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Introduction: Halfspace depth and multivariate quantiles

Ranks, order statistics, and quantiles are at the core of nonparametric statistics. For a Borel probability
measure P on R, the cumulative distribution function (c.d.f.)

F : R → [0, 1] : x 7→ P ((−∞, x]) (1)

is well known to represent the measure P uniquely. Its (generalized) inverse function

Q : [0, 1] → R : δ 7→ inf {x ∈ R : F (x) ≥ δ} (2)

is called the quantile function of P . Quantiles are certainly among the key concepts of statistics. As the
simplest example, take the median of P in R, defined as the 1/2-quantile Q(1/2) of P . The median
has an array of fine properties: (i) it is always well defined (unlike the expectation, for example), (ii) it
is straightforward to interpret, and (iii) is quite stable, in the sense that perturbations of P do not much
disturb its median. It is also straightforward to observe that just like the c.d.f. F , also the quantile
function Q describes the measure P uniquely. The measure P is simple to recover directly from its
quantile function Q, or its c.d.f. F . All these traits make the quantiles a tool that suits statistics and
data analysis exceptionally well. The abundant field of nonparametric statistics attests to this.
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Figure 1: Two datasets in R2 — each point represents a single datum. For the empirical measure
given by each of these datasets, the halfspace depth D of all sample points was computed. 10 % of
observations with the highest and lowest depth values are plotted in yellow and brown, respectively, in
both panels. The depth induces a data-dependent ordering of Rd in the center-outwards sense — points
of high depth form a “center” of the dataset; low depth points occupy the data cloud’s outskirts.

Therefore, the situation with probability measures living in R is quite simple. For the analysis of
R-valued data, one may work with the measure P on R directly, or alternatively with its representation
via the c.d.f. F , or the quantile function Q. All this is possible due to the natural ordering of the real
line R, implicitly used in both (1) and (2).
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The situation with data living in multidimensional spaces Rd, or spaces X that may lack linear
structure (non-Euclidean spaces), is far more complicated. This thesis focuses on the linear spaces Rd

with d > 1. No unique canonical notion of total ordering exists in Rd, and while the c.d.f. of a Borel
probability measure P in Rd is typically defined as

F : Rd → [0, 1] : (x1, . . . , xd) 7→ P ((−∞, x1]× · · · × (−∞, xd]) ,

this function does not possess a natural inverse that would play the role of the quantile function. For this
reason, quantiles, and by extension, nonparametric statistical techniques, cannot be used in multivariate
spaces in a straightforward way.
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Figure 2: (a) The bagplot – a bivariate version of the boxplot from R — of a dataset in R2 [83], (b) a
functional boxplot [99], and (c) a heatplot for spherical data [97]. All these graphical methods rely on
depth, and are part of standard R packages [81] used by thousands of users. The theory behind them
is, however, far from trivial.

Our intention is to study statistical depth functions (usually called just depths, for simplicity).
Depths have been proposed to serve as generalizations of quantiles, ranks, and orderings for data living
in multivariate spaces Rd, or spaces X without linear structure. Formally speaking, denote P (X ) the
set of all Borel probability measures on a topological space X . Depth is a function

D : X × P (X ) → [0,∞) : (x;P ) 7→ D(x;P )

that to any point x ∈ X and a measure P ∈ P (X ) assigns D(x;P ), the depth of x with respect to
(w.r.t.) P . Taking P as a fixed given measure, the depth of x quantifies how much “centrally positioned”
the point x is within the geometry induced by the probability mass of P . The higher the depth of x is,
the more central x is, while D(x;P ) close to zero signifies that x is located on the periphery of P , or is
an observation that is atypical for P . Any depth function D(·;P ) : X → [0,∞) : x 7→ D(x;P ) induces
the (depth-based) central regions of P , defined as the upper level sets of D(·;P )

Dδ(P ) = {x ∈ X : D(x;P ) ≥ δ} , for δ ≥ 0. (3)

These central regions form a system of nested sets, non-increasing with growing δ ≥ 0, and D0(P ) = X .
The depth D induces a P -dependent ordering of the points from X ; x ∈ X is deeper than y ∈ X if
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and only if D(x;P ) > D(y;P ), see Figure 1. The central regions (3) are used to visualize this ordering
and provide a base for working with the depth of P explicitly. Depths have found many applications in
nonparametric statistics of more complex data; for several applications in different setups see Figure 2.

The depth function is supposed to generalize the quantile function (2) to X -valued data. The role
of the median Q(1/2) from R is played by the deepest point x ∈ X , defined as (any) point x ∈ X that
maximizes the depth function D(·;P ). Equivalently, the depth-induced median is any point x inside the
smallest non-empty central region (3). The latter set is sometimes called the depth median set of P .
The other central regions (3) act as sets of points that are sufficiently centrally positioned. They are
analogs of inter-quantile regions

[Q(1/2− β), Q(1/2 + β)] ⊂ R (4)

with suitable β ∈ [0, 1/2] for Q the quantile function (2) of P ∈ P (R). For β = 1/4, for instance, we
obtain the smallest region of the most centrally positioned points of P -mass at least 1/2. This is the
box, commonly used in the construction of the boxplot for R-valued data. Its depth-based analog for
P ∈ P (X ) based on the central regions (3) is called the bag and can be used for the construction of a
version of the boxplot for X -valued data, see Figure 2 (a, b).

There is no universally agreed-upon notion of depth — instead, depth comes in many flavors. Many
depth functions were proposed in the literature. For excellent accounts on the general theory of statistical
depth functions, we refer to [53, 106, 62, 59, 60, 63, 65].

In this thesis, we focus on the classical halfspace depth (sometimes called also Tukey depth, or
location depth) proposed by J. W. Tukey [100]. It is defined in X = Rd with d ≥ 1. The halfspace
depth of x ∈ Rd w.r.t. P ∈ P

(
Rd
)
is

D(x;P ) = inf
u∈Sd−1

P (Hx,u) , (5)

where Sd−1 =
{
x ∈ Rd : ∥x∥ = 1

}
is the unit sphere in Rd, and Hx,u =

{
y ∈ Rd : ⟨x− y, u⟩ ≤ 0

}
is

the closed halfspace whose boundary hyperplane passes through x ∈ Rd with inner unit normal u ∈ Sd−1.
In words, the halfspace depth of a point x is the minimum P -mass of a halfspace that contains x.

Tukey proposed the halfspace depth in 1975. Its first rigorous study, however, comes only with
D. L. Donoho [16, 17] in the 1980s, who coined the term depth. Soon after, H. Oja proposed what is
now known as the simplicial volume depth [78], and R. Y. Liu brought up the notion of the simplicial
depth in Rd [50, 51] and X = Sd−1 [52]. This triggered an immense surge of interest in statistical depth
functions and their applications to data analysis. In the coming decades, dozens of depth functions have
been proposed for Rd-valued measures, and in more general spaces X . The halfspace depth (5), however,
remains a prime example of a statistical depth function. Still, almost 50 years after its introduction,
it rouses the attention of statisticians, and many open problems continue to stimulate interest in this
depth and the associated statistical procedures.

The halfspace median was recently observed to play a crucial role in robust statistics of multivariate
data: It is the minimax optimal estimator of location in common robustness models [7], by means of
which it lately generated a great deal of attention in both statistics [13, 39, 55] and machine learning
[14, 15]. Likewise, other central regions Dδ(P ) of the halfspace depth have been recently well studied
as multivariate analogs of the quantiles of P [5, 29, 35, 42, 82, 106].
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The overarching theme of this thesis is the mathematical study of the halfspace depth in Rd. It is
based on the following seven papers:

(A) Nagy, S., Schütt, C., and Werner, E. M. (2019). Halfspace depth and floating body. Stat. Surv.,
13:52–118, [76].

(B) Nagy, S. (2020). The halfspace depth characterization problem. In Nonparametric statistics,
volume 339 of Springer Proc. Math. Stat., pages 379–389. Springer, Cham, [69].

(C) Nagy, S. (2021). Halfspace depth does not characterize probability distributions. Statist. Papers,
62(3):1135–1139, [71].

(D) Laketa, P. and Nagy, S. (2021). Reconstruction of atomic measures from their halfspace depth.
J. Multivariate Anal., 183:Paper No. 104727, 13 pages, [46].

