
BACHELOR THESIS

Dominik Farhan

Multilingual Entity Linking
Using Dense Retrieval

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: RNDr. Milan Straka, Ph.D.
Study programme: Computer Science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to express my gratitude to my supervisor Milan Straka for his guidance,
patience, and many fruitful discussions. His thoughtful insights were invaluable
not only for this work but also for my growth in the whole field of machine learning.
He has my deepest thanks.

I am grateful to Ondra Sladký for reading parts of the manuscript and sug-
gesting many helpful improvements. I owe many thanks to my girlfriend Majda
Dohnalová who read every word I wrote and has always been positive and encour-
aging. Similarly, I would like to thank my parents and grandparents for all their
support.

Last but not least, I appreciate the energy of administrators of the AIC GPU
cluster who went to great lengths during one April weekend to make sure that my
experiments were smoothly running.

Title: Multilingual Entity Linking Using Dense Retrieval

Author: Dominik Farhan

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Milan Straka, Ph.D., Institute of Formal and Applied Linguistics

Abstract: Entity linking (EL) is the computational process of connecting textual
mentions to corresponding entities. Like many areas of natural language processing, the
EL field has greatly benefited from deep learning, leading to significant performance
improvements. However, present-day approaches are expensive to train and rely on
diverse data sources, complicating their reproducibility. In this thesis, we develop
multiple systems that are fast to train, demonstrating that competitive entity linking
can be achieved without a large GPU cluster. Moreover, we train on a publicly
available dataset, ensuring reproducibility and accessibility. Our models are evaluated
for 9 languages giving an accurate overview of their strengths. Furthermore, we offer
a detailed analysis of bi-encoder training hyperparameters, a popular approach in EL,
to guide their informed selection. Overall, our work shows that building competitive
neural network based EL systems that operate in multiple languages is possible even
with limited resources, thus making EL more approachable.

Keywords: entity linking, dense retrieval, entity disambiguation, multilingual entity
linking, bi-encoder

Název práce: Vícejazyčné propojování entit pomocí vektorového vyhledávání

Autor: Dominik Farhan

Ústav: Ústav formální a aplikované lingvistiky

Vedoucí bakalářské práce: RNDr. Milan Straka, Ph.D., Ústav formální a aplikované
lingvistiky

Abstrakt: Propojování entit je úloha, ve které jsou zmínky z textu propojovány s přís-
lušnými entitami. Stejně jako v mnoha jiných oblastech zpracovaní přirozeného jazyka
se i v propojování entit výrazně projevil vliv hlubokého učení, což vedlo k významnému
zlepšení výkonu. V současnosti se ale stávající modely trénují pomalu a spoléhají na
nejednotné zdroje dat, což ve výsledku komplikuje reprodukovatelnost. V této práci
vyvíjíme několik systémů, které se učí rychle, čímž ukazujeme, že konkurenceschopných
výsledků lze dosáhnout i bez velkého GPU clusteru. Zároveň trénujeme na konkrét-
ním veřejně dostupném datasetu. Naše výsledky jsou tak snadno reprodukovatelné.
Modely vyhodnocujeme na devíti jazycích, což nám poskytuje kvalitní přehled o jejich
silných stránkách. Mimo to také podrobně analyzujeme nastavení značného množství
hyperparametrů bi-enkóderů — populárního přístupu pro propojování entit — čímž
zjednodušujeme rozhodování navazujícím pracem. Náš výzkum ukazuje, že lze vytvářet
silné mnohojazyčné systémy na propojování entit i za použití pouze omezených výpočet-
ních zdrojů. Tím činíme celou úlohu přístupnější.

Klíčová slova: propojování entit, vektorové vyhledávání, vícejazyčné propojování entit,
bi-enkóder

Contents

1 Introduction 7

2 Existing Approaches in Entity Linking 9
2.1 Definitions . 9

2.1.1 Mention . 9
2.1.2 Knowledge Base . 10
2.1.3 What is Entity Linking? 10
2.1.4 End-to-End Entity Linking 11
2.1.5 NIL entity linking . 11
2.1.6 Multilinguality . 11

2.2 Data . 12
2.2.1 Wikidata . 12
2.2.2 Mewsli-9 . 13
2.2.3 TAC KBP . 14
2.2.4 AIDA CoNLL-YAGO . 14
2.2.5 DaMuEL . 14

2.3 Neural Entity Linking . 15
2.3.1 Bi-encoders . 15
2.3.2 (m)GENRE . 17

2.4 Text Embedding Models . 18

3 Baselines 19
3.1 Upper Bounds on Mewsli-9 Recall When Using DaMuEL 19
3.2 General Picture of Entity Linking System 20
3.3 Alias Table . 21
3.4 Beyond Exact Matching . 22

3.4.1 Lemmatization . 22
3.4.2 String Similarity . 23
3.4.3 Pre-trained Embeddings 23

3.5 Precision of ScaNN . 24

4 Adding Context 25
4.1 Lightweight Bi-Encoder Entity Disambiguation 25

4.1.1 One Model . 25
4.1.2 Models from a Similar Problem 26

4.2 How to Fine-tune a Bi-encoder 26
4.2.1 EL as Multiclass Classification 27

4.3 Choosing Hyperparameters . 30
4.3.1 Rebuilding the Index . 31
4.3.2 Batch Size and Queried Negatives 31
4.3.3 Model Comparison . 31

4.4 Cross-Lingual Transfer . 31

5

5 Infrastructure 33
5.1 Tokenization . 33

5.1.1 Descriptions . 33
5.1.2 Mentions with Context . 33

5.2 Fine-tuning . 34
5.2.1 Index . 34
5.2.2 Generating and Fine-tuning 36
5.2.3 Evaluation . 36

5.3 Implementation . 36

6 Results and discussion 38
6.1 ScaNN vs Brute-force . 38
6.2 LEALLAs vs LaBSE . 38
6.3 DaMuEL as Entity Linking Dataset 38

6.3.1 Alias Table . 39
6.3.2 String Similarity . 40

6.4 Pre-trained Embeddings . 41
6.4.1 String similarity vs Pre-trained Embeddings 42
6.4.2 Comparing Models in Spanish 43

6.5 Hyperparameter search . 43
6.5.1 Index Rebuilding . 44
6.5.2 Batch Size . 45
6.5.3 Number of Hard Negatives 46
6.5.4 Logit Multiplier . 47
6.5.5 Size . 48

6.6 Cross-Lingual Transfer . 49
6.6.1 Baseline With Labels . 50
6.6.2 Per-Language Evaluation 51
6.6.3 Where To Go Next? . 51

6.7 Comparing to the Current State of the Art 53
6.8 To Fine-Tune or Not To Fine-Tune? 54

7 Conclusion 56

Bibliography 58

List of Abbreviations 65

A Additional Results 66
A.1 DaMuEL and Mewsli-9 Intersections 66
A.2 Alias Table . 66
A.3 Embeddings With Context and No Training 66
A.4 Cross-Lingual Transfer Additional Results 67

B Examples of Spanish Links on Mewsli-9 70

6

1 Introduction
Humans can easily connect information to names and other entities mentioned

within a text. For instance, consider the sentence, ”To save Troy from destruction,
Paris had to be sacrificed.” Anyone who sat through history lessons during high
school can explain that this reference to Paris does not refer to the French capital
nor the socialite Paris Hilton, but rather to the mythological figure from the Iliad.
Even though, linking the mention above to the mythological figure may appear
straightforward for a human, it is a considerable challenge for a machine to decide
that it was the shepherd and not the capital that was sacrificed.

This computational task of using a computer to establish a link between a
textual mention of an entity and its corresponding description is known as entity
linking (EL).

Linking textual mentions to facts about entities is useful in many tasks,
including information retrieval and question answering (Khalid et al., 2008; Sorokin
and Gurevych, 2018; Lee et al., 2020; Févry et al., 2020), dialogue systems (Slonim
et al., 2021; Joko et al., 2021), text generation (Puduppully et al., 2019), social
media analysis (Michelson and Macskassy, 2010; Adjali et al., 2020; Basaldella
et al., 2020), and medicine (Basaldella et al., 2020; French and McInnes, 2022).

Similarly to other tasks in natural language processing (NLP), a significant
portion of EL research focuses on the English language. This is reasonable because
linking mentions requires a sizable amount of data about those entities. With
over six million articles, English Wikipedia is a good source of both structured
data and unstructured texts. However, linking is not exclusive to English. There
have been notable successful attempts (Botha et al., 2020; De Cao et al., 2022;
Plekhanov et al., 2023) in utilizing multiple languages, indicating that the added
complexity of working in multilingual contexts can yield fruitful results. It is
precisely in the domain of multilingual entity linking that our primary interest
lies.

In the last few years, entity liking was conquered by deep learning, which is a
subfield of machine learning that focuses on training artificial neural networks.
These networks are great at capturing complex patterns in data that are hard
to model with traditional rule-based approaches. Moreover, the introduction of
the Transformer architecture (Vaswani et al., 2017) allowed neural networks to
capture long-term dependencies and contextual information. This is useful for
linking because the model often needs to quickly process a large window of text
surrounding the mention to be able to link it correctly. Lastly, deep learning
models are scalable, allowing us to use large quantities of data. It is thus not
surprising that the most competitive systems of today (Sevgili et al., 2022) are
based on neural networks.

Our Contributions
In this thesis, we aim to develop an entity linking system capable of operating

across multiple languages. Apart from the main model we also present several
baselines to establish benchmarks and validate the strength of our approach. A
distinctive aspect of this work is reliance solely on publicly available datasets for

7

training and evaluation, in contrast to previous studies that often withheld their
training data.

The implementation and all the experiments are the sole work of the thesis
author. The main contributions are the following:

• We fine-tune neural networks for entity linking with relatively limited
resources, demonstrating that training competitive EL models on a single
GPU in a few days is possible.

• Entity linking systems based on deep learning are often complex and configur-
ing numerous hyperparameters is required. Through a series of experiments,
we evaluate different parameter configurations, hoping to facilitate better
decision-making in this regard and consequently make the work of others
easier.

• We examine properties of DaMuEL (Kubeša and Straka, 2023), a recent
entity linking dataset, show that it can be used to train strong entity linking
models and find a few shortcomings that the authors missed.

Structure of the Thesis
The work is divided into five chapters. In Chapter 2 we provide the neces-

sary background: we build a solid foundation of entity linking and survey recent
approaches and popular datasets. In Chapter 3 we describe three simple improve-
ments to alias tables, a popular baseline. Additionally, we establish an upper
bound on results one can achieve when training with DaMuEL dataset (Kubeša
and Straka, 2023) and evaluating on Mewsli-9 (Botha et al., 2020). In Chapter 4,
we discuss peculiarities associated with training deep neural networks for our
task. We describe a well-known approach to entity linking based on bi-encoder
models (Gillick et al., 2019; Botha et al., 2020; Wu et al., 2020; FitzGerald
et al., 2021) and introduce several modifications. In Chapter 5, we give a slightly
technical overview of the infrastructure we built for our experiments. In Chapter 6,
we evaluate systems from Chapters 3 and 4. We also compare them to results
from other works and conduct many experiments showing how different parameter
settings influence performance.

8

2 Existing Approaches in Entity
Linking
2.1 Definitions

To understand Entity Linking (EL), we first need to establish some key
terminology.

2.1.1 Mention
A specific text for which we want to generate a link is called a mention, and

we use the term context to denote the mention together with the surrounding text.
To perform a linking, one ideally needs both

• a mention m, which is a substring directly corresponding to the entity; and

• a context c, sometimes also denoted as mention context. In our work, the
context is always the mention m and the text surrounding it, and it can be
summed up with the maxim “You shall know your mention by the company
it keeps.”

To clarify the concept, let us recall the mythological Paris from Chapter 1 and
see how it fits our representation:

m = “Paris”, c = “To save Troy from destruction, Paris had to be sacrificed.”

Generally, we assume that m and c are part of a larger document d. Sometimes
it is beneficial to contextualize taking c = d, but for larger d this is impractical.
Another popular option is to combine the surrounding text with information
specific to d (like the title of d). Generally, the most important information
needed for linking m is likely close to it. Hence, it’s best to think of context as a
paragraph, a sentence, or some other data that helps to describe m based on d.
Nonetheless, how exactly the context looks heavily depends on the approach used.

It is crucial to realize that both m and c are needed to create a robust linking
system. In theory, we can attempt to link only based on m by looking up an
entity with the same or similar name using some string similarity metric. However,
in practice, this approach is inadequate as m is often ambiguous. Nevertheless,
systems utilizing only mentions without contexts can still serve as solid baselines,
and when they are provided with enough training examples, they might surpass
some more sophisticated approaches.

It is only natural to ask what would happen if we omitted m and tried to link
just based on c. Take again the text

“To save Troy from destruction, Paris had to be sacrificed.”

The linking system wouldn’t discern whether we intend to link Paris, Troy, or
something else entirely.

Note that while it is conceptually helpful to think of m and c as a pair that we
require to perform the linking, in practice, we prefer a more concise representation,
where the pair is represented just by one item. For example,

9

“To save Troy from destruction, [M]Paris[M] had to be sacrificed.”

where [M] is a special token that we add to the tokenizer.

2.1.2 Knowledge Base
For linking a mention, we first need an entity to which we can link. A struc-

ture that holds information on all possible entities is called a knowledge base
(KB). Typically, it contains for each entity: a label, an ID, and structured and
unstructured data that describe it. In many studies, an important part of KB is a
so-called knowledge graph (KG) — for example Freebase (Bollacker et al., 2008), or
Wikidata (Vrandečić and Krötzsch, 2014). KG holds structured knowledge about
entities. Information is typically represented as claims, which contain properties
and relations to other entities. Because relations to other entities can be viewed
as typed, directed edges, the structure is called a knowledge graph.

In our work, we limit ourselves to working with the unstructured part of KB.
We are not interested in knowledge graphs. Instead, we compile a set of textual
descriptions for each entity e = (d1, d2, . . . , dn). Generally, these descriptions
are independent chunks of text, and their number per entity can vary based on
the system. One can imagine them for example as Wikipedia pages in different
languages.1 We chose this representation for three primary reasons:

• It is simpler to gather unstructured textual descriptions of an entity than a
set of relations.

• Using text descriptions grants our models more autonomy in determining the
significance of information. The idea is that our system learns to construct
important relations by itself.

• Even someone with a limited understanding of our system can easily add
new descriptions and, consequently, new entities to the KB.

This narrowing to only textual descriptions is not a novel approach, there
are numerous other works utilizing it (Gillick et al., 2019; Botha et al., 2020;
FitzGerald et al., 2021).

2.1.3 What is Entity Linking?
With the above-described formalism, it is perhaps the right time to ask “What

exactly is entity linking?”
The answer is anything but simple. In a fairly broad view, entity linking is

about learning to map mentions to entities in a knowledge base.
However, to make this a usable definition, we need to answer the following

two questions:

1. Are the mentions given to us (for example as spans in a document) or do
we have to find them by ourselves?

2. What happens when the entity corresponding to the queried mention is not
in the KB?

1https://www.wikipedia.org/

10

https://www.wikipedia.org/

2.1.4 End-to-End Entity Linking
To answer the first question, we need to understand what is mention detection

(MD) and entity disambiguation (ED). The primary objective of MD is to detect
possibly all entity mentions in a given document. Subsequently, ED connects
mentions to entities in a knowledge base. Traditionally, entity linking is composed
of those two components, and we denote this composition as end-to-end entity
linking in our text. Nevertheless, the vast majority of EL works concentrate only
on the second step ED (Sevgili et al., 2022).

In this thesis, we do not focus on MD. Mentions are already detected in our
data, so we only disambiguate them. Thus, we use entity linking and entity
disambiguation interchangeably.

2.1.5 NIL entity linking
To answer the second question, consider the following two scenarios. During

linking, it might happen that:

• an entity corresponding to a mention is not present in a KB, or

• that MD system made a mistake and a span of text it annotated does not
correspond to a mention of an entity.

In both of these cases, it could be useful to have the ability to predict a
so-called NIL entity, which signals that we cannot link the input to any entity in
a given KB.

Similarly to end-to-end entity linking, the problem of NIL entities is underrep-
resented in research. Part of this is due to its fragmentation. How NIL entities
are treated varies between systems and datasets, and often they are simply not
considered (Zhu et al., 2023).

Our evaluation dataset and the primary metric we decided to use have no way
to accommodate NIL entities, so their treatment is out of our scope. Nevertheless,
all the systems we describe in Chapter 3 and Chapter 4 could be extended to
predict them.

Let us sum up the above paragraphs. End-to-end entity linking contains two
steps

• mention detection, and

• entity disambiguation.

The datasets we work with contain already annotated mentions, so we focus only
on the second step. Also, they do not contain examples of NIL entities, thus we
always assume that a query can be linked.

2.1.6 Multilinguality
The last piece of our puzzle is multilinguality. EL is most often performed

only for one language. To be more specific, let LKB be the set of all languages
used in a KB and let all mentions M come from a context language lc. A large

11

part of current research assumes that LKB = {lc}, and the one language that is
used above all others is English.

One attempt to accommodate different languages is cross-lingual EL (XEL).
It assumes that LKB = {l} and l ̸= lc. Commonly, the language of the KB is
English. Although XEL allows for using more than one language, it is still heavily
limited by the choice of l. That is why multilingual entity linking (Botha et al.,
2020) was introduced. Its goal is resolving mentions M without any assumptions
on the relation between LM (languages of M) and LKB.

This setup is useful because it gives us much more freedom to create a KB.
For example, there are many entities, for which we can find detailed descriptions
in some uncommon language and only brief or none in English. On the other
hand, linking between multiple different languages brings its own new challenges.

2.2 Data
There are three kinds of data we require in order to build and evaluate an EL

system: a KB, train data, and test data. Below, we describe some notable options
with special emphasis on multilingual EL.

2.2.1 Wikidata
Wikidata is a free, multilingual knowledge base built on top of Wikipedia. It

is the backbone of many EL datasets. It consists of a staggering 109M entities.23

Each entity contains the following fields:

• a label, usually the most common name (for example San Francisco);

• a short description (consolidated city and county in California, United
States);

• a unique identifier, a so-called QID (Q62);

• optional aliases, alternative names (The City by the Bay, SF, …);4

• optional statements, which connect the entity to various facts and other
entities in a language-agnostic way. A statement consists of a property-value
pair (population: 805704). A property-value pair might have additional
qualifiers that specify it further (point-in-time: 1 July 2010). See Figure 2.1
for an example with multiple statements).

