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1 Introduction
Modern relational database management systems (RDBMSs) allow program-

mers to query them using a “query language”, which declaratively specifies the
steps to be taken to obtain the requested data. The RDBMS then “plans” the
query, using statistical knowledge of the database to create an efficient “execution
plan” that is then interpreted to provide the requested result.

All popular RDBMSs use SQL (created in the 1970s) as their query language,
and there has been little focus on improving the basics of SQL, with new versions
simply layering features onto the existing base by means of syntax extensions.

Although SQL has been successfully used in the field for decades, we consider
SQL to be a flawed language, lacking multiple key qualities (see section 2.1):

• Composability: It’s desirable for the language to allow any non-trivial
piece of code to be factored out into its own reusable unit. In SQL, this
can be achieved in queries only by “Common Table Expressions” at the
table-level, or by functions outside the query. CTEs, however, can’t be
parametrised. Functions are unwieldy and don’t allow e.g. easily passing
aggregate columns or returning multiple columns.

• Orthogonality: SQL contains multiple concepts that can serve the same
function, but can’t be used interchangeably in its constructs. For example,
aggregate columns may only be used as arguments to aggregate functions.
Consequently, they can not be passed to regular functions as sets of values.
Tables can be used as arrays of records, but this requires a specific query
to accomplish. While queries can be nested, this won’t produce a nested
structure on the result, despite this being often desirable in application
programming.

• Consistency: In SQL, queries are written in a rigid form in a SELECT
statement, which is specified as a single syntactic block with fixed clauses
that modify the query. These clauses, however, semantically execute in
a different order to their syntactic order. This is unintuitive, and forces
programmers who require a different order to resort to nested queries, instead
of simply reordering the clauses.
Furthermore, features that would be implemented as functions in other
languages are often implemented with dedicated syntax and keywords, with
little thought given to consistency.

There have been attempts to create a new query language for RDBMSs
(discussed in chapter 2). These projects have mostly been implemented using
translation to SQL, keeping it as the only language that RDBMSs themselves
accept. This limits the options of the language’s semantics, since they have to
map to SQL source code, often without any prior knowledge of the underlying
database.
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We build upon those projects and design a new language, PPPQL (see chap-
ters 4 to 5), with the goal of addressing SQL’s issues outlined above. PPPQL is
designed to be independent of SQL and implementable on any popular RDBMS.
To give an example, consider this PPPQL query and its equivalent in SQL:

| from m := measurements
| limit 1000
| group s := sensor
| select s, m.temperature

+ 273.15

SELECT sensor,
array_agg(temperature

+ 273.15)
FROM (SELECT *

FROM measurements
LIMIT 1000) AS m

GROUP BY sensor

Note that in PPQL, the order of filters (from, limit, …) determines the semantics
of the query, allowing us to simply use limit before group. Furthermore, the group
filter produces a standard value of a set type, not requiring a special notion of
aggregate columns as in SQL. For convenience, values in sets can be manipulated
element-wise by all operators and functions, such as the + above.

We also introduce an implementation of PPPQL built as an extension to
PostgreSQL [1] (also known as Postgres), an open source RDBMS. We go through
the structure of its code and how it compiles PPPQL to Postgres’ internal
structures (see chapter 6). The code is available as an attachment to this thesis
(see appendix A) and can be installed on a patched version of Postgres (see
appendix B).
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2 Existing query languages
SQL traces its history back to 1974 and was first standardised by ANSI in

1986. Unlike most other languages of that age, SQL is still the dominant language
in its application domain, but there have been attempts to create alternatives.
None of them have been successful enough to be included in a popular RDBMS,
but they have many interesting ideas nonetheless.

In this chapter we will look at SQL, examine its flaws, and look at its various
alternatives.

2.1 SQL
SQL, or Structured Query Language, is the most widely used standalone query

language [2]. It’s used not just in traditional RDBMSs, but also search engines
(Manticore Search [3]) and time-series databases (QuestDB [4]).

Despite its popularity, SQL has many flaws from a programming language
perspective. To give some rationale for the development of PPPQL and other
alternatives, we will list some of them here.

It’s important to note that, despite being standardised by ISO, SQL differs sig-
nificantly from implementation to implementation. We will be looking specifically
at the Postgres dialect of SQL.

Order of operations SQL queries have a rigid syntactical and semantic struc-
ture, requiring queries that need a different order of operations to use nested
queries, which decreases readability. The static structure also has multiple ele-
ments which are functionally equivalent (HAVING vs WHERE), differing only in the
semantic order. Moreover, the syntactic order is different from the semantic order,
leading to confusion (see fig. 2.1).

For example, SELECT specifies the columns of the resulting table, executing last
in the semantic order, but is written at the start of the query, hurting consistency.