(E) Nagy, S. and Dvǒrák, J. (2021). Illumination depth. J. Comput. Graph. Statist., 30(1):78–90,
[73].

(F) Nagy, S., Dyckerhoff, R., and Mozharovskyi, P. (2020). Uniform convergence rates for the ap-
proximated halfspace and projection depth. Electron. J. Stat., 14(2):3939–3975, [75].

(G) Dyckerhoff, R., Mozharovskyi, P., and Nagy, S. (2021). Approximate computation of projection
depths. Comput. Statist. Data Anal., 157:Paper No. 107166, 23 pages, [24].

All these papers deal with the mathematics of the halfspace depth. They can be split thematically into
two major parts. The first four papers (A)–(D) are mostly theoretical. We point to many surprising
connections of the halfspace depth with concepts from pure mathematics, and leverage these interdis-
ciplinary links to resolve several long-standing open problems of the theory of halfspace depth. Perhaps
the most interesting is the main result of paper (C), which resolves the 30-year-old halfspace depth
characterization conjecture in the negative. Paper (E) brings a practical application of the unveiled
links between depth and convex geometry; we use the geometric concept of illumination to improve
halfspace depth in data analysis.

The second part of the present work, described in papers (F) and (G), tackles the practical problem
of efficient computation of the halfspace depth. We are given a point x ∈ Rd, and a collection of data
points X1, . . . , Xn ∈ Rd that are typically realizations of a random sample from P ∈ P

(
Rd
)
. How to

compute the halfspace depth of x w.r.t. the measure that assigns equal mass 1/n to each of the points
Xi, i = 1, . . . , n? While the general problem of computing the halfspace depth exactly is known to be
NP-hard [40], a substantial body of research has been focused on the task of finding algorithms for both
exact and approximate computation of the halfspace depth. In (F) and (G), we scrutinize some of the
approximation algorithms and propose new techniques for the computation of the halfspace depth. Our
goal is to provide guidelines on how to compute the halfspace depth in practice.

Perhaps the most exciting feature of the present work is its interdisciplinarity. The methods we use
to study the halfspace depth seldom originate only in statistics; we extensively engage mathematical
methods previously unexplored in multivariate statistics to solve statistical problems. Novel meanings
and interpretations are attached to ideas, especially from geometry, and original applications toward the
practice of data analysis are established. At this point, we already know that our observed connections
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of the halfspace depth with concepts of more general mathematics are not an exception. We managed
to couple several other notions frequently employed in multivariate statistics with ideas from geometry,
analysis, or machine learning. We refer to papers (i) [68, 70]1 for the geometry of the scatter halfspace
depth defined in [79], (ii) [104] for an analysis of the h-depth from [11, 12] in view of the recent
advances in machine learning, and (iii) [72] for glimpses into the mathematics of the simplicial depth
[50, 51]. In the present thesis, we focus exclusively on the halfspace depth and offer an array of novel
insights into its behavior and properties.
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Figure 3: Left: A dataset Pn in R2 of 45 points (black) with the contours of Dδ(Pn) (black polygons),
and x ∈ R2 (red point). We have D(x;Pn) = 8/45; a halfspace Hx,u that attains this depth is the
lightly colored region. The central region D8/45(Pn) is the polygon with a red boundary. Right: An
illustration from Dupin (1822) [19]. The regions inside the convex bodies K in this figure (e.g., the
region (Φ) on the right hand side) are equivalent with Dδ(P ), for P uniform on K.

Notations and terminology

As basic references, we take [18] for probability, [92] for statistics, and [87] for geometry. P
(
Rd
)
are all

Borel probability measures on Rd, and Sd−1 =
{
x ∈ Rd : ∥x∥ = 1

}
is the unit sphere. For P ∈ P

(
Rd
)
,

we write X ∼ P if X is a random vector distributed as P ;
d
= means “is equal in distribution”. We call

a measure P ∈ P
(
Rd
)
empirical if there exists an integer n ≥ 1 and a collection of (not necessarily

distinct) points x1, . . . , xn ∈ Rd such that P can be written as a sum of n Dirac masses at the points
x1, . . . , xn, each with total mass 1/n. A measure P ∈ P

(
Rd
)
is called finitely atomic if the support of

P consists of a finite point set; a measure P ∈ P
(
Rd
)
is atomic if its support is at most countable.

Every finitely atomic measure is atomic, and every empirical measure is finitely atomic; a finitely atomic
measure is empirical if and only if all P -masses of the atoms of P are rational numbers.

A halfspace is a set Hx,u =
{
y ∈ Rd : ⟨x− y, u⟩ ≤ 0

}
for x ∈ Rd and u ∈ Sd−1; the collection of all

halfspaces in Rd is H. The set of convex bodies, i.e., compact convex subsets K ⊂ Rd with non-empty
interior, is denoted by Kd. In a convenient departure from the common terminology, we say that H ∈ H
supports K if the interior of H does not intersect K, but the boundary of H does. We say that K
has a smooth boundary ∂K at x ∈ ∂K if there exists a unique halfspace H ∈ H that supports K and
contains x; the convex body K is smooth if its boundary is smooth at every point.

1References to papers of the author other than (A)–(G) are in bold.
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1 Summary of paper (A):
Halfspace depth and floating body

In the extensive semi-survey (A), we approach the halfspace depth from two different angles: (i) we
introduce the maximum halfspace depth maxx∈Rd D(x;P ) as a measure of symmetry of the measure
P ∈ P

(
Rd
)
, and (ii) draw an equivalence between the central regions Dδ(P ) and the floating bodies.

The history of both measures of symmetry and floating bodies in convex geometry is much longer than
the history of depth in statistics. While the halfspace depth was introduced in the 1970s [100], measures
of symmetry have been studied since the 1910s [2], and floating bodies can be traced well into the early
19th-century [19], see Figure 3. Interestingly, the related advances from geometry have never been
adequately recognized or leveraged in the statistics literature. Our intention in paper (A) was to bridge
this gap between fields of mathematics and explore the common ground of all these seemingly little
related theories.

Maximum depth as a measure of symmetry

In the first major part of paper (A) in Section 4, we couple the halfspace depth and the associated median
with the so-called measures of symmetry of convex bodies, a concept that has been covered extensively
in convex geometry [34]. Standardly, a measure of symmetry σ is a map that to a convex body K ∈ Kd

assigns a quantity σ(K) ∈ [0, 1] that assesses the degree of symmetry of K; σ(K) = 1 if and only if
K is symmetric (i.e., K = −K). It turns out that, at least when the uniform distribution P ∈ P

(
Rd
)

on a convex body K ∈ Kd is identified with K itself, the maximum halfspace depth maxx∈Rd D(x;P )
exactly coincides with a measure of symmetry of K called the Winternitz measure of symmetry. The
history of the Winternitz measure of symmetry goes back to the 1910s [2]. In that period, Arthur
Winternitz proved, speaking in the terminology of the halfspace depth, that maxx∈R2 D(x;P ) ≥ 4/9
for any P ∈ P

(
R2
)
uniform on K ∈ K2, and that this lower bound is attained if and only if K is a

triangle. In Section 4 of (A), we gather many little-recognized connections between the research on
depth in statistics and the related results on measures of symmetry. We draw from the latter and refine
bounds on the maximum halfspace depth w.r.t. measures P ∈ P

(
Rd
)
with specific structural properties.

Interestingly, we uncovered novel results not only by applying advances from geometry toward statistics.
In our treatment of symmetries of measures, we found that in multivariate statistics, remarkable results
directly applicable to geometry can be found. A case in point is the Funk theorem on symmetric convex
bodies, which we introduce next.

Symmetries of measures: The Funk theorem and beyond.

In 1915 Paul Funk [30] proved the following result:

Theorem. For a convex body K ∈ K3, if every plane passing through the origin splits K into two parts
of equal volume, then K must be symmetric around the origin (i.e., K = −K).

In R2 an analogous result is easy to see; Funk conjectured that it is true for all dimensions d ≥ 1.
The complete resolution of Funk’s conjecture remained elusive for 50 years. Only in the 1970s, an
involved proof based on spherical harmonics emerged in geometry [86]. Since that time, somewhat
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simpler proofs of the Funk theorem have appeared in the literature [33], but no truly elementary proof
for convex bodies has been known in geometry.