2https://www.wikidata.org/wiki/Wikidata:Statistics
3Although in Wikidata entities are denoted as items, we decided to use our terminology for

consistency with the rest of the text.
4We also use the term alias in other places to mean an alternative entity name but not

necessarily an alternative entity name from Wikidata.

12

https://www.wikidata.org/wiki/Wikidata:Statistics

Figure 2.1 An example of Wikidata statements for San Francisco. By Jeblad, CC
BY-SA 3.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:
Linked_Data_-_San_Francisco.svg.

2.2.2 Mewsli-9
Mewsli-9 is the de facto standard benchmark in present-day multilingual EL.

It has been introduced by Botha et al. (2020) in the same work in which they
also proposed the multilingual EL. The dataset is built on top of Wikinews in 9
languages.5 The authors purposefully use a varied set of languages encompassing
five language families and six orthographies. Mewsli-9 contains the following
languages: Arabic (ar), German (de), English (en), Spanish (es), Persian (fa),
Japanese (ja), Serbian (sr), Tamil (ta), and Turkish (tr).

Authors build their system in a way that enables ranking entities based on a
similarity to a queried mention. They suggest using recall-at-k (R@K) to evaluate
their system for each of the nine languages separately. To define this metric, let
M l be the set of Mewsli-9 mentions in language l, and g(m) the correct entity for
the mention m. Denote the K most similar entities according to the examined
system as ϕ(m, K), and let [x ∈ S] evaluate to 1 when x is in S and 0 otherwise.
Now, we define R@K as follows:

R@K =
∑︂

m∈M l

[︂
g(m) ∈ ϕ(m, K)

]︂
⃓⃓⃓
M l

⃓⃓⃓ .

Thus, to get the R@K, we calculate the ratio of mentions recognized as the
K top probable by the system. The paper evaluates R@1 and R@10.

Interestingly, the authors decided to allow linking mentions to disambiguation
pages. These pages are part of Wikipedia, and their purpose is to resolve conflicts
between articles with the same or very similar titles. The purpose of EL is to
disambiguate mentions; it is not clear how disambiguating to disambiguation pages
achieves that goal. We return to this problem and how it affects our work in
Section 3.1.

5https://www.wikinews.org/

13

https://commons.wikimedia.org/wiki/File:Linked_Data_-_San_Francisco.svg
https://commons.wikimedia.org/wiki/File:Linked_Data_-_San_Francisco.svg
https://www.wikinews.org/

2.2.3 TAC KBP
The Text Analysis Conference included EL in their knowledge base population

challenge multiple times. Several datasets sprung from those years. The TAC
KBP Reference Knowledge Base (Simpson et al., 2014) is built from English
Wikipedia and consists of more than 800k entities. Each entity consists of a
canonical name, a title for the Wikipedia page, a type, data from its infobox,
and a stripped version of the text of the Wikipedia article. It can be used for
monolingual linking, but also easily for cross-lingual because TAC also provides
training and evaluation data with queries that link to a KB in Chinese (Ellis et al.,
2016a) and Spanish (Ellis et al., 2016b).

2.2.4 AIDA CoNLL-YAGO
AIDA CoNLL-YAGO is a dataset from a seminal work by Hoffart et al. (2011).

It is based on the English part of the 2003 CoNLL named entity recognition
shared task (Tjong Kim Sang and De Meulder, 2003). The dataset consists of
annotations of 1393 Reuters articles. Proper nouns from these articles are linked
to entities from YAGO2 (Suchanek et al., 2007; Hoffart et al., 2013), a KB built
on Wikipedia, WordNet, and GeoNames.

The dataset consists of 3 parts: train, testa, and testb. The first two are used
for training and validation, the third serves as a test set.

2.2.5 DaMuEL
DaMuEL (Kubeša and Straka, 2023) is a large (approx 1 TB) multilingual

dataset spanning 53 languages based on Wikidata and Wikipedia. It consists of
two components: language agnostic part and language specific part.

The agnostic part contains information that is the same across all languages,
whereas the specific part consists of 53 sub-parts (one for each language). The
specific part is the one we are interested in. It contains Wikidata labels and
descriptions, Wikipedia pages, and mentions annotated with QIDs to which they
link.

The mentions in DaMuEL are constructed in one of two ways. Either they were
already present in Wikipedia as a form of hyperlink that links from one page to
another, or they were expanded by the authors. The Wikipedia Manual specifies
that only the first occurrence of an entity should be linked.6 However, one page
can contain many more mentions of the same entity. The authors came up with a
heuristic that adds new links based on an already linked mention. The heuristic
takes an article with an already linked mention, finds the entity of that mention
in Wikidata, and matches strings inside the article that are the same (by exact
or lemma match) as either the mention or names from Wikidata (labels, aliases,
etc). This heuristic is used only for named entities, because for other entities it
could produce a huge number of false positive links. Alongside constructing the
dataset, the authors performed morphological analysis and also found types for
named entities.

6https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking#MOS:REPEATLINK

14

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking#MOS:REPEATLINK

Specific parts

Below, we describe the general structure of language-specific parts of DaMuEL
because we use them as the training data for all our models. Each part consists of
500 .xz archives of approximately the same size. All parts are in the same format.
Each line contains data on one entity as key-value pairs serialized in JSON Lines.7
Below, we list the keys most relevant to our work:

• QID, label, and description; all from Wikidata

• wiki; present only when the entity has a Wikipedia article in the given
language. Takes the form of a dictionary. We again list the most relevant
keys:

– title, and text; from the Wikipedia article,
– tokens;
– links; each containing a mention span, a QID, and a source (information

whether it is an original wikilink or it was created by the authors).

2.3 Neural Entity Linking
The deep learning revolution of the past decade brought several advancements

to EL, and in the last few years, non-neural approaches stopped being compet-
itive (Sevgili et al., 2022). In this section, we cover some notable multilingual
approaches that are the results of these advancements.

2.3.1 Bi-encoders
Many ED approaches use deep learning models to encode both entities and

mentions into high-dimensional vectors using the bi-encoder architecture (see
Figure 2.2).

These fixed-length high-dimensional vectors are called embeddings. Models are
trained to produce similar embeddings for semantically similar texts. Embedding
similarity is most often defined as the angle between them. This allows for
efficient semantic comparison between two texts. Nowadays, many models produce
embeddings that work across languages. Thus, a sentence in one language is
embedded in a vector very similar to one generated from the same sentence in a
different language.

In EL that utilizes bi-encoders, two models are learned: one to encode mentions
based on the context and the other to encode entities. The entity encoding models
sometimes combine a vast number of different facts because KBs often carry much
more information than just textual descriptions.

The cosine of the angle between an entity and a mention is used to measure
the similarity. Let em and ee be the embeddings for a mention and an entity,
respectively, and let ∥e∥ denote the norm of an embedding e. Then we can
calculate the cosine of the angle between em and ed as

cos(em, ee) = eT
mee

∥em∥ · ∥ee∥
.

7https://jsonlines.org/

15

https://jsonlines.org/

Mention Encoder Entity Encoder

mention + context entities

entity
embeddings

mention
embedding

similarity
metric

Entities ranked by
similarity

Figure 2.2 A general layout of bi-encoder models used in EL.

One particular strength of bi-encoders is that embeddings of entities can be
calculated beforehand; therefore, one only needs to calculate the em. Finding
an entity most similar to a given em can then be done quickly using a highly
optimized similarity search library like FAISS (Douze et al., 2024) or ScaNN (Guo
et al., 2020).

Learning Dense Representations for Entity Retrieval (DEER)

Gillick et al. (2019) created Dual Encoder for Entity Resolution (DEER) and
showed that bi-encoders are a viable approach for EL in English. They successfully
utilize in-batch-sampled softmax (Jozefowicz et al., 2016). To provide the negatives
to the softmax, the authors sample the negatives randomly (Henderson et al.,
2017; Gillick et al., 2018), but later, as the learning progresses, the model itself
is used to generate negatives that are more challenging than random ones. The
authors call their method hard negative mining.

We also employ in-batch-sampled softmax and hard negative mining, thus, we
decided to describe it together with our work in Chapter 4.

Entity Linking in 100 Languages (EL100)

Botha et al. (2020), the same paper that introduced Mewsli-9, build on ideas
from DEER. Hard negative mining as well as in-batch-sampled softmax are used.
The bi-encoder utilizes multilingual BERT (Devlin et al., 2019) — a transformer-
based neural network (Vaswani et al., 2017) — to embed textual descriptions of
entities and mentions with contexts.

Each entity is represented by exactly one description. To obtain it, the authors
create candidate descriptions from Wikipedia pages or from Wikidata descriptions
when a Wikipedia page does not exist. This yields multiple possible descriptions
whenever an entity has a Wikipedia/Wikidata entry in multiple languages. To
choose the best of those, the authors use a simple heuristic: they define ne(l) to
be the number of mentions of the entity e in the language l, and n(l) the number
of mentions in l. Then, they order candidate descriptions for e by ne(l). If this
produces a tie (because there are multiple languages with the same number of
mentions of e), they use n(l) to break it and take the description corresponding
to the language with higher n(l).

16

MOLEMAN

FitzGerald et al. (2021) continue in the footsteps of EL100 but stop differenti-
ating between entity descriptions and training data contexts. Suddenly, contexts
are part of the KB, and it is possible to link to them. The idea is that many
mention contexts provide a better entity characterization than having only one
high-quality description. The resulting system, called MOLEMAN, beats EL100
on Mewsli-9, but it comes with the heavy burden of a larger memory footprint.

2.3.2 (m)GENRE
GENRE (short for Generative ENtity REtrieval) by Cao et al. (2021) is an

approach different from the prevalent bi-encoders. The authors propose to use
autoregressive generation to produce unique entity labels. They assign score to
each entity e conditioned on mention and context pair x = (m, c) as follows:

s(e | x) = pθ(n | x) =
|n|∏︂
i=1

pθ(ni | n<i, x),

where n is the unique identifier of e, ni its i-th token, and θ are learned parameters
of the model.

Calculating the above for all entities given x would make the inference expensive.
Therefore, the authors propose using beam search — a heuristic search algorithm
that traverses a search tree in a breadth-first-search fashion but expands no more
than k most promising nodes per level.

Additionally, to the usage of a beam search, the authors also constrain the
search to only generate valid identifiers. To quickly decide whether a given path
in a search space corresponds to a valid identifier, they store all known identifiers
in a trie. The trie occupies usually hundreds of MBs or a few GBs of space, which
is a significant improvement compared to bi-encoder models, where the index with
all entity embeddings often spans tens of GBs.

The GENRE paper also describes how to extend their system to end-to-end
EL. However, because we focus only on the disambiguation part of the end-to-end
formulation, we do not describe it here.

The same month as the GENRE paper was published, De Cao et al. (2022)
also proposed its multilingual formulation called mGENRE. To extend GENRE
to mGENRE, the authors compare multiple strategies that aim at utilizing entity
names from different languages. Overall, the best-performing option seems to
be allowing the model to generate not only the name but also its language (for
example Sistema de posicionamento global-ES for GPS in Spanish; both the name
and language code are generated). Each entity can then have multiple identifiers
that consist of a name in a specific language together with the language identifier.
Predicting not only the name but also the language is useful because one name
can point to different entities in different languages. The GENRE formula is then
changed to

s(e | x) =
∑︂

nl∈Ie

pθ(nl, l | x),

where Ie is the set of all per-language-unique names e.
The mGENRE system shows strong results on several datasets and is the

current state of the art for Mewsli-9.

17

2.4 Text Embedding Models
Feng et al. (2022) show that the combination of dual encoder finetuning,

additive softmax, and a large language model can yield excellent results when
producing sentence embeddings. The result of their research is LaBSE, which can
produce high-quality sentence embeddings for more than 109 languages.

Finetuning BERT to produce sentence embeddings takes significantly fewer
resources than attempting to achieve the same feat from scratch. If we limit our
EL data only to text, our problem starts to resemble that of producing a sentence
embedding. We can look at mentions with contexts and entities with descriptual
texts as large sentences that we need to embed, so that mentions lie close to
their corresponding entities. Because fine-tuning pre-trained language models to
produce sentence embeddings saves substantial amount of resources, it is only
natural to ponder whether the same can be achieved when fine-tuning sentence
embedding models to disambiguate entities.

It is tempting to fine-tune LaBSE for our task. Disappointingly, the large
number of parameters (471M) and the 756-dimensional embedding size make
working with it complicated given our limited resources. In the end, we decided
to settle for the LEALLA family of models (Mao and Nakagawa, 2023) for our
fine-tuning experiments. This family contains three models: small, base, and large
(see Table 2.1 for comparison with LaBSE). All of these much smaller models were
produced by knowledge distillation from LaBSE.

Model Parameters Embedding dimension
LEALLA-small 69M 128
LEALLA-base 107M 192
LEALLA-large 147M 256
LaBSE 471M 756

Table 2.1 LEALLAs and LaBSE: parameters and embedding sizes.

Note that although LEALLA models are smaller than LaBSE, they are not
necessarily faster. See Section 6.2 for comparison.

18

3 Baselines
Before we start finetuning bi-encoders for EL, we present several simpler

models. We do so for two reasons:

• As far as we know, DaMuEL has never been used in a publicly available EL
system. We aim to explore its strengths and weaknesses by evaluating it
with models whose strength is not dependent on the particular fine-tuning
set up.

• We can validate our advanced results by using those from this chapter as
baselines.

3.1 Upper Bounds on Mewsli-9 Recall When
Using DaMuEL

Before we build our first EL system, we establish an upper bound on recalls
we can get when using DaMuEL as a KB and linking from Mewsli-9. In doing
so, we treat each mention from Mewsli-9 separately and check whether it has an
entity in DaMuEL. This allows us to establish an upper bound on R@K. We
provide a per-language breakdown of upper bounds in Table 3.1. We give two
columns of results. In the first column, we consider all DaMuEL entities. In the
other column, only the entities from the specific DaMuEL part (Section 2.2.5)
corresponding to the language are considered. The differences in upper bounds
between the two columns are negligible. This leads us to the conclusion that when
linking a Mewsli-9 language, we can use only entities from the corresponding
DaMuEL part and still achieve high recalls.

Another observation we make is that we cannot achieve a perfect recall on
any of the languages. This means that some entities are missing from DaMuEL.
Subsequently, we discovered that if we take the set of all entities of DaMuEL and
the set of all entities of Mewsli-9, only 93% of the entities from the second set are
in the first. A gap of 7% cannot be explained by the fact that the datasets were
gathered three years apart. In fact, DaMuEL is three years younger, so we would
expect it to contain all the Mewsli-9 entities and more. The 5 lowest missing QIDs
are Q83, Q86, Q182, Q514, and Q569. Some of the QIDs are disambiguation
pages (like https://www.wikidata.org/wiki/Q182), while others are not. We
discussed this with one of the authors of DaMuEL, who explained that the omission
of disambiguations is intentional; however, the disappearance of the other entities
is a mistake that they hope to correct soon. To quote from a conversation with
Milan Straka (one of the authors):

One of the things that we deliberately didn’t put in DaMuEL are
disambiguations. For one thing, they’re not real-world entities (al-
though they are entities in terms of Wikipedia), and there shouldn’t
be reasonable mentions of them in the wiki (because the real mentions
in the text should lead to a specific entity, not a disambiguation one
level above it).

19

https://www.wikidata.org/wiki/Q182

Mewsli-9
language

Mentions from
all [%]

Mentions from
the specific part [%]

ar 95.6 95.6
de 96.1 95.9
en 94.3 94.3
es 95.3 95.0
fa 98.3 98.3
ja 96.8 96.7
sr 97.4 97.3
ta 98.6 98.6
tr 96.0 96.0

Table 3.1 Upper bounds on recalls when linking Mewsli-9 to DaMuEL. In the second
column, we use all DaMuEL entities, in the third only entities from the corresponding
language-specific part are used. Our results show that the vast majority of entities from
a particular Mewsli-9 language can be linked to entities in the corresponding DaMuEL
counterpart but not all of them.

Disambiguation pages are only about 69% of missing QIDs, thus we must
look for another reason for the missing entities. After further deliberation with
the authors, we concluded that these pages are missing because the process
that removed non-real-world entities was a bit too aggressive. Both the missing
disambiguations and mistakenly removed entities should be addressed in a new
release, which is, however, not yet available.

Nevertheless, our work’s crucial aim is to create an EL system trained with
freely and easily available data. DaMuEL satisfies this property. Additionally,
because there are plans to address the aforementioned issues, and we already have
plenty of experience with it from our prior work on EL,1 we decided to use it as
our training dataset regardless.

3.2 General Picture of Entity Linking System
In a bird’s eye view, many EL systems (and all those we describe in this and

the following chapter) can be seen as specific instances of a simple yet general
framework. This framework consists of two components:

• a KB that holds information on entities,

• and similarity function s which scores entities and queries.

The most important part of designing a good EL system is to choose a suitable
KB and s.

Although this general framework is simplistic, we encourage readers to bear it
in mind when studying the systems that follow.

1https://github.com/ufal/linpipe/blob/kbelik/doc/dev/kbelik/specification.md

20

https://github.com/ufal/linpipe/blob/kbelik/doc/dev/kbelik/specification.md

Algorithm 1 Link a m to its alias table entity, return NIL when linking fails.
function LinkFromAliasTable(m, table)

if m ∈ table then
return table[m]

else
return NIL

end if
end function

3.3 Alias Table
An alias table is a map connecting an entity name (alias) to an entity. Systems

based on them are simple yet effective. Nowadays, they are mostly used as
baselines or to retrieve candidates for more sophisticated approaches. They are
built on the observation that entity names are often unique.

Let us frame this system in the general view presented in Section 3.2. For
each entity, the KB contains a list of possible names. We call these names aliases.
The scoring function s simply checks whether the entity has an alias that exactly
matches the mention.

