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Introduction
This thesis is devoted to the growth and study of textured La2/3Sr1/3MnO3
(LSMO) thin films on a silicon substrate using a nanosheet seed layer. Epi-
taxially grown thin films of LSMO atop SrTiO3 (STO) and BaTiO3 (BTO) have
been prepared for comparison.

The half-metallic ferromagnetic LSMO is an auspicious candidate for applica-
tion in technological devices such as sensors, data storage media, and detectors.
That is due to its unique combination of physical properties. Almost total spin
polarization [1] coupled with its ferromagnetic nature could have wide uses in
spin electronics. LSMO also exhibits colossal magnetoresistance (CMR) [2] and
a high Curie temperature (TBulk

C ≈ 370 K [3]).
Ferromagnetic ordering of LSMO has been explained by C. Zenner [4] using a

double-exchange (DE) interaction, an eg electron transfer between the Mn3+ and
Mn4+ ions via an O2− 2p state. The probability of this transfer is dependent on
the Mn3+ - O2− - Mn4+ geometry and hence on the epitaxial strain.

In order to easily integrate LSMO devices into current electronics, they have
to be compatible with current silicon technology. So far, this integration has
been done using an STO buffer layer [5]. In this thesis, we introduce a different
approach. By chemical deposition of a single nanosheet layer of Ca2Nb3O10 on
silicon, we are able to grow a strain-free thin film of LSMO by pulsed laser
deposition.

This thesis is organized into five chapters. The first three chapters of the the-
sis are devoted to the theory and experimental methods utilized within it. The
fourth chapter introduces the investigated samples. Following are the experimen-
tal results in chapter five describing the growth of the thin films by pulsed laser
deposition, their evaluation by X-ray diffraction, atomic force microscopy, and
magnetometry measurements. Finally, the full permittivity tensor of the thin
films is numerically calculated from optical and magneto-optical measurements
and fitted with magneto-optical transitions giving insight into the electronic struc-
ture of the samples. Additionally, temperature-dependent optical and magneto-
optical setups are constructed, and temperature-dependent measurements are
carried out on an LSMO/STO sample.
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1. Polarization of light and
magneto-optical effects
This chapter introduces the basic theory of light polarization and describes its
propagation using Jones calculus. Furthermore, magneto-optical observables are
defined and the permittivity tensor along with its symmetries is introduced. The
chapter concludes with Yeh formalism describing the propagation of light through
layered anisotropic media.

1.1 The polarization ellipse
Polarization is a property of transverse waves. In classical physics, light can be
described as a transverse plane wave, and hence we can define its polarization
state. The polarization state of light describes the oscillation of the electric field
vector E.

Let us assume a plane wave solution to Maxwell’s equations traveling along
the z axis. A harmonic monochromatic plane wave can then be described as a
superposition of independent oscillations along Cartesian axes as

Ex(z, t) = E0x cos(ωt− kzz + δx) , (1.1)

Ey(z, t) = E0y cos(ωt− kzz + δy) , (1.2)

Ez(z, t) = 0 , (1.3)

where E0x and E0y are amplitudes of the oscillations, δx and δy are phase offsets,
ω represents angular frequency and kz represents the only non-zero component
of the wave vector. It can be shown [6] that in the general case, the electric field
vector E traces an ellipse in the plane perpendicular to the wave vector (see Fig.
1.1).

The polarization ellipse (i.e., the polarization state) is defined by four param-
eters. They are as follows:

• The amplitude E0 - overall wave amplitude given by E0 =
√
a2 + b2 =√︂

E2
0x + E2

0y. It relates to light intensity as I = E2
0 = a2 + b2.

• The ellipticity e - ratio of the semi-minor axis b to the semi-major axis a.
The sign of ellipticity represents the handedness of polarization. In this
thesis we assign positive values to right-handed polarization. An associated
parameter is the ellipticity angle ϵ defined by tanϵ = e.

• The azimuth θ - an oriented angle between the positive semi-axis x and the
major axis of the ellipse.

• The absolute phase δ0 - angle between the initial state of the electric field
vector E(t = 0) and the x axis.
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Figure 1.1: The polarization ellipse when looking against the propagation of light.

When describing the polarization state we will generally restrict ourselves
to the ellipticity (or ellipticity angle) and the azimuth. The amplitude carries
information about the absolute intensity of light which is often of no interest
to us. Similarly, the absolute phase provides only information about the initial
state, which bears little relevance to this thesis.

The polarization state of light with zero ellipticity angle is referred to as linear
polarization. The polarization state of light with an ellipticity angle equal to π

4
is referred to as right circular polarization (RCP), and a polarization state with
the opposite ellipticity angle −π

4 is referred to as left circular polarization (LCP).

1.1.1 Complex polarization parameter
Equations (1.1) and (1.2) can be rewritten using complex notation as

Ex(z, t) = Re{E0xe
i(ωt−kz+δx)} = Re{Axe

i(ωt−kz)} , (1.4)

Ey(z, t) = Re{E0ye
i(ωt−kz+δy)} = Re{Aye

i(ωt−kz)} , (1.5)

where Ax and Ay are complex amplitudes. The complex polarization parameter
is then defined as

χ ≡ Ay

Ax

= tanαeiδ . (1.6)

The complex polarization parameter χ is introduced as an alternative to the
previously defined two real parameters (azimuth and ellipticity angle). The equa-
tion (1.6) also defines two new real parameters α and δ which obey

tanα = E0y

E0x

, δ = δy − δx . (1.7)
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The complex polarization parameter relates to the azimuth and the ellipticity
angle through

χ = tan θ + i tan ϵ
1 − i tan θ tan ϵ . (1.8)

If the angles θ and ϵ are small, their tangent functions can be approximated by
their arguments. Because of the small-angle assumption, the second term in the
denominator approaches zero. Thus for small angles of azimuth and ellipticity, it
holds true that

χ ≈ θ + iϵ . (1.9)

1.2 Jones calculus
Jones calculus is introduced in order to effectively model the propagation of light
polarization through an optical system. It is a simple yet powerful formalism
accurately describing fully polarized light, i.e., light consisting of only one po-
larization state. Light is represented by Jones vectors and optical elements are
represented by Jones matrices.

1.2.1 Jones vector
Jones vector is defined as

J =
[︄
E0xe

iδx

E0ye
iδy

]︄
=
[︄
Ax

Ay

]︄
, (1.10)

and carries the complete polarization information. As discussed earlier in this
chapter, the amplitude and the absolute phase of light are redundant, and thus
the normalized Jones vector can be written as

J =
[︄
cosα
sinα eiδ

]︄
. (1.11)

The Jones vector can be expressed in terms of any basis. The most common
are the Cartesian and the circular basis. The Cartesian basis represents light in
terms of linear polarization along the x and y axes. The circular basis uses as
base vectors circularly polarized light with one vector representing left circular
polarization and the other right circular polarization.

1.2.2 Jones matrix
Optical elements in Jones formalism are represented by matrices. We differen-
tiate between transmission and reflection elements and their matrices. Let us
first consider the transmission of light through an optical element. The incident
Cartesian coordinate system S(I) (see Fig. 1.2(a)) is oriented so that the z(I) axis
coincides with the wave vector, the y(I) axis is parallel to the plane of incidence
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and the x(I) axis is perpendicular to the plane of incidence. Light linearly polar-
ized parallel to the plane of incidence is often called p-polarized (parallel). Light
with a linear polarization perpendicular to the plane of incidence is said to be
s-polarized (from German senkrecht - perpendicular). The Cartesian coordinate
system after transmission S(T ) is defined analogously.

(a) (b)

Figure 1.2: Cartesian coordinate systems for the transmission (a) and reflection
(b) of light.

Let us now have an incident light wave on an optical element represented by
Jones vector J (I) and a transmitted light wave represented by J (T ). The Jones
transmission matrix Tsp is then defined by the relation

J (T ) = Tsp J (I) . (1.12)

The Jones transmission matrix can be written in terms of its components as

Tsp =
[︄
tss tsp

tps tpp

]︄
. (1.13)

Using the definition of Jones matrix (1.12) and the definition of Jones vector
(1.10) we can write the relations between the matrix elements and the complex
amplitudes of the light wave. The relations in terms of s,p-polarizations are

tss =
(︄
A(T )

s

A
(I)
s

)︄
A

(I)
p =0

, (1.14)

tsp =
(︄
A(T )

s

A
(I)
p

)︄
A

(I)
s =0

, (1.15)

tps =
(︄
A(T )

p

A
(I)
s

)︄
A

(I)
p =0

, (1.16)

tpp =
(︄
A(T )

p

A
(I)
p

)︄
A

(I)
s =0

. (1.17)

To describe the reflection matrix of an element, we define two Cartesian co-
ordinate systems S(I) and S(R) similarly to the transmission case and according
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to Fig. 1.2(b). Let us also have an incident light wave represented by J (I) and
a reflected light wave represented by J (R). The Jones reflection matrix is then
defined as

J (R) = Rsp J (I) . (1.18)

The reflection matrix written in terms of its components is

Rsp =
[︄
rss rsp

rps rpp

]︄
, (1.19)

and the matrix elements of the Jones reflection matrix are then given by

rss =
(︄
A(R)

s

A
(I)
s

)︄
A

(I)
p =0

, (1.20)

rsp =
(︄
A(R)

s

A
(I)
p

)︄
A

(I)
s =0

, (1.21)

rps =
(︄
A(R)

p

A
(I)
s

)︄
A

(I)
p =0

, (1.22)

rpp =
(︄
A(R)

p

A
(I)
p

)︄
A

(I)
s =0

. (1.23)

We have defined the interaction of polarized light with an optical element. To
model the propagation of polarization through the entire system, we have only
to multiply the Jones vector of the incident light wave by the matrix of each
element in the order with which they appear in the system. Each matrix element
has to be represented in the same basis. The process of switching bases in Jones
formalism is identical to bases switching in linear algebra and can be found in [7].

1.3 Magneto-optical Kerr effect
Magneto-optical Kerr effect (MOKE) is a measure of magnetically induced optical
anisotropy in a sample. The magneto-optical Kerr effect is measured in reflec-
tion geometry. The magnetically introduced anisotropy measured in transmission
geometry is called the magneto-optical Faraday effect.