Not observing those difficulties, systematic research of symmetric measures in Rd was initiated in
statistics in the late 1990s [107] by Zuo and Serfling. Symmetries of measures are more delicate than
those of convex bodies. Following [107], we say that a X ∼ P ∈ P

(
Rd
)
is

1. halfspace symmetric if there exists x ∈ Rd such that D(x;P ) ≥ 1/2;

2. angularly symmetric if for some x ∈ Rd we have2 (X − x)/ ∥X − x∥ d
= −(X − x)/ ∥X − x∥;

3. centrally symmetric if (X − x)
d
= −(X − x).

4. spherically symmetric if X
d
= OX for any orthogonal matrix O ∈ Rd×d.

It is known that spherical ⇒ central ⇒ angular ⇒ halfspace symmetry, with no implication possible to
reverse. In [85] we find

Theorem. For P ∈ P
(
Rd
)
non-atomic the halfspace symmetry and the angular symmetry coincide.

The proof in [85] is surprisingly elementary; it uses only the Cramér-Wold device, a tool known since
the 1930s [8]. As a particular case, for P uniform on a convex body K ∈ Kd, this theorem covers
Funk’s conjecture and appears to be its first easily accessible proof in the literature. Curiously, neither
Zuo and Serfling [107] nor Rousseeuw and Struyf [85] were aware of Funk’s result when proving this
claim in the language of depth.

An early predecessor of halfspace depth: Dupin’s floating body

In the second main part of paper (A), we provide another unlikely pairing between the multivariate
statistics of depth and convexity theory. We show that the concept of floating bodies, studied in
geometry since the early 19th century, is entirely equivalent to the central regions Dδ(P ) of measures
P . This will allow us to call Dδ(P ) the floating body of P . The abundance of results known about
floating bodies has never been considered in light of their statistical applications.

It is well known [57, 82, 106] that the central regions (3) of the halfspace depth can be written as

Dδ(P ) =
⋂{

H ∈ H : P (H) > 1− δ
}

for δ ≥ 0. (6)

The equality in (6) follows directly from (5); it is not difficult to see that the halfspace depth may be
alternatively defined only by means of its level sets in (6) for all δ ≥ 0 [22].

The equivalent expression for the central regions Dδ(P ) in (6) has already been well established
in convex geometry in the early 19th century. In 1822, French geometer Charles Dupin [19] published
a treatise on the mechanics of solid bodies floating in fluids. One of the concepts he considered, the
floating body of K ∈ Kd, is defined as a convex subset K[δ] of K such that each supporting hyperplane
of K[δ] cuts off a set of volume δ from K, see Fig. 4 (a). Suppose that K is a solid of unit volume
and volumetric mass density δ ∈ (0, 1/2). This body is placed into water — a halfspace with normal

2Here we define 0/0 = 0 with the origin 0 ∈ Rd on the right hand side in case there is non-zero P -mass at x.
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Figure 4: (a) A (Dupin’s) floating body (inner colored body) of the uniform distribution P on a square
in R2 with δ = 0.25, with several halfplanes of P -mass δ (boundaries in blue). (b) The uniform measure
P on a triangle in R2 does not possess Dupin’s floating bodies. The central region Dδ(P ) for δ = 0.3
(inner colored body), with several halfplanes with P -mass δ (boundaries in blue). One of the halfplanes
does not support Dδ(P ). (c) Several contours of the halfspace depth for P uniform on a triangle. Each
contour has three non-smooth points.

u ∈ Sd−1. If the water is of unit density, the Archimedean principle tells that for K to float, part of K
of volume δ must be submerged. The floating body K[δ] is the part of K that remains above the water
surface in every direction. The body K[δ] equals the upper level set (6) of the depth for P uniform on
K, provided that the former exists. In particular, floating bodies carry information about the depth of
P , and vice versa. Floating bodies gained importance in geometry, mainly thanks to their connections
with the crucial affine surface area [2]. Naturally, floating bodies have thus been thoroughly investigated
in geometry; we draw from that research and apply it to multivariate statistics.

The Dupin floating body of a measure P ∈ P
(
Rd
)
at level δ > 0 may be defined as a convex set

D[δ](P ) such that each supporting halfspace H ∈ H of D[δ](P ) carries mass P (H) = δ. It is not difficult
to observe that if D[δ](P ) exists, then D[δ](P ) = Dδ(P ). This is proved formally in Proposition 31 of
paper (A).

The greatest difficulty with the Dupin floating body is that it does not have to exist. The simplest
example is the uniform distribution P ∈ P

(
R2
)
on a triangle, see Fig. 4 (b), where the Dupin floating

body does not exist for any level δ > 0. The problem with the possible non-existence of Dupin’s
floating bodies in geometry was resolved in 1990 by Schütt and Werner [89], who introduced the convex
floating body that, to P ∈ P

(
Rd
)
, assigns the expression in (6) directly. In complete isolation from

the research in statistics, the depth (5) in this way also resurfaced in geometry [1, 89]. The connections
of the depth to the more regular Dupin’s floating bodies, or the affine invariants derived from them,
have been unknown in statistics until very recently. Progress came with our collaboration with Carsten
Schütt and Elisabeth M. Werner, prominent geometers and the original authors of the modern version
of the floating body. Together we covered this gap in mathematics in paper (A). In what follows we
pick several interesting novel observations that can be found in our treatment of floating bodies and
the depth in paper (A).
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Regular depth asymptotics/Existence and smoothness of Dupin’s floating bodies

The following problem is crucial for both theory and applications of the halfspace depth:

Problem. For an empirical measure Pn of a random sample X1, . . . , Xn generated from P ∈ P
(
Rd
)
,

consider the depth process ζ(x) =
√
n (D(x;Pn)−D(x;P )). When is ζ asymptotically Gaussian?

By [56], the depth process ζ(x) is asymptotically Gaussian if and only if the infimum in (5) is
attained by a single halfspace H ∈ H. The following geometric criterion can be shown to be equivalent,
as observed, e.g., in [32].

Lemma. The depth process ζ(x) is asymptotically Gaussian if and only if Dδ(P ) with δ = D(x;P ) has
a smooth boundary at x.

The problem of finding P with smooth boundaries of Dδ(P ) is hard; see also Fig. 4. Very little
progress has been made in that direction in statistics in the past 30 years. In fact, several authors
have explicitly argued that no distributions other than elliptically symmetric distributions3 are known to
possess central regions with smooth boundaries [57, 56, 43, 42, 5]. We were surprised to find out that
this problem is well studied in convex geometry. The following theorem can be found in [58], where it
is stated in terms of Dupin’s floating bodies of convex bodies.

Theorem. Let K ∈ Kd be a symmetric convex body in Rd and let P ∈ P
(
Rd
)
be the uniform

distribution on K. Then all Dupin’s floating bodies D[δ](P ) with δ ∈ (0, 1/2) exist. If, in addition, K
is smooth and strictly convex, then the boundary of each D[δ](P ), δ ∈ (0, 1/2), is smooth.

This elegant result brings a whole new class of distributions with smooth central regions — uni-
form distributions on symmetric smooth strictly convex bodies possess smooth central regions. Thus,
their depth processes are asymptotically normal everywhere except at the center of symmetry. This
fundamental result has apparently not been known in statistics before.

Uniform distributions on convex bodies are, however, not the only measures whose Dupin’s floating
bodies are known to exist. Analogous results can be found in the literature on s-concave measures.
Recall that a measure P ∈ P

(
Rd
)
is said to be s-concave for −∞ ≤ s ≤ 1, if

P (λA+ (1− λ)B) ≥


min {P (A), P (B)} for s = −∞,

P (A)λP (B)1−λ for s = 0,

(λP (A)s + (1− λ)P (B)s)1/s otherwise,

for all non-empty Borel sets A,B ⊆ Rd and all λ ∈ [0, 1]. We say that P is strictly s-concave if the
inequality above is always strict whenever A ̸= B. A measure P ∈ P

(
Rd
)
is known to be s-concave

with s ≤ 1/d if and only if P has a density f that is supported on an open convex subset U of Rd and
that is sd = s/(1− d s)-concave, i.e., for all x, y ∈ U and for all λ ∈ [0, 1],

f (λx+ (1− λ)y) ≥


min {f(x), f(y)} for s = −∞,

f(x)λf(y)1−λ for s = 0,

(λf(x)sd + (1− λ)f(y)sd)
1
sd otherwise.