Recall that in Section 2.2.1 we explain that Wikidata uses the term alias to
mean an alternative entity name. Here, we use an alias in the same way, but we
would like to emphasize that our aliases are not based on those from Wikidata.
Instead, to create the aliases we iterate over the training data and gather for
each entity all mentions that link to it. This is better because, with large enough
training data, we obtain more aliases than if we utilized those already present in
Wikidata.

In practice, the systems based on alias tables do not represent KB as a map
that connects entities to a list of aliases, but as a map that connects aliases to
their entities. This allows for efficient linking as shown in Algorithm 1.

Thus far, we have not discussed what happens when an alias corresponds to
more than one entity. However, in reality, this happens quite often. Nevertheless,
the solution is simple. Assuming that the train and test data contain a similar
distribution of alias-entity occurrences, we decide to prioritize entities that appear
more often under the given alias. For example, when training on Wikipedia, Paris
occurs more often as the city than the Troyan prince. We then assume that the
same holds for the test. Thus, when an alias table is asked to give an entity for
the mention Paris, it prioritizes the city over the prince.

You may recall that all the systems mentioned in the part on Neural Entity
Linking (Section 2.3) could retrieve multiple entities and rank them. Yet, the above-
described alias table returns at most one entity. To allow for a fair comparison
with other models, we extend alias tables to retrieve more than one entity. To do
so, the condition that each alias maps to just one entity is relaxed. Instead, we
say that it maps to a collection of entities of size at most K, where K is some
predefined constant. This allows us to easily evaluate not just R@1 but also any
R@K. The construction is described in Algorithm 2.

In Section 6.3.1, we use alias tables to compare DaMuEL and Mewsli-9.

21

Algorithm 2 Construct an alias table. Expects d to be a list of alias-entity training
pairs, K specifies how many entities to keep per each alias.

function GetAliasEntityCounts(d) ▷ Expects train data as alias-entity
pairs.

counts ←map with counters
for (a, e) ∈ d do

counts[a].Increase(e)
end for
return counts

end function

function ConstructTableFromCounts(counts, K)
table ←empty map
for (a, counter) ∈ counts do

table[a] ←counter .GetTop(K)
end for
return table

end function

function ConstructTable(d, K)
counts ←GetAliasEntityCounts(d)
table ←ConstructTableFromCounts(counts, K)
return table

end function

3.4 Beyond Exact Matching
An apparent problem of systems based on alias tables is that they link only

when a mention exactly matches an alias. This does not account for the fact that
mentions can be misspelled or inflexed to a form that is not present in the training
data. We propose three attempts to solve this.

3.4.1 Lemmatization
A lemma of a word is its one canonical form. This allows us to group different

forms (plurals, inflections, …). Because of that, we can link a mention even when
we do not have an alias that matches it exactly.

To demonstrate, consider the sentence, “There have been several environmental
disasters in Istanbul so far,” which in Turkish is, “İstanbul’da bugüne dek birkaç
çevre faciası yaşanmıştır.”2 Let us now say that we need to link the mention
denoting the biggest European city to its entity. To achieve it with an alias table,
the mention must be present during training in the same form as given above.
We might have many different forms of İstanbul in our training data, but if none
exactly matches İstanbul’da (meaning in Istanbul), the correct entity cannot be
retrieved. If we mapped everything to corresponding lemmas, we could answer

2We provide our example in Turkish because it uses inflections significantly more than English.
Thus, there is a greater chance that the queried form will not be in the training set.

22

easily assuming that İstanbul appears in any form in the training data at least
once.

Observe that this setting is similar to alias tables (Section 3.3). The represen-
tation of aliases is different, but the scoring function is still looking for an exact
match.

We expect that highly inflexive languages, such as Turkish, Arabic, or those
within the Slavic language family, would benefit from lemmatization. However,
we also anticipate that lemmatization may not perform as well when compared to
the following two alternatives. Hence, we have chosen not to explore this baseline
further.

3.4.2 String Similarity
A different approach from lemmatization (Section 3.4.1) is to keep the KB the

same as for alias tables (Section 3.3) but change the scoring function. The idea is
to use a suitable string similarity metric to compare mentions to their aliases.

The Indel distance (short for insertions-deletions) is defined as the minimum
number of insertions and deletions needed to convert one string to another. For
example floor and flower have an Indel distance of 3 because we can transform
the former to the latter by removing o and adding we. Observe that although the
nouns denote something very different, they appear similar under Indel distance.
This lack of understanding of the meaning is a problem of all approaches we
encountered. We tackle it immediately in the following section.

For our string similarity experiments, we ended up choosing the normalized
Indel distance. For two strings s1 and s2, it is defined as

Indel(s1, s2)
len(s1) + len(s2)

.

We chose this distance due to its simplicity and availability of an efficient
implementation (Bachmann, 2021).

We present our experiments in Section 6.3.2.

3.4.3 Pre-trained Embeddings
Pre-trained embeddings are our most ambitious attempt to improve the alias

table. We use the LEALLA-small model (Mao and Nakagawa, 2023) to embed
mentions and aliases to 128-dimensional vectors and rank them based on the
cosine similarity. To do so, we utilize the ScaNN library (Guo et al., 2020), which
can quickly retrieve similar aliases based on a dot product and works efficiently
with multiple CPUs.

Because the dot product of unit vectors is the same as the cosine of the angle
between them, we L2-normalize the embeddings before feeding them to the ScaNN
index. See Figure 3.1 for an illustration of the process.

One major advantage of embeddings is that they encode semantics. Unlike
earlier approaches, none of which recognize that terms like ”United Kingdom,”
”UK,” and ”Britain” often refer to the same entity.

Our results together with more details about our approach are discussed in
Section 6.4

23

entities

entity
embeddings

mention
embedding

cosine
similarity

Entities ranked by
similarity

-normalization

LEALLA-small

mention + context

-normalization

LEALLA-small

Figure 3.1 An illustration of EL system based on aliases and an embedding model.

Embeddings and Model

How well our alias embeddings encompass semantic information should depend
on the quality of our models. It is natural to expect that all LEALLAs are strong
enough to provide a high-quality embedding on any aliases, thus using the smallest
one for our alias experiments should be enough. However, in Section 6.4.2 we
show that the story is far more complex.

3.5 Precision of ScaNN
Comparing a mention to each alias in the KB takes O(dn) time, where d

represents the embedding dimension and n is the number of aliases. DaMuEL
contains over 30 million entities. Additionally, we usually need to evaluate several
tens of thousands of mentions from Mewsli. Consequently, brute forcing the
similarities is impractical.

For that reason, we use the ScaNN library (ScaNN), which uses quantization to
approximate a solution of maximum inner product search (MIPS). We normalize
the vectors; therefore MIPS reduces to maximizing cosine similarity. Using
approximate searchers in EL is not a new idea (FitzGerald et al., 2021; Plekhanov
et al., 2023).

To investigate the potential decrease in recalls when using the ScaNN library,
we compare brute force search with ScaNN search. We present our results in
Section 6.1.

24

4 Adding Context
So far, we have not yet utilized contexts in our approaches to EL. Nonetheless,

contexts are central to creating a robust system. In this chapter, we explain
bi-encoder models that utilize both the mention and its surrounding context. We
describe our model, compare it to approaches from Section 2.3.1, explain the
training process, and discuss how different hyperparameters influence the results.

4.1 Lightweight Bi-Encoder Entity Disambigua-
tion

Traditionally, bi-encoder models used in MEL require a long time to train.
They are the work of large research teams with abundant resources therefore
for them, the training time is usually not a problem. Below, we provide several
simplifications intending to make the training easier and more accessible.

4.1.1 One Model
Notable prior works use different models for embedding entity descriptions and

mention contexts. This is motivated by the fact that these two can be structurally
and semantically very different. An entity description is a precise text pertaining
to just the entity, whereas the mention context is seldom a description of anything.
Nonetheless, we note that both the mention encoder and the entity encoder need to
obtain similar knowledge during training: given textual data, they need to gain the
ability to distill information that explains well a given mention/entity and encode
this information to an embedding. This motivates our first idea, which is to use
the same model to embed mention contexts and entity descriptions (Figure 4.1).

Using just one model offers several benefits. First, we can train the system
in the traditional setting, where each entity has just one KB description, but if
we need to, we can extend it to the setting, where the index is populated with
mention contexts, not descriptions. This results in an improvement in inference
without the need to work with a large KB of mention contexts during training.
Additionally, this extension makes adding new entities easier because it removes
the need to supply a description of a new entity. Therefore, a user of the system
can add new entities by simply providing mentions of the sought-after entity.
Using just one model also results in a slightly lower memory footprint albeit not
much because we are still required to keep activations to calculate the backward
pass.

On the other hand, one might argue that our model loses the ability to
distinguish between mentions and entities. This could hinder it because the
information it needs to extract from the input might differ for mentions and
entities. However, we disagree and hypothesize that the model can still understand
whether it is presented with an entity description or a mention context, simply
because contexts and descriptions do not look the same. Hence, the model has full
freedom to decide whether it should treat entities and mentions differently. Lastly,
if we were ever to conclude that the model is not strong enough to distinguish the

25

Mention/Entity Encoder Mention/Entity Encoder

mention + context entities

entity
embeddings

mention
embedding

similarity
metric

Entities ranked by
similarity

Figure 4.1 Overview of the proposed bi-encoder. Observe that just one model is
used.

two, and we believed that the ability to distinguish is important, we could always
prepend the text with special tokens.

Note that using one model is not an entirely novel idea in MEL. FitzGerald
et al. (2021) successfully use just one model to build a system, where the KB is
populated with contexts.

4.1.2 Models from a Similar Problem
In the last decade, transfer learning and its subtype fine-tuning brought

tremendous advancements to different deep learning fields (Silver et al., 2016;
Devlin et al., 2019; Tan and Le, 2019). Many prior works on the Mewsli-9 dataset
fine-tune multilingual BERT or BART (M. Lewis et al., 2020). However, since
then, several small models trained for tasks similar to ours have been published.
From those, we chose the LEALLA family (Section 2.4) for all our fine-tuning
experiments. Since these models are trained to align sentence pairs that are
translations of each other, we expect them to converge faster than other more
general models.

Botha et al. (2020) use only the first 4 layers of BERT. We also contemplated
using just the first few layers of LEALLA models, but we decided not to because
the models are already quite small.

4.2 How to Fine-tune a Bi-encoder
In this section, we aim to:

• frame EL as a multiclass classification;

• show how to structure the training examples to make the training efficient;

• explain how to fine-tune our model using backpropagation;

• give details on our fine-tuning regime and some hyparameters we use.

26

mention + context

entity 1

cosine

encoder

entity 2

cosine

...

entity

cosine

logits

encoder encoder encoder

Figure 4.2 A diagram showing how to use bi-encoder to produce logits for softmax.

4.2.1 EL as Multiclass Classification
Multiclass classification is a problem where the task of the model is to assign

an item to one of k ≥ 2 possible classes. We can formulate EL as exactly this type
of problem. The classified item is a mention-context pair (m, c) and the classes
correspond to entities in the KB. Generally, in deep learning, neural networks
tasked with multiclass classification apply a softmax activation function to the
outputs of the last layer. Inputs to the softmax layer are called logits.

We can treat similarities produced by the bi-encoder as logits (Figure 4.2).
Yet, applying softmax to them is not straightforward. To see why, let s be the
vector of similarities, where the i-th element represents the similarity between
queried (m, c) and i-th item in the KB. The softmax of the i-th element of s is
then calculated as

softmax(s)i = esi∑︁|KB|
j=1 esj

.

Evaluating the denominator requires evaluating all the |KB| similarities. Because
a KB often contains millions of entities, evaluating softmax for each training
mention is infeasible. Nonetheless, the softmax’s expansiveness has been long
known and successfully tackled with different approximating tricks (Bengio and
Senecal, 2003; Mikolov et al., 2013).

We follow the approach of Gillick et al. (2018). During training, we do not
calculate logits for the whole KB, instead, we do so only for a small set of entities;
a set that contains one positive (the KB entity corresponding to m) and neg
number of negative entities (different from the one corresponding to m).1

In-Batch Sampled Softmax

The examples we train on must provide a good approximation of the whole
KB, otherwise we get a poor gradient estimate. To decrease the noise of our
estimate, we can always increase neg. However, there is another trick that we
can employ to increase the number of logits per mention. The idea is to utilize
in-batch sampled softmax (Gillick et al., 2018; Henderson et al., 2017) and let
examples in the batch interact. For each mention, our batches contain a positive
and neg negative entities. The number of logits can be easily increased if we allow
calculating similarities with all entities in the batch, not just those collected for
the mention in question. Therefore, for every mention, we get b · (neg + 1) logits,

1How to choose the negatives and what is a good value for neg is discussed later.

27

positive
for

negatives
for

positive
for

negatives
for

positive
for

negatives
for

positive
for

negatives
for

Figure 4.3 The resulting similarity matrix after a batch is fed through a bi-encoder.
Blue corresponds to similarities that the optimizer should maximize, and orange to
those that should be minimized. The softmax would be evaluated per each row. We
used neg = 3 and b = 4 in this illustration.

where b is the batch size. This provides a much better approximation of KB than
the case where we have just neg + 1 logits per mention.

With the in-batch sampled softmax, the model produces a b×b(neg +1) matrix
per batch. The i-th row corresponds to similarities between the i-th mention and
all entities in the batch. See Figure 4.3 for an example.

Loss and Scaling of Similarities

To train our model, we use the cross-entropy objective with scaling

L(s, gold) = − log softmax(scaling(s))gold ,

where s is a row of similarities from the batch matrix, and gold is the index of
the sought-after entity. Please note that we scale our similarities before we put
them through the softmax. Without an appropriate scaling, the model cannot
learn (we demonstrate this in Section 6.5.4). The encompassing idea is to multiply
similarities by some coefficient a, so that they are re-scaled from the range between
−1 and 1 to possibly unbounded logits (or some larger range when a is a constant).
Many prior works also utilize this approach. Some predecessors use a fixed
value for a (Chidambaram et al., 2019; Feng et al., 2022), while others change it
adaptively (Zhang et al., 2019; Gillick et al., 2019). We provide intuition on the
scaling below.

Softmax is bad at capturing small-scale differences. When similarities are
bound to a small range, even a relatively significant difference results only in a
small effect on the softmax-produced probabilities. Let us demonstrate this with
an example. Imagine that we input 512 cosine similarities to the softmax and let
us consider two cases.

1. The model is impossibly confident and predicts a cosine similarity score of
the correct entity to be 0.99 and gives −0.99 to all others.

2. The model is unsure but still predicts correctly. It assigns 0.2 similarity to
the correct entity and −0.2 to all others.

Now, let us compare the corresponding softmax activations. These two cases are
significantly different; hence we would expect softmax activations to also differ.
However, that does not happen.

28

1. In the first case, the softmax assigns the probability 1.4% to the correct
entity and 0.19% to each of the others.

2. In the second, we get 0.29% for the correct entity and 0.2% for the rest.2

In both cases, the model appears extremely uncertain. This is in stark contrast
with the fact that in the first example, the model cannot possibly separate the
entities more.

Now let us examine the case, when we multiply all similarities by a scaling
multiplier. We use 10 in the following calculation, but as we show in Section 6.5.4,
the exact value is not that important.

1. Suddenly, we obtain a vector where the probability of the correct entity
nears 100 and all others are close to 0.

2. Here the values are still close to each other, thus, capturing the inability of
the model to decide, yet the positive entity is much strongly separated from
the herd. We have 9.65% for the correct entity and 0.18% for the rest.

Thus, the scaled softmax gives a better representation of the model’s confidence.
We have yet to cover why it is important that the softmax captures confidence

well. This can be easily understood when we examine the gradient update. For
this, let us step aside from scaling and imagine a general classifier f(x | θ).
Assume that the model output is passed through a softmax activation and that
the model is trained using cross-entropy. For readability, we use z = f(x | θ) and
o = softmax(z). By the chain rule, we get for some parameter θi,

L(o, gold)
∂θi

= L(o, gold)
∂z

z

∂θi

.

Using the formula for cross-entropy and softmax, we can simplify the first term
and obtain

L(o, gold)
∂θi

=
(︂
o− 1gold

)︂ z

∂θi

,

where 1gold is a vector with 1 at the gold index and 0s everywhere else.3
From the above formula, we see that the confidence of the model influences

the difference between o and 1gold , which then affects the gradient. The result is
that the model learns more from the examples, where it is unsure or incorrect.
Learning more from incorrectly predicted examples speeds up training, which is
why the scaling factor is important.

To wrap this up, we use scaling to overcome the fact that cosine similarities
are bound to a small range. Gillick et al. (2019) learn the scaling factor. We
observe that the exact value of the scaling is not important (Section 6.5.4), as
long the scaling factor is large enough to push the similarities apart. Hence, we
decided not to introduce additional complexity in the model, and we use a fixed
value.

You can see a diagram of the system with in-batch sampled softmax and
similarity scaling in Figure 4.4.

2The given probabilities for both of the cases do not sum exactly to 100. This is because we
do not want to clutter the text with too many decimals.

3You can find more detailed derivation of this formula in: https://ufal.mff.cuni.cz/
~straka/courses/npfl138/2324/slides/?03#63.

29

https://ufal.mff.cuni.cz/~straka/courses/npfl138/2324/slides/?03#63
https://ufal.mff.cuni.cz/~straka/courses/npfl138/2324/slides/?03#63

mention + context

entity 1

cosine

encoder

entity 2

cosine

...

entity

cosine

logits

encoder encoder encoder

scaling scaling scaling

Figure 4.4 A diagram showing how to produce logits for in-batch sampled softmax.
The cosine similarities are scaled to enable learning.

Hard Negative Mining

In ED, it is possible to attain fairly high recalls just by comparing the mention
with entity labels, as showcased by our experiments with alias tables (see Sec-
tion 6.3.1). We hypothesize that the bi-encoder learns exactly this when presented
with random negatives. As a consequence, it disregards the context completely.
For this reason, we need to use a bit more sophisticated approach when sampling
negatives to a batch. To force the model to exploit the contextual information, we
utilize hard negative mining (Gillick et al., 2019). The idea is to train the model
on examples that it finds to be very similar (hard).

