
BACHELOR THESIS

Boris Kapustík

Controlling a robotic chess manipulator

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: doc. RNDr. Martin Kruliš, Ph.D.
Study programme: Computer Science

Prague 2024

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I have used a generative
AI model for summarizations in parts marked as such. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to thank my family and my friends for being my support and believing
in me.

I would also like to thank my supervisor, doc. RNDr. Martin Kruliš, Ph.D.,
for his patience, guidance and invested time during the development of this thesis.
I have gained a lot of experience and new knowledge.

Title: Controlling a robotic chess manipulator

Author: Boris Kapustík

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Martin Kruliš, Ph.D., Department of Distributed and
Dependable Systems

Abstract: In this thesis, we will use Kinect v2 (from Microsoft Corporation),
Stockfish (one of the highest-ranking chess engines), and a custom-made robotic
crane capable of accepting simple commands to move across a 3-dimensional plane.
The objective is to integrate software for boardgame (Chess) tracking using an
easily accessible camera and depth sensor developed by Roman Staněk with an
open-source chess engine to create a simple chess robot. Thanks to the tracing,
the robot will have the ability to interact with users. The output will be a desktop
application for controlling and configuring the robot, switching between game
modes, and tracking the game. It will also require creating a virtual mock of the
robotic crane to simplify testing and further development.

Keywords: Kinect, integration, computer vision, memory-mapped files, robotic
chess-playing manipulator, inter-process communication

Název práce: Řízení robotického šachového manipulátoru

Autor: Boris Kapustík

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: doc. RNDr. Martin Kruliš, Ph.D., Katedra distribuova-
ných a spolehlivých systémů

Abstrakt: V této práci použijeme Kinect v2 (od Microsoft Corporation), Stockfish
(jeden z nejlépe hodnocených šachových programů), a na zakázku vyrobený robo-
tický manipulátor schopný přijímat jednoduché příkazy k pohybu po 3-rozměrné
rovině. Cílem je integrovat software pro sledování deskových her (šachy) pomocí
snadno dostupné kamery a hloubkového senzoru vyvinutýho Romanemem Stan-
kem s open-source šachovým enginem k vytvoření jednoduchého šachového robota.
Díky sledování, robot bude mít schopnost komunikovat s uživateli. Výstupem bude
desktopová aplikace pro ovládání a konfiguraci robota, přepínání mezi herními
režimy a sledování hry. Bude to také vyžadovat vytvoření virtuální napodobeniny
robotického jeřábu pro zjednodušení testování a dalšího vývoje.

Klíčová slova: Kinect, integrace, počítačové vidění, Soubory mapované paměti,
robotický šachy hrající manipulátor, Meziprocesová komunikace

Obsah

1 Introduction 7

Introduction 7
1.1 Application specifications . 8

1.1.1 Configuring robotic manipulator 8
1.1.2 Chess representation introduction 9
1.1.3 Playing the game . 10

1.2 Hardware specification . 11
1.2.1 Kinect . 11
1.2.2 Depth sensor . 12
1.2.3 Robotic manipulator . 14

1.3 Related work . 15
1.3.1 Computer-vision and figure detection 15
1.3.2 Chess algorithms . 15
1.3.3 Chessboard and figure manipulation 16

2 Problem Analysis 17
2.1 Path finding . 17

2.1.1 Naive approach . 17
2.1.2 Shortest path . 18
2.1.3 Sufficiently short path . 19
2.1.4 Bresenham-based super cover line algorithm 20
2.1.5 Final movement trajectory 21

2.2 Initial state of Chess tracking . 21
2.2.1 Algorithm selection . 21
2.2.2 Looking for the chessboard 22
2.2.3 Localization in space . 25
2.2.4 Figure localization . 26

3 Technical analysis 31
3.1 Technology . 31

3.1.1 IPC . 31
3.1.2 GUI . 33

3.2 Working with chess state . 34
3.2.1 Chess protocol . 34
3.2.2 Chess engine . 35

4 Implementation 37
4.1 Architecture . 37

4.1.1 ChessTracking . 39
4.2 Integrations . 41

4.2.1 Migrating legacy code . 41
4.2.2 Shared memory multi buffer 43

4.3 Implementation . 46
4.3.1 Scheduling commands . 46

5

4.3.2 Path calculation . 47
4.3.3 Swapping contexts . 48
4.3.4 Play against AI strategy 49
4.3.5 User Interface . 49

5 Discussion 52
5.1 Evaluation . 52

5.1.1 Chess Tracking . 52
5.2 Testing . 53

5.2.1 Robotic manipulator . 53
5.2.2 Robot moves . 53

5.3 Future work . 54
5.3.1 Chess tracking speed up 54
5.3.2 Automatic reconfiguration 55
5.3.3 Pawn promotions . 55
5.3.4 Configuration . 55
5.3.5 Camera . 55

Conclusion 57

Bibliografie 58

Seznam obrázků 61

A Attachments 62
A.1 Source codes . 62
A.2 GitHub . 62

6

1 Introduction
The goal of this thesis is to implement a desktop application for controlling a

robotic chess-playing manipulator and to integrate a legacy control application
for chess tracking. The chess tracking application uses Kinect for Windows and
computer vision algorithms to track chess figures on a chessboard.

The main motivation is to use this project in events organized by the university
to demonstrate a robotic manipulator playing chess against a person using an
affordable camera in a showroom. This comes with a number of real-world problems
that will need to be solved, such as configuring the robotic manipulator to
synchronize with the positioning of the physical chessboard and reconfiguring the
setup after movements which would otherwise cause a fault state. Reconfiguring
the chess tracking part will also be necessary to adapt to ever-changing light
conditions.

This application provides input for our robotic manipulator and allows us to
use our manipulator to play chess against a human user in real-time. We base
this project on a project written in a legacy framework using a library that is
no longer supported by newer technologies. Motivated to modernize the solution,
we will explore propositions on how to integrate seemingly un-integrable parts of
code while maintaining as much efficiency as possible.

All this will be achieved while keeping the code of incompatible frameworks
maintainable. We will also integrate a chess engine that will compute moves to be
used by our robotic manipulator to play against the human user. Executing the
moves requires effective path selection in space, which will be achieved with the
help of 3-dimensional path-finding algorithms.

All integrated parts will be united into one solution while maintaining mo-
dularization and a layered architecture according to the best practices used in
software engineering.

The application will also provide options to replay an already-played game.
This can be used to replay historic games of chess champions. Another option will
be to watch the chess engine playing against itself.

The user of the application will be able to configure the setup - that is, position
the robotic manipulator to find the chessboard in real space and reconfigure the
application while retaining as much of the current setup as possible – that is,
without the need to reconfigure the whole scene and state of the game.

7

1.1 Application specifications
The goal is to create a user-friendly graphical user interface that is simple

to use yet provides all necessary features to correctly set up and use the robotic
chess manipulator together with the chess tracking sensor. The project aims to be
usable in a showroom where visitors will be able to play chess against the robotic
manipulator, watch a historic match, or watch the computer play against itself.
The application aims to make setting up parts of the project as simple as possible.

1.1.1 Configuring robotic manipulator
The first stage is to set up the robotic manipulator. We expect the robotic

manipulator to be connected to the computer over USB. We need to select the
right connection. After the right connection is selected and established, we need
to establish where our robotic manipulator should expect the chessboard to be
placed, what the size of the chessboard is, and where it should expect the chess
pieces to be located. We need to set space for captured pieces. We do not want to
depend on a specific chessboard and its specific location. We make it possible to
use any reasonably sized chessboard and chess figures. The chess figures should
be big enough to be picked up by the grip of the robotic manipulator. They need
to be structured in a way that the grip can hold the figure without it falling. The
size of the chessboard needs to be smaller than the space on which the robotic
manipulator operates and big enough to place all the figures. There needs to be
some additional space between the chessboard and the edge of the space on which
the robotic manipulator operates so that the captured chess pieces can be placed
there. It can not be too small, so the Kinect can detect all the pieces correctly.

The application will force the user to use a chessboard and chess pieces that
satisfy all of the mentioned conditions, but other than that, it will give the user
the freedom to use any such chessboard and chess pieces. It will not require the
chessboard to be placed in any special location. Therefore, we need the application
to provide a way to find the location of the chessboard and use it in the game.
We implement that by forcing the user to move to the edges of the chessboard
using manual robotic manipulator movement controls. All other positions, that is,
square locations, are then computed by the application.

The movement controls needs to be slow and precise enough to correctly move
to the location and fast enough so that the configuration is not too long. We
manage this by being able to slow down or speed up the movement, similarly to
controlling the direction of the movement. To visualize the current location of the
robotic grip, we show the current 3-dimensional coordinates which can also help
with the configuration.

The application needs to handle changes in the environment, such as the
chessboard or, the robotic manipulator being moved, or the game being paused.
We do not want to reconfigure the whole setup each time this happens. The
application handles this by providing us with the option to pause the game and
reconfigure the localization of the edges of the chessboard. We can then resume
playing without restarting the game. We would like to keep the state of the game
even after reconfiguring and be able to continue in the game. When reconfiguring,
the application will have to keep the state of the game but also the state of the

8

configuration.

1.1.2 Chess representation introduction
Chess notations are used to record and store a game. These notations record

moves in short strings readable by a human and uniquely describe each move of
the game. They detail the actions of each player in a way that can be understood
and reproduced by others familiar with the notation. Using any of these notations,
one can reconstruct the entire game from start to finish. This is essential for
analysis, coaching, publication, and archival purposes [1]. Most often used chess
notations are:

• Algebraic notation - This is the most common modern notation and is used
by FIDE (the International Chess Federation). It identifies each square on
the chessboard by a unique coordinate, with moves described by the initial
of the piece (omitted for pawns) and the start or destination square (e.g.,
Nf3, e4). Special moves like castling are noted as ‘O-O’ or ‘O-O-O’, and
captures are denoted by an ‘x’ (e.g., Bxf3) [2].

• ICCF numeric notation - Used primarily for international correspondence
chess by the International Correspondence Chess Federation. Each square on
the chessboard is represented by two digits, where the first digit represents
the rank and the second the file (e.g., 52 for e2). Moves are recorded as a
pair of these numbers representing the starting and ending squares (e.g.,
5254 for e2 to e4).

• Portable Game Notation (PGN) - Used to record entire games along with
metadata about the game (players, event, date, result) [2]. It uses Algebraic
Notation for the moves themselves but can include additional information,
such as variations and textual commentary enclosed in curly braces or
semicolons for comments. PGN files are often used to import and export
collections of games into databases and chess software.

We will use the Chess notations to get input for our program to replay a record
of a historic game. Our application, however, needs more sophisticated way to
represent chess moves and work with the state of the game. That is because while
the chess notations can uniquely represent each move and the game as a whole,
there are several reasons why they are not suitable for working with a computer.
They often do not specify the source and destination of the figures used in a
chess move. They might not specify the figure that has been moved. They specify
castling by special characters, but for the program we need source and destination
positions of both the king and the rook. In general, the notations expect the reader
to know many other details from the context of the game. This might be trivial
for a person but would require the program to always compute many possible
scenarios for each move in order to determine source and destiontion positions.

The application will need to be able to parse some of the notations and do
the calculations when a game is loaded from a record. But the notation will need
to be translated to a more suitable protocol which can be directly used for any
computations. We will use Universal Chess Interface (UCI [3]) which is an open

9

communication chess protocol to represent the state of the game and the chess
moves.

1.1.3 Playing the game
After configuring the physical location of the chessboard, the application lets

us select a specific game mode, that is, which members will serve as input for
the robotic manipulator. We will refer to the game modes as strategies. The
architecture of the application is designed to easily implement a chess strategy.
We have implemented the following strategies.

• Replay match

• Watch AI match

• Play against AI

Replay match lets us watch a record of a game in PGN chess notation. The
application asks the user to select a file with a PGN record from the file explorer.

Watch AI match lets us watch a Stockfish [4] game engine play. The engine
is designed not to remember the state of the game. The application needs to
remember the state and always provide the engine with the correct input. The
engine computes the next move, and the robotic manipulator performs the move.
The Stockfish engine is open-source, and we expect it to be updated over time.
We want to let the option of choosing the version of the engine be up to the
user, and therefore, the Stockfish engine application is expected to be installed
separately, and the application asks the user to select the Stockfish application
from the file explorer. This will let the user freely decide whether he wants to
use a newer version of the Stockfish, and if he decides to update it, he can do so
without changing the code.

Play against AI match lets us use chess tracking provided by the Kinect [5]
camera sensor and use the input from the camera to localize the chessboard and
chess pieces. The chess tracking part of the application uses computer vision to
achieve this and is part of a different thesis by Roman Staněk [6]. The algorithms
require user-defined parameters to correctly compute the chess state. The appli-
cation lets us configure these parameters to adapt to current light conditions and
the placement of the Kinect camera relative to the chessboard, as well as the size
and colors of the chessboard and chess pieces.

User interface provides options to configure the parameters mentioned above
and show the state of the configuration. Numerous parameters need to be configu-
red for optimal results, and the effect of these changes can be seen in real time,
visualized in the user interface. The application shows us if the configuration is
correct, and when it finally detects a move, this move is logged and provided to
another part of the application in the UCI notation. The parameters will need to
be reconfigured when the light conditions change without interupting the current
game.