SELECT sensor, avg(temperature)
-- A subquery must be used, since otherwise LIMIT would apply
-- after the GROUP BY
FROM (SELECT * FROM measurements

ORDER BY timestamp
LIMIT 1000)

GROUP BY sensor

Figure 2.1 Diagram of the semantic order of an SQL query [5, Figure 1]
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Sets of values SQL contains multiple concepts that group multiple values to-
gether: arrays, aggregate columns, JSON types. These are mutually incompatible
and need to be converted, often in convoluted ways. Mapping over the contained
values also often means writing a verbose subquery. This demonstrates SQL’s
poor orthogonality. For example, you might expect this query to be valid and
produce a set of values:

SELECT name -- Error: can't select bare aggregate column
FROM people
GROUP BY division

In fact, to receive a list of all names, name must be wrapped in array_agg() to
convert it to a value:

SELECT array_agg(name)
FROM people
GROUP BY division

Let’s consider a table of articles, where each has a name and an array of tags.
To convert those tags to uppercase, one might intuitively call upper() on tags, or
try to use some map function:

SELECT name, upper(tags)
FROM articles

In SQL, the above would result in an error, since the upper() function only
operates on individual strings, not arrays. we need a verbose nested query that
treats the array as a table via unnest():

SELECT name, (SELECT upper(tag) FROM unnest(tags) AS tag)
FROM articles

Abstraction mechanisms SQL queries offer only very limited means of ab-
straction: Common Table Expressions (CTE) and functions (defined outside
queries). Furthermore, abstracting over both aggregate columns and arrays is
impossible directly and requires overly verbose conversions. This discourages
composing complex statements from several smaller, simpler pieces, a common
practice in most programming languages.

The following code creates and uses a function that computes multiple sta-
tistical functions for a specific set of values. It receives the values as an array
and returns the results as a JSON object, requiring the query using it to perform
conversions:

CREATE FUNCTION stats(measurements decimal[])
RETURNING json LANGUAGE SQL AS $$

SELECT json_build_object(
'avg', (SELECT avg(x) FROM unnest(measurements) AS x),
'min', (SELECT min(x) FROM unnest(measurements) AS x),
'max', (SELECT max(x) FROM unnest(measurements) AS x));

$$;
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SELECT
stats(array_agg(temperature)) AS temperature_stats ,
stats(array_agg(humidity)) AS humidity_stats

FROM measurements
GROUP BY timestamp::date

Inconsistent features Any semantic model of SQL is complicated by obscure
and inconsistent features that don’t follow simple intuition. For example, Postgres
contains “set-returning functions”, which can be used in place of expressions, but
actually modify the containing query:

-- These two queries both create a table of 5 rows
SELECT x FROM generate_series(1, 5) as x;
SELECT generate_series(1, 5) AS x;

The SELECT clause is followed by a list of expressions and one would expect
each expression to have only a local effect, determining only its own value. In fact,
generate_series() is a set-returning function, so it effectively adds a new source
table when used as an expression.

Linked table access and NULL Relational databases often contain many
tables, linked with referencing keys (SQL FOREIGN KEY constraint). Accessing these
linked tables in queries necessitates adding a JOIN and manually restating that
constraint to link relevant rows. SQL provides no short-hand for doing these
traversals.

SQL handles NULL values akin to NaN values in other languages: a NULL
value is not equal to another NULL value. This doesn’t match other frequently
used languages and is a frequent source of issues for new users.

2.2 DSLs in general-purpose languages
While SQL is the dominant language used by RDBMSs themselves, it’s of-

ten used just as a protocol or intermediate representation for sending queries
between processes. In such cases, SQL queries are generated by a library such as
SQLAlchemy [6], jOOQ [7] and Entity Framework [8].

These libraries offer embedded DSLs to build database queries; the host
language then serves as a meta-language for their construction. Their advantage
is this integration with the host language, but they also fix some of SQL’s design
flaws: Queries can be created outside SQL’s rigid order of operations, composition
is handled by a potent host language, the syntax is simpler and queries can be
introspected by looking at the “query object” generated.

C# is especially interesting here, since it offers an embedded “mini-language”
in the form of LINQ, which translates to chained method calls.

Transpiling to SQL has its limitations and problems, however. Different
RDBMSs have different dialects of SQL, necessitating some kind of compatibility
layer. Since the dialects don’t add features in a principled manner, supporting
each new feature complicates the transpiler core further.
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Running outside of the database also means that the compiler can’t readily
access database metadata, putting it at a disadvantage to SQL or requiring a
build/code generation step to pull the metadata, which is required to be static,
beforehand.

2.3 PRQL
PRQL [9] is perhaps the best known standalone SQL replacement language.

Like most others, it models queries as pipelines of data transformations, letting
the user compose query operations in whichever order they need. The canonical
implementation compiles PRQL to SQL.

Instead of reusing the database’s functions, it uses its own standard library
and allows user-declared functions. Use of existing functions in the database
is only possible through “s-strings”, templated pieces of SQL. This improves
composability inside the language, but means that use of many RDBMS features
relies on user-defined string concatenation templates.

2.4 Malloy
Malloy [10] is another language designed to compile into SQL. It is mainly aimed

at analytical queries. It integrates with a GUI dashboard and encourages users
to write abstractions over existing data sources, adding “measures” (calculated
aggregates) and “dimensions” (calculated scalar values) and derived tables.

Malloy’s queries are composed of “stages”, which are mostly modelled on
SQL’s SELECT statements. Like SQL, the stages consist of parts whose semantic
order of execution is hardcoded and may not match the syntactic order.

2.5 SaneQL
SaneQL [5] was introduced in a recent paper critiquing SQL as a simple

alternative. It uses pipeline semantics with operators, allowing users to define new
ones in a macro-like fashion, improving on SQL in both syntax and abstraction
mechanisms. Its reference implementation is a transpiler that creates SQL code.