When building negatives for a particular mention and context, we embed them
with the encoder, search for the most similar entities different from the entity of
the mention, and use them as the negatives. To retrieve the negative entities, we
utilize the ScaNN index, which holds embeddings of the whole KB. However, the
creation of an index is time-consuming: it requires embedding all entities, and
non-trivial time for the ScaNN library to construct the searcher. Thus, we cannot
keep the index up to date with the encoder. Instead, the index is rebuilt only a
few times during the training.

Gillick et al. (2019) mine only the entities that get higher cosine similarity
than the gold entity. In our work, we employ a more elaborate sampling scheme
which we describe in Section 5.2.1. Another notable difference is that we introduce
hard negative mining from the beginning of training because our model is already
pre-trained to align sentence pairs (Section 4.1.2). Prior works use it only during
the later stages of fine-tuning when the model acquires a sufficient understanding
of the task.

4.3 Choosing Hyperparameters
Several hyperparameters influence the quality of our system. In this section,

we describe experiments that explore various settings.

30

4.3.1 Rebuilding the Index
The longer the model trains, the better negatives it should produce during

hard negative mining. Gillick et al. (2019) show that the first index rebuild has a
great impact on the quality of negatives and that the effect of subsequent rebuilds
quickly diminishes. We provide the results of our experiments in Section 6.5.1.

4.3.2 Batch Size and Queried Negatives
Batch size is a crucial hyperparameter in any deep-learning pipeline. Here, the

significance is even greater because it directly influences the number of entities to
which a mention is compared during training.

Together with the batch size, we also aim to evaluate the effect of neg, the
number of sampled negatives. This parameter has a similar role as batch size
because it also influences the number of seen entities, yet in a different way. The
value of neg influences the number of similar entities for each of the mentions,
whereas batch size makes the set of entities to which we compare more diverse.

The results of our experiments, which involved varying batch sizes and the
neg parameter, are detailed in 6.5.2 and 6.5.3, respectively.

4.3.3 Model Comparison
The LEALLA-family has 3 models of various sizes (Table 2.1). It is natural

to expect an increase in performance as the capacity of the model increases. We
investigate this in Section 6.5.4

4.4 Cross-Lingual Transfer
There are over seven thousand living languages.4 This linguistic diversity poses

a significant challenge for any NLP task one might want to solve for multiple
languages. Even gathering training data for a small subset of the languages can
be daunting. One viable solution is cross-lingual transfer, a method based on
the assumption that a multilingual model represents various languages within a
unified semantic space.5. As noted by Macková and Straka (2020), the network is
incentivized to represent similar languages with the same part simply because it
saves some capacity. Generally, this should allow us to take a multilingual model
trained on languages A and B, fine-tune it on a task only in A, and then use it to
solve the task in B. Studies have validated the effectiveness of this approach on
EL (Schumacher et al., 2021) and many various other tasks (Pires et al., 2019;
P. Lewis et al., 2020).

In our case, we do not lack training data for the languages we plan to evaluate
on. Nonetheless, for us, the important benefit of cross-lingual transfer is that it
saves time during training. When training in just one language, we deal with a
noticeably smaller index and fewer mentions. Thus, we are interested in exploring
if training on one language and evaluating on the whole Mewsli-9 benchmark

4According to Ethnologue: Languages of the World there are 7,164 living languages today.
https://www.ethnologue.com/

5Not to be confused with cross-lingual entity linking from Section 2.1.6

31

https://www.ethnologue.com/

produces competitive results. We evaluate this idea in Section 6.6. We would like
to emphasize that in our approach, we still use at least some entity representations
from the unseen languages during evaluation, however, we do not train on them.

32

5 Infrastructure
In this chapter, we describe the most important components of our infrastruc-

ture.

5.1 Tokenization
Before we can feed a text to LEALLA, we tokenize it with the appropriate

tokenizer. We use a fixed number of tokens for both descriptions and contexts.
When the corresponding text is too short, we pad the tokenizer’s output. We
adopt slightly different schemes for tokenizing descriptions and mentions with
context.

5.1.1 Descriptions
All our descriptions of entities consist of two parts: a label and a description.

The description part is either the start of the corresponding Wikipedia page or its
Wikidata description. We prioritize pages over descriptions because the former
contains much more information. However, the page is not always available. The
label is marked with special tokens — [M] — and concatenated to the description
part. The resulting string input to the tokenizer then looks like this:

“[M]Chancellor (Poland)[M] Chancellor of Poland (Polish: Kanclerz -
Polish pronunciation: [...], from Latin: cancellarius) was one of the
highest officials in the historic Crown of the Kingdom of Poland. This
office functioned from the”

5.1.2 Mentions with Context
All the datasets we work with represent mentions in the form of a text and

a mention span. We add [M] tokens around the mention and include as many
preceding and following characters (the context) as needed to obtain the chosen
number of tokens. Often in our data, one text contains multiple different mentions
(for example a Wikipedia page with many links), thus, we can save some time by
tokenizing the text only once and adding the [M] tokens as needed.

We aim to put the mention in the middle of the extracted text so that the
result contains information preceding and succeeding the mention. Nevertheless,
putting it in the middle is not always possible, because there might not be enough
tokens on one of the sides. Therefore, whenever the context window overlaps with
the text’s start or end, we try to enlarge it to the other side.

A mention corresponding to the example entity from Section 5.1.1 might look
like

“(and sejmik) who presided over the proceedings and was elected
from the body of deputies evolved in the 17th century.) Next, the
[M]kanclerz[M] (chancellor) declared the king’s intentions to both
chambers, who would then debate separately till the ending ceremonies.
After 1543 the”

33

Embed
descriptions for

index
Build index Generate training

epochs

Fine-tune model

Evaluate

Description
tokens

Embed
descriptions for

index

Embed evaluation
mentions

Training
mentions

Evaluation
mentions

Evaluation

Training

Figure 5.1 The diagram contains the training part and the evaluation part. All steps
requiring a ScaNN searcher are marked red, and those working with the embedding
model are marked blue.

5.2 Fine-tuning
The fine-tuning consists of multiple steps (Figure 5.1). The majority of those

steps concern itself with the construction of training examples. In Section 4.2.1
we describe how we employ hard-negative-mining to get negative examples for the
batch. This requires having an index that can efficiently retrieve those negative
examples.

A typical fine-tuning procedure thus consists of the following steps:

• index construction;

• batch construction;

• fine-tuning.

The quality of the negative examples from the index directly depends on the
quality of the model. Therefore, the above steps are repeated multiple times.
Later, in Section 6.5.1 we explore what number of rounds is optimal.

Below, we describe the above-mentioned steps in more detail.

5.2.1 Index
Our goal is to have a data structure that takes embeddings of some mention

with context and returns tokens of the most similar entity descriptions. To achieve
our goal, we use an instance of a ScaNN index, which we wrap to a class that
facilitates the embedding→ tokens querying.

34

Algorithm 3 Query negatives for batch construction. The input should consist of an
embedding of mention with context, the corresponding QID, the requested number of
negatives, and the retrieval parameter k. Returns the tokens of neg entities.

function QueryNegatives(emc, qid, neg, k)
neighbors ←RetrieveNegativesFromScaNN(emc, k, qid)
neighbors ←RemoveDuplicates(neighbors)
while Len(neighbors) < neg do

k ←2 · k
neighbors ←RetrieveNegativesFromScaNN(emc, k, qid)
neighbors ←RemoveDuplicates(neighbors)

end while
return SampleTokens(neighbors, neg)

end function

function RetrieveNegativesFromScaNN(emc, k, qid)
neighbors ←RetrieveNeighborsFromScaNN(emc, k)
return FilterNegatives(neighbors, qid)

end function

A typical query (Algorithm 3) consists of an embedding, its QID, neg, and k;
the expected answer contains tokens of negative entity descriptions.

For training, we want the entities that are shown to the model to be as diverse
as possible. For this reason, we do not retrieve the neg most similar entities, but
we instead do this in a two-step fashion. First, we retrieve the k most similar
items from the ScaNN index. From them, we sample uniformly at random without
replacement the required neg entities.

Note that in (Algorithm 3) we remove occurrences of neighbors that correspond
to the same entity (with calls to RemoveDuplicates). Currently, we prevent
multiple occurrences of the same entity in the index by limiting the number of per
entity representations to one during training, thus RemoveDuplicates does not
do anything. However, in future work, we plan to explore systems that use more
than one description per entity (these are often sourced from different languages).
This slightly complicates the query execution. If we executed the query naively,
the returned neg items might contain multiple instances that correspond to the
same entity. To demonstrate this with an example, imagine we have an index
with descriptions gathered from all Wikipedias, and we are constructing negative
examples for mythical Paris. The above-described query can easily return 20
almost identical descriptions of Paris-city, albeit in 20 different languages. This
might teach the model the difference between the city and the mythological figure,
but it does not give any information on the similarity to the socialite Paris Hilton.
For efficient training, we hypothesize that seeing a greater number of different
entities is better. Therefore, before we sample negatives, we remove successive
occurrences of the same entity from the result of the ScaNN query.

It is possible that after we filter out the successive entities, we are left with
less than neg entries. When this happens, we multiply k by two. We repeat this
process until we get the desired number of negatives.

35

5.2.2 Generating and Fine-tuning
For simplicity, we split batch construction and fine-tuning into two distinct

steps, although we acknowledge that they could run together, which would offer
different runtime-memory tradeoffs.

When generating batches, training mentions are embedded with the current
best version of the model. For each mention, a required number of positives and
negatives is retrieved from the index. A batch consists of the following triplets:

• tokens of mentions,

• list of tokens of positive and negative entities,

• matrix of targets; each row of the matrix is a probability distribution
(corresponds to the matrix from Figure 4.3).

Finally, batches are concatenated into epochs, which are compressed and saved to
disk.

During fine-tuning, we process the epochs produced in the previous step.
We train our model using PyTorch (Ansel et al., 2024). In all our experiments
we optimize with Adam (Kingma and Ba, 2014) and the following parameters:
lr = 1 · 10−5, β1 = 0.9, and β2 = 0.999.

5.2.3 Evaluation
During evaluation, the model is used to embed descriptions and evaluation

mentions. To find the most similar entity, we try to utilize ScaNN and brute force.
To make the brute-force efficient, we approach calculating similarities as a matrix
multiplication with queries in one matrix and entities in the other. This allows
us to calculate similarities in parallel on a GPU. We also tune the parameters of
ScaNN to make it more precise at the cost of some slowdown.

5.3 Implementation
All our code can be obtained from GitHub.1 Additionally, for archival purposes,

we provide the same code as a supplement to this thesis.
The root of the repository contains README.md, the required Python packages

in requirements.txt, and directories src and tests. In src/finetunings, we
provide our fine-tuning pipeline. It contains several subdirectories that roughly
correspond to the setup we gave in this chapter. For running the fine-tuning,
please consult src/run_finetuning.sh and src/run_finetuning_round.sh.

Apart from the fine-tuning pipeline, we also provide an implementation of
the mention-only approaches from Chapter 3. The majority of those can be
found in src/baselines or src/scripts. The former also contains scripts for
calculating the upper bounds and intersections, whose results are in Section 3.1
and Appendix A.1. The remaining directories in src contain data structures and
some utility functions that are required for our experiments.

1https://github.com/Yokto13/multilingual-entity-linking

36

https://github.com/Yokto13/multilingual-entity-linking

All our code runs under Python version 3.10.12;2 some scripts also require
PySpark version 3.5.0.3

2https://docs.python.org/3.10/index.html
3https://spark.apache.org/docs/3.5.0/

37

https://docs.python.org/3.10/index.html
https://spark.apache.org/docs/3.5.0/

6 Results and discussion
6.1 ScaNN vs Brute-force

To see how much precision we lose due to ScaNN, we propose a simple
experiment. We embed entity labels from DaMuEL and all Mewsli-9 mentions
with the plain LEALLA-base model. Then, for each mention, we retrieve the
closest entity label either using ScaNN or brute force. We run this experiment for
each language separately (mentions from one Mewsli-9 language are compared
only to entities from the corresponding DaMuEL language). This ensures that we
have at most one representation per entity, and we do not have to resolve conflicts
that naturally arise every time an entity has a label in more than one DaMuEL
language. We use this baseline experiment once more in Section 6.6.1, where we
describe it in more detail.

The larger the language, the harder it is to brute force it without encountering
problems with the GPU’s memory (see Section 5.2.3 for details on brute force).
Therefore, to make our computation easier, we skip brute-force evaluation for
English and German. We present the results in Table 6.1. Losses from using
approximate searching are minimal. Consequently, we see ScaNN as sufficient for
our experiments and we use it for all subsequent evaluations.

6.2 LEALLAs vs LaBSE
In Section 2.4 we described several models for producing text embeddings:

LaBSE and LEALLA family. We note that LaBSE might be faster even though it
has several times more parameters than LEALLAs. Here, we explore this in more
detail.

One could erroneously assume that LEALLAs, having fewer parameters, should
be faster. However, a careful examination of the LEALLA paper reveals that the
models have more layers than LaBSE. LEALLA’s authors observe that on their
task, a deep architecture with relatively small layers yields better results than a
shallow architecture with larger layers. Consequently, their models are smaller
than LaBSE in terms of parameters, but contain two times more layers, making
the forward pass slightly more expensive (see Table 6.2 for results). On the other
hand, the smaller number of parameters of LEALLA models allows for running
them with larger batch sizes, which makes our speed comparison inconclusive.

In this and all other experiments, we use models hosted on Hugging Face.1

6.3 DaMuEL as Entity Linking Dataset
In Section 3.1 we noticed that DaMuEL lacks some entities that are present

in Mewsli-9. Since DaMuEL has not yet been used in a publicly available EL
system, we do not know how much the missing entities might affect performance.
Hence, in this section, we compare it using the alias table (Section 3.3) to the

1https://huggingface.co/

38

https://huggingface.co/

Language ScaNN Bruteforce
R@1 R@10 R@1 R@10

ar 66.3 84.1 66.3 84.3
es 58.9 77.8 58.9 78.2
fa 66.5 82.4 66.7 82.4
ja 66.5 78.2 66.6 78.4
sr 58.2 88.4 58.2 88.6
ta 63.7 76.8 63.8 77.4
tr 71.4 85.4 71.5 85.7

Table 6.1 Baseline With Labels Section 6.6.1 evaluated using ScaNN and bruteforce.

Model bs 4096, time [ms] bs 16384, time [ms]
LEALLA-small 1961 1752
LEALLA-base 1972 1770
LEALLA-large 1980 1788
LaBSE 1861 OoM

Table 6.2 LEALLAs and LaBSE: time needed to embed all 56716 mentions from
the Spanish part of Mewsli-9 for two different batch sizes. Each mention consists of 64
tokens. We ran each experiment 3 times, averaged the result, and rounded it. Running
LaBSE with the large batch size was unsuccessful and raised an out-of-memory error.
Only the time needed to pass the data through the model is shown. In reality, much
more time is spent on extracting mentions of the right size, their tokenization, and batch
construction. All experiments used NVIDIA GeForce RTX 3090 (24 GB) and PyTorch.

foundational work by Botha et al. (2020). Our results show that DaMuEL is
comparable in regard to R@1 but lacks in R@10. To our knowledge, we are the
first to undertake a comprehensive analysis of DaMuEL in this manner.

Additionally, apart from evaluating the alias table in Section 6.3.1 we also
experiment with the string similarity baseline from Section 3.4.2 in Section 6.3.2.

6.3.1 Alias Table
We use an alias table described in Section 3.3 to evaluate DaMuEL with

Mewsli-9. We aim to find out how well DaMuEL compares to the unpublished
training data from the Mewsli paper.

We extract aliases from each of the 53 specific DaMuEL parts by processing
all the links (see Section 2.2.5 for refresh of DaMuEL’s structure) and adhering to
the following points:

• To allow fair comparison, we use only mentions with links originating in
Wikipedia, not those added by DaMuEL’s authors.

• Less than 10 mentions were defined as empty strings. We examine these
by hand and find out that the corresponding Wikipedia text contains some
unusual special characters. We expect that these characters broke the
tokenization process of DaMuEL so that the span does not correspond to a
mention. Because these mentions are a tiny fraction of the dataset, we skip
them.

39

Language DaMuEL EL100
R@1 R@10 R@1 R@10

ar 87.4 89.7 89.0 93.0
de 86.3 90.3 86.0 91.0
en 77.6 84.6 79.0 86.0
es 82.4 89.0 82.0 90.0
fa 72.9 76.8 87.0 92.0
ja 82.7 89.2 82.0 90.0
sr 87.2 90.3 87.0 92.0
ta 81.2 82.8 79.0 85.0
tr 81.7 88.3 80.0 88.0
micro-avg 82.7 88.2 82.8 89.4
macro-avg 82.2 86.8 83.4 89.7

Table 6.3 DaMuEL compared to EL100 on Mewsli-9 using the alias table.

We create one table from the extracted aliases, which we use to link all mentions
from all Mewsli-9 languages. We calculate both R@1 and R@10. Our results are
presented in Table 6.3.

In R@1 DaMuEL seems to be on par with the dataset from Botha et al. (2020).
In R@10 it is outperformed. We believe that the underperformance on R@10 can
be explained by the missing entities (see Section 2.2.5 for details). A significant
part of them are disambiguations, which should influence R@10 much more than
R@1.

Note the surprisingly weak performance of DaMuEL in Persian. Our initial
assumption was that there are problems with charsets. Therefore, we normalized
Persian with Parsivar (Mohtaj et al., 2018) but to no avail. Later, our poor results
with LEALLA-based embeddings alias tables (Section 3.4.3) allowed us to reject
the normalization. Word embeddings should be invariant to charsets, yet the
Persian with embeddings is still significantly worse (results in Section 6.4). There
is also a possibility, which we do not explore, that the Persian in DaMuEL is
preprocessed in some way that even the LEALLA’s tokenizer is baffled.

Interestingly, the Persian is the smallest Mewsli-9 language. It contains a mere
535 mentions, which is less than 0.2% of all Mewsli-9, therefore evaluating on it
might be noisy. We hope to explore this in future work on DaMuEL.

Additionally, we provide evaluations of R@K for K > 10 and results with
uncased aliases in Appendix A.2.

