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I want to thank my supervisor, Jindřich Helcl, for his positive attitude and the
countless ideas he had during the work on this thesis. I would also like to thank
Milan Straka for sparking my interest in deep learning. Finally, I want to thank
my family and friends for keeping my spirits up during the long months of work.

Computational resources were provided by the e-INFRA CZ project (ID:90254), sup-
ported by the Ministry of Education, Youth and Sports of the Czech Republic.

ii



Title: Writing assistant based on large language models

Author: David Klement

Institute: Institute of Formal and Applied Linguistics
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Abstract: A standard approach to many natural language processing tasks is to take an
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approach leads to having a separate model for each task; furthermore, the fine-tuning
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Autor: David Klement
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Introduction
This thesis aims to create a writing assistant, a tool that helps write text in a natural
language. The goal is to speed up typing by offering text suggestions and to improve
the editing experience by automating tedious word replacements.

Recent advances in natural language processing have led to the development of
large language models, which can generate text that approaches human quality. Such
models make great tools that suggest continuations of a sentence. It is also possible
to train these models for other tasks; we could create a writing assistant with many
features if we trained enough such models.

However, an assistant that uses several large language models is inefficient. First,
many models need to be loaded into memory, which leads to a high memory footprint,
as the memory requirements of language models are high. Second, state-of-the-art
language models need a lot of computational resources to train or fine-tune for a specific
task. At the same time, new models emerge frequently; if we wanted to keep up with
the latest models, we would need to retrain our model often.

To address these issues, we introduce Preditor, a writing assistant that accomplishes
three different tasks using a single language model. Furthermore, we use an off-the-
shelf model without the need for further training. As such, updating to a newer model
should be possible without too much effort.

Our goal is not to find a state-of-the-art solution to the tasks; fine-tuned models
or models trained specifically for the tasks would perform better. Instead, we aim to
explore the possibilities of adapting existing models to several tasks.

Tasks
Preditor helps the user with three tasks: substitution, prediction, and infilling.

Substitution The main focus of this thesis is sentence editing. Quite often, a sen-
tence needs to be modified, whether it is to shift the meaning or to improve the style.
In any given sentence, some parts carry the semantic meaning, while others are there
just to make it grammatical. Depending on the language, these parts can be entire
words or just parts of words. Whenever we modify a sentence, even slightly, we may
need to change many words to keep the sentence grammatically correct.

An example is worth a thousand words, so let us look at one. Take the sentence,
”My friend exercises regularly because he finds it important for his health.” If we were to
change the subject from ”friend” to ”friends”, we would need to change four additional
words: ”My friends exercise regularly because they find it important for their health.”

This effect is even more pronounced in languages with rich morphology; we focus
on Czech in this thesis. For example, the form of an adjective depends on the gender
of the respective noun. Combined with the fact that Czech has grammatical gender,
the need to adjust many words arises frequently. Our assistant performs these edits
automatically; we call this task substitution.

Prediction Another task that our assistant offers is prediction. In this task, the
goal is to suggest the next few words in a sentence. Reusing the example from before,
given the beginning of the sentence ”My friend exercises regularly because he finds”,
the assistant may suggest, ”it important for his health.” But it may also suggest another
continuation. There are many ways to complete this sentence, and the assistant wants
to choose one with a high probability of being right. The length of the suggestion
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plays a role, too. Longer suggestions may save more typing, but they are more likely
to diverge from what the user wants to say.

Infilling The final task is infilling, where the goal is to suggest a few words that
fit into a sentence. This requires using both the left and right context, i.e., the words
before and after the blank. Take the following example: ”My friend exercises regularly
because he a marathon.” The previous continuation no longer makes sense since
it does not match the right context. In this case, a plausible suggestion would be ”is
training for”.

Previous Approaches
Here, we briefly overview the existing approaches to the individual tasks. Details for
the mentioned works follow in Chapter 2.

No dedicated tools exist to perform substitution, as the task is quite specific. It
is possible to achieve some success with chat models, such as ChatGPT, that can
reformulate sentences given a suitable prompt. However, they are not very consistent.

Prediction is a common task, and many models exist for it, ranging from simple
statistical models to large language models. However, there are only a few techniques
to find the best place to end the prediction. One approach is to fine-tune the model to
generate an end-of-sentence token at the place where the suggestion should end; some
writing assistants use this approach. We were not able to find any techniques that
avoid fine-tuning, although it is likely that some exist.

Infilling is also a common task. Masked modes, such as BERT [Devlin et al., 2019],
can solve it directly, as they are trained to predict the missing words; however, they
need to know the length of the missing part beforehand. Other models can be fine-tuned
to perform infilling. However, there are not many models that handle both prediction
and infilling well; one approach is to use an encoder-decoder model, as explored by
Ippolito et al. [2022].
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1. Background
This chapter introduces the fundamental concepts that Preditor builds upon.

1.1 Language Models
Language models are a fundamental part of natural language processing. They are
statistical models designed to capture the structure of language. By analyzing the
patterns and structures in a large corpus of text, language models learn to estimate the
probability of a sequence of words appearing in a sentence.

Various language models differ in the way that they estimate this probability. Some
are unidirectional and only consider the preceding words in the sequence. In other
words, in some models, the probability of a word appearing in a sentence does not
depend on the words that come after it. Other models are bidirectional and simultane-
ously consider the preceding and following words in the sequence. Each approach has
its advantages and disadvantages and is suitable for different tasks.

Estimating the probabilities is closely related to predicting what words fit in a
sentence. The model can calculate the probability of each possible word based on the
words it has seen. Then, it can choose the word with the highest probability.

1.1.1 Tokenization
Language models do not grasp the entire sentence at once. They split the sentence
into smaller units that they further process. These units are called tokens, and the tool
that performs this splitting is called a tokenizer. Language models learn the meaning
of each token, and they combine the meanings of the tokens to understand the sentence
as a whole. It seems natural to split the text into words; however, it is impossible for
these models to learn every possible word because the number of words in a language
is too large. Even if the model learned all the words, it would struggle if it encountered
a word it had never seen before.

So, instead of splitting the text into words, we split it into smaller units called
subwords; these subwords will be the tokens that the model works with. Subwords can
range from individual characters to entire words, and the model can learn the meaning
of each subword. When the tokenizer encounters a new word, it can break it down
into tokens it already knows; an example of this is shown in Figure 1.1. The tokenizer
also assigns a unique numerical ID to each token, so the model only works with these
numbers.

We can choose the set of tokens in any way we like as long as we can construct
any word from them. There are several ways to do this; one such strategy is based
on Byte Pair Encoding (BPE), as introduced by Sennrich et al. [2016]. BPE takes a
large corpus of text and creates a token for each unique character that occurs in it.
Then, it counts the frequency of each pair of tokens in the text and replaces the most
frequent pair with a new token. This step is repeated until the desired vocabulary size
is reached.

We don ’ t have 5 grams of sel enium .