Of the languages listed here, it is the most recent (published for the 2024
Conference on Innovative Data Systems Research) and most similar to PPPQL.
Its group operation, however, seems to be much less general, requiring all resulting
columns to be explicitly named and created by aggregate functions.
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3 Introduction to PPPQL
Before we show a more complete description of PPPQL, let’s see how to use

the language on Postgres from a user’s perspective and see how it improves upon
SQL.

Once the extension is installed (see appendix B), PPPQL queries can be
submitted just like normal SQL queries (by psql or any other client), they just
need to be prefixed with PQL.

A PPPQL query is a sequence of filters. Most queries start with the from filter,
which creates a query from the contents of a table:

| from buildings

The from filter introduces a variable named after the table, effectively “copying”
the table’s data into the query. To access the table’s columns, we can either use
the field access operator (a dot), or use just the column name, since PPPQL will
implicitly search all row variables for brevity.

| from buildings
| select buildings.faculty, city, name

Further filters can be added to this query. They mostly behave similarly to
parts of SQL queries of the same name. The query below filters on a predicate
(faculty = "MFF"), groups the rows by city and returns a table of two rows: a city
and an array of the names of its buildings:

| from buildings
| where faculty = "MFF"
| group c := city
| select c, buildings.name

Note that the syntactic order of filers exactly matches their semantic order of
execution, unlike in SQL queries.

New variables can be introduced with let, improving on SQL’s composability.
Note the use of ||, a native Postgres operator for string concatenation:

| from buildings
| let label := name || " (" || faculty || ")"
| select label

Since most elements of a query are expressions, and a subquery itself is an
expression, PPPQL is more orthogonal than SQL and any abstraction mechanisms
are more powerful. In the above queries, buildings, faculty = "MFF", c are all
expressions and can be used (mostly) interchangeably.

We can use the database’s existing functions and operators in PPPQL, with
the added bonus that operations are automatically lifted to apply elementwise on
sets. Boolean operators are written as words with a -- prefix, to disambiguate
them without the need for keywords.
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The following query will take all temperature measurements from specific
sensors and return one row per day, with a set of temperatures:

| from measurements
| where sensor = "outside"

--or sensor = "inside"
| group day := date(timestamp)
| select day, measurements.temperature + 273.15
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4 Syntax
To start the description of PPPQL, let’s look at a formal description of the

syntax. The goal is to sufficiently describe PPPQL to its users and to allow the
creation of an independent implementation.

PPPQL’s syntax was chosen to be simple to parse and to generate, while also
being friendly for programmers to write and read. Unlike SQL’s syntax, it reflects
the semantic model of the PPPQL compiler by modeling queries as sequential
pipelines.

The syntax is described here in a variant of Backus–Naur form (BNF), with
some elements added to the base:

• String literals can contain escape sequences with the same meaning as in C.

• <any> matches any character (needed for parsing string literals).

• <empty> matches an empty string.

• Character ranges like "a"..."z" match any character within a class (here
lowercase letters).

• Parentheses ((, )) group expressions for use with operators

• The infix minus operator (e.g. <left> - <right>) matches anything that is
matched by its left operand while not matched by its right.

• The postfix question mark operator (e.g. <expr>?) matches either its operand
expression or an empty string. It can be translated as (<expr> | <empty>).

• The postfix asterisk operator (e.g. <expr>*) matches any number of repeti-
tions of its operand expression, including zero matches.

• The postfix plus operator (e.g. <expr>+) matches any non-zero number of
repetitions of its operand expression.

• The postfix comma plus operator (e.g. <expr>,+) matches a comma-separated
list of at least one repetition of its operand expression.
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4.1 Lexer
The PPPQL compiler’s parser does not have a separate lexer, but it does

follow some simple tokenisation rules for consistency.

<whitespace_char> ::= " " | "\t" | "\n" | "\r"
<digit> ::= "0"..."9"
<ident_start_char> ::= "a"..."z" | "A"..."Z" | "_"
<ident_char> ::= <ident_start_char> | <digit> | "$"
<operator_char> ::= "+" | "-" | "*" | "/" | "<" | ">" | "=" | "~"

| "!" | "@" | "#" | "%" | "^" | "&" | "|" | "`"
| "?" | "." | ":"

<comment> ::= "--#" (<any> - "\n")* "\n"
<ws> ::= (<whitespace_char> | <comment>)*
<ident> ::= <ident_start_char> <ident_char>* <ws>
<operator> ::= (<operator_char>* | "--" <ident_char>*)

- (":" | "|") <ws>

Tokens can generally be followed by any amount of whitespace (space, tab,
newline characters or line comments). Identifiers are composed of a starting
character (letters of the English alphabet and underscore, excluding numerals to
prevent ambiguity) and any number of subsequent characters (adding digits and
the dollar sign).

Operators are generally composed of the characters seen above, but there are
further rules forbidding some combinations (see below). Operators can also be
alphanumerical if prefixed with --.

4.2 Literals

<string_literal> ::= '"' (<any> - '"') '"' <ws>
<decimal_literal> ::= <digit>+ ("." <digit>*)? <ws>

| "." <digit>+ <ws>

String literals are put between double quotes, without any escape sequence
recognition. Decimal numbers can be written without a decimal point for integers,
with a decimal point and no following digits, with a decimal point and no leading
digits, or in full with a decimal point followed and preceded by digits.