6.3.2 String Similarity
For the string similarity baseline (Section 3.4.2) we use normalized Indel

distance from RapidFuzz (Bachmann, 2021), which is a fast string matching
library for C++ and Python that builts on top of FuzzyWuzzy.2

We construct the table per language to save some computational resources
during the evaluation. This means that the aliases for a table for German are
constructed only from mentions from the German part of DaMuEL, etc. We call

2The original FuzzyWuzzy library can be found here: https://github.com/seatgeek/
fuzzywuzzy.

40

https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy

Language String similarity OLAT Difference
R@1 R@10 R@1 R@10 R@1 R@10

ar 89.7 93.5 87.5 89.6 2.2 3.9
de 88.6 92.8 86.0 89.1 2.6 3.7
en 80.2 88.6 77.1 83.8 3.1 4.8
es 83.8 90.4 81.8 87.4 2.0 3.0
fa 75.7 80.0 71.6 75.3 4.1 4.7
ja 85.4 93.5 82.7 89.1 2.7 4.4
sr 89.3 92.7 86.4 88.8 2.9 3.9
ta 90.1 94.2 81.2 82.8 8.9 11.4
tr 85.2 92.7 81.0 87.0 4.2 5.7

Table 6.4 Results for the alias table where string similarity metric is used instead
of an exact match. We evaluate on languages from Mewsli-9. OLAT denotes the one
language alias table; it serves as a baseline to see how much of an improvement string
similarity brings.

such alias tables one language alias tables to emphasize the difference to other
alias table experiments where we use all DaMuEL languages. Observe that when
gathering aliases, we process each language separately but otherwise use the same
process as in Section 6.3.1.

Querying a mention by calculating similarities to all aliases is expensive.
However, from Table 6.3 we note that the majority Mewsli-9 queries can be
answered by exact match (this corresponds to the Indel distance of 0). Therefore,
we evaluate string similarity only for mentions we cannot solve by matching
exactly.

To validate our string similarity results we cannot use the values from Table 6.3
because that alias table is constructed using all DaMuEL languages. Hence, we
also compute an alias table per each of the nine Mewsli languages. We use the
term one language alias table (OLAT) to distinguish it from the alias table from
Section 6.3.1.

We show the results of the string similarity in Table 6.4. We observe relatively
consistent improvements across all languages except for Tamil, where the improve-
ment is much larger than for the other languages: 8.9 (R@1) and 11.4 (R@10).
Interestingly, on Tamil, our simple baseline beats by two points the bi-encoder
model from the Mewsli-9 paper (Botha et al., 2020).

6.4 Pre-trained Embeddings
Here, we evaluate the alias table improved with pre-trained embeddings as

described in Section 3.4.3.
We again evaluate per language. Consequently, we call our approach one

language pre-trained embeddings alias table (OLPEAT). We gather the aliases
the same way as in the string similarity experiment (Section 6.3.2). After that,
we embed them with LEALLA-small to 128-dimensional vectors. We evaluate on
all Mewsli-9 languages and use ScaNN (Guo et al., 2020) to find the most similar
alias embeddings.

We present the results in Table 6.5. Generally, languages with a smaller number

41

Language OLPEAT OLAT Difference
R@1 R@10 R@1 R@10 R@1 R@10

ar 90.1 93.3 87.5 89.6 2.6 3.7
de 88.8 92.9 86.0 89.1 2.8 3.8
en 80.1 88.2 77.1 83.8 3.0 4.4
es 83.9 90.3 81.8 87.4 2.1 2.9
fa 83.7 89.7 71.6 75.3 12.1 14.4
ja 85.2 92.6 82.7 89.1 2.5 3.5
sr 91.1 95.0 86.4 88.8 4.7 6.2
ta 91.2 95.5 81.2 82.8 10.0 12.7
tr 86.0 93.3 81.0 87.0 5.0 6.3

Table 6.5 Results for one language word embeddings alias table (OLPEAT) on
Mewsli-9. We compare it with the standard alias table built separately for each language
(OLAT). OLPEAT items were embedded with LEALLA-small. ScaNN was used for the
comparison.

Language String similarity OLPEAT
R@1 R@10 R@1 R@10

ar 89.7 93.5 90.1 93.3
de 88.6 92.8 88.8 92.9
en 80.2 88.6 80.1 88.2
es 83.8 90.4 83.9 90.3
fa 75.7 80.0 83.7 89.7
ja 85.4 93.5 85.2 92.6
sr 89.3 92.7 91.1 95.0
ta 90.1 94.2 91.2 95.5
tr 85.2 92.7 86.0 93.3

Table 6.6 String similarity (Section 6.3.2) compared to one-language-pre-trained-
embeddings alias table (Section 6.4).

of aliases perform better. This seems reasonable because in those languages it is
less likely that an entity label appears in all possible morphological variations. In
Section 3.4 we hypothesize that highly inflected languages should get a greater
performance boost. However, our results do not seem to neither prove or disprove
it; both Turkish and Serbian perform well, yet an improvement in Arabic is small.

6.4.1 String similarity vs Pre-trained Embeddings
In Section 3.4 we discuss different approaches for improving alias tables. We

experimented with the two we deem the most promising above. In this part, we
briefly compare them. See Table 6.6 for the results.

The embedding-based system demonstrates superior performance. Notably,
string similarities only outperform embeddings in Japanese. This can be potentially
attributed to the complexity of the Japanese script. Calculating Indel distance
remains consistent across different scripts, so it should not matter as much whether
we do it for Japanese, Spanish, or Serbian. On the other hand, for a deep learning
model, the effectiveness of text embeddings for Japanese significantly relies on

42

Model R@1 R@10
LEALLA-small 83.9 90.3
LEALLA-base 83.9 90.3
LEALLA-large 64.7 70.2

Table 6.7 Comparison of different LEALLA models on OLPEAT in Spanish. Contrary
to our expectation the the large model trails significantly behind the other two.

how much and how well it is represented in the training dataset. It is possible
that LEALLA-small was not exposed to Japanese to the extent that it completely
understands the complexity of the script.

The approach utilizing embeddings outperforms others not only in recalls but
also in efficiency. Excluding the time needed to embed DaMuEL, none of the
evaluations with OLPEAT exceed three hours. In contrast, evaluations based on
string similarity for larger languages, such as German or English, require more than
12 hours.3 However, it is important to note that such a comparison is somewhat
biased against string similarity, as it overlooks the nonnegligible time required to
generate the embeddings and the huge time to train the LEALLA-small model.

6.4.2 Comparing Models in Spanish
To find out whether the choice of model influences results on the OLPEAT (Sec-

tion 6.4) approach we evaluate for Spanish also with other LEALLA models. The
results (Table 6.7) surprise us. Naturally, one would expect that a model with
a larger number of parameters would be slightly stronger than a one with less.
Yet, our results point in the opposite direction. The smallest model and the base
model score both high in R@1 and R@10, and the largest model is outperformed
by a large margin by both of its peers. We did not find out what the reason is for
the weak performance of LEALLA-large. However, we encounter this phenomenon
again during fine-tuning in Section 6.5.5.

6.5 Hyperparameter search
In this section, we report the results of our search for the best hyperparameters.
We use the fine-tuning setup from Section 5.2. To decrease the size of the

index and make the whole fine-tuning pipeline faster, we train only on the Spanish
part of DaMuEL and evaluate on the Spanish mentions from Mewsli-9. We chose
Spanish due to its substantial yet still smaller data size than English, and because
we have a basic proficiency in the language, which facilitates easier debugging.

Additionally, in this particular section, we decided to exclude from our KB all
the entities that do not have a Wikipedia page. There are multiple reasons to do
so. Perhaps the most important one is that it makes any operation with the index
substantially faster. Also, all links inside a specific DaMuEL part always lead to
a Wikipedia page. Thus, we cannot see an entity that does not have a Spanish

3With the exception of English both OLPEAT and string similarity evaluations were conducted
on a single machine equipped with 30 Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz. The
English language, which required more memory, ran on a machine equipped with 20 Intel(R)
Xeon(R) Gold 6230 CPU @ 2.10GHz.

43

context size 64
steps per 1st round 2 · 104

steps per 2nd and subsequent rounds 105

logit multiplayer 50
retrieval parameter k 100

Table 6.8 Hyperparameters shared across all our experiments.

page as a positive example during training (interestingly, one could still learn
about non-page entities because they can be mined as hard negatives). Moreover,
we would like to remark that omitting Wikidata items without a page is not
uncommon. For example Botha et al. (2020) and De Cao et al. (2022) remove
any items without a page from their entire training. However, it is important to
note that the aforementioned works used KBs constructed from more languages
than Spanish. Consequently, more entities had a page in at least one language,
thus the omission might not cost them much. Lastly, we observed that from
the Mewsli-entities that have a corresponding entity in Spanish DaMuEL only
around 2% cannot be disambiguated to a Spanish Wikipedia page. Therefore,
we concluded that tuning hyperparameters only with entities with a page is a
sufficient approximation of the classical task, in which we would build a KB from
all possible Spanish entities. We would like to add that we later train on all the
entities in Section 6.6.

Some parameters are the same for all fine-tuning experiments; we present
these in Table 6.8. Note that we use a different number of steps for the first
and subsequent rounds of fine-tuning. In our experience, the learning converges
quickly in the first round because the batches are simple to solve. We chose these
numbers of steps because we did not qualitatively see any improvement in recalls
when training longer.

6.5.1 Index Rebuilding
Here, we evaluate what is the optimal number of index rebuilds in our settings.

We use a batch size of 32 and query 7 negative descriptions per mention.
Our results (Figure 6.1) show that in our regime four to five rounds are

enough for the recall to stabilize (corresponds to 520 · 103 learning updates). The
biggest improvement is after the first round, where the model most likely learns
to disambiguate based on the mention and entity label, and the recalls jump
from values around 5% to around 70%. This is comparable to recalls we can
get by embedding entity labels and using them as KB entries (Table 6.10). The
second round gives another performance boost. In the subsequent rounds, the
improvement in recall quickly diminishes.

The performance of our model without any fine-tuning — which corresponds
to round 0 in Figure 6.1 — is worse than we initially anticipated. When context
is involved, aligning entities and mentions is hard (see Appendix A.3 for detailed
evaluation). This is not a significant problem because the model quickly improves.
However, it does mean that the hard negatives are of low quality until the index is
first rebuilt with the fine-tuned model. If we had better hard negatives, we could
likely learn even faster. Therefore, we propose a simple improvement, which we,

44

0 1 2 3 4 5 6 7 8
round

0

20

40

60

80

re
ca

ll
[%

]

R@1
R@10

Figure 6.1 Experiment evaluating the required number of finetuning rounds. We
start indexing rounds at 1 and evaluate when each fine-tuning round finishes. The 0th
evaluation corresponds to evaluation without any training. The greatest improvement
is after the first two rounds, then the curve flattens.

however, do not evaluate in this thesis: during the initial round, it is better to
mine the hard negatives based solely on the mention, disregarding the context.
Sections 6.4 and 6.6.1 speak for this approach because they demonstrate that the
model can align mentions and entity names well even without training.

In Figure 6.2 we provide a figure from Gillick et al. (2019), which is similar to
ours. The plot has a familiar shape, but a direct comparison is impossible due to
the fact that our approach differs in data, the underlying model, and slightly in
the training procedure and round-stopping condition.

6.5.2 Batch Size
We experiment with five different batch sizes (4, 8, 16, 32, 64) and always

use neg = 7. Our results are in Figure 6.3. Unsurprisingly, we see that recall
increases when the batch size grows. With our batch sizes, we do not reach a
point where an increase in batch size does not produce an increase in recalls. Yet
we can see that gap between recalls decrease, and from it we conclude that there
exists a batch size where the model saturates. However, this batch size can be
quite large. When training bi-encoders it is not uncommon to use batches with
several thousand mentions (for example Botha et al. (2020) and FitzGerald et al.
(2021) use 8192 while training a model similar to ours).

Another thing to note in this experiment is that the fine-tuning is quite stable.
Even with the batch size of 4, the model trains well, and after five rounds it is
only approximately 2 points worse than the best model.

We also experimented with a batch size of 1, which proved to be insufficient,
and the model did not train.

45

40%

60%

80%

100%

0 1 2 3 4 5

Figure 6.2 Experiment evaluating the required number of hard negative mining rounds
from Gillick et al. (2019). The solid line corresponds to R@1 at the Wikinews (Gillick
et al., 2019) dataset and the dashed at TACKBP-2010 (Ji et al., 2010). A direct
comparison with our result is impossible because the paper uses a different dataset and
the condition that decides when to rebuild the index is different. Also, their model is
trained with random negatives before the start of hard negative mining. Nonetheless,
the shape is similar to ours.

6.5.3 Number of Hard Negatives
Apart from the default neg value of 7, we also experiment with neg = 3 and

neg = 15. We present our results in Figure 6.4.
Although it clearly holds that both higher batch size (which we denote as

b in this subsection) and neg improve recalls, the striking observation is that
for R@1 it nearly does not matter which one of those we increase. All that is
important is the number of entities to which a mention is compared. Recall that
after feeding a batch through the system, we are left with b× b(1 + neg) output
matrix (Figure 4.4). It seems that the number of columns of this matrix is a
decent indicator of the success we can expect at R@1.

To be more specific, let us observe the results of our experiment. In the
evaluation for R@1, the curve corresponding to the b = 16 and neg = 7 is nearly
the same as for b = 32 and neg = 3. Both output matrices contain 128 similarities
per each mention. Similarly, the curves for neg = 15, b = 32 and neg = 7, b = 64
are very close, albeit here the higher batch size starts to dominate. Interestingly,
for R@10 the picture is different and the larger batch size wins.

Notice that the number of columns of the matrix is linear in both b and neg,
but the number of items is quadratic in b and linear in neg. This leads to an
important result. When working with constrained resources where memory is
scarce, it might be better to increase neg over the batch size.

46

1 2 3 4 5
round

60

65

70

75

80

85

R@
1

[%
]

4
8
16
32
64

1 2 3 4 5
round

80

82

84

86

88

90

R@
10

 [%
]

4
8
16
32
64

Figure 6.3 Results of experiments varying the batch size for R@1 and R@10. There
is a consistent improvement in both R@1 and R@10 when increasing the batch size.

2 3 4 5
round

75
76
77
78
79
80
81
82
83
84
85

R@
1

[%
] neg=3, b=32

neg=7, b=8
neg=7, b=16
neg=7, bs=32
neg=7, b=64
neg=15, b=32

2 3 4 5
round

85

86

87

88

89

90

91

R@
10

 [%
]

neg=3, b=32
neg=7, b=8
neg=7, b=16
neg=7, bs=32
neg=7, b=64
neg=15, b=32

Figure 6.4 Results of experiments varying the batch size and neg for R@1 and R@10.
We compare multiple different values of the batch size and the number of negative
descriptions retrieved from the index. Note that the x-axis starts from the second round;
this is to gain enough precision on the y-axis so that all the small differences can be
observed.

6.5.4 Logit Multiplier
In Section 4.2.1 we explain why scaling the cosine similarities helps the model

to learn. Here we present results (Figure 6.5) of several experiments with varying
logit multipliers.

The takeaways from our experiments are the following:

• Without a suitable logit multiplier, the model fails to learn.

• The exact value of the logit multiplier is not crucially important. It is only
required for it to be sufficiently high.

Our results demonstrate that for multipliers ≤ 5, the model cannot learn, and
the training tends to converge to a point where the model predicts a vector of 1
and −1 no matter the input. We report success with values ≥ 10. We see a slight
improvement when increasing the value from 10 to 20. Increase above 20 does not
bear more fruit.

47

1 2 3 4 5
round

0

20

40

60

80

R@
1

[%
]

lm=1
lm=3
lm=5
lm=10
lm=20
lm=50

1 2 3 4 5
round

0

20

40

60

80

R@
10

 [%
]

lm=1
lm=3
lm=5
lm=10
lm=20
lm=50

Figure 6.5 Results of experiments with varying logit multiplier. We try 6 values
(1, 3, 5, 10, 20, 50) and evaluate models at R@1 and R@10 after each fine-tunig round.
For smaller multipliers, the model does not learn anything meaningful. The model learns
when we employ values of 10 or larger. We see a slight improvement when increasing
the value from 10 to 20. An increase above 20 does not produce a difference.

6.5.5 Size
In Section 6.4.2 we showed that the number of parameters affects the quality

of generated embeddings. Here we explore the same relation, but this time we
fine-tune our model. Model size is likely to affect its learning capacity during
fine-tuning. Consequently, we expect that the models with more parameters
should exhibit superior performance. However, as noted in Section 6.4.2, the
largest model underperforms significantly on OLPEAT. Thus, the relationship
between model size and performance may be more complex than initially assumed.

We present our results in Figure 6.6. All the models are comparable. LEALLA-
small is slightly weaker than the other two, and it appears the the LEALLA-large
could overtake the base version in later rounds. However, in our experiment, the
loss of LEALLA-large exploded in the last round, destroying any progress.

Problem With Training LEALLA-large

For the curious reader, we present a thorough discussion of problems of the
large model below. Our results indicate that LEALLA-large is significantly more
challenging to train than the rest of the herd. It initially struggles during the
first phase of learning, but after some time it can perform comparably to other
models. However, the training is sensitive to parameter choice, and the model
can easily diverge. To improve its stability, we implement a linear learning rate
warm-up (Goyal et al., 2018), along with decreasing the final learning rate. These
modifications result in either negligible effects or failure to converge, depending
on the exact parameters we try.

In Figure 6.7 we present the comparison of losses of LEALLA-base and
LEALLA-large during the first round. We see that LEALLA-large plateaus slightly
above the value of 5. We note that this is a loss that the model would achieve
if it created a uniform distribution on the output because 5.5 ≈ − log 1/(32 · 8)

— assuming the batch size of 32 and 1 + 7 examples per a mention in the batch.
This behavior is unique to the first round; in later rounds, both loss and recall
rates for LEALLA-large improve consistently, mirroring the behavior seen in other

48

1 2 3 4 5
round

0

20

40

60

80

R@
1

[%
]

LEALLA-small
LEALLA-base
LEALLA-large

1 2 3 4 5
round

0

20

40

60

80

R@
10

 [%
]

LEALLA-small
LEALLA-base
LEALLA-large

Figure 6.6 Results of experiments with three variations of the LEALLA model: small,
base, and large. R@1 and R@10 were evaluated after each round. The results show that
while all models perform comparably, the LEALLA-small is slightly weaker. Intriguingly,
the LEALLA-large, despite its initial struggle, shows potential to outperform the base
model in later rounds. However, its training stability remains a challenge. In our
experiment, the model diverged in the last round and started predicting essentially the
same embeddings for all inputs.

models. This whole phenomenon can be explained by the fact that without any
training, the large model is weaker at our task (Section 6.4.2) and needs some
time to catch up.