Let us consider an optically isotropic sample and a basis of s and p-polarizations
(as per Fig. 1.2(b)). In such a coordinate system, the Jones reflection matrix
of the sample will be diagonal. That is because the s and p-polarizations do
not mix upon reflection. However, suppose our sample is ferromagnetic (as all
samples in this thesis are) and is exposed to an external magnetic field. Then the
subsequent magnetization of the sample induces optical anisotropy. This leads to
a sample reflection matrix that is no longer diagonal. For an incident s-polarised
wave we define the complex magneto-optical Kerr angle ΦKs as the negative ratio
of the off-diagonal and diagonal elements of the reflection matrix. Using (1.20)
and (1.22) we can express that ratio for an incident s-polarised wave as
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ΦKs ≡ −rps

rss

= −

⎛⎜⎜⎝
A

(R)
p

A
(I)
s

A
(R)
s

A
(I)
s

⎞⎟⎟⎠
A

(I)
p =0

= −
(︄
A(R)

p

A
(R)
s

)︄
A

(I)
p =0

= −χ(R)
s . (1.24)

From the definition of the complex polarization parameter (1.6) we see that
it is equal to the negative complex magneto-optical (MO) angle. Assuming that
the azimuth θ(R)

s and the ellipticity angle ϵ(R)
s after reflection are small (i.e., the

induced anisotropy is small), we can use the approximation (1.9) to write the
complex polarization parameter as

χ(R)
s ≈ θ(R)

s + iϵ(R)
s . (1.25)

Using this relation we can introduce real magneto-optical angles Kerr rotation
θKs and Kerr ellipticity ϵKs for an incident s-polarized wave as

θKs ≡ −θ(R)
s , (1.26)

ϵKs ≡ ϵ(R)
s , (1.27)

ΦKs ≈ θKs − iϵKs . (1.28)

For the case of incident p-polarization the positive value of the ratio of the
matrix elements defines the complex magneto-optical angle ΦKp. Using (1.21) and
(1.23) we can show that

ΦKp ≡ rsp

rpp

=

⎛⎜⎜⎝
A

(R)
s

A
(I)
p

A
(R)
p

A
(I)
p

⎞⎟⎟⎠
A

(I)
s =0

=
(︄
A(R)

s

A
(R)
p

)︄
A

(I)
s =0

= (χ(R)
p )−1 . (1.29)

The azimuth θ(R)
p no longer satisfies the small-angle assumption as it is close

to π/2. However, it can be shown [6] that if the azimuth is sufficiently close to
π/2 (which for magnetically induced anisotropy generally holds true for incident
p-polarization), the complex polarization parameter can be approximated as

(χ(R)
p )−1≈ π

2 − θ(R)
p − iϵ(R)

p . (1.30)

We can then define the real magneto-optical angles Kerr rotation θKp and
Kerr ellipticity ϵKp for an incident p-polarised wave as

θKp ≡ π

2 − θ(R)
p , (1.31)

ϵKp ≡ ϵ(R)
p , (1.32)

ΦKp ≈ θKp − iϵKp . (1.33)
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In the case of normal incidence the distinction between s and p-polarizations
can not be made. From the symmetry of the problem the off-diagonal elements
of the Jones reflection matrix of the sample must be equal to one another. The
diagonal elements of the reflection matrix are equal in magnitude but have op-
posite signs due to the change of the coordinate system (see Fig. 1.2(b)). It then
follows that for normal incidence

ΦK ≡ ΦKs = ΦKp ≈ θK − iϵK . (1.34)

1.4 Permittivity tensor
The permittivity tensor is a material property essential for modelling light in-
teraction with any media. It carries information about the interaction of light
with the investigated system and can also be used to draw conclusions about the
underlying phenomena. In general, permittivity is a second-order tensor

ε =

⎡⎢⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤⎥⎦ . (1.35)

For an optically isotropic sample permittivity is a scalar. If we introduce
a magnetic field into the system, the subsequent magnetization of the material
M = (Mx,My,Mz) induces anisotropy, and therefore influences the permittivity
tensor. The influence, typically small, can be considered a perturbation. Thus
we can define its MacLaurin series and approximate permittivity by

εij ≈ εij(0) +
(︄
∂εij

∂Mk

)︄
M=0

Mk , (1.36)

where the indices i,j,k represent any of the indices of the Cartesian axes. We have
restricted ourselves to the first order of the perturbation as the second-order term
is cancelled out by the measurement technique (see Section 3.6), and the following
terms have a negligible impact.

The permittivity tensor has to abide by the system symmetry. For this reason
we introduce three standard geometries used for magneto-optical measurements.
These geometries lead to the simplification of the permittivity tensor. The geom-
etry used thought-out this thesis is the polar geometry (see Fig. 1.3(a)) in which
the magnetization is perpendicular to the sample surface. The permittivity ten-
sor in this geometry has to be invariant with respect to rotation around the z
axis. Permittivity then takes the form

εp =

⎡⎢⎣ εxx εxy 0
−εxy εxx 0

0 0 εzz

⎤⎥⎦ . (1.37)
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𝑥
𝑧 𝑦𝑀
(a)

𝑥
𝑧 𝑦𝑀
(b)

𝑥
𝑧 𝑦𝑀
(c)

Figure 1.3: Definitions of polar (a), longitudinal (b) and transversal (c) geometries
for MOKE measurements for a magnetized sample.

Due to the restriction to linear magneto-optical effects it can be shown [8]
that εxx ≈ εzz for all geometries. The permittivity tensor is then conventionally
written as -

εp =

⎡⎢⎣ ε1 iε2 0
−iε2 ε1 0

0 0 ε1

⎤⎥⎦ . (1.38)

Second is the longitudinal geometry that can be seen in Fig. 1.3(b). The
magnetization of the material is in-plane of the sample and also lies within the
plane of incidence. The permittivity tensor for the longitudinal geometry is

εl =

⎡⎢⎣ ε1 0 iε2
0 ε1 0

−iε2 0 ε1

⎤⎥⎦ . (1.39)

Lastly the transversal geometry is defined by in-plane magnetization that is
perpendicular to the plane of incidence (see Fig. 1.3(c)). Its permittivity tensor
takes the form

εt =

⎡⎢⎣ε1 0 0
0 ε1 iε2
0 −iε2 ε1

⎤⎥⎦ . (1.40)
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1.5 Magneto-optical transitions
A semiclassical microscopic approach allows for the description of spectral fea-
tures in the off-diagonal element of the permittivity tensor. Analysis of the
off-diagonal element of the permittivity tensor gives insight into the electronic
structure of the material. This is due to close ties between magnetism, optics
and the electronic structure of a material. Spectral features result from different
absorption of LCP and RCP owing to a spin-orbit splitting of degenerated states.
Due to the selection rules, transitions between the split states are exclusive to
one circular polarization state [9].

For simplicity, only splitting of one state at a time is considered. Thus we
recognize two types of MO active transitions. Type I single (paramagnetic) tran-
sition results from the splitting of the ground state (see Fig. 1.4). The spectral
dependence of the off-diagonal element of the permittivity tensor for a paramag-
netic transition (taken from Ref. [10]) is

ε2 (ω) = 2Γ(ε′′
2)max

ω(ω2 − E2
0 + Γ2) − iΓ(ω2 + E2

0 − Γ2)
(ω2 − E2

0 − Γ2)2 + 4Γ2ω2 , (1.41)

where Γ is the half-width at half-maximum, (ε′′
2)max is the maximum amplitude

of the imaginary part of the off-diagonal element of the permittivity tensor and
E0 is the center energy of the transition.

Type II double (diamagnetic) transition originates from the splitting of the
excited states, and its spectral dependency of the off-diagonal element of the
permittivity tensor (taken from Ref. [10]) is

ε2 (ω) = Γ2(ε′
2)max

(ω − E0)2 − Γ2 + 2iΓ(ω − E0)
[(ω − E0)2 + Γ2]2 . (1.42)

(a) (b)

Figure 1.4: Spectral shapes of magneto-optical transitions. (a) Single (paramag-
netic) transition originating from the splitting of the ground state. (b) Double
(diamagnetic) transition originating from the splitting of the excited state.

12



1.6 Yeh formalism
The Yeh formalism describes the propagation of light through layered anisotropic
media. It has been greatly advanced by prof. Vǐsňovský [8] most notably by
expanding it to magneto-optical effects. Analytical calculations of the magneto-
optical response of a sample can be carried out using this formalism. Utilizing
the knowledge of the permittivity tensor of each of the sample layers, we can
calculate the magneto-optical Kerr effect.

Figure 1.5: Multilayer structure consisting of N anisotropic layers, with corre-
sponding tensor permittivities ε(n), thicknesses tn and interface coordinates zn.
The investigated structure is surrounded by two optically isotropic half-spaces
with corresponding scalar permittivities ε(0) and ε(N+1).