Figure 1.1: Tokenization of a sentence.
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Figure 1.2: One self-attention layer. Only the calculation for the third token
is shown. The queries and keys are compared to calculate similarities, and these
similarities are used as weights for the weighted sum of values.

However, such an approach could create tokens consisting of multiple words, which
is undesirable. To avoid this, we first run pre-tokenization, which creates boundaries
in the text that the tokenizer cannot cross. For example, we can create boundaries at
the end of each word. This behavior is visible in Figure 1.1, where no token contains a
letter followed by a space.

1.1.2 Transformer
The models we explore in Preditor are based on the Transformer architecture introduced
by Vaswani et al. [2017]. Transformer models have been highly successful in a wide
range of tasks and are today’s state-of-the-art models for text generation.

The Transformer model captures the relationships between tokens in a sequence
using a technique called self-attention, depicted in Figure 1.2. In essence, each token is
represented as a vector of numbers. The model uses its trained parameters to calculate
other vectors from these representations; these vectors are called queries, keys, and
values. Let’s focus on position P in the sequence. The query at the position P is
compared to all the keys to calculate the similarity, which is a score that represents
how related the two positions are. The new representation of the position P will be
a weighted sum of the values. The similarities determine the weights, so more related
positions have a larger impact. Afterwards, the representation is passed through a
feed-forward neural network. The entire process is repeated multiple times, allowing
the model to capture complex relationships between tokens.

The original Transformer model consists of an encoder and a decoder, as shown
in Figure 1.3. The encoder processes the input sequence while the decoder generates
the output sequence. The decoder differs from the encoder in that it uses masked-
attention: The calculation for position P only uses tokens to the left of position P .
This is necessary, as the model cannot look into the future when generating the output
sequence.
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Figure 1.3: The transformer architecture with the encoder and decoder parts.
Source: https://d2l.ai/_images/transformer.svg
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The encoder-decoder architecture is useful for tasks like machine translation, where
the model receives a sentence in one language and outputs the translation in another
language. However, it is possible to only use the encoder part of the model; such models
are suited for tasks like text classification [Devlin et al., 2019]. Similarly, it is possible
to train a decoder-only model, as first demonstrated by Radford et al. [2018] in the
Generative Pre-trained Transformer (GPT) model; this architecture is more suitable
for text-generation tasks.

1.1.3 Generation & Scoring
Preditor uses a decoder-only Transformer, so we focus on this architecture. A decoder-
only model takes a sequence of tokens as input, and it outputs the probability distri-
bution for the next token in the sequence. The model is unidirectional, meaning it can
only consider the preceding tokens when predicting the next token.

Text generation begins with the model receiving an initial input sequence, often
just a start-of-sequence token. The model then generates a probability distribution for
the next token in the sequence. We select the token with the highest probability and
append it to the input sequence.1 The resulting sequence is then fed back into the
model, which predicts the next token based on the updated sequence. This process is
repeated until a stop condition is met, such as reaching the desired sequence length.
While it allows us to generate a sequence of any length, it also means that the model
can only generate tokens one by one.

It is also possible to take an existing sentence and score it, i.e., calculate the proba-
bility of the sentence according to the model. This can be useful for comparing different
sentences and selecting the best one; a higher probability indicates that the model con-
siders the sequence more likely. We let the model generate a probability distribution
at each position in the sequence. Then, we select the probability corresponding to the
actual token at the next position. We multiply these probabilities together to get the
probability ps of the entire sequence.

However, multiplying many probabilities can lead to numerical underflow, especially
for long sequences. To avoid this, we often work with log probabilities instead, which
are more numerically stable. The log probability of the entire sequence is the sum of
the log probabilities of each token in the sequence.

ps =
n∏︂

i=1
pi

log ps =
n∑︂

i=1
log pi

1.1.4 Attention Cache
Calculating the queries, keys, and values for each token in the sequence is computa-
tionally expensive. This is especially problematic during text generation, where we
repeatedly process the same sequence with only one token appended at each step.
Using optimization techniques such as attention cache substantially reduces the com-
putational load and speeds up the text generation process.

The attention cache stores the keys and values after they are computed. This
is possible because these states do not change when we append a new token to the

1There are also other methods for selecting the token, such as sampling from the distribution.
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sequence; they only depend on the states in the previous layer at the current position
and to the left. When we add a new token to the sequence, we only need to compute
the states for that specific position. The newly calculated query is compared to the
cached keys, and the weighted sum uses the cached values. There is no need to cache
the queries as they are used only in the current position.

1.2 Tagging
For the substitution task, it is useful to be able to generate other grammatical forms
of a word. We achieve this using tagging.

Tagging is a task in natural language processing that involves labeling the words in a
text according to their grammatical role. In the most basic form, the tagger determines
the part of speech (POS) of each word. It may also identify other linguistic features,
such as the person, tense, number, etc.

Tagging provides a deeper understanding of the syntax within a text. For instance,
it can help disambiguate words with different meanings but the same spelling. The
English word ”well” can be a noun, an adjective, an adverb, or an interjection. By
identifying the tag of a word, we can better understand the context and meaning of
a sentence. Because of this, tagging used to be the first step in many classical NLP
approaches.

There are various techniques for tagging, ranging from rule-based methods to
machine-learning approaches. Rule-based methods use hand-written rules and dic-
tionaries, while machine-learning approaches learn from annotated corpora.

1.2.1 MorphoDiTa
MorphoDiTa is a morphological analyzer and tagger developed by Straková et al. [2014].
It is mainly aimed at Czech but can be used for other languages as well.

The tagger receives a sentence as input and outputs a list of tagged lemmas. A
lemma is the base form of a word without any inflections. The lemma captures the
meaning of the word without any grammatical information.

Each lemma has a tag associated with it, which describes the grammatical features
of the word form. The features for the Czech tagger are encoded using positional tags
as described by Hajič [2004]. The tag uses 15 features; thus, the resulting tag is a
string of 15 characters. Words usually do not use all features; in that case, the unused
position is filled with a dash.

For example, the word ”chod́ım” (”I walk”) has the lemma chodit and the tag
VB-S---1P-AAI--. The individual features are verb (V), indicative (B), singular (S),
first person (1), present (P), affirmative (A), active (A), imperfect (I).

MorphoDiTa can also generate word forms. If we provide a lemma and the desired
tag, it will output the word form they describe. It is also possible to allow multiple
symbols at some positions in the tag by creating a tag wildcard. For example, the tag
wildcard VB-?---[12]P-AAI-- allows the word form to be in any number (singular or
plural) and in the first or second person. Generating word forms with this tag wildcard
and the lemma ”chodit” yields chodı́m, chodı́me, chodı́š, chodı́te.
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2. Related Work
This chapter reviews the existing work that focuses on a subset of our tasks (substitu-
tion, prediction, and infilling). We mention one approach for each of the Transformer
architectures: Decoder-only models, encoder-only models, and models with both en-
coder and decoder.