The crash in recalls during the later stages of training coincides precisely with
the point at which we begin to feel victorious. It appears that even a small number
of noisy batches can significantly disrupt the training of LEALLA-large in our
configuration. If this happens, the model can quickly revert to its championed
loss value of 5.5, wiping any understanding it acquired. While we could attempt
to stabilize the training by experimenting with the parameters a little bit more,
we have decided not to pursue it to avoid over-optimizing our parameters for a
single model.

6.6 Cross-Lingual Transfer
In Section 4.4 we explain cross-lingual transfer learning and discuss how it can

be used to save computational resources by training only on set of languages that
is smaller than the one on which we are evaluating. In this section, we conduct
an experiment with a model trained on Spanish and evaluate it on the complete
Mewsli-9 benchmark.

We start fine-tuning from the checkpoint corresponding to the last model
from Section 6.5.1. This model has a very good understanding of EL in Spanish,
however, in Section 6.5 to save time we fine-tune models only on a KB that
contains entities with a corresponding Wikipedia page. Here, we are aiming for
the best recalls, thus, we include all Spanish entities. Subsequently, we fine-tune
the model for three more rounds, so that it encounters some of the newly added
entities as negative examples.

We employ a fairly standard set of hyperparameters (Table 6.9) that is like
those used in Section 6.5. Additionally, to stabilize convergence, we employ
exponential learning rate decay in the ultimate round. We start with a learning

49

0 2500 5000 7500 1000012500150001750020000
step

0

5

10

15

20

lo
ss

LEALLA-base
LEALLA-large

Figure 6.7 Comparison of loss of LEALLA-base and LEALLA-large during the first
round of training. Whereas the base model learns without much difficulty, the large one
hovers above 5 for more than 10000 updates before successfully solving the task.

context size 64
rounds 3
steps per round 105

logit multiplier 50
retrieval parameter k 100
neg 7
batch size 32
starting learning rate 10−5

learning rate step decay 0.998

Table 6.9 Parameters for the cross-lingual experiment.

rate value of 10−5 and decrease it to 3 · 10−6 at the end of the training.

6.6.1 Baseline With Labels
Before we move to the experiments, we need to establish a baseline to which

we can then compare our results. Alias tables (Sections 3.3 and 6.3.1) or OLPEAT
(Sections 3.4.3 and 6.4) would not serve well because they are very different in
their nature — they can contain multiple different representations for one entity.
Contrary to them, all our neural network experiments have just one representation
per entity.

We would therefore like to have a baseline that also adheres to one represen-
tation per entity. Therefore, for each entity, we take its label, embed it with
LEALLA-base (without any fine-tuning), and use this embedding as the only
representation of the entity. When linking, we embed only the mention, ignoring
the context, and look for the most similar labels.

50

Language Baseline CLT
R@1 R@10 R@1 R@10

ar 66.3 84.1 70.6 88.1
de 66.1 83.1 81.4 91.2
en 54.2 71.9 77.7 88.8
es 58.9 77.8 85.6 92.2
fa 66.5 82.4 80.6 90.7
ja 66.5 78.2 70.5 84.3
sr 58.2 88.4 87.3 94.5
ta 63.7 76.8 75.7 91.5
tr 71.4 85.4 81.1 92.2

Table 6.10 Results of cross-lingual transfer of model trained purely on Spanish EL to
other languages. The results are compared to a simple baseline, for which we embedded
only the labels with a default model.

As we did for OLPEAT (Section 6.4) and the string similarities (Section 6.3.2),
we evaluate for each Mewsli-9 language separately. We present our results together
with the evaluations of the cross-lingual transfer in Table 6.10.

6.6.2 Per-Language Evaluation
Similarly to our previous experiments, we do a cross-lingual transfer learning

evaluation for each language separately.
We present our results compared to the baseline in Table 6.10 and to OLPEAT

in Table 6.11. We see that we can beat the baseline comfortably. The model
improves a lot even on the languages it did not see during training. However,
when we compare it to OLPEAT (thus far our strongest approach Section 6.4),
we see that we must be careful with our optimism regarding the cross-lingual
transfer. In it, the OLPEAT outperforms cross-lingual transfer on R@1. The
results for R@10 are less decisive. The fact that the bi-encoder works quite well
on higher recalls could be further exploited. For example, one could use our model
to retrieve candidates, which can be then re-ranked with a simpler model. We
hypothesize that this might be a viable approach based on our results with R@100
and R@1000 (Appendix A.4), which are noticeably close to the upper bounds
established in Section 3.1.

6.6.3 Where To Go Next?
Hitherto, we have seen that cross-lingual transfer is a decent approach but lacks

OLPEAT, which has the advantage of having multiple different representations for
one entity. Nonetheless, we believe that our results with cross-lingual transfer can
be further improved. Therefore, here, we propose two ideas that could improve
the results and conduct preliminary experiments.

Entities from All Languages

Perhaps limiting ourselves to entity descriptions in just one language is too
constraining. Thus, we propose creating one large KB and populating it with

51

Language OLPEAT CLT
R@1 R@10 R@1 R@10

ar 90.1 93.3 70.6 88.1
de 88.8 92.9 81.4 91.2
en 80.1 88.2 77.7 88.8
es 83.9 90.3 85.6 92.2
fa 83.7 89.7 80.6 90.7
ja 85.2 92.6 70.5 84.3
sr 91.1 95.0 87.3 94.5
ta 91.2 95.5 75.7 91.5
tr 86.0 93.3 81.1 92.2

Table 6.11 Results of cross-lingual transfer of model trained purely on Spanish EL
to other languages. We compare with OLPEAT (Sections 3.4.3 and 6.4) our strongest
model yet.

entity descriptions from all languages.
We are still working with our model trained only on Spanish; thus we prefer

to use entities with Spanish descriptions. Only when a Spanish description for an
entity is not available, do we try to use one from a different language. To do that,
we must decide from what language we should take the entity. Quite often we are
going to face a situation, where an entity is not present in Spanish but exists in
multiple other languages. To select a language for entity description, we propose
to use the same method as Botha et al. (2020), who rank the different-language
representations based on the number of training mentions pointing to them. The
idea is that if there are a lot of links to an entity in some language, then the
representation of that entity in the particular language also has high quality. We
discuss this approach in more detail in Section 2.3.1.

To get an idea of the strength of the proposed approach, we limit ourselves
only to the nine Mewsli languages during the KB construction. For our KB we
take all Spanish entities and add to it all entities that do not have a Spanish
DaMuEL entry but are present in any of the remaining eight languages. When an
entity has more than one representation in the eight languages, we use the one
favored by the heuristic from Botha et al. (2020). We use this KB to evaluate all
the languages of Mewsli-9.

We present our results in Table 6.12. We see that the approach that mixes
multiple languages is significantly worse everywhere except for Spanish. This leads
us to a hypothesis that the model cannot link from a mention in one language to
an entity in another. This is plausible because it was trained to link only inside
one particular language (Spanish to Spanish). Nevertheless, a more in-depth
evaluation is needed to fully verify it.

Training Contexts as Knowledge Base

Utilizing contexts of training mentions as a KB can improve recalls over
the standard approach, in which the descriptions and training mentions are
separate (FitzGerald et al., 2021). Our bi-encoder was designed with versatility
in mind. This allows for an intriguing experiment. We can populate the KB
with entity descriptions during training (which gives us an index of a reasonable

52

Language CLT multiple languages CLT
R@1 R@10 R@1 R@10

ar 60.4 76.2 70.6 88.1
de 70.8 82.6 81.4 91.2
en 68.2 80.4 77.7 88.8
es 85.1 92.2 85.6 92.2
fa 50.7 75.7 80.6 90.7
ja 29.4 44.5 70.5 84.3
sr 72.2 87.6 87.3 94.5
ta 56.0 74.5 75.7 91.5
tr 67.1 80.4 81.1 92.2

Table 6.12 Cross-lingual transfer approach with different knowledge bases. For the
first two recalls, the KB is constructed by taking all Spanish entities and adding to
them entities that are missing in the Spanish part of DaMuEL. The CLT recalls use
a KB that is dependent on language. For CLT, we construct the KB from all entities
present in the specific part of DaMuEL corresponding to the language. Our results show
that constructing the KBs per language is better. The model seems to have difficulties
with linking to a KB in one language from mentions in another.

size) and only during evaluation switch to the index populated with contexts of
mentions. We can do this because we use only one model to encode both entities
and mentions, and the token used to mark an entity or a mention inside a text is
the same for both.

Our preliminary results show that the recalls are improved by the addition of
contexts. We conduct per-language evaluations for Spanish and Turkish. First, we
populate the knowledge base only with the contexts (without any descriptions),
and we immediately see an improvement. For Spanish, we achieve R@1 and R@10
of 86.3 and 92.2, respectively. In R@1 our score improved 0.7 points compared to
the version with descriptions. For Turkish we achieve 85.9 and 93.6, respectively,
slightly falling behind OLPEAT (Table 6.5) for R@1 and exceeding it at R@10.

Nevertheless, we can improve the score even more by populating the KB with
both the training contexts and the entity descriptions. This yields an additional
improvement. We obtain 86.8 in R@1 and 92.7 in R@10 for Spanish. For Turkish
we get 86.5 and 94.4, respectively. With descriptions, we surpass OLPEAT even in
Turkish, obtaining our best results yet. Overall, with our flexible model design, we
managed to improve our R@1s by 1.2 percent points for Spanish and 5.4 percent
points for Turkish (compared to CLT, Table 6.11) with no additional training.

6.7 Comparing to the Current State of the Art
Comparison with the best models of today is tricky, given the fact that we

lack around 7% of entities in our training data (Section 3.1). In Sections 3.1
and 6.3.1 we argue that the lack of entities is a lesser problem for R@1 than for
R@10 because a lot of these entities are disambiguations, which are hard to link
anyway. Our results support this assumption. We trail the current best result in
Spanish (De Cao et al., 2022) by 3.3 points in R@1 and 5.8 in R@10 (FitzGerald
et al., 2021). Our underperformance on other languages is greater because we did

53

Authors R@1 b Hardware GPU/TPU days
this thesis 85.6 32 GTX 1080 Ti 6
this thesis; mentions KB 86.8 32 GTX 1080 Ti 6
Botha et al. (2020) 89.0 8192 TPU v3 ∼ 30
FitzGerald et al. (2021) 88.7 8192 TPU v3 ∼ 20
De Cao et al. (2022) 90.1 — Tesla V100 1152

Table 6.13 A comparison of our approach to other works. For each, we provide the
recall for Spanish, the batch size (b), the hardware, and estimates of the time needed.
We do not provide the batch size for De Cao et al. (2022) because they utilize an entirely
different approach. Botha et al. (2020) and FitzGerald et al. (2021) note that they
trained for less than two days on an unspecified number of TPUs. Subsequently, we
cannot give a precise number of days required by their approach. The values provided
are thus only our rough estimates based on the memory of TPUv3, known batch sizes,
and our own experience.

not train on them.
To get a full picture, it is essential to also compare the computation resources

needed for training. We train for 1120k steps with a batch size of 32 on a single
NVIDIA GeForce GTX 1080 Ti GPU.4 This requires around six days. The two
approaches most similar to ours (Botha et al., 2020; FitzGerald et al., 2021) both
train for a similar number of steps (750k and 500k) but do so with batch size
more than a hundred times larger (8192). All their training is done on Google
TPU v3 architecture.5 De Cao et al. (2022), using a very different approach from
bi-encoders, required over one thousand GPU days when training on Tesla V100
GPUs 32GB.6 In Table 6.13 we provide a more structured comparison.

6.8 To Fine-Tune or Not To Fine-Tune?
So far, we have presented two different approaches. The first is based solely

on processing mentions, the second tries to also exploit the surrounding text.
Interestingly, the approaches based on mentions compare favorably with the more
sophisticated fine-tuning.

There are two principal reasons why it is happening. The first is that in
entity linking the gap between good and excellent models is very small. The
primary usage of language is to communicate, thus it is not surprising that
languages are optimized in a way that minimizes the number of entities that share
a label. Moreover, Mewsli-9 is sourced from news articles, which are meant to
be unambiguous and understandable for a wide audience. Subsequently, a simple
baseline like an alias table performs well (Section 6.3.1). The second reason why
the performance is comparable is that all the models based solely on mentions
(Chapter 3) build their KB from training mentions, thus they have significantly
more examples at their disposal. Nevertheless, extending our model to utilize
all training mentions as the knowledge base is possible, and our preliminary
experiments suggest that it brings a decent performance boost.

4https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-ti/specifications/
5https://cloud.google.com/tpu/docs/v3
6https://www.nvidia.com/en-gb/data-center/tesla-v100/

54

https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1080-ti/specifications/
https://cloud.google.com/tpu/docs/v3
https://www.nvidia.com/en-gb/data-center/tesla-v100/

To answer the question from the title, we recommend fine-tuning if one needs
the extra performance boost. Our results from Section 6.6 show that fine-tuning
comfortably beats the other approaches in Spanish and can be further improved
by enlarging the KB with training mentions.

Cross-lingual transfer is viable when the training data for some particular
language is unavailable. However, when the data are available cross-lingual
transfer can be matched or even surpassed by simpler approaches that do not
need fine-tuning.

55

7 Conclusion
Our goal in this thesis was to study entity linking and create models that are

fast to train, operate in multiple languages, and are based solely on open-source
data.

In the first half, we proposed three systems that are built solely on mentions,
without the surrounding context. We gave a detailed evaluation of two of them,
the one based on string similarities and the one based on pre-trained embeddings.
We showed that they easily outperform alias tables. Perhaps surprisingly, they all
scored well on Mewsli-9 despite their simplicity. The beauty of both these systems
is that they are easy to implement, and as we showed, capable of matching more
sophisticated approaches. Our results indicate that if we are willing to sacrifice a
little bit of performance, it is possible to build entity linking systems without the
need to set up the complex infrastructure required for fine-tuning.

Later, we fine-tuned a bi-encoder to disambiguate Spanish entities. Our final
model achieved a performance 3.3 points worse in R@1 than the current state
of the art on the Mewsli-9 benchmark. Even though we do not surpass the best
results, our training time is one to two orders of magnitude smaller compared to
the leading model. Moreover, we argue that our results can be further improved
by enlarging our knowledge base because the one built on top of DaMuEL lacked
6.6% of Spanish Mewsli-9 entities. Overall, our fine-tuning results demonstrate
that it is possible to train an EL system close to SOTA using relatively limited
resources.

Additionally, we examined cross-lingual transfer learning, which we consider
unexplored for EL, and showed three different ways to use our Spanish model to
evaluate on all Mewsli-9 languages. The results of our preliminary evaluation with
a KB populated with all training contexts and entity descriptions turned out to
be very promising. In it, we tested a novel idea in which a model is trained with
a standard KB containing entity descriptions but evaluated with a KB enlarged
with all training contexts. Remarkably, the model can link to the contexts even
though they are different from what was available during training. Overall, using
the enlarged KB only during evaluation allowed us to increase our Spanish R@1
by 1.2 points with zero additional training cost.

Apart from evaluating multiple EL systems, we also conducted a detailed
examination of various hyperparameters for training bi-encoders, hoping to make
the work of anyone who comes after us a little easier. Most notably, we discovered
that the number of hard negatives is closely connected to batch size, and in some
situations increasing the former over the latter can save significant computational
resources. Furthermore, we managed to show that it is possible to train with
extremely small batch sizes, which opens up possibilities to train on commodity
hardware. To the best of our knowledge, we are also the first to use hard-negative
mining from the start of the training; we achieve it due to a suitable choice of our
model.

In addition, our work is the first comprehensive attempt to build an EL system
on top of DaMuEL, which is a new dataset for this task. Our work provides a
clear picture of DaMuEL’s current strengths and weaknesses. Besides that, we
discovered two minor flows, which were previously unnoticed: the exclusion of

56

disambiguation Wikipedia pages, and the accidental removal of a small number of
other entities.

In the future, there are multiple areas of research that we hope to explore.
First, we would like to train our model for more than one language. To do that,
we plan to update our infrastructure so that we can distribute the workload to
multiple machines. To allow others to directly use the models we train, we hope
to incorporate our work into LinPipe — a multilingual NLP framework that is
currently in preparation.1 Lastly, the authors of DaMuEL aim to address the
discovered deficiencies in an upcoming release. We hope to re-evaluate at least
part of our experiments when the new version becomes available.

1https://ufal.mff.cuni.cz/linpipe

57

https://ufal.mff.cuni.cz/linpipe

Bibliography
Adjali, Omar, Romaric Besançon, Olivier Ferret, Hervé Le Borgne, and Brigitte

Grau (2020). “Multimodal Entity Linking for Tweets”. In: Advances in In-
formation Retrieval. Springer International Publishing, pp. 463–478. isbn:
9783030454395. doi: 10.1007/978-3-030-45439-5_31. url: http://dx.
doi.org/10.1007/978-3-030-45439-5_31.

Ansel, Jason, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael
Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta
Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary De-
Vito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh,
Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario
Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yun-
jie Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio
Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang,
William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit
Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala (Apr. 2024).
“PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation”. In: 29th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24). ACM. doi: 10.1145/3620665.3640366.
url: https://pytorch.org/assets/pytorch2-2.pdf.

Bachmann, Max (Oct. 2021). maxbachmann/RapidFuzz: Release 1.8.0. Version v1.8.0.
doi: 10.5281/zenodo.5584996. url: https://doi.org/10.5281/zenodo.
5584996.

Basaldella, Marco, Fangyu Liu, Ehsan Shareghi, and Nigel Collier (Nov. 2020).
“COMETA: A Corpus for Medical Entity Linking in the Social Media”. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Ed. by Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu. Online: Association for Computational Linguistics, pp. 3122–3137.
doi: 10.18653/v1/2020.emnlp-main.253. url: https://aclanthology.
org/2020.emnlp-main.253.