Independent of the game mode selection, the application lets us see the log
of played moves in the user interface. It will give the option to pause the game.
When paused the current move needs to be finished so that the state of the setup

10

is not abrupted and then the strategy can be changed. The play against AI and
Watch AI match will be able to be played continuing the unfinished game prior
to their selection. For example we can play a record of a game such as a historic
game, pause the game and select the play against AI and try to play the game
which a chess champion had started playing before.

1.2 Hardware specification
The application integrates two hardware components: Microsoft Kinect [5] and

a custom-made robotic manipulator.

1.2.1 Kinect

Obrázek 1.1 Kinect sensor v2 [7]

As Engineers without borders from Oxford say [8], Kinect is a line of motion-
sensing input devices produced by Microsoft, first released in 2010. The devices
generally contain RGB cameras, and infrared projectors and detectors that map
depth through either structured light or time of flight calculations [8].

As part of the 2013 unveiling successor of the Xbox 360, Xbox One, Microsoft
unveiled a second-generation version of Kinect, which can be seen in Figure 1.1,
with improved tracking capabilities 1.1.

11

Parameter Value
Number of models tracker 6
Skeleton joints defined 26
RGB camera:
Resolution(pixel) 1920 × 1080
field of view(degree) 84.1 × 53.8
frequency (Hz) 30
Depth camera:
Resolution (pixel) 512 × 424
field of view (degree) 70.6 × 60
frequency (Hz) 30
minimal operative measure (m) 0.5
maximal operative measure (m) 4.5

Tabulka 1.1 Kinect v2 sensor characteristics

Kinect [9] has also been used in non-game applications in academic and
commercial environments, as it was cheaper and more robust compared to other
depth-sensing technologies at the time. While Microsoft initially objected to
such applications, it later released software development kits (SDKs) for the
development of Microsoft Windows applications that use Kinect. In 2020, Microsoft
released Azure Kinect as a continuation of the technology integrated with the
Microsoft Azure cloud computing platform. Part of the Kinect technology was
also used within HoloLens project of Microsoft. Microsoft discontinued the Azure
Kinect developer kits in October 2023.

1.2.2 Depth sensor
The depth and motion sensing technology [9] at the core of the Kinect is enabled

through its depth-sensing. The original Kinect for Xbox 360 used structured light
for this: the unit used a near-infrared pattern projected across the space in front
of the Kinect, while an infrared sensor captured the reflected light pattern. The
light pattern is deformed by the relative depth of the objects in front it, and
mathematics can be used to estimate that depth based on several factors related
to the hardware layout of the Kinect. While other structure light depth-sensing
technologies used multiple light patterns, Kinect used as few as one as to achieve
a high rate of 30 frames per second of depth sensing.

Kinect [9] for Xbox One switched over to using time of flight measurements.
The infrared projector on the Kinect sends out modulated infrared light which is
then captured by the sensor. Infrared light reflecting off closer objects will have
a shorter time of flight than those more distant, so the infrared sensor captures
how much the modulation pattern had been deformed from the time of flight,
pixel-by-pixel. Time of flight measurements of depth can be more accurate and
calculated in a shorter amount of time, allowing for more frames-per-second to be
detected. [10]

As discussed in [6], among the main advantages of the technology used is the
possibility of using multiple sensors for one scene, as there is a lower likelihood of

12

mutual interference. Due to the method of capturing and calculating distances, the
sensor is also more stable when observing scenes with other sources of radiation,
such as sunlight.

Obrázek 1.2 Visualization of the multipath interference problem [6]

Obrázek 1.3 Visualization of the unsuitable materials problem [6]

Obrázek 1.4 Visualization of the flying pixels problem [6]

However, several drawbacks can be observed [6]. The first significant problem
is known as multipath interference [5]. The distance calculation assumes that we
illuminate the scene and the reflected light falls directly onto the sensor. However,
in the real world, this may not hold true, and reflections can occur, for example, in
corners, or light can refract, for example, through transparent materials, and these
reflected rays also fall on the sensor. This disrupts the accuracy of the calculation.
As demonstrated in Figure 1.2 where white pixels can be observed beneath the
plane of the table, which are caused by multipath interference.

13

Another problem is the observation of materials with poor properties [6] in
terms of infrared reflection. For example, high absorption of radiation by the
material will mean that very little information returns to the sensor, from which
the distance cannot be determined. This effect is clearly visible in Figure 1.3,
where the black squares are located a few millimeters lower compared to the rest
of the chessboard.

The last problem mentioned is flying pixels at the edges of objects [6]. For
example, if we observe an object one meter away with a background two meters
away, the pixels on the edges of the object will not be able to receive correct
information from just one object but will return a mixed value from both. Thus,
the calculated distance of the edge pixels will lie in the interval between one
and two meters. This can create non-trivial deformations of objects with a small
surface, as can be seen in the Figure 1.4.

We have chosen Kinect partialy because of lack of other hardware options.

1.2.3 Robotic manipulator
The robotic manipulator has been custom-made and we do not have proper

documentation, however, it is connected via USB and a serial port is used for
communication. The manipulator works similarly to a crane. It has electric motors
which enable it to move horizontally using wheels accross the x axis, while keeping
space in between the wheels where it operates. Above the free space there is a
grip connected to a pole. The grip is moved by an electric motor vertically and
horizontally across the y-axis.

For communication, G-code commands are used. G-code [11] (also RS-274)
is the most widely used computer numerical control (CNC) and 3D printing
programming language. It is used mainly in computer-aided manufacturing to
control automated machine tools, as well as for 3D-printer slicer applications. The
G stands for geometry. G-code has many variants. The main movement requires 3D
coordinates, which represent the destination where it should move. The commands
which we use to control our robotic manipulator are defined in 1.2.

Command Description
Xnnn Ynnn Znnn (rational numbers) Move across X, Y, Z axis respectively
$H Move home
M8 Open grip
M9 Close grip
$X Reset
? Get current state
! Pause
G00 Set linear movement
$# Get info

Tabulka 1.2 Robotic manipulator commands

Additionally, the robotic manipulator is equipped with a stop button, which
immediately stops it from movement in case of emergency. This stops any command
even when not finished just yet. Often after initialization and after stopping via

14

the stop button homing is required. That means that before executing any other
command, the Move home command needs to be called. This moves the grip to
what it considers an origin location.

1.3 Related work

1.3.1 Computer-vision and figure detection
Similar projects usually consist of a standard RGB camera or a thermographic

camera. Input from the camera is usually used to identify a chessboard within
an image based on its characteristics: position, orientation, and location of the
squares using either

• Corner-based approach

• Line-based approach

• Heatmap approach

Similar projects use the following approaches to localize chess pieces on the
chessboard:

FREDRIK BALDHAGEN [12] analyzes pixels near the centre of the squares of
the chessboard in regard to their red, green, and blue values to detect if a square
is vacant or not. This work uses the OpenCV library for computer vision using
the Corner-based approach for chessboard recognition.

Another project, authored by David Vegas Romero [13], uses different Machine
Learning and Deep Learning techniques to perform the recognition of the chess
pieces. This approach requires training in a computer neural network model and
a deep computer neural network model.

The chessboards usually need to be recognized and located first without the
chess pieces on them.

1.3.2 Chess algorithms
The state of the game is then used to compute the next sufficient move. Moves

are usually computed by a chess engine. Some of the most often-used chess engines
include

• Stockfish

• Leela Chess Zero

• Houdini

• Berserk

The output of the chess engines is recorded in one of the mentioned chess
notations 1.1.2.

15

1.3.3 Chessboard and figure manipulation
A robotic manipulator performs this chess move. Robotic manipulators can use

electromagnets to hold a chess piece. A magnet is placed on top of the chess piece,
and the robotic arm uses the electromagnet to pick up the figure and then place
it on the correct chess square. Another approach is to use a magnet placed on the
bottom of a chess piece and held from below the chessboard. An electromagnet
is then used to move the piece without the need to pick up the piece above the
chessboard and other pieces. This requires moving other pieces from the trajectory
of the held piece or some kind of navigation between the pieces.

16

2 Problem Analysis
This chapter analyses algorithmic problems relevant to computer vision and

robotics.

2.1 Path finding
Our robotic manipulator provides the option to choose between interpolated

or non-interpolated movement. Our program architecture is modular and thus is
not dependent on a specific API or physical chessboard, but to use different sizes
of the chessboard, we need to compute the trajectory of the robotic hand when
moving from point x to point y, either to pick up or position a figure. We want the
trajectory to be as efficient as possible for the quick game movements, that is, only
moving to necessary coordinates. There should also not be too many individual
movements as the grip would stop at these positions for a short while, which
makes the movement slower. Because, the project is expected to be shown in a
show-room, we must also consider the visual effect of the path. As the robotic hand
is not a point but rather a solid figure, we need to take its size into consideration,
as well as the sizes of all individual chess pieces. The robotic hand must move
between or, rather, above the obstacles, that is, the chess figures, without touching
them. On top of that, the robotic hand can carry a piece, which must be taken
into consideration as well. We realize that we are dealing with a path planning
problem [14].

2.1.1 Naive approach
The simplest approach would be to set a constant ‘safe’ height at which the

robotic grip would operate. Moving a piece from position x to point y, it moves only
across the horizontal plane at this fixed height, which is above all the obstacles,
accounted for holding a chess piece. Upon reaching the vertical alignment with
the target position, the arm then transitions to a vertical movement to execute
the piece pickup or placement.

Obrázek 2.1 Moving chess figure over another chess figure

17

While this approach would significantly simplify the pathfinding algorithm and
minimize the risk of accidentally knocking other chess figures on the chessboard,
it does introduce inefficiencies. The provided figure 2.1 shows a mockup of a
simplified potential movement path for the robotic grip. The blue line depicts the
path which the robotic grip would follow using this naive approach. The path
would be longer than the shortest path, which would result in slower gameplay.
The red line shows a path that simply follows the straight line between the source
of the figure and the highest point of the figure, which is located between the
source and the destination using interpolated motion. While that might not be the
shortest path, it is almost as simple to compute while being significantly shorter,
thus increasing the interactivity of the system. It also produces fewer individual
movements, which adds up to the movement time and makes the visual aspect
less appealing.

2.1.2 Shortest path
Finding an efficient path for our robotic chess manipulator is important in

creating a seamless and dynamic gameplay experience. Ideally, we would find the
shortest motion path. We can store the positions of the squares on the chessboard
and the positions of captured pieces. Each square can contain an entity, that is, a
chess figure with a known height. The size of each square is computed and known
at the time of finding a path.

We could look at the squares as vertices of a graph. But because the shortest
path would cross the edges of the square under an angle which is not a multiple
of 90 unless the two points, that is, the squares, obtain a non-discrete space.

To manage path-finding effectively, we could consider discretizing the space by
selecting specific points that represent potential robot positions on the chessboard.
However, the directions of movement between these points can vary infinitely,
complicating the pathfinding process. To accurately compute paths at any possible
angle, we would need to define a sufficiently dense grid of vertices. This involves
identifying and storing a vast number of points to ensure that all potential
movement directions are covered, allowing for precise navigation and obstacle
avoidance in a dynamic environment.

For that, we would need to store an impractical number of points. A graph
created from such vertices would need to be recalculated as the space with the
obstacles, that is, chess figures, change. Existing algorithms, such as The classical
approaches, include A*, Dijkstra, and PRM (Probabilistic Roadmap Method)
usually uses graphs for pathfinding.

As Jihee Han says in his publication [15], in general, given the start and target
locations, the goal of path planning is defined as planning a collision-free path
from 3D obstacles while satisfying certain criteria, such as distance, smoothness,
or safety. As mobile robot path planning is considered to be NP-hard, 3D path
planning is also NP-hard with an additional axis for height. More recently, path
planning in three dimensions has been studied with heuristic approaches, such as
soft computing, meta-heuristics, and hybridized heuristics with classical methods.

Finding the shortest path would be ideal, given that it is an NP-Hard problem
in 3D with obstacles. Given the non-discrete characteristics of our space, that
is a chessboard, there would be a significant number of vertices which would

18

need to be taken into consideration when computing the shortest path which
would be computationally inefficient and would be difficult to implement. We will
thus try to use a heuristic to find sufficiently short path balancing accuracy with
computational feasibility.

2.1.3 Sufficiently short path
Instead of finding the shortest path, we will try to create an algorithm which

uses a heuristic which might find the shortest path, but even when it does not,
the found path would still be short enough for the motion to be efficient.

We will start by finding the shortest horizontal path without considering the
obstacles. We can do this because we are operating in 3 dimensions and can move
above all the obstacles since the chess figures are located at the bottom of the
chessboard.

Finding the line connecting two points is easy; it is the Euclidian distance,
but to translate this into the movement on the chessboard, we need to find all
the chessboard squares through which the line passes. All intersected positions on
a grid passed through by a line are sometimes referred to as a line super cover.
Horizontally, our robotic arm would move on this line, and the only problem
we need to solve is efficient vertical movement for obstacle avoidance. Vertically,
each move consists of picking up the figure from the chessboard and moving it
to the lowest carrying position required to reach the destination point without
crashing into obstacles, and similarly moving the figure down to place it onto the
chessboard.