2.1 Chat Models
Chat models, also known as conversational agents, are a type of language model de-
signed to simulate human-like conversation. Their input is structured as a dialogue
with delimited sections for the user’s messages and the model’s responses. The user
can ask a question, and the model generates a response, leaving space for the user to
continue the conversation. These models typically stem from a pre-trained language
model that has been fine-tuned for conversations. One prominent example of a chat
model is ChatGPT,1 developed by OpenAI, which is based on the GPT-3 model.

The underlying pre-trained language models already show the ability to solve a wide
variety of tasks; they only need well-crafted instructions to guide them [Brown et al.,
2020]. Chat models further extend this capability because they are trained to follow
the user’s instructions. Another advantage is that the model ends its response in a
predictable way, which makes it easier to extract the desired output from its response.

Chat models are usually decoder-only models, and as such, they can perform pre-
diction easily. They can also be effectively used for infilling tasks, where the model
fills in missing information in a given context. The user can prompt the model by
providing instructions and a sentence with a blank marked by underscores or a similar
placeholder. The model should then generate the missing information. However, the
form of its answer differs from sentence to sentence. Sometimes, it only includes the
missing information; sometimes, it repeats the context, as seen in Table 2.1. It may
also happen that the model ignores the instruction and leaves the blank empty. In rare
cases, the model may even change the original sentence to make it easier to fill in the
blank.

Chat models can perform substitution, too. Table 2.2 shows an example where we
want to replace one noun in the sentence with a different noun and adjust the forms
of other words to reflect that the grammatical gender has changed. The prompt once
again includes an instruction and the sentence to modify. Here, the instruction tells
the model what word to replace and what the replacement should be. In this case, the

1https://chat.openai.com

User Fill in the blank marked by .
I woke up in the the night.

ChatGPT I woke up in the middle of the night.

User Fill in the blank marked by .
My friend exercises regularly because he a marathon.

ChatGPT is training for a marathon.

Table 2.1: Chat model performing the infilling task. There is a difference
between the two examples in the form of the answer.
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User Přepǐs větu tak, aby mı́sto slova ”kolo” bylo slovo ”barvu”.
Mám modré kolo, které se mi ĺıb́ı.

ChatGPT Mám rád modrou barvu, která se mi ĺıb́ı.

User Přepǐs větu tak, aby mı́sto slova ”kamarád” bylo slovo ”ka-
marádi”.
Můj kamarád rád sportuje, protože to považuje za d̊uležité.

ChatGPT Mı́ kamarádi rádi sportuj́ı, protože to považuj́ı za d̊uležité.

Table 2.2: Chat model performing the substitution task. In the first example,
the model added an extra word. The second answer is correct.

How MASK MASK doing today

BERT

How are you doing today

Figure 2.1: BERT predicting the masked words.

model correctly adjusted all the words, but it also added one extra word ”rád” to the
sentence, which we did not ask for.

In summary, chat models are capable of performing both infilling and substitution
tasks, but their answers only sometimes match the instructions.

2.2 Masked Models
Masked models are encoder-only models that are trained in a fill-in-the-blank fashion.
The training process involves masking a portion of the input text and then asking the
model to predict the masked words based on the context provided by the unmasked
words. This training methodology is used in models like BERT [Devlin et al., 2019].

This training process allows the model to learn a bidirectional understanding of the
language, as it has to consider the context from both before and after the masked word
to make an accurate prediction. As such, masked models are perfectly suited for the
infilling task. We create a mask at the position where we want the model to generate
the missing information, and the model will suggest the most likely word to fill in the
blank. However, creating a mask is more complex in practice. The model uses special
mask tokens to indicate the position of the mask, and it replaces these tokens with the
predicted words, as depicted in Figure 2.1. Because of that, the number of mask tokens
in the input must be the same as the number of tokens of the prediction. We do not
know the length of the prediction in advance, so we create multiple inputs, each with
a different number of mask tokens, pass all of them to the model, and then choose the
best output.

Prediction with masked models is also possible; we put the mask tokens at the end
of the sentence. Once again, we need to create many inputs with different numbers
of mask tokens since we do not know how many words remain until the end of the
sentence. Because of that, prediction with masked models is more complicated than
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Fill in the blank with about 16 words and 
include the phrase “old dog”: “The boy 
took the ____ for a walk.” 

Fill in the blank with about 4 words: 
“The boy took the ____ for a walk.”

Continue the text with about 2 words: 
“The boy took the lonely old dog ____”

Continue the text with about 8 words 
and include the phrase “rocky path”: 
“The boy took the lonely old dog ____”

leash off the hook. 
His old dog still 
acted like a puppy 
when it came time

two dalmatians to 
the beach

inside the house.

up the rocky path. 
It was slow going.

FILL-IN-THE-BLANK
+ CONTINUATION

MODEL

Figure 2.2: Examples of tasks for the combined model.

with decoder-only models.

2.3 Combined Model
A recent study by Ippolito et al. [2022] proposed a model that could handle both
infilling and substitution tasks. They fine-tune an encoder-decoder model to provide
suggestions with fine-grained control over the output. For example, they can instruct
the model with an approximate number of words to generate and specify a phrase that
should be included in the output, as shown in Figure 2.2. The architecture makes it
possible to include a single mask token in the input, as the decoder can generate any
number of tokens in its place.

Unlike the first two works, this model is fine-tuned for these specific tasks. As
explained in the thesis goal, we want to use a generic pre-trained model because fine-
tuning requires many computational resources. Furthermore, it is difficult to adapt a
fine-tuned model for additional tasks.
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3. Tasks
In the preceding chapters, we have introduced the various tasks that constitute Pred-
itor : Substitution, prediction, and infilling. We have also explored a range of existing
approaches, each with its strengths and weaknesses.

This chapter describes our approaches to these tasks. We have experimented with
multiple strategies to identify the most effective one. The results are discussed in
Chapter 5.

As previously stated, our objective is to utilize an existing model without additional
training.

3.1 Substitution
The substitution task aims to adjust a sentence to maintain grammatical correctness
after the user has replaced one or more words in the sentence.

We narrow the task down to the following: The user selects a part of the sentence
to replace. Then, they type a few words to use instead of them: the replacement.
The assistant then adjusts the forms of the other words in the sentence to maintain
grammatical correctness. The replacement is fixed and will not alter. We do not allow
the assistant to reorder, add, remove, or change entire words. While such a constraint
limits the possible use cases, it simplifies the task and makes it possible to reason about
it. We also only consider single-sentence cases.

Our approach to this task can be summarized as follows: First, we generate all pos-
sible forms for all words in the sentence. Second, we assume all possible combinations
and select the one with the highest score.

3.1.1 Variants Generation
To generate alternate morphological forms of all words in the sentence, we start by
analyzing the original sentence (before substitution) using a tagger. We thus get the
lemmas and tags for all words.

Next, we create a tag wildcard for each word. This wildcard specifies what gram-
matical features the word form can have. We do not allow all possible forms because
some of them do not make sense under the constraints we put on the substitution task.
For example, we do not allow a verb to change its tense because, in Czech, such a
change usually adds an auxiliary verb to the sentence. We create the tag wildcard
based on the tag we get from the tagger; we keep the original value for some features
and allow any value for others. In particular, we allow the assistant to change the
following features: Gender, number, person, possessor’s gender, possesor’s number.