Bengio, Yoshua and Jean-Sébastien Senecal (Jan. 2003). “Quick Training of
Probabilistic Neural Nets by Importance Sampling”. In: Proceedings of the
Ninth International Workshop on Artificial Intelligence and Statistics. Ed. by
Christopher M. Bishop and Brendan J. Frey. Vol. R4. Proceedings of Machine
Learning Research. Reissued by PMLR on 01 April 2021. PMLR, pp. 17–24.
url: https://proceedings.mlr.press/r4/bengio03a.html.

Bollacker, Kurt, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor
(2008). “Freebase: a collaboratively created graph database for structuring
human knowledge”. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’08. Vancouver, Canada: Asso-
ciation for Computing Machinery, pp. 1247–1250. isbn: 9781605581026. doi:
10.1145/1376616.1376746. url: https://doi.org/10.1145/1376616.
1376746.

Botha, Jan A., Zifei Shan, and Daniel Gillick (Nov. 2020). “Entity Linking in 100
Languages”. In: Proceedings of the 2020 Conference on Empirical Methods in

58

https://doi.org/10.1007/978-3-030-45439-5_31
http://dx.doi.org/10.1007/978-3-030-45439-5_31
http://dx.doi.org/10.1007/978-3-030-45439-5_31
https://doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://doi.org/10.5281/zenodo.5584996
https://doi.org/10.5281/zenodo.5584996
https://doi.org/10.5281/zenodo.5584996
https://doi.org/10.18653/v1/2020.emnlp-main.253
https://aclanthology.org/2020.emnlp-main.253
https://aclanthology.org/2020.emnlp-main.253
https://proceedings.mlr.press/r4/bengio03a.html
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746

Natural Language Processing (EMNLP). Ed. by Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu. Online: Association for Computational Linguistics,
pp. 7833–7845. doi: 10.18653/v1/2020.emnlp-main.630. url: https:
//aclanthology.org/2020.emnlp-main.630.

Cao, Nicola De, Gautier Izacard, Sebastian Riedel, and Fabio Petroni (2021).
“Autoregressive Entity Retrieval”. In: International Conference on Learning
Representations. url: https://openreview.net/forum?id=5k8F6UU39V.

Chidambaram, Muthu, Yinfei Yang, Daniel Cer, Steve Yuan, Yunhsuan Sung,
Brian Strope, and Ray Kurzweil (Aug. 2019). “Learning Cross-Lingual Sentence
Representations via a Multi-task Dual-Encoder Model”. In: Proceedings of the
4th Workshop on Representation Learning for NLP (RepL4NLP-2019). Ed.
by Isabelle Augenstein, Spandana Gella, Sebastian Ruder, Katharina Kann,
Burcu Can, Johannes Welbl, Alexis Conneau, Xiang Ren, and Marek Rei.
Florence, Italy: Association for Computational Linguistics, pp. 250–259. doi:
10.18653/v1/W19-4330. url: https://aclanthology.org/W19-4330.

De Cao, Nicola, Ledell Wu, Kashyap Popat, Mikel Artetxe, Naman Goyal, Mikhail
Plekhanov, Luke Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and Fabio
Petroni (2022). “Multilingual Autoregressive Entity Linking”. In: Transactions
of the Association for Computational Linguistics 10. Ed. by Brian Roark
and Ani Nenkova, pp. 274–290. doi: 10.1162/tacl_a_00460. url: https:
//aclanthology.org/2022.tacl-1.16.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (June
2019). “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy
Doran, and Thamar Solorio. Minneapolis, Minnesota: Association for Com-
putational Linguistics, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url:
https://aclanthology.org/N19-1423.

Douze, Matthijs, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou
(2024). “The Faiss library”. In: arXiv: 2401.08281 [cs.LG].

Ellis, Joe, Jeremy Getman, and Stephanie Strassel (2016a). TAC KBP Chinese
Cross-lingual Entity Linking - Comprehensive Training and Evaluation Data
2011-2014. url: https://catalog.ldc.upenn.edu/LDC2017T17.

— (2016b). TAC KBP Spanish Cross-lingual Entity Linking - Comprehensive
Training and Evaluation Data 2012-2014. url: https://catalog.ldc.upenn.
edu/LDC2016T26.

Feng, Fangxiaoyu, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang
(May 2022). “Language-agnostic BERT Sentence Embedding”. In: Proceedings
of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Ed. by Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio. Dublin, Ireland: Association for Computational Lin-
guistics, pp. 878–891. doi: 10.18653/v1/2022.acl-long.62. url: https:
//aclanthology.org/2022.acl-long.62.

Févry, Thibault, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi, and
Tom Kwiatkowski (Nov. 2020). “Entities as Experts: Sparse Memory Access
with Entity Supervision”. In: Proceedings of the 2020 Conference on Empirical

59

https://doi.org/10.18653/v1/2020.emnlp-main.630
https://aclanthology.org/2020.emnlp-main.630
https://aclanthology.org/2020.emnlp-main.630
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.18653/v1/W19-4330
https://aclanthology.org/W19-4330
https://doi.org/10.1162/tacl_a_00460
https://aclanthology.org/2022.tacl-1.16
https://aclanthology.org/2022.tacl-1.16
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2401.08281
https://catalog.ldc.upenn.edu/LDC2017T17
https://catalog.ldc.upenn.edu/LDC2016T26
https://catalog.ldc.upenn.edu/LDC2016T26
https://doi.org/10.18653/v1/2022.acl-long.62
https://aclanthology.org/2022.acl-long.62
https://aclanthology.org/2022.acl-long.62

Methods in Natural Language Processing (EMNLP). Ed. by Bonnie Webber,
Trevor Cohn, Yulan He, and Yang Liu. Online: Association for Computational
Linguistics, pp. 4937–4951. doi: 10.18653/v1/2020.emnlp-main.400. url:
https://aclanthology.org/2020.emnlp-main.400.

FitzGerald, Nicholas, Dan Bikel, Jan Botha, Daniel Gillick, Tom Kwiatkowski,
and Andrew McCallum (Aug. 2021). “MOLEMAN: Mention-Only Linking
of Entities with a Mention Annotation Network”. In: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume
2: Short Papers). Ed. by Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli. Online: Association for Computational Linguistics, pp. 278–285. doi:
10.18653/v1/2021.acl-short.37. url: https://aclanthology.org/2021.
acl-short.37.

French, Evan and Bridget T McInnes (Dec. 2022). “An overview of biomedical
entity linking throughout the years”. en. In: J Biomed Inform 137, p. 104252.

Gillick, Daniel, Sayali Kulkarni, Larry Lansing, Alessandro Presta, Jason Baldridge,
Eugene Ie, and Diego Garcia-Olano (Nov. 2019). “Learning Dense Representa-
tions for Entity Retrieval”. In: Proceedings of the 23rd Conference on Compu-
tational Natural Language Learning (CoNLL). Ed. by Mohit Bansal and Aline
Villavicencio. Hong Kong, China: Association for Computational Linguistics,
pp. 528–537. doi: 10.18653/v1/K19-1049. url: https://aclanthology.
org/K19-1049.

Gillick, Daniel, Alessandro Presta, and Gaurav Singh Tomar (2018). End-to-End
Retrieval in Continuous Space. arXiv: 1811.08008 [cs.IR].

Goyal, Priya, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He (2018). Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv: 1706.02677
[cs.CV].

Guo, Ruiqi, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,
and Sanjiv Kumar (2020). “Accelerating Large-Scale Inference with Anisotropic
Vector Quantization”. In: International Conference on Machine Learning. url:
https://arxiv.org/abs/1908.10396.

Henderson, Matthew, Rami Al-Rfou, Brian Strope, Yun-hsuan Sung, Laszlo Lukacs,
Ruiqi Guo, Sanjiv Kumar, Balint Miklos, and Ray Kurzweil (2017). Efficient
Natural Language Response Suggestion for Smart Reply. arXiv: 1705.00652
[cs.CL].

Hoffart, Johannes, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum
(2013). “YAGO2: A spatially and temporally enhanced knowledge base from
Wikipedia”. In: Artificial Intelligence 194. Artificial Intelligence, Wikipedia and
Semi-Structured Resources, pp. 28–61. issn: 0004-3702. doi: https://doi.
org/10.1016/j.artint.2012.06.001. url: https://www.sciencedirect.
com/science/article/pii/S0004370212000719.

Hoffart, Johannes, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Man-
fred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum (July 2011). “Robust Disambiguation of Named Entities in Text”.
In: Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing. Ed. by Regina Barzilay and Mark Johnson. Edinburgh,

60

https://doi.org/10.18653/v1/2020.emnlp-main.400
https://aclanthology.org/2020.emnlp-main.400
https://doi.org/10.18653/v1/2021.acl-short.37
https://aclanthology.org/2021.acl-short.37
https://aclanthology.org/2021.acl-short.37
https://doi.org/10.18653/v1/K19-1049
https://aclanthology.org/K19-1049
https://aclanthology.org/K19-1049
https://arxiv.org/abs/1811.08008
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1705.00652
https://arxiv.org/abs/1705.00652
https://doi.org/https://doi.org/10.1016/j.artint.2012.06.001
https://doi.org/https://doi.org/10.1016/j.artint.2012.06.001
https://www.sciencedirect.com/science/article/pii/S0004370212000719
https://www.sciencedirect.com/science/article/pii/S0004370212000719

Scotland, UK.: Association for Computational Linguistics, pp. 782–792. url:
https://aclanthology.org/D11-1072.

Ji, Heng, Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis
(2010). “Overview of the TAC 2010 Knowledge Base Population Track”. In:
url: https://api.semanticscholar.org/CorpusID:854997.

Joko, Hideaki, Faegheh Hasibi, Krisztian Balog, and Arjen P. de Vries (July
2021). “Conversational Entity Linking: Problem Definition and Datasets”. In:
Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’21. ACM. doi: 10.1145/
3404835.3463258. url: http://dx.doi.org/10.1145/3404835.3463258.

Jozefowicz, Rafal, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui
Wu (2016). Exploring the Limits of Language Modeling. arXiv: 1602.02410
[cs.CL].

Khalid, Mahboob Alam, Valentin Jijkoun, and Maarten de Rijke (2008). “The
Impact of Named Entity Normalization on Information Retrieval for Question
Answering”. In: Advances in Information Retrieval. Ed. by Craig Macdonald,
Iadh Ounis, Vassilis Plachouras, Ian Ruthven, and Ryen W. White. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 705–710. isbn: 978-3-540-78646-7.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic Op-
timization”. In: CoRR abs/1412.6980. url: https://api.semanticscholar.
org/CorpusID:6628106.

Kubeša, David and Milan Straka (2023). DaMuEL: A Large Multilingual Dataset
for Entity Linking. arXiv: 2306.09288 [cs.CL].

Lee, Jinhyuk, Sean S. Yi, Minbyul Jeong, Mujeen Sung, WonJin Yoon, Yonghwa
Choi, Miyoung Ko, and Jaewoo Kang (Dec. 2020). “Answering Questions on
COVID-19 in Real-Time”. In: Proceedings of the 1st Workshop on NLP for
COVID-19 (Part 2) at EMNLP 2020. Ed. by Karin Verspoor, Kevin Bretonnel
Cohen, Michael Conway, Berry de Bruijn, Mark Dredze, Rada Mihalcea,
and Byron Wallace. Online: Association for Computational Linguistics. doi:
10.18653/v1/2020.nlpcovid19-2.1. url: https://aclanthology.org/
2020.nlpcovid19-2.1.

Lewis, Mike, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer (July 2020).
“BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Ed. by Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault. Online: Association
for Computational Linguistics, pp. 7871–7880. doi: 10.18653/v1/2020.acl-
main.703. url: https://aclanthology.org/2020.acl-main.703.

Lewis, Patrick, Barlas Oguz, Ruty Rinott, Sebastian Riedel, and Holger Schwenk
(July 2020). “MLQA: Evaluating Cross-lingual Extractive Question Answering”.
In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Ed. by Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault. Online: Association for Computational Linguistics, pp. 7315–7330.
doi: 10.18653/v1/2020.acl-main.653. url: https://aclanthology.org/
2020.acl-main.653.

Macková, Kateřina and Milan Straka (2020). “Reading Comprehension in Czech
via Machine Translation and Cross-Lingual Transfer”. In: Text, Speech, and

61

https://aclanthology.org/D11-1072
https://api.semanticscholar.org/CorpusID:854997
https://doi.org/10.1145/3404835.3463258
https://doi.org/10.1145/3404835.3463258
http://dx.doi.org/10.1145/3404835.3463258
https://arxiv.org/abs/1602.02410
https://arxiv.org/abs/1602.02410
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://arxiv.org/abs/2306.09288
https://doi.org/10.18653/v1/2020.nlpcovid19-2.1
https://aclanthology.org/2020.nlpcovid19-2.1
https://aclanthology.org/2020.nlpcovid19-2.1
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.653
https://aclanthology.org/2020.acl-main.653
https://aclanthology.org/2020.acl-main.653

Dialogue. Ed. by Petr Sojka, Ivan Kopeček, Karel Pala, and Aleš Horák. Cham:
Springer International Publishing, pp. 171–179. isbn: 978-3-030-58323-1.

Mao, Zhuoyuan and Tetsuji Nakagawa (May 2023). “LEALLA: Learning Lightweight
Language-agnostic Sentence Embeddings with Knowledge Distillation”. In:
Proceedings of the 17th Conference of the European Chapter of the Associ-
ation for Computational Linguistics. Ed. by Andreas Vlachos and Isabelle
Augenstein. Dubrovnik, Croatia: Association for Computational Linguistics,
pp. 1886–1894. doi: 10 . 18653 / v1 / 2023 . eacl - main . 138. url: https :
//aclanthology.org/2023.eacl-main.138.

Michelson, Matthew and Sofus A. Macskassy (2010). “Discovering users’ topics of
interest on twitter: a first look”. In: Proceedings of the Fourth Workshop on
Analytics for Noisy Unstructured Text Data. AND ’10. Toronto, ON, Canada:
Association for Computing Machinery, pp. 73–80. isbn: 9781450303767. doi:
10.1145/1871840.1871852. url: https://doi.org/10.1145/1871840.
1871852.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean (2013).
“Distributed Representations of Words and Phrases and their Compositionality”.
In: Advances in Neural Information Processing Systems. Ed. by C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger. Vol. 26. Curran
Associates, Inc. url: https://proceedings.neurips.cc/paper_files/
paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

Mohtaj, Salar, Behnam Roshanfekr, Atefeh Zafarian, and Habibollah Asghari (May
2018). “Parsivar: A Language Processing Toolkit for Persian”. In: Proceedings of
the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018). Ed. by Nicoletta Calzolari, Khalid Choukri, Christopher Cieri,
Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara, Bente Maegaard,
Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis,
and Takenobu Tokunaga. Miyazaki, Japan: European Language Resources
Association (ELRA). url: https://aclanthology.org/L18-1179.

Pires, Telmo, Eva Schlinger, and Dan Garrette (July 2019). “How Multilingual
is Multilingual BERT?” In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Ed. by Anna Korhonen, David
Traum, and Lluís Màrquez. Florence, Italy: Association for Computational
Linguistics, pp. 4996–5001. doi: 10 . 18653 / v1 / P19 - 1493. url: https :
//aclanthology.org/P19-1493.

Plekhanov, Mikhail, Nora Kassner, Kashyap Popat, Louis Martin, Simone Merello,
Borislav Kozlovskii, Frédéric A. Dreyer, and Nicola Cancedda (2023). Multi-
lingual End to End Entity Linking. arXiv: 2306.08896 [cs.CL].

Puduppully, Ratish, Li Dong, and Mirella Lapata (July 2019). “Data-to-text
Generation with Entity Modeling”. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Ed. by Anna Korhonen, David
Traum, and Lluís Màrquez. Florence, Italy: Association for Computational
Linguistics, pp. 2023–2035. doi: 10 . 18653 / v1 / P19 - 1195. url: https :
//aclanthology.org/P19-1195.

Schumacher, Elliot, James Mayfield, and Mark Dredze (Aug. 2021). “Cross-Lingual
Transfer in Zero-Shot Cross-Language Entity Linking”. In: Findings of the As-
sociation for Computational Linguistics: ACL-IJCNLP 2021. Ed. by Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli. Online: Association for Compu-

62

https://doi.org/10.18653/v1/2023.eacl-main.138
https://aclanthology.org/2023.eacl-main.138
https://aclanthology.org/2023.eacl-main.138
https://doi.org/10.1145/1871840.1871852
https://doi.org/10.1145/1871840.1871852
https://doi.org/10.1145/1871840.1871852
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://aclanthology.org/L18-1179
https://doi.org/10.18653/v1/P19-1493
https://aclanthology.org/P19-1493
https://aclanthology.org/P19-1493
https://arxiv.org/abs/2306.08896
https://doi.org/10.18653/v1/P19-1195
https://aclanthology.org/P19-1195
https://aclanthology.org/P19-1195

tational Linguistics, pp. 583–595. doi: 10.18653/v1/2021.findings-acl.52.
url: https://aclanthology.org/2021.findings-acl.52.

Sevgili, Özge, Artem Shelmanov, Mikhail Arkhipov, Alexander Panchenko, and
Chris Biemann (Apr. 2022). “Neural entity linking: A survey of models based
on deep learning”. In: Semantic Web 13.3. Ed. by Mehwish Alam, Davide
Buscaldi, Michael Cochez, Francesco Osborne, Diego Reforgiato Recupero,
Harald Sack, Mehwish Alam, Davide Buscaldi, Michael Cochez, Francesco
Osborne, Diego Refogiato Recupero, and Harald Sack, pp. 527–570. issn: 1570-
0844. doi: 10.3233/sw-222986. url: http://dx.doi.org/10.3233/SW-
222986.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis (Jan. 2016). “Mastering the
game of Go with deep neural networks and tree search”. In: Nature 529.7587,
pp. 484–489. issn: 1476-4687. doi: 10 . 1038 / nature16961. url: https :
//doi.org/10.1038/nature16961.

Simpson, Heather, Joe Ellis, Robert Parker, and Stephanie Strassel (2014). TAC
KBP Reference Knowledge Base. url: https://catalog.ldc.upenn.edu/
LDC2014T16.