For example, "abcd" is a string literal, and 1.2, .2 and 1. are all decimal literals.
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4.3 Expressions

<argtuple_flag> ::= ":" <ident> <ws>
<argtuple_kwarg> ::= ":" <ident> <ws> <expr>
<argtuple>

::= (<argtuple_kwarg> | <argtuple_flag> | <expr>)
(<argtuple_kwarg> | <argtuple_flag> | "," <ws> <expr>)*

| <empty>
<argtuple_literal> ::= "[" <ws> <argtuple> "]" <ws>
<function_call> ::= <ident> "(" <ws> <argtuple> ")" <ws>
<subquery> ::= "(" <ws> <query> ")" <ws>
<parens> ::= "(" <ws> <expr> ")" <ws>
<prefix_op> ::= (<operator> - ".") <expr>
<infix_op> ::= <expr> (<operator> - ("." | ":=")) <expr>

| <expr> "." <ident> | <ident> ":=" <expr>
<expr> ::= <string_literal> | <subquery> | <parens>

| <decimal_literal> | <argtuple_literal>
| <function_call> | <ident> | <prefix_op>
| <infix_op>

PPPQL uses “argtuples” in multiple places as arguments to functions or query
filters, and as literals for arrays and dictionaries. They hold values both by index
(“positional arguments”) and by name (“keyword arguments”). Lone “keywords”
are treated as flags – keyword arguments with an implicit value of true.

For example, score :desc, name :asc is an argtuple that might be used to
specify an ordering. It contains two positional arguments (score, and name) and
two flags (:desc, :asc). A hypothetical function might take named arguments via
argtuples like this: percentile(data, :frac 95).

Argtuples may also be used as literals. Their use is implementation-specific
and determined by the underlying database’s capabilities.

Function calls follow the typical syntax, with arguments in the form of an
argtuple enclosed in parentheses. Queries can be used as expressions, but need to
be contained in parentheses to prevent ambiguity.

Infix operations are always left-associative, with a hardcoded table of priorities:
., ::, ^, *, /, %, +, -, default, <, >, <=, =, =, !=, <>, &&, ||, alphanumeric, := (leftmost
operator binds tightest).

The field access operator, ., may only be used with an identifier as its right
operand, and the assignment operator, :=, may only be used in specific contexts
and is similarly restricted to only identifiers as its left operands.

4.4 Queries

<query_filter> ::= "|" <ws> <name> <argtuple>
<query> ::= <query_filter>+

Queries are composed of one or more filters, which are separated by pipe
characters, |. The whole query is prefixed by | to prevent ambiguity (e.g. in
subqueries).

The top-level syntactic element may either be a query or a bare expression.
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5 Semantics
PPPQL has two interconnected “modes” of operation: expression composition

and query composition.
In expression composition, users start with literals and global variables (e.g.

database tables), and build more complex expressions with operators and functions.
In query composition, users begin with a “filter” that provides data and apply

further filters which filter and transform this data. At each step, the query
represents the transforms necessary to get the desired data, and can be evaluated
to get the data as an expression.

5.1 Expressions
Each expression has a known type, and those types are divided into two kinds:

scalars and sets. Scalars are provided by the underlying database and comprise
basic literals (strings, integers, floats…) and more advanced composite types (dates,
records…). Sets are ordered collections of other sets or scalar types.

Scalar types may have fields (pairs of string name and type), which can be
accessed with the field access operator, written . (dot). This is how rows of tables
(records) are represented.

Function lifting Function calls and infix/prefix operations on scalars are
automatically lifted to work on sets, performing the operation elementwise and
returning a set. The function may also be “partially lifted”, where some arguments
are iterated over and others are used verbatim.

If such a lifted function is passed sets of different lengths, the result will have
the length of the largest set and the input sets will be padded to this length by
NULL values.

Evaluation Expressions generally function according to common programming
language conventions. For completeness, their behaviour is briefly described:

• Literals (<string_literal> | <decimal_literal> | <argtuple_literal>) directly
evaluate to the value they represent. Argtuple literals are represented as
arrays. Due to limitations of Postgres, elements of such a literal must all
have the same type and must all be scalars.

• Identifiers (<ident>) reference variables in the current scope or global object
from the underlying database (tables and constants for PostgreSQL).
For convenience, variable lookups look inside variables representing table
rows, so table columns can be referenced without explicit field access.

• Function calls (<function_call>) evaluate to the value returned by the func-
tion. Functions are considered external to PPPQL, provided by the under-
lying database engine and identified by name.

• Prefix and infix operations (<prefix_op> | <infix_op>) behave like function
calls, calling external code.
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• Subqueries (<subquery>) are composed using the query logic described below
and evaluated into a set of records. The query’s filers inherit the subquery
expression’s variables.

5.2 Queries
PPPQL queries are a sequence of “filters”, which are named functions that

take the previous “variable table” (an imaginary table where every columns is a
variable) and “query description” (an implementation-specific opaque value that
describes a database query producing that variable table) and an argtuple of
arguments, and produce a modified variable table and query description.

When a query is used as the top-level expression, its result is a set of records,
one for each row of the variable table produced by the last filter. The representation
of this set depends on the database used.

Certain filters can be used at the start of queries, where no prior variable
table and query description are received. Others can be used only placed after a
previous filter.