Let us now consider a layered sample structure (see Fig. 1.5). The structure
consists of N layers that are parallel to one another and perpendicular to the z
axis. The structure is surrounded by two isotropic half-spaces. The half-space
N+1 is an idealization of the substrate. Each layer has a corresponding tensor
permittivity ε(n) and thickness tn. The two isotropic half-spaces have scalar
permittivities ε(0) and ε(N+1) respectively. The interfaces between the layers are
defined by their zn coordinates on the z axis. For an incident monochromatic
plane wave we define a right-handed Cartesian coordinate system such that the
x axis is perpendicular to the plane of incidence. The angle of incidence is φ0.
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In order to model the response of the sample we need to solve the wave
equation in all layers of the structure. Let the layers be ferromagnetic (i.e.,
optically anisotropic) without any free current or charge. We shall also assume
the permeability tensor µ to be a scalar and equal to one. This has been shown in
literature to hold true for optical frequencies [11, 12]. Using Maxwell’s equations
and constitutive relations, the wave equation for the n-th layer can then be written
as

∆E(n) − ε0µ0ε
(n)∂

2E(n)

∂t2
− ∇(∇ · E(n)) = 0 , (1.43)

where c is the speed of light in a vacuum. The solution to the wave equation can
be written in the form of a plane wave as

E(n) = E
(n)
0 ei(ωt−k(n)·r) . (1.44)

We further introduce a reduced wave vector N as the wave vector for a given
medium divided by the magnitude of the wave vector in a vacuum. That can also
be written in the form of

N (n) = c

ω
k(n) . (1.45)

The Nx component in our coordinate system is equal to zero in all layers. For
the Ny component, it follows from Snell’s law that it is constant across all layers
and is equal to

Ny = N0 sinφ0 , (1.46)

We can substitute the plane wave solution (1.44) to the wave equation (1.43)
and rewrite it in matrix form using the reduced wave vector as

⎡⎢⎢⎢⎢⎣
ε(n)

xx −N2
y − (N (n)

z )2 ε(n)
xy ε(n)

xz

ε(n)
yx ε(n)

yy − (N (n)
z )2 ε(n)

yz +NyN
(n)
z

ε(n)
zx ε(n)

zy +NyN
(n)
z ε(n)

zz −N2
y

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
E

(n)
0x

E
(n)
0y

E
(n)
0z

⎤⎥⎥⎥⎥⎦ = 0 . (1.47)

The non-trivial solution to the above equation exists if the determinant of the
matrix is equal to zero. If we write the characteristic equation of the matrix, we
can find its four eigenvalues N (n)

zj and their corresponding eigenvectors e
(n)
j . The

eigenvectors and eigenvalues describe the eigenmodes of light waves in a given
layer n. The general solution to the equation (1.47) is then

E(n) =
4∑︂

j=1
E

(n)
0j (zn)e(n)

j e
i

{︂
ωt− ω

c

[︂
Nyy+N

(n)
zj (z−zn)

]︂}︂
. (1.48)
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The magnetic field of a plane wave can be calculated from Maxwell’s equations
as

B = 1
c
N × E , (1.49)

therefore, the magnetic field eigenvectors b
(n)
j are

b
(n)
j = N

(n)
j × e

(n)
j , (1.50)

and the magnetic field of the plane wave in terms of its eigenmodes is then given
by

B(n) = 1
c

4∑︂
j=1

E
(n)
0j (zn)b(n)

j e
i

{︂
ωt− ω

c

[︂
Nyy+N

(n)
zj (z−zn)

]︂}︂
. (1.51)

The solutions of the wave equations in each layer have to be tied together
via boundary conditions. At the interface of two layers without free current and
charge the tangential components of the electric field vector and the magnetic field
vector have to be continuous. This requirement can be expressed mathematically
as

4∑︂
j=1

E
(n−1)
0j (zn−1)e(n−1)

j · x =
4∑︂

j=1
E

(n)
0j (zn)e(n)

j · xei ω
c

N
(n)
zj tn , (1.52)

4∑︂
j=1

E
(n−1)
0j (zn−1)b(n−1)

j · y =
4∑︂

j=1
E

(n)
0j (zn)b(n)

j · yei ω
c

N
(n)
zj tn , (1.53)

4∑︂
j=1

E
(n−1)
0j (zn−1)e(n−1)

j · y =
4∑︂

j=1
E

(n)
0j (zn)e(n)

j · yei ω
c

N
(n)
zj tn , (1.54)

4∑︂
j=1

E
(n−1)
0j (zn−1)b(n−1)

j · x =
4∑︂

j=1
E

(n)
0j (zn)b(n)

j · xei ω
c

N
(n)
zj tn . (1.55)

The Yeh formalism utilizes matrices for the description of propagation of light
through layered anisotropic media. The above equations can be formulated in
matrix form as

D(n−1)E
(n−1)
0 (zn−1) = D(n)P (n)E

(n)
0 (zn) , (1.56)

where the dynamical D(n) and propagation P (n) matrices are introduced. The
dynamical matrix represents the propagation of light across the interface between
two layers and is defined by

D(n) =

⎡⎢⎢⎢⎢⎢⎣
e

(n)
1 · x e

(n)
2 · x e

(n)
3 · x e

(n)
4 · x

b
(n)
1 · y b

(n)
2 · y b

(n)
3 · y b

(n)
4 · y

e
(n)
1 · y e

(n)
2 · y e

(n)
3 · y e

(n)
4 · y

b
(n)
1 · x b

(n)
2 · x b

(n)
3 · x b

(n)
4 · x

⎤⎥⎥⎥⎥⎥⎦ . (1.57)
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The propagation matrix describes the propagation of the light wave through a
given layer and is defined as

P (n) =

⎡⎢⎢⎢⎢⎢⎣
ei ω

c
N

(n)
z1 tn 0 0 0

0 ei ω
c

N
(n)
z2 tn 0 0

0 0 ei ω
c

N
(n)
z3 tn 0

0 0 0 ei ω
c

N
(n)
z4 tn

⎤⎥⎥⎥⎥⎥⎦ . (1.58)

The equation (1.56) can further be rewritten as

E
(n−1)
0 (zn−1) = (D(n−1))−1D(n)P (n)E

(n)
0 (zn) = T (n−1,n)E

(n)
0 (zn) , (1.59)

through which the transfer matrix T (n−1,n) has been defined. The transfer matrix
binds together the field components in the adjacent layers. The transfer matrix
can be constructed for all interfaces with the exception of the last interface with
the substrate half-space. The substrate is considered semi-infinite and thus, the
propagation matrix can not be constructed. The transfer matrix for the last
interface is defined as

E
(N)
0 (zN) = (D(N))−1D(N+1)E

(N+1)
0 (zN) = T (N,N+1)E

(N+1)
0 (zN) . (1.60)

The anisotropic multilayer can now be characterised by a single matrix M
obtained implicitly from (1.59) and (1.60) as

E
(0)
0 (z0) =

(︄
N+1∏︂
n=1

T (n−1,n)
)︄

E
(N+1)
0 (zN) = ME

(N+1)
0 (zN) . (1.61)

For the final touch let us assume that the incident light wave can be decom-
posed into two orthogonal polarizations (eigenvectors) e

(0)
1 and e

(0)
3 with ampli-

tudes E(0)
01 and E(0)

03 corresponding to the previously defined s and p-polarizations.
Analogously let us assume two orthogonal polarizations e

(0)
2 and e

(0)
4 describing

the reflected wave. Further assuming this superposition to hold true for the sub-
strate half-space the amplitudes E(N+1)

02 and E
(N+1)
04 must be zero since there is

no light source or reflection. The equation (1.61) element-wise is then

⎡⎢⎢⎢⎢⎢⎣
E

(0)
01

E
(0)
02

E
(0)
03

E
(0)
04

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
E

(N+1)
01
0

E
(N+1)
03
0

⎤⎥⎥⎥⎥⎦ . (1.62)

The reflection coefficients of the sample can be calculated from (1.62) and
their respective definitions (1.20)-(1.23) as
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rss =
⎛⎝E(0)

02

E
(0)
01

⎞⎠
E

(0)
03 =0

= M21M33 −M23M31

M11M33 −M13M31
, (1.63)

rsp =
⎛⎝E(0)

02

E
(0)
03

⎞⎠
E

(0)
01 =0

= M11M23 −M21M13

M11M33 −M13M31
, (1.64)

rps = −

⎛⎝E(0)
04

E
(0)
01

⎞⎠
E

(0)
03 =0

= −M41M33 −M43M31

M11M33 −M13M31
, (1.65)

rpp = −

⎛⎝E(0)
04

E
(0)
03

⎞⎠
E

(0)
01 =0

= −M11M43 −M41M13

M11M33 −M13M31
. (1.66)

Using the reflection coefficients, we can calculate the magneto-optical response
of the sample from (1.24) and (1.29) for our arbitrary multilayer sample.

For the purpose of this thesis, it is more important to model the off-diagonal
element of the permittivity tensor from the diagonal element and the magneto-
optical response. This can not be achieved analytically. The least square method
can be utilized with the presented approach to model the off-diagonal element of
the permittivity tensor.
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2. Introduction to magnetism
This chapter provides a basic introduction to magnetism with a focus on ferro-
magnetism and the origins of ferromagnetism in LSMO. Magnetic properties of
materials result from an alignment of atomic magnetic moments. A sketch of dif-
ferent types of alignment can be seen in Fig. 2.1. In the case of paramagnetism,
the magnetic moments are aligned randomly, and no net magnetic moment is
present. Ferromagnetic materials align parallel creating a net magnetic moment.
Ferrimagnetic materials also have a net magnetic moment; however it is a result
of two or more uneven magnetic sublattices that prefer anti-parallel orientation.
Lastly, the infamously useless1 anti-ferromagnetic ordering consists of multiple
sublattices that compensate for one another resulting in zero magnetic moment.

Figure 2.1: Illustration of different types of magnetic ordering taken from. Colour
illustrates different magnetic sublattices. Figure taken from [9].

2.1 Ferromagnetism
Atomic magnetic moments in ferromagnetic materials align parallel to each other.
The moments are generally not aligned throughout the whole material; instead,
they form areas with parallel alignment called domains. If a ferromagnetic mate-
rial has not previously been exposed to a magnetic field the magnetic domains are
randomly oriented, and their magnetic moments cancel out. This is a so-called
virgin state. When an external field is applied, the magnetization of the material
follows a non-linear hysteresis loop (see Fig. 2.2) that is dependent on the history
of the material. Multiple values are used to characterise this curve. Saturation
magnetization Ms is the magnetization value when all domains are oriented in the
same direction. Remanent magnetization Mr is magnetization in the absence of
an external magnetic field, and coercivity field Hc is the external field necessary
for zero magnetization of the material.

The shape of the hysteresis loop of a ferromagnet is dependent on the direction
of magnetization. This is called magnetic anisotropy. Magnetic anisotropy de-
scribes different magnetic properties of materials depending on their orientation.
Ferromagnetic materials can exhibit one easy axis along which they are easiest
to magnetize. In this direction, the coercivity field and remanence are highest.

1In his Nobel prize speech in 1970 awarded for the work and discoveries in anti-
ferromagnetism Louis Néel described them as interesting but useless.
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Figure 2.2: Hysteresis loop of a ferromagnetic material. Initially in a demag-
netized virgin state. With the introduction of external magnetic field H the
magnetic moments of domains begin to align until they reach saturation mag-
netization Ms. Remanent magnetization Mr is magnetization in the absence of
external magnetic field. Coercivity field Hc is the external field necessary to re-
duce the magnetization to zero. Figure taken from [13].