Next, we generate word forms by altering the features listed above. Through this
process, we obtain a set of possible forms for each word; an example is shown in
Figure 3.1. The next step will be to choose the best combination of these forms.

Preditor employs MorphoDiTa, the state-of-the-art tagger for Czech. MorphoDiTa
handles both of the tasks we need: It provides lemmatization and tagging, and it can
also generate word forms.

During the generation of variants, we do not generate alternate forms for the re-
placement to ensure that we keep it in the form that the user provided.
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Dnes jdu
jde

jdeme
jdete
jdeš
jdou

do školy
škol

.

Figure 3.1: A sentence and alternate forms of its words.

3.1.2 Candidate Scoring
The number of possible variants is exponential, making it impractical to score all of
them. For this reason, we need to decide which variants to score and which to discard.

We observe that the probability of a sequence never increases when we add more
words. Consequently, we can construct the variants incrementally, scoring them at each
step and extending the ones with the highest probability.

Our approach resembles Dijkstra’s algorithm to find the shortest path between two
nodes in a graph [Dijkstra, 1959]. We start by generating all variants for the first word
and scoring them. We then select the best variant, extend it with all the forms of the
second word, and score these extensions again. However, unlike beam search, we do
not discard the worst variants. At each step, we select the best variants overall, no
matter their length.

It is possible to think of the algorithm as a search in the space of all possible
variants. The monotonicity of probability ensures that we will find the optimal solution.
However, the sentence with the best score may not necessarily be grammatically correct.

Although still exponential, this approach is significantly faster than scoring all
possible variants. We present various optimizations in the next few sections.

Batching

To make the algorithm even faster, we can score multiple sentences simultaneously
by creating a batch of inputs. The individual sentences within a batch may vary in
length (i.e., they may have a different number of tokens). However, the model expects
a rectangular input, so all sentences must have the same length. We use the standard
solution: We right-pad the sentences to the length of the longest sentence in the batch.
However, this solution comes at a cost, as the padding tokens are scored unnecessarily.

We can utilize batching in several ways. The most straightforward method is to
parallelize the scoring of extensions: When selecting the best variant, we score all its
extensions in a single batch. Consequently, inference only runs once for each relaxed
variant, thereby saving time.

Another strategy is to generate longer extensions. Instead of generating the forms of
only the next word, we generate the forms of the next few words. We then construct all
possible combinations of these forms. Through this process, we obtain more extensions
that can be scored in a single batch. Unlike the previous method, it is not guaranteed
that this approach will be faster; many poor variants are scored that would otherwise
not have been extended.

The final optimization focuses on relaxing multiple variants simultaneously: We do
not only relax the best variant but also the second best, third best, and so on. The
downside here is that the variants may have significantly different lengths. This was
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not too much of a problem in the previous methods, as the sentences had the same
number of words, so the number of tokens could have only varied slightly.

We implement all of these optimizations in our solution. Generating longer exten-
sions does not always lead to better results, so the default behavior for the assistant is
to only use parallel scoring and batched relaxation.

Length Penalty Heuristic

Unfortunately, the Dijkstra search is exponential due to the need to consider all pos-
sible combinations of word forms at each position. The idea behind the algorithm is
that incorrect sentences will receive poor scores and will not extend. While this is true,
it only helps to a certain extent. The problem is that the probability of a sequence
invariably decreases as more words are added. A sentence has many possible continu-
ations, so even the correct one has a low probability. Consequently, correct sentences
have scores similar to those of incorrect sentences that are a few words shorter.

Our goal, therefore, is to discount longer sentences. Could we adapt the A* al-
gorithm, which discounts paths closer to the goal? Unfortunately, this method is not
applicable to our problem; the distance to the goal could theoretically be zero if all
subsequent tokens received a probability of 1.

We opt for a different heuristic, specifically the lp(Y ) discount as introduced by
Wu et al. [2016]. The function lp(Y ), where Y represents the sentence, is defined as
follows:

lp(Y ) = (5 + |Y |)α

(5 + 1)α

The function increases with the length of the sentence. In our solution, we divide the
score of a sentence by this function. With this heuristic, the score is no longer monotonic
with length; hence, the algorithm is no longer guaranteed to find the optimal solution.

The hyperparameter α determines the strength of the discount. Higher values of α
lead to faster runtime but may yield incorrect results.

Baseline Heuristic

We also considered another way to discount long sentences. The idea is to overcome
the problem of the probability of a sentence decreasing as more words are added. We
make use of the way we construct sentences: There is a fixed word at each position;
only its form changes. We assume that the probability of that word will be similar
across all of its forms. Hopefully, only the forms that do not match grammatically will
have a lower probability.

We implement this concept with a baseline: We maintain the best log probability
for each position in the sentence. The difference between the log probability of a variant
and the baseline provides an estimate of the grammatical correctness of the variant.
The final score of a sentence is the sum of these differences.

Unfortunately, this heuristic does not perform well. One issue is that the baseline
can decrease, which alters the score of the sentence. This violates the condition needed
for the Dijkstra search to work. As a result, we do not know when to stop the search.
We need to construct more sentences, recalculate the scores and select the best one.

Another issue is that we spend excessive time processing long sentences that are
incorrect. The baseline does not allow us to extend short sentences that initially re-
ceived a poor score. In a sense, it is actually necessary for short sentences to still be
extendable.
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M ám mod ré

M ám mod ré k olo

Figure 3.2: Change in tokenization when extending a sentence. The last space
changes to the token ” k”.

Cache

The Transformer computes attention vectors for each token in the input. When we
score the extension of a sequence that has already been scored, it is not necessary
to recalculate these vectors. We thus adapt the attention cache optimization that is
otherwise used during text generation. Specifically, we cache the attention weights for
each scored variant. When its extensions are scored, we pass the cache to the model.

We still use batching to speed up the scoring process. This means we need to take
the caches for individual sentences and merge them into a single cache for the entire
batch. Here, we encounter a similar problem as with the batching of the inputs: The
caches may vary in length, and the model expects a rectangular input. Consequently,
we trim the caches to the length of the shortest cache in the batch at the cost of
recalculating the attention weights for the trimmed tokens.

To minimize this cost, we improve the algorithm that selects the variants to relax.
We always select the best variant to ensure that every variant is eventually scored.
Subsequently, we consider a pool of the best variants and select a subset of the pool
with the minimum number of trimmed tokens.

Finding the optimal subset can be achieved algorithmically. We sort the variants
based on the length of their cache. We then use a sliding window with a size equal
to the number of variants that we want to relax. For each window, we compute the
number of trimmed tokens and select the window with the minimum number.

When we pass the cache to the model, it expects that we already have the logits for
the old tokens, so it only calculates logits for the new ones. Unlike before, we cannot
calculate the negative log probability for the entire sentence at once. We, therefore,
calculate it for the extension and add it to the previous variant. However, a problem
may arise due to the way that the text is tokenized: The extension of the text may
not be an extension in terms of tokens. Specifically, a different token can form at the
boundary between the old text and the extension. An example of this can be seen in
Figure 3.2.