Filters generally interpret arguments as expressions (see above), but may use
them directly as syntax trees for e.g. assignments and binary flags. Expressions in
filters are evaluated in the context of a single row of the variable table.

For a semi-formal description of the filters’ transformation of the variable table,
we will use the following definitions:

• The universe U is the set of all values, E is the set of all untyped expressions
(parse trees).

• The set of all rows with variables N (set of names) is denoted RN .
RN = {(n, u)|n ∈ N, u ∈ U} s.t. ∀r ∈ RN ∀n ∈ N ∃! u ∈ U : (n, u) ∈ r.
Verbally, a row is a set of name-value tuples where each variable has exactly
one value (exactly one tuple).
A row may also be considered as a function r : N → U , evaluation corre-
sponding to field access.

• A table TN is an ordered multiset of values from RN .

• Query filters are functions that transform a set of rows TN and arguments
(as parse tree expressions, specified by the filter syntax) into a new set of
rows.

• Expression can be turned into values with evalC : R × E → U , which
evaluates an expression in the context of a given row according to the rules
described in the previous section.
Evaluation uses an opaque context C, which describes the host database
environment, global variables, and variables provided from surrounding
queries.
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from starts a query with data from tables
Syntax: "from" ((<ident:n_i> ":=")? <ident:t_i>),+
Semantics: fromC(n1, t1, . . . , nm, tm) =

{{(n1, r1), . . . , (nm, rm)}| r1, ..., rm ∈ evalC(∅, t1) × · · · × evalC(∅, tm)}.

The from filter can only appear at the start of a query. It creates a variable
table as the Cartesian product of the rows of the given tables (t1, · · · , tm). It
creates variables for each source row named after the table or named using the
optional alias (n1, · · · nm).

select replaces columns with new ones computed from expressions
Syntax: "select" ((<ident:n_i> ":=")? <expr:e_i>),+

The behaviour of select depends on whether it is the first filter in a query.
If select is the first filter in query:

selectC(n1, e1, . . . , nm, em) = {{(ni, evalC(∅, ei)) | i ∈ {1, . . . , m}}},
If select is preceded by another filter in the query, with T being its result:

selectC(T, n1, e1, . . . , nm, em) = {{(ni, evalC(r, ei)) | i ∈ {1, . . . , m}} | r ∈ T},
The select filter creates a new variable table with the same rows and only the

evaluated expressions listed in its arguments (e1, . . . , em) as columns. If an alias
(n1, . . . nm) is not given, the new variable name is implementation-defined.

If used at the start of the query, it creates a single row with variables consisting
of the expressions given evaluated against the global context.

where filters rows by a boolean expression
Syntax: "where" <expr:c>
Semantics: whereC(T, c) = {r ∈ T | evalC(r, c) = true}

The where filter returns a query with the same variables, but keeping only those
rows for which the condition evaluates to a truthy value (implementation-defined).

group partitions rows by keys and adds those keys as variables
Syntax: "group" (<ident:n_i> ":=" <expr:k_i>),+
Semantics: groupC(TN , n1, k1, . . . , nm, km) =

{{(ni, ui) | i ∈ {1, . . . , m}}
∪ {(v, {r(v) | r ∈ TN ∧ k(r, k⃗) = u⃗}) | v ∈ N}
| u1, . . . , um ∈ Um ∧ ∃r ∈ TN : k(r, k⃗) = u⃗},

where k(r, k⃗) = (evalC(r, k1), . . . , evalC(r, km)).

The group filter takes all existing variables and transforms them into sets of
values, where each set consists of values from those rows, where key is constant.
That value of key is then added as a new variable named per key_name.
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order sorts rows by keys
Syntax: "order" (<expr:e_i> (":asc"|":desc")?),+
Semantics: orderC(T, e1, ..., em) = T ′ where T ′ is T sorted s.t. s(T ′

i ) ≤ s(T ′
j) ∀i < j

and s(r) = (evalC(r, e1), . . . , evalC(r, em)).
The i-th field of s has its order reversed if :desc is specified.

The order filter returns its input rows sorted according to the lexicographic
ordering on the given expressions. The order is ascending by default, but can be
changed for one expression by specifying :desc.

let adds a new variable
Syntax: "let" (<ident:n_i> ":=" <expr:e_i>),+
Semantics: letC(T, n1, e1, ..., nm, em) =

T ∪ {{(ni, evalC(r, ei)) | i ∈ {1, ..., m}} | r ∈ T}

The let filter adds new variables (i.e. columns) to the variable table.

limit returns the first n rows
Syntax: "limit" <expr:n>
Semantics: limitC(T, n) = {T1, . . . , Tn′}, where n′ = evalC(n)

The limit filter removes any rows beyond the first n.
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6 Compiler implementation
In this chapter we will look at the implementation of PPPQL on Postgres.
Since the compiler is implemented as a Postgres extension, it’s first necessary

to give an overview of how Postgres processes queries: When a query is received,
its code is first parsed into a “parse tree” of nodes. This tree is then analysed
into a “query tree”, reusing some nodes from the parse tree and refining others.
After analysis the rewriter applies rewriting rules, which e.g. implement views.
The resulting query tree is then planned and executed.