2.2 Curie temperature
With increasing temperature remanent magnetization of ferromagnetic materials
decreases. At a certain temperature the magnetization drops sharply to zero. We
call this temperature the Curie temperature TC . At this temperature a second-
order phase transition takes place. It is a transition between the ferromagnetic
and paramagnetic states. At the Curie temperature the atomic magnetic mo-
ments stop forming domains and become randomly oriented as thermal disorder
overcomes the exchange interaction.

2.3 Double-exchange interaction
The ferromagnetism of LSMO has been explained by C. Zener [4] through double-
exchange interaction (DE). This mechanism originates from an eg electron trans-
fer between Mn3+ and Mn4+ ions via a O2− 2p state. The probability of the
electron transfer is higher between manganese atoms with the same spin orien-
tation of unpaired electrons (i.e., the eg electron does not need to reorient its
spin during the transfer). If the probability of the transfer is higher, then the
electron is less localised and hence has lower energy. As a result of the material
minimizing its energy, the spins of the manganese unpaired electrons align and
form domains.
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3. Experimental techniques
This chapter provides an overview of the utilized experimental methods. The
following methods were used to prepare the thin film samples, examine the quality
of their deposition and evaluate their magnetic, optical, and magneto-optical
properties.

3.1 Pulsed laser deposition
Pulsed laser deposition (PLD) is a widely used method for the deposition of high-
quality thin films. A schematic sketch of the method can be seen in Fig. 3.1.
The desired material is placed inside a vacuum chamber in the form of a dense
target. The target is then impacted and ablated by a high-energy laser pulse. The
ablated material creates a plasma plume propagating upward. Upon reaching the
heated substrate, the plume condensates.

In order to achieve epitaxial growth, the ablated plume must consist mostly
of atomic, diatomic, and other low-mass components. This is aided by the use
of a nanosecond laser pulse in the ultraviolet range, which is strongly absorbed
by a small portion of the ceramic target. Other targets (e.g., polymers, organic
materials) require different conditions.

PLD method operates with a background gas. In the case of oxide films, an
oxygen atmosphere is used. The oxygen serves two purposes. Firstly it helps
provide proper stoichiometry of the fabricated films. Secondly, it lowers the
energy of the particles in the plume in order not to damage the structure of
the film upon impact [14]. Post-deposition oxygen annealing is also employed
in order to oxidize the film or on the contrary to remove extra oxygen. This
post-deposition treatment has been shown to improve the Curie temperature and
colossal magnetoresistance of the film [15].

𝐿𝑒𝑛𝑠

𝑇𝑎𝑟𝑔𝑒𝑡

𝑃
𝑙𝑢
𝑚
𝑒

𝐻𝑒𝑎𝑡𝑒𝑟
Substrate

𝑇𝑢𝑟𝑏𝑜 −
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟

𝑝𝑢𝑚𝑝

Figure 3.1: Schematic depiction of a pulsed laser deposition setup. A high energy
pulsed KrF laser impacts a dense target creating a plasma plume. The plume
condenses on a heated substrate creating a thin film.
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3.2 Atomic force microscopy
Atomic force microscopy (AFM) is a type of scanning probe microscopy. Scan-
ning with a physical probe allows it to go several orders of magnitude higher in
precision compared to diffraction-limited optical microscopes [16].

The principle of operation is the van der Waals interaction between a sharp
tip of the probe and the sample surface. The backside of the probe serves as a
mirror that reflects an incident laser beam into a position-sensitive photodiode
(see Fig. 3.2). This allows for high precision measurements of the cantilever
position. The surface scanning is accomplished by moving the piezoelectric stage
with the sample.

The atomic force microscope can work in three different modes. The simplest
is the contact mode. In this mode the cantilever is static and it is dragged along
the surface of the material whilst in direct contact with it. This causes the
cantilever to bend corresponding to the surface height and change the reflection
of the incoming laser beam. The relative surface height can be deduced from
the change of intensity on the position-sensitive photodiode. Alternatively, the
intensity on the photodiode can be kept constant by moving the cantilever up
and down using a piezoelectric device. In that case, the height can be deduced
from the adjustment.

The second option is the tapping mode in which the cantilever is set to oscillate
(using piezoelectric components, magnetic field, or by periodic heating) at its
resonant frequency with a constant amplitude. Upon contact with the surface,
the amplitude of the oscillations changes (generally it decreases). By moving
the cantilever up and down using the piezoelectric device, the amplitude can be
maintained at a constant value, and the surface topography can be reproduced.
The tapping mode, while exerting higher pressure during contact, is generally
less damaging as the lateral forces acting upon the sample are much smaller.

Lastly, the non-contact mode utilizes a similar principle as the tapping mode;
however, in this mode the tip does not come into contact with the surface. Much
like in the tapping mode, we maintain the frequency and the amplitude con-
stant and determine the surface topography from the vertical adjustments to the
cantilever position. In this mode adsorbed fluid on the sample surface can cause
severe changes to the measured topography; hence this mode is generally reserved
for delicate samples.

Figure 3.2: Sketch of the atomic force microscopy setup. Atomic forces act upon
the tip of the cantilever and bend it. The change in the cantilever position is
detected using a laser beam reflected on the backside of the cantilever.
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3.3 X-ray diffraction
X-ray diffraction (XRD) is a characterization technique evaluating the crystallo-
graphic structure and crystalline quality of investigated materials. The method
is based on detecting X-rays diffracted on lattice planes of the sample. The peak
intensity of diffracted radiation follows the Bragg law

2dhkl sin θ = λ , (3.1)

where dhkl is the difference between two lattice planes given by Miller indices
hkl, angle θ is the angle of incidence for which peak intensity occurs and λ is the
wavelength of X-ray radiation.

A sketch of the XRD setup can be seen in Fig. 3.3. Several angles of rotation
are depicted. Rotating the sample in the plane of incidence is denoted by angle
ω. The rotations outside the plane of incidence are denoted by angles φ and ψ.
Angle 2θ is taken as the angle between the incident and reflected X-ray.

The most basic of XRD measurements is a symmetric θ-2θ scan. During this
scan the X-ray source is kept at a set position. The detector and sample are
adjusted so that ψ = 0 and ω = θ. In this geometry detected X-rays are being
diffracted on the lattice planes parallel to the sample surface. This provides
information about the out-of-plane lattice parameter of the sample [17].

Figure 3.3: Sketch of an X-ray diffraction setup. Angles ω, φ and ψ define rotation
of the sample. Angle 2θ defines the detection angle.

3.4 Vibrating-sample magnetometer
Vibrating-sample magnetometer (VSM) is a precise yet quite simple measure-
ment setup for detecting small magnetic signal. VSM utilizes the Faraday law of
induction to measure the magnetization of a sample. The sample is placed on a
rod in a uniform magnetic field sustained by a superconducting electromagnetic
coil (see Fig. 3.4). The magnetic dipole moment of the sample aligns with the
external magnetic field, creating a magnetic field of the sample. If the rod with
the sample is vibrating, the magnetic field of the sample changes in time. The
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change of the magnetic field induces alternating current (AC) in the pick-up coils.
In order to separate signal from noise, the current passes through a lock-in am-
plifier that is tuned to the sample vibration frequency. Signal coming from the
lock-in amplifier can then be tied back to the magnetic moment of the sample
and can be separated from the noise for values as low as 10−6 emu.

Figure 3.4: Schematic depiction of a vibrating-sample magnetometry measure-
ment technique.

3.5 Spectroscopic ellipsometry
Spectroscopic ellipsometry is a measurement technique analyzing the optical re-
sponse of a sample. It is capable of measuring a full Mueller matrix of a sample or
numerically model the isotropic scalar permittivity of a single layer in a multilayer
sample.

The measurement method uses a wide spectrum lamp concentrated upon the
surface of the sample (see Fig. 3.5). Before the beam impacts the sample, it
passes through a polarizer P and optionally a compensator Copt (waveplate). After
reflection off the sample surface S, the beam propagates through a compensator
C (waveplate), an analyser A (polarizer), and finally reaches a spectrally sensitive
detector D.

Let us consider the Jones matrices of the optical components. We will work in
the Cartesian coordinate system defined in Fig. 1.2. We shall omit the optional
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Figure 3.5: Sketch of a spectroscopic ellipsometry setup. Light from a wide-
spectrum lamp passes through a polarizer P, reflects off a sample S and continues
through a compensator C, analyzer A and into the detector D. Optionally an
aditional compensator Copt can be added before sample reflection.

compensator. Let the polarizer P be oriented at an angle ξ with respect to the x
axis. Its Jones transmission matrix is

TP =
[︄

cos2 ξ sin ξ cos ξ
sin ξ cos ξ sin2 ξ

]︄
. (3.2)

If we consider an optically isotropic sample, then the reflection matrix of the
sample is given by

Rs =
[︄
rss 0
0 rpp

]︄
. (3.3)

Let the waveplate have a retardance Γ. The retardance is spectrally dependent.
If the principal axes are aligned with s and p-polarizations, then its transmission
matrix takes the form

TC =
[︄
eiΓ 0
0 1

]︄
. (3.4)

Lastly, let the analyser be oriented at an angle ζ with respect to the x axis.
Similarly to (3.2) the transmission matrix is

TA =
[︄

cos2 ζ sin ζ cos ζ
sin ζ cos ζ sin2 ζ

]︄
. (3.5)

The relation between the initial Jones vector J (I) and the final Jones vector
J (F ) is given by the product of matrices of the optical elements as
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J (F ) = TA · TC · Rs · Tp · J (I) . (3.6)

Detected intensity of light is then given by

I = (J (F ))∗J (F ) . (3.7)

Spectroscopic ellipsometry investigates the change in polarization upon reflec-
tion off the sample. That change is represented by the ratio of diagonal elements
of the reflection matrix of the sample. This ratio is defined as

ρ ≡ rpp

rss

= tan Ψei∆ , (3.8)

where we also introduced ellipsometric angles Ψ and ∆. Ellipsometric angles can
be extracted from the intensity of the detected light. That is achieved through
rotating one or more components of the setup. Intensity is a function of the
angle of rotation of the optical element. Ellipsometric angles are parameters of
this function. The full calculation can be seen elsewhere [18].

