the transpose of F'
Pn the set of partitions of [n]
P.(0) the set of partitions of [n] that avoid o
(o)  the cardinality of P, (o)
the complement of a word 7 (45)
the Wilf equivalence (17)
the Wilf order (34)

the shape-Wilf equivalence (19)
the shape-Wilf order (34)

the skew order (35)

the I-Wilf equivalence (40)

the strong equivalence of words (46)

ﬂ

equivalence with respect to general fillings of rectangles (32)

equivalence with respect to general fillings of Ferrers shapes (32)

Ferrers equivalence (47)

stack equivalence (48)
equivalence of partitions (52)

equivalence with respect to transversals of F'--shapes (41)
F--equivalence (54)
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