To keep existing functionality working and retain as much of Postgres’ per-
formance characteristics, PPPQL replaces the topmost two stages: parsing and
analysis. This means it has to produce the query tree, whose nodes mostly map
to SQL concepts but afford some extra flexibility. Specifically, the output of the
PPPQL compiler is the Query node (shown in fig. 6.2).

To allow keeping the PPPQL compiler separate from the larger Postgres
codebase, it was implemented as an extension. Postgres already had a general
extension mechanism, but there was no hook that allowed implementing a custom
parser and/or analyser. To this end a hook was added to the existing “extensible
node” mechanism, allowing extensions to register keywords, which, if detected
at the start of a query, will bypass the standard Postgres parser and use an
extension-specified function instead. A custom analyser can then be used for the
resulting extensible node.

The PPPQL compiler is split into four stages: the parser, the analyser, the
expression translator and the query translator. The parser takes the query as a
string and creates a syntactical parse tree. The analyser then processes that tree
by e.g. adding types and resolving identifiers, calling the query translator when
it encounters a query. The query translator takes a query parse tree, processes
each query filter, calling the analyser and expression translator in the process,
and produces a Postgres Query. The expression translator takes the analyser’s
result and produces a Postgres Expr.

6.1 Parser
The PPPQL parser is implemented as a standard recursive-descent parser

without a separate tokenisation stage. Since the PPPQL grammar is simple, the
parser only consists of about 500 lines of code.

Possibly of note is its use of the PQLParseResult type and associated macros
to simplify error handling and to somewhat emulate the style of parsers written
in functional languages [11].

Every sub-parser can return one of three results: a success (Some), a miss (None)
and an error (Failed). A set of macros helps with composing sub-parsers.

For illustration, consider the code snippet in fig. 6.1, which parses a function
call. It first tries to parse an identifier and an open parenthesis. It uses the
TRY_SOFT and TRY_SOFT_REC macros to return if either is not successfully parsed
(e.g. if the source code contains a number instead). The later sub-parser calls are
then wrapped in TRY_HARD, which likewise returns on a non-success, but considers
even a miss to be an error.
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static PQLParseResult parse_function_call(
Parser *p, PQLParseTree *res) {

Parser savestate = *p;
PQLParseTree ident;
TRY_SOFT(parse_ident(p, &ident));
TRY_SOFT_REC(expect_str(p, "("), *p = savestate;);
skip_whitespace(p);
PQLArgTuple args;
TRY_HARD(parse_argtuple(p, &args));
TRY_HARD(expect_str(p, ")"));
skip_whitespace(p);

res->type = PQL_PT_Function_Call;
res->function_call.function_name = ident.identifier;
res->function_call.args = args;

return PARSE_SOME;
}

Figure 6.1 An excerpt from the PPPQL parser source code

The sub-parser for expressions tries parsing all possibilities, trying the next
variant if one returns a miss. If, however, one reports an error, the whole source
code is considered erroneous and an appropriate error message is returned.

6.2 Postgres representation of queries
To understand how the analyser and translator work, it is necessary to know

how Postgres represents the query tree. At the root of this tree is a Query node.
This node is used for all SQL statements and has over 40 fields. Since PPPQL
only produces queries, I will only describe the SELECT variant from now on.

Since Query is modelled after SQL, it has the same rigid semantic structure as
an SQL query. It contains multiple phases roughly corresponding to the FROM, WHERE,
GROUP BY, HAVING, ORDER BY, DISTINCT and SELECT parts of an SQL query. Queries
that don’t conform to this rigid structure need to be represented via workarounds,
typically by nesting queries or using subqueries.

For example, to add a source table, one must add a RangeTblEntry to rtable
and a RangeTblRef to jointree.

To group by an expression, it’s necessary that this expression be present in the
targetList (part of SELECT in SQL). Then a SortGroupClause is added referencing
the operators required for comparing/hashing the expression.

When the query’s rows are grouped by GROUP BY, the grouped columns concep-
tually contain sets of values, but in the query tree they behave as before, the only
difference being that they can be used in aggregate functions.

To represent references to columns of tables, PostgreSQL uses a hybrid num-
bering systems: Columns are numbered from 1, with 0 representing the whole
row. Tables inside one query are numbered from 1. The reference also needs to
state which query the table is from (e.g. which FROM/JOIN clause introduced it);
for this purpose a counter of “levels up” is used.
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typedef struct Query
{

NodeTag type;
CmdType commandType; /* select|insert|update|delete|merge|utility */

bool hasAggs;
bool hasWindowFuncs;
bool hasTargetSRFs;
bool hasSubLinks;
bool hasDistinctOn;
bool hasRecursive;
bool hasModifyingCTE;
bool hasForUpdate;
bool hasRowSecurity;
bool isReturn;

List *cteList; /* WITH list (of CommonTableExpr's) */
List *rtable; /* list of range table entries */

List *rteperminfos; /* list of RTEPermissionInfo nodes */
FromExpr *jointree; /* table join tree (FROM and WHERE clauses);

* also USING clause for MERGE */

List *targetList; /* target list (of TargetEntry) */

List *groupClause; /* a list of SortGroupClause's */
bool groupDistinct; /* is the group by clause distinct? */