From ellipsometric angles, the diagonal element of the permittivity tensor can
be modelled using software. In addition to optical properties, the thickness of a
sample layer can be estimated. Generally, we characterise one layer of a sample
with full knowledge of the optical and physical properties of the other layers.

3.6 Magneto-optical spectroscopy
Magneto-optical spectroscopy is a highly sensitive method for measuring the
magneto-optical Kerr effect. The ability to measure magneto-optical angles with
millidegree precision makes it suitable for the measurement of ultrathin films.
Magneto-optical spectroscopy is also a surface technique mitigating the magnetic
influence of the substrate.

The measurement setup (see Fig. 3.6) is very similar to that of spectroscopic
ellipsometry. Analogously to ellipsometry, we investigate the change in polariza-
tion upon reflection off the sample. However, in spectroscopic ellipsometry we
assumed the sample to be isotropic and the polariser to allow both s and p po-
larizations to pass. In magneto-optical spectroscopy we use an external magnetic
field to magnetize the sample and induce optical anisotropy. Thus the incident
light on the sample is strictly s or strictly p-polarised in order to measure the
off-diagonal reflection coefficient.

For the purpose of this thesis, we shell consider polar geometry with almost
normal incidence. The angle of incidence of the setup is low enough to justify
(1.34) yet allows for spatial differentiation between the incident and reflected light
beams. In terms of Jones calculus the reflection matrix of the magnetized sample
takes the form

R =
[︄

1 −Φk

−Φk −1

]︄
. (3.9)
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Figure 3.6: Sketch of a magneto-optical spectroscopy setup in polar configura-
tion. Light from a wide-spectrum lamp passes through a polarizer P, reflects
off a magnetized sample S and continues through an optional compensator Copt,
analyzer A and into a spectrally sensitive detector D.

Let the polarizer P, with Jones transmission matrix (3.2), be rotated 90°
allowing only p-polarized light. If we neglect the overall amplitude, we can use
(3.4) and (3.5) to write the relation between the initial and the final Jones vectors
as

J (F ) =
[︄

cos2 ζ sin ζ cos ζ
sin ζ cos ζ sin2 ζ

]︄ [︄
eiΓ 0
0 1

]︄ [︄
1 −Φk

−Φk −1

]︄ [︄
0 0
0 1

]︄
J (I) , (3.10)

J (F ) =
[︄
−eiΓΦk cos2 ζ − sin ζ cos ζ
−eiΓΦk sin ζ cos ζ − sin2 ζ

]︄
. (3.11)

Intensity of the detected signal can be calculated using (3.7) as

I = sin2 ζ + |Φk|2 cos2 ζ + sin(2ζ) Re
{︂
Φke

iΓ
}︂
. (3.12)

The second-order term |Φk|2 can be neglected as the MOKE generally has a small
magnitude. Using this approximation, the intensity in terms of the magneto-
optical angles can be written as

I = sin2 ζ + (θk cos Γ + ϵk sin Γ) sin(2ζ) . (3.13)

Using the above relation, it is possible to measure the magneto-optical Kerr
effect by measuring intensity as a function of the rotation of the analyzer. One
must also not forget that we omitted the absolute magnitude of light intensity.

Accuracy can be further improved by measuring in both polarities of mag-
netization. By taking the difference of the measured Kerr angles, the unwanted
influence of optical effects and quadratic magneto-optical effects can be elimi-
nated.
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4. Investigated samples
The magnetic oxide samples investigated in this thesis are La2/3Sr1/3MnO3 (LSMO)
thin films on various substrates. In this chapter, we introduce the bulk properties
of LSMO and comment on the subject of strain impact on thin films.

4.1 Bulk LSMO
The ideal crystallographic structure of manganese oxides is cubic perovskite (see
Fig. 4.1). The perovskite structure belongs to Pm3̄m space group (No. 221).
The stability of a manganese oxide structure follows the tolerance factor

t = rA + rO√︂
2(rB + rO)

, (4.1)

where rA, rB, and rO are the ionic radii of the A,B, and oxygen atoms, re-
spectively. For an ideal cubic perovskite, the tolerance factor is equal to unity.
However, due to the variation in cation ionic radii the tolerance factor usually
diverges from this value significantly. That leads to an orthorhombic or rhom-
bohedral structure. If the tolerance factor differs crucially, then the structure
becomes unstable. The structure has been shown to be stable for 0.89 < t < 1.02
[19].

Unit cell of bulk LSMO is in fact rhombohedral with lattice constants ar =
5.471 Å and αr = 60.43° [20]. This structure belongs in the R3̄c space group (No.
167).

The level of strontium doping of LaMnO3 has been chosen based on the work
of Jonker and van Santen [3] who demonstrated that doping with 1

3 of Sr provides
the highest Curie temperature of 370 K.

𝐴𝐵𝑂

Figure 4.1: Schematic sketch of an ideal cubic perovskite structure of ABO3.
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4.2 Substrate materials
Depositing materials as thin films impacts their physical properties. In the case
of epitaxial growth, the material accommodates its in-plane lattice parameters to
correspond to the lattice parameters of the substrate. As such, substrates with
close lattice parameters need to be chosen. For the purpose of this thesis, cubic
(001) oriented SrTiO3 (STO) and a tetragonal (001) oriented BaTiO3 (BTO)
substrates have been used for epitaxial growth. Their lattice parameters are
higher than that of the pseudocubic parameters of LSMO (see Table 4.1), and
thus they exert tensile strain. The level of tensile strain can be evaluated through
a lattice mismatch parameter

m = al − as

as

, (4.2)

where al and as are the lattice parameters of the thin layer and the substrate,
respectively. The sign of the lattice mismatch parameter carries information on
the type of strain. A positive sign refers to compressive strain, while a negative
sign means tensile strain.

Material LSMO STO BTO
Lattice parameter a [Å] 3.876 3.905 3.995
Lattice mismatch m [%] - -0.74 -2.98

Table 4.1: Comparison of pseudocubic lattice parameters of LSMO [21] and the
substrates STO and BTO [22].

Textured samples of LSMO have been deposited by PLD on a silicon substrate
with the aid of a seed nanosheet (NS) layer. A seed layer is used because of the
high lattice mismatch between silicon and LSMO. The nanosheet layer is made
of a singular layer of Ca2Nb3O10. The introduction of a seed NS layer allows for
close to epitaxial growth of LSMO on any substrate regardless of its crystalline
quality (thin films on LSMO have already been grown on an amorphous substrate
using this approach [23]). We demonstrate this through the growth of LSMO thin
films on a silicon substrate.

4.3 Influence of epitaxial strain
The epitaxial strain has been shown to influence the orbital ordering of the man-
ganese 3d levels in LSMO [24]. A schematic sketch of the Mn energy levels for
different symmetries can be seen in Fig. 4.2. An isolated manganese atom has
all 3d energy levels degenerated. A partial lifting of degeneracy is achieved by
placing the Mn atom inside the oxygen octahedra. For thin films subjected to
tensile strain (e.g., grown on STO or BTO) further lifting of degeneracy occurs
as the symmetry of the system is lowered. This affects only the Mn3+ ion as the
Mn4+ prefers to keep t2g energy levels unchanged in what is called the Jahn-Teller
effect [19]. As the ferromagnetism in LSMO has been explained by the DE in-
teraction, the change in the Mn 3d energy levels (as well as a possible change in
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Figure 4.2: Illustration of the splitting of the manganese 3d energy levels. The
degeneracy is partially lifted by the oxygen octahedra field. The Jahn-Teller effect
further shows Mn3+ energy levels splitting for tensile and compressive distortion.
Figure taken from [17].

the Mn3+ - O - Mn4+ geometry, orbital overlap, and bond length) influences the
magnetic properties of LSMO.

Magnetic anisotropy of LSMO thin films also differs from that of bulk LSMO.
Magnetization easy axis of bulk LSMO lies along the pseudocubic [111]c direction
[25], whereas for thin films it typically rotates into the plane of the film. LSMO
grown on STO indeed shows in-plane anisotropy with ⟨100⟩c and ⟨110⟩c being
equivalent easy axis of magnetization above 250 K [26]. Bellow 250 K the ⟨110⟩c

direction becomes magnetically easier.
Lastly, epitaxial strain and substrate symmetry induce oxygen octahedra ro-

tations (OOR). OOR are rotations of the oxygen octahedra in the perovskite
structure of LSMO. The influence of OOR on physical properties is still being de-
bated as some works claim a positive correlation between the angle of octahedra
tilt and magnetic properties of the film [27], where others claim the correlation
to be negative [28].
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5. Experimental results
This chapter will guide the reader chronologically from the process of fabrica-
tion, crystalline and surface quality examination, magnetic properties evaluation
to optical and magneto-optical measurements, and the calculation and charac-
terization of the permittivity tensor of LSMO thin films on various substrates.
Additionally, temperature-dependent optical and magneto-optical properties of a
selected sample will be presented and described.

5.1 Thin film fabrication
Samples of LSMO thin films on three different substrates have been prepared
by PLD at the Centre for Nanoscience and Nanotechnology in Orsay. The de-
positions on STO, BTO, and buffered silicon substrates have been done under
similar conditions with a varying number of pulses to achieve multiple thicknesses
of LSMO layers. Six samples of LSMO on STO have been prepared, although in
this thesis we focus on only three with the most relevant thicknesses. One sample
of LSMO on BTO was prepared, along with two samples of LSMO on NS on Si.

The PLD setup used a KrF ultraviolet laser operating at λ = 248 nm. The
pulse repetition rate was set to 2 Hz. The energy of the laser was 300 mJ with a
6 × 15 cm mask. The pressure of the oxygen atmosphere was 110 mTorr during
the deposition and 75 Torr during the post-deposition annealing. The substrate
temperature was maintained at 720 K.

Substrate heating is essential to achieve epitaxial growth; however, that means
heating the BTO substrate well above the temperature of its structural transition
[29]. This, unfortunately, resulted in the creation of ferroelectric a − c domains
with a misorientation angle that prevented perfect growth and optical measure-
ments of LSMO on the BTO substrate.