Each time the path of the robotic arm horizontally crosses a figure, it needs to
be above the figure. Therefore, we can divide each move into two parts. First, we
find the highest point of the highest obstacle located on our path. Until this point
is horizontally reached, the arm only needs to vertically move upwards. Similarly,
after reaching the highest point, the robotic arm only moves vertically downwards.

As we want the shortest path possible, we want to use interpolated movement
to reach the subpoint that is either the highest or the lowest point. However,
other obstacles can be located on the 3-dimensional line between the position of
the arm and the subpoint. In the upwards-moving phase, we iterate through all
horizontally intersected chess figures, and the robotic arm moves just above the
highest point of a figure, which is Next, it will be horizontally intersected if the
highest point of the figure is higher than the current vertical position of the arm.

We have managed to simplify the problem into two parts, which is the horizontal
and vertical movement. The horizontal movement will be simplified to finding the
line supercover, thus finding all the intersected squares. When there is an obstacle
on the intersected squares, we will avoid the obstacle vertically.

This solution is simpler than trying to solve an NP-hard problem and takes up
less computational resources, while generating an optimally short path sufficient
for fast movements of the robotic grid and thus sufficient for the responsiveness of
the whole system.

As for the super cover, we essentially need to find which squares on the
chessboard are intersected by a line drawn between two points, for which we
need a line-drawing algorithm that accounts for which squares the line passes
through. This is similar to the problem solved by algorithms like the Bresenham

19

line algorithm [16] but with a focus on identifying all the squares that a line
intersects rather than drawing the line square by square. Our problem is similar
to a line drawing or line traversal algorithm that has been adapted to identify all
the squares (or tiles) on a grid where a line intersects.

2.1.4 Bresenham-based super cover line algorithm
We will use an algorithm created by Eugen Deduv [17]. This line is called

the super cover line, and this algorithm might be a particular case of the DDA
(Discrete Differential Analyzer) algorithm.

Figure 2.2 shows the difference between the Bresenham algorithm (in green)
and this one (in blue).

Obrázek 2.2 Difference between Bresenham classic and customized algorithm

If the Bresenham algorithm does not change the y-coordinate (the next point
is C), this means that D will not be drawn, so we pass directly to C, and we go to
the beginning again. The other case is when the Bresenham algorithm changes
the coordinate, that is when the next point is B. In this case, both C and D have
also to be checked. As seen in the figure, we can know if a point is drawn or not
by the following relation:

(octant == right->right-top for directions below):
if (error + errorprev < ddx) // bottom square also

POINT (y-ystep, x)
else if (error + errorprev > ddx) // left square also

POINT (y, x-xstep)
else // corner: bottom and left squares also

POINT (y-ystep, x)
POINT (y, x-xstep)

Error is the current error (in point B), while errorprev is the previous error
(in point A). Remember that the error is the ‘distance’ (non-normalized) from the

20

ideal point to the grid line below the ideal point. The difference with Bresenham
is that ALL the points of the line are used, not only one per x coordinate.

Here we have supposed that if the line passes through a corner, the both
squares are drawn, because the robotic grip would have a non-zero width. Note:
The line is symmetric; that is, a line from x0,y0 to x1,y1 is the same as a line from
x1,y1 to x0,y0.

2.1.5 Final movement trajectory
We have computed all intersected squares on the chessboard, and now we want

to combine these squares together with our approach to vertical movement 2.1.3.
Our robotic arm has a certain width, as do the chess figures, which we need to
take into consideration; therefore, the movement can intersect more than one
figure at the same time. We group these figures to make the path shorter and look
at them as if they were one obstacle.

The squares are grouped either by their row or column in a grid, that is, the
chessboard. If the difference between the row of the source and target is bigger
than the difference between their respective columns, we group them by rows and
vice versa.

Then, we can take into consideration only the highest point of the highest
figure in the group. As we know the source and target coordinates, we can use the
line equation to compute the exact coordinates at which each group is horizontally
intersected and finally use these points as input in the previously mentioned
algorithm 2.1.3.

2.2 Initial state of Chess tracking
The main focus of this section is to give us an idea about algorithms used for

chess figures, chessboard and plane localization. This section is a sumarization1 of
decisions and explanations of the used algorithms for the chess tracking project in
the thesis by Roman Staněk [6].

2.2.1 Algorithm selection
In the quest to identify the game plane within a point cloud for chess analysis,

multiple approaches were considered, with the RANSAC [18] algorithm ultimately
selected for its simplicity, flexibility, and adaptability to various parameters. This
choice was informed by a comparative analysis of several common techniques
for geometrical primitive detection in spatial data, namely RANSAC, Hough
Transformation [19], Region Growing [20], and Linear Regression.

RANSAC (Random Sample Consensus) [18] emerged as the most suitable due
to its probabilistic nature, allowing for efficient model estimation by iteratively
selecting a minimal subset of points to form potential models and evaluating their
fit against the dataset. Its advantages include the ability to adjust accuracy and
processing speed through iteration control and its inherent design to work directly
with input data, minimizing the exploration of implausible solutions. Despite its

1This summarization was made with the help of a generative AI model.

21

reliance on predefined threshold settings and the possibility of not exploring all
viable model variations, RANSAC’s straightforward implementation and capacity
for heuristic enhancements made it the preferred choice.

The selected algorithm implementation involves identifying the largest plane in
the captured scene that could feasibly support a chessboard, under the assumption
that the chessboard lies on a significant, continuous plane from the perspective of
the sensor. This approach simplifies the task by assuming a standard orientation
for the sensor relative to the ground, enhancing usability by avoiding the detection
of unsuitable planes.

Other considered algorithms included the Hough Transformation, effective for
exploring a substantial portion of the solution space but challenged by compu-
tational intensity and parameter setting; Region Growing, suitable for contiguous
regions but limited by noise sensitivity and computational demands; and Linear
Regression, ideal for data closely fitting a model but susceptible to noise inter-
ference. While powerful, these methods were deemed less practical for real-time
application due to their complex implementation requirements and sensitivity to
data quality.

The implementation decision was further refined by the stipulation that the
chessboard must reside entirely within a single plane, focusing on the largest
continuous area on the table surface as determined by sensor-captured data points.
The model estimation of this plane is further refined, when necessary, using linear
regression, under the assumption of having identified points reasonably close to
the model plane, thereby simplifying the task from a general search to a more
focused refinement within already segregated data.

2.2.2 Looking for the chessboard
After figuring out where the game is played, we pinpointed the area for the

chessboard. This step helped us cut down on unnecessary data and noise, making
it easier to find exactly where the chessboard is and how it’s positioned.

We looked at different methods [21] that help recognize a chess game from
an image. These included techniques like edge detection, corner detection, and
using Hough transformations [19], which are great for spotting the patterns of the
chessboard.

In the end, we chose to use corner detection because it is good at spotting
where the lines of the chessboard meet at the corners. These corners are crucial for
mapping out the chessboard correctly. By identifying these corners, our custom
algorithm could accurately place the chessboard in the 3D space.

This method made it straightforward to use computer vision technology to
find the chessboard and figure out its orientation and exact position in a busy
visual scene.

The challenge of finding the chessboard is multi-faceted, with applications
ranging from camera calibration using empty chessboards to adjusting for lens
distortions like radial blurring. Although computer vision libraries offer functions
dedicated to these calibration tasks, they are not suitable for identifying occupied
chessboards. An impractical workaround would involve locating an empty chessbo-
ard first, then adding pieces, a process cumbersome to repeat if the chessboard or
camera moves.

22

An alternative approach, capturing the chessboard from a bird perspective to
minimize piece interference, demands a specific camera setup that lacks flexibility.

Corner Detection Usage: The task often employs various computer vision
methods, such as edge or corner detection. Corner detection transforms the color
image to grayscale and applies a corner detection algorithm, identifying rapid
contrast changes in multiple directions. This method aims to locate all square
corners where two black and two white squares meet. However, it is sensitive to
parameter settings, as it may also identify piece transitions, decorative chessboard
borders, or external objects as corners as can be seen in the Figure 2.3c.

To accurately find where the chessboard is in 3D space, we use a detailed
method to choose points around a reference point, called B. Here is how it works:

• Select Points Near B - We pick several points close to B, aiming for at least
four to avoid errors.

• Pair Points - Each pair should be about the same distance from B, helping
to form a square shape similar to a chessboard. The angles between each
pair and B should be close to 90 degrees, matching the square corners of a
chessboard.

• Build Chessboard Models - Using these pairs, we create different possi-
ble layouts of the chessboard. Each model represents a potential way the
chessboard could be set up based on the data.

• Evaluate Models - For each chessboard model, we check how well it fits with
the actual data collected by sensors. We look at whether the corners in the
model match up with the real points observed.

• Choose the Best Model - The model that best matches the actual data is
chosen as the most accurate representation of where the chessboard is in
space.

This method focuses on ensuring that the model chosen is geometrically
consistent and closely matches the real-world data, providing a reliable way to
determine the position of the chessboard. The model with the smallest sum of
Euclidean distances between its grid points and the nearest actual data points
is considered the most successful, indicating a close match to the measured data
and thus an appropriate model for the spatial position of the chessboard.

Edge Detection Usage

Similar to corner detection, edge detection involves converting images to
grayscale or binary (black and white) to detect rapid contrast changes, but in one
direction. This method is somewhat more forgiving regarding parameter settings.

For example, while a single piece might create an undesirable corner in corner
detection, it wouldn not form an entire edge by itself in edge detection. However,
unwanted edges may still be identified and subsequently filtered based on length
or angle as depicted in Figure 2.3d.

Among the explored methods, edge detection using Hough transformation was
chosen for identifying significant chessboard features due to its resilience against

23

(a) Colorful chessboard shot (b) Gray scale

(c) Threshing (d) Edge detection

(e) Hough transformation (f) Edge filtering

Obrázek 2.3 Steps of edge detection [6]

24

distortions by chess pieces and ease of implementation. This process required
image preprocessing, converting the color image to grayscale, then binary, to
highlight high-contrast regions indicative of the grid of the chessboard.

This binary image served as input for the Canny [22] edge detector, which
looks for changes in contrast indicative of edges. The subsequent application
of the Hough transformation located all significant lines representing potential
boundaries of the chessboard, which were then filtered to isolate those relevant to
the chessboard grid as depicted in Figure 2.3f.

In summary, by employing edge detection and Hough transformation, critical
features of the chessboard were identified, enabling the determination of its
position in spatial data using depth sensor information. This approach illustrates
the integration of computer vision techniques and spatial analysis for accurate
chessboard localization within a physical space.

2.2.3 Localization in space
The spatial localization process aims to precisely map the edges of the chessbo-

ard from a 2D image to 3D points. This task is complicated by several factors,
such as the potential for chess pieces to obscure the edges and the limitations
of the Hough transformation to detect them. The subsequent filtering process,
designed to eliminate unwanted edges by grouping them into two categories, may
not remove all discrepancies. Moreover, mapping a point from the color image
that is believed to be an edge might result in a 3D point belonging to a piece
rather than the actual edge, leading to incorrect spatial information.

The proposed solution addresses these inaccuracies by selecting key points
that carry crucial information, mapping them into space, and fitting them with
a grid approximating the chessboard, ensuring proximity to these points while
avoiding misalignment caused by incorrectly mapped points. The focal points
for this task are the intersections of the vertical and horizontal edges of the
chessboard available from the image, which represent the precise corners of the
chessboard squares and carry significant information about its position and shape
as depicted in Figure 2.4. Additional points of interest include the ends of the
edges of chessboard, particularly when an edge is not detected, as these provide
information about the boundaries of the chessboard.

Coordinates for these points in 3D space are obtained using the mapping
function of the sensor between the color image and spatial data. These coordinates
are processed with an algorithm conceptually similar to the RANSAC algorithm,
described in an earlier section. The operation of the algorithm is demonstrated
with a smaller problem of fitting a 2x2 chessboard grid with nine points, which
can be seen in Figure 2.5.

For each acquired point, referred to as B, several nearest points from the
surrounding areas are selected—ideally four, but more may be chosen to account
for potential inaccuracies. The aim is to choose additional points that share a
square with B. From these surrounding points, all possible pairs are generated
that satisfy conditions regarding distance from B and the angle they form with B.
The selected pairs are then used to generate all 64 potential chessboard models to
determine the position of our square within the grid. For each model, the positions
of the corners of the chessboard are calculated.

25

Obrázek 2.4 Display of edge intersections [6]

The best chessboard model is determined through an algorithm that inputs
the set of points B (intersections), with parameters for deviations in the lengths
of vectors defining the chessboard (e1) and the angle deviation from right angles
(e2), and the number of neighbours considered for each point (p). The algorithm
initializes an empty chessboard model and iteratively selects and evaluates point
pairs from the neighbours, refining the model based on the cumulative distance of
these points to measured data points. The final model with the lowest cumulative
distance is deemed the most successful, indicating a close match to the measured
data and, thus, the most suitable model for the position of the chessboard in
space, as can be seen in Figure 2.5.