Fortunately, we can rely on the fact that tokens created by BPE follow some basic
rules. Specifically, a token containing letters can only have whitespace at the beginning,
never at the end. As long as we ensure that variants do not end with whitespace,
tokenization will not change when we extend them.

3.2 Prediction
The goal of prediction is to suggest how a sentence will continue. Achieving this task
is simple, as language models are trained precisely for this purpose: We pass the input
to the model, and it returns the most probable next token. We append the generated
token to the input and repeat the process until we reach the desired length.

But what is the desired length? How long should the prediction be? A single-token
prediction is not very useful since the user could type it themselves, and it would be
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faster than waiting for the model to generate it. A very long prediction will likely
diverge from what the user wants to say, which means the user will not accept it.
Our goal is to find the optimal length that balances these two extremes. The optimal
length differs for each sentence, as some sentences are more predictable than others.
For example, if the user starts typing the first few words of a famous quote, the model
can finish the entire quote, even if it is long.

We will use the probability of the generated suggestion to find the optimal place
to terminate the prediction. The first idea is to choose a probability threshold: If the
probability of the suggestion drops below this threshold, we stop generating. This rule
ensures that predictable sentences are generated in full while unpredictable sentences
are cut short. The user may even choose the threshold to tune the assistant to their
preferences.

However, there is one drawback: The threshold may cut off the suggestion in an
unnatural place, such as in the middle of a word or in the middle of a common phrase
that would become incomplete. Although the probability of such a phrase is high, it is
enough to lower the probability of the entire suggestion below the threshold. To address
this issue, we introduce a different approach: We find the place in the suggestion where
the token probabilities suddenly drop, and we terminate the suggestion there.

3.2.1 Usefulness
We base the approach on the concept of expected value. We aim to maximize the
usefulness of the suggestion: If the user accepts the suggestion, the usefulness u is
equal to the length ℓ of the suggestion. Otherwise, the usefulness is zero:

u =
{︄

ℓ if the suggestion is accepted
0 otherwise

We can calculate the expected usefulness as the product of the length of the sug-
gestion and the probability of acceptance pa:

E[u] = ℓ · pa + 0 · (1 − pa) = ℓ · pa

We could model the probability of acceptance with the probability ps of the sug-
gestion; however, the probability usually decreases too fast, so we introduce a hyperpa-
rameter called confidence that controls the rate of decrease. We raise the probability to
the power of the inverse of the confidence; since we usually work with log probabilities,
we divide the log probability by the confidence. In the end, the expected value is a
function of the probability ps of the suggestion, its length ℓ, and the confidence c:

E[u] = ℓ · pa

E[u] = ℓ · p1/c
s

E[u] = ℓ · e(log ps)/c

Tweaking the value of confidence allows the user to adjust the length of the pre-
diction, similar to the threshold approach. Higher confidence values result in longer
predictions. In fact, the usefulness approach also favors predictable sentences, so it
fully replaces the threshold approach.
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Fill in the blank marked by ___.
My friend exercises regularly because he ___ a marathon.
My friend exercises regularly because he

Figure 3.3: Infilling prompt using a blank marker.

Write a sentence such that it ends with: a marathon.
My friend exercises regularly because he

Figure 3.4: Infilling prompt using the sentence end.

3.3 Infilling
Infilling aims to suggest a few words that fit into a sentence. Our primary challenge
during this task is to consider both the left and right context. Unfortunately, decoder-
only models cannot consider the right context, as they process the input from left to
right. To address this issue, we generate many possible continuations of the left context
and select the one that best aligns with the right context.

3.3.1 Generation
We use the beam search algorithm to generate multiple distinct continuations. We
also employ a similarity penalty to ensure that the continuations are diverse. However,
even with many continuations, it’s still a matter of luck that the right context will
match. So, we add a hint about the right context to the input. We create a prompt
that includes both the left and right context and an instruction to generate the missing
part.

Blank marker Our first attempt at such a prompt includes the sentence with a
blank at the missing part and an instruction to fill in the blank. We also include the
start of the sentence, as the model would need to generate it anyway. The resulting
prompt can be seen in Figure 3.3. We let the model finish the output, generating the
missing part. However, the model often ignores the instruction and repeats the blank
marker in the output. To solve this, we suppress such tokens during generation.

Sentence end Our second approach avoids blank markers altogether. The left
context is already a part of the final sentence, so it does not have to be a part of the
instruction. Hence, we only include the right context and instruct the model to use it
at the end of the sentence. The resulting prompt is shown in Figure 3.4.

Both approaches add special instructions to the input. When running the assistant,
we need to choose the language of these instructions: If the infilled sentence is in
Czech, it also makes sense to write the instruction in Czech. This also helps to clarify
the language of short inputs. So, we detect the language of the input using FastText
[Joulin et al., 2016] and decide which language to use for the instruction.

Another problem arises due to tokenization. The last word of the left context is
not terminated, so the model may extend the word with another token. For example,
the word ”he” may become ”health”. Adding a space to the prompt does not work
well either, as it creates a separate space token; this behavior is shown in Figure 3.5.
In contrast, the model usually generates a space combined with a word as a single
token. Consequently, seeing a single space makes the model generate special tokens
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My friend exercises regularly because he

Figure 3.5: A trailing space creating a separate space token.

that usually occur after a space. To solve this, we enforce the first token to start with
a space during generation. Unfortunately, we need to assume the tokenization strategy
of the model, which limits the models our assistant is compatible with.

3.3.2 Selection
After generating multiple sentence variants, we need to select the most suitable one.
Generally, it makes sense to select the sentence with the highest probability. How-
ever, the generated sentences are not guaranteed to adhere to the given instructions.
Sometimes, the model generates a sentence that ends differently. To mitigate this, we
try to find the sentences that best match the right context. Initially, we only consider
sentences that are an exact match. We select the one with the highest probability if
there are such sentences. Otherwise, we look for sentences that contain the first word
of the right context.

However, the sentences may not match at all. Therefore, we develop another strat-
egy to select the best sentence. The idea is to start with the generated infill, manually
concatenate it with the correct context, and compute the probability of the resulting
sentence. While this method ensures the correct ending, the infill and the right context
may not connect well. Specifically, the infill may already contain a part of the right
context, or the last word of the infill may be incomplete because only some of its tokens
have been generated.

To address this, we assume all prefixes of the infill. For instance, if the generated
infill was ”is training for a mara”, we create the prefixes ”is”, ”is training”, ”is training
for,” and ”is training for a”. This process is repeated for every infill; the duplicates are
removed, and the prefixes are concatenated with the right context. Subsequently, we
compute the probability of each sentence and select the one with the highest probability.
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4. Assistant
In the previous chapters, we described the tasks that Preditor performs and we explored
various strategies to solve them. In this chapter, we focus on the assistant itself.