List *groupingSets; /* a list of GroupingSet's if present */

Node *havingQual; /* qualifications applied to groups */

List *windowClause; /* a list of WindowClause's */

List *distinctClause; /* a list of SortGroupClause's */

List *sortClause; /* a list of SortGroupClause's */

Node *limitOffset; /* # of result tuples to skip (int8 expr) */
Node *limitCount; /* # of result tuples to return (int8 expr) */
LimitOption limitOption; /* limit type */

List *rowMarks; /* a list of RowMarkClause's */

Node *setOperations; /* set-operation tree if this is top level of
* a UNION/INTERSECT/EXCEPT query */

} Query;

Figure 6.2 Abridged source code of the Postgres Query struct [12]
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6.3 Analyser
The PPPQL analyser takes a PQLParseTree (an untyped syntax tree) from

the parser and a variable context (a lookup table of strings to expressions) and
returns a PQLTExpr, a typed expression tree. During this it resolves variables, looks
up database objects like tables, functions and operators and generally notes all
information required for translation of PQLTExprs into Postgres Exprs.

Each PQLTExpr has a type with one of two “kinds”: scalar or set. Scalars can
be any Postgres type except for arrays, and sets are any collections of scalars:
arrays, results of queries or aggregate values.

Postgres has complex rules for resolving the correct function or operator to
use on values of specific types, to e.g. ensure that addition of two integers results
in another integer, even if floating point addition is also possible. The analyser
defers to Postgres’s code for finding the best match.

Infix operations with := as the operator result in an error, since the assignment
operator is not a valid expression. The operator is only used in query filters.

Subqueries are processed using the query filter subsystem (described later)
and embedded in the PQLTExpr as a Postgres Query.

When the analyser encounters an identifier, it first tries to directly find a
variable with that name, then to find a column in any RowVar of that name, then
to find a table with that name.

6.4 Expression translator
The expression translator takes a PQLTExpr and converts it into a Postgres Expr,

a recursive type used by Postgres for expressions.
PPPQL’s use of a simple scalar-set dichotomy presents the biggest problems

for translation of set expressions, since the translator has to consider that any
set expression can be either an array, the result of a subquery (which can have
one or many columns, further restricting its use), or an aggregate column. Only
arrays are truly values and can be passed around as such, the other expressions
must first be converted to arrays. Any operation on arrays beyond the existing
functions, however, requires the use of a subquery with unnest().

To illustrate the work the translator has to do, we’ll give a few examples of
queries in PPPQL and the results of their translation. For brevity, the results
will be presented in SQL, even though the translator actually works on internal
AST-like structures.

Consider a set variable named temperatures, which is represented by an ag-
gregate column. When we evaluate this variable as an expression, it needs to be
converted to an array, since SQL does not allow bare aggregate values, resulting
in array_agg(temperatures).

Let’s say we want to add a constant 10 to this variable, which is now represented
by an array. The translation of temperatures + 10 requires the use of a subquery
and a function call:

(SELECT array_agg(t + 10) FROM unnest(temperatures) AS t)
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When a table is evaluated as an expression, the translator needs to create a
subquery, so measurements is translated like this:

ARRAY(SELECT timestamp , sensor, temperature , humidity
FROM measurements)

6.5 Query translator
The query translator takes a PQLQuery (a specific PQLParseTree node variant)

and processes each query filter sequentially, building a Postgres Query in the
process.

For simplicity, to avoid SQL’s fixed query operation order, each filter (except
for the first) wraps the Query produced by the previous filter, selecting from it as
a subquery. This allows each filter to function without considering which filter
preceded it.

Along with a Query, each filter produces a variable context – a hash table of
variables that can be accessed inside that query, saved as PPPQL expressions
(TExprs). This corresponds to the semantic variable table’s columns. This context
is then used to analyse and translate the expressions given as arguments to query
filters.

Like with the expression translator, we will use some examples to illustrate
the query translator’s work.

The following PPPQL query is simple, but demonstrates how each query
filter produces a standalone Postgres Query, requiring the use of information not
obtainable by simple transpilers to SQL; here the column list needs to be obtained:

| from measurements

SELECT timestamp , sensor, temperature , humidity
FROM measurements

More complex PPPQL queries produce highly nested Postgres queries (see
figure 6.3). Here we also see the expression translator at work, adding aggregate
functions and subqueries where needed.
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| from m := measurements
| group s := m.sensor
| select s, avg(m.temperature + 273.15)

SELECT
s,
(SELECT avg(u1) AS agg
FROM unnest(ARRAY(

SELECT u2 + 273.15 AS func
FROM unnest(ARRAY(

SELECT u3.temperature
FROM unnest(i1.m) AS u3(...)))

AS u2))
AS u1)

FROM (
SELECT

array_agg(i1::record) AS m,
i1.sensor AS s

FROM (SELECT sensor, timestamp ,
temperature , humidity

FROM measurements) AS i1
GROUP BY i1.sensor) AS i1

Figure 6.3 The output of translating PQL code (on the left) into SQL (on the right),
edited for brevity
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7 Future improvements
While PPPQL is a useable query language today, it doesn’t allow users to

fully utilise all of Postgres’ features, and there are also features not present in
SQL that could be added to it:

• Functions or macros: Allowing users to abstract repetitive parts of
queries in a lightweight way (e.g. without requiring the creation of an extra
database object) could simplify many complex queries. This abstraction
would most likely take the form of functions (operating on values) or macros
(operating on expressions). Functions are conceptually simpler and are used
in modern programming languages; macros allow greater flexibility when
e.g. abstracting over tables with similar columns.