2.2.4 Figure localization
In the process of spatial localization, if all edges of the chessboard were

identified from The colour image and direct mapping methods could be used to
translate these lines into 3D points. However, the situation is complicated by
several factors:

Edge detection might not capture all chessboard edges, especially when obstruc-
ted by a a cluster of pieces, rendering the Hough transformation ineffective. [23]
Filtering aimed at removing undesirable edges by categorizing them into two
groups may not address all the discrepancies.

If there are edges in the scene parallel to one of the groups, such as decorative
edges of the chessboard or table edges, they may be mistakenly included as part
of the chessboard. Translating a point considered to be a chessboard edge from
the colour image to a spatial point could inaccurately map to a piece covering the
intended edge, thus providing incorrect spatial positioning. The proposed algorithm
aims to resolve these inaccuracies by selecting significant points, mapping them
into space and interpolating a chessboard grid that closely aligns with these points
without being skewed by inaccurately mapped points.

26

(a) The processed point (in green) and
its neighbors (in orange) (b) Pair of lines

(c) The processed pair (d) First chessboard model

(e) Second chessboard model (f) Third chessboard model

(g) Fourth chessboard model

Obrázek 2.5 Chessboard fitting algorithm with points [6]

27

Focal points include intersections of the vertical and horizontal edges of the
chessboard, representing precise corners of the squares, and provide substan-
tial information about the position and shape of the chessboard, as shown in
Figure 2.6b.

Points at the ends of the edges of the chessboard are also considered, especially
when an edge is not detected, as they provide boundary information.

Using mapping of the sensor function between the colour image and spatial
data, the 3D coordinates of these points are obtained. A RANSAC-like algorithm
is then applied to these points, demonstrated a smaller problem of interpolating a
2x2 chessboard grid with nine points, as shown in Figure 2.6c.

Finally, detecting the presence and the type of chess pieces is enhanced by
applying the Canny edge detector on depth data, as depicted in Figure 2.7. The
depth data, converted to grayscale, provides a means to identify the height changes
corresponding to the depth variations of the chessboard. The Canny edge detector,
known for its efficiency in edge detection tasks, outlines the shapes of chess pieces
based on these depth variations.

In Figure 2.7, the edge detection algorithm highlights the boundaries of objects
within the grayscale depth image. The white pixels, which represent areas of
significant depth change, help distinguish the chess pieces from the flat surface
of the chessboard. This method is crucial for spatially locating pieces on the
chessboard because it reveals the contours of the pieces that are not visible in the
conventional colour data due to lighting or colour similarities.

This detection is part of a more extensive process to determine the presence
and possibly the type of chess pieces based on their outlines. The contrast between
the heights of the pieces and the chessboard surface allows the algorithm to
segregate the pieces from the background effectively. The edges identified by the
Canny [22] algorithm serve as crucial data points for further computational tasks,
such as piece recognition and precise spatial localization on the chessboard.

By integrating this edge detection technique, the algorithm significantly reduces
the computational ambiguity caused by overlapping pieces or shadows, providing
a more accurate and reliable means of analyzing the physical layout of the chess
game.

28

(a) Point cloud containing the chessboard

(b) Chess pieces from left

(c) Data after removing the black squares

(d) Data after removing the flying points

(e) Data after removing points from the squares of the
chessboard

Obrázek 2.6 Individual steps of piece localization [6]

29

(a) Color image of the scene

(b) Depth data as grayscale

(c) Canny edge detector on depth data. White pixels will
not be used for piece detection

Obrázek 2.7 Application of the Canny edge detector on depth data [6]

30

3 Technical analysis
3.1 Technology

This thesis is focused on developing a control application with UI which inte-
grates other technologies, the Chess Tracking application is taken as a foundation
for our application. Chess Tracking application provides UI, which enables the
user to capture a chess game with the Kinect. The tracking is light sensitive and
requires configuration. The effects of the configuration can be seen directly in
the UI which lets the user validate the configuration by seeing the effects on the
chessboard squares and figures.

Kinect API is available for C++ and legacy .NET Framework [24]. There are
also 3rd party library options written in modern .NET. We do not want to rely on
a 3rd party library. Chess tracking is only one part of this project which should
not lead us to write the whole application in legacy platform. For simplicity we
would like to write the application using one programming language. Creating the
application, integrating all the various parts and creating a UI in C++ would be
out of scope of this thesis. Therefore we will use .NET Framework to create Chess
Tracking application, which offers official Kinect API developed by Microsoft.
It offers good options for creating a GUI. It makes it easy to integrate other
technologies and offers a good compromise between development speed and the
actual speed of the program. There are many supported libraries, documentation
and community. Thus we use modern .NET to write most of our application and
run both programs as separate processes.

We want our application to be integrated as one application to simplify
configuration and use it in a showroom. Capturing input from the Kinect will be
run in a program as a subprocess of the main application. This program will rely
on the old framework and preprocess the data to a form which can be transfered
to the application written in modern .NET.

3.1.1 IPC
Main process and Kinect input tracking subprocess need to establish Inter-

process Communication (IPC) [25]. Main requirement for the communication is
speed. Kinect API does not define the size of the captured data. It is a structure
consisting of primitive type [26] arrays, the size of which varies frame by frame.
After testing the average size comes at around 40MB per frame. For detection and
smooth vizualization of the tracking we need at least around 5 frames per second.

Another IPC parameter requirement is the choice between sequential and
random access. Random access is better suited for highly random reads and writes
of smaller data. Random access provides more freedom for memory management
but also requires more work to manage the memory. The stream is more suitable
for sharing larger sequential data between processes. This approach is more
straightforward but comes with the overhead of stream management and is more
limiting.

Read/write operations are the most computationally expensive part of the chess
tracking process. More frames are captured than what is able to be read/written,

31

and therefore we need to discard some data in order for the algorithm to make
sense. Otherwise, we would pile up a lot of data in the stream and we would
get a high latency in the results of localisation algorithms and later display the
frames in the UI. Random access offers us the option to partition the data which
is about to be read/written and work on each part in parallel, which we need
for optimisation. Random access memory management gives us direct control of
specific memory segments, which makes it easier to synchronise access to different
positions in the memory. IPC is resource intensive and given the size of the data
and the transfer frequency requirement, we will need to take use of paralelization
techniques, therefore random access is the better choice.

We do not want to persist data because the frames will be processed in a
pipeline using computer-vision localisation algorithms and shown in the UI, after
which they are disposed of. There are multiple options for IPC. We will be using
Memory-Mapped files, but we will go through some other options and discuss why
Memory-Mapped files are the right choice.

IPC over network

.NET provides many ways for IPC over a network. We do not need to share
data over the network as our scenario is mostly suitable for local communication.
We could theoretically record Kinect input on one device and work with other
parts on a different device, but as the Kinect needs to be physically located close
to the chessboard and the robotic manipulator, it would not make sense. The
data that need to be sent are quite large, so the network overhead would become
a problem.

Pipes

As Gulzar Group of Institutes Khanna states [27], pipes provide IPC by
creating a unidirectional or bidirectional channel between them. A pipe is a virtual
communication channel that allows data to be transferred between processes,
either one-way or two-way. Pipes can be implemented using system calls in most
modern operating systems Microsoft provides support for anonymous and named
pipes [28]. Anonymous pipes are useful for communication between threads, or
between parent and child processes where the pipe handles can be easily passed
to the child process when it is created.

Named pipes provide interprocess communication between a pipe server and
one or more pipe clients. Named pipes can be one-way or duplex. They support
message-based communication and allow multiple clients to connect simultaneously
to the server process using the same pipe name.

Pipes only provide sequential stream-based access which makes them unsuitable,
considering we require random access IPC communication.

Memory-Mapped files

A memory-mapped file [29] is a form of shared memory which contains the
contents of a file in virtual memory. As IBM states [30], Memory-mapped files
provide a mechanism for a process to access files by directly incorporating file
data into the process address space. This mapping between a file and memory

32

space enables an application, including multiple processes, to modify the file by
reading and writing directly to the memory.

Accessing memory-mapped files is faster than using a type of persisted memory,
which uses direct read and write operations for two reasons. Firstly, a system
call is orders of magnitude slower than a simple change to the local memory of
a program. Secondly, in most operating systems the memory region mapped is
actually the page cache (file cache) of the kernel, meaning that no copies need to
be created in user space.

.NET offers two variants for managing memory-mapped files, namely Memory-
MappedViewStream and MemoryMappedViewAccessor. The ViewAccessor provides
randomly accessed views of a memory-mapped file, unlike the ViewStream, which
works sequentially. This gives us a clear choice of using the Memory-mapped files
with MemoryMappedViewAccessor.

3.1.2 GUI
Developing control application will require chosing between GUI framework

options. We seek a framework which is modern and simple to use. Part of our
application will need to be developed using the .NET Framework, which only
supports Windows. Therefore we can use a Windows-only GUI Framework, which
will let us take use of easier integration with Windows features and optimised
performance. The following are the available options.

Windows Forms

Windows Forms [31] is a UI framework for building Windows desktop apps. It
provides one of the most productive ways to create desktop apps based on the
visual designer provided in Visual Studio. Functionality, such as drag-and-drop
placement of visual controls, makes it easy to build desktop apps.

With Windows Forms, you develop graphically rich apps that are easy to
deploy, update, and work while offline or while connected to the internet. Windows
Forms apps can access the local hardware and file system of the computer where
the app is running.

This UI Framework has been broadly used and, therefore, provides extensive
documentation and many examples. Microsoft does not concentrate on developing
this framework, so it can be considered a legacy. Applications can be memory
intensive.

WPF

Windows Presentation Foundation (WPF) [32] is a UI framework that is
resolution-independent and uses a vector-based rendering engine, built to take
advantage of modern graphics hardware. WPF provides a comprehensive set of
application-development features that include Extensible Application Markup
Language (XAML) [33].

One of the aims of Microsoft was to flexibly couple business logic and user
interfaces with the creation of WPF. The framework also makes it possible for you
to leverage design patterns like MVVM (Model-View-ViewModel) [34] with WPF.

33

WPF has a steep learning curve, much steeper than other GUI frameworks [35].
While hardware acceleration is an advantage of WPF, and makes it possible to
have smoother animations and improved responsiveness, there is a disadvantage
too. This hardware acceleration can be resource-intensive and take too much
processing power and memory [35].

WinUI

The Windows UI Library (WinUI) [36] is a native user experience framework
for both Windows desktop and UWP [37] applications. It makes it easy and
efficient to use Windows API. Similarly to WPF, it uses XAML [33] markup
language. It offers support for modern UI patterns, such as MVVM [34].

Final GUI choice

Both WinUI and WPF, unlike Windows Forms, take us of the XAML markup
language for UI layout. The advantages are data bindings, adaptive layout and
flexible styling. Both offer better UI design and make it easier to use UI patterns,
which make the code more sustainable and scalable. WinUI is more modern than
WPF, and its design is more polished and intuitive. It is more optimised for
memory usage and performance. It is easier to learn than WPF and using the
native code is in general faster. We will, therefore, use WinUI.

3.2 Working with chess state
We have already mentioned that we would like to keep the state of the game

during reconfiguration, pauses or while changing the game. Representing the
chessboard itself is not problematic and we will use a two-dimensional collection.
But keeping the current state of the A chessboard is not enough; we also need to
represent chess moves that are to be played and that need to be exchanged in the
program by several members.

When the Kinect captures input and the move is detected we need to encode
this move and then use it as an input for the robotic manipulator and for the chess
engine which will react to the move. The moves need to be shown to the user in a
human readable way. The encoding of the moves needs to be simple, so that it is
easy to calculate a real physical movement as input for the robotic manipulator.
It needs to uniquely represent each move and from the squence of these moves
whole game must be able to be reconstructed. As has been discussed 1.1.2, classic
chess notations, such as the algebraic notation [38] do not satisfy all the criteria,
mainly that they need the game context to identify the actual moves and require
further computations to use the moves.

3.2.1 Chess protocol
We will use a chess protocol to represent the chess moves. Chess protocols

allow for transmitting chess game data between various programs, or between a
backend and frontend of applications. In our case, we will be transmitting the
data between the output of the Kinect chesstracking, displaying this data in a

34

chessboard representation in our application. The data will be displayed in a log,
and also used for communication between subprocesses of our application. Some
of the most often used chess protocols include Universal Chess Interface [3] (UCI),
and Chess Engine Communication Protocol [39].

Universal Chess Interface (UCI)

The Universal Chess Interface (UCI) [3] is an open communication protocol
that enables chess engines to communicate with user interfaces.

Advantages:
• Stateless - Each command is independent, and the protocol does not require

maintaining a state, which simplifies the logic in the user interface [40]

• Popularity - Almost all new and/or strong chess engines support UCI [40]

Chess Engine Communication Protocol

CECP [39] was one of the earlier protocols designed to standardise communi-
cation between chess engines and graphical user interfaces. It supports features
specific to the XBoard/WinBoard interface.

Advantages:
• Supports features like handling different time controls, variants of chess, and

specific tournament settings, which makes it versatile for different types of
chess applications.

Disadvantages:
• Complexity - The protocol is more complex than UCI

• Unpopularity - Fewer modern engines support CECP than UCI
Since we do not need to use any advanced features or any special chess variants,

we will be using UCI in our application. It satisfies all our needs for chess state
communication as it is easy to implement and understand. Being the standard for
the chess programming community, any possible integrations would be simple.