Our assistant has the form of an editor extension. Modern text editors make it pos-
sible to extend their functionality with plugins. These plugins can provide suggestions
and refactor code, among other things. We can use this functionality to implement our
tasks. In this thesis, we write an extension for Visual Studio Code.

The assistant needs a lot of computing power to perform its tasks, as it runs a
large language model. We cannot expect users to run this model on their machines.
Therefore, we design the assistant using the client-server architecture. The server is
responsible for running the model and performing the computations for the tasks. We
expect the server to run on a powerful machine with a GPU, perhaps in the cloud.
The client is realized by the extension, and it is responsible for the user interface
and communication with the editor. It forwards the user’s requests to the server and
displays the results.

Each editor needs a different extension, and this architecture makes it possible to
develop many extensions. Therefore, we want to make the extensions as simple as
possible. We move as much logic as possible to the server; each extension only needs
to handle the user interface and communication with the server.

4.1 Server
The server part is implemented as a Python package and uses the Python package
manager pip for installation. The repository is available on GitHub.1

The server has the following responsibilities: It loads the language model and the
tagger and provides functions that expose their functionality. It listens for user requests
with an API and dispatches them to the appropriate task. Finally, it contains the logic
for the various task strategies, and it dispatches requests to these strategies.

4.1.1 Models
The server loads three models: the language model, the tagger model, and the Fast-
Text model. We need to specify where the server should find these models. We use
environment variables to avoid hardcoding paths:

• PREDITOR MODEL PATH

• PREDITOR FASTTEXT PATH

• PREDITOR TAGGER PATH

Users can set the environment variables in the shell or with a .env file. We provide a
utility script download-models.sh that downloads the models to the models directory
and configures the environment variables in the .env file.

Language model The server needs a language model to generate text predictions
and compute sentence scores. It can load this model from a local file or download it
from HuggingFace.2 In the latter case, the HuggingFace library caches the model locally

1https://github.com/kulisak12/preditor-model
2https://huggingface.co/models
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so that it does not need to download it again. The model also includes a tokenizer,
which is necessary to convert text to tokens and back.

The server defines a Model abstract class that holds the model and the tokenizer
since these objects are always used together. The tasks use its subclass HFModel, which
loads an actual model from HuggingFace. This distinction makes it possible to create
mock models for testing. Both classes are defined in the model/ directory.

Several other files define functionality related to the model. The nlp.py file contains
functions that compute the sentence scores, and the caching.py file provides functions
for manipulating the attention cache. The individual tasks define their own functions
that use the model, a prominent example being the infilling/generation.py file
that generates text for the infilling task with several constraints on allowed tokens.

Tagger model The MorphoDiTa tagger requires a tagger model to perform its
tasks. The model can be downloaded from the LINDAT repository.3 There are several
variants available; we use the full variant, i.e., the variant that predicts all tags and
uses diacritics.

All the tagger functionality is implemented in the tag.py file, which provides tok-
enization, tagging, and variant generation.

FastText model Finally, the server needs a FastText to determine the language of
the input text. The FastText model is available from the FastText website.4 We use
the compressed model, as it fully suffices for our purposes. The language identification
is implemented in the language.py file.

4.1.2 Flask API
The server handles requests using the Flask framework.5 We use a Gunicorn6 server to
run the Flask application, as the built-in Flask server is only intended for development.

The application entry point is the file server.py. The API listens for POST
requests on two endpoints:

• /suggest for the prediction and infilling tasks
• /substitute for the substitution task

Both the request and the response are in JSON format; the README.md file in the
repository describes the API in detail. The request contains the task input data and
the task-specific configuration. This configuration allows the user to tweak some task
parameters, such as output length or the strength of the heuristic. By including the
configuration in the request, we make it possible to adjust the task’s behavior without
restarting the server.

We parse the request using Pydantic7 to validate the input and provide default
values. We return an error response with an appropriate status code if the request is
invalid. The error response format is the same for both endpoints.

We considered including user authentication in the API, such as an API token. In
the end, we decided against it to simplify the setup. However, if the server is deployed
in a public environment, we advise adding some kind of authentication, as the server’s
long processing times make it vulnerable to denial-of-service attacks.

3https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-4794
4https://fasttext.cc/docs/en/language-identification.html
5https://flask.palletsprojects.com/en/3.0.x
6https://gunicorn.org
7https://docs.pydantic.dev/latest
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4.1.3 Tasks
We discussed several strategies that the assistant can use to solve the tasks. These
strategies are located in the directories substitution/, prediction/, and infilling/.
Each directory contains a file with the same name as the directory that serves as the
entry point for that task. This file handles configuration, prepares the input and calls
the appropriate strategy. We provide a utility function that handles the entire request
using the best strategy; however, we implement the logic so that it is easy to call a
different strategy if needed.

Prediction & Infilling We decided to join the prediction and infilling tasks into
one endpoint (/suggest) so that the editor extension does not need to distinguish
between them. The extension sends the text around the cursor, and the server decides
which task to perform based on the context. In particular, it trims the text to the
current paragraph (a sequence of non-empty lines). If the cursor is at the end of the
paragraph, the server performs the prediction task; otherwise, it performs the infilling
task. We also join the lines in the paragraph with spaces to create a single line of text
since the model is trained on continuous text. We pass this input to the task and return
the result.

Substitution Our implementation of substitution expects to receive a single sen-
tence. To keep the extension simple, we let it send the entire text around the cursor,
and we leave it to the server to extract the sentence containing the replaced word. To
this end, we utilize the tagger, which can split the text into sentences.

4.2 Language Model
We had the following requirements when choosing the language model:

• It is available in the HuggingFace model hub.
• It uses the decoder-only Transformer architecture.
• It supports Czech.
• It is fast enough to provide suggestions in a reasonable time.
• It fits on a single GPU to keep the resource consumption low.

For a long time, no such model could generate quality text in Czech. During
the development, we have used the Falcon model8 [Almazrouei et al., 2023], which is
trained primarily on English data, so its capabilities in Czech are limited. Therefore,
the results of the assistant were suboptimal. However, in March 2024, two new models
were released: CSTinyLlama-1.2B9 and csmpt7b10 [Fajč́ık et al., 2024]; we chose the
former because of its smaller size. It paid off that we designed the assistant to be
model-agnostic; because of that, switching to a new model was straightforward.

We also considered using a conversational model. Such a model would likely perform
better on the infilling task, where we give it the instruction to fill in the blank. However,
no such model is available for Czech at the time of writing.

8https://huggingface.co/tiiuae/falcon-7b
9https://huggingface.co/BUT-FIT/CSTinyLlama-1.2B

10https://huggingface.co/BUT-FIT/csmpt7b
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4.3 Editor Extension
We provide an extension for the popular editor Visual Studio Code. It is available in
the Visual Studio Code Marketplace,11 so users can install it directly from the editor.
The source code is available in a separate GitHub repository.12 The extension is written
in TypeScript.

The extension defines a completion provider, which is how extensions can provide
suggestions to the editor. Whenever the user types a trigger character, such as a space,
the extension sends the text around the cursor to the server. Once the response comes,
it displays the suggestion that the user can accept by pressing the Tab key.