Slonim, Noam, Yonatan Bilu, Carlos Alzate, Roy Bar-Haim, Ben Bogin, Francesca
Bonin, Leshem Choshen, Edo Cohen-Karlik, Lena Dankin, Lilach Edelstein,
Liat Ein-Dor, Roni Friedman-Melamed, Assaf Gavron, Ariel Gera, Martin
Gleize, Shai Gretz, Dan Gutfreund, Alon Halfon, Daniel Hershcovich, Ron
Hoory, Yufang Hou, Shay Hummel, Michal Jacovi, Charles Jochim, Yoav Kan-
tor, Yoav Katz, David Konopnicki, Zvi Kons, Lili Kotlerman, Dalia Krieger,
Dan Lahav, Tamar Lavee, Ran Levy, Naftali Liberman, Yosi Mass, Amir
Menczel, Shachar Mirkin, Guy Moshkowich, Shila Ofek-Koifman, Matan Or-
bach, Ella Rabinovich, Ruty Rinott, Slava Shechtman, Dafna Sheinwald, Eyal
Shnarch, Ilya Shnayderman, Aya Soffer, Artem Spector, Benjamin Sznajder,
Assaf Toledo, Orith Toledo-Ronen, Elad Venezian, and Ranit Aharonov (Mar.
2021). “An autonomous debating system”. In: Nature 591.7850, pp. 379–
384. issn: 1476-4687. doi: 10.1038/s41586-021-03215-w. url: https:
//doi.org/10.1038/s41586-021-03215-w.

Sorokin, Daniil and Iryna Gurevych (June 2018). “Mixing Context Granularities for
Improved Entity Linking on Question Answering Data across Entity Categories”.
In: Proceedings of the Seventh Joint Conference on Lexical and Computational
Semantics. Ed. by Malvina Nissim, Jonathan Berant, and Alessandro Lenci.
New Orleans, Louisiana: Association for Computational Linguistics, pp. 65–75.
doi: 10.18653/v1/S18-2007. url: https://aclanthology.org/S18-2007.

Suchanek, Fabian M., Gjergji Kasneci, and Gerhard Weikum (2007). “Yago: a core
of semantic knowledge”. In: Proceedings of the 16th International Conference
on World Wide Web. WWW ’07. Banff, Alberta, Canada: Association for
Computing Machinery, pp. 697–706. isbn: 9781595936547. doi: 10.1145/
1242572.1242667. url: https://doi.org/10.1145/1242572.1242667.

Tan, Mingxing and Quoc Le (Sept. 2019). “EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks”. In: Proceedings of the 36th International

63

https://doi.org/10.18653/v1/2021.findings-acl.52
https://aclanthology.org/2021.findings-acl.52
https://doi.org/10.3233/sw-222986
http://dx.doi.org/10.3233/SW-222986
http://dx.doi.org/10.3233/SW-222986
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://catalog.ldc.upenn.edu/LDC2014T16
https://catalog.ldc.upenn.edu/LDC2014T16
https://doi.org/10.1038/s41586-021-03215-w
https://doi.org/10.1038/s41586-021-03215-w
https://doi.org/10.1038/s41586-021-03215-w
https://doi.org/10.18653/v1/S18-2007
https://aclanthology.org/S18-2007
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667

Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan
Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
pp. 6105–6114. url: https://proceedings.mlr.press/v97/tan19a.html.

Tjong Kim Sang, Erik F. and Fien De Meulder (2003). “Introduction to the
CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition”.
In: Proceedings of the Seventh Conference on Natural Language Learning at
HLT-NAACL 2003, pp. 142–147. url: https://aclanthology.org/W03-
0419.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is All
you Need”. In: Advances in Neural Information Processing Systems. Ed. by
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Curran Associates, Inc.

Vrandečić, Denny and Markus Krötzsch (2014). “Wikidata: A Free Collaborative
Knowledge Base”. In: Communications of the ACM 57, pp. 78–85. url: http:
//cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext.

Wu, Ledell, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettle-
moyer (Nov. 2020). “Scalable Zero-shot Entity Linking with Dense Entity
Retrieval”. In: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Ed. by Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu. Online: Association for Computational Lin-
guistics, pp. 6397–6407. doi: 10.18653/v1/2020.emnlp-main.519. url:
https://aclanthology.org/2020.emnlp-main.519.

Zhang, X., R. Zhao, Y. Qiao, X. Wang, and H. Li (June 2019). “AdaCos: Adaptively
Scaling Cosine Logits for Effectively Learning Deep Face Representations”. In:
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, pp. 10815–10824.
doi: 10.1109/CVPR.2019.01108. url: https://doi.ieeecomputersociety.
org/10.1109/CVPR.2019.01108.

Zhu, Fangwei, Jifan Yu, Hailong Jin, Lei Hou, Juanzi Li, and Zhifang Sui (July
2023). “Learn to Not Link: Exploring NIL Prediction in Entity Linking”.
In: Findings of the Association for Computational Linguistics: ACL 2023.
Ed. by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto,
Canada: Association for Computational Linguistics, pp. 10846–10860. doi:
10.18653/v1/2023.findings-acl.690. url: https://aclanthology.org/
2023.findings-acl.690.

64

https://proceedings.mlr.press/v97/tan19a.html
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://aclanthology.org/2020.emnlp-main.519
https://doi.org/10.1109/CVPR.2019.01108
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.01108
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.01108
https://doi.org/10.18653/v1/2023.findings-acl.690
https://aclanthology.org/2023.findings-acl.690
https://aclanthology.org/2023.findings-acl.690

List of Abbreviations
EL entity linking
NLP natural language processing
KB knowledge base
KG knowledge graph
MD mention detection
ED entity disambiguation
XEL cross-lingual entity linking
MEL multilingual entity linking
MIPS maximum inner product search
OLAT one language alias table
OLPEAT one language pre-trained embeddings alias table
CLT cross-lingual transfer

65

A Additional Results
A.1 DaMuEL and Mewsli-9 Intersections

In Table 3.1 we upper bound recalls obtainable on Mewsli-9 when using
DaMuEL. We point out that the recalls do not equate to the percentage of entities
that are contained in both of the datasets because some entities in Mewsli-9 are
linked multiple times. Here, we provide the intersections that are calculated on
the sets of entities. Our results are in Table A.1. When we compare this to our
results from Table 3.1, we see that the upper bounds on recalls are higher. From
this, we conclude that the entities that are present in DaMuEL are repeated in
Mewsli-9 more often than the entities that are missing.

A.2 Alias Table
Here we provide more results for alias tables as described in Section 3.3 and

Section 6.3.1. We try three different settings:

• In Table A.2 we lowercase all aliases and queries.

• In Table A.3 we repeat the alias table experiment from Section 6.3.1, but
this time we also provide R@100 and R@1000.

• DaMuEL contains also links that are not in Wikipedia but are added by a
heuristic proposed by the authors. So far we always excluded those links to
give a fair comparison to works that built directly on top of Wikipedia. In
Table A.4, we show how much would recalls change if we used all links to
create the aliases.

A.3 Embeddings With Context and No Training
During fine-tuning, we embed mentions with surrounding contexts and labels

with their descriptions. How well do these embeddings work when we do not
fine-tune and immediately evaluate those from the LEALLA-base model? This is
an interesting question because were the embeddings random, the initial round of
hard negative mining would not bear any fruit. In Table A.5, we provide recalls
that are achieved when embedding descriptions and using them as a KB and then
conducting a per language evaluation with Mewsli-9. We use the same tokenization
as described in Section 5.1. Our results indicate that these embeddings are better
than random ones but lag behind the trained ones. The probable reason is that
although descriptions and contexts share some similarities, it is generally unlikely
that the context directly describes the mention. Thus, the similarity is often small,
and the same is the R@1 metric.

66

Mewsli-9 intersection
Language with specific (%) with whole(%)
ar 94.6 94.6
de 93.5 93.9
en 93.2 93.2
es 93.3 94.0
fa 97.7 97.7
ja 95.6 95.8
sr 93.3 94.2
ta 97.3 97.4
tr 95.3 95.4

Table A.1 Intersection between DaMuEL and Mewsli-9. In the second column, each
Mewsli-9 language is intersected only with QIDs gathered from the specific DaMuEL
part. In the third, QIDs from all of DaMuEL were gathered and then the intersections
were computed.

Language R@1 R@10 R@100 R@1000
ar 87.4 89.7 89.8 89.8
de 86.2 90.5 90.9 90.9
en 77.6 85.0 86.1 86.2
es 82.5 89.4 90.2 90.2
fa 72.9 76.8 77.0 77.0
ja 82.6 89.2 89.5 89.5
sr 87.4 90.6 90.8 90.8
ta 81.2 82.8 82.9 82.9
tr 72.2 81.6 81.8 81.8

Table A.2 Results of an uncased alias table evaluated on Mewsli-9 with mentions
from DaMuEL. R@1, R@10, R@100, and R@1000 are included. Aliases from DaMuEL
were processed as outlined in Section 6.3.1 and then lowercased. The recalls are overall
slightly better than values from our main cased variant. The only language that does
not achieve the same or better recalls compared to the cased version is Turkish, where
we see a notable drop of a few points in all columns.

A.4 Cross-Lingual Transfer Additional Results
We present our results of cross-lingual transfer for R@1, R@10, R@100, and

R@1000 in Table A.6.

67

Language R@1 R@10 R@100 R@1000
ar 87.4 89.7 89.8 89.8
de 86.3 90.3 90.7 90.7
en 77.6 84.6 85.6 85.7
es 82.4 89.0 89.7 89.8
fa 72.9 76.8 77.0 77.0
ja 82.7 89.2 89.5 89.5
sr 87.2 90.3 90.5 90.5
ta 81.2 82.8 82.9 82.9
tr 81.7 88.3 88.5 88.5

Table A.3 Results of standard alias table evaluated on Mewsli-9 with mentions
from DaMuEL. Compared to results from Section 6.3.1, here we also evaluate R@100
and R@1000. Aliases from DaMuEL were processed in the same way as described in
Section 6.3.1. Except for English and Spanish, there is no practical difference between
R@100 and R@1000.

Language DaMuEL wiki DaMuEL all
R@1 R@10 R@1 R@10

ar 87.4 89.7 88.2 90.5
de 86.3 90.3 85.8 90.5
en 77.6 84.6 77.9 84.9
es 82.4 89.0 82.4 89.2
fa 72.9 76.8 75.0 78.1
ja 82.7 89.2 82.5 89.4
sr 87.2 90.3 88.3 91.3
ta 81.2 82.8 80.9 84.1
tr 81.7 88.3 82.8 88.9

Table A.4 Results for alias tables with automatically added entity mentions.
DaMuEL wiki corresponds to aliases gathered from Wikipedia links, DaMuEL
all also constructs aliases from Wikipedia links but enlarges them from new links added
by the author’s heuristic (Section 2.2.5). Generally, the heuristic helps. We believe that
this is mostly due to the fact that the heuristic expands links based on lemmatization.
This can increase the number of aliases we have, thus allowing us to match previously
unsolvable mentions. We report a clear improvement on R@10 for all languages. We
also observe a slight improvement for R@1, although some languages give better recalls
when only Wikipedia links are utilized.

68

Language R@1 R@10
ar 1.8 5.8
de 3.4 9.1
en 2.8 7.5
es 3.1 8.6
fa 3.3 7.8
ja 0.9 2.8
sr 1.5 4.5
ta 3.1 8.9
tr 2.8 8.0

Table A.5 Recalls for the LEALLA-base model embeddings without fine-tuning,
evaluated per language using the Mewsli-9 dataset. Embeddings were built from
descriptions and contexts. The tokenization process used can be found in Section 5.1.
All recalls are small, which we hypothesize is caused by limited similarity between
contexts and descriptions.

Language R@1 R@10 R@100 R@1000 upper bound
ar 70.6 88.1 91.7 93.7 95.6
de 81.4 91.2 93.0 93.8 95.9
en 77.7 88.8 91.5 92.4 94.3
es 85.6 92.2 93.4 93.8 95.0
fa 80.6 90.7 94.2 97.4 98.3
ja 70.5 84.3 89.8 91.9 96.7
sr 87.3 94.5 96.5 96.9 97.3
ta 75.7 91.5 95.9 97.1 98.6
tr 81.1 92.2 93.9 94.4 96.0

Table A.6 Cross-lingal transfer evaluated for each of the Mewsli-9 languages separately.
We see that for higher recalls, the results get noticeably close to upper bounds established
in Section 3.1.

69

B Examples of Spanish Links on
Mewsli-9

Below we present examples produced by the model from Section 6.6.2. All
English translations were machine-generated with DeepL.1

Original: “este de Huetamo, Michoacán. Hasta el momento, no
se reportan daños materiales ni pérdidas humanas. Los sistemas
y servicios no se vieron afectados en la mayor parte de la ciudad.
Sin embargo, el [M] Metro [M] suspendió transitoriamente sus
actividades y diversas oficinas y centros de trabajo fueron evacuados.”
English translation: “east of Huetamo, Michoacán. So far, no mate-
rial damage or human losses have been reported. Systems and services
were not affected in most of the city. However, the [M] Metro [M]
temporarily suspended its activities and several offices and work
centers were evacuated.”

Predicted: Metro de la Ciudad de México (Q735042)
Correct: Metro de la Ciudad de México (Q735042)
Original: “Chávez. ” ” Él está haciendo algo muy valioso para
nosotros ” ”, dijo Hassan Bzaih, libanés propietario de un almacén
en [M] Isla Margarita [M] y quien visitó su país a finales de julio.
Mientras tanto, la comunidad judía reaccionó con indignación. ” ”
Estamos”
English translation: “Chavez. ‘He is doing something very valuable
for us’, said Hassan Bzaih, Lebanese owner of a store in [M] Isla
Margarita [M] and who visited his country at the end of July.
Meanwhile, the Jewish community reacted with indignation. ‘We are”

Predicted: Isla de Margarita — Venezuela (Q334738)
Correct: Isla Margarita — disambiguation page (Q1182916)
Original: “(6) en su programa semanal ‘ Aló Presidente ’, en el
que dijo que el Estado de Israel era el culpable del nuevo [M] Holo-
causto [M] con el apoyo de los Estados Unidos, país al que calificó
de terrorista . Chávez había ordenado el viernes el retiro”
English translation: “(6) in his weekly program ‘Aló Presidente’,
in which he said that the State of Israel was guilty of the ‘new
[M] Holocaust [M]’ with the support of the United States, country
which he qualified as ‘terrorist’. Chavez had ordered on Friday the
withdrawal of the”

Precited: Holocausto (término) (Q881997)
Correct: Holocausto (Q2763)

1https://www.deepl.com/translator

70

https://www.deepl.com/translator

Original: “Esperamos que estas medidas, tomadas bajo revisión
por el gobierno, sean necesarias sólo por tiempo limitado, reza un
comunicado emitido por el [M] Departamento de Transporte [M].
Mientras tanto, el Departamento de Seguridad Interna de los Estados
Unidos ha elevado el nivel de amenaza terrorista en los vuelos desde
y hacia el Reino Unido”
English translation: “We expect that these measures, taken un-
der review by the government, will only be necessary for a limited
time, reads a statement issued by the [M] Department for Trans-
port [M]. Meanwhile, the U.S. Department of Homeland Security
has raised the terror threat level on flights to and from the United
Kingdom.”

Predicted: Departamento de Transporte del Reino Unido (Q2982287)
Correct: Departamento de Transporte del Reino Unido (Q2982287)
Original: “2) al ejército de su país que se oponga a la transición de
poder tras la cesión de las funciones de Fidel Castro a su hermano
[M] Raúl [M] por la enfermedad del primero. Jorge Mas Santos,
presidente de la junta directiva de la FNCA, declaró que ” ” los
militares tienen la oportunidad de”
English translation: “2) his country’s military to oppose the
transition of power following the transfer of Fidel Castro’s functions
to his brother [M] Raul [M] due to the former’s illness. Jorge Mas
Santos, president of the board of directors of the FNCA, declared
that the military has the opportunity to”

Predicted: Raúl Castro (Q46809)
Correct: Raúl Castro (Q46809)

71

	Introduction
	Existing Approaches in Entity Linking
	Definitions
	Mention
	Knowledge Base
	What is Entity Linking?
	End-to-End Entity Linking
	NIL entity linking
	Multilinguality

	Data
	Wikidata
	Mewsli-9
	TAC KBP
	AIDA CoNLL-YAGO
	DaMuEL

	Neural Entity Linking
	Bi-encoders
	(m)GENRE

	Text Embedding Models

	Baselines
	Upper Bounds on Mewsli-9 Recall When Using DaMuEL
	General Picture of Entity Linking System
	Alias Table
	Beyond Exact Matching
	Lemmatization
	String Similarity
	Pre-trained Embeddings

	Precision of ScaNN

	Adding Context
	Lightweight Bi-Encoder Entity Disambiguation
	One Model
	Models from a Similar Problem

	How to Fine-tune a Bi-encoder
	EL as Multiclass Classification

	Choosing Hyperparameters
	Rebuilding the Index
	Batch Size and Queried Negatives
	Model Comparison

	Cross-Lingual Transfer

	Infrastructure
	Tokenization
	Descriptions
	Mentions with Context

	Fine-tuning
	Index
	Generating and Fine-tuning
	Evaluation

	Implementation

	Results and discussion
	ScaNN vs Brute-force
	LEALLAs vs LaBSE
	DaMuEL as Entity Linking Dataset
	Alias Table
	String Similarity

	Pre-trained Embeddings
	String similarity vs Pre-trained Embeddings
	Comparing Models in Spanish

	Hyperparameter search
	Index Rebuilding
	Batch Size
	Number of Hard Negatives
	Logit Multiplier
	Size

	Cross-Lingual Transfer
	Baseline With Labels
	Per-Language Evaluation
	Where To Go Next?

	Comparing to the Current State of the Art
	To Fine-Tune or Not To Fine-Tune?

	Conclusion
	Bibliography
	List of Abbreviations
	Additional Results
	DaMuEL and Mewsli-9 Intersections
	Alias Table
	Embeddings With Context and No Training
	Cross-Lingual Transfer Additional Results

	Examples of Spanish Links on Mewsli-9