3.2.2 Chess engine
There are many chess engines which can beat human players and whose

ELOs [41] are higher than the ELO of any human player. This thesis does not
focus on resolving the chess algorithm problem as that can be considered already
solved. Instead we will choose between available options of possible chess engines
and use the engine to compute the moves which will serve as an input for the
robotic manipulator to play against the players.

Given our choice of UCI for chess protocol, we want to select a chess engine
which supports UCI communication. Computing the best chess move is complex
and considering we want to use our project in a showroom, we do not want the
engine to win all the time to give the players a chance to win. That is why we
would like to support an option to select how much time the engine should spend
computing the move. The chess engine would return the best of the computed
moves in the selected time frame. We seek an engine which is easy to integrate
and offers good docummentation.

35

Stockfish

As the the most popular chess server Chess.com says [4], Stockfish is the
strongest chess engine available to the public and has been for a considerable
amount of time. It is a free open-source engine that is currently developed by
an entire community. Stockfish is not only the most powerful available chess
engine but is also extremely accessible. It is readily available on many platforms,
including Windows, Mac OS X, Linux, iOS, and Android.

It uses the alpha-beta [42] [43] search algorithm to analyse chess positions and
find the best move. The engine generates a search tree, where each node represents
a possible move and each edge represents the resulting position. The goal is to
find the best path through the tree, which represents the sequence of moves that
maximises the chances of winning for the player.

Stockfish supports the UCI protocol. The documentation as well as the com-
munity is extensive and the engine is open-source.

Leela Chess Zero

Leela Chess Zero (also known as Lc0, LCZero, and Leela) [44] is an open-source
neural network (NN)-based chess engine. Because of its free and open-source nature,
it can be run on many platforms, including Windows, Mac, Linux, Android, and
Ubuntu. Lc0 is the strongest NN engine available to the public. Unlike conventional
chess engines, Leela was only given the rules of the game of chess and became
incredibly strong by using reinforcement learning from repeated self-play—as of
2020 it has played over 300 million games against itself.

Leela Chess Zero supports UCI protocol. However the engine requires GPU
for optimal performance, which is an issue, because our application uses Kinect
which is already GPU intensive.

Engine choice

Many of other chess engines, such as Komodo or Houdini offer only limited
functionality in the free version. Neural network chess engines are GPU intensive
which is an issue considering our application uses Kinect which is already GPU
intensive. There are other choices, but they may not be as well documented and
do not have such extensive community as Stockfish. We will be using Stockfish,
which is open source, free, supports UCI protocol and is not GPU intensive.

36

4 Implementation
4.1 Architecture

Our application is made of multiple layers. This subsection discusses the
meaning of the most important abstractions in these layers. Main members can
be seen in Figure 4.1

User Interface

ChessRunner

ChessRobot

RobotSpace

Robot
Command IRobot

Serial
Command ISerialDriver

G-code
Command Robotic Manipulator

IChessStrategy

Chess
Move

IKinectService

ChessFileParser StockFish Engine

Chess Tracking

Historic GamesIStockfish

Elpises mark main data type
interchanged between members

Dotted lines
separate project

layers

Arrows mark
references

Different process/file

Wide arrow marks
inheritence

Obrázek 4.1 Diagram of the main architecture

• User Interface collects input data to configure the setup. It displays
information about tracking and the game that is played.

• ChessRunner works as a mediator between abstractions of the robotic
manipulator and chess strategies. It redirects calls from the user interface
onto another layers. It has a loop that operates inside a parallel Task.
According to the state of the game and configuration, it tells the chess
strategy that the program is ready to accept chess moves. After computing
the move, the ChessRunner listens for an event fired by the strategy and, if
possible, it asks the ChessRobot to execute moves. Data flow can be seen in
Figure 4.2

• ChessRobot is a class that can accept and call the execution of ChessMoves.

37

User Interface

ChessRunner

Dotted lines
separate project

layers

 Arrows mark
references

IsMoveDone

IsMoveComputed

ChessMove.Execute()

IsMoveDone = false IsMoveComputed = false

IChessStrategy
.ComputeNextMove()

ChessRobot IChessStrategy

CommandsSucceededEvent MoveComputedEvent

IsMoveDone = true

IsMoveComputed = true

Dotted arrows mark
logical flow

YesNo

No Yes

Obrázek 4.2 Diagram of the ChessRunner loop

It inherits from RobotSpace, which is a more general class capable of execu-
ting RobotCommands. ChessRobot has a ChessBoard property, which is an
abstraction encapsulating a more general Space that holds coordinates of the
grid representing the game space. ChessRobot can translate commands, such
as MoveFigure and CaptureFigure, which are translated from chess no-
tation, into a form more suitable for a robotic manipulator. The relationships
can be seen in the Figure 4.3.

• RobotSpace is a class that listens to commands such as moving an entity
from source to target. These entities are a generalization for a physical object
located on the grid. The grid is a generalization of the space in which our
robotic manipulator can operate. It divides logical parts of the space into
tiles which can contain entities, that is, figures. This class computes the
most efficient trajectories through which the robotic hand should move.

• IRobot is an interface that serves as an abstraction for initializing and
controlling the robotic manipulator. It is responsible for accepting logically
atomic collections of commands. These are ordered collections of commands
which will be executed in the specified order and, after the execution, fire
events. Until all the commands inside the collection are executed, this layer
blocks other commands so that the state of the execution is correct.

• ISerialDriver is an interface that sends serial commands to the robotic
manipulator. It does not hold any context and serves as a communication
layer between higher layers and the robotic manipulator.

38

ChessRunner

ChessRobot

RobotSpace

Robot
Command

Chessboard

Space

Entity

Chess
Move

Chess
Figure

Circles
mark properties

Arrows mark
references

Wide arrow marks
inheritence

Elpises mark main data type
interchanged between members

Obrázek 4.3 ChessRobot relationships

• IChessStrategy is an interface that accepts calls to compute the next chess
moves. This interface acts as an iterator which, when incremented, advances
the game by a chess move. This is an abstraction that can be implemented
as any of the game modes. The implementations can communicate with
Stockfish, with which it exchanges chess data through UCI, or iteratively
get moves from a historic game.

4.1.1 ChessTracking
ChessTracking consists of multiple projects. It implements IPC via memory-

mapped files. Some parallel techniques are used for performance; interprocess
synchronization is provided by Mutex. We use the named system Mutexes, which
are visible throughout the operating system and we need to use the Mutex in two
processes.

Main members can be seen in Figure 4.4. These are the projects creating the
ChessTracking part of the application.

• ChessTracking.Core is a project responsible for the localization of the
chessboard as well as the figures on the chessboard. It consists of a pipeline
that gets KinectData and uses various computer vision algorithms. This
layer communicates with the Kinect layer.
Here we explain some of the most important classes.

– GameController This class starts, stops, and loads a game. It is a
mediator between user interface and ChessTracking services.

39

IKinectService

TrackingController

KinectData TrackingResultProcessor

KinectMessage

GameController

KinectData

SharedMemoryQueue SharedMemorySerializedMultiBuffer

KinectTrackingManager

Elpises mark main data type
interchanged between members

Dotted lines
separate project

layers

Arrows mark
references

ChessTracking.
Core

ChessTracking.
Common

MemoryMapped
Collections

ChessTracking.
Kinect

Obrázek 4.4 Diagram of the ChessTracking architecture

– TrackingController reacts to GameController. It can start/stop the
tracking and communicates with the Kinect layer via shared memory.
It holds a reference to memory-mapped files through which the commu-
nication is established. It sends commands to the SharedMemoryQueue
to start/stop the tracking. It expects input from the Kinect through
another memory-mapped file. It actively waits for the input and, when
ready, redirects the input to the pipeline.

– TrackingProcessor processes localization results from the pipeline
and uses the game state to further approximate the results of the
tracking to the real state. It fires events based on the results.

• ChessTracking.Common is a .NET Standard project that serves as a
prescription for common data structures used in both processes. It defines
KinectData and messages exchanged between ChessTracking and the main
part of the application.

• ChessTracking.Kinect This layer collects input data from the Kinect.

40

It holds references to the same memory-mapped files as the Tracking-
Controller. It listens for the input to start or stop the tracking and controls
the Kinect camera. The Kinect class then calls SharedMemorySerialized-
MultiBuffer to write the data to the shared memory.

• MemoryMappedCollections is a project which defines shared memory
collections. Here we define collections which are used for inter process
communication.

– SharedMemoryQueue is a simpler shared memory collection. It is a
queue implementation which allows for exchanging information between
processes. Only primitive types can be used here, but they do not need
to be serialized which allows for faster communication. It is used for
exchanging simple messages between processes in form of enums, which
control start/stop of tracking.

– SharedMemorySerializedMultiBuffer is a definition for a shared me-
mory collection using a multi-buffer pattern. It is used for more complex
data structures, in our case, KinectData. It uses the Zero- Formatter
serializer to write and read the data to the shared memory. The data is
serialized to an array of bytes. The arrays are divided into parts which
are processed in parallel in order to maximize performance.

4.2 Integrations

4.2.1 Migrating legacy code
Legacy chess tracking application captures input from Kinect. The input

is processed by a pipeline which transfers the data and uses them in various
computer-vision algorithms. Results are shown in WinForm UI. We have decided
to take as much of the code from the legacy application as possible and move
it to the .NET Core application so that we can use a modern platform and not
produce legacy code.

As the Figure 4.5 shows, the old program had been using two main loops
running on two separate threads. One thread was taking input from the Kinect
and processing the frames inside a pipeline. Pipeline is a good pattern for pro-
cessing data using numerous algorithms, however the implementation was not as
straightforward.

The architecture was monolithic, meaning the members had been referencing
each other. The user interface controls the game via game controller, which
transitively controlled the tracking and pipeline. But the pipeline would also
change the UI and the tracking. The input data for the pipeline was all in a form
of messages. Messages have been abstract and could have been implemented as
either KinectData or commands to start, stop or pause the pipeline.

Based on the pipeline results, the pipeline controller would change a global
state of whole program, taking care of the UI and the state of the tracking itself.
The code was coupled and decoupling, refactoring and finding borders between
layers was not easy. Given the difficulties, we have decided to use and send raw
data from the Kinect.

41

Game Controller

User Interface

Tracking Manager

Tracking Result Processing

Pipeline Controller

Pipeline

KinectBuffer

Kinect

Dotted lines
separate project

layers

Arrows mark
references

Obrázek 4.5 Diagram of the old ChessTracking architecture

Integrating processes running on a different platform

Data structures used by the Kinect library are not available for .NET Core,
and the tracking algorithms partially rely on them. The .NET Framework was not
open-source, and the Kinect library was not open-source either. Our application
runs different processes, but still acts as one executable and both programs can
be compiled under one C# solution even though they use a different platform.

Communication between processes is established using the MemoryMapped-
Collections and ChessTracking.Common projects. Here we define data structures
which are the same for both .NET implementations. The source code needs to
be same for both processes and we do not want to create two separate sources.
Copying all the code in two separate source codes would be an anti-pattern and
would result in problems, such as changing code in one source code and not in
the other. If later it is decided to reimplement this part of the code in a different
way, it would be harder to keep track of the source code in multiple source codes.

We can achieve this by creating a .NET Standard [45] project which can be
added to the solution and be referenced from project files of both platforms, even
though they are not compatible. Such project acts as a prescription for both
platforms, defining one source code which will be compiled against the compiler of
the corresponding platform. This greatly simplifies the source code. We can define
the same structures and use the same algorithms in one source code and use them
in both projects even though the projects are incompatible. We need to use some
3rd party libraries which have implementation in both platforms. We can define a

42

MaxMemoryPerRecordIsFull RecordArraySize

RecordMetaData

...

0 1 2 3 NumberOfRecords - 1

MemoryMappedFile

Obrázek 4.6 Memory-mapped file structure

NuGet reference in a common Standard project and the correct version with the
corresponding library is selected when compiling a specific project with a specific
platform.

When we build our solution, source codes written against both platforms are
compiled and we can run our application and start the process which starts the
compiled program on the other platform.

4.2.2 Shared memory multi buffer
The communication between processes is established via collections defined in

the project MemoryMappedCollections. SharedMemorySerializedMultiBuffer
is a multi-buffer collection through which Kinect data are transferred. This
collection is defined in .NET Standard source project. It takes advantage of
Memory-Mapped files.

When creating a MMF, as the Figure 4.6 shows, we first allocate the desired
size of the file. This should be a multiple of the maximum expected size of the
Kinect data plus serialization overhead. As the Kinect input data does not have a
constant size, we also need to exchange metadata containing the expected size of
a record. For the same reason, we need to store all metadata at a set position in
the memory so that all communicating members know where to look for them.

We propose a solution based on a double buffer technique so that while one of
the communicating members is reading/writing, the other is not blocked and can
do the same. When the producer and consumer are finished with their current
operation, the roles of the buffers switch. This works well when the producer
and consumer have roughly the same speed, but our operations need to do some
additional work and therefore their speeds differ. This results in latency from a
finished member waiting for the other to finish.

We can solve this by introducing a multi-buffer implementation. In our case,
the writer is generally faster, so the additional buffer lets us write to one buffer

43

...