• Foreign key follow operator: Normalised relational databases consist
of many tables, often joined with simple one-to-one or many-to-one rela-
tionships. In PPPQL, like in SQL, they currently have to be traversed by
manually adding the related table and restating the constraint.
Thanks to the PPPQL compiler running inside the Postgres process, it can
create virtual columns in tables for each FOREIGN KEY constraint, field access
on which would then access the referred-to table.

• More general container types: Postgres contains arrays, but they can’t
be nested, only used as fixed-dimension matrices. This is limiting for PPPQL,
since it can’t translate e.g. queries involving multiple group filters.
Postgres also doesn’t have a heterogeneous array type or a dictionary type
(apart from records and JSON types), limiting PPPQL argtuple literals and
making complex query output harder. Regardless of whether one might
want to store these types in tables, they would be useful for use with the
functions described above and for letting applications get a multitude of
information from a single query.
Thankfully, Postgres allows the creation of new types by extensions, so these
types could be introduced by PPPQL.

• Queries on arbitrary sets: Right now, queries have to either start with
a from, which takes data from tables, or select, which creates a single row.
This is mainly for ease of implementation, but there’s no reason from couldn’t
operate on any sets of values in the future.

The Postgres extension could also be improved: Its resulting ASTs are currently
unnecessarily verbose, some nesting could be removed to potentially improve
performance.

It might be possible to upstream the minimal patch allowing the introduction
of new languages into Postgres as extensions, making the use of PPPQL simpler
and encouraging others to also experiment with new query languages.
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8 Conclusion
In this thesis we have introduced the problem of designing a relational database

query language, described issues in the currently dominant SQL and covered some
other notable alternatives. We then described a new query language, PPPQL,
and went through its implementation into Postgres.

We showed how PPPQL improves on SQL, noting that its syntax is more con-
sistent and intuitive, that its simple scalar-set dichotomy improves orthogonality
and that it generally provides more options for abstraction in queries.

As currently implemented, PPPQL is a useable query language covering basic
relational operations. To make it better suited for complex scenarios, it could be
extended by further filters and by integrating more host database functionality as
functions, all while maintaining its basic structure as described in this thesis.

Running the compiler as part of Postgres itself and not compiling to SQL has
allowed us to use the state of the database while compiling and to offer better
error messages, so that users don’t have to debug both PPPQL and SQL source
code. This was also necessary to correctly process array columns in PPPQL.
Furthermore, it gives us the option to implement more innovative features in the
future, some of which were detailed in the previous chapter.

This approach has, however, complicated development somewhat, since it
requires understanding Postgres’ internals, instead of requiring only user-level
knowledge of SQL.

We hope that this thesis contributes to efforts to design new and improved
query languages and that further work is done on integrating these languages
directly into RDBMSs, as we have done with PPPQL.
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A Attachments
Two attachments are submitted as part of this thesis:

• pg_patch.patch, a patch to Postgres that allows the creation of new query
languages via extensions.

• pppql, the source code of the PPPQL Postgres extension.
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B Installation and usage
In this appendix, we will go through the process of building a patched version

of Postgres and installing the PPPQL extension. This guide was tested on Debian
12, but will likely also work on other operating systems.

First we need to obtain the source code of Postgres, the patch enabling the
creation of query language extensions, and the source code of the PPPQL extension.
The last two are provided as attachments to this thesis, or can be obtained online1.

We will use Postgres 16.2, the latest version available at the time of writ-
ing. With postgresql-16.2, pppql, and pg_patch.patch in the home directory, the
following commands will build Postgres and install it in ~/pg:

# Install build dependencies , run this as root!
apt install build-essential pkg-config libicu-dev \

libreadline -dev zlib1g-dev
# Run the rest of these commands as a regular user
cd ~/postgresql -16.2
# Apply PPPQL patch
patch -p1 -i../pg_patch.patch
# Build and install Postgres
./configure --prefix=$HOME/pg
make
make install
# Allow running Postgres commands from PATH
export PATH=$HOME/pg/bin:$PATH

Now we need to build and install the PPPQL extension:

# Point Makefile to Postgres install
export PG_CONFIG=$(which pg_config)
cd ~/pppql
make
make install

We can now create and start a database that uses PPPQL:

# Create a new database
mkdir -p ~/db
initdb -E UTF8 -D ~/db
mkdir -p ~/db/sock
# Configure it to load the PPPQL extension
cat >> ~/db/postgresql.conf <<EOF
unix_socket_directories = '$HOME/db/sock'
listen_addresses = ''

shared_preload_libraries = 'pppql'
EOF
# Start the database system
pg_ctl -D ~/db -l ~/db/logfile start
# Create an empty database
createdb -h ~/db/sock $USER

1See git repository at https://gitlab.mff.cuni.cz/konarid/pppql
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Now we can connect to the database with psql -h ~/db/sock.
To run a PPPQL query in psql, we prefix it with PQL and suffix it with a

semicolon, like so: PQL | select 1 + 1;. We will receive output as if an SQL query
had been sent instead.

Please note that psql interprets any occurrence of -- as the start of a comment,
so PPPQL queries containing this symbol will have to have their terminating
semicolon on a separate line.
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