5.2 Crystalline properties
All samples have been investigated using a PANanalytical X’Pert PRO diffrac-
tometer with a Cu anode and a wavelength of λ = 1.5406 Å. The geometry of the
XRD measurement was set to the symmetric θ− 2θ scan around the (002) Bragg
reflection of LSMO. To evaluate film thickness t and out-of-plane pseudocubic
parameter cc an interference formula was used

I = I0

[︄
sin 2π

λ
t sin θ

sin 2π
λ
cc sin θ

]︄2

. (5.1)

This approach (called the kinematic approximation) supposes the superposi-
tion of intensities of the substrate and thin-film peak. However, in the case of
LSMO on STO it has been shown [30] that the X-rays diffracted on the substrate
interfere with the rays diffracted on the thin film. This results in a poor theo-
retical fit of our model, especially in the interference fringes on the side of the
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substrate peak. Therefore a good fit of the interference fringes of higher angles
is prioritized.

Three samples on the STO substrate have been deemed worthy of further
research. They have been chosen based on their thicknesses measured by XRD.
The θ − 2θ scans of these three samples can be seen in Fig. 5.1 along with the
theoretical fit. The resulting thicknesses and out-of-plane pseudocubic parameters
can be seen in Table 5.1.

(a) (b)

(c)

Figure 5.1: XRD θ − 2θ measurements of LSMO on STO of thicknesses (a) 18.1
nm, (b) 28.0 nm and (c) 49.6 nm.

Sample Thickness t [nm] Out-of-plane latt. par. cc [Å]
LSMO/STO 18.1 3.843
LSMO/STO 28.0 3.842
LSMO/STO 49.6 3.844

LSMO/NS/Si ∼ 20 3.864
LSMO/NS/Si ∼ 40 3.859

Table 5.1: Thicknesses and out-of-plane pseudocubic lattice parameters of LSMO
layers as determined by XRD. Thicknesses of LSMO layers on Si could not be
determined from XRD and are estimated from the number of pulses during de-
position.
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Thin films of LSMO grown on (100) oriented Si, with the aid of a NS seed
layer, have been investigated by symmetric θ − 2θ scans (see Fig. 5.2). They
are expected to have a fiber structure with a unified out-of-plane component
and random orientations in the in-plane direction (singular orientation on each
nanosheet). A diffraction pattern consistent with the pseudocubic approximation
has been observed. Out-of-plane lattice parameters have been determined from
the position of the diffracted peaks (see Table 5.1). The pseudocubic parameters
are significantly more relaxed than those of LSMO grown on STO. Thicknesses
of the LSMO thin films on NS/Si could not be determined due to the lack of
diffraction fringes caused by the textured nature of the films (carried over from
the NS topology visible in Fig. 5.4). Approximate thicknesses of the samples can
be estimated from the number of laser pulses used during deposition. The number
of pulses would correspond to samples of 20 nm and 40 nm. Better estimates of
sample thickness can be determined by spectroscopic ellipsometry in Section 5.5.
Interestingly the lattice parameter of the thinner sample has been measured to
be more relaxed than that of the thicker sample.

Figure 5.2: XRD θ − 2θ measurements of LSMO on NS on Si of approximate
thicknesses 20 nm (top) and 40 nm (bottom).
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5.3 Surface quality
The surface of each sample and substrate has been examined by an Innova Bruker
AFM in either contact or tapping mode.

The surface topology of the STO substrates, examined in contact mode, can
be seen on the left side of Fig. 5.3. Surface roughness of the substrates is in order
Rs18 = 0.17 nm, Rs28 = 0.14 nm and Rs50 = 0.20 nm. Typical atomic steps can
be seen on the last two substrates. Atomic steps are the result of miscut of the
substrate, which is quite high for the substrate of the 28 nm thick layer 5.3(c).
This does not impact the properties of LSMO thin films. The first substrate
5.3(a) shows very wide atomic steps with vacancy islands. Those are the result
of inadequate annealing time after etching of the substrate. The islands did not
have time to diffuse to the step edge due to its width. The size of the vacancy
islands is larger than the LSMO nucleation length and does not impact epitaxial
growth.

AFM measurements of the LSMO thin films deposited on STO can be seen on
the right side of Fig. 5.3. All three samples copy the surface morphology of the
substrates. Atomic steps are clearly visible on all samples, with vacancy islands
visible on the 18 nm sample 5.3(b). Surface roughness of the LSMO layers is
R18 = 0.17 nm, R28 = 0.12 nm and R50 = 0.54 nm. The thickest sample 5.3(f)
exhibits droplets of LSMO of radius about 15 nm and height below 2 nm.

AFM of the NS/Si substrate, examined in tapping mode, can be seen in Fig.
5.4(a). The NS coverage is about 90 % with surface roughness RNS = 1.1 nm
being quite high given by the gaps between the NS. The substrate was made from
a 1 cm × 1 cm Si wafer with chemically applied NS. It was cut into 5 mm × 5
mm pieces for LSMO deposition.

Thin films of LSMO deposited on NS/Si (see Fig. 5.4) follow the NS surface
morphology with discernible textured growth. The surface roughness of the sam-
ples is RNS 20 = 0.48 nm and RNS 40 = 0.74 nm. The thicker sample 5.4(c) is
displaying droplets on the surface with varying radii and height, with the largest
droplets growing between the NS.

An image of the surface of LSMO deposited on top of BTO has been captured
using a polarizing microscope (see Fig. 5.5). Nomarski contrast technique has
been used to better show the structural modification of the surface caused by the
ferroelastic domains.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: AFM images of STO substrates (a), (c) and (e) with corresponding
thin films of LSMO (b), (d) and (f) of thicknesses 18.1 nm, 28.0 nm and 49.6 nm,
respectively.
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(a) (b)

(c)

Figure 5.4: AFM images of the NS/Si substrate (a) and the thin films of LSMO
(b) and (c) of approximate thicknesses 20 nm and 40 nm, respectively.

Figure 5.5: Nomarsky contrast microscopy image of the surface of LSMO grown
on BTO. Structural modifications to the surface can be seen as a result of ferro-
electric domain formation.
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5.4 Magnetic properties
Magnetic properties of the investigated samples have been examined by a Physical
Property Measurement System by Quantum Design equipped with a VSM option
and a 9 T superconducting coil.

Magnetization measurements from 400 K to 3 K have been carried out with an
in-plane external field of 0.2 T (see Fig. 5.6). The volume of the LSMO/NS/Si
samples has been calculated using the thickness estimates from spectroscopic
ellipsometry (see Section 5.5). The Curie temperature has been determined by a
linear fit.

Magnetization of samples deposited on STO has a greater magnitude overall
and differs only slightly between the samples. Samples on NS/Si exhibit smaller
magnetization; however, they retain their ferromagnetic ordering for higher tem-
peratures (see Tab. 5.2). LSMO films on NS/Si show a discernible difference in
magnetization between the two samples. This may in part be due to the error in
thickness determination. Weaker magnetization of the NS/Si samples may also
be in part due to normalization to volume as the 90 % NS coverage of the Si
substrate has not been taken into account. It is hard to draw any conclusions
about the quality and presence of LSMO in gaps between the NS.

Figure 5.6: Magnetization of LSMO thin films for applied in-plane field of 0.2T.

Sample LSMO/STO LSMO/STO LSMO/NS/Si LSMO/NS/Si
Thickness [nm] 18.1 49.6 24.1 47.0

Tc [K] 345 347 357 358

Table 5.2: Curie temperature of LSMO samples deposited on STO and NS/Si.
Thicknesses of samples deposited on NS/Si have been taken from ellipsometric
measurements.
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Magnetization hysteresis loops measured at 300 K and 3 K can be seen in
Fig. 5.7. Diamagnetic contributions of the STO and Si substrates have been
subtracted. The thicker LSMO/STO sample has not been measured at 3 K due
to contact of the measurement straw with the inner part of the superconducting
coil, which induced additional error for low-temperature measurements (see Fig.
5.6). All samples reach saturation of magnetization for minimal external field,
suggesting the easy axis is parallel to the applied field. This behaviour is well
documented for LSMO/STO samples where both in-plane directions are equiv-
alent easy axes of magnetization at room temperature. Bellow 250 K the [110]
in-plane direction becomes magnetically softer [26]. Samples deposited on NS/Si
exhibit substantial hysteresis loop broadening at low temperatures. The cause of
this broadening is very interesting and incites future research.

(a) (b)

(c) (d)

Figure 5.7: Magnetization hysteresis loops of LSMO deposited on STO and NS/Si
with applied in-plane external field. Diamagnetic contributions of the STO and
Si substrates have been subtracted.
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5.5 Optical response
The optical response of the samples has been measured using a Woollam RC2
ellipsometer. Measurements have been carried out for five angles of incidence
(55°. 60°, 65°, 70° and 75°) from 0.7 eV to 6.4 eV.

In order to model the optical constants of the thin films, the optical constants
of the substrates had to be measured. Spectral dependence of the optical proper-
ties of the STO substrate has been determined using a B-spline fit (definition of
a B-spline can be found in [31]) of a substrate only measurement (see inset graph
in Fig. 5.8). To determine the optical properties of the NS/Si stack, the Si sub-
strate has been measured without the NS. Its optical properties have been found
to precisely follow literature (see inset graph in Fig. 5.9) [32]. An approximately
1.5 nm layer of natural oxide, with optical properties taken from [32], has been
discovered on the Si surface. Measurement of the NS/Si stack then allowed for
the optical characterization of NS using a low-resolution B-spline model.

The diagonal elements of the permittivity tensors of LSMO thin films de-
posited on STO (as determined by a B-spline model) can be seen in Fig. 5.8.
All samples have a similar spectral shape with one distinction around 4 eV. With
increasing thickness the double peak in the imaginary part merges into a single
peak. This change in the optical properties is likely due to microscopic strain re-
laxation. That is in agreement with spectroscopic ellipsometry in literature [33],
where samples of LSMO grown on a (LaAlO3)1/3(Sr2AlTaO6)2/3 substrate with
lower epitaxial strain exhibit only one peak in the spectra around this energy.