The extension also defines a rename provider, which typically allows the user to
rename variables in the code. We repurpose it to perform the substitution task. The
user can use the rename keyboard shortcut (F2) to replace the word under the cursor.
Afterwards, the extension sends the replaced word and the text before and after it to
the server. The server returns the adjusted text, which the extension then replaces in
the editor.

Lastly, the extension contributes several configuration settings. Using these set-
tings, the user can configure the server’s URL and the amount of context that the
extension sends to the server. Apart from that, the settings contain the task-specific
configuration that the user can adjust, such as the strength of the length penalty
heuristic introduced in Section 3.1.2.

11https://marketplace.visualstudio.com/items?itemName=kulisak12.preditor
12https://github.com/kulisak12/preditor
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5. Evaluation
In this chapter, we explore the accuracy and performance of the proposed strategies for
Preditor. The results depend on the language model we use; we run the evaluation using
the CSTinyLlama-1.2B model. We compare the individual strategies and highlight their
strengths and weaknesses.

5.1 Substitution
5.1.1 Dataset
No datasets were available for the substitution task, so we created our own. We picked
five types of modifications that we identified as the most common use cases for the
substitution task:

• change in number
• change in gender
• change in gender and number
• change in person
• change in person and number

To ensure the dataset is balanced, we created 20 examples for each type, resulting
in 100 examples in total. Each example contains the original sentence, the replacement,
and the expected sentence. We picked suitable sentences from the Czech NewsCrawl
2007 dataset1 that had a mostly clear answer; we sometimes modified them to fit the
task. We only used sentences shorter than about 100 characters, as longer sentences
take too long to evaluate.

While creating the dataset, we spotted some limits of the task as we defined it.
In particular, we did not allow the assistant to change the number of words, but that
is sometimes necessary. For example, consider the sentence Já jsem si dal pivo. If
we change it from the first person to the second person, we get Ty sis dal pivo. Our
assistant cannot handle such cases, as it would need to combine two words into one.

5.1.2 Results
We evaluate four configurations. There are two strategies: cache uses the cache opti-
mization, simple does not. For each of them, we evaluate three values of the hyperpa-
rameter α for the lp(Y ) heuristic. The value of α = 0 is equivalent to not using the
heuristic at all.

The metrics are as follows:

• Time is the average time it takes to generate the substitution.
• Accuracy is the percentage of fully correct substitutions.
• Good is the number of good word changes. A word change is good if it reduces

the number of incorrect forms in the sentence — it is a change that the assistant
should make.

1https://data.statmt.org/news-crawl/cs/
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Strategy α Time Accuracy Good Bad Missed
simple 0.0 15.68 s 60 % 154 37 33
simple 0.5 4.06 s 60 % 154 37 33
simple 1.0 1.47 s 60 % 154 36 33
cache 0.0 6.12 s 61 % 156 34 31
cache 0.5 1.79 s 60 % 154 34 33
cache 1.0 0.74 s 61 % 154 32 33

Table 5.1: Evaluation of the substitution task.

Original Od 18:00 bude hostem Impuls̊u Václava Moravce.
Replaced Od 18:00 budou hostem Impuls̊u Václava Moravce.

Original Je prvńım novým členem Evropské unie, který se žezla uj́ımá.
Replaced Jsme prvńı novou zemı́ Evropské unie, která se žezla uj́ımá.

Original Tyto domy jsou cenově př́ıznivé.
Replaced Tato chata je cenově př́ıznivá.

Original Mám z toho radost, ale beru to s rezervou.
Replaced Má z toho radost, ale bere to s rezervou.

Original Ani já j́ım nejsem.
Replaced Ani vy jimi nejste.

Table 5.2: Outputs of the substitution task. The replacement is underlined; the
wrong words are in bold.

• Bad is the number of bad word changes. A word change is bad if it increases the
number of incorrect forms in the sentence — the assistant changes a word that
should be left unchanged.

• Missed is the number of missed word changes. A word change is missed if it does
not change the number of incorrect forms in the sentence — the assistant either
does not change a word it should change or changes an incorrect word to another
incorrect word.

Table 5.1 shows the results of the evaluation. Over half of the substitutions were
entirely correct, and many of the remaining ones still produced grammatically correct
sentences. The number of good changes outweighs the rest, which is also a good sign.

The simple and cache strategies achieve similar accuracy, which is expected since
their algorithm is almost the same and only differs in implementation. The cache opti-
mization reduces the time by more than half, a significant improvement. The heuristic
helps, too; the higher the hyperparameter α, the larger the speedup. Surprisingly, the
heuristic does not affect the accuracy.

Table 5.2 shows some outputs in detail. A common mistake is changing a word
that does not depend on the replaced word; the second example in the table is one such
case. That is one of the downsides of the approach we use; the assistant chooses the
word forms that best fit the sentence, but it does not consider whether it depends on
the replaced word or not.
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Figure 5.1: The continuation of the sentence ”Můj kamarád rád” and the ex-
pected usefulness of the suggestions for several confidence values. The highest
score for each confidence value is highlighted. For c = 5.0, the assistant would
suggest ”hraje na kytaru a”.

5.2 Prediction
We do not evaluate the quality of the predicted sentences because our assistant directly
uses the prediction of the language model, and the quality of the language model is not
the focus of this work.

Still, we can evaluate the strategy that chooses the cutoff point for the suggestion.
However, this task is highly subjective, so we only provide a non-scientific, empirical
evaluation.

Figure 5.1 shows the suggestion that the assistant would make for several confi-
dence values; it selects the prefix that ends at the position with the highest score; this
position is also included. All of the suggestions end at a reasonable place where it is
no longer clear how the sentence should continue. For example, the phrase ”já jsem se
rozhodl,” has an obvious continuation ”že”, so it makes sense to include that word in
the suggestion. Afterward, the sentence could continue in many ways, so the assistant
does not suggest any more words. Sometimes, the model generates a period and con-
tinues with another sentence. In such a case, the assistant almost always terminates
the suggestion after the period, which is also a reasonable choice.
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Generation Selection Time Accuracy
predict (baseline) match 0.35 s 7.1 %
predict (baseline) score 0.51 s 9.8 %
blank match 2.03 s 7.2 %
blank score 2.61 s 11.2 %
end match 1.62 s 6.2 %
end score 2.27 s 12.7 %

Table 5.3: Evaluation of the infilling task.

5.3 Infilling
5.3.1 Datasets
We created two datasets for the infilling task. First, we created a large dataset with
1000 automatically generated examples to compare the strategies. Then, we manually
created a tiny dataset with 30 examples that have a mostly clear answer to get an idea
of the absolute performance.

For the first dataset, we take sentences from the Czech NewsCrawl dataset and
randomly remove one to three consecutive words from them. We only keep sentences
at least 8 words long to ensure some context is present. However, such automatic
generation often generates sentences that have no clear answer. Therefore, the second
dataset contains only examples that have a clear answer; in other words, a human
would correctly fill in the blank in most cases. Moreover, the answer depends on both
the left and right context.