3Or, slightly more generally, affine images of α-symmetric distributions, see the discussion on our paper (C) below.
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For s = 0, s-concave measures are also called log-concave measures, and represent a natural gener-
alization of uniform measures on convex bodies; indeed, any uniform measure on a convex body is
log-concave. As proved in [3], any (centrally) symmetric s-concave measure P ∈ P

(
Rd
)
with s ≥ −1

does possess all Dupin’s floating bodies D[δ](P ) for δ ∈ (0, 1/2). This observation is stated as Theo-
rem 30 in paper (A), with a broad discussion on its statistical implications.

While symmetric s-concave measures do possess Dupin’s floating bodies, it appears to be an open
problem whether (strictly) symmetric s-concave distributions with smooth densities possess smooth
floating bodies. An even more pressing open problem concerns the existence, and the smoothness of,
Dupin’s floating bodies of P without the assumption of symmetry of P . It is non-trivial to find examples
of asymmetric measures P ∈ P

(
Rd
)
whose (single) central region Dδ(P ) is Dupin’s, or smooth [70].

Characterization and reconstruction: A positive result

In Section 8 of paper (A), we first delve into the crucial halfspace depth characterization conjecture,
a long-standing open problem on the behavior of the depth (5). The halfspace depth is designed with
the intention of generalizing quantiles to Rd-valued data. In R, we argued that the quantiles uniquely
characterize elements of P (R), and to a quantile function Q from (2), it is simple to find its unique
measure P ∈ P (R). Thus, it is immaterial whether P itself or its quantiles are used for the analysis.
The same questions for the depth (5) are known as the characterization problems [98, 43]:

Characterization: Does for each P ̸= P ′ in P
(
Rd
)
exist x ∈ Rd such that D(x;P ) ̸= D(x;P ′)?

Reconstruction: How to find P (B) for B ⊂ Rd Borel from the function x 7→ D(x;P ) only?

Characterization problems are essential to the theory of depth; the halfspace depth is a universally
valid representative of measures in Rd only if the characterization conjecture is true. The characteriza-
tion/reconstruction problems have been open for decades, with several partial positive results available.
For example, it is known that empirical measures in Rd are uniquely characterized by their halfspace
depth D(·;P ) [98]; we detail several additional relevant results from the literature in our summary of
papers (B), (C), and (D) below.

In Theorem 34 in (A), we use Dupin’s floating bodies of measures to formulate the most general
characterization result for the halfspace depth that can be found in the literature. Our result is based
on the assumption that all Dupin’s floating bodies of P ∈ P

(
Rd
)
exist, that is

the Dupin floating body D[δ](P ) of P ∈ P
(
Rd
)
exists for all δ ∈ (0, 1/2). (7)

It turns out that (7) is equivalent to the possibility of determining the P -mass of each closed halfspace
H ∈ H directly from its halfspace depth in a particularly simple way. To state our claim, first observe
that since the Dupin floating body is assumed to exist for δ arbitrarily close to 1/2, the measure P must
be halfspace symmetric. Indeed, if the depth δ of a halfspace median of P is smaller than 1/2, we take
γ ∈ (δ, 1/2). Our assumption (7) then yields a contradiction because necessarily Dγ(P ) = ∅, meaning
that also D[γ](P ) = ∅, and no closed halfspace with P -mass γ can support D[γ](P ). Knowing that any
measure P satisfying (7) is halfspace symmetric, we can use [107, Theorem 2.1] to claim that the center
of the halfspace symmetry of P must be a unique point xP ∈ Rd, unless we are in the trivial case when
P is supported in a line in Rd with more than one (univariate) median. Returning to our main result,
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in Theorem 34 in paper (A), it is proved that (7) is equivalent with the two conditions (i) P is smooth
in the sense of attaching P (∂H) = 0 to the boundary hyperplane ∂H of each halfspace H ∈ H, and
(ii) for each halfspace H ∈ H that contains xP we can write

P (H) = 1− sup
x∈∂H

D(x;P ). (8)

Taking into account that P must be smooth, formula (8) allows us to reconstruct the measure P from
its halfspace depth completely. Indeed, if a halfspace H ∈ H contains the point of maximum depth
xP ∈ Rd, we know P (H) directly from (8); if xP /∈ H, we just set P (H) = supx∈∂H D(x;P ). In
particular, we are able to determine the P -mass of each closed halfspace in Rd, and using the classical
Cramér-Wold device [8], the measure P is determined uniquely among all measures that satisfy (7).

Our reconstruction procedure generalizes the main result from [43]. That result claims that if all
regions Dδ(P ) have smooth boundaries, then P can be uniquely determined from its halfspace depth.
Indeed, by Proposition 31 in paper (A), we know that a central region Dδ(P ) with a smooth boundary
is a Dupin’s floating body of P , and (7) applies. In particular, we obtain that any elliptically symmetric
distribution is uniquely characterized by its halfspace depth function, with an explicit reconstruction
formula (8) available. Several other types of distributions that satisfy (7) will be given in the summary
of paper (C) below.

2 Summary of paper (B):
The halfspace depth characterization problem

Paper (B) offers a broad analysis of the available partial positive results toward the halfspace depth
characterization conjecture. It discusses eight positive results that can be found in the literature. The
following papers claim that a measure P ∈ P

(
Rd
)
is uniquely characterized by its halfspace depth

function x 7→ D(x;P ) if

1. Struyf and Rousseeuw (1999): P is empirical [98];

2. Koshevoy (2002): P is finitely atomic [44];

3. Hassairi and Regaieg (2007): P is finitely atomic [36], using a simpler proof than [44];

4. Cuesta-Albertos and Nieto-Reyes (2008): P is atomic [10];

5. Koshevoy (2003): P satisfies a certain moment condition (in particular, if P has bounded
support) [45];

6. Hassairi and Regaieg (2008): P has a sufficiently smooth density [37];

7. Kong and Zuo (2010): P has all central regions Dδ(P ) smooth [43]; and finally,

8. Nagy, Schütt and Werner (2019): P has all Dupin’s floating bodies (A).
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Putting all these results together, it may appear that the general halfspace depth characterization
conjecture is valid in most interesting situations. It has been explicitly conjectured that any Borel
probability measure is characterized by its halfspace depth [10, 42]. In our paper (B) we, however, argue
that the situation is much more complicated. We proceed case-by-case and comment on each of the
results above.

Finitely atomic measures

The original characterization result for empirical measures [98] and its extension to the finitely atomic
case [44] are both truly pioneering advances. They will be commented on in detail in the description of
our paper (D) refining those findings. The simplified proof of Koshevoy’s characterization theorem [44]
from [36] is, however, incomplete.4 The proof of Theorem 5 from [36] intends to show that if two finitely
atomic measures P and P ′ from P

(
Rd
)
have the same halfspace depth, then P = P ′. It proceeds

by induction, recovering all the atoms of P and P ′, starting from the atom x1 of the smallest depth
D(·;P ). This is performed in formulas (3.1) and (3.2) in [36]. In the induction step, it is, however,
assumed that also after the common atom x1 of P and P ′ is removed from the support of P and P ′,
the halfspace depths of the restrictions of P and P ′ to the set Rd \ {x1} are identical. This does not
directly follow from the assumption of the theorem, as removing x1 from the support of P and P ′ will
change the depths of the remaining points in Rd. For a sound argument, one has to use the slightly
more complicated argument from [44] or its simplified version explained in the summary of paper (D)
below.

Atomic and boundedly supported measures

Two of the strongest characterization results from [10] and [45] have both incomplete proofs, and these
proofs do not appear to be possible to be fixed. We explain these difficulties in detail in Section 3
of (B). This leaves the halfspace depth characterization conjecture open for general atomic measures,
and in the interesting case of distributions with bounded support.