0 1 2 3 NumberOfRecords - 1

MemoryMappedFile

Mutex_0 Mutex_1 Mutex_2 Mutex_3 ... Mutex_NumberOfRecords-1

Obrázek 4.7 Memory-mapped file mutex structure

while another buffer is being read. At the time when the writer is finished, it
does not have to wait for the reader to finish his reading and can instead write
to another buffer. When the reader is finished, it also has a buffer prepared for
reading.

For communication, this class is instantiated in both processes. Both processes
map the same file by specifying the name and the size of this file. One process acts
as a consumer and the other as a publisher. To synchronize with each other, they
use Mutexes which are provided by the operating system. Mutexes are mapped
via the corresponding name. All the data required for mapping is known at the
compile time by both programs and is defined in the same .NET Standard project.
This class is generic and the type of the parameter needs to be the same and is
known by both programms as well.

Each time one of the members tries to read/write to/from a position, they
need to create a ViewAccessor which accesses the shared memory, starting at a
specified position, of a specified size. When working with the data accessed by
the ViewAccessor, starting position and the size of the data needs to be specified
again, but this time it is relative to the ViewAccessor, not the memory-mapped
file. After operation on this data is finished, the ViewAccessor is closed and
disposed of.

After both instances of the SharedMemorySerializedMultiBuffer<T> class
are created, they can exchange data. Two main methods are defined, ie. TakeOne
and AddOne. Depending on the number of records storable in this collection, which
is also parametrized in the constructor, the corresponding number of Mutexes is
created, one per each buffer 4.7. Both, TakeOne and AddOne try to lock a buffer
by waiting for the corresponding Mutex.

They periodically try to wait for a Mutex for a specified time and if unsuccesful
try the next Mutex.

TakeOne

After aquiring a signal on a Mutex, it reads the metadata in the location,
corresponding to the aquired Mutex. If the location contains data, that is, it
has been added data by the writer, it partitions KinectData into equal parts. It
creates a Task for each partition and separately reads serialized data, writing it
parallel to one array. It waits for all Tasks to finish and deserializes the data. The

44

...

0 1 2 3 NumberOfRecords - 1

MemoryMappedFile

Mutex_0 Mutex_1 Mutex_2 Mutex_3 ... Mutex_NumberOfRecords-1

TakeOne

LastRead=0;

Locked

LastRead=1;

TakeOne

Unlocked

Obrázek 4.8 Shared memory multi buffer - Unsuccesful operation

buffer is then marked as empty and the Mutex is released, returning the data.

• Unsuccesful read - The Figure 4.8 shows the situation, where the TakeOne,
tries to read the record from the next expected location, that is the record
with index 1. It waits on the mutex for a specified time, but the mutex is
locked. It advances to the next mutex. It aquires the lock on the record with
index 2. As the Figure4.9 depicts, a ViewAccessor is created for the record
with index 2. However, this record has not been written to yet.

• Succesful read - After finding out, that the second record is empty, TakeOne
advances again. This time the Mutex_3 is aquired and as the Figure 4.9
shows, this record is full. The serialized record is partitioned and each part
is read in parallel.

AddOne

Similiarly after aquiring a signal on a Mutex, metadata specified by the Mutex
is read. If the location is marked as empty, data being added are serialized, and
partitioned into equal parts. A Task is created for each partition and written in
parallel to the corresponding position inside the location for this record. When all
Tasks finish, the buffer is marked as full and the Mutex is released, making the
buffer ready for reading.

Serialization

C# is a managed language and does not provide much freedom when dealing
with unmanaged memory. MMFs are unmanaged memory, and any process could
potentially write something malicious to our file. MMFs are limited to using only
value types and arrays of bytes. Since we cannot use pointers, we cannot treat

45

...

0 1 2 3 NumberOfRecords - 1

MemoryMappedFile

Mutex_0 Mutex_1 Mutex_2 Mutex_3 ... Mutex_NumberOfRecords-1

Lock

IsFull=false;

ViewAccessor

Unlocked

Serialized KinectDataIsFull=true; RecordArraySize=n;

n

Partition_0 ...Partition_1 Partition_NumberOfTasks

Obrázek 4.9 Shared memory multi buffer - Succesful operation

an object as an array of bytes and vice versa. Therefore, the data needs to be
serialized.

Serialization adds some overhead, but .NET offers some very fast binary
serializers. One of the serializers we used is ZeroFormatter [46], which claims to
be the fastest serializer for .NET.

Using ZeroFormatter, we can serialize the Kinect data into an array of bytes.
Although this adds some time and memory overhead, it is not very significant.
We then write the data to our buffer in parallel, partitioning the array. Since
ViewAccessor makes it easy to randomly access memory, we can write each part
independently. The same approach is used when reading the data.

4.3 Implementation

4.3.1 Scheduling commands
Robotic manipulator accepts G-code commands sequentially via USB. When

the commands are ordered, it returns a response, whether the command execution
is valid. If valid, it starts executing, which takes some time. The controller of the
manipulator does not have any command queue and therefore we must wait for
it to finish executing, because if we ordered another commands, they would be
unaccepted and lost. We need to know at what time the execution finishes, so
that we can order another commands.

As the Figure 4.1 shows, at the lowest layer we have the Serial Driver. This layer

46

is only a wrapper for the robotic manipulator, which translates SerialCommands to
G-code. We ask this member for state of the robotic manipulator and it translates
string reponses to objects which we work with.

The class representing communication with the serial port is called Robot, it is
the implementation of the IRobot interface which we can see in the Figure 4.1. We
can not know what is the exact time that an execution will take, so we implement
a sort of busy waiting where we order a command and in small intervals ask for
the state from the manipulator. When the state says that the manipulator is idle,
we fire an event signalizing that we are ready for another command.

The Robot implements a queue that can only accept one atomic operation,
which must be executed before listening to other commands. The atomic operation
can consist of multiple commands, which are logically connected. These commands
are executed in order, and until all commands are executed, the queue does not
accept additional commands.

RobotSpace is responsible for maintaining the state of entities in a grid. It
accepts more complex commands, such as moving entities from source to target.
It calculates the path using the algorithm defined in 2.1.5, which the grip will
follow.

ChessRunner orders the IChessStrategy to compute chess moves. It orders
the ChessRobot to execute the chess move. ChessRobot translates a chess move,
such as move figure to a square, to a more general entity to space in grid, which the
RobotSpace expects. It is a level of abstraction which helps to decouple ordering
chess moves from finding a path in space.

4.3.2 Path calculation
When a ChessRunner gets a ChessMove from a IChessStrategy, one of the

following methods on the ChessRobot gets executed.

• MoveFigureTo

• CaptureFigure

• PromotePawn

• ExecuteCastling

It then depending on the move, calls MoveEntityFromSourceToTarget on
the RobotSpace. If the move is a castling or a capture, it calls MoveEntity-
FromSourceToTarget on the RobotSpace twice, because two individual figure
movements need to be executed. Otherwise the method gets called only once.
Pawn promotion is not yet implemented. After each type of move the method
MoveToAHighPoint on the RobotSpace is called, in order to get the grip into a
position, where it waits for another move and does not abrupt the chess tracking.
When a MoveEntityFromSourceToTarget is executed, it creates a collection of
moves which will be scheduled.

RobotSpace asks for the current position of the grip, from the driver. It
then devides the entity move to GetTakeEntityFromPositionCommands and
GetMoveEntityToPositionCommands, where each calls the implementation of
the path finding algorithm.

47

The RobotSpace has the figures and their coordinates and sizes saved in a two
dimensional array, from which it gets their positions and uses the for path finding
algorithm calculations.

If the move is a placement, the final destination is a point just above the picking
height of the figure, where it adds Open command, it moves a little upward and
calls the Close command. Similarly if the move is a picking move, the destination
of the path finding algorithm is a point just obove the figure, where it adds a
Open command, it moves a little downwards and calls the Close command.

The command collection is then scheduled to the IRobot.

Event handling

IRobot interface defines event handlers such as CommandsSucceeded, which is
fired whenever it successfully finishes execution of commands. Until the event is
fired, it does not accept another commands. This is beneficial, because the time
of execution is unknown and we do not want to block members which order the
execution. On the other hand, this could be implemented as async Tasks, which
would complete after the execution is finished, similar to async Tasks mostly
used for database or API calls or reading from a file. Our system, however defines
multiple subscribers which subscribe to the events and react to it differently.

Events help with decoupling all the subscribing members. After firing an event,
user interface might change the displayed coordinates, the IChessStrategy might
order another execution, other component in the user interface might unlock a
button and display executed move. This way they can all work independently,
being notified and reacting if they need to.

4.3.3 Swapping contexts
Because we want our application to effectively change between game mo-

des 1.1.3 and to pause and reconfigure the game, we need to handle the effects of
these changes.

Firstly, we need to handle pauses. Our application operates across multiple
layers, and at each layer, we need to manage pauses. At the lowest layer, we have
the robotic manipulator, which responds to changes via USB. Once a command is
sent to the serial port, it can be cancelled, by using the emergency stop button,
but we lose the command which has been ordered and the state of the execution
would be lost. However, we can control commands that have been ordered but
not yet sent to the serial port.

IRobot receives atomic commands which may consist of multiple moves. It
expectects a collection of commands which are logically connected. It orders
the ISerialDriver to execute these commands sequentially. When paused, the
execution of this collection is paused as well. After resuming, they need to be
finished, before changing a strategy, or ordering any other execution.

RobotSpace layer is less affected by pauses, as it waits for the lower layer to
finish and orders another execution only once the lower level is done. When the
game is resumed, it finishes the command.

This approach allows us to control the exact state of our game. We can
pause the game, finish the execution of the current move, and safely swap the
configuration or game mode, knowing exactly where our pieces are and where the

48

robotic arm should be. Another layer above is responsible for tracking the actual
game. The role of it is to execute chess moves. It can be paused and resumed
either by completing the current movement and then starting a new game or
ordering additional commands within the same game.

If anything goes wrong in the actual physical setup, it is possible to reconfigure
the position of the chessboard while maintaining the state of game. The game
can be resumed even after reconfiguration because we know the state of game
and the actual state of the board. Game modes can also be changed, and we can
choose whether to continue with the same positioning of the pieces or start from
the beginning. This is useful, for example, if we want to show a part of a historic
game or watch a segment of an AI match and then switch to human play. When
we swap the stategies, they exchange collection of executed moves.

The user interface handles this as follows. The page with the game log
(GamePage) lets us pause the game. This pause is immediate, and the current
move is not finished. To change a strategy or reconfigure the position of the
robotic manipulator, the user needs to press Finish Move. This finishes the move
which has already been scheduled. After the move is finished, the user can change
strategy or reconfigure.

4.3.4 Play against AI strategy
This subsection discusses a strategy that connects two chess input sources.

Chess strategies are polymorphic, and their API provides only simple methods,
namely ComputeNextMove and an event handler, MoveComputed. It exposes other
methods that are only used to initialize from an old game or provide their state,
that is the executed moves, for other strategies.

ChessStrategies act as iterators. This particular strategy is interesting because
it connects complex parts of the program yet has a very simple implementation.
When this strategy is initialized, it is given IKinectService, which is managed
by dependency injection. When needed, the IKinectService starts the process
responsible for input from the Kinect. The same applies to IStockfish, which also
starts a different process.

When this strategy is selected, KinectWindow is opened, and MainKinectPage
is navigated to. This window displays results of the tracking and localization.
Tracking can be configured to accommodate changes in light conditions.

State of the chess game is remembered in a collection of moves in UCI notation.
According to which player is expected to perform a move, it asks Stockfish to
compute a chess move, or it listens for the input from ChessTracking.

Strategies fire events when moves are completed. Pages of the user interface
listen to these events and display the moves in a log.

4.3.5 User Interface
The user interface is created in WinUI3. It uses the MVVM pattern. ViewModels

use Services which act as facades of the interface provided by lower layers. Window
classes manage which pages will be displayed. When navigated to a page, View-
Model is activated, it asks for data from services and displays the corresponding
view based on the created model. All services are registered in App.xaml.cs as

49

PortSelection
Page

Configuration
Page

SelectStrategy
Page

Watch AI
Match

Play Against
AI

Replay
Match

FilePicker
Page

Game
Page

Kinect
Window

Continue
Game

Pause

Finish Move

Resume

Reconfigure

Confirm

Change Strategy

Rounded rectangles
represent selected
options available in

pages

Arrows represent option
available in a

page/reaction to
selecting an option

Rectangles represent
pages/window

Obrázek 4.10 Map of the User Interface and page actions

singleton services. The program uses dependency injection. Services expose event
handlers which are subscribed to by the user interface.

Navigation

The application can open multiple windows. Windows navigate between pages.
Pages override OnNavigatedTo. In this method, dependency injection is applied.
It happens in this method instead of the constructor because the constructor is
only called once in the lifetime of the application, and when pages are navigated
from, the references are lost.

Overrides of OnNavigatedTo method on each page also subscribe to the event
handlers provided by the services. These event handlers are unsubscribed from in
the override of OnNavigatedFrom method.

Application dialogue

User Interface is simple and mostly acts as a dialogue between the configuration
and the person configuring the project. It leads the user to correctly configure and

50

use the setup, not allowing operations which would result in a malicious state.
The pages of the dialogue can be seen in Figure 4.10; navigation between pages is
triggered after firing a corresponding action.

The application dialog requests the user to pick a chess strategy This is
provided by a combo box which is mapped to ChessStrategyFacades. These
facades are used to create an instance of a ChessStrategy.

Some strategies require the user to select a file from the file system. For
example, match replay requires the user to pick a .txt file which is a record of
a chess match written in PGN chess notation. Other strategies require picking
a Stockfish.exe file. File system is accessed by Windows native FileOpenPicker
class.

51

5 Discussion
5.1 Evaluation

We have created a desktop application, for controlling a robotic chess-playing
manipulator and we have integrated a legacy chess tracking application which
uses Kinect for Windows and computer vision algorithms to track chess figures on
a chessboard. We have created one unified executable program, which connects
multiple hardware and software components.

We have not managed to implement every possible movement. The pawn
promotion is currently not supported. All the game modes have been implemented,
including replaying a historic game and watching the computer play against itself,
however, during the development the robotic manipulator got broken and we were
not able to properly test the whole setup with the manipulator. Therefore there
might be some issues with the movement scheduling which need to be addressed
after the robotic manipulator is fixed. Without that the project is not fully usable
in a showroom.

However, the code is maintainable and with a decent architecture, which allows
for possible future development and for easy resolution of any possible problems.

We have modernized the chess-tracking solution and have created a protocol
for communication between incompatible programs.

A chess engine has been integrated, which reacts to the input, provided by
the Kinect. The input is collected from the engine and shown to the user. The
chess move is essentially translated to commands for the robotic manipulator.
3-dimensional path-finding algorithm is used and the movement is efficient.

The user is able to configure the setup and reconfigure after any physical
disruption. Additionally, the user is able to pause the game and change the game
mode, where the previous game can be used as a starting point for another game
played by computer.

5.1.1 Chess Tracking
Due to transferring data via memory-mapped file, which added time overhead,

the resulting evaluation happens at a rate of 4 to 6 frames per second, which is the
same as when the tracking was a separate application, tested on a worse hardware.
Individual parts of Chess tracking and their respective average execution time can
be seen in the Table 5.1. All these operations are executed in parallel.

Operation Time (ms)
Figure localization 7-15
Tracking result processing 5-7
Bitmap conversion 2-4
MMF TakeOne 160-290
MMF AddOne 140-200

Tabulka 5.1 Resulting time of parts of chess tracking

52

Transferred data has around 40MB, accounting for the overhead of the
Zero- Formatter serializer, which added around 2-5 MB. Testing was done
on a laptop with Intel Core i7-9750H CPU @ 2.60GHz and NVIDIA GeForce
RTX 2060 GDDR6 @ 6GB.

5.2 Testing

5.2.1 Robotic manipulator
The robotic manipulator has not been properly tested because it was broken

during the development and while showing the concept of the application in a
showroom. After it is fixed, more tests will be made. We expect, that there might
be issues with the scheduled commands and they need to be resolved after the
robotic manipulator is fixed. A mock robot has been added as an option to the
application to simulate the movement, positioning, and correctness of implemented
algorithms. It simulates every movement scheduled by remembering a position in
3D coordinates. The coordinates are shown in the UI, as would be for the real
robotic manipulator.

Specifically, we have created MockRobot, which implements the IRobot in-
terface. It is given commands computed using the path finding algorithm. The
coordinates are updated in parts, so that when a movement is ordered, the update
does not happen immediately, but rather in parts in a given time.

5.2.2 Robot moves
When a chess move returned from a chess strategy is given to the Chess-

Runner, it is translated to UCI notation and later to real entity being moved from
a real position to another position. RobotSpace validates whether an entity is
really located in the specified position and whether the target position is empty,
by comparing the real position of the grip, or the mock to the actual coordinates of
the particular chessboard square. Each one of them was correctly played, testing,
that our algorithms of translating chess moves to actual movement of robotic grip
and picking and positioning the entities on a grid is correct. In these games ranging
from 30 up to 88 chess moves have been made. All of these games consisted of all
kinds of chess moves, validating normal, capturing and castling moves.

We have tested about 5 different historic games recorded in the PGN no-
tation 5.2.

This also validates other chess strategies which use the same algorithms.

Event White Black White
Ch World (match) - Moscow(Russia) - 1985 Anatoly Karpov Garry Kasparov 0-1
It (cat.17) - Wijk aan Zee (Netherlands) - 1999 Garry Kasparov Veselin Topalov 1-0
Memorial Rosenwald - New York (USA) - 1956 Donald Byrne Bobby Fischer 0-1
75th Tata Steel GpA - Wijk aan Zee NED - 2013 Levon Aronian Viswanathan Anand 0-1
Paris (France) - 1958 Paul Morphy Duke of Brunswick and Count Isouard 1-0

Tabulka 5.2 PGN games

53

Swapping strategies and reconfiguration

Multiple tests have been made, where we have started a historic game and
later reconfigured the chessboard, so that the coordinates of expected corner and
therefore chessboard square positions have been altered. After continuing the
game, the game has been correctly played, validating reconfiguration.

Similiarly a historic game has been played multiple times ranging from 5-20
moves. After this a strategy has been changed to Watch AI match. The context,
that is, the collection of already played moves, has been given to the watch
AI match strategy. The game then correctly continued and eventually finished,
validating swapping of the strategies as the moves were then given to Stockfish,
which can be considered as a trusted validator for computing chess moves.

Play vs AI match

We have tested the integration of the Stockfish, Chess tracking and position
of the robotic grip. We have played multiple games, trying various move types,
including castling. As the robotic manipulator was broken during the development,
this integration was tested using the mock robot. When a chess move is played,
the chess tracking part correctly detects the move, after which it is logged to the
main game page. After this the executed commands are sent to the Stockfish via
UCI notation. Stockfish computes the best possible move in a given time and the
move is logged to the log in the main page.

The game page was showing the expected coordinates of the robotic grip, but
we had to move the chess figure manually. After this, the chess tracker corretly
detected the move, logging it to the tracker log.

5.3 Future work
More testing needs to be done with the robotic manipulator as it was broken

during the development and we had to wait for months until it was repaired,
not being able to test the updated software. At the time of writing, the robotic
manipulator is still not repaired, and we expect some movement inaccuracies and
potential movement scheduling issues, which we can not resolve without trying if
they work.

5.3.1 Chess tracking speed up
There is a space for speeding up the chess tracking process. IPC could be

made faster by pre-processing the input data from Kinect and taking some of the
responsibilities of the pipeline to the .NET Framework process. This would reduce
the size of the data being transferred through memory-mapped files, which would
reduce the time needed to read/write data to memory-mapped file, ultimately
resulting in more frames being able to be processed per second.

The pipeline which applies computer-vision algorithms could be sped up by
carefully splitting it into Tasks. Some of these algorithms do not rely on each
other. Parallelization could be implemented, which would reduce the time needed
to process the pipeline.

54

5.3.2 Automatic reconfiguration
Chess tracking relies on user-given parameters which need to be configured

to adapt to changing light conditions and different chessboards and chess figures.
This could be done automatically based on the current light conditions.

5.3.3 Pawn promotions
Chess tracking algorithms do not differentiate between individual chess pieces

but rather remember their previous positioning. This currently makes it impossible
to do pawn promotion, because there is no way to know, what has the figure
been promoted to. We could add a feature into the control application, where
in the user interface, user could set that a pawn has been promoted, setting the
promoted type.

5.3.4 Configuration
Currently, the size of the chess figures can only be changed in the code, this

could be changed to being parametrized, for example in the User interface or in
the configuration when the corners of the chessboard are localized. The location
of the chessboard could be computed using the Kinect camera.

5.3.5 Camera
Kinect v2 can be considered outdated, mostly because the API is no longer

supported. As our project demonstrates using the Kinect with a modern technology
was not easy and we had to come with a few workarounds. The technology of
the Kinect is outdated as well. It could be replaced with a more modern camera,
which may offer higher resolution, better accuracy and more reliability.

Intel RealSense [47]

An example of a better camera is Intel Realsense D435. This camera offers
higher Depth output resolution, Depth frame rate and Depth Field of View. The
difference in parameters can be seen in the Table 5.3, which shows a comparison
between Kinect V2 and Intel RealSense D435.

Property Kinect V2 Intel RealSense D435
Technology Time-of-fligh Active stereoscopy
DEPTH Range (m) 0.5 - 4.5 0.2 - 4.5
Resolution 1920 x 1080 1920 x 1080
Frames Per Second 30 30
Field of View DEPTH 70 x 60 85.2 x 58
DEPTH Resolution 512 x 424 1280 x 720
Frames Per Second(FPS) DEPTH 30 90

Tabulka 5.3 Kinect, Intel RealSense comparison [48]

55

This camera is still supported, offering SDK for .NET core, which would greatly
simplify our problem with incompatible platform, ultimately speeding up the
application, because of removed need to use IPC. There is also strong developer
community, which would make the development easier.

56

Conclusion
We have managed to create a control application for the robotic manipulator,

integrating Kinect and a chess engine, which ultimately lets a player play chess
against the computer. Various parts have been unified under one executable. The
design is clean and adds up to the simplicity of using the User interface.

The dialog that leads to the correct setup is simple, self-explanatory, and
responsive. The application is capable of playing chess matches and replaying
historic games and simply changing between these modes. It works well for the
initial goal of showing it in a showroom.

During the development of the application we have created mocks for simulating
the process of the game. The program is modular, and even when some pieces of
the setup are missing, the other parts can be tested and used. The architecture
of the program is layered, and the code is sustainable. In the future, this project
could be extended to automatically adapt to changing light conditions, offering a
layered architecture which makes it simple to make such change.

Some parts of the legacy ChessTracking application have been modernized.
During the development we have researched IPC communication and have found
a solution for migrating at least a part of legacy application to a modern system.
This could be useful if someone finds themselves in a situation where not all parts
of a legacy program can be migrated, and it makes sense to migrate at least some
code. We have created an efficient protocol for communicating between processes.

In the future, the camera could be changed for a more modern alternative,
which would simplify the code, speed up the application and make the tracking
more reliable, making the project more appealing in a showroom.

57

Bibliografie
1. Dostupné také z: https://chat.openai.com/.
2. Wall, Bill. Chess Notation [online]. [cit. 2024-05-06]. Dostupné z: http:

//billwall.phpwebhosting.com/articles/chess_notation.htm.
3. Meyer-Kahlen, Stefan. Universal Chess Interface (UCI) [online]. [cit. 2024-

04-28]. Dostupné z: https://www.shredderchess.com/chess-features/
uci-universal-chess-interface.html.

4. Chess.com. Stockfish [online]. [cit. 2024-05-01]. Dostupné z: https://www.
chess.com/terms/stockfish-chess-engine.

5. Girardeau-Montaut, Daniel. Introducing Project Kinect for Azure [on-
line]. [cit. 2024-04-11]. Dostupné z: https://www.linkedin.com/pulse/
introducing-project-kinect-azure-alex-kipman.

6. Staněk, Roman. Board Games Tracking Using Camera and Depth Sensor
[online]. [cit. 2024-04-02]. Dostupné z: https://dspace.cuni.cz/handle/
20.500.11956/109049.

7. Amos, Evan. File:Xbox-One-Kinect.jpg [online]. [cit. 2024-05-06]. Dostupné
z: https://en.wikipedia.org/wiki/File:Xbox-One-Kinect.jpg.

8. Oxford, Engineers Without Borders. Application of visual tracking algori-
thms for human computer interfaces [online]. [cit. 2024-05-07]. Dostupné z:
https://www.ewbox.org/ml-visual-tracking-project.

9. Wikipedia. Kinect [online]. [cit. 2024-05-07]. Dostupné z: https://en.
wikipedia.org/wiki/Kinect.

10. Hamed Sarbolandi Damien Lefloch, Andreas Kolb. Kinect Range Sensing:
Structured-Light versus Time-of-Flight Kinect [online]. [cit. 2024-04-02]. Do-
stupné z: https://arxiv.org/abs/1505.05459.

11. Wikipedia. G-code [online]. [cit. 2024-05-07]. Dostupné z: https://en.
wikipedia.org/wiki/G-code.

12. HEDSTROM, FREDRIK BALDHAGEN ANTON. Chess Playing Robot
[online]. [cit. 2024-04-02]. Dostupné z: https://www.diva-portal.org/
smash/get/diva2:1462118/FULLTEXT01.pdf.

13. Romero, David Vegas. Implementation of a Chess Playing robot application
[online]. [cit. 2024-04-02]. Dostupné z: https : / / upcommons . upc . edu /
bitstream/handle/2117/333724/tfm- davidvegas.pdf?sequence=1&
isAllowed=y.

14. LaValle, Steven M. Planning algorithms. Cambridge University Press, 2006.
isbn 0521862051.

15. Han, Jihee. An efficient approach to 3D path planning [online]. [cit. 2024-
04-03]. Dostupné z: https://www.sciencedirect.com/science/article/
abs/pii/S0020025518309332.

16. Abrash, Michael. Michael Abrash’s Black Book of Graphics Programming
(Special Edition). Coriolis, 1997. isbn 9781576101742.

58

https://chat.openai.com/
http://billwall.phpwebhosting.com/articles/chess_notation.htm
http://billwall.phpwebhosting.com/articles/chess_notation.htm
https://www.shredderchess.com/chess-features/uci-universal-chess-interface.html
https://www.shredderchess.com/chess-features/uci-universal-chess-interface.html
https://www.chess.com/terms/stockfish-chess-engine
https://www.chess.com/terms/stockfish-chess-engine
https://www.linkedin.com/pulse/introducing-project-kinect-azure-alex-kipman
https://www.linkedin.com/pulse/introducing-project-kinect-azure-alex-kipman
https://dspace.cuni.cz/handle/20.500.11956/109049
https://dspace.cuni.cz/handle/20.500.11956/109049
https://en.wikipedia.org/wiki/File:Xbox-One-Kinect.jpg
https://www.ewbox.org/ml-visual-tracking-project
https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Kinect
https://arxiv.org/abs/1505.05459
https://en.wikipedia.org/wiki/G-code
https://en.wikipedia.org/wiki/G-code
https://www.diva-portal.org/smash/get/diva2:1462118/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1462118/FULLTEXT01.pdf
https://upcommons.upc.edu/bitstream/handle/2117/333724/tfm-davidvegas.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/bitstream/handle/2117/333724/tfm-davidvegas.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/bitstream/handle/2117/333724/tfm-davidvegas.pdf?sequence=1&isAllowed=y
https://www.sciencedirect.com/science/article/abs/pii/S0020025518309332
https://www.sciencedirect.com/science/article/abs/pii/S0020025518309332

17. Dedu, Eugen. Bresenham-based supercover line algorithm [online]. [cit. 2024-
04-03]. Dostupné z: http://eugen.dedu.free.fr/projects/bresenham/.

18. Fischler M. A. a Bolles, R. C. Random sample consensus (ransac) algorithm,
a generic implementation. Association for Computing Machinery, 1981. issn
0001-0782.

19. A. S. Hassanein S. Mohammad, M. Sameer; Ragab, M. E. A Survey
on Hough Transform, Theory, Techniques and Applications [online]. [cit.
2024-05-08]. Dostupné z: https://arxiv.org/pdf/1502.02160.

20. C Gonzalez R. a E Woods, R. Digital Image Processing (2nd Edition).
Association for Computing Machinery, 2002. isbn 0201180758.

21. Nguyen A. a Le, B. 3d point cloud segmentation: A survey. 2013. isbn
978-1-4799-1201-8.

22. Canny, J. A computational approach to edge detection. IEEE, 1986. issn
2160-9292.

23. Koray C. a Sümer, E. A computer vision system for chess game tracking.
2016.

24. Microsoft. What is .NET Framework? [online]. [cit. 2024-05-02]. Dostupné
z: https://dotnet.microsoft.com/en- us/learn/dotnet/what- is-
dotnet-framework.

25. Mullender, Sape J. Distributed Systems. ACM Press, 1993.
26. Wikipedia. Primitive data type [online]. [cit. 2024-05-02]. Dostupné z: https:

//en.wikipedia.org/wiki/Primitive_data_type.
27. Institutes Khanna, Gulzar Group of. IPC technique PIPES [online].

[cit. 2024-05-01]. Dostupné z: https://www.geeksforgeeks.org/ipc-
technique-pipes/.

28. Microsoft. Pipe Operations in .NET [online]. [cit. 2024-04-04]. Dostupné
z: https://learn.microsoft.com/en-us/dotnet/standard/io/pipe-
operations.

29. Microsoft. Memory-mapped files [online]. [cit. 2024-04-03]. Dostupné z:
https://learn.microsoft.com/en-us/dotnet/standard/io/memory-
mapped-files.

30. IBM. Understanding memory mapping [online]. [cit. 2024-05-01]. Dostupné z:
https://www.ibm.com/docs/en/aix/7.2?topic=memory-understanding-
mapping.

31. Microsoft. Desktop Guide (Windows Forms .NET) [online]. [cit. 2024-05-
02]. Dostupné z: https://learn.microsoft.com/en-us/dotnet/desktop/
winforms/overview/?view=netdesktop-8.0.

32. Microsoft. Desktop Guide (WPF .NET) [online]. [cit. 2024-05-02]. Do-
stupné z: https://learn.microsoft.com/en-us/dotnet/desktop/wpf/
overview/?view=netdesktop-8.0.

33. Microsoft. XAML overview (WPF .NET) [online]. [cit. 2024-05-02]. Do-
stupné z: https://learn.microsoft.com/en-us/dotnet/desktop/wpf/
xaml/?view=netdesktop-8.0.

59

http://eugen.dedu.free.fr/projects/bresenham/
https://arxiv.org/pdf/1502.02160
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet-framework
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet-framework
https://en.wikipedia.org/wiki/Primitive_data_type
https://en.wikipedia.org/wiki/Primitive_data_type
https://www.geeksforgeeks.org/ipc-technique-pipes/
https://www.geeksforgeeks.org/ipc-technique-pipes/
https://learn.microsoft.com/en-us/dotnet/standard/io/pipe-operations
https://learn.microsoft.com/en-us/dotnet/standard/io/pipe-operations
https://learn.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files
https://learn.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files
https://www.ibm.com/docs/en/aix/7.2?topic=memory-understanding-mapping
https://www.ibm.com/docs/en/aix/7.2?topic=memory-understanding-mapping
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-8.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-8.0

34. Microsoft. Model-View-ViewModel (MVVM) [online]. [cit. 2024-05-02]. Do-
stupné z: https://learn.microsoft.com/en-us/dotnet/architecture/
maui/mvvm.

35. Thattil, Sascha. Advantages and Disadvantages of WPF? [online]. [cit.
2024-05-02]. Dostupné z: https://www.software-developer-india.com/
advantages-and-disadvantages-of-wpf/.

36. Microsoft. Windows UI Library (WinUI) [online]. [cit. 2024-05-02]. Do-
stupné z: https://learn.microsoft.com/en-us/windows/apps/winui/.

37. Microsoft. What’s a Universal Windows Platform (UWP) app? [online].
[cit. 2024-05-02]. Dostupné z: https://learn.microsoft.com/en-us/
windows/uwp/get-started/universal-application-platform-guide.

38. Chess.com. Chess Notation [online]. [cit. 2024-05-02]. Dostupné z: https:
//www.chess.com/terms/chess-notation.

39. Tim Mann, H.G.Muller. Chess Engine Communication Protocol [online].
[cit. 2024-04-28]. Dostupné z: https://www.gnu.org/software/xboard/
engine-intf.html.

40. chessprogramming. UCI [online]. [cit. 2024-05-02]. Dostupné z: https:
//www.chessprogramming.org/UCI.

41. Chess.com. Elo Rating System [online]. [cit. 2024-05-02]. Dostupné z: https:
//www.chess.com/terms/elo-rating-chess.

42. Knuth, Donald E.; Moore, Ronald W. An analysis of alpha-beta pruning.
Artificial Intelligence. 1975, roč. 6, č. 4, s. 293–326. issn 0004-3702. Dostupné
z doi: https://doi.org/10.1016/0004-3702(75)90019-3.

43. Chessify. Maximizing Stockfish’s Potential: A Speed Experiment on Cloud
Servers [online]. [cit. 2024-05-01]. Dostupné z: https://chessify.me/blog/
stockfish-speed-experiment.

44. Chess.com. Leela Chess Zero [online]. [cit. 2024-05-01]. Dostupné z: https:
//www.chess.com/terms/leela-chess-zero-engine.

45. Microsoft. .NET Standard [online]. [cit. 2024-04-03]. Dostupné z: https:
//learn.microsoft.com/en-us/dotnet/standard/net-standard?tabs=
net-standard-1-0.

46. neuecc. ZeroFormatter [online]. [cit. 2024-04-04]. Dostupné z: https://
github.com/neuecc/ZeroFormatter.

47. Intel. Intel® RealSense™ Technology [online]. [cit. 2024-05-05]. Dostupné
z: https://www.intel.com/content/www/us/en/architecture-and-
technology/realsense-overview.html.

48. Mejia-Trujillo, Jeison; Castano-Pino, Yor; Navarro, Andres; Arango
Paredes, Juan; Rincon, Domiciano; Valderrama, Jaime; M. O., Be-
atriz; Orozco, Jorge. Kinect™ and Intel RealSense™ D435 comparison:
a preliminary study for motion analysis. In: 2019, s. 1–4. Dostupné z doi:
10.1109/HealthCom46333.2019.9009433.

60

https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://www.software-developer-india.com/advantages-and-disadvantages-of-wpf/
https://www.software-developer-india.com/advantages-and-disadvantages-of-wpf/
https://learn.microsoft.com/en-us/windows/apps/winui/
https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://www.chess.com/terms/chess-notation
https://www.chess.com/terms/chess-notation
https://www.gnu.org/software/xboard/engine-intf.html
https://www.gnu.org/software/xboard/engine-intf.html
https://www.chessprogramming.org/UCI
https://www.chessprogramming.org/UCI
https://www.chess.com/terms/elo-rating-chess
https://www.chess.com/terms/elo-rating-chess
https://doi.org/https://doi.org/10.1016/0004-3702(75)90019-3
https://chessify.me/blog/stockfish-speed-experiment
https://chessify.me/blog/stockfish-speed-experiment
https://www.chess.com/terms/leela-chess-zero-engine
https://www.chess.com/terms/leela-chess-zero-engine
https://learn.microsoft.com/en-us/dotnet/standard/net-standard?tabs=net-standard-1-0
https://learn.microsoft.com/en-us/dotnet/standard/net-standard?tabs=net-standard-1-0
https://learn.microsoft.com/en-us/dotnet/standard/net-standard?tabs=net-standard-1-0
https://github.com/neuecc/ZeroFormatter
https://github.com/neuecc/ZeroFormatter
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://doi.org/10.1109/HealthCom46333.2019.9009433

Seznam obrázků

1.1 Kinect sensor v2 [7] . 11
1.2 Visualization of the multipath interference problem [6] 13
1.3 Visualization of the unsuitable materials problem [6] 13
1.4 Visualization of the flying pixels problem [6] 13

2.1 Moving chess figure over another chess figure 17
2.2 Difference between Bresenham classic and customized algorithm . 20
2.3 Steps of edge detection [6] . 24
2.4 Display of edge intersections [6] 26
2.5 Chessboard fitting algorithm with points [6] 27
2.6 Individual steps of piece localization [6] 29
2.7 Application of the Canny edge detector on depth data [6] 30

4.1 Diagram of the main architecture 37
4.2 Diagram of the ChessRunner loop 38
4.3 ChessRobot relationships . 39
4.4 Diagram of the ChessTracking architecture 40
4.5 Diagram of the old ChessTracking architecture 42
4.6 Memory-mapped file structure . 43
4.7 Memory-mapped file mutex structure 44
4.8 Shared memory multi buffer - Unsuccesful operation 45
4.9 Shared memory multi buffer - Succesful operation 46
4.10 Map of the User Interface and page actions 50

61

A Attachments
A.1 Source codes

Source codes of the ChessMaster are attached to this thesis in the ZIP archive.
The archive also contains README.md with user documentation. README
references ChessTracking.md, which is user documentation for the chess tracking
part of this project.

The ChessTracking.md is located in the Docs folder, as well as this thesis. The
Images reference from the user documentation are located in the Images folder.

All these folders are located in the ZIP archive as well as the GitHub repository.
For the current state of the source codes, check the GitHub repository.

A.2 GitHub
The source codes along with the user documentation and other files located

in the ZIP archive are publicly available on GitHub at https://github.com/
bkapustik/ChessMaster.

/Data folder contains the tested PGN chess records in .pgn files.
. stockfish_20090216_x64.exe is included as the default stockfish version.

62

https://github.com/bkapustik/ChessMaster
https://github.com/bkapustik/ChessMaster

	Introduction
	Introduction
	Application specifications
	Configuring robotic manipulator
	Chess representation introduction
	Playing the game

	Hardware specification
	Kinect
	Depth sensor
	Robotic manipulator

	Related work
	Computer-vision and figure detection
	Chess algorithms
	Chessboard and figure manipulation

	Problem Analysis
	Path finding
	Naive approach
	Shortest path
	Sufficiently short path
	Bresenham-based super cover line algorithm
	Final movement trajectory

	Initial state of Chess tracking
	Algorithm selection
	Looking for the chessboard
	Localization in space
	Figure localization

	Technical analysis
	Technology
	IPC
	GUI

	Working with chess state
	Chess protocol
	Chess engine

	Implementation
	Architecture
	ChessTracking

	Integrations
	Migrating legacy code
	Shared memory multi buffer

	Implementation
	Scheduling commands
	Path calculation
	Swapping contexts
	Play against AI strategy
	User Interface

	Discussion
	Evaluation
	Chess Tracking

	Testing
	Robotic manipulator
	Robot moves

	Future work
	Chess tracking speed up
	Automatic reconfiguration
	Pawn promotions
	Configuration
	Camera

	Conclusion
	Bibliografie
	Seznam obrázků
	Attachments
	Source codes
	GitHub