5.3.2 Results
We evaluate our two strategies: blank, which uses a blank marker, and end, which
instructs the assistant to generate a sentence with a given ending. Additionally, we use
simple prediction without the right context as a baseline. We combine each of these
strategies with the two selection strategies: match that selects the variant that most
resembles the original sentence, and score that scores all variants using the language
model and selects the best one.

We use the following metrics:

• Time is the average time it takes to generate the infilling.
• Accuracy is the percentage of fully correct infillings.

Table 5.3 shows the evaluation results on the large dataset. The accuracy scores
are pretty low, partly due to the sentences not having a clear answer but also because
the assistant does not do well on this task.

The score selection strategy consistently outperforms the match strategy at the cost
of a slightly longer suggestion time. Both the blank and the end strategy achieve higher
accuracy than the baseline prediction strategy, but the difference is fairly small.

However, prediction is much faster than the other two strategies, which makes it
more convenient for the user. Time-wise, the bad performance of the blank and end
strategies is due to the beam search algorithm they use; its implementation in the
Transformers library unnecessarily calculates attention values multiple times.2 This
issue may be fixed in the future, making the strategies almost as fast as prediction.

2https://github.com/huggingface/transformers/issues/27449
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Generation Selection Accuracy
predict (baseline) match 13.3 %
predict (baseline) score 16.7 %
blank match 13.3 %
blank score 23.3 %
end match 16.7 %
end score 30.0 %

Table 5.4: Evaluation of the infilling task on the manually created dataset.

Prośıme která budou provoz blokovat, budou odtažena. (Vozidla)
Dodatek by měl směřovat k těžbě na těžbě lithia profitovala česká ekonomika.
(tomu, aby)
Vyplývá to z předběžných výsledk̊u, které dnes zveřejnil Český statistický úřad
(ČSÚ).

Table 5.5: Outputs of the infilling task. The underline marks the infill. The
first two examples show common mistakes; the correct answer is in italics. The
last example shows a correct infill that depends on the right context.

Table 5.4 shows the evaluation results on the manually created dataset. The accu-
racy of our strategies is better than that of the large dataset, but it is still far from
human performance.

The assistant struggles most when the blank is at the beginning of the sentence; it
made a mistake in nearly all such cases, which is likely because the model is not trained
to follow instructions. Another common mistake is repeating the word after the blank.
Table 5.5 depicts these mistakes and one correct output.
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6. Conclusion
In this thesis, we explored various ways in which a writing assistant can help users
with writing. We focused on three tasks: rewriting a sentence after replacing one of
its words, suggesting continuations of a sentence, and suggesting words that fit into a
sentence. We developed several strategies for the tasks and evaluated them to choose
the best ones. Finally, we integrated the strategies into our assistant, Preditor. We
provided a server part that processes the tasks and exposes them through a REST API,
which an editor extension can access. We developed one such extension for the Visual
Studio Code editor.

We were able to handle all three tasks using a single pre-trained large language
model, which minimizes the memory footprint and makes the assistant suitable for
personal use. Moreover, we designed the system to be model-agnostic, which makes
it possible to upgrade to a new model with little effort. We successfully performed
such an upgrade during development when a better Czech language model came out.
Initially, we aimed to make the assistant compatible with all decoder-only Transformer
models. Due to implementation details, we had to restrict ourselves to models with a
tokenization strategy that positions spaces at the start of tokens. Fortunately, most
available models utilize this tokenization approach.

Substitution Our assistant can rewrite a sentence when the user replaces one of its
words to make it grammatical. We restricted ourselves to a single sentence and only
altered the forms of words; we did not rearrange, add or delete words. We introduced
an algorithm that constructs variants for the new sentence by altering word forms and
uses the probability the language model assigns to the sentences to choose the best
one. This approach works well, correctly adjusting the sentence in a majority of cases.
Unfortunately, its use case is limited due to the mentioned restrictions.

Prediction Next, our assistant suggests continuations of a sentence. A language
model can generate continuations with ease; we introduce an approach that finds the
best part of the continuation to suggest to the user. The approach considers the length
of the suggestion and the probability assigned to it by the language model. We did not
conduct a thorough evaluation, but empirically, this strategy leads to good suggestions.

Infilling The final task focuses on providing suggestions in the middle of a sentence.
We designed an approach that prompts the model to generate words that fit into the
sentence; we generate multiple such variants and then select the one that fits the best.
We suggest two strategies for generation and two for selection. Our approach achieves
better results than generating continuations of the text before the gap but still has
room for improvement.

6.1 Future Work
The system we developed is a good starting point for a writing assistant. Still, the
accuracy and performance of the strategies can be improved. We present several ideas
for future work.
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6.1.1 Substitution
Our algorithm for substitution works well in most cases but often fails because it changes
a word that does not depend on the replaced word. One possible remedy is to favor
the forms of the words that occurred in the original sentence. It remains unanswered
how to balance the favoring so that it does not prevent the algorithm from making
necessary changes.

We only used linguistic analysis to generate alternate word forms. Yet, syntactic
analysis could provide more information about the sentence structure. We believe that
a language model is still necessary to capture the semantics of the sentence. However,
syntactic analysis can help decide which words to change and limit the number of
possible forms.

We only focused on single-sentence scenarios. Our current approach has exponential
complexity in the number of words that need adjusting, so directly extending it to
multiple sentences seems infeasible. We believe that an iterative approach could work,
where we adjust one sentence at a time but take into account the context of the other
sentences.

The possible use cases of substitution would greatly expand if we allowed the re-
ordering of words. A different approach would be necessary; one idea is to make small
adjustments to the sentence iteratively. We could even consider adding or deleting
words, but ensuring that the sentence’s meaning remains the same becomes difficult.

6.1.2 Prediction
The current implementation of the prediction task first generates a continuation of a
fixed length and then selects the part to suggest to the user. This approach is ineffective,
as the model often generates a lot of text that we discard. Thus, it would be beneficial
to adjust our approach to terminate the generation early when the continuation seems
unlikely to be useful.

6.1.3 Infilling
Chat models show promising results when filling in gaps in a sentence but do not
always follow the instructions. We believe that our approach would also work with a
chat model; thus, it would solve this issue and achieve better results.

Our implementation does not use cache optimization when selecting the best vari-
ant. We omitted it because it is relatively fast, even without the cache. However, the
optimization would speed up the selection process by a few tenths of a second.

6.1.4 Assistant
We designed the server to be stateless; it handles each request independently. Because
of this, it processes each text snippet from scratch. Hence, the extension only sends a
small part of the text to the server; otherwise, it will take a long time to process. Thus,
one possible improvement is to make the server stateful. If the server could remember
the attention states from previous requests, it could reuse them when processing a new
request, making it possible to use a larger context.

Another possible improvement is to implement the cancelation of requests. Cur-
rently, the server processes each request to completion. In some situations, the user
might want to cancel the request, for example, when the server takes too long to re-
spond. Cancelation would free up resources for subsequent requests.
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