Measures with smooth density

The condition of the main result from [37] is usually misinterpreted in the literature. In the proof of
the main Theorem 3.2 from [37] it is assumed that (i) the density f of P is continuous in the interior
of its support, and (ii) an intractable condition (H) involving certain derivatives of a function related
to f holds. When interpreting this result in the literature, it is however claimed that Theorem 3.2 from
[37] requires only (i) “absolute continuity of P” [101], (ii) “absolute continuity with connected support”
[20], or (iii) “absolute continuity with connected support and continuous density function in the interior
of the support” [96]. In fact, also in the original paper [37], it is stated that condition (H) holds true

“when the probability density function of the distribution has partial derivatives

in the interior of its support.”
(9)

4This is not disclosed in paper (B), as it came to our knowledge only after paper (B) was published.
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In (B) we argue that the last statement is false, and the condition (H) may also be violated for distri-
butions with infinitely smooth densities. Interestingly, the technical condition (H) can be rephrased, for
general distributions P without the need to impose absolute continuity. It can be stated as the geometric
requirement that every supporting halfspace H of every central region Dδ(P ) carries probability mass
exactly P (H) = δ. In other words, extending the characterization result from [37], we arrive precisely at
the requirement of the existence of Dupin’s floating bodies, which is our result described in the summary
of paper (A). For the additional claim (9) from [37], we offer a direct rebuttal that will be described in
the summary of our paper (C) below.

Smooth central regions and existing Dupin’s floating bodies

The final positive results on the halfspace depth characterization conjecture from [43] claim that if
all central regions Dδ(P ) have smooth boundaries, then P can be recovered from its halfspace depth
function. As argued in the summary of our paper (A), this condition is stronger than our requirement
of the existence of Dupin’s floating bodies of P . Nevertheless, there are not many types of measures
that satisfy these conditions. The only examples known appear to be (centrally) symmetric s-concave
measures with s ≥ −1, and α-symmetric measures with α > 1.

Summary of positive results

Our previous discussion reduces the set of conditions under which P ∈ P
(
Rd
)
is known to be charac-

terized by its halfspace depth to:

• measures in R, where the c.d.f. of P ∈ P (R) can be recovered from its halfspace depth directly;

• finitely atomic measures in P
(
Rd
)
[98, 44]; and

• measures P in P
(
Rd
)
whose all Dupin’s floating bodies D[δ](P ) exist with δ ∈ (0, 1/2).

In particular, it currently seems to be unknown whether measures with infinitely many atoms, or even
the uniform distribution on a triangle in R2, are characterized by their halfspace depth!

3 Summary of paper (C):
Halfspace depth does not characterize probability distributions

In paper (C) we resolve the general characterization conjecture for the halfspace depth in the negative.
We construct uncountable families of different probability measures in P

(
Rd
)
for each integer d > 1

with identical halfspace depth. In our construction, we used α-symmetric measures [26, 28, 41].
For α > 0, denote the Lα-norm

5 of t = (t1, . . . , td) ∈ Rd by ∥t∥αα =
∑d

i=1 |ti|
α for α ∈ (0,∞), and

∥t∥∞ = maxi=1,...,d |ti|. Following [26, 28] we say that P ∈ P
(
Rd
)
is α-symmetric if its characteristic

function

ψ(t) =

∫
Rd

exp (i ⟨x, t⟩) dP (x)

5Also for α ∈ (0, 1) we refer to this function as a norm for brevity.
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takes the form ψ(t) = ξ (∥t∥α) for some function ξ : [0,∞) → R. Let X = (X1, . . . , Xd) ∼ P be a
random vector distributed as P . Directly from the expression for the characteristic function of X, we
see that

P is α-symmetric ⇐⇒ ⟨X,u⟩ d
= ∥u∥αX1 for all u ∈ Rd. (10)

The case α = 2 covers the spherically symmetric distributions introduced in our summary of paper (A),
see also [93]. The α-symmetric measures are fascinating, yet somewhat mysterious objects. Still, in
1990 [28, Section 7.4], it was unknown whether such a measure even exists in dimension d > 2, with
α > 2.

Starting from (10), it is easy to derive that for any α-symmetric (probability) measure X ∼ P we
can determine the halfspace depth exactly. Indeed, if (Ω,F ,P) is the probability space on which X is
defined, we can write

D (x;P ) = inf
u∈Sd−1

P (⟨X,u⟩ ≤ ⟨x, u⟩) = inf
u∈Sd−1

P (∥u∥αX1 ≤ ⟨x, u⟩)

= P

(
X1 ≤ inf

u∈Sd−1
⟨x, u⟩ / ∥u∥α

)
= F1

(
−∥x∥β

) (11)

for β the conjugate index to α, and F1 the c.d.f. of X1. The last equality in (11) is essentially the
generalized Hölder inequality

−∥u∥α ∥x∥β ≤ ⟨x, u⟩ ,

which holds true for any α > 0, if the conjugate index β is defined by

1/α+ 1/β = 1 if α > 1, and β = ∞ if α ≤ 1. (12)

Of course, the Hölder inequality is sharp in the sense that equality is attained for each x ∈ Rd by taking
a specific choice of the direction u ∈ Sd−1.

We consider the case α ≤ 1. That leads to X ∼ P with extremely heavy-tailed distributions, for
which only the first marginal X1 of X determines the depth

D(x;P ) = F1 (−∥x∥∞) for all x ∈ Rd.

When rewritten in this way, the characterization problem for the halfspace depth translates to the
problem of finding α-symmetric measures P with α ≤ 1 with a single identical marginal. Such measures
are known to exist since the 1930s [88]. Fix γ ∈ (0, 1) and take

ψα(t) = exp (−∥t∥γα) (13)

for γ ≤ α ≤ 1. Then

• Measure Pα ∈ P
(
Rd
)
with characteristic function ψα exists [88];

• The conjugate index to α ≤ 1 is β = ∞; and

• For the characteristic function of X1 with X ∼ Pα we have

Eexp (i tX1) = exp (− |t|γ) for all t ∈ R,

i.e. F1 does not depend on α.
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Figure 5: For γ = 1/2, the density of Pα ∈ P
(
R2
)
with α = 1 (left panel) and α = 1/2 (right

panel). Several contours of the densities of Pα are given as solid lines. The dashed lines correspond to
several contours of the halfspace depth functions of Pα. All these contours take the form of the L1-balls
centered at the origin.

By construction, all such measures Pα ∈ P
(
Rd
)
share identical halfspace depth. An example of two

such measures in dimension d = 2 is given in Figure 5.
Our main counter-example of paper (C) offers a simple rebuttal to the claim (9) from [37], as the

density functions of both measures considered in the example given in Figure 5 are infinitely smooth,
but fail to satisfy condition (H) from [37]. As we have seen in the summary of paper (B), condition
(H) is essentially a requirement for the existence of Dupin’s floating bodies of P , and has nothing to do
with the smoothness of the density of P .

Interestingly, our example of explicit halfspace depths for α-symmetric measures applies also for
α > 1. We obtain that all central regions Dδ(Pα) are Lβ-balls centered at the origin with β from (12),
and thus they all have smooth boundaries. In particular, all the central regions are Dupin’s floating
bodies, and by our characterization result presented in paper (A), all α-symmetric distributions with
α > 1 are uniquely characterized by their halfspace depth.

The same example also illustrates the important limitation of our characterization result from (A).
Take the measure P ∈ P

(
Rd
)
whose characteristic function takes the form (13) with γ = 1/2 and

α = 1, and X ∼ P . Let u = (u1, . . . , ud) ∈ Sd−1 be the inner normal of a halfspace Hx,u that supports
a central region Dδ(P ) for some δ ∈ (0, 1/2). Due to the symmetry of the measure P we can consider
only the vertex x = (k, k, . . . , k) ∈ (0,∞)d for k > 0. Since Hx,u must support the L1-ball

Dδ(P ) =
{
y ∈ Rd : ∥y∥1 ≤ k

}
,
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it must be that u ∈ [0,∞)d ∩ Sd−1. We obtain

P (Hx,u) = P (⟨X,u⟩ ≥ ⟨x, u⟩) = P

(
X1 ≥

⟨(k, k, . . . , k), (u1, . . . , ud)⟩
∥u∥1

)
= 1− F1

(
k

∑d
i=1 ui∑d
i=1 |ui|

)
= 1− F1(k) = δ,

meaning that any supporting halfspace to the central region Dδ(P ) has the same P -mass equal to δ.
Necessarily, all Dupin’s floating bodies D[δ](P ) exist for δ ∈ (0, 1/2). By our result from paper (A), the
distribution P is characterized uniquely by its halfspace depth among all distributions that satisfy (7).
However, as we demonstrated in our example in Figure 5, it is not true that P is uniquely characterized
among all probability measures in Rd; there still exist distributions with the same halfspace depth as P
that do not satisfy condition (7).

4 Summary of paper (D):
Reconstruction of atomic measures from their halfspace depth

We have seen that only a few types of measures are guaranteed to be characterized by their halfspace
depth: (i) univariate measures P ∈ P (R), (ii) empirical measures, or slightly more generally, finitely
atomic measures in Rd, and (iii) symmetric measures in Rd whose Dupin’s floating bodies exist. In [46],
we reconsider finitely atomic measures, and the pioneering results from [98]. For P ∈ P

(
Rd
)
finitely

atomic, it is easy to see that there are only finitely many different central regions Dδ(P ) from (3) with
δ ≥ 0 and that each such a region is a convex polytope.6 It is this particularly simple structure of the
central regions that makes it possible to recover the distribution P from its depth.

The main result from [98] is Theorem 1 which states that any empirical measure P ∈ P
(
Rd
)
is

uniquely determined by its halfspace depth function. Despite the seemingly simple claim, the proof of
this result is rather technical and lengthy; it is first performed for empirical measures P whose atoms
x1, . . . , xn are in general position in Section 2 (Proposition 1) of [98], and subsequently expanded to
the situation when the general position of the atoms might not be valid in Section 3 (Proposition 3).
Especially in a situation without a general position, the reconstruction procedure is complicated. It
involves the computation of the halfspace depth of every vertex of each polytope Dj/n(P ), multiple
times for all j = 0, . . . , ⌈n/2⌉, each time w.r.t. a different dataset. The technical proof and the
complicated reconstruction procedure make the characterization result somewhat intractable and difficult
to approach. Interestingly, [98] is the only paper where explicit reconstruction of an empirical measure
from its depth is addressed. The newer articles [44, 36] do not consider this problem.

The main contribution of paper (D) is a substantial simplification of the reconstruction procedure.
We do not deal only with empirical measures but consider finitely atomic measures P ∈ P

(
Rd
)
. Thus,

we also allow the atoms of P to take irrational weights.
The first major observation in (D) is Theorem 4, where the reconstruction procedure from [98] is

simplified. It is shown that to determine whether a vertex x of a central region Dδ(P ) is an atom, it is
enough to compute — only once — a restricted version of the halfspace depth of x, where the halfspace

6Formally, this statement is proved as Lemma 1 in (D).
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of minimum P -mass is searched for only in the collection of those halfspaces H ∈ H that intersect
Dδ(P ) exclusively in x. In addition, the P -mass of x is simply the difference between the halfspace
depth of x w.r.t. P , and this restricted version of the halfspace depth. Our result is universal in the
sense that it is stated for general finitely atomic measures P ∈ P

(
Rd
)
, i.e., it holds true whether the

atoms of P are in general position or not. This simplifies the procedure from [98].
The second major contribution of (D) is Theorem 8, where it is argued that for all points x ∈ Rd

that do not lie in the set of halfspace medians of P , it is possible to determine the mass of x directly,
without having to compute the halfspace depth at all. Denote by δ0 > 0 the smallest non-zero depth of
a point in Rd w.r.t. P . The procedure begins with the region Dδ0(P ), which is just the convex hull of
the atoms of P . Each vertex x of Dδ0(P ) must be an atom of P , and its probability mass is precisely
D(x;P ). One proceeds from the lowest levels of the halfspace depth to the higher ones. Suppose all
atoms y of P whose halfspace depth D(y;P ) < δ have been identified, together with their P -mass.
Take a vertex x of Dδ(P ) such that D(x;P ) = δ, and suppose that x is not a halfspace median of P .
Then there must exist a face A of the convex polytope

Uδ(P ) =
{
y ∈ Rd : D(y;P ) > δ

}
⊂ Dδ(P )

that is “visible” from x, meaning that the open convex hull of x and A does not intersect Uδ(P ).
Suppose, for simplicity, that Uδ(P ) is full-dimensional, in which case A can be taken to be a facet (that
is, (d − 1)-dimensional face) of Uδ(P ).

7 The facet A is contained in a unique supporting halfspace
H ∈ H of the convex polytope Uδ(P ). It turns out that, to determine the P -mass of x, it is enough
to shift the halfspace H so that the shifted halfspace H̃ parallel to H contains x on its boundary. If
the shifted halfspace H̃ contains points of Dδ(P ) other than x, the point x is not an atom of P ; if H̃
supports Dδ(P ) and the only point of intersection of H̃ and Dδ(P ) is x, then the mass of x is simply
δ − δAx , where δ

A
x is the sum of P -masses of all already known atoms of P that lie inside of H̃. The

main gist of our reconstruction procedure is illustrated in Figure 6.
In our reconstruction procedure in (D), for most vertices x of central regions Dδ(P ), only the

probability content of a single halfspace needs to be evaluated to determine the P -mass of x. This
stands in sharp contrast with the procedure from [98], where multiple halfspace depths need to be
computed to determine the multiplicity of an atom x in the dataset corresponding to P . The paper (D)
is concluded with a numerical comparison of the two competing algorithms. As can be seen in Table 1
in (D), the new reconstruction procedure is indeed substantially more efficient than the original program
from [98]. For a dataset of n = 100 points in R3, for example, the exact reconstruction of the location
and the mass of all data points takes less than 2 seconds using the new procedure. In contrast, the
same task takes more than 4 hours of computation time when the original procedure is performed on
the same computer.

The main result in (D) states that if P ∈ P
(
Rd
)
is finitely atomic, the position and the weight

of all its atoms can be recovered from its depth function. It is, therefore, natural to ask whether it
is possible that a measure P ′ ∈ P

(
Rd
)
that is not finitely atomic can have the same halfspace depth

function as a finitely atomic measure. The answer to this question is negative. In [48], we proved that

7The procedure described in (D) also works if A is lower-dimensional; we restrict to the most common case of Uδ(P )
being d-dimensional, as the main idea is simpler to understand in this situation; for technical details we refer to Section 2.3
in (D).
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Figure 6: Reconstruction procedure from paper (D). Left: An empirical measure P ∈ P
(
R2
)
of n = 10

points in the plane (orange points) and the complete set of central regions Dδ(P ) (polygons with black
boundaries). Right: After a set of five atoms of P has been identified to be the vertices of D1/n(P )
(orange points), we intend to reconstruct the location of atoms on the boundary of D2/n(P ) (points
labeled as a–h). We use D3/n(P ) = U2/n(P ) (shaded polygon). We consider four facets of U2/n(P )
labeled as A–D. Facet A is visible from vertices a, b, and h. Shifting the unique halfplane supporting
U2/n(P ) at A to a parallel halfplane H̃ whose boundary passes through b (or h), we see that H̃ does

not support D2/n(P ). Thus, neither b nor h is an atom of P . Shifting the same halfplane H to H̃

with boundary passing through a, we see that H̃ supports D2/n(P ), and contains a single identified

atom of P . Thus, δAa = 1/n < 2/n = D(a;P ), and a is an atom of P of weight D(a;P )− δAa = 1/n.
Performing the same procedure with, e.g., facet C and vertex e, we see that although the shifted
halfplane H̃ supports D2/n(P ), there are two identified atoms of P inside H̃. Thus, e is not an atom

of P because D(e;P )− δCe = 2/n− 2/n = 0.
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a measure P ∈ P
(
Rd
)
possesses a halfspace depth function that attains only finitely many different

values if and only if P is finitely atomic. Therefore, exclusively finitely atomic measures can have
depths whose collections of central regions (3) have finitely many extreme points, and only for finitely
atomic measures, the reconstruction procedure from paper (D) can be applied directly. In our treatment
in (D), we have, therefore, entirely resolved the problem of inverting the halfspace depth function in the
situation when the depth attains only finitely many values.

Another follow-up question is the task of recovering the atomic part of a general Borel probability
measure P ∈ P

(
Rd
)
from its halfspace depth only. While it has been shown in paper (B) that complete

reconstruction of the position of the atoms from halfspace depth is impossible, several partial positive
results in this direction have been collected in [47]. In that contribution, we show that atoms and the
general shape of the support of P can be recovered from its halfspace depth under specific conditions.

5 Summary of paper (E):
Illumination depth

A major practical obstacle in the applicability of many statistical depths is the difficulty with ties. In
data analysis, we do not directly observe the population measure P ∈ P

(
Rd
)
that we want to infer

about. Instead, we typically have at our disposal only a random sample X1, . . . , Xn ∈ Rd of observations
sampled independently from P . Such a random sample of size n corresponds to an empirical measure
Pn ∈ P

(
Rd
)
, which assigns mass 1/n to each observation Xi. Naturally, the halfspace depth (5) of Pn

attains only finitely many (no more than ⌈n/2⌉) different values. Even for samples Pn from absolutely
continuous measures P ∈ P

(
Rd
)
, many points in Rd, therefore, must share the same depth value w.r.t.

Pn. For example, all points outside the convex hull of the support of Pn (so-called outsiders) receive
zero depth, no matter how far away from, or how well “fitting” these points are w.r.t. the main bulk of
data. This is in the literature frequently called the outsider problem [64, 66, 27, 38]. It renders many
depth-ranking methods inefficient and more challenging to work with.

We approached the outsider problem using the geometric concept of illumination [103]. The illumi-
nation is known to be, in a sense, dual to the floating bodies [61], and by extension, to the halfspace
depth. For K ∈ Kd a convex body and δ > 0, the δ-illumination body is a superset of K given as

Kδ =
{
x ∈ Rd : volume of the convex hull of K ∪ {x} does not exceed vol(K) + δ

}
, (14)

where vol(·) is the usual volume of a convex body. As δ → 0, the floating bodies “fill in” K from the
inside; the illumination bodies approach K from the outside, see Figure 7. That makes illumination
amenable to the outsider/ties problem in statistical analysis.

In paper (E) and the follow-up papers [21, 74], we employ illumination for the first time in statistics.
We introduce it as a data analysis tool that should be complementary to the halfspace depth or,
equivalently, the floating bodies of measures. This combination of the concepts of floating bodies and
illumination gives rise to the illumination depth of a measure (or a random sample). For δ > 0, a
parameter tuning the behavior of the new depth, we propose to rank points x ∈ Rd w.r.t. a measure
P ∈ P

(
Rd
)
based on

• either their halfspace depth D(x;P ) if D(x;P ) ≥ δ,
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Figure 7: A convex polygon K ∈ K2 (in light orange) and its floating body (left panel) Kδ for δ = 0.2
(in darker orange). The floating body coincides with the halfspace depth region Dδ(P ) computed w.r.t.
P ∈ P

(
R2
)
uniform on K. Right panel: Illumination bodies of K for δ = 0.5, 1, 2 and 3 (bodies with

boundaries in red). Illumination bodies are super-sets of K. They are, in a sense, dual to the floating
bodies.

• or a decreasing function φ of the illumination I(x;P ) of x onto the central region Dδ(P )

I(x;P ) = vol (convex hull of x and Dδ(P ))

vol (Dδ(P ))

in the case when D(x;P ) < δ.

The function φ : [1,∞) → [0, δ] is a given decreasing bijection, which makes the illumination depth
approach the value δ as x converges to the boundary of Dδ(P ) from the outside. It also guarantees
that as ∥x∥ → ∞, the illumination depth will decrease to zero. A great deal of attention is devoted
to identifying forms of the function φ compatible with the intended statistical applications of the
illumination depth; for details, we refer to the main paper (E). For the contours of the illumination onto
Dδ(Pn) for Pn generated by a random sample of points, and two different values of δ, see Figure 8.

The illumination depth presents, in several respects, an improvement over the standard halfspace
depth. As we argue in (E), a proper use of the illumination allows us to devise tools that are: (i) con-
ceptually and computationally quite simple; (ii) fully affine invariant; (iii) they have excellent robustness
and large sample properties; (iv) are capable of naturally breaking ties in data orderings; (v) can be
used for the estimation of extreme quantile regions with efficiency comparable to the state-of-the-art
approaches [27, 38]; (vi) are well adjusted to elliptically symmetric distributions; and (vii) are powerful
in applications such as classification. An array of theoretical properties of the illumination depth are
proved in Section 3 of paper (E), including strong uniform consistency of the sample illumination and
the illumination depth as the sample size n goes to infinity (including rates of convergence) and explicit
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Figure 8: A dataset of size n = 201 corresponding to an empirical measure P ∈ P

(
R2
)
, and its central

region D1/n(P ) (left) and D75/n(P ) (right). The central region is displayed as the polygon in color.
The contours outside the central region represent the boundaries of several illumination bodies of the
respective central regions. The illumination adjusts to the covariance structure of the dataset well. This
makes it suitable to be used in statistical applications.

expressions for the breakdown point of the illumination. In Section 4 of (E), the illumination is used
to obtain refined and robust estimators of the Mahalanobis distance and the usual halfspace depth.
Finally, in the last Section 6 of (E), several possible applications of illumination in classical statistical
problems are provided. The overall conclusions are quite favorable: proper use of illumination together
with the halfspace depth is on par with much more complicated methods that have been proposed in
the literature in, e.g., classification [27], or estimation of extreme multivariate quantile regions [38].

6 Summary of paper (F):
Uniform convergence rates for the approximated halfspace
and projection depth

We have explored the mathematical properties of the halfspace depth in papers (A)–(D) and proposed
its application toward data analysis in paper (E). In the last two papers covered in this thesis, we discuss
the practical issue of computing the depth D(x;P ) of a point x ∈ Rd w.r.t. an empirical measure
P ∈ P

(
Rd
)
of a dataset of a given size. In this section, we write P for the empirical measure and

reserve n for the size of the approximation to be used below.
The exact computation of the halfspace depth of a single point in arbitrary dimension d ≥ 2 is known

to be NP-hard [40]. Therefore, a great deal of research has focused on procedures that approximate
the true depth [22, 9, 54, 6, 94, 4, 95]. One particularly simple approximation procedure is due to
Dyckerhoff [22], who argued that the (multivariate) halfspace depth (5) of a point x can be written as
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the infimum of (univariate) halfspace depths of projections of x with respect to the projected dataset

D(x;P ) = inf
u∈Sd−1

min {Pu ((−∞, ⟨x, u⟩]) , Pu ([⟨x, u⟩ ,∞))} . (15)

Here, Pu ∈ P (R) stands for the univariate probability measure of the projection ⟨X,u⟩ of the random
vector X ∼ P onto the fixed line in direction u ∈ Sd−1. This suggests the following approximation
procedure: (i) draw a random sample of n directions Ui, i = 1, . . . , n, distributed uniformly on the unit
sphere Sd−1; (ii) evaluate the (univariate) depths of ⟨x, Ui⟩ w.r.t. the dataset projected onto Ui for
each i; and (iii) approximate the depth (15) of x by the minimum of these numbers. We obtain the
approximated halfspace depth of x ∈ Rd w.r.t. P ∈ P

(
Rd
)
given by

Dn(x;P ) = min
i=1,...,n

min {PUi ((−∞, ⟨x, Ui⟩]) , PUi ([⟨x, Ui⟩ ,∞))} . (16)

Note that the approximated depth Dn(x;P ) is a random quantity, as it implicitly depends on the random
sample U1, . . . , Un of uniformly distributed directions on the unit sphere. Sometimes, the depth (16) is
called the random halfspace (or random Tukey) depth [9]. Due to its particular simplicity, this depth
can actually be found to be the default choice in most resources for the computation of the halfspace
depth. For example, for data of dimension d > 3, it is implemented in the R computing system [81] in
its contributed packages depth [31], depthProc [105], mrfDepth [91], and ddalpha [80].

In paper (F), we provide a theoretical analysis of the random halfspace depth approximationDn(x;P )
from (16). In the main Theorems 1 and 2, we couple the convergence rates ofDn(x;P ) toward the actual
halfspace depth D(x;P ) from (15) with the properties of the distribution P ∈ P

(
Rd
)
. In Section 3,

we then analyze several scenarios of commonly encountered classes of probability distributions such as
(i) distributions with bounded densities; (ii) elliptically symmetric distributions; and (iii) α-symmetric
distributions (for definition, see the summary of paper (C) above). In all situations, the same conclusion
reappears: The convergence of Dn(x;P ) is, especially in dimensions higher than d > 3, extremely
slow. For quite reasonable distributions P , such as the multivariate normal distributions or alike in
dimensions d > 5, hundreds of thousands of randomly chosen directions Ui will need to be selected
if the halfspace depth of a single point is to be evaluated with reasonable accuracy. Our theoretical
findings are supported by an extensive simulation exercise. Consequently, the main conclusion of our
paper (F) is quite negative for the random halfspace depth. Our results issue a stark warning about
the use of simplistic approximation methods for the computation of halfspace depth for data of higher
dimensionality. More sophisticated approximate computation methods are certainly needed for data of
dimension d > 3.

7 Summary of paper (G):
Approximate computation of projection depths

The glum result of our analysis of the random halfspace depth from paper (F) motivated our search for
better approximation procedures for the halfspace depth. We did so in the final presented paper (G),
where we scoured the literature and adapted eight well known approximation algorithms for the com-
putation of the halfspace depth: • random search, • grid search, • refined random search, • refined
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grid search, • random simplices, • simulated annealing, • coordinate descent, and • the Nelder–Mead
algorithm. A detailed description of all these procedures is given in (G). All these methods are used to
numerically minimize the objective function in the definition of the halfspace depth (5)

Sd−1 → [0, 1] : u 7→ P (Hx,u)

over its domain. Several of the algorithms that we compared are quite simple, and well known to the
community. For example, the random search is precisely the random halfspace depth we studied in
paper (F). It is expected to perform poorly. Other algorithms, such as the Nelder-Mead procedure
[77], had to be adapted to minimization over the unit sphere Sd−1 instead of the standardly considered
optimization over linear spaces Rd. In paper (G), all eight considered algorithms are adapted to the
case of the unit sphere in Section 3. Most of these algorithms involve elaborate tuning procedures for
the selection of their parameters. This is done in the first part of Section 4 of (G) in order to perform
a fair comparison of all these approaches in an extensive simulation study. In the simulation study,
we considered six choices of distributions P : • standard normal distribution, • spherically symmetric
Student distribution with five degrees of freedom, • spherically symmetric Student distribution with
one degree of freedom (that is, multivariate spherical Cauchy distribution), • the uniform distribution
on the unit (hyper-)cube, • a skewed-normal multivariate distribution, and • a multivariate version of
the exponential distribution. We performed simulations with random samples of size n = 10 000, in
dimensions d ∈ {5, 10, 15, 20}.

The results of our simulation study are reported and discussed in detail in Section 5, and the
extensive Supplementary Material [25] accompanying paper (G). They are quite telling: Methods based
on random projections (such as random search or random simplices) are clearly outperformed by those
launching optimization over the surface of the hyper-sphere. Among the latter ones, the (spherical
adaptation of the) Nelder-Mead algorithm performs the best, closely followed by coordinate descent and
refined random search.

All the considered algorithms have been programmed efficiently in C++ and called from the statistical
computation environment R [81]. The methods are currently being prepared to be included in the R
contributed package ddalpha [80].

In conclusion, our empirical analysis demonstrates the need for further research on the computational
front of depth and multivariate nonparametric statistics. There exist quite promising computational tools
applicable also to the task of computation of depth higher dimensions, yet their theoretical study is only
in its beginnings. Such advances will be part of our future research.

Conclusions, perspectives, and open problems

We have seen that halfspace depth is a fascinating subject not only in statistics and probability, but also
in geometry, mathematical analysis, and computer science. In paper (A) and the follow-up research,
we have managed to successfully bring together the halfspace depth, floating bodies, and measures of
symmetry. This unique combination allowed us to resolve the long-standing halfspace depth characteri-
zation conjecture in paper (C). We did this even though previously it has been, perhaps too optimistically,
widely believed that the halfspace depth characterizes all probability distributions (B). On the positive
side, we were able to substantially refine a few positive results towards this crucial desideratum of the
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halfspace depth, especially for measures generated by datasets and, more generally, measures with finite
support in (D).

Additional tools of convex geometry, previously unexplored in statistics, have been successfully
introduced to the statistical practice in paper (E). Finally, we also addressed the practical problem of
the computation of the halfspace depth, especially in the little explored case of higher-dimensional data,
which in our setup means data of dimension d ≥ 5. In paper (F), we provided the first rigorous theoretical
analysis of a widely-used approximation scheme and showed that for higher-dimensional data, the results
are quite unsatisfactory. In (G) we, therefore, compared several numerical optimization methods that
could be used in the computation of halfspace depth. We pointed to a handful of algorithms that, when
properly adapted, exhibit superior performance.

Over the years of study of the halfspace depth, we were able to answer many of the questions
connected to both its theory and statistical practice. Many more questions, however, still remain. We
conclude this thesis by outlining three vital open problems regarding the theoretical properties of the
halfspace depth and floating bodies. We argue that they constitute some of the current bottlenecks
of the halfspace depth research that hinder many of its immediate applications to multivariate data
analysis.

Halfspace depth characterization: Open problems

In paper (C) we answered the general halfspace depth characterization conjecture in the negative.
Certain principal closely related questions, however, still remain open: (i) Under what conditions is
P ∈ P

(
Rd
)
characterized by its halfspace depth? (ii) How to reconstruct the P -mass of halfspaces

that support central regions Dδ(P ) that are not Dupin’s floating bodies D[δ](P )? (iii) If P is uniform

on K ∈ Kd, can we reconstruct K from its single floating body? Based on our research summarized in
papers (A)–(D), we conjecture that the halfspace depth determines integrable distributions P ∈ P

(
Rd
)

that satisfy
∫
Rd ∥x∥ dP (x) < ∞; several partial results point to that class of measures as a suitable

candidate. Question (iii) above is of great importance also in geometry and links to the (still open!)
homothety conjecture — is the ellipsoid the only convex body homothetic to one of its floating bodies
[90]?

Smoothness of floating bodies

In paper (A) we have seen that the problem of finding conditions under which the floating body Dδ(P )
has a smooth boundary is important already for Dupin’s floating bodies. If Dδ(P ) has a smooth
boundary, then D[δ](P ) exists. Hence, decades of research in that direction exist in geometry [3, 49, 58].
For symmetric log-concave measures, we know that all Dupin’s floating bodies exist [3]. Also, uniform
distributions on symmetric strictly convex bodies with smooth boundaries possess central regions with
smooth boundaries. This resolves a major bulk of this crucial problem — symmetric and very regular
measures are bound to have smooth floating bodies.

The geometric results on floating bodies are, however, formulated only for measures satisfying
symmetries and strong structural properties. That is not enough for full-blown nonparametric statistical
inference. We ask about a generalization of those results to forms suitable for statistical applications:
(i) Under what conditions do Dupin’s floating bodies exist for asymmetric measures? (ii) Do measures
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with a smooth, symmetric, strictly quasi-concave density have to possess Dupin’s floating bodies?
(iii) Connecting this problem with the asymptotic behavior of the depth process (see the summary
of paper (A) above), under what conditions is the depth process asymptotically Gaussian? All these
questions appear currently within our reach; the geometric techniques applied to log-concave measures
are possible to be extended to more general measures. Yet, a precise formulation requires effort and
technical derivations. Implications to statistical practice will be rewarding. Having guaranteed regular
depth asymptotics at hand, depth-based tests and estimators [23, 67, 84, 102] could be constructed
without having to resort to computationally intensive re-sampling techniques, as typically done nowadays.

Floating bodies of polytopes

Another open question asks about the structure of the floating bodies of simple measures. Take P ∈
P
(
Rd
)
uniform on a convex polytope and δ > 0 given. (i) What can be said about the floating body

Dδ(P )? (ii) Can its boundary be locally described as a solution to a polynomial equation in d covariates?
(iii) If so, what determines the degree of those polynomials, and (iv) how many of such pieces patch
the surface of Dδ(P )? All these questions are unexplored, but may be attainable using the current
advances in algebraic statistics. It would be quite interesting to completely describe the structure of
the boundary of floating bodies of polytopes, and of their algebraic generalizations. Applications would
be abundant — uniform measures on simple convex polytopes are among the few whose depth was
computed exactly [82]. Their depths are, however, already complicated. Any progress in this direction
would provide further examples of floating bodies and exact halfspace depths, so needed for our ultimate
understanding of their properties.
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