The optical response of the LSMO samples deposited on NS/Si can be seen in
Fig. 5.9. The numerical model used only a B-spline to fit the experimental data.
More complicated models, given the textured column growth of LSMO, have
been tried (e.g., the effective medium approximation with 90% fill-factor); how-
ever, none of them yielded results significantly differing from a B-spline fit and
introduced additional fitting parameters and sometimes produced non-physical
results. The thickness of the samples (a fitted parameter) has been ascertained
as t20 = 24.07 nm and t40 = 46.95 nm. The overall spectral shape of the diagonal
element of the permittivity tensor somewhat resembles that of the LSMO samples
on STO, with a peak around 4 eV in the imaginary part of ε1 and both real and
imaginary parts trailing of in the infra-red region. However, additional peaks are
visible at lower energies. The spectra have not been fitted using Lorentz oscil-
lators, which would help with the analysis, as the main focus of this work are
the magneto-optical properties of the samples. The changes in the spectra, and
most notably the changes between the two LSMO/NS/Si samples, are interesting
and worth further inquiry. One explanation of the deviation in the optical re-
sponse could be the potentialy different stoichiometry of the samples. Additional
measurements need to be conducted to validate this claim.
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Figure 5.8: Diagonal element of the permittivity tensor of three LSMO/STO
samples with differing thicknesses of LSMO numerically modeled by a B-spline.
An inset graph shows the optical response of the STO substrate.
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Figure 5.9: Diagonal element of the permittivity tensor of two samples of LSMO
on a NS/Si substrate with different thickness of the deposited layer as modeled
by a B-spline. The inset graph shows the optical constants of Si taken from [32].

5.6 Magneto-optical response
Magneto-optical response of the samples has been measured using a custom ro-
tating analyser MOKE measurement setup in polar configuration.

In order to determine the external field necessary for polar MOKE measure-
ment in saturation (magnetization loops in Section 5.4 have been measured in the
in-plane geometry), Kerr rotation hysteresis loops have been measured for four
samples (see Fig. 5.10 and 5.11). Measured MOKE hysteresis loops exhibit much
larger saturation fields contrary to the in-plane magnetization loops (see Section
5.4). This suggests that the easy axis of magnetization lies within the plane of
the sample, which has already been reported in literature for samples deposited
on STO [26].

MOKE spectra, measured at 1 T ensuring a magnetically saturated state, of
LSMO deposited on STO are shown in Fig. 5.12. Proper analysis of magnetically
active transitions can not be made using only magneto-optical spectra and can be
seen in Section 5.7. Nonetheless, from the magneto-optical spectra we can see that
the response of all three samples of LSMO deposited on STO is clearly dominated
by a spectroscopic structure at around 3.5 eV. This is in agreement with literature
[33, 34, 35]. However, in Kerr rotation a double peak is observed around this
energy. That is due to the optical influence of STO (see Fig. 5.8), which changes
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optical properties substantially in this spectral region. This influence diminishes
with increasing thickness as less light penetrates the sample and reflects at the
interface of LSMO and STO.

Magneto-optical response of the LSMO/NS/Si samples can be seen in Fig.
5.13. The spectra are again dominated by one spectroscopic structure; however,
this time the central energy of the structure differs for both samples. This is due
to the optical influence of the substrate, which for these samples is silicon. The
reflectivity of silicon increases dramatically around 3.2 eV which again complicates
the analysis of these spectra. LSMO thin films are highly transparent in this
region, and especially the thinner sample is strongly influenced by the optical
response of the substrate.

(a)

(b)

Figure 5.10: Magneto-optical hysteresis loops of LSMO films of thicknesses (a)
18.1 nm and (b) 49.6 nm deposited on STO. Inset graph represents a slice through
the spectra at a given energy.
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(a)

(b)

Figure 5.11: Magneto-optical hysteresis loops of LSMO films of thicknesses (a)
20 nm and (b) 40 nm deposited on NS/Si. Inset graph represents a slice through
the spectra at a given energy.
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Figure 5.12: Magneto-optical Kerr effect of LSMO layers deposited on STO.
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Figure 5.13: Magneto-optical Kerr effect of LSMO layers deposited on NS/Si.

5.7 Magnetically active transitions
Experimental results obtained in the previous sections were used to numerically
calculate the spectral dependence of the off-diagonal element of the permittivity
tensor. This has been done using Yeh formalism introduced in Section 1.6.

Calculated spectra for the three samples of LSMO on STO and two samples
of LSMO on NS/Si can be seen in Fig. 5.14. Little change can be observed for
the two thinner (18 nm and 28 nm) samples deposited on STO apart from the
slightly lower amplitude of the 28 nm sample. The main spectral structure of the
thickest 50 nm sample of LSMO on STO seems to have shifted slightly to higher
energies. This supports the earlier narrative of microscopic strain relaxation with
increasing thickness of the LSMO layer.

Samples of LSMO deposited on NS/Si display large differences in amplitude
of the off-diagonal element of the permittivity tensor. The thicker 40 nm sample
displays properties in agreement with magnetization measurements (see Fig. 5.6)
as it exhibits lower overall amplitude. However, the thinner 20 nm sample has
the largest effect of all samples in contrast to magnetization measurements. As
discussed in Section 5.5 this may be in part due to slightly different stoichiometry
of the samples, but more experiments, confirming the variation of composition
across the samples, are necessary to validate this claim. Important to note is also
the large dependency of the off-diagonal element of the permittivity tensor on the
diagonal element during the calculation, especially for the thinner sample.
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Spectral dependencies of the off-diagonal elements of the permittivity tensors
of all samples have been fitted with magneto-optical transitions introduced in
Section 1.5. Three diamagnetic transitions have been found to fit all samples
adequately. Their fitted parameters can be seen in Table 5.3. The fitted spectra
can also be seen in Figs. 5.15 and 5.16. The dominating diamagnetic transition at
around 3.5 eV has already been reported in literature [33, 36] as a charge transfer
transition from O 2p states into Mn t2g states in the minority spin channel.
Spectral features around 2.4 eV have been previously explained in literature [36]
by a large diamagnetic transition at 1.2 eV or using a paramagnetic transition
at 2.4 eV [33]. Neither of these approaches describes our data adequately. As
such, we propose two diamagnetic transitions located at around 1.9 eV and 2.9
eV. These transitions fit the off-diagonal elements of the permittivity tensor well
in a wide spectral region. Partial density of states calculations taken from the
literature have been consulted regarding the validity of these transitions [34].
Both transitions have been ascribed to charge transfer transitions from O 2p to
Mn t2g states in the majority spin channel.

The ε2 spectra in Figs. 5.15 and 5.16 all show deviation from their respec-
tive fits in the UV region. This deviation can be severely mitigated by adding a
diamagnetic transition at around 5.5 eV corresponding to a charge transfer tran-
sition from an O 2p state to a Mn t2g state in the minority spin channel, which
was taken into account based on literature [34]. However, as this transition is be-
yond our measured spectral region, it has not been included in the fit. A broader
spectral region would have to be measured to fully justify this claim.

Substrate STO STO STO Si/NS Si/NS
Thickness [nm] 18.1 28.0 49.6 20 40

Transition 1 Charge transfer transition O 2p → Mn t2g

in the majority spin channel
(ε′

2)max 0.009 0.009 0.009 0.007 0.007
E0 [eV] 1.9 1.9 1.9 2.04 1.98
Γ [eV] 0.69 0.68 0.67 0.76 0.64

Transition 2 Charge transfer transition O 2p → Mn t2g

in the majority spin channel
(ε′

2)max -0.018 -0.019 -0.025 -0.023 -0.016
E0 [eV] 2.88 2.86 2.95 2.82 2.74
Γ [eV] 0.8 0.79 0.86 0.79 0.84

Transition 3 Charge transfer transition O 2p → Mn t2g

in the minority spin channel
(ε′

2)max 0.055 0.051 0.058 0.066 0.042
E0 [eV] 3.5 3.5 3.53 3.52 3.51
Γ [eV] 0.99 1.06 1.12 0.85 1.1

Table 5.3: Parameters of the transitions used to describe spectra of the off-
diagonal element of the permittivity tensor of LSMO thin films of different thick-
nesses on two different substrates. All three transitions are diamagnetic with
maximum amplitude of the real part (ε′

2)max, resonant frequency E0 and spectral
broadening of the oscillators Γ.
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Figure 5.14: Off-diagonal elements of the permittivity tensor of LSMO films with
varying thickness deposited on two different substrates. The spectra of ε2 have
been numerically calculated using Yeh formalism.
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(a) (b)

(c)

Figure 5.15: Parameterised spectra of the off-diagonal element of the permittivity
tensor of an (a) 18.1 nm, (b) 28.0 nm and (c) 49.6 nm thick film of LSMO on
STO. Parameters of the diamagnetic transitions can be seen in Table 5.3.
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(a) (b)

Figure 5.16: Parameterised spectra of the off-diagonal element of the permittivity
tensor of an (a) 20 nm and (b) 40 nm thick film of LSMO on the NS/Si stack.
Parameters of the diamagnetic transitions can be seen in Table 5.3.

5.8 Temperature-dependent properties
Optical and magneto-optical properties of an 18 nm thick sample of LSMO on
STO have been examined from 300 K to 350 K. Numerical calculation of the full
permittivity tensor has been carried out.

5.8.1 Spectroscopic ellipsometry
Temperature-dependent spectroscopic ellipsometry setup has been constructed
using a combination of an ARS DE-204 cryostat and a Woollam RC2 ellipsometer.
This setup allows for spectroscopic ellipsometry measurements from 4 K to 800 K.
The angle of incidence is fixed at 70°.

The optical response of the substrate, used to model the permittivity of thin
film LSMO, has been measured from 300 K to 350 K. No significant change in
optical properties has been observed for this range of temperatures. However,
due to a single angle measurement and the introduction of additional optical
components (cryostat windows), the resulting model of the permittivity of STO
exhibited error larger than the temperature change. This is not surprising as the
same error is observed when one tries to fit the data acquired by an ellipsometer
at a single angle of incidence. Therefore the optical properties of STO acquired
at room temperature (see Fig. 5.8) have been used to model the temperature-
dependent optical response of LSMO.
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The diagonal element of the permittivity tensor of thin film LSMO deposited
on STO, modeled from the measured optical response by a B-spline fit, can be
seen in Fig. 5.17. Notable temperature dependence in the real part of diagonal
permittivity can be observed for low photon energies. As LSMO is a half-metal,
acting as a metal for one orientation of spin and as an insulator for the other,
this change is likely due to the thermal excitation of free electrons.

Figure 5.17: Diagonal element of the permittivity tensor of an 18.1 nm thick
LSMO film deposited on STO for temperatures between 300 K and 350 K. Ob-
served change in the infrared region is likely due to thermal excitation of free
electrons.
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5.8.2 Magneto-optical spectroscopy
A custom magneto-optical spectroscopy setup has been constructed around a
Montana s50 Cryostation with possible MOKE measurements for temperatures
ranging from 4 K to 350 K.

The entry aperture of the cryostat does not allow for spacial separation of the
incident and reflected light beams. Hence, a perfect normal incidence setup with
a beam splitter has been constructed. Measuring the change in polarization for a
wide spectral region (1.4 eV to 4.3 eV) puts a lot of constraints on the quality of
the beam splitter. In order to mitigate the influence of the beam splitter on the
measured polarization state, a HOMOSIL quartz window has been used at a low
angle of incidence. Whilst lowering the detected intensity significantly at a low
angle of incidence, the effect on the measured polarization state is negligible.

Faraday effect of the cryostat window has been subtracted from the mea-
sured data. This has been achieved by measuring the Faraday effect with a
non-magnetic mirror in place of the sample.

Temperature dependence of magneto-optical Kerr effect of LSMO deposited
on STO can be seen in Fig. 5.18 for temperatures between 300 K and 350 K.
Lowering of the overall amplitude of the MOKE signal is observed as Curie tem-
perature is being approached.

5.8.3 Magnetically active transitions
The spectral dependence of the off-diagonal element of the permittivity tensor
has been numerically calculated using Yeh formalism for all temperatures (see
Fig. 5.19). The resulting spectra scale strongly with temperature as Curie tem-
perature is being approached (see Table 5.2). However, the non-zero amplitude of
the 350 K measurement (i.e., above Tc) was observed. This is given by the nature
of Curie temperature measurement in Section 5.4. Magnetometry measurements
are more sensitive to long-range magnetic ordering, whereas magneto-optical mea-
surements are also sensitive to short-range magnetic ordering, which can persist
above the Curie temperature [37].

Spectra of the off-diagonal element of the permittivity tensor have been fitted
with magneto-optical transitions (see Table 5.4). All transitions scale in magni-
tude with temperature. The broadening of all transitions stays almost constant;
however, it differs slightly from that measured at room temperature. The cause of
this is the lower precision of the temperature-dependent measurements. Nonethe-
less, apart from the first transition at around 1.9 eV this change is negligible. The
change for the first transition is given by its low amplitude and hence higher er-
ror in the determination of its spectral broadening. Not to mention the possible
influence of transitions beyond our measured spectral region. Interestingly the
resonant frequency of the largest diamagnetic transition at 3.5 eV starts shifting
to higher energies with rising temperature. This is likely the effect of strain mod-
ification in the thin film as the crystal lattice of the substrate STO expands at a
different rate than that of LSMO [38].

For high-temperature measurements a constant offset of the spectra of the
imaginary part of ε2 is observed. This offset is discernible for the 340 K and 350
K measurements. As such, it is probably connected to the transition between
the ferromagnetic and paramagnetic states around these temperatures. Unfortu-
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nately, a more concrete explanation of this offset can not be provided as of the
writing of this thesis.

Figure 5.18: Temperature dependent magneto-optical measurement of an 18.1 nm
thick LSMO layer deposited on STO. Rapid drop of MOKE signal is observed as
Curie temperature is approached.
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Figure 5.19: Temperature dependent spectra of the off-diagonal element of the
permittivity tensor of an 18.1 nm thick LSMO film on top of STO.
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Temperature [K] 300 310 320 330 340 350
Transition 1 Charge transfer transition O 2p → Mn t2g

in the majority spin channel
(ε′

2)max 0.01 0.009 0.008 0.005 0.004 0.003
E0 [eV] 1.9 1.9 1.9 1.9 1.9 1.9
Γ [eV] 0.76 0.76 0.76 0.76 0.76 0.76

Transition 2 Charge transfer transition O 2p → Mn t2g

in the majority spin channel
(ε′

2)max -0.015 -0.013 -0.011 -0.009 -0.004 -0.003
E0 [eV] 2.88 2.88 2.88 2.88 2.88 2.88
Γ [eV] 0.84 0.84 0.84 0.84 0.84 0.84

Transition 3 Charge transfer transition O 2p → Mn t2g

in the minority spin channel
(ε′

2)max 0.058 0.052 0.043 0.034 0.024 0.015
E0 [eV] 3.5 3.5 3.51 3.52 3.56 3.58
Γ [eV] 0.96 0.96 0.96 0.96 0.94 0.96

Table 5.4: Parameters of the MO transitions used to describe spectra of the off-
diagonal element of the permittivity tensor of 18.1 nm thick LSMO/STO sample
for different temperatures. All three transitions are diamagnetic with maximum
amplitude of the real part (ε′

2)max, resonant frequency E0 and spectral broadening
of the oscillators Γ.
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Conclusion
A comprehensive study of LSMO thin films deposited on silicon with the aid of a
NS seed layer has been presented. Epitaxial films of LSMO atop STO have been
used for comparison.

Pulsed laser deposition and oxygen annealing have been employed for the
growth of LSMO films. Three samples of LSMO have been deposited on STO
with thicknesses of 18.1 nm, 28.0 nm, and 49.6 nm. Atop the NS/Si substrate
two samples were deposited with thicknesses of 24 nm and 47 nm. Subsequent
AFM and XRD measurements revealed good epitaxial growth of LSMO on STO
as well as the presence of unstrained LSMO on top of NS/Si. Magnetometry
measurements revealed lower overall magnetization of the samples deposited on
NS/Si; however, Curie temperatures for these samples were 11 K higher on av-
erage. Hysteresis curve measurements suggest the easy axis lies in-plane of the
film for all samples, with interesting loop broadening for LSMO/NS/Si samples
at lower temperatures.

Optical measurements revealed only small changes in optical properties for
samples of LSMO atop STO. Larger differences in optical properties have been
observed for the LSMO thin films on NS/Si. The origin of these differences has
not been concluded; however, the theory of a change in stochiometry between
the samples has been proposed. Optical measurements have also been used to
determine the film thickness of samples grown on silicon. Magneto-optical mea-
surements have been carried out with subsequent numerical calculations of the
off-diagonal element of the permittivity tensor. Spectra of the off-diagonal ele-
ment of samples grown on STO showed negligible changes apart from the slight
shift of the largest transition to higher energies for the thickest sample. The origin
of this shift lies in microscopic strain relaxation. The thicker sample of LSMO
on NS/Si showed a lower overall amplitude of the spectral dependence of the
off-diagonal element of the permittivity tensor in agreement with magnetization
measurements. On the contrary, the thinner sample of LSMO on NS/Si exhibited
a greater amplitude of the spectral dependence of the off-diagonal element of the
permittivity tensor than all the other samples. This is in stark contrast to mag-
netization measurements. Our explanation so far is the aforementioned difference
in stochiometry; however, further research is necessary for a full explanation of
this phenomenon. Spectra of the off-diagonal element of the permittivity tensor
have been fitted for all samples by three diamagnetic transitions at around 1.9,
2.9, and 3.5 eV. The transition at 3.5 eV has already been reported in the lit-
erature as a charge transfer transition from an O 2p state to a Mn t2g state in
the minority spin channel. Two other transitions, not previously reported in the
literature, have been used to explain the spectral shape at lower energies. Both
transitions originate in the majority spin channel in a charge transfer transition
between the O 2p and Mn t2g state.

Setups for optical and magneto-optical measurements with varying tempera-
tures have been constructed. The thinnest sample of LSMO on STO has been
examined for temperatures between 300 K and 350 K. Numerical calculations of
the temperature depended off-diagonal element of the permittivity tensor revealed
amplitude scaling with temperature. Short-range magnetic ordering allowed for
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observation of non-zero amplitude above Curie temperature. Shifting of the dia-
magnetic transition at 3.5 eV towards higher energies has been observed with
increasing temperature as a result of different thermal expansion coefficients of
LSMO and STO.
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[8] Š. Vǐsňovský. Optics in magnetic multilayers and nanostructures. CRC
Taylor & Francis, Boca Raton, March 2006. ISBN 9780849336867.

[9] L. Beran. Optical and magneto-optical studies of ferrimagnetic garnets for
photonic and spintronic applications. PhD thesis, Prague, April 2020.

[10] F. J. Kahn, P. S. Pershan, and J. P. Remeika. Ultraviolet magneto-
optical properties of single-crystal orthoferrites, garnets, and other ferric
oxide compounds. Physical Review, 186(3):891–918, October 1969. doi:
10.1103/physrev.186.891.

[11] P. S. Pershan. Magneto-optical effects. Journal of Applied Physics, 38(3):
1482–1490, March 1967. doi: 10.1063/1.1709678.

[12] L.D. Landau and E.M. Lifshitz. Electrodynamics of Continuous Media. Perg-
amon Press, Tarrytown, second edition, 1984. ISBN 9780080302751.

[13] J. M. D. Coey. Magnetism and magnetic materials. Cambridge University
Press, Cambridge New York, 2009. ISBN 9780511845000.

[14] K. R. Chen, J. N. Leboeuf, R. F. Wood, et al. Mechanisms affecting kinetic
energies of laser-ablated materials. Journal of Vacuum Science & Technology
A: Vacuum, Surfaces, and Films, 14(3):1111–1114, May 1996. doi: 10.1116/
1.580278.

56



[15] W. Prellier, P. Lecoeur, and B. Mercey. Colossal-magnetoresistive mangan-
ite thin films. Journal of Physics: Condensed Matter, 13(48):R915–R944,
November 2001. doi: 10.1088/0953-8984/13/48/